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From a spacetime perspective, the dynamics of magnetic field lines of force-free electromagnetic
fields can be rewritten into a quite similar form for the dynamics of strings, i.e., dynamics of
“field sheets”. Using this formalism, we explicitly show that the field sheets of stationary and
axisymmetric force-free electromagnetic fields have identical intrinsic properties to the world
sheets of rigidly rotating Nambu–Goto strings. Thus, we conclude that the Blandford–Znajek
process is kinematically identical to an energy-extraction mechanism by the Nambu–Goto string
with an effective magnetic tension.
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1. Introduction and summary

The rotational energy of rotating black holes is a promising energy source for the formation of
relativistic jets, which are ubiquitous in astrophysics. The Blandford–Znajek process [1], which is an
energy-extraction mechanism by force-free electromagnetic fields, can efficiently achieve powerful
energy fluxes and thus has been widely believed to be a viable mechanism to extract the rotational
energy of a black hole. There have been a number of analytical and numerical investigations from
various aspects during the four decades since this process was proposed. A detailed analysis of the
extraction mechanism was in terms of the membrane paradigm [2]. In recent years interpretations
and explanations of this mechanism have been discussed (see, e.g., Refs. [3–5]). Moreover, various
numerical simulations have been developed and demonstrated [6–8]. In this paper we will analytically
reveal the essence of the energy-extraction mechanism in the Blandford–Znajek process from an
alternative perspective.

Recently, it has been elucidated that rigidly rotating Nambu–Goto strings [9] twining around a
rotating black hole can highly efficiently extract the rotational energy from the black hole [10].
The order of the possible energy flux, namely, the energy-extraction rate, is given by the so-called
Dyson luminosity1 ∼ c5/GN � 1059erg/s [12], consisting of only fundamental constants: the speed
of light c and Newton’s constant GN, and a dimensionless string tension GNμ/c2 as a coefficient.
Such energy flux and angular-momentum flux are locally determined by the locus where the string
intersects the light surface associated with its angular velocity, at which the velocity of the corotating
frame coincides with the speed of light. Moreover, a necessary condition for the energy extraction
to occur is that the light surface enters into the ergoregion and the angular velocity of the string is
less than that of the black hole.

1 For historical details, see Ref. [11].
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In this mechanism, if we replace the tension of the Nambu–Goto string with a typical magnetic
tension of electromagnetic fields surrounding a rotating black hole ∼ B2r2

h, we can reproduce the
energy-extraction rate of the Blandford–Znajek process while assuming conventional values of the
magnetic field and the black hole mass. This fact suggests that both the energy-extraction mechanisms
are closely related and the magnetic field lines with magnetic tension play an essential role in
the Blandford–Znajek process. The purpose of this paper is to exhibit that such observations are
exactly true in a quantitative and theoretical sense as well as a qualitative and intuitive sense. We
show that the energy-extraction mechanism by stationary, axisymmetric force-free electromagnetic
fields is essentially identical to that by rigidly rotating Nambu–Goto strings. It follows that the
Blandford–Znajek process, i.e., the energy-extraction mechanism from rotating black holes via force-
free electromagnetic fields, is the Penrose process for magnetic field lines with angular-momentum
and energy transport mediated by their magnetic tension.

For this purpose, we will first reformulate the dynamics of force-free electromagnetic fields in
accordance with a “field-sheet” formalism [13–16]. In this formalism, magnetic field lines are fun-
damental objects to describe dynamics rather than electric and magnetic fields. A time evolution
of a magnetic field line can be regarded as a 2D extended object in a spacetime. We will call
such objects “field sheets”, a name that was adopted in Ref. [16], with a similar connotation to
the term “world sheet” of strings in a spacetime. In the case of magnetically dominated force-free
electromagnetic fields (FμνFμν > 0) in particular, the field sheets become 2D timelike surfaces
characterized by the electromagnetic field strength Fμν . We can recast the equations of motion for
force-free electromagnetic fields, equivalent to the Maxwell equations with the force-free condition,
in the equations of motion in terms of the field sheets. Thus, it turns out that the dynamics of field
sheets for force-free electromagnetic fields is similar to the dynamics of a world sheet for a string,
and they both belong to the same category of dynamics of a 2D surface in a spacetime (a similar
approach to magnetohydrodynamics and its phenomenological applications were discussed in, e.g.,
Refs. [17–19]). This provides an insight into a correspondence between extraction mechanisms by
force-free electromagnetic fields and rigidly rotating strings.

Needless to say, electric and magnetic fields are not components of vector fields, but some of the
components of a tensor field, i.e., the electromagnetic field strength Fμν . Therefore, depending on
coordinate systems or reference frames, their physical interpretations can change as well as their
values. One may, for instance, move to a frame at which only magnetic fields can be observed even
if there exists a net energy flow. Thus, the Poynting flux is only an interpretation of the energy flow
in another frame. Furthermore, in a strong gravitational field, namely, in a curved spacetime, the
spacetime metric affects conventions or interpretations of the electric and magnetic field without
physical significance. This means that explanations based on electric and magnetic fields will vary
depending on the choice of frames. This seems to interfere with the concise understanding of the
mechanism. What we should emphasize is that the field sheet is a geometrical object irrelevant to
any coordinate system as well as a physically intelligible object, thought of as the time evolution of
a magnetic field line. It is expected that we can grasp the essence without suffering from coordinate
systems.

With the above perspective in mind, in Sect. 3, we focus on stationary and axisymmetric force-free
electromagnetic fields in a stationary and axisymmetric spacetime to examine the energy-extraction
process from a rotating black hole. Since the basic properties of such electromagnetic fields have
been widely examined and are well known in the literature (see, e.g., Ref. [20] and references
therein), we translate those into expressions based on the field sheet. We demonstrate that the field
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sheet of the electromagnetic field and the world sheet of the Nambu–Goto string have identical
intrinsic properties such as their induced geometries. In particular, the specific angular-momentum
and energy fluxes per unit tension, flowing on each field sheet, are determined by local configurations
of the magnetic field lines in the same manner as the string configurations. Most importantly, on
the light surface these specific quantities depend only on its locus without global configurations
determined by the equations of motion and must satisfy there identical relations regardless of whether
magnetic field lines or strings; if the angular velocity of a magnetic field line is less than that
of a black hole, the angular momentum can be extracted, and in addition if the locus where the
magnetic field line crosses the light surface enters into the ergoregion, the energy can be extracted.
(The importance of the light surface and other characteristic surfaces such as the Alfvén surface
has been discussed in the literature [21–23].) However, because the dynamics of magnetic field
lines and strings are quite similar but different, both configurations cannot be identical in general.
This fact indicates that global configurations of the magnetic fields have little significance for this
energy-extraction mechanism and a local, kinematical process in the ergoregion should govern
the energy-extraction mechanism. Hence, we can conclude that the essence of both the energy-
extraction mechanism by the force-free electromagnetic fields and the rigidly rotating strings is
identical.

In contrast with the tension of Nambu–Goto strings, the magnetic tension can vary and should
be determined by solving the equations of motion. This means that global configurations of the
magnetic fields can affect the value of the magnetic tension. However, a role of the magnetic tension
proportionally provides efficiency of extraction rate. Roughly speaking, the larger the magnetic
tension is, the more efficient the extraction rate becomes. In this process, the magnetic tension
transports the angular-momentum and energy fluxes on the magnetic lines.

The fact that the essence of the extraction mechanism is local kinematics in the ergoregion irrelevant
to global configurations offers some instructive insights to clarify the whole picture of the Blandford–
Znajek process. It is not so significant whether magnetic field lines can penetrate the event horizon
or reach the outer-light cylinder. These cannot be necessary conditions for the Blandford–Znajek
process to work. Moreover, the event horizon rather than the ergoregion does not play an essential
role in the energy extraction (this issue was addressed in, e.g., Refs. [24,25] on the basis of numerical
simulations).

Generally speaking, the most important issue for extracting the rotational energy from black holes
is angular-momentum transport to gain the energy in the ergoregion. The outward energy flux is just
a by-product of the angular-momentum transport. In the Einstein gravity the spacetime metric can
couple to energy–momentum tensors for any matters or fields. If one wishes to extract the energy
and angular momentum from the (black hole) spacetime, any other method does not exist except
for the method via the energy–momentum tensor (for gravitational waves, the energy–momentum
pseudotensor). To elucidate an extraction mechanism of the rotational energy, we should examine
what contents of the energy–momentum tensor mainly contribute to the angular-momentum transport
(the extraction mechanism for a general energy–momentum tensor is discussed in Ref. [26]). Such
angular-momentum and energy transfer, i.e., local conservation of the energy–momentum tensor,
should be governed by local physics causally connected. Thus, the extraction process can be roughly
dissected into three parts: generating an energy by angular-momentum transfer in the ergoregion,
transporting the gained energy to a region far away from the black hole, and disposing of garbage
that has lost its angular momentum and energy to the black hole. The essence of the energy extraction
mentioned previously is nothing but this generating process. On the other hand, global configurations
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of the magnetic fields at the event horizon and at a far region are related to the disposing process and
the transporting one, respectively.

After all, “boundary conditions” at the event horizon such as whether the magnetic field lines can
penetrate the horizon cannot be a necessary condition for the energy extraction. In fact, even if the
magnetic field lines failed to penetrate the horizon and could never get drawn into the black hole,
the energy extraction by the Blandford–Znajek process can succeed. One may say that the energy
is not extracted from any black hole in that case. However, the fact remains that the gravitational
energy measured in an asymptotic region is extracted from the total system including the spacetime.
Moreover, even though the magnetic field lines cannot reach the outer-light cylinder, we can say that
the Blandford–Znajek process is at work if the magnetic field lines extend to a region sufficiently
far away from the black hole and the gained energy in the ergoregion can be transferred there.

In this paper, we show that the essential mechanism of the Blandford–Znajek process is determined
by local physics in the neighborhood of the ergoregion. Of course, global configurations of the
magnetic field and the electric current are important to make the Blandford–Znajek process efficiently
and successfully sustaining. However, this is just a stage rather than a principal role. We stress that,
in general, how to extract rotational energy from the spacetime and how to arrange appropriate
configurations of the magnetic field or electric current for extracting the energy are different questions.
Furthermore, we should separately consider the kinematical properties without globally solving the
equations of motion and dynamical properties.

The rest of the paper is organized as follows. We first review the field-sheet formalism for
force-free electromagnetic fields. Then, we explicitly show a correspondence between the energy-
extraction mechanisms by stationary, axisymmetric force-free electromagnetic fields and rigidly
rotating strings. In Appendix A we briefly summarize some results for the rigidly rotating strings
shown in Ref. [10].

2. Field-sheet formalism for force-free electromagnetic fields

In this section, in order to elucidate the similarity between Nambu–Goto strings and magnetic field
lines of force-free fields, we will rewrite the equations of motion for force-free electromagnetic fields
according to a “field-sheet” formalism [13–16]. Unless otherwise specified, Newton’s constant GN

and the speed of light c are set to unity hereafter.
Let Fμν be the electromagnetic field strength and let jμ be the current density four-vector of electric

charge. In terms of Fμν , the Maxwell equations are given by

∇αFμα = 4π jμ, ∇[μFνλ] = 0. (1)

In general, when an electromagnetic field interacts with charged matter such as plasma, the energy–
momentum tensor for the electromagnetic field,

Tμν ≡ FμαFν
α − 1

4
FαβFαβ gμν , (2)

satisfies

∇μTμν = −4πFνα jα , (3)

where the right-hand side of the above equation means the Lorentz force. In the situation where the
force density four-vector Fνα jα can be neglected, i.e.,

Fμαjα = 0, (4)
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which is known as the force-free condition, the energy–momentum tensor of the electromagnetic field
is individually conserved, ∇μTμν = 0, so that neither angular momentum nor energy is exchanged
between the electromagnetic field and the other matter. The Maxwell equations (1) together with the
force-free condition (4) yield the equations

Fμα∇βFαβ = 0, ∇[μFνλ] = 0. (5)

The dynamics described by these equations is force-free electrodynamics (FFE).
An important property for the force-free electromagnetic fields satisfies

Fαβ
∗Fαβ = 0, (6)

where ∗Fμν is the dual of Fμν , defined by ∗Fμν ≡ Fαβεαβμν/2. These fields are called degenerate.
Note that the force-free condition for nonzero jμ implies that Fμν is degenerate,2 but degeneracy
does not always lead to force-freeness. To clarify the physical meanings, let tμ be a four-velocity
of a timelike observer. Then, the electric and magnetic fields measured by this observer are given
by Eμ = Fμν tν and Bμ = −∗Fμν tν , respectively. The degenerate condition physically means that
EαBα = 0, where this relation holds even for an arbitrary observer tμ because Fαβ∗Fαβ is scalar.
Now, the fact that Fμν is closed together with the degeneracy implies that ∗Fμν is tangent to a 2D
submanifold, S . Furthermore, we assume that Fμν is magnetically dominated, i.e.,

FαβFαβ = 2(BαBα − EαEα) > 0. (7)

Naively, this condition implies that the magnetic field should be stronger than the electric field.
Because this condition is also described by a scalar, there is a notion independent of observers.
The degeneracy and magnetically dominated condition for Fμν guarantee the existence of a pure
magnetic frame in which Eμ = 0. Therefore, FαβFαβ > 0 states that the electromagnetic field Fμν
is purely magnetic with its magnitude defined by

B ≡
√

FμνFμν

2
. (8)

Namely, we can take ∗Fμν in the form

∗Fμν = Bσμν , (9)

where σμν denotes the 2D volume element on S . It turns out that the magnetically dominated
condition for Fμν is equivalent to σμνσμν = −2, and then S becomes timelike. We call such S a
field sheet. The scalar function B(> 0) irrelevant to coordinate systems means the proper magnitude
of the magnetic field, which can be observed at the rest frame of the magnetic field lines. Moreover,
the magnetic tension and pressure are given by this quantity, so that they are also proper quantities
independent of coordinate systems.

We describe the dynamics of field sheets as string world sheets. In terms of ∗Fμν , the equations of
FFE are rewritten as

∗Fαβ∇[μ∗Fαβ ] = 0, ∇α∗Fαμ = 0. (10)

2 In four dimensions, the relation F[αβFμν] = −εαβμνFλρ∗Fλρ/12 is satisfied. While Fμν jμ = 0, we have
Fλρ∗Fλρ = 0 if jμ is nonzero.
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Substituting Eq. (9) into the above, we obtain the equations of FFE in terms of B and σμν given by

σαβ∇ασβμ = Nμ
α∇α ln B, (11)

∇α(Bσαμ) = 0, (12)

where Nμν is defined by

Nμ
ν ≡ gμ

ν − hμ
ν, (13)

hμ
ν ≡ σμασ

αν. (14)

Note that hμν is the induced metric on the field sheet and Nμν is the projection tensor onto directions
normal to the field sheet. The former equation (11) describes dynamics of field sheets acted on by
a force associated with B, i.e., magnetic pressure; the latter equation (12) does conservation of the
magnetic flux. This expression tells us that the dynamics of field sheets in FFE is similar to the
dynamics of world sheets for Nambu–Goto strings. In fact, it is known that the equations of motion
for a Nambu–Goto string can be written as

σαβ∇ασβμ = 0, (15)

where σμν denotes the volume element of the world sheet in this case [28]. Comparing the above
equation with Eqs. (11) and (12), we can easily notice that the only difference between the dynamics
of field sheets and world sheets is the addition of the extra scalar quantity B, which describes
the magnetic tension and pressure. (In the flat spacetime such a correspondence was discussed in
Refs. [29–31].)

From a geometrical point of view, their meanings are so clear. In general, the extrinsic curvature
of a submanifold is defined by

Kλ
μν ≡ −hμ

αhν
β∇βhα

λ, (16)

where hμν is the induced metric on the submanifold. If the submanifold is 2D, we have

Kλ
μνhμν = −σαβ∇ασβλ. (17)

Thus, the dynamics of field sheets and world sheets belong to the same class of dynamics of a 2D
surface (see Ref. [32] and references therein). Because every degenerate, closed two-form defines a
foliation of spacetime,3 the field sheets represented by Fμν can define a 2D timelike foliation with a
coordinate transformation xμ = X μ(τ , σ ,α,β), where (τ , σ) denote local coordinates on field sheets
S defined by α = const. and β = const. Note that, once α and β are fixed, X μ give embedding
functions of S . Let ∂a be coordinate derivatives with respect to 2D local coordinates on the field
sheet. The Latin indices denote intrinsic components on the field sheet. The volume element σμν is
related to X μ as

σμν = σ abha
μhb

ν, (18)

3 See Appendix A in Ref. [27].
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where ha
μ ≡ ∂aX μ, and σab is the intrinsic volume element on S . Moreover, the induced metric

can be intrinsically written as

hab = gμν(X )ha
μhb

ν = hμνha
μhb

ν. (19)

By using these intrinsic quantities, we can rewrite Eq. (11) in terms of X μ as

D2X μ + �μαβDaX αDaX β = Nμα∂α ln B, (20)

where Da denotes the covariant derivative with respect to hab and �μαβ is the Christoffel symbol
associated with gμν . Note that, intriguingly, this equation is derived from the following action:
S[X μ] = − ∫

d2σB(X )
√−h, where h denotes the determinant of the induced metric hab.

It is instructive to compare a perfect fluid in terms of conservation of the energy–momentum tensor.
As is well known, the energy–momentum tensor of a perfect fluid is given by

Tμν = ρuμuν + p(gμν + uμuν), (21)

where uμ is a four-velocity of the fluid, and ρ and p are the energy density and pressure in its rest
frame, respectively. Decomposing the conservation law ∇μTμν = 0 into tangential components and
normal ones with respect to uμ yields

(ρ + p)uμ∇μuν = −(gμν + uμuν)∇μp,

uμ∇μρ + (ρ + p)∇μuμ = 0.
(22)

If the fluid is pressureless (namely, a dust fluid), the four-velocity of the fluid obeys geodesic
equations. In a parallel manner, we consider an energy–momentum tensor given by

Tμν = − μhμν + p̃(gμν − hμν)

=(μ+ p̃)σμασ να + p̃gμν ,
(23)

where μ is a tension equal to its energy density and p̃ is a normal pressure. Note that Nambu–
Goto strings have a constant μ and p̃ = 0, and magnetically dominated electromagnetic fields have
μ = p̃ = B2/2. Decomposing the energy–momentum conservation into components tangential and
normal to the field sheet yields

(μ+ p̃)σαβ∇ασβμ = (gμ
α − hμ

α)∇α p̃,

σαμ∇αμ+ (μ+ p̃)hμν∇ασαν = 0.
(24)

Thus, it turns out that the world line and its volume element uμ for a fluid element of perfect fluids
correspond to the world sheet (field sheet) and its volume element σμν for a Nambu–Goto string or
a magnetic field line. Moreover, in each pressureless case the world lines of dusts become geodesics
and the world sheets of Nambu–Goto strings are extremal surfaces.

If the system admits some symmetries and such a symmetry is characterized by a Killing vector
field ξμ, the conservation law of the energy–momentum tensor in terms of ξμ yields

0 = ∇μ(Tμνξν)
= −∇μ[(μ+ p̃)hμνξν] + ξμ∇μp̃

= −∇μ[(μ+ p̃)hμνξν],
(25)
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where we have used ξμ∇μp̃ = 0 because of the symmetry. This conservation law is equivalent to
that of a string with an effective tension μ + p̃. Thus, even though the pressure does not vanish,
p̃ �= 0, kinematic properties such as the conservation law can be identical thanks to the symmetry.

3. Energy extraction by force-free electromagnetic fields
3.1. Stationary and axisymmetric force-free electromagnetic fields

In this section, we consider stationary and axisymmetric force-free electromagnetic fields in a rotat-
ing black hole, and reinterpret energy-extraction processes via the force-free electromagnetic fields
from a perspective of the field-sheet formalism. Such stationary and axisymmetric force-free electro-
magnetic fields in a stationary and axisymmetric spacetime have been comprehensively investigated
in the literature, and their basic properties are well known [20]. Note that the above assumptions
are conventional ones when the Blandford–Znajek process has been discussed. In the field-sheet
approach, we will follow Ref. [16].

In order that we will later focus on the Kerr spacetime as an explicit example, we suppose that the
spacetime is stationary and axisymmetric and admits two Killing vector fields (∂t)

μ and (∂φ)μ, which
respectively represent time translation symmetry and axisymmetry of the spacetime as L∂t gμν =
L∂φgμν = 0. Here, L denotes the Lie derivative. Its metric can be written as

gμνdxμdxν = gttdt2 + 2gtφdtdφ + gφφdφ2 + grrdr2 + gθθdθ2, (26)

where we assume that gttgφφ − g2
tφ = 0 characterizes the event horizon and gttgφφ − g2

tφ < 0
implies the outside of the black hole. Here, we have taken a coordinate system in which the Killing
vector fields (∂t)

μ and (∂φ)μ are manifestly orthogonal to 2D surfaces spanned by (r, θ) such as the
Boyer–Lindquist coordinates for the Kerr spacetime. Moreover, we suppose that the electromagnetic
fields share the same Killing symmetries such that L∂t Fμν = L∂φFμν = 0.

It is known that stationary and axisymmetric force-free electromagnetic fields are given by the
following field strength:

F = 1

2
Fμνdxμ ∧ dxν = dψ ∧ (η − dϕ), (27)

where η ≡ dφ−ω(ψ)dt, and both ψ and ϕ are scalar functions independent of t and φ. This yields
a common component representation of the field strength:

Fμt = Fμν(∂t)
ν = −ω(ψ)∂μψ , Fμφ = Fμν(∂φ)

ν = ∂μψ , Frθ = ∂ϕ

∂r

∂ψ

∂θ
− ∂ϕ

∂θ

∂ψ

∂r
, (28)

which are related to an electric field, and poloidal and toroidal components of the magnetic field,
respectively. Note that we can easily confirm that dF = 0 is satisfied. The form of this field strength
(27) can be expressed as F = dψ ∧ dφ̂ in terms of the so-called Euler potentials given by the
following scalar functions: ψ and φ̂ ≡ φ − ω(ψ)t − ϕ (see, e.g., Ref. [16]). This means that the
field sheets are represented by the intersections of the hypersurfaces of constant ψ and φ̂. Each
magnetic field line given by the field sheets is rotating with angular velocity ω(ψ). Obviously, the
field sheets described by the same ψ have the same angular velocity because of the axisymmetry.
Such a ψ-constant surface is a so-called magnetic surface, and 2πψ = ∫

F gives the magnetic flux
across the region enclosed by the magnetic surface.

The “proper” magnetic field B is given by

B2 ≡ 1

2
FμνFμν = η2|∇ψ |2 + |∇ψ |2|∇ϕ|2 − (∇ψ · ∇ϕ)2. (29)
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Here, we have written the contractions for vector fields u and v as u · v = uμvμ and u2 = uμuμ in
the abbreviated notation. In addition, we have

FrθFrθ = grrgθθF2
rθ = |∇ψ |2|∇ϕ|2 − (∇ψ · ∇ϕ)2. (30)

As we mentioned in the previous section, B > 0 is a scalar function irrelevant to coordinate systems,
which gives the magnetic tension and pressure.

Now, χ is a corotating vector defined by

χμ =
(
∂

∂t

)μ
+ ω(ψ)

(
∂

∂φ

)μ
, (31)

which satisfies χμημ = 0 and χ2 = gtt +2gtφω+gφφω2 = −(g2
tφ−gttgφφ)η2. Since the corotating

vector χ satisfies Fμνχν = 0, χ is tangential to the field sheet. It turns out that χ represents a
corotating frame with the angular velocity ω(ψ) for each field sheet labeled by constant ψ . If χ
(also, η) becomes null, the velocity of such a corotating frame has reached the speed of light. The
locus characterized by χ2 = 0 is called the light surface.4 Meanwhile, because a field sheet is a
2D surface, there is another tangential vector linearly independent of χ . We will introduce the other
tangential vector as

λμ ≡ ∗Fμν∇ν t

= 1√−g

[
Fθφ

(
∂

∂r

)μ
+ Fφr

(
∂

∂θ

)μ
+ Frθ

(
∂

∂φ

)μ]
.

(32)

By construction, this vector is tangential to the field sheet and normal to ∇μt, so that λ becomes
a generator of the intersection of the field sheet and a constant-t surface. This means that the inte-
gral curves of λ are magnetic field lines at a time t. The direction of λ is radially outward for
Fθφ = ∂θψ > 0, while its direction is radially inward for ∂θψ < 0. It turns out that the direction of
λ corresponds to that of the magnetic field. Note that, since [λ,χ ] = Lλχ = 0 are satisfied, χ and λ
can be coordinate bases on the field sheet as χ = ∂/∂τ and λ = ∂/∂σ , where τ and σ denote local
coordinates on the field sheet. The dual of Fμν is expressed as

∗Fμν = λμχν − χμλν . (33)

This expression manifestly shows that it is a two-form tangential to the field sheet, i.e., proportional
to the volume form of the field sheet as ∗Fμν = Bσμν .

3.2. Induced geometry on the field sheet

As we mentioned, χ and λ can constitute the tangential coordinate bases on the field sheet, so that
components of the induced metric on the field sheet in terms of the coordinate system (τ , σ) are

4 In general, two light surfaces can exist in a black hole spacetime: one is the inner-light surface near the
black hole, and the other is the outer-light surface (light cylinder) in the far region. Since the inner-light surface
is important for extracting the rotational energy from the black hole [10], we will focus only on the inner-light
surface hereafter.
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given by

hττ ≡ χμχνgμν = gtt + 2gtφω + gφφω
2,

hτσ ≡ χμλνgμν = Frθ√−g
(gtφ + gφφω),

hσσ ≡ λμλνgμν = 1

g2
tφ − gttgφφ

|∇ψ |2 + gφφ

(
Frθ√−g

)2

.

(34)

Since χ is the corotating vector, the light surface is characterized by χ2 = hττ = 0. In addition, χ
is the Killing vector with respect to the induced metric on the field sheet,5 so that the light surface
corresponds to the Killing horizon on the field sheet. This Killing horizon works as a causal boundary
for various phenomena governed by the induced metric [16]. We find the following correspondence
between the induced metric of the field sheet and that of the rigidly rotating string (A3):

Frθ√−g
↔ ϕ′, 1

g2
tφ − gttgφφ

|∇ψ |2 ↔ grrr′2 + gθθ θ
′2. (35)

Indeed, we can explicitly show

Lλϕ = λμ∂μϕ = 1√−g

(
∂ψ

∂θ

∂ϕ

∂r
− ∂ψ

∂r

∂ϕ

∂θ

)
= Frθ√−g

, (36)

and

Lλr = λμ∂μr = ∂θψ√−g
, Lλθ = λμ∂μθ = − ∂rψ√−g

. (37)

If we introduce the local coordinates as χ = ∂/∂τ and λ = ∂/∂σ restricted on the field sheet,
the correspondence becomes more apparent. Thus, the intrinsic geometry on the field sheet of the
stationary, axisymmetric force-free electromagnetic field and that on the world sheet of the rigidly
rotating string have entirely identical properties.

3.3. Angular-momentum flux and energy flux

Since the spacetime has time-translational symmetry and axisymmetry, we have conservation laws
for the energy–momentum tensor that are associated with each symmetry. In particular, the energy–
momentum tensor of the force-free electromagnetic field is conserved independently of other matter.
The angular-momentum conservation ∇μ(Tμν(∂φ)ν) = 0 yields

0 = 1√−g
∂μ(

√−gTμν(∂φ)
ν)

= − 1√−g
∂μ(

√−gFμν∂νψ)

= − 1√−g

(
∂θψ

∂

∂r
− ∂rψ

∂

∂θ

) √−gFrθ.

(38)

5 Each component of the induced metric is a function of only r and θ . Since Lχr = Lχθ = 0, we have
Lχhab = 0 on the field sheet.
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This indicates that
√−gFrθ should depend only on ψ as

I (ψ) ≡ √−gFrθ. (39)

Note that this scalar function6 is constant on the field sheets, and it is one of the characteristic
quantities characterizing the stationary and axisymmetric force-free electromagnetic field as well as
ψ and ω(ψ). By using λ, this angular-momentum conservation can be rewritten as

1√−g
∂t(

√−gT t
ν(∂φ)

ν) = λμ∂μI (ψ). (40)

Therefore, I (ψ) is identified with the angular-momentum flux (per unit magnetic flux dψ) flowing
on the field sheet, which should be conserved for each field sheet. Note that −I (ψ) gives the outward
angular-momentum flux for ∂θψ > 0, while I (ψ) is the outward flux for ∂θψ < 0. This is because
the direction of λ changes depending on the sign of ∂θψ (for instance, recall that Lλr = ∂θψ/

√−g
in Eq. (37)). It is well known that I (ψ) is connected with the electric current according to Ampère’s
law. However, we stress that this is electromagnetic angular-momentum flux without involving
matter such as charged particles, because the relevant energy–momentum tensor consists only of the
electromagnetic field and it is individually conserved thanks to the force-free condition. Similarly,
the energy conservation ∇μ(Tμν(∂t)

ν) = 0 leads to

1√−g
∂t(−

√−gT t
ν(∂t)

ν) = λμ∂μ[ω(ψ)I (ψ)], (41)

where ω(ψ)I (ψ) is identified with the conserved energy flux flowing on the field sheet. As in the
case of the angular-momentum flux, −ω(ψ)I (ψ) gives the outward energy flux for ∂θψ > 0, while
ω(ψ)I (ψ) is the outward flux for ∂θψ < 0. Integrating Eqs. (40) and (41) over a 3D volume on a
t-constant hypersurface surrounding the black hole, we have total fluxes of angular momentum J
and energy M, i.e., each extraction rate from the black hole,7 as

dJ
dt

= −2π
∫

I (ψ)dψ ,
dM
dt

= −2π
∫
ω(ψ)I (ψ)dψ . (42)

Now, we find from Eq. (36) that

I (ψ) = √−gFrθ = (−g)grrgθθ
Frθ√−g

= (g2
tφ − gttgφφ)Lλϕ, (43)

and also we find from Eqs. (29) and (30) that

I (ψ)2 = (g2
tφ − gttgφφ)(B

2 − η2|∇ψ |2)
= (g2

tφ − gttgφφ)B
2 + χ2|∇ψ |2.

(44)

Combining the above two results, we can obtain

q̂ ≡ ∓ I (ψ)

B
= ∓ (g2

tφ − gttgφφ)Lλϕ√
(g2

tφ − gttgφφ)(Lλϕ)2 − χ2[grr(Lλr)2 + gθθ (Lλθ)2]
, (45)

6 Since I (ψ) = ∗Fμν(∂t)
μ(∂φ)

ν , we can see that I (ψ) is scalar.
7 We denote the mass and angular momentum of the black hole as MBH and JBH. Each conservation law

yields dM
dt + dMBH

dt = 0 and dJ
dt + dJBH

dt = 0.
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where we take the upper minus sign for ∂θψ > 0 and the lower plus sign for ∂θψ < 0. In a unified
manner, alternatively, it can be rewritten as

q̂ = − (g2
tφ − gttgφφ)dϕ/dr√

(g2
tφ − gttgφφ)(dϕ/dr)2 − χ2[grr + gθθ (dθ/dr)2]

, (46)

where dϕ/dr ≡ Lλϕ/Lλr and dθ/dr ≡ Lλθ/Lλr. This quantity q̂ means the specific angular-
momentum flux per unit tension, and its expression is identical to that of the specific angular-
momentum flux for the rigidly rotating strings [10] (see also Eq. (A7)). Similarly, ω(ψ)q̂ is the
specific energy flux per unit tension. Since the sign of q̂ has been defined such that q̂ should be
positive if a radially outward flux, q̂ > 0 and ωq̂ > 0 mean angular momentum extracting and
energy extracting, respectively. It is worth noting that the sign of q̂ is irrelevant to the direction of
λ as is clear from Eq. (46). In other words, whether it is an extracting process or an injecting one
does not depend on the direction of the magnetic field but the configuration of the magnetic field
line. One thing to keep in mind as a difference from the cases of the rigidly rotating strings is that
the specific angular-momentum flux q̂ is not conserved while I (ψ) is conserved on the field sheet.
The tension of Nambu–Goto strings is constant, while the magnetic tension associated with B can
vary even on the field sheet. Therefore, the specific angular-momentum flux per tension should be
not necessarily conserved, or more accurately the scalar function B can work as an effective tension
for the field sheet.8

So far we have shown that the intrinsic structures on the field sheet are identical to those on the
world sheet of the rigidly rotating string. This does not mean that the global, extrinsic structures
of both objects will be identical. The equations of motion for each are indeed similar, but they are
not identical, as seen in the previous section. In general, the global configurations of the Nambu–
Goto strings and the magnetic field lines are different, and such global configurations should be
determined by each dynamics by solving the equations of motion. However, it is noteworthy that
kinetic properties can be locally determined without solving the equations of motion. In what follows
we will see that the specific angular-momentum flux is in fact governed by local relations on the
light surface. On the light surface, which is characterized by

χ2 = gtt + 2gtφω(ψ)+ gφφω(ψ)
2 = 0, (47)

we have the specific angular-momentum flux

q̂2 = (g2
tφ − gttgφφ)|χ2=0, (48)

by substituting χ2 = 0 into Eq. (44). It turns out that this expression is identical to that of the
specific angular-momentum flux for the rigidly rotating strings (A6). Since Eqs. (47) and (48) are
equations in terms of r and θ essentially, they give relations among the angular velocityω, the specific
angular-momentum flux q̂, and the locus of the light surface (rLS, θLS). Thus, we conclude that
both the stationary, axisymmetric force-free electromagnetic fields and the rigidly rotating strings
have identical relations. It is worth noting that these relations are determined by the background
spacetime metric irrelevant to the dynamics of the electromagnetic field. Even though the dynamics
of electromagnetic fields and rigidly rotating strings are different, i.e., their global configurations

8 As can be seen from the energy–momentum tensor, B2 describes the magnetic tension per unit area, which
has the same dimension as pressure. Now, B describes the magnetic tension per unit magnetic flux.
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are different, the same locus of the light surface provides the same angular velocity and specific
angular-momentum flux. This fact implies that the specific angular-momentum flux is kinematically
determined and both extracting mechanisms of energy and angular momentum via the force-free
electromagnetic fields and the rigidly rotating strings are essentially identical.

3.4. Energy extraction in the Kerr spacetime

Now, to discuss the energy-extraction process from a rotating black hole explicitly, let us focus on
the Kerr spacetime. Since the major properties of the force-free electromagnetic fields and the rigidly
rotating strings are identical, as seen, most of the following argument and its results are the same as
those shown in Ref. [10]. For more details, refer to it.

In the Boyer–Lindquist coordinates the metric of the Kerr spacetime with mass M and angular
momentum aM is given by

gμνdxμdxν = −dt2 + 2Mr

�
(dt − a sin2 θdφ)2 + �

�
dr2 +�dθ2 + (r2 + a2) sin2 θdφ2, (49)

where

�(r, θ) = r2 + a2 cos2 θ , �(r) = r2 + a2 − 2Mr. (50)

For simplicity and without loss of generality, we assume a > 0. This metric gives g2
tφ − gttgφφ =

� sin2 θ , and the event horizon lies at r = rh ≡ M + √
M 2 − a2 defined by �(rh) = 0. Note that

we have � > 0 outside the black hole r > rh. The angular velocity of the black hole is given by
�h ≡ a/(r2

h + a2). The ergosphere is characterized by the locus where the stationary Killing vector
(∂t)

μ becomes null, i.e., gtt = 0, and its radius is rergo(θ) ≡ M + √
M 2 − a2 cos2 θ .

In this spacetime, the conditions (47) and (48) at the light surface (rLS, θLS) become

χ2 = −
[

1 − 2Mr

�
(1 − ωa sin2 θ)2 − ω2(r2 + a2) sin2 θ

]
= 0, (51)

and

q̂2 = � sin2 θ . (52)

Solving these equations in terms of r and θ yields the locus of the light surface as9

rLS(ω, q̂) = M

1 + q̂ω
+

√(
M

1 + q̂ω

)2

− a(a − q̂), (53)

and

sin θLS = |q̂|√
�(rLS)

. (54)

Here, we focus on the northern hemisphere and should take π − θLS in the southern hemisphere.
In order to satisfy �(rLS) > 0, namely, the light surface being located outside the horizon, and

9 As shown in Ref. [10], these equations have another branch of solutions, r−(ω, q̂) ≡ rLS(ω, −q̂). This
branch describes time-reversal processes rather than physically natural processes.
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Fig. 1. Typical shape of the allowed parameter region (ω, q̂) focusing on the energy-extraction region (an
example of a/M = 0.9). The shaded region is the allowed region, and in particular the triangular region
ωq̂ > 0 is where the energy extraction occurs. The solid and dotted curves denote contour lines for the locus
of the light surface rLS and θLS, respectively. The radius of the light surface will coincide with that of the
ergosphere rLS = rergo on the vertical axis ω = 0 and that of the event horizon rLS = rh on the horizontal axis
q̂ = 0. The curve represented by ω = ωeq(q̂) indicates that the light surface is located on the equatorial plane
θLS = π/2; the horizontal axis that it is on the rotation axis θLS = 0.

0 ≤ sin2 θLS ≤ 1, we obtain an allowed parameter region in terms of (ω, q̂). The allowed region can
be described by the intervals in which ω lies as

ωaxis(q̂) < ω ≤ ωeq(q̂) for q̂ > 0,

ωeq(q̂) ≤ ω < ωaxis(q̂) for q̂ < 0,
(55)

where

ωaxis(q̂) ≡ −1

q̂
, ωeq(q̂) ≡ a − q̂

2M 2 − q̂(a − q̂)+ 2M
√

M 2 − (a2 − q̂2)
. (56)

The boundaries represented byωeq andωaxis indicate when the light surface is located at the equatorial
plane (θLS = π/2) and when it approaches the rotation axis (θLS → 0), respectively. Moreover, the
radius of the light surface coincides with that of the ergosphere (rLS = rergo) when ω = 0 and that
of the event horizon (rLS = rh) when q̂ = 0 including ω = �h. The typical shape of the allowed
region is shown in Fig. 1. Since the region where the energy extraction occurs should be located
in ωq̂ > 0, a necessary condition for the energy extraction is that a magnetic field line intersects
the light surface inside the ergoregion of the Kerr black hole (rh < rLS < rergo) and the angular
velocity of the magnetic field line is less than that of the black hole (ω < �h). It turns out that the
curve of the upper boundary of the energy-extraction region, represented by ω = ωeq(q̂), should
pass through (ω, q̂) = (0, a), (�h, 0). Therefore, for an arbitrary a the extraction rate of the specific
energy can be bounded by ∼ a�h/4, and such a maximum extraction rate will be achieved when the
angular velocity of the magnetic field line is approximately half of the black hole angular velocity
near the equatorial plane (ω � �h/2 and θLS � π/2). It is worth noting that these extraction rates
are irrelevant to the mass scale of the central black hole.

This necessary condition applies to each field sheet, i.e., each magnetic field line. It follows that
each local configuration of the magnetic field line at the light surface governs whether energy and
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Fig. 2. Relations among local configurations of the magnetic field line and directions of the specific angular-
momentum flux q̂. The left panel shows that the black hole is rotating faster than the magnetic field line
(ω < �h) in the corotating frame of the field line; the right panel shows that the magnetic field line is rotating
faster than the black hole (ω > �h) in the corotating frame of the black hole. The directions of the magnetic
field are irrelevant. The dashed circle and the black disk depict, respectively, a light surface and a black hole
viewed from the top along the rotation axis. The magnetic field line is stretching inside the light surface.

angular-momentum extraction can occur or not, i.e., the sign of ωq̂ and q̂. Figure 2 shows relations
among local configurations of the magnetic field line and directions of the specific angular-
momentum flux q̂. From Eq. (46) we find that the sign of q̂ is directly connected with the sign
of dϕ/dr ≡ Lλϕ/Lλr regardless of the direction of λ. When the black hole is rotating faster than
a magnetic field line, ω(ψ) < �h, the magnetic field line is braking the rotation of the black hole,
namely, extracting the angular momentum from the black hole, q̂ > 0. When a magnetic field line is
rotating faster than the black hole, ω(ψ) > �h, the magnetic field line is accelerating the rotation
of the black hole, namely, injecting the angular momentum into the black hole, q̂ < 0. Furthermore,
on the premise that the angular-momentum extraction has occurred q̂ > 0, the magnetic field line
can extract the rotational energy of the black hole ω(ψ)q̂ > 0 if the light surface enters into the
ergoregion rh < rLS < rergo.

As in the case of the rigidly rotating strings, this energy-extraction mechanism via the force-free
electromagnetic fields can be simply interpreted as an analogy of the Penrose process. Outside the
light surface, each field sheet is stationary with respect to each corotating vector χ = ∂t + ω(ψ)∂φ ,
which is tangential to the field sheet. In other words, the configuration of the magnetic field line does
not change in the corotating frame with angular velocity ω(ψ). However, inside the light surface the
field sheet cannot be stationary because the corotating vector is spacelike. This means that the proper
motion of each line element of the magnetic field line cannot follow the corotating angular velocity,
and therefore the magnetic field line is stretching while its configuration remains unchanged. As a
result, angular momentum associated with each line element is transferred toward the central black
hole. When the black hole is rotating faster than the magnetic field line, this angular-momentum
transfer will make the black hole spin down; when the magnetic field line is rotating faster than the
black hole, it will make the black hole spin up. If angular-momentum transfer of the magnetic field
line such that the black hole will be spun down occurs in the ergoregion, the magnetic field line
can gain energy as a reaction to the angular-momentum transfer. The energy gain will be transferred
away from the black hole by the magnetic tension of the magnetic field line. This process is quite
similar to the Penrose process for particles. Roughly speaking, the stretching part of the magnetic
field lines plays the role of the infalling “object” in the Penrose process.
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The total amount of energy and angular-momentum flux is given by multiplying the specific
quantities by an effective magnetic tension and integrating the contributions of every magnetic line.
In fact, because Bωq̂ and Bq̂ are conserved on each field sheet, once values of B on the light surface
are given, we can obtain the total energy and angular-momentum flux by integrating Bωq̂ and Bq̂ on
the whole light surface as in Eq. (42). To know the details of B, we have to solve the equations of
motion and need global information on configurations of the magnetic field. However, the order of
possible fluxes together with whether they are injecting or extracting has been locally determined by
the specific quantities per unit tension, so that B plays the role of a weight function of the magnetic
tension.

An average magnetic tension surrounding the black hole is defined by

4πr2
h〈B2〉 ≡ 2π

∫
LS

B|dψ |. (57)

The energy-extraction rate can be estimated as

dM
dt

= π

2
M 2〈B2〉u(α)

∫
LS

B|dψ |
2r2

h〈B2〉
ωq̂

�ha/4
, (58)

where u(α) ≡ α2(1 + √
1 − α2) and α ≡ a/M .

The whole of the Blandford–Znajek process can be classified into what is governed by local
kinematics and what is governed by dynamics by solving the equations of motion. The former is the
energy-extraction mechanism characterized by the relations between the specific energy and angular-
momentum fluxes, ωq̂ and q̂, and the locus of the light surface, which we have shown in this paper;
the latter is global configurations of the magnetic field lines and the electric current, the value of the
magnetic tension B, and so on. This fact suggests the following whole picture of the Blandford–Znajek
process. Depending on the environments in an outer region, the global configurations of the magnetic
field lines associated with plasmas are dynamically determined according to the equations of motion.
If only appropriate configurations of the magnetic field lines can be locally realized in an inner region
around the ergoregion, the magnetic field lines start to extract the energy and angular momentum of
the black hole by a kinematical mechanism irrelevant to situations in the outer region. For example,
to obtain explicitly the directional dependence of the energy and angular-momentum fluxes in the far
region, we have to solve globally the equations of motion for the electromagnetic fields and to know
the entire configurations of the magnetic field lines. This implies that we should examine the details
of the surrounding system, i.e., the boundary conditions in the outer region, in order to explore the
directional dependence in the far region where astrophysical jets are generated. However, in order
to explain and understand the energy-extraction mechanism in the Blandford–Znajek process, we
should consider just local kinematics in the inner region between the light surface and the ergosphere.
The directional dependence of the specific energy and angular-momentum fluxes at the light surface
has been shown in the contour of, e.g., Fig. 1. This provides the potential to generate the energy
and angular-momentum fluxes in the Blandford–Znajek process. We can see that the closer to the
equatorial plane θLS = π/2 the locus where the magnetic field lines intersect the light surface is, the
larger specific energy flux ωq̂ the magnetic field lines can generate in general.

4. Discussion

In this paper we have shown that the essence of the energy extraction by the Blandford–Znajek
process is local kinematics inside the ergoregion. Therefore, global configurations of the magnetic
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field line, such as whether the magnetic field lines can thread the event horizon or not, should not
be the essence of this process. The Znajek condition [33], which is well known as a condition to be
satisfied at the event horizon, cannot be a necessary condition for the energy extraction. This condition
is a consistency condition for the force-free magnetic field lines to regularly cross the event horizon
(an identical condition (A11) can be derived for the rigidly rotating strings). The main process for
the energy extraction occurs between the inner-light surface and the ergosphere, and, besides, the
light surface is the causal boundary for this system. Therefore, the energy extraction can occur even
if this condition is not necessarily satisfied. For instance, it does not matter if the force-free condition
for plasma has been violated at the event horizon. For the same reason, moreover, the so-called
Meissner-like effect, in which the extremal Kerr black hole tends to expel magnetic fields (see, e.g.,
Ref. [34] and references therein), should not have a direct connection with the Blandford–Znajek
process as long as we do not require an extra assumption at the horizon for a different reason.

Throughout this paper we have discussed stationary and axisymmetric force-free electromagnetic
fields for the energy extraction.At the least, we need these assumptions between the inner-light surface
and the ergosphere. If such assumptions are violated, it is expected that the energy extraction by the
Blandford–Znajek process will become less efficient. The reason why the Blandford–Znajek process
can efficiently extract the rotational energy from the black hole and produce a highly powerful energy
flux is that a relativistic tension, which is equal to its energy density, carries the angular-momentum
and energy flux along the magnetic field lines in the same way as Nambu–Goto strings. If the
axisymmetry, stationariness, or force-freeness are violated, the magnetic pressure or other matters
begin to affect the angular-momentum and energy transfer and then alter the correspondence to the
Nambu–Goto strings. This seems to be a disadvantage for the energy extraction.

What is necessary for the Blandford–Znajek process to occur is toroidal magnetic fields winding
the black hole at the light surface inside the ergoregion. As we showed in Eq. (46), the angular-
momentum and energy fluxes depend on toroidal configurations of the magnetic field lines, namely,
the toroidal component of the magnetic field. This is because toroidal magnetic fields take the central
role in the angular-momentum transfer of the magnetic field lines. The poloidal components of the
magnetic fields determine the directions of the angular-momentum and energy flows.

For the Blandford–Znajek process, since magnetic field lines with magnetic tension are essential
and the transferred energy and angular momentum are purely electromagnetic, it seems that the
electric current or plasma has only an auxiliary role to sustain the magnetic fields. In fact, Ref. [35]
recently showed that magnetic fields without plasma can extract the rotational energy of a black hole
in lower spacetime dimensions.
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Appendix A. Rigidly rotating strings

In this appendix we summarize useful results for rigidly rotating strings around a rotating black hole,
some of which were obtained in Ref. [10].
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In a stationary and axisymmetric spacetime (26), a stationary rotating string with angular velocity
ω is embedded as

t = τ , φ = ωτ + ϕ(σ), r = r(σ ), θ = θ(σ ). (A1)

The corotating (Killing) vector χ that is tangential to the world sheet becomes

χ = ∂

∂t
+ ω

∂

∂φ
. (A2)

The induced metric of the world sheet is given by

habdσ adσ b = (gtt +2gtφω+gφφω
2)dτ 2 +2ϕ′(gtφ+gφφω)dτdσ + (grrr′2 +gθθ θ

′2 +gφφϕ
′2)dσ 2,

(A3)
where the prime denotes a derivative with respect to σ . From this induced metric the Lagrangian
density for the Nambu–Goto string with unit tension is given by

L = −
√
(g2

tφ − gttgφφ)ϕ′2 − χ2(grrr′2 + gθθ θ ′2), (A4)

where χ2 = χμχνgμν = hττ . The light surface is characterized by

χ2 = gtt + 2gtφω + gφφω
2 = 0, (A5)

and a consistency condition that the string can pass through the light surface regularly is given by

q2 = (g2
tφ − gttgφφ)|χ2=0. (A6)

Here, q is a conserved quantity characterizing the configuration of the rigidly rotating strings, which
means the specific angular-momentum flux per unit tension flowing on the string world sheet. Its
expression is written as

q ≡ ∂L

∂ϕ′ = − (g2
tφ − gttgφφ)ϕ′√

(g2
tφ − gttgφφ)ϕ′2 − χ2(grrr′2 + gθθ θ ′2)

, (A7)

where the sign of q has been defined so that q > 0 describes a radially outward flux when r′ > 0.
Using Eqs. (A4) and (A7), we have the following identity:

q2L 2 = (g2
tφ − gttgφφ)[L 2 + χ2(grrr′2 + gθθ θ

′2)]. (A8)

Suppose that (g2
tφ − gttgφφ)|r=rh = 0 and (grr)

−1|r=rh = 0 should be satisfied at the event horizon
r = rh. The determinant of the metric components g should not be degenerate, so that the equation

(g2
tφ − gttgφφ)grr = −g/gθθ (A9)

is satisfied even at r = rh. If the string can regularly pass through the event horizon, the volume
element of the string world sheet, namely, the Lagrangian density L , should be finite and nonzero
at the event horizon. Moreover, at r = rh we find

χ2|r=rh = gφφ(ω −�h)
2, (A10)
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where we have used g2
tφ = gttgφφ and�h = −gtφ/gφφ at r = rh. Combining the above results (A8),

(A9), and (A10), we obtain the following condition at the event horizon:

q2 = (ω −�h)
2 (−g)

L 2

(
dr

dσ

)2 gφφ
gθθ

∣∣∣∣∣
r=rh

. (A11)

Note that, by definition, the combination L dσ is invariant under reparameterization of the world-
sheet coordinate σ . This condition is identical to the Znajek condition for force-free electromagnetic
fields:

I (ψ) = (ω −�h)∂θψ

√
gφφ
gθθ

∣∣∣∣
r=rh

, (A12)

which we can also obtain by evaluating Eq. (44) at the event horizon.
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