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The charge-exchange vacuum instability can occur in an intense heavy-ion beam in an accelerator or a
storage ring. The instability increment is proportional to the total ion current, to the total cross section of the
ion charge-exchange on remanent gas atoms and to the coefficient which determines the atom output into the
vacuum chamber from a single beam ion incident on a wall of the vacuum chamber. The instability involved
is shown to limit the total heavy-ion current that may transverse the vacuum chamber cross section.

In the last few years, increases of proton and electron intensity in accelerators and
storage rings have resulted in a number of new effects, such as a local rise of pressure
due to stimulated desorption owing to ion (electron, photon) bombardment of the
vacuum-chamber wa11. 1

,2 Here the ions are produced from ionization of remanent gas
molecules by the charged-particle beam. Proton beam loss (or partial loss) occurs not
by beam scattering on remanent gas atoms, but by interactions between protons and
the cloud of captured electrons. 3

The acceleration· and stacking process of intense ion beams meets a more
complicated problem caused by a large ion charge-exchange cross section on remanent
gas atoms and large coefficients of desorption and material atomization of the
vacuum-chamber walls.

If a single ion changes its charge value through interaction with a remanent gas
atom, it will lose stability and hit the vacuum-chamber wall. Local evaporation and
atomization of a part of wall material will occur at the location of incidence. Let us
denote by 11 the number of wall-material atoms incident into the vacuum chamber due
to a single ion striking the wall. We divide these atoms into two groups. The first group
are gaseous combinations which spread throughout the whole volume of the vacuum
chamber. The lifetime of these atoms is determined by the vacuum pumping speed and
is, from our point of view, long. The second group are atoms with lifetime determined
by the time interval necessary to reach a surface and immediately stick to it. Ions
moving in the chamber will interact with these atoms, resulting in additional beam loss
which will strike the vacuum-chamber wall; bringing about the appearance of new
groups of atoms.

To analyze this problem we use the relation

(1)

where n+ is the ion density in the beam; v is the ion velocity along the chamber axis; n1
and n2 are the density of atoms spread in the vacuum chamber of the first and second
groups. Correspondingly cr(v) is the total ion charge-exchange cross section on atoms
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scattered in the chamber. In Eq. (1), we disregard the weak dependence of charge­
exchange cross section on the atomic number of the scattering atoms.

Let us integrate Eq. (1) over the vacuum-chamber cross section. The left-hand side
gives

f dn + dS = dN + = _ dN
dt dt dt '

(lb)

where N+ is the linear ion density in the beam, and N is the linear density of ions
escaping the beam.

In carrying out the integration of the right-hand side of (1), we assume that the
directions of the atoms after collision are close to the normal to the chamber surface.
However, the first atom group "forgets" the conditions of the collision out and fills up
the chamber volume uniformly. Therefore, n 1 == 111 • N /Sc and the integral over the
cross section of the first term on the right-hand side of Eq. (1) gives
- n + • cr(v) • v • 111 N(Sb/Sc)' Here Sb and Sc are the cross-sectional area of the beam and
the chamber, respectively.

The second group of atoms interact with the beam during a limited time, which is
approximately determined by the transit time of an atom through the ion beam,
i.e., 'ta ~ Sb 1/2 • Va - 1, where Va is the mean atom velocity. Then, n2 ==

[N(t) - N(t - 'ta)J • 112 • S -1 where S < Sb is the total area occupied by atoms and
ions of the beam.

Integration over the area of the chamber cross section gives

-fn+ .a(v)·v·n2 ·dS = -lh·[N(t) - N(t - La)] ·a(v)·v·n+.

Finally we have

Let us seek a solution for N(t) of the form

N(t) == No exp rot. (3)

Substituting Eq. (3) into Eq. (2), we find a characteristic equation that determines ro

(4)

We denote the roots of Eq. (4) byrok • From (4), rok is in the interval

where

romin == n+ • cr(v) • V • 111 • SbSc -1 > 0

romax == n+ • cr(V) • v · [112 + 111 • SbSc - 1] > O.

(5)

(6)
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It follows from Eqs. (5) and (6) that (Ok > 0 and, therefore, the ion beam plus vacuum­
chamber wall system is unstable with increment (Ok.

Let introduce a characteristic time t over which the system exists without noticeable
increase of ion loss. Then the existence condition of the system (stable) takes the simple
form

(7)

Thus the problem reduces to the solution of an algebraic equation and to checking the
validity of the condition (7).

At the same time, one can get simple analytical expressions for permissible values of
111 and 112 without solving Eq. (4). To this end, let us convert the inequality (7) into an
equality and replace (0 in Eq. (4) by (Ok = t -1. Then the equation of the curve
separating the stability region from instability in the plane 111112 takes the form

1 = N+ - cr(v) - {111 - Sc- 1 + 112 - Sb -1 - [1 - exp( -taft)]}. (8)

Here N + = n+ - v - tSb is the total ion flux through the vacuum-chamber cross section
during time t. From Eq. (8), one can obtain a stability condition in the form of two
inequalities

(9)

(10)

In Eqs. (9) and (10), <p is the mixing angle providing Eq. (8) is exactly fulfilled. Thus

<p = arctg{111 -112 -1 - Sb - Sc ~1 - [1 - exp(-ta/t)]-l }1/2

For parameter estimates with heavy ions, let us assume <p ~ 7t/4 and t a ~ 10- 4 sec.
It should be cautioned in advance that there is practically no both single-valued

spallation-process theory and reliable experimental data. Measured values of 11
(measurements made using fission fragments) vary within a range of tens to hundreds
of thousands units versus experimental conditions.4 To estimate the spallation
coefficient of wall material, the isolated grain model which gives quantitatively correct
results within the 1 MeV/nucleon energy range,4 can be used. 5

Let us denote the specific energy loss of ion in the wall material by dEldx. The
minimum energy necessary for spalling of one grain with diameter 2R from the wall
material is

(11)

where N1 is the atomic density of wall material and Va is the binding energy of wall
material (Va ~ 2 to 3 eV). If the ionization energy loss of the ion in the course of flight
through single grain is large and the size of the grain is small, so that the inequality

is true, full evaporation occurs.

1 dE
----8>E-3 dx - mm

(12)



4 D. G. KOSHKAREV

In Eq. (12) 8 is the mean path of the ion in wall material and the coefficient 1/3
corresponds to the assumption that this fraction of the energy is transferred to the
atomic lattice. Then, assuming 8 ~ 2R, we find from Eqs. (11) and (12)

R dE
112·~ -.-.

Va dx
(13)

For high-energy heavy ions (~100 MeV/nucleon) in targets of dense material (Pb, W),
we have dE/dx ~ 1012 eV/cm. Substituting into Eq. (13) R = 20· 10- 7 cm,
Va = 2 eV, we find 112 = 104

• At energies about 1 MeV/nucleon, Eq. (13) gives values
of 112 close to those experimentally observed (~103 ).

In conclusion, let us consider the compatibility of the stability conditions with the
parameters of drivers for heavy-ion thermonuclear fusion. 6, 7t In these designs, 10 to
20 GeV/nucleus rf linacs for Bi+ 2 ions with current ~ 0.15 A and acceleration time
~ 6 · 10- 3 S and storage rings with circulating current ~ 15 A are used. The ion
charge-exchange cross section is taken to be cr = 10- 1 7 cm 2

• For the linac, we need
N + = 2.7 · 1015 ions and for each storage ring N + =: 5.4. 10 17

.

Then assuming in Eq. (9) and (10) <p =: n/4, 112 =: 104
, 't • 'ta -1 = 60, we find from

Eq. (10) for the beam cross section; for linac Sb ~ 10 cm2
, and for storage rings

Sb ~ 2· 10 3 cm 2
•

These conditions are very difficult especially, for storage-ring systems. It is evident
that a time decrease by a factor 5 for linac and a decrease by a factor 500 for storage
rings will be desirable.

It should be pointed out that the condition (9) gives a difficult limitation for 111: for
the linac 111 :::; 200 at Sc = 10 cm2 and for the storage ring 111 :::; 4 for Sc =: 40 cm2.

This example shows that if experiments confirm these large coefficients 111 and 112'
the effect under consideration may markedly affect the choice of the parameters of
heavy-ion drivers.
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t The first indication of a possible problem of large beam losses for thermonuclear drivers seems to be
contained in Ref. 8.




