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Abstract
We explore the quasinormal modes of a black hole localized on the Randall-Sundrum
2-brane against the test field perturbations [1]. The background metric admits a
conformal Killing tensor, which allows us to obtain tractable–indeed separable–field
equations for the conformally coupled scalar, the massless Dirac and the Maxwell
fields. We find that each radial equation obeys the same equation as the corresponding
equation in the Schwarzschild background with the same horizon radius. The angular
equation reflects the impact of brane tension, resulting in a distinct quasinormal mode
prediction.

1 Exact description of a braneworld black hole

The Randall-Sundrum scenario has attracted much attention for intriguing phenomenological prediction
in particle physics and cosmological scenario [2]. In order to further validate this model, the strong
gravity test is imperative. Black holes are the best experimental fields for this purpose. Despite that
a lot of effort has been devoted toward finding an exact solution describing a black hole localized on
the Randall-Sundrum 3-brane, none of them are successful yet. Some authors discussed based on the
AdS/CFT correspondence that the static (and large) back holes fail to exist [3, 4]. Under the present
circumstances, it is very illustrative to look in a bird’s-eye view. We consider a simple toy model and
extract useful information. Emparan, Horowitz and Myers succeeded in constructing the desired black
hole solution in a 3+1-dimensional Randall-Sundrum model [5], on which we will focus hereafter.

The Randall-Sundrum braneworld has a negative cosmological constant in the bulk, so as to reproduce
a Newtonian gravity on the brane. An important point to notice is the fact that the brane undergoes a
uniform acceleration in the background AdS. So the repelling acceleration is required to obtain a static
black hole. In 4-spacetime dimensions, the C-metric in AdS is the desired solution. For the Z2-symmetry
across the brane, the metric describing a localized black hole is given by

gabdxadxb =
`2

(|x|− y)2

∑
F (y)dt2 − dy2

F (y)
+

dx2

G(|x|) + G(|x|)dϕ2

∏
, (1)

where

F (y) = −y2 − 2µy3, G(x) = 1− x2 − 2µx3. (2)

The metric (1) solves Einstein’s equations with a negative cosmological constant, Rab = −(3/`2)gab, for
|x| > 0. The brane locus is x = 0, across which the bulk has a mirror symmetry. Israel’s junction
condition shows that the brane tension is proportional to 1/`. The x and y-coordinates are the direction
cosine x = cos θ and the radial coordinate y = −`/r. x ranges from the brane x = 0 to the axis x = x2–the
largest root of G(x2)–and y from the horizon y = −1/2µ to infinity y = x. Observe that in order to avoid
conical singularities on the axis x = x2, the period of ϕ is fixed by ∆ϕ = 2πβ, where β−1 = −G0(x2)/2.

The parameter µ corresponds to the mass of the black hole, hence we take µ ≥ 0. The black hole
with small µ mimics the isolated black hole. Indeed, one can confirm easily that the µ → 0 limit with
rh = 2µ` fixed recovers the Schwarzschild black hole with the horizon radius rh(ø `). On the other hand,
the horizon will become flattened in the µ ¿ 1 limit (see Fig. 1). In the latter case, the brane tension
has a distinguished effect on the properties of black holes from the isolated ones.
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Figure 1: Schematic picture of a black hole localized on the brane. For µø 1, the horizon is round (left).
As µ increases, the horizon tends to deform into a flattened pancake (right).

The induced metric on the brane reads

ds2 = −
≥
1− rh

r

¥
dt̃2 +

≥
1− rh

r

¥−1
dr2 + r2dϕ2, (3)

where t̃ = `t. Since ∆ϕ is less than 2π, the 2+1 dimensional gravity is recovered on the brane, as we
desired.

2 Quasinormal frequencies

Since the black hole metric (1) is so involved, little is known about the quantitative properties of the
solution. Quasinormal modes of black holes are the highly suggestive quantities to identify the intrinsic
properties black holes.

At first glance, the background metric would not allow a separation of variables. Indeed, the massless
scalar field equation are not separable, due to the overall factor (x− y)−2 in front of the metric. We will
circumvent this difficulty by restricting ourselves to conformally invariant field equations–the conformally
coupled scalar field, the massless Dirac field and the Maxwell fields. For these fields, we can discard the
annoying factor (x− y)−2 from the equations of motion via the simple conformal transformation

ĝab = Ω2gab, Ω = x− y. (4)

In this article, only the conformally coupled scalar field is discussed. But we can proceed analogously for
the Dirac and Maxwell fields, the behavior of which are qualitatively the same. A more detailed analysis
can be found in Ref. [1].

A conformally coupled scalar field evolves according to
µ
∇a∇a − 1

6
R

∂
Φ = 0, (5)

which is form-invariant under the conformal transformation (4) with Φ→ Φ̂ = Ω−1Φ. Let us assume the
separable form Φ̂ = e−iωt+imϕ/βR0(y)S0(x). Noticing that the Ricci scalar of the conformally related
metric ĝab is R̂ = 12µ(x − y) and working in the x > 0 region, we can reduce the field equation to
“angular” and “radial” equations as

d
dx

∑
G(x)

d
dx

S0

∏
+

∑
ν(ν + 1)− 2µx− m2/β2

G(x)

∏
S0 = 0, (6)

d
dy

∑
F (y)

d
dy

R0

∏
+

∑
ν(ν + 1)− 2µy +

ω2

F (y)

∏
R0 = 0, (7)

where ν is the separation constant. Taking into account the Z2-symmetry across the brane, equation (6)
gives rise to the Neumann boundary condition at the brane, dSs/dx|x=0 = 0. The boundary condition at
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Figure 2: Quasinormal modes of a conformally coupled scalar for m = 2. The plots are for the second
lowest ν modes.

x = x2, on the other hand, is read off by defining S̃0 := (x2 − x)−|m|/2S0 and requiring the regularity for
S̃0 at x = x2. The angular eigenvalue is obtained numerically [1]. The numerical result shows that as µ
increases, the angular eigenvalue ν will become large. This tendency is also found for the codimension-two
brane (see, e.g., [6]). For µø 1, ν −m is approximated by an even integer, recovering the (even mode)
spectrum in the Schwarzschild background.

Let us move on to the analysis of equation (7). This equation can be written in a familiar form using
r = −`/y and dr∗ = (1 − 2µ`/r)−1dr. The black hole horizon is mapped to r∗ = −∞ (r = 2µ`), while
the acceleration horizon y = 0 corresponds to r∗ = +∞. In terms of r∗, equation (7) is translated into
the Schrödinger-type equation

d2

dr2
∗
R0 + [ω̃2 − V0(r)]R0 = 0, V0(r) =

µ
1− 2µ`

r

∂ µ
ν(ν + 1)

r2
+

2µ`

r3

∂
, (8)

where ω̃ := ω/`. It is important to note that equation (8) is apparently identical to the radial equation
for the (conformally coupled) scalar field perturbation in the four dimensional Schwarzschild background
with the horizon radius rh = 2µ`. The only distinction arises from the different angular eigenvalues.

We impose the following quasinormal boundary conditions for the radial equation

R0 → e+iω̃r∗ (r∗ →∞), R0 → e−iω̃r∗ (r∗ → −∞). (9)

having only an incoming wave at the black hole horizon and an outgoing wave at the acceleration horizon.
These boundary conditions give rise to a discrete frequency, corresponding to the quasinormal modes of
black holes. We employ the third order WKB method developed by Iyer and Will [7] in order to evaluate
the quasinormal modes. We show the result in Fig. 2. We have normalized the frequencies by (half of)
the horizon radius: µ` · ω̃ = µω. As µ increases, the real part of quasinormal modes are likely to enlarge,
as expected from the results in Ref. [6].

The WKB approximation will fail for higher overtones with n > ν. The asymptotic quasinormal
modes (n¿ 1) are obtained using the monodromy method [8] as

µωn ≈
ln 3
8π
− i

4

µ
n +

1
2

∂
, (10)

where one takes n → ∞. This is independent of the angular eigenvalue and therefore the leading order
behavior will be the same for the brane-localized and braneless black holes.

3 Summary

In this article we explored the quasinormal modes of black holes localized on the Randall-Sundrum 2-
brane. The background is the exact black hole solution found in Ref. [5]. Taking advantage the fact that
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the background metric allows a conformal Killing tensor, which is a direct consequence of Petrov type D,
we have investigated the behavior of conformally invariant field perturbations around the brane-localized
black hole.

For all types of fields we considered, we found that each radial equation is identical to the corresponding
field equation in the four Schwarzschild background. However, the angular equations differ from their
Schwarzschild counterparts. We have determined the angular eigenfunctions and eigenvalues numerically.
In the case of the conformal scalar field, the angular eigenvalues ν are given by ν ' l = 0, 1, 2, ... for a
small black hole (µ ø 1), recovering the Schwarzschild result. As the size of the black hole increases, ν
becomes larger (ν > l) and hence become sensitive to the magnetic quantum number m. Accordingly, each
quasinormal modes of the large localized black hole (with the horizon radius 2µ` on the brane) behaves
like the mode having a larger angular mode number in the four dimensional Schwarzschild background
with the same horizon radius rh = 2µ`. The situation is basically the same for electromagnetic and
massless Dirac field perturbations. In particular, we have found no unstable modes for any types of fields
we investigated.

It has been widely known that the Randall-Sundrum braneworlds have a rich structure concerning
the AdS/CFT correspondence [3, 4]. It would be also interesting to discuss the implications of our result
from the viewpoint of the AdS/CFT correspondence.
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