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The formal similarity of the spectral distribution curve of temperature
radiation to Maxwell’s velocity distribution curve is too striking to have
remained hidden very long. Indeed, in the important theoretical paper in
which Wien derived his displacement law

ρ = ν3f

(
ν

T

)
(1)

he was led by this similarity to a farther correspondence with the radiation
formula. He discovered, as is known, the formula [Wien’s radiation formula]

ρ = αν3e
− hν
kT (2)

which is recognized today as the correct limiting formula for large values
of ν

T . Today we known that no consideration which is based on classical
mechanics and electrodynamics can lead to a useful radiation formula; rather
that the classical theory leads to the Rayleigh formula.

ρ =
kα

h
ν2T (3)

After Planck, in his ground–breaking investigation, established his radi-
ation formula

ρ = αν3 1

e
hν
kT − 1

(4)
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on the assumption that there are discrete elements of energy, from which
quantum theory developed very rapidly, Wien’s considerations, from which
formula (2) evolved, quite naturally were forgotten.

A little while ago I obtained a derivation, related to Wien’s original idea,
of the Planck radiation formula which is based on the fundamental assump-
tion of quantum theory and which makes use of the relationship of Maxwell’s
curve to the spectral distribution curve. This derivation deserves consider-
ation not only because of its simplicity, but especially because it appears
to clarify the processes of emission and absorption of radiation in matter,
which is still in such darkness for us. In setting down certain fundamental
hypotheses concerning the absorption and emission of radiation by molecules
that are closely related to quantum theory, I showed that molecules with a
distribution of states in the quantum theoretical sense for temperature equi-
librium are in dynamical equilibrium with the Planck radiation; in this way,
the Planck formula (4) was obtained in a surprisingly simple and general
way. It was obtained from the condition that the quantum theoretic parti-
tion of states of the internal energy of the molecules is established only by
the emission and absorption of radiation.

If the assumed hypotheses about the interaction of matter and radiation
are correct, they will give us more than just the correct statistical partition
or distribution of the internal energy of the molecules. During absorption
and emission of radiation there is also present a transfer of momentum to the
molecules; this means that just the interaction of radiation and molecules
leads to a velocity distribution of the latter. This must early be the same
as the velocity distribution which molecules acquire as the result of their
mutual interaction by collisions, that is, it must coincide with the Maxwell
distribution. we must require that the mean kinetic energy which a molecule
(per degree of freedom) acquires in a Plank radiation field of temperature
T be

kT

2
;

this must be valid regardless of the nature of the molecules and independent
of frequencies which the molecules absorb and emit. In this paper we wish to
verify that this far–reaching requirement is, indeed, satisfied quite generally;
as a result of this our simple hypotheses about the emission and absorption
of radiation acquire new supports.

In order to obtain this result, however, we must enlarge, in a definite
way, the previous fundamental hypothesis which were related entirely to the
exchange of energy. We are faced with this question; Does the molecule suffer
a push, when it absorbs or emits the energy ε? As an example we consider,
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from the classical point of view, the emission of radiation. If a body emits
the energy ε, it acquires a backward thrust [impulse] εc if all the radiation ε

is radiated in the same direction. If, however, the radiation occurs through
a spatially symmetric process, for example, spherical waves. there is then
no recoil at all. This alternative also plays a role in the quantum theory of
radiation. If a molecule, in going from one possible quantum theoretic state
to another, absorbs or emits the energy ε in the form of radiation, such an
elementary process can be looked upon as partly or fully directed in space,
or also as a symmetric (non–directed) one. It turns out that we obtain a
theory that is free of contradictions only if we consider the above elementary
processes as being fully directed events; herein lies the principal result of the
considerations that follow.

Fundamental Hypotheses of the Quantum Theory–Canonical
Distribution of State

According to the quantum theory, a molecule of a definite kind may, aside
from its orientation and its translational motion, be in one only a discrete
set of states Z1, Z2, . . . Zn . . . whose (internal) energies are ε1, ε2, . . . εn . . ..
If the molecules of this kind belong to a gas of temperature T , then the
relative abundance Wn of the state Zn is given by the statistical mechanical
canonical partition function for states

Wn = pne
− εn
kT (5)

In this formula k = R
N is the well-known Boltzmann constant, pn a num-

ber that is independent of T and characteristic of the molecule and the
state, which we may call the statistical “weight” of the state. Formula (5)
can be derived from the Boltzmann principle or purely from thermodynam-
ics. Equation (5) is the expression of the most far–reaching generalization
of the Maxwellian distribution of velocities.

The latest important advances in quantum theory deal with the theoret-
ical determination of the quantum theoretical possible states Zn and their
weights pn. For the principal part of the present investigation, it is not
necessary to have a more detailed determination of the quantum states.
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Hypotheses about the Energy Exchange Through Radiation

Let Zn and Zm be two possible quantum theoretical states of a gas molecule
whose energies εn and εm respectively, satisfy the inequality

εm > εn

Let the molecule be able to pass from the state Zn to the state Zm by
absorbing the radiation energy εm − εn, similarly let the transition from
state Zn to the state Zm be possible through the emission of this amount of
energy. Let the radiation emitted or absorbed by the molecule for the given
index and combination (m,n) have the characteristic frequency ν.

We now introduce certain hypotheses about the laws which are decisive
for these transitions. These hypotheses are obtained by carrying over the
known classical relations for a Planck resonator to the unknown quantum
theoretical relations.

Emission

A Planck resonator that is vibrating radiates energy according to Hertz, in
a known way independently of whether it is stimulated by an external field
or not. In accordance with this, let a molecule be able to pass from the state
Zm to the state Zn with the emission of radiant energy εm− εn of frequency
ν without being excited by any external cause. Let the probability dW for
this to happen in the time dt be

dW = Anm dt (A)

where Anm is a characteristic constant for the given index combination.
The assumed statistical law corresponds to that of a radioactive reaction:

that elementary process of such a reaction in which only γ-rays are emitted.
We need not assume that this process requires no time; this time need only
be negligible compared to the times which the molecule spends in the states
Z1, and so on.

Incident Radiation

If a Planck resonator is in a radiation field, the energy of the resonator
changes because the electromagnetic field of the radiation does work on the
resonator; this work can be positive or negative depending on the phases of
the resonator and the oscillating field. In accordance with this, we intro-
duce the following quantum theoretical hypothesis. Under the action of the
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radiation density ρ of the frequency ν a molecule in state Zn can go over
to state Zm absorbing the radiation energy εm − εn in accordance with the
probability law

dW = Bm
n ρ dt (B)

In the same way, let the transition Zm → Zn under the action of the
radiation also be possible, whereby the radiation energy εm − εn is emitted
according to the probability law

dW = Bn
m ρ dt (B′)

Bm
n and Bn

m are constants. We call both processes “changes of states
through incident radiation.”

The question presents itself now as to the momentum that is transferred
to the molecule in these changes of state. We begin with the events asso-
ciated with incident radiation. If a directed bundle of rays does work on a
Planck resonator, then an equivalent amount of energy is removed from the
bundle. this transfer of energy results, according to the law of momentum,
to a momentum transfer from the beam to the resonator. The latter there-
fore experiences a force in the direction of the ray of the radiation beam. If
the energy transferred is negative, the force acting on the resonator is oppo-
site in direction. In the case of the quantum hypothesis, this clearly means
the following. If, as the result of incident radiation, the process Zn → Zm
occurs, then an amount of momentum

εm − εn
c

is transferred to the molecule in the direction of propagation of the bundle of
radiation. If we have the process Zm → Zn for the case of incident radiation,
the magnitude of the transferred momentum is the same, but it is in the
opposite direction. If a molecule is simultaneously exposed to many bundles
of radiation, we assume that the total energy Zm → Zn is taken from or
added to just one of these bundles, so that even in this case the momentum

εm − εn
c

is transferred to the molecule.
In the case of emission of energy by radiation by a Planck resonator,

there is no net transfer of momentum to the resonator because, according to
classical theory, of emission occurs as a spherical wave. However, we have
already noted that we can arrive at a contradiction–free quantum theory
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only if we assume that the process of emission is a directed one. Every
elementary process of emission (Zm → Zn) will then result in a transfer to
the molecule of an amount of momentum

εm − εn
c

.

If the molecule is isotropic, we must take every direction of emission as
equally probable. If the molecule is not isotropic, we arrive at the same
result if the orientation changes in a random way in the course of time. We
must, in any case, make such an assumption also for the statistical laws (B)
and (B′) for incident radiation since otherwise the constants Bm

n and Bn
m

would have to depend on direction, which we can avoid by assuming isotropy
or pseudo–isotropy (through setting up temporal mean values).

Derivation of the Planck Radiation Law

We now enquire about those effective radiation densities ρ which must pre-
vail in order that the energy exchange between molecules and radiation as a
result of the statistical laws (A), (B) and (B′) shall not disturb the distribu-
tion of molecular states present as a consequence of equation (5). For this,
it is necessary and sufficient that on the average, per unit time, as many ele-
mentary processes of type (B) take place as processes (A) and (B′) together.
This condition gives as a result of (5), (A), (B), (B′), for the elementary
processes corresponding to the index combination (m, n) the equation

pne
− εn
kT Bm

n ρ = pme
− εm
kT (Bn

m ρ+Anm)

If, further, ρ is to become infinite as T does, the constants Bm
n and Bn

m

must satisfy the relation
pnB

m
n = pmB

n
m (6)

We then obtain as the condition for dynamical equilibrium the equation

ρ =
Anm/B

n
m

e
εm − εn
kT − 1

(7)

This is the dependence of the radiation density on the temperature that
is given by the Planck law. From the Wien displacement law (1) it then
following immediately that

Anm
Bn
m

= αν3 (8)
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and
εm − εn = hν (9)

where α and h are universal constants. To obtain the numerical values of
α and h we must have an exact theory of electrodynamic and mechanical
processes; we content ourselves for the moment with the Rayleigh law in the
limit of high temperatures, where the classical theory is valid in the limit.

Equation (9) is, as we know, the second principal rule in Bohr’s theory
of spectra, about which we may assert, following upon Sommerfeld’s and
Epstein’s completion of the theory, that it belong to the most fully ver-
ified domain of our science. It also contain implicitly the photochemical
equivalent law, as I have already shown.

Method for Calculating the Motion of Molecules in Radia-
tion Fields

We now turn our attention to the investigation of the motion imparted to
our molecules by the radiation field. we make use in this of a method that
is known to us from the theory of Brownian motion and which I have often
used in investigating motions in a region containing radiation. To simplify
the calculation, we shall carry it through for the case in which the motion
occurs only along the X-direction of the coordinate system. We further
content ourselves with calculating the mean value of the kinetic energy of the
translation motion, and thus dispense with proof that these velocities v are
distributed according to the Maxwell law. Let the mass M of the molecule be
large enough so that higher powers of vc can be neglected relative to lower
ones; we can then apply the usual mechanics to the molecule. Moreover,
without any loss in generality, we may carry out the calculation as through
the states with indices m and n were the ones the molecule can be in.

The momentum Mv of a molecule undergoes two kinds of changes in the
short time τ . Even though the radiation is the same in all directions, the
molecule, because of its motion, will experience a resistance to its motion
that stems from the radiation. Let this opposing force be Rv, where R is
a constant to be determined later. This force would ultimately bring the
molecule to rest if the randomness of the action of the radiation field were
not such as to transfer to the molecule a momentum ∆ of alternating sign
and varying magnitude; this random effect will, in opposition to the previous
one, sustain a certain amount of motion of the molecule. At the end of the
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given short time τ the momentum of the molecule will equal

Mv −Rvτ + ∆

Since the velocity distribution is to remain constant in time, the mean of
the absolute value of the above quantity must equal that of the quantity
Mv; thus, the mean values of the squares of both quantities averaged over
a long time or a large number of molecules must be equal:

(Mv −Rvτ + ∆)2 = (Mv)2

Since we have taken into account the influence of v on the momentum of
the molecule separately, we must discard the mean value v∆. On developing
the left–hand side of the equation we thus obtain

∆2 = 2RMv2τ (10)

The mean value v2 which the radiation of temperature T by its interac-
tion imparts to the molecule must just equal the mean value v2 which the
gas molecule acquires at temperature T according to the gas law and the
kinetic theory of gases. For otherwise the presence of our molecules would
disturb the thermal equilibrium between thermal radiation and an arbitrary
gas of the same temperature. We must therefore have

Mv2

2
=
kT

2
(11)

Equation (10) thus goes over into

∆2

τ
= 2RkT (12)

The investigation is now to be carried through as follows. For a given
radiation density (ρ(ν)) we shall be able to compute ∆2 and R by means of
our hypotheses about the interaction between radiation and molecules. If
we put this result into (12), this equation will have to be identically satisfied
when ρ is expressed as a function of ν and T by means of Planck’s equation
(4).

Computing R

Let a molecule of given kind be in uniform motion with speed v along the
X-axis of the coordinate system K. We inquire about the momentum trans-
ferred on the average from the radiation to the molecule per unit time. To
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calculate this we must consider the radiation from a coordinate system K ′
that is at rest with respect to the given molecule. For we have formulated
our hypotheses about emission and absorption only for molecules at rest.
The transformation to the system K ′ has often been performed in the lit-
erature. Nevertheless, I shall repeat the simple considerations here for the
sake of clarity.

Relative to K the radiation is isotropic, that is, the quantity of radiation
in a solid angle dκ in the direction of the radiation in a frequency range dν
is

ρdν
dκ

4π
(13)

where ρ depends only on the frequency ν but not on the direction of the
radiation. This special beam corresponds to a special beam in the system
K ′ which is also characterized by a frequency range dν ′ and a solid angle
dκ′. The volume density of this special beam is

ρ′(ν ′, φ′)dν ′
dκ′

4π
(13′)

This defines ρ′. It depends on the direction of the radiation which, in
the familiar manner, is defined by the angle φ′ it makes with the X ′ axis
and which its projection on the Y ′, Z ′ plane makes with the Y ′ axis. These
angles correspond to the angles φ and ψ which in an analogous manner
determine the direction of dκ in K.

To begin with, it is clear that the same transformation law between (13)
and (13′) must hold as between the amplitudes A2 and A′2 of a plane wave
moving in the corresponding direction. Hence, to our desired approximation
we have

ρ′(ν ′, φ′)dν ′dκ′

ρ(ν)dνdκ
= 1− 2

v

c
cosφ (14)

or

ρ′(ν ′, φ′) = ρ(ν)
dν

dν ′
dκ

dκ′

(
1− 2

v

c
cosφ

)
(14′)

The relativity theory further gives the formulae, valid to the desired
approximation,

ν ′ = ν

(
1− v

c
cosφ

)
(15)

cosφ′ = cosφ− v

c
+
v

c
cos2 φ (16)

ψ′ = ψ (17)
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from (15) it follows, to the same approximation that

ν = ν ′
(

1 +
v

c
cosφ′

)
Hence, again to the desired approximation

ρ(ν) = ρ

(
ν ′ +

v

c
ν ′ cosφ′

)
or

ρ(ν) = ρ(ν ′) +
∂ρ(ν ′)
∂ν

(
v

c
ν ′ cosφ′

)
(18)

Further, according to (15), (16), and (17)

dν

dν ′
=

(
1 +

v

c
cosφ′

)
dκ

dκ′
=

sinφ dφ dψ

sinφ′ dφ′ dψ′
=
d(cosφ)

d(cosφ′)
= 1− 2

v

c
cosφ′

As a result of these two equations and equation (18), equation (14′) goes
over into

ρ′(ν ′, φ′) =

[
(ρ)ν′ +

v

c
ν ′ cosφ′

(
∂ρ

∂ν

)
ν′

](
1− 3

v

c
cosφ′

)
(19)

With the aid of (19) and our hypotheses about the radiation from and
radiation onto molecules, we can easily calculate the average momentum
transferred to the molecule per unit time. Before we can do this, however,
we must say something to justify our procedure. It may be objected that
equations (14), (15), (16) are based on maxwell’s theory of the electromag-
netic field that is not consistent with the quantum theory. This objection
deals, however, more with the form than with the substance of the prob-
lem. For, no matter how the theory of electromagnetic processes may be
formulated, in any case the Doppler principle and the law of aberration still
remain, and hence also the equations (15) and (16). Moreover, the validity
of the energy relationship (14) certainly extends beyond that of the wave
theory; this transformation law is also valid, for example, according to rel-
ativity theory, for the energy density of a mass of infinitesimally small rest
density that is moving with the [quasi-] speed of light. We may therefore
assert the validity of equation (19) for any theory of radiation.

The radiation belonging to the solid angle dκ′ would, according to (B),
give rise to

Bm
n ρ
′(ν ′, φ′)

dκ′

4π
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elementary processes per second of radiation events of the type Zn → Zm
if the molecule after each such process immediately returned to state Zn.
Actually, however, the time of lingering in state Zn, according to (5), is

1

S
· pne−

εn
kT

where we have used the abbreviation

S = pne
− εn
kT + pme

− εm
kT (20)

The number of these processes per second is therefore actually

1

S
· pne−

εn
kT Bm

n ρ
′(ν ′, φ′) =

dκ′

4π
.

In each of these elementary processes the momentum

εm − εn
c

cosφ′

is transferred to the molecule in the direction of the X ′-axis. In an analogous
manner we find, based on (B′) that the corresponding number of elementary
processes of radiation events of type Zm → Zn per second is

1

S
· pme−

εm
kT Bn

mρ
′(ν ′, φ′)

dκ′

4π

and in each such elementary process the momentum

−εm − εn
c

cosφ′

is transferred to the molecule. The total momentum transferred to the
molecule per unit time by incident radiation is, keeping in mind (6) and (9),

hν ′

cS
· pnBm

n

(
e
− εn
kT − e−

εm
kT

)∫
ρ′(ν ′, φ′) cosφ′

dκ′

4π

where the integration is to be taken over all solid angles. Carry this out,
and we obtain with the aid of (19) value

− hν

c2S

(
ρ− (1/3) ν

∂ρ

∂ν

)
pnB

m
n

(
e
− εn
kT − e−

εm
kT

)
v.
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Here we have represented the effective frequency again with ν and not with
ν ′. This expression gives, however, the total momentum transferred on
the average to a molecule moving with speed v. For it is clear that those
elementary processes of emission of radiation not induced by the action of
the radiation field have no preferred direction as seen from system K ′ and
hence, on the average, cannot transfer any momentum to the molecule. We
thus obtain as the final of our considerations

R =
hν

c2S

(
ρ− 1/3 ν

∂ρ

∂ν

)
pnB

m
n e
− εn
kT

(
1− e−

hν
kT

)
(21)

Calculating ∆2

It is much easier to calculate the random effect of the elementary processes
on the mechanical behavior of the molecule. For we calculate this for a
molecule at rest for which the approximation which we have been using
applies.

Let some event cause the momentum λ to be transferred to a molecule
in the X direction. This momentum is to be of varying magnitude and
direction from moment to moment. However, let λ obey a statistical law
such that its average value vanishes. Then let λ1, λ2 . . . be the momenta
which are transferred to the molecule in the X-direction by various operating
causes that are independent of each other so that the total momentum that
is transferred is

∆ = Σλν

We then have (if for the individual λν vanish)

∆2 = Σλν2 (22)

If the mean values λν2 of the individual momenta are all equal to each
other (= λ2) and if l is the total number of processes giving rise to momenta,
we have the relation

∆2 = lλ2 (22a)

According to our hypothesis, in each process of incident radiation and
outflowing radiation, the momentum

λ =
hν

c
cosφ
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is transferred to the molecule. Here φ is the angle between the X-axis and
some randomly chosen direction. Hence, we obtain

λ2 =
1

3

(
hν

c

)2

.

Since we assume that all the elementary processes that are present are to
be considered sas events that are independent of each other, we may apply
(22a), l is then the number of all elementary processes that occur in the
time τ . This is twice as large as the number of radiation-incident processes
Zn → Zm in the time τ . We thus have

l =
2

S
· pnBm

n e
− εn
kT ρτ (24)

From (23), (24) and (22) we thus obtain

∆2

τ
=

2

3S

(
hν

c

)2

pnB
m
n e
− εn
kT ρ (25)

Results

In order now to show that the momenta transferred from the radiation to
the molecule according to our basic hypotheses never disturb the thermo-

dynamic equilibrium, we need only introduce the values for ∆2

τ and R cal-
culated in (25) and (21) respectively after the quantity(

ρ− (1/3) ν
∂ρ

∂ν

)(
1− e−

hν
kT

)

in (21) is replaced by
ρhν

3RT

from (4). We then see that our fundamental equation (12) is satisfied iden-
tically.

The above consideration lends very strong support to the hypotheses in-
troduced earlier for the interaction between matter and radiation by means
of absorption and emission, and through incident and outgoing radiation.
I was led these hypotheses in trying to postulate in the simplest possible
way a quantum behavior of molecules that is analogous to the Planck res-
onators of classical theory. We obtained, without effort, from the general
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quantum assumption for matter, the second Bohr rule (equation (9)) as well
as Planck’s radiation formula.

Most important, however, appears to me the result about the momentum
transferred to the molecule by incoming and outgoing radiation. If one of
our hypotheses were altered, the result would be a violation of equation
(12); it appears hardly possible, except by way of our hypotheses, to be in
agreement with this relationship which is demanded by thermodynamics.
We may therefore consider the following as pretty well proven.

If beam of radiation has the effect that a molecule on which it is incident
absorbs or emits an amount of energy hν in the from of radiation by means
of an elementary process, then the momentum hν/c is always transferred to
the molecule, and, to be sure, in the case of absorption, in the direction of
the moving beam and in the case of emission in the opposite direction. If the
molecule is subject to the simultaneous action of beams moving in various
directions, then only one of these taken part in any single elementary process
of incident radiation; this beam alone then determined the direction of the
momentum transferred to the molecule.

If, through an emission process, the molecule suffers a radiant loss of
energy of magnitude hν without the action of an outside agency, then this
process, too, is a directed one. emission in spherical waves does not occur.
According to the present state of the theory, the molecule suffers a recoil of
magnitude hν/c in a particular direction only because of the chance emission
in that direction.

This property of elementary processes as expressed by equation (12)
makes a quantum theory of radiation almost unavoidable. The weakness of
the theory lies, on the one hand, in its not bringing us closer to a union
with the wave theory, and, on the other hand, that it leaves the time and
direction of the elementary processes to chance; in spite of this, I have full
confidence in the trustworthiness of this approach.

Only one more general remark. Almost all theories of thermal radi-
ation rest on the considerations of the interaction between radiation and
molecules. But, in general, one is satisfied with dealing only with the en-
ergy exchange, without taking into account the momentum exchange. One
feels justified in this because the momentum transferred by radiation is so
small that it always drops out as compared to that from other dynamical
processes. But for the theoretical considerations, this small effect is on an
equal footing with the energy transferred by radiation because energy and
momentum are very intimately related to each other; a theory may therefore
be considered correct only if it can shown that the momentum transferred
accordingly from the radiation to the matter leads to the kind of motion
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that is demanded by thermodynamics.
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