
Statistics and the Shell Model or Chaotic Motion in 
Atomic Nuclei 

Quantum Chaos is a very young field. It relates to such diverse 
phenomena as the behavior of the hydrogen atom in a strong 
magnetic field, the dissipation of energy in large atoms and mol­
ecules , the magnetic properties of small metallic clusters at low 
temperature, the statistical features of atomic nuclei, and to the­
oretical issues like semiclassical quantization. It is hotly debated 
and controversial, much in contrast to its older cousin Classical 
Chaos which is well investigated and known to play a fundamental 
role in nonlinear systems , both conservative and dissipative. 1 

I wish to discuss a few select topics of this field. These relate to 
statistical properties of nuclei and their interpretation in terms of 
chaotic motion. This choice is neither accidental nor based on 
personal prejudice. Because of the available (relative) energy res­
olution, nuclei have so far provided the most numerous and the 
best data on the chaotic behavior of finite quantum systems. (The 
data base in atomic and molecular physics will soon grow rapidly, 
however.) 

The discussion will center on the very different features of av­
erages and fluctuations in nuclei, and in other many-body systems. 
I will put forward arguments to show that averages are determined 
by the dynamics and therefore carry dynamical information, while 
fluctuations reflect chaotic behavior, are generic for finite quantum 
systems, and carry no information content. 
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Only a few years separate the discovery of the neutron (and the 
beginning of nuclear physics) from the first surfacing of stochas­
ticity, today understood as a manifestation of chaotic motion. Then, 
novel data on neutron capture led N. Bohr in 1936 to the concept 
of the compound nucleus, a system of strongly interacting nu­
cleons, not amenable to a mean-field approach and therefore very 
different from the many-body system defined by the motion of 
electrons in an atom. Bohr's idea of a neutron-nucleus collision 
is depicted in Fig. 1. (This is a photograph of a mechanical set-up 
actually built at the time in Bohr's institute). The picture and the 
underlying concept are truly astonishing in their depth of under­
standing and vision. Indeed, one of the standard models for chaotic 
motiori in classical and quantum physics of today is nearly identical 
to Bohr's model. This is the Sinai billiard of Fig. 4, modelled after 
Boltzmann's idea of a hard-sphere gas. 

Bohr's view dominated nuclear physics for nearly 15 years. In 
its wake Wigner was led to the concept of a random-matrix model 
to which I return below. This dominance finally gave way to the 
shell model, to the collective model and, more generally speaking, 

FIGURE 1 Bohr's model of a neutron-nucleus collision [taken from Nature 137, 
351 (1936)). 
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to the understanding of nuclear dynamics as regular motion in 
terms of a mean-field approach. Nevertheless, Bohr's view did not 
become obsolete. The dichotomy between his picture and a mean­
field approach, or between stochasticity and dynamics, or, in mod­
ern terms, between chaotic and regular motion, has continued to 
exist. Only recently have we begun to understand the resolution 
of this puzzle. In describing this development, I confine myself to 
data taken at low energies (typical excitation energies are around 
10 MeV), although evidence for stochastic behavior also exists 
outside this domain. 

The resolution hinges on the distinction between average prop­
erties and fluctuations about the average. 2 Average properties are 
defined as mean values over many excited states of fixed spin and 
parity. Examples are the average level spacing, the strength func­
tion (the ratio of mean partial width and mean level spacing), and 
the mean value of an element of the S-matrix, averaged over many 
compound-nucleus resonances. Average properties can be calcu­
lated reliably using mean-field techniques or other semiclassical 
approximations, irrespective of whether the system shows chaotic 
features or not. For the average level spacing, the Weyl formula 
proves the point. For the average S-matrix, the uncertainty prin­
ciple implies that averaging over a large energy interval (in com­
parison to the mean level spacing) removes all but the fast part of 
the collision process which involves only a few degrees of freedom 
and can therefore be modelled in terms of the shell model and the 
collective model (optical model and coupled channels calcula­
tions). Whenever the shell model, the collective models, or mean­
field theories have been used outside the ground-state domain (to 
which I return below), this was done to calculate average properties 
of nuclei. 

Chaotic Motion manifests itself in the fluctuations about the 
average values. To make this point, I introduce two examples. 
Figure 2 displays the distribution of level spacings about their mean 
values. The data involve 1726 spacings (the "nuclear data ensem­
ble," NDE), i.e., the totality of all resonance spacings measured 
either by time-of-flight neutron spectroscopy or by high-resolution 
proton scattering. On the left-hand part of the figure, the histogram 
shows the frequency of occurrence of a given spacing between 
neighboring levels of the same spin and parity versus the size of 
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FIGURE 2 Nearest-neighbor spacing distribution (left) and average D.3 statistic (right) for the nuclear data ensemble [taken from R . 
U. Haq, A. Pandey and 0. Bohigas, Phys. Rev. Lett. 48, 1086 (1982)] . 



the spacing (in units of the average level spacing). On the right­
hand part the dots with error bars show the 6 3 statistic versus L. 
This is a measure of the mean square deviation of the actual in­
tegrated level density from the integrated mean level density over 
an interval of length L (in units of the mean level spacing). I wish 
to emphasize that most of the data used in the figure have become 
available only in the last dozen years or so through the determined 
effort of a few groups who have chosen to work outside the es­
tablished trends, and who have contributed significantly to a rev­
olution in our understanding of nuclear dynamics. The data in Fig. 
2 all relate to isolated compound-nucleus resonances (mean spacing 
large compared to mean decay width) which are typically encoun­
tered near neutron threshold. With increasing excitation energy 
the average level spacing decreases exponentially, the average de­
cay width increases exponentially, and a few MeV above neutron 
threshold the resonances overlap strongly (average decay width 
large compared to average level spacing). A typical inelastic cross 
section in this domain is shown in Fig. 3. The peaks are not due 
to isolated resonances. The rapid energy dependence of the cross 
section is rather due to the fact that at one value of the energy, 
many overlapping resonances add coherently while at another they 
interfere destructively. This pattern can be qualitatively under­
stood and was in fact predicted by Ericson and by Brink and 
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FIGURE 3 Fluctuations of the compound-nucleus cross section (taken from T. 
Ericson and T. Mayer-Kuckuk, Ann. Rev. Nucl. Sci. 16, 183 (1966)]. 
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Stephens more than two decades ago on the basis of the postulate 
that the amplitudes of the interfering resonances are uncorrelated 
random variables. Thus, the differential cross section versus energy 
should be a random process. This can be verified by statistical tests 
on the experimental data. 

It is perhaps intuitively obvious that the random fluctuations of 
the cross section relate to chaotic motion (although this point de­
serves to be, and will be, clarified further). But what is the sig­
nificance of the level fluctuations shown in Fig. 2? On a phenom­
enological level, a first answer can be given in terms of the random­
matrix model introduced by Wigner. To model the complexity of 
(and our lack of information on) nuclear states at =10 MeV ex­
citation energy, Wigner envisaged a matrix representation of the 
nuclear Hamiltonian in which the individual matrix elements are 
considered to be independent random variables. A particular ma­
trix ensemble obeying time-reversal invariance consists of real sym­
metric matrices in which the independent elements are uncorre­
lated random variables with a Gaussian probability distribution 
and zero mean values. The further requirement that the probability 
density be orthogonally invariant (so that no basis plays a preferred 
role) uniquely determines the ensemble. For obvious reasons, this 
ensemble is referred to as the Gaussian orthogonal ensemble (GOE). 
The level fluctuations predicted by this ensemble are shown as 
solid lines labelled GOE in Fig. 2. More precisely: The solid lines 
correspond to Hamiltonian matrices, the dimension of which goes 
to infinity. The dashed curves in the right-hand part of Fig. 2 show 
the deviations expected because of the finite size of the nuclear 
data ensemble. Figure 2 suggests that the GOE correctly repro­
duces the fluctuation properties of nuclear levels. This impression 
is confirmed by extensive statistical tests . This agreement and the 
fact that the GOE can be derived from a maximum-entropy ap­
proach (and thus carries zero information content) together suggest 
that the observed fluctuation properties may indeed relate to cha­
otic motion . 

This surmise receives strong support from the study of simple 
chaotic systems. 3 The evidence is based mainly on numerical re­
sults. Figure 4 shows a version of the Sinai billiard mentioned 
earlier. A massive point-like particle moves in two dimensions 
within the confines of a rectangle (on the surface of which it is 
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FIGURE 4 The Sinai billiard. The two trajectories have a distance which grows 
exponentially with time. This is due to the defocussing caused by the reflection on 
the circle. 

reflected elastically). The rectangle encloses a circle which likewise 
reflects the particle elastically. (This model is an idealization of a 
hard-sphere gas and is actually very similar to Bohr's model of 
Fig. 1.) It is known that the Sinai billiard is a completely chaotic 
classical system (a K-system). Quantization of the Sinai billiard 
leads to the time-independent Schrodinger equation for a free 
particle, subject to the boundary conditions that the wave function 
be zero on the surfaces of the rectangle and circle. A sample of 
740 eigenvalues calculated numerically for this problem has been 
used to construct the histogram for the nearest-neighbor spacing 
distribution shown in the upper part of Fig. 5 and the li3 statistic 
shown with error bars in the lower part. The solid lines correspond 
to the GOE predictions. The dashed lines in Fig. 5 labelled Pois­
son, and the solid curves labelled likewise in Fig. 2, show the 
behavior of level fluctuations characteristic of a regular (integra­
ble) classical system upon quantization. 

The agreement between the numerical results presented in Fig. 
5 and the GOE predictions is certainly very impressive. Equally 
impressive is the agreement between the GOE predictions and the 
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FIGURE 5 Nearest-neighbor spacing distribution (upper part) and average A3 

statistic (lower part) for the Sinai billiard [taken from 0 . Bohigas, M. J. Giannoni 
and C. Schmit, Phys. Rev. Lett . 52, 1 (1984)] . 

nuclear data ensemble in Fig. 2. In fact, without being told, nobody 
could tell which of the two histograms shown in Figs. 2 and 5 refers 
to which situation. This agreement suggests the following hypoth­
esis. 

The quantum analogue of a completely chaotic classical system 
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exhibits level fluctuations which coincide with those of the GOE. 
These fluctuations are generic and do not depend on particular 
features of the Hamiltonian. The fluctuations observed in nuclear 
spectra signal that the nucleus is a chaotic system. 

Although there exists no data to contradict it, this hypothesis­
attractive because of its universality and simplicity-must certainly 
be qualified. Using semiclassical arguments, Berry has shown in 
Ref. 1 that the logarithmic increase of ti3(L) versus L predicted 
by the GOE is a generic feature of completely chaotic systems up 
to a maximum value L 0 • For L > L 0 , the function ti3(L) levels off 
and no longer follows the logarithmic pattern of the GOE. The 
value of L 0 depends on the number of degrees of freedom. In 
nuclei (and probably also in atoms and molecules) L 0 is so large 
that this qualification has no practical consequences. It is not known 
whether a qualification must also be made with regard to the near­
est-neighbor spacing distribution, since nothing is known analyti­
cally about it. But the universality claimed in the hypothesis could 
be checked if more data on atoms and molecules were available. 

Another qualification concerns the use of the GOE. In the 
framework of nuclear physics, matrix ensembles different from the 
GOE are physically more reasonable and yield better average 
properties . 2 However, these ensembles cannot be dealt with an­
alytically so far. Moreover-and this is the decisive point-the 
available numerical evidence suggests that the fluctuation prop­
erties of these ensembles are identical to those of the GOE, in­
dicating once again the universality of the GOE fluctuations. 

Classical chaotic systems are characterized by the Kolmogorov 
entropy. Qualitatively speaking, this is a measure of the speed with 
which the system "mixes," i.e., loses track of the initial conditions. 
It is striking that the hypothesis introduced above does not involve 
a similar parameter in the quantum context-the GOE fluctua­
tions are parameter-free and thus universal. The analysis of Berry 
suggests that the Kolmogorov entropy is only relevant for the 
behavior of ti3(L) near L = L 0 and thus practically without in­
terest. 

The GOE predicts the fluctuation properties of eigenvalues and 
of eigenfunctions. For the latter the prediction is: The inner prod­
uct of the GOE eigenfunctions with an arbitrary (but fixed) vector 
in Hilbert space has a Gaussian probability distribution centered 
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at zero. This prediction can be tested2 by sampling, for instance, 
the distribution of reduced partial widths of slow-neutron reso­
nances: Every reduced partial width is the square of a matrix 
element; the latter can be viewed as an inner product. The agree­
ment with the nuclear data set is again very good . For lack of 
evidence (either analytical or, with sufficient statistics, numerical) 
on eigenfunction distributions of chaotic systems like the Sinai 
billiard, our hypothesis does not refer to this aspect and is therefore 
certainly incomplete. In the discussion of the compound-nucleus 
problem I shall assume that the GOE also correctly describes the 
fluctuations of the eigenvectors. 

In spite of these qualifications , the picture which emerges is 
simple and convincing. Outside the ground-state domain, we dis­
tinguish average properties from fluctuations. The former reflect 
dynamical properties of the system and can be calculated reliably, 
for instance within the mean-field approach. The latter are generic 
for chaotic systems, quite independent of the dynamics, carry no 
information, and can be simulated by the GOE. This partially 
resolves the dichotomy between Bohr's picture and the success of 
dynamical models. 

In classical mechanics, chaotic motion is an expression of the 
instability of the system against small changes of the initial con­
ditions. The fluctuations of chaotic quantum systems can be viewed 
similarly. In the absence of conserved quantum numbers, every 
state of the system interacts with every other one. It is precisely 
this feature which is modelled by the GOE . It leads to level­
repulsion (via the Wigner-von Neumann theorem), and to the 
linear rise of the nearest-neighbor spacing distribution versus spac­
ing visible for small spacings in Figs. 2 and 5. It likewise leads to 
the "stiffness" of the spectrum, displayed in the same figures by 
the fact that the .:i3 values of the GOE are appreciably smaller 
than those of an integrable system. Moreover, any small change 
of the Hamiltonian would qualitatively change the positions of the 
eigenvalues and, more importantly, the composition of the eigen­
functions. It follows that outside the ground-state domain, both 
the information content of nuclear spectra and the predictive power 
of nuclear models are limited. 

These facts suggest a new view of the nuclear (and many other) 
many-body problem(s), and lead to intriguing anc:l unresolved 

208 



questions concerning the nuclear dynamics. In concluding this 
Comment, I briefly touch upon both subjects. 

The new view of the many-body problem suggested by the above­
mentioned facts is based on the realization that it is both futile 
and useless to calculate details of a spectrum outside the ground­
state domain. Only average properties are required; the fluctua­
tions are simulated by the GOE. 

A case in point is the cross-section fluctuations shown in Fig. 3. 
If the compound-nucleus resonances do indeed have the fluctua­
tion properties typical of chaotic motion, then the cross section is 
a random process, and it is impossible (and also without any in­
terest) to predict theoretically the value of the cross section at any 
given energy. What is required instead are the average value, the 
variance, and the correlation width of the cross section. (These 
quantities are actually of interest in applications of nuclear science 
to reactor techniques and astrophysics.) Can we calculate these 
quantities, assuming that the average value of the S-matrix is given, 
and that the stochastic behavior of the compound-nucleus reso­
nances is modelled by the GOE? 

There are two aspects to this question. First, the problem just 
posed is well-defined (the number of parameters is equal to the 
number of input data), and it is mathematically quite similar to 
the problem of working out analytically the curves labelled GOE 
in Figs. 2 and 5. This latter problem was solved two decades ago 
by Dyson and Mehta. Second, the problem of cross-section fluc­
tuations is sufficiently different from the Dyson-Mehta problem 
to render their special method of solution inapplicable. Inasmuch 
as the problem of cross-section fluctuations is only a special case 
in a wider class (defined by the postulate that the fluctuation prop­
erties of any observable can be simulated by the GOE), a general 
method of solution is called for. This difficulty has delayed the 
solution of the compound-nucleus problem by several decades; the 
problem was solved only quite recently. 4 

The solution is found by realizing that this problem is closely 
linked to problems investigated in the statistical mechanics of dis­
ordered systems, and that the methods developed there can be 
modified and applied. Random Hamiltonians are widely used to 
simulate disordered systems. I recall some cases of fundamental 
interest: The problem of Anderson localization in dirty conductors; 
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the integer quantum Hall effect; and the problem of spin glasses. 
One approach to these problems consists of mapping them onto a 
nonlinear sigma model. The problem of compound-nucleus scat­
tering can be viewed formally as an Anderson model for a dirty 
conductor in zero dimensions. It can be mapped onto a zero­
dimensional nonlinear sigma-model. Because of its particularly 
simple structure, the latter can be worked out exactly. The method 
of solution is quite general; it is presently being applied to other 
physical situations and to other observables. [As a spin-off, one 
can use the exact solution to investigate the validity of an approx­
imation scheme (the replica trick) widely used in statistical me­
chanics.] It thus appears that the new view of the many-body 
problem defined above can be implemented. In the case of com­
pound-nucleus scattering, the exact solution agrees with solutions 
found earlier for limiting cases, with the results of Monte Carlo 
simulations, and with numbers resulting from a maximum-entropy 
approach to the scattering matrix. There is no doubt that the prob­
lem has been solved. The solution has meanwhile found useful and 
interesting applications in nuclear physics, in reactor technology, 
and in astrophysics. 

It remains to discuss some intriguing open problems. So far, we 
have been concerned with the fluctuation properties of levels of 
fixed spin and parity or, in the case of the Sinai billiard, levels of 
the same symmetry properties outside the ground-state domain. 
There is mounting evidence that in nuclei these fluctuation prop­
erties persist all the way down into the ground-state domain, at 
least for some values of spin and parity, and for odd-odd nuclei, 
suggesting complete chaoticity. This fact has to be contrasted with 
the phenomenal success of the nuclear models in the ground-state 
region which suggests completely regular behavior. In contem­
plating this dilemma, one notices that in the overwhelming number 
of cases, the nuclear models relate properties of nuclear levels 
which differ in one or several quantum numbers (spin, parity, 
nucleon number, etc.). Is it possible that chaotic behavior within 
a family of states having identical quantum numbers occurs si­
multaneously with completely regular behavior of data (transition 
matrix elements, energy level correlations) relating states of dif­
ferent quantum numbers? Or is the ground-state domain an in­
termediate regime between complete regularity and complete chaos? 
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Do the fluctuation properties depend on the quantum numbers? 
Are they affected by the collective nuclear motion? 

These questions are important for our general understanding of 
chaoticity versus regularity in many-body systems. I believe that 
the answers must be sought by a two-pronged approach. On the 
one hand, the study of chaoticity in systems having more integrals 
of motion than the energy is called for. Such systems would be a 
little closer to actual nuclei than is the Sinai billiard. On the other 
hand, more data in the ground-state domain are badly needed. In 
particular, a thorough study of states with different (and up to 
very high) spins in the vicinity of the ground state (the Yrast line) 
should be most interesting. Such a study could reveal the opposite 
actions of strong collectivity and of chaoticity. 

These questions are not confined to nuclear physics. In atoms 
and molecules, there is strong evidence for regular motion in the 
ground-state domain; in units of the mean level spacing, this do­
main is perhaps more extended in these systems than in nuclei. 
There is also growing evidence for chaotic behavior at sufficiently 
high excitation energies. 

In summary, I have argued that nuclei, aside from their strong 
regular features , also display chaotic behavior. This behavior is 
generic for small quantum systems; the fluctuations can faithfully 
be modelled by the GOE. An adaptation and extension of methods 
developed in the theory of disordered systems make it possible to 
calculate fluctuation properties of observables in terms of their 
average values. A more complete understanding of the interplay 
between regular and chaotc features, especially in the ground-state 
region, remains an open problem. Viewed in this way, the nuclear 
many-body problem is intimately linked with both ergodic theory 
and with the theory of disordered systems. Its study forms part of 
the statistical mechanics of finite quantum systems. 

HANS A. WEIDENMULLER * 
Institut de Physique Nuc/eaire, 

Universite de Paris Sud, 
(91) Orsay, France 

•on leave of absence from Max-Planck-lnstitut fiir Kernphysik, P.O. Box 103980, 
Heidelberg, Federal Republic of Germany. 

211 



References 

1. Some of these points are illustrated in the proceedings of the Second Interna­
tional Conference on Quantum Chaos and the Fourth International Colloquium 
on Statistical Nuclear Physics, Cuernavaca (Mexico), 1986, T. Seligman et al. 
(Eds.), Lecture Notes ... in Physics (Springer-Verlag, Berlin, Heidelberg, New 
York, Tokyo, to appear). This volume contains a number of review papers 
relevant to the subject. 

2. T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey and S. S. M. 
Wong, R ev. Mod . Phyl>. 5 . 385 (1981). 

3. 0. Bohig:i. nnd M. J. Gm1111oni, in Lecture Notes in Physics, Vol. 209 (Springer­
Verlag, B •rli11, I lc:ic.lclhcrg, ew York, Tokyo, 1984). 

4. J. J.M. Vcrbnarschot, 1-1. J\ . Weidenmuller and M. R. Zirnbauer, Phys. Rep. 
129, 367 (1985). 

212 


