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Abstract

Cosmology in the 21st century has matured into a precision science. Measurements

of the cosmic microwave background, galaxy surveys, weak lensing studies and super-

novae surveys all but confirm that we live in a geometrically flat Universe dominated by

a dark energy component where most of the matter is dark. Yet, challenges to this model

remain as well as periods in its evolution unobserved at present. The next decade will

see the construction of a new generation of telescopes poised to answer some of these re-

maining questions and peer into unseen depths. Because of the technological advances of

the previous decades and the scale of the new generation of telescopes, for the first time,

cosmology will be constrained through the observation of the cosmic 21cm signal emitted

by hydrogen atoms across the Universe. Being the ubiquitous element present throughout

the different evolutionary stages of the Universe, neutral hydrogen holds great potential

to answer many of the remaining challenges which face cosmology today. In the context

of 21cm radiation, we identify two approaches which will increase the information gain

from future observations, a numerical as well as an analytic approach. The numerical

challenges of future analyses are a consequence of the data rates of next generation tele-

scopes, and we address this here introducing machine learning techniques as a possible

solution. Artificial neural networks have gained much attention in both the scientific and

commercial world, and we apply one such network here as a way to emulate numerical

simulations necessary for parameter inference from future data. Further, we identify the

potential of the bispectrum, the Fourier transform of the three-point statistic, as a cosmo-

logical probe in the context of low redshift 21cm intensity mapping experiments. This

higher order statistical analysis can constrain cosmological parameters beyond the capa-

bilities of CMB observations and power spectrum analyses of the 21cm signal. Lastly, we

focus on a fully 3D expansion of the 21cm power spectrum in the natural spherical ba-

sis for large angle observations, drawing on the success of the technique in weak lensing

studies.
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the start of X-ray heating, saturation of the spin temperature and decou-

pling from the gas temperature, and the mid-point of reionization (black

regions indicate ionized HII bubbles) are shown from top to bottom. Re-

produced with permission from Fig 12. Mesinger et al. (2011), by per-

mission of Oxford University Press on behalf of the Royal Astronomical

Society, available online at: https: // academic. oup. com/ mnras/

article/ 411/ 2/ 955/ 1273635 . This figure is not included under the

Creative Commons license of this publication. For permissions, please
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“It is better, I think, to grab at the stars than to sit

flustered because you know you cannot reach them...

At least he who reaches will get a good stretch, a good view,

and perhaps even a low-hanging apple for his efforts.”

− Drizzt Do’Urden, Sojourn, by Robert A. Salvatore.

Part I

Preface
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Chapter 1

Analytic and numerical analysis of the

cosmic 21cm signal

1.1 Introduction

Over the past few decades, technological and methodological advances have pushed the

limits of humanity’s understanding of our Universe further than ever before. The last few

years have seen sensational discoveries from the discovery of gravitational waves (Abbott

et al. 2016; Abbott et al. 2016; 2017a;b;c), over the discovery of new worlds (Gillon et al.

2016; 2017), to the precision measurements of our cosmological model (Planck Collab-

oration et al. 2016b; 2018a;b). These and other discoveries have transpired because of

the transition from a science bereft of data to the data driven science that astronomy

has become today. We have, for example, progressed to where once individual parallax

measurements had to be painstakingly taken, missions like the GAIA (Gaia Collabora-

tion et al. 2018) space-telescope readily measure the positions of billions of stars within

the Milky Way. Moreover, current and future ground based telescopes will collect vast

amounts of information over the coming decades. The Square Kilometre Array (SKA1),

one of the most ambitious projects of the astronomical community, will consist of up-

wards of 130,000 antennas and dishes deployed across two continents and will perform

frontier science for a host of fields (Bull et al. 2018). With the capability of outputting

multiple times the global internet traffic in data per year, new techniques for data manage-

ment, storage and analysis will be required and this will pose one of the major challenges

for the community in upcoming years. The availability of large data sets has become a

global phenomenon, and has brought with it an increasing interest in machine learning as

a new way to deal with these data sets. The fields of astronomy and cosmology have thus

1 https://pos.sissa.it/215/
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1.1 Introduction

unsurprisingly seen a surge of machine learning applications in recent times. Ranging

from emulation of large scale simulations (Heitmann et al. 2009; Heitmann et al. 2013;

Heitmann et al. 2014; 2016) to using Gaussian processes to separate foregrounds from ob-

served data (Mertens et al. 2018), machine learning has already proven to be a useful tool,

and is likely to play a critical role in solving major challenges faced in the near future.

Besides the challenge of large data, recent cosmological experiments have lead to the

near exhaustion of the cosmic microwave background (CMB) radiation as a cosmological

probe, as detailed in Planck Collaboration et al. (2018b), warranting a shift in focus for

cosmological measurements. We now have an exquisite understanding of the conditions

during the time of recombination. However, as precise as our knowledge of the Universe

at redshift z ∼ 1100 is, some of the most important epochs following recombination are

left unobserved to date. The cosmic Dark Ages present an important epoch during which

the growth of structure transitions from linear to non-linear structures, yet the complete

absence of luminous sources has made any direct measurement of the epoch impossible.

This transition importantly ushers in the Cosmic Dawn as the non-linear gravitational col-

lapse leads to the formation of the first luminous structures in the Universe. Again, the

enormous distance to these faint sources have left this crucial epoch undetected. Further,

these first stars and galaxies start to produce highly ionizing radiation which leads to the

second phase transition of the Universe as the hydrogen gas in the intergalactic medium

completely ionizes over a relatively short period of time known as the Epoch of Reioniza-

tion. High redshift quasar observations probe the tail end of this era, and the optical depth

to the CMB can give us an estimate of the instantaneous redshift of this otherwise elusive

phase transition. All of these epochs exhibit a major presence of neutral hydrogen gas

in the intergalactic medium and a useful property of this gas is the existence of a ground

state spin flip transition at a wavelength of 21cm. This easily excited transition holds the

potential to open up a new frontier of cosmological measurement at all stages during the

cosmic evolution. Although 21cm science has its own inherent theoretical and observa-

tional challenges, many insights gained from previous studies can be readily applied.

The focus of this thesis is therefore twofold. With the increasing need for numerical

techniques to support cosmological data analysis, we study the application of machine

learning techniques in the context of Epoch of Reionization simulations. Furthermore,

analytical developments are needed to ensure the maximal information gain from fu-

ture 21cm experiments. We thus focus on the development and adaptation of analysis

techniques which have proven useful for the analysis of different cosmic probes to the

measurement of the 21cm signal.
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1.2 Thesis structure

1.2 Thesis structure

The thesis is organised into five parts, each subdivided into a number of chapters. Here,

we describe each part and the chapters contained within following this introductory part

of the thesis.

Part II contains the background material for this thesis. Chapter 2 focusses on devel-

oping a basic understanding of the cosmological model used throughout the thesis. The

chapter introduces the basic concepts of the standard cosmological model and character-

izes the equations of motions which describe the dynamics of our expanding universe.

The formation of structure counts towards the most important requirements for a model

of the Universe and this chapter thus proceeds by focussing on the linear and non-linear

evolution of the dark matter density field. The evolution of the dark matter forms the

foundation for the formation of the structures we observe today. Once the conditions are

right for star formation, the first light sources appear and bring about the cosmic dawn.

In chapter 3 we focus on the cosmic 21cm signal as a new avenue for cosmological

observations at high and low redshifts. The chapter opens with an introduction of the

atomic physics that produces the electron transition in atomic hydrogen resulting in the

emission of a photon at 1420 MHz and introduces the spin temperature as the critical

signal strength parameter. Most of the chapter then discusses the physics which controls

the spin temperature of the 21cm signal and thus the evolution of the signal strength from

early times until the Epoch of Reionization. During this epoch, high energy photons ionize

the intergalactic medium thereby limiting the emission of the signal to isolated shielded

regions of atomic hydrogen after reionization has ended. We then proceed by introducing

the statistical signal from fluctuations in the global signal and finish the chapter with a

look at current and future observational methods.

Part III contains chapter 4 which focusses on the numerical analysis of the 21cm

signal in the context of machine learning. The chapter contains the findings of Paper I

and thus opens with a description of the necessity for new computational efforts in the

age of big data astronomy. A selection of supervised and unsupervised machine learning

techniques are discussed in this context. The analysis presented in this chapter aims to in-

crease the data reduction efficiency for Epoch of Reionization observations by emulating

the model evaluation in an MCMC analysis using an artificial neural network emulator.

The analysis aims to identify the amount of training samples needed for an accurate rep-

resentation of the model emulated as well as the optimal choice for the selection of the

training samples. We find that a training set of as few as 100 samples selected in such a

way that no two samples share a common coordinate results in reliable inference of the

observed parameters by the emulating network.
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1.2 Thesis structure

Part IV of the thesis contains two chapters focussing on the derivations of analytic

results aimed to amplify the information gain from future 21cm observations. Chapter 5

introduces the work published in Paper II. The chapter principally describes the 21cm

bispectrum introduced on the signal by the non-linear gravitational collapse of structure

and analyses its detectability and information content in the context of low redshift (z ∼
1 − 3) intensity mapping experiments. Besides this primary contribution, the chapter

describes an additional contribution to the 21cm bispectrum in the form of the lensing-

ISW bispectrum. A Fisher forecast model which compares the bispectrum to 21cm power

spectrum observations at the same redshifts is build up and evaluated in this chapter. The

main findings of this analysis is a significant decrease in the marginalised errors of the

cosmological parameters when the power spectrum and bispectrum analysis is combined

as compared to the current best estimate values of the cosmological parameters obtained

from CMB observations.

Chapter 6 contains unpublished work on the expansion of the 21cm power spectrum

in the 3D spherical harmonic spherical Bessel function basis. Here we introduce the

highly successful 3D formalism from Heavens (2003) to 21cm cosmology. Similar to

the signal in weak lensing studies, the 21cm signal is an inherently three dimensional

signal which is subject to discontinuous sampling due to observational constraints. The

natural basis in which to expand the 21cm signal when large areas of the sky are surveyed

is that of a spherical harmonic spherical Bessel function basis, and we derive the 21cm

power spectrum in this basis in this chapter. Additionally we derive the form of the power

spectrum when redshift space distortions are present in the observations.

Part V concludes the thesis by drawing together the insights gained by the various

analyses introduced throughout the thesis and provides a scientific outlook for studies

based on the material presented in this thesis.
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“Habe nun, ach! Philosophie,

Juristerei und Medizin,

Und leider auch Theology!

Durchaus studiert, mit heißem Bemühn.

Da steh ich nun ich armer Tor!

Und bin so klug als wie zuvor.”

− Heinrich Faust, Faust, by Johann W. von Goethe.

Part II

Background

28



Chapter 2

Cosmology

2.1 History of physical cosmology

Humanity’s universal desire for a fundamental understanding of the cosmos is self evi-

dent from the plethora of creation myths and cosmologies that are found in religions and

traditions throughout the world. Cultures throughout history have built elaborate cos-

mological frameworks within which they could reconcile their observations of the natural

world. Most of the ancient cosmologies, such as those of the ancient Egyptians, the Baby-

lonians and the early Greeks were intricately linked to their respective myths and legends,

having gods and other supernatural beings at the centre. Tragically, despite early observa-

tions of the heavens, progress towards a deeper understanding of the phenomena they saw

was impossible for many early cultures as they too often believed all things to be simply

at the whim of the gods. It was the Greeks who for the first time subjected everything to

the flow of time, implicating that there are powers greater than the divine. This along with

the cultural exchange that followed on from trade and wars over the first millenium B.C.,

allowed the Greeks to use reason to evolve and demystify their cosmology. The birth of

deductive reasoning culminated in the first theory of physical cosmology dating back to

the 4th century B.C., a time when Aristotle argued for the circular motion of the heavenly

bodies around the Earth. Although many of the assertions used to develop his theory are

flawed, Aristotle used observations as the basis of his deductions and was able to predict

the positions of the planets using his model of the Universe. In the second century A.D.,

Ptolemy picked up on Aristotle’s ideas and formalised them in his Almagest which would

become the authority on Astronomy until the Copernican Revolution in the 16th century.

After about 10 centuries of stifled scientific progress during the Middle Ages in the

West, Nicolaus Copernicus famously rejected the then accepted geocentric model of the

Universe. With this he created the foundation for Johannes Kepler and later Isaac Newton

to formalise the heliocentric model in which the planets move on ellipses around the
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2.1 History of physical cosmology

Sun. Although these ideas were only slowly accepted at the time, this marks the perhaps

most important moment in the history of cosmology as it no longer places mankind at the

centre of the Universe. After Galileo Galilei introduced the telescope as an astronomical

instrument in the 17th century, steady progress was possible using observations as the

scientific mode of inquiry.

The modern era of physical cosmology began in the late part of the 19th and the 20th

century with the foundations for and ultimately the formulation of Einstein’s general the-

ory of relativity. Limitations of Newtonian mechanics had become obvious primarily due

to the Michelson-Morley experiment, which revealed the lack of a universal frame of ref-

erence and allowed for a relative definition of time. Einstein’s formulation of special rel-

ativity fundamentally linked space and time and also equated energy and mass famously

through E = mc2. It subsequently took the inspired insight of the ‘equivalence principle’

for Einstein to dynamically link these two concepts into, perhaps, the most predictively

powerful and conceptually important theory in the history of science; the general theory

of relativity. With its help, general relativity allowed for a mathematical formulation of

the dynamical properties of the whole Universe, and thus derive a number of powerful

predictions assessing the nature of the Universe we live in. After a period of model craft-

ing by people such as Willem de Sitter, Georges Lemaı̂tre and Alexander Friedmann in

the early part of the 20th century, it was the observational confirmation of the expand-

ing Universe by Vesto Slipher and Edwin Hubble that should steer the development of

modern cosmology for the rest of the century and up to the present day.

The discovery of the almost isotropic cosmic microwave background (CMB) by Pen-

zias & Wilson (1965), brought us the richest source of cosmological information yet. Over

the past three decades a series of land-based as well as space-based experiments have

measured the statistical fluctuations seen in the after-glow of the big bang, and shaped

our theoretical understanding of the Universe on the largest scales. The culmination of

this effort was the release of the 2018 data analysis of the Planck satellite (see Fig. 2.1),

constraining model parameters on the 1% level, and setting a new high-precision standard

for cosmological observations.

The study of physical cosmology has a long and interesting history, and we will

summarize the modern standard cosmological model in this chapter. In section 2.2 we

introduce the fundamental building blocks of the standard model of cosmology and de-

velop the dynamics of the expansion of the Universe via the Friedmann equations. From

section 2.3 onwards, we focus on structure formation using concepts of first linear per-

turbation theory, culminating in a form of the linear dark matter power spectrum, before

discussing non-linear collapse in section 2.4, in addition to halo abundance models and

the formation of the first stars and galaxies. In section 2.5 we take a look at what pri-
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2.2 The standard cosmological model

Figure 2.1: The top panel shows the temperature power spectrum as measured by Planck

Collaboration et al. (2018b) with ±1σ error bars. The best fit model (blue line) is a 6

parameter ΛCDM cosmology. At low ℓ the signal is dominated by uncertainties due to

cosmic variance, however exquisite precision is achieved at higher ℓ values as seen in the

residuals plotted in the lower panel. Taken with permission from Planck Collaboration

et al. (2018a).

mordial non-Gaussianities may tell us about the inflationary period in the early Universe.

Finally, we discuss two line of sight observables in sections 2.6 and 2.7. First we in-

troduce weak lensing, and later the integrated Sachs-Wolfe effect as ways to observe the

large scale structure of the Universe today.

2.2 The standard cosmological model

2.2.1 The cosmological principle

The standard cosmological model is fundamentally based upon the assumptions of large

scale homogeneity and isotropy, sometimes referred to as the ‘cosmological principle’.

These two properties guarantee that structure is distributed uniformly (homogeneity) in

all directions (isotropy) when viewed on sufficiently large scales, and allow us to test

cosmological models independent of our particular location in the Universe. Although,

these properties truly had to be taken as assumptions for most of the development of the

cosmological model, and have thus come under severe criticism (Kragh 2012), we now

have good evidence in favour of the isotropy and growing confidence in the large scale

homogeneity of the Universe. Curiously, the cosmological principle seems to be valid
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Increasing Time

Coordinates:

Comoving Distance:

Physical Distance:

1 11

a(t0) a(t1) > a(t0) a(t2) > a(t1)

Figure 2.2: As time progresses, objects stay at the same coordinate separation when

the physical separation increases due to the expansion of space. The scale factor, a(t),

measures the relation between physical and coordinate distance.

within the observable Universe when structure is coarse grained on scales of 100 Mpc,

whereas inhomogeneities certainly exist on smaller scales. It is also impossible to know

whether the Universe remains homogeneous and isotropic outside our observable patch,

which results in a validity of the most fundamental principle in cosmology only over a

finite range of scales.

2.2.2 The expanding Universe

Any model of the Universe must reconcile basic observed truths, and thus the observed

expansion of the Universe lies at the heart of the standard model. The expansion history

is described by a scale factor a(t)1, which increases as time progresses, pictured in Fig.

2.2. It is useful to define a coordinate system which expands with the space in which it

is embedded. Thus the comoving distance between coordinate points remains unchanged

while the physical distance between them increases with the scale factor, such that

r = a(t)x, (2.1)

where r denotes the proper distance and x is the comoving distance.

The expansion rate observed by Hubble can thus be related to the scale factor (Hubble

1929),

H(t) ≡ ȧ

a
. (2.2)

1We use a normalised scale factor whose current value is defined to be a(t0) = 1.
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The hubble parameter, H(t), which was discovered as a proportionality constant between

the recession velocity and the distance of galaxies, v = H(t)d, thus measures the rate of

change of the scale factor over time.

2.2.3 Geometrical features

The next step in building a reliable cosmological model, is to assure that two observers

at different points in space-time can reliably determine the distance between themselves

in an expanding Universe. We therefore need to give these observers a way to transform

coordinate distances into some invariant physical distance measure. The connecting ma-

trix for transforming between coordinates in any given system to the physical length is

known as the metric, and we can generally write the invariant distance measure in a 4

dimensional space-time, such as our Universe, as

ds2 = gµνdxµdxν, (2.3)

where we have used the Einstein summation convention, and repeated indices are then

summed over. The µ and ν indices in the above equation range from 0 to 3, and the 0

index connects to the time dimension, such that dx0 = cdt. The metric, gµν, thus connects

coordinates to the invariant length element ds, known as the proper time, this is the fun-

damental distance in a 4 dimensional space-time, which all observers can agree on. The

form of this metric depends on the kind of universe the observers live in and their choice of

coordinate system in which they choose to measure it. For example, a flat, static universe,

fully described by the Minkowski space-time, has a metric, gµν = ηµν = diag(−1, 1, 1, 1),

when expressed in cartesian coordinates. In order to describe our own Universe, the met-

ric has to obey the cosmological principle, as well as incorporate the expansion of space

as a function of time according to Hubble’s law. The Friedmann - Lemaı̂tre - Robertson

- Walker (FLRW or FRW) metric is the unique metric which obeys these constraints, and

can be most usefully expressed in spherical polar coordinates as

gµν = diag
[︂

−1, a2(t), a2(t)S 2
k(r), a2(t)S 2

k(r) sin 2θ
]︂

. (2.4)

The resulting line element is then

ds2 = −c2dt2 + a2(t)
[︂

dr2 + S 2
k(r)

(︂

dθ2 + sin2 θdφ2
)︂]︂

, (2.5)
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comoving distance r, in order to relate the frequency shift to a change in the scale factor,

νemit

νobs

≡ 1 + z =
a(tobs)

a(temit)
. (2.8)

2.2.5 Dynamics of the expanding Universe

For a dynamical description of the Universe, we require the use of general relativity (GR).

The equation of motion for a particle in a curved space-time can be obtained by applying

the principle of least action to the FRW metric and results in the geodesic equation,

d2xµ

dτ2
+ Γ

µ

αβ

dxα

dτ

dxβ

dτ
= 0, (2.9)

where Γ
µ

αβ
represents the affine connection, and τ is the conformal time. Further, it took

Einstein’s insight to relate the dynamical properties of the Universe’s content to the metric,

via his field equations,

Gµν ≡ Rµν −
1

2
gµνR =

8πG

c4
Tµν. (2.10)

The lhs of this equation consists of the Ricci tensor Rµν, which describes the degree of

curvature of a topological manifold, and the Ricci scalar R, which describes the differ-

ence in volume of a ball in the curved space to that of a ball in Euclidean space. The

rhs of equation (2.10) describes the contents of the Universe via the energy-momentum

tensor Tµν. Famously summarised by John Wheeler, these equations are described by the

following two statements:

• Space-time tells matter how to move,

• Matter tells space-time how to curve.

When combining the FRW metric with Einstein’s field equations we obtain a set of

three equations that describe the expansion of space in a GR context. The Friedmann

equations, named after Alexander Friedmann, are

H2 =
8πG

3
ρ − kc2

a2
+
Λ

3
, (2.11)

and,
ä

a
= −4πG

3

(︃

ρ + 3
P

c2

)︃

+
Λ

3
, (2.12)

which can be combined to form a third,

ρ̇ + 3H

(︃

ρ +
P

c2

)︃

= 0. (2.13)
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From these equations, we can derive some conditional parameters which allow insight

into the dynamics of the Universe. Evaluating the first Friedmann equation today, we see

that

H2
0 =

8πG

3
ρ0 − kc2 +

Λ

3
. (2.14)

Considering a flat universe without cosmological constant, k = Λ = 0, allows us to

determine a critical value for the current density, ρ0, for which the universe has zero

curvature,

ρc =
3H2

0

8πG
. (2.15)

Any Λ = 0 universe whose energy density differs from ρc will thus express non-zero

curvature. It is then useful to define a density parameter which measures the density

relative to the critical density of the universe,

Ω0 =
ρ0

ρc

=
8πGρ0

3H2
0

. (2.16)

Various sources contribute to the energy content of the universe and so ρ0 is the sum of

energy densities of these components. Using the first Friedmann equation and expressing

it in terms of the critical density one finds

H2(a) = H2
0 [ΩM(a) + ΩR(a) + Ωk(a) + ΩΛ] , (2.17)

where we have introduced the matter and radiation contributions to the energy density and

defined

Ωk(a) = − kc2

H2
0
a2

and ΩΛ(a) =
Λ

3H2
0

, (2.18)

as the density parameters for curvature and dark energy respectively. An appropriate time

evolution for the density parameters can be found by analysing the third Friedmann equa-

tion in the matter dominated and radiation dominated limits. For the matter dominated

case, we can assume a near pressureless fluid as most matter in the Universe is dark and

only interacts gravitationally. Then the function that solves equation (2.13) is,

ρM ∝ a−3, (2.19)

and as a consequence2,

a ∝ t2/3. (2.20)

2From the Friedmann equation: ȧ ∝ a−1/2 ⇒
∫︁

a1/2da ∝
∫︁

dt ⇒ a ∝ t2/3.
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For the radiation dominated case, we use the equation of state, P = 3ρRc2, and thus

ρR ∝ a−4. (2.21)

Similarly for the radiation dominated era one finds3

a ∝ t1/2. (2.22)

The fact that the scale factor and the energy densities evolve at different rates during

matter and radiation dominated epochs is a fundamental result which has implications on

the growth of structure as we will see in section 2.3.

We can then express H(a) as a function of the current values for the density parame-

ters,

H2(a) = H2
0

(︂

ΩM,0a−3 + ΩR,0a−4 + Ωk,0a−2 + ΩΛ,0

)︂

. (2.23)

Today, there is almost no contribution from radiation in terms of the energy content of the

Universe. The CMB, which makes up the vast majority of the photons in the Universe, is

a blackbody with a temperature of TCMB ≃ 2.75K, which compared to the critical density

results in ΩR,0 ≃ 5 × 10−5. However, as the radiation density goes as a−4, at early times,

photons were the dominant constituent of the Universe. Observational efforts over the last

three decades, experiments such as COBE, WMAP and Planck, have pinned the values of

the other density parameters at (Planck Collaboration et al. 2018a)

Ωk,0 = 0.001 ± 0.002, ΩM,0 = 0.315 ± 0.007 and ΩΛ,0 = 0.685 ± 0.007. (2.24)

We can thus see that the dominant component is that of dark energy through a cosmo-

logical constant, gravitational matter only constitutes about a third of the total energy

budget today, and the Universe is consistent with having no curvature. Furthermore, the

expansion rate inferred from the CMB is

H0 = 100h km/s/Mpc and h = 0.6727 ± 0.0060. (2.25)

Of note is that there remain tensions between the Hubble rate as inferred from the CMB,

giving the value presented above, and other measurements. Riess et al. (2018b) have

used standard candles to calibrate the local distance ladder and thus measured the Hubble

parameter locally to find a somewhat faster expansion rate of h = 73.48± 1.66. Similarly,

the H0LiCOW collaboration (Bonvin et al. 2017; Birrer et al. 2019) have consistently

3From the Friedmann equation: ȧ ∝ a−1 ⇒
∫︁

ada ∝
∫︁

dt ⇒ a ∝ t1/2.
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2.2.6 Age and distance measures in the expanding Universe

Possibly one of the most important aspects of the Big Bang model is the fact that the

Universe has only existed for a finite amount of time. We can compute the age of our

expanding Universe, t0, by integrating a time element from the Big Bang to the present

day. Differentiating the redshift relation (2.8), we can change variables such that the

integral can be written as

t0 = H−1
0

∫︂ ∞

0

dz

(1 + z)E(z)
, (2.26)

where E(z) is derived from equation (2.23) and defines the cosmological model,

E(z) =
[︂

ΩM,0(1 + z)3 + ΩR,0(1 + z)4 + Ωk,0(1 + z)2 + ΩΛ,0

]︂1/2
. (2.27)

We can thus see that the age is related to the Hubble time, H−1
0

, and a correction factor

which is determined by the energy content of the Universe. A simple matter dominated

universe can be shown to result in a correction factor of exactly 2/3. However, as seen

in the previous section, a significant contribution from a cosmological constant implies

that the Universe is much older than without it. The best observational constraints come

from the Planck satellite (Planck Collaboration et al. 2018a) and put the age at t0 =

13.800 ± 0.024 Gyrs.

Due to the expansion of the Universe, distance measures in cosmology can be am-

biguous as the distance between two points is constantly changing (Hogg 1999). There

exist a number of useful distance definitions which are applicable in a variety of contexts.

The proper distance along the line of sight defines the physical distance we would mea-

sure if we froze the expansion of the Universe at the time of observation. At low redshifts,

the proper distance is that which we would intuitively observe. This distance depends on

the expansion history and thus on the factor E(z) introduced in equation (2.27), such that

the proper distance between us and an object at redshift z is

r = cH−1
0

∫︂ z

0

dz′

E(z′)
. (2.28)

For observational purposes, the most important distance measures are that of the angular

diameter distance,

DA = (1 + z)−1DM, (2.29)

and the luminosity distance,

DL = (1 + z)DM, (2.30)
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which both depend on the transverse comoving distance,

DM = cH−1
0 S k(r). (2.31)

The angular diameter distance measures the ratio of an objects physical size to its angular

size subtended on the sky. This ratio has a turn-over at z ∼ 1 such that objects at high

redshifts appear larger than at low redshifts. The luminosity distance measures the ratio

between the bolometric flux observed and the luminosity of a distant object and thus

measures how far away the object is based on the amount of light arriving at the observer.

2.3 Linear perturbation theory

Up to this point we have discussed the expansion history and energy contents of a universe

adhering completely to the cosmological principle and especially to homogeneity. How-

ever, our existence is prime proof for this not being the complete picture. In a perfectly

homogeneous universe, no structure can ever form as the gravitational pull on matter at

any point cancels exactly due to the uniform pull from every direction. The theoreti-

cal framework which is most widely accepted and discussed here is that of primordial

density fluctuations which grow over time and eventually form the galaxies and clusters

we observe today. As long as these density perturbations are small, linear perturbation

theory, as developed in this section, completely describes the evolution of structure for-

mation. Once perturbations become large, a non-linear description for structure formation

becomes necessary (see section 2.4).

Considering a universe with a homogeneous density distribution, let us assume a

spherical region which is slightly overdense as compared to the surrounding, background

density,

δ(x, t) ≡ ρ(x, t) − ρ̄(t)
ρ̄(t)

, (2.32)

where ρ(x, t) denotes the density at a comoving location x at some time t, and ρ̄(t) denotes

the density of the background at that time. This overdensity generates an increased grav-

itational pull on the surrounding material, such that more and more matter will fall into

the overdensity and thus creating a growing perturbation. At the same time, the Hubble

expansion will exert pressure on the matter in and surrounding the perturbation which

will suppress or inhibit its growth. A sufficiently dense perturbation decouples from the

Hubble expansion and can in principle grow indefinitely. Regions with underdensities,

where δ < 0, exhibit the opposite and material is drawn out from them more quickly than
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from the surrounding areas. Over time, this process leads to the emergence of voids in the

structure distribution we see today.

Linear perturbation theory studies the evolution of these density fluctuations when

they are small, |δ| ≪ 1, in a regime where the equations of motion for the perturbed

quantities can be linearized. This regime is especially important as all fluctuations start

out in this regime such that the crucial beginning era of structure formation is modelled

by linear perturbation theory. Perturbation amplitudes appear to be scale dependent and

have higher amplitudes on small scales, such that these scales become non-linear earlier

than larger scales. This leads to hierarchical structure formation, where differing scales

are linear at different epochs, and thus the description developed in this section becomes

important for different scales throughout time. Today, scales smaller than ∼ 10h−1Mpc

have become highly non-linear, yet the linear regime still applies for the largest scales.

2.3.1 Equations of motion

The main assumption of linear perturbation theory is that the gravitating contents of the

Universe can be modelled as a fluid on the scales at which the theory is applied. This is

certainly a valid assumption on the largest scales where the discrete nature of baryonic

and dark matter can be ignored. The evolution of a fluid in a gravitational field is then

subject to the following three equations;

The continuity equation:
∂ρ

∂t
+ ∇ · (ρu) = 0. (2.33)

The Euler equation:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇P − ∇Φ. (2.34)

The Poisson equation:

∇2Φ = 4πGρ. (2.35)

We will proceed to expand these equations in terms of perturbed quantities as well as

comoving coordinates.

2.3.1.1 Continuity equation

The continuity equation (2.33) simply guarantees that the change in mass in a volume is

equal to the flux of material into or out of the volume. Introducing comoving coordinates,

x = r/a, both temporal and spatial derivatives need to be adjusted. The spatial derivative
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transforms in a straightforward manner,

∇r =
∂

∂ri
=

1

a

∂

∂xi
=

1

a
∇x. (2.36)

For the temporal derivative, consider a function f (t, r), where r = a(t)x,

d f =
∂ f

∂t

⃓
⃓
⃓
⃓
⃓
r

dt +
∂ f

∂r

⃓
⃓
⃓
⃓
⃓
t

dr

=
∂ f

∂t

⃓
⃓
⃓
⃓
⃓
r

dt +
∂ f

∂r

⃓
⃓
⃓
⃓
⃓
t

(ȧxdt + adx)

=

[︄

∂ f

∂t

⃓
⃓
⃓
⃓
⃓
r

+ Hr
∂ f

∂r

⃓
⃓
⃓
⃓
⃓
t

]︄

dt + a
∂ f

∂r

⃓
⃓
⃓
⃓
⃓
t

dx

(2.37)

In 3 dimensions, we thus find that the time derivative at a fixed r translates into comoving

coordinates via
∂

∂t

⃓
⃓
⃓
⃓
⃓
r

=
∂

∂t

⃓
⃓
⃓
⃓
⃓
x

− Hx · ∇x. (2.38)

Further, we note that in an unperturbed universe, matter simply expands with the Hubble

flow, such that

vb = Hr. (2.39)

Deviations from the background flow due to local changes in the gravitational field will

result in peculiar velocities,

u =
dr

dt
= vb + aẋ, (2.40)

where we define the peculiar velocity, ie. the velocity deviation from the Hubble flow, as

vp = aẋ. (2.41)

Using the results derived up to this point, the continuity equation becomes

∂ρ

∂t

⃓
⃓
⃓
⃓
⃓
x

− H(x · ∇x)ρ +
1

a
∇x ·

[︂

ρ
(︂

vb + vp

)︂]︂

= 0. (2.42)

Expanding the spatial derivative and introducing the density perturbations via equation

(2.32) one obtains

∂ρ̄

∂t
+ 3Hρ̄ + δ

[︄

∂ρ̄

∂t
+ 3Hρ̄

]︄

+ ρ̄

{︄

∂δ

∂t
+

1

a
∇x

[︂

(1 + δ)vp

]︂
}︄

= 0. (2.43)
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At 0th order in the perturbation, the first two terms sum to zero, thus the term multiplied

by δ equally vanishes, leaving the perturbed continuity equation

∂δ

∂t
+

1

a
∇x

[︂

(1 + δ)vp

]︂

= 0. (2.44)

Of note is that this is a second order equation in perturbed quantities δ and vp, and in the

linear regime, the second order term can be ignored, resulting in the linearized equation

∂δ

∂t
+

1

a
∇x · vp = 0. (2.45)

2.3.1.2 Euler equation

The Euler equation (2.34) is a consequence of momentum conservation and embodies

Newton’s second law for the fluid components of the Universe. It describes the change in

the velocity field sourced by the forces acting on the fluid. Those forces are the force due

to pressure in the fluid and the gravitational attraction by matter in the Universe. Using

the results derived for the continuity equation, the Euler equation becomes

∂u

∂t
− H(x · ∇x)u +

1

a
(vb · ∇x)u +

1

a
(vp · ∇x)u = − 1

aρ
∇xP − 1

a
∇xΦ. (2.46)

The second and third term cancel and we expand u = vb + vp, while at the same time

introducing the perturbations in the pressure and gravitational field. Considering only

fluctuating terms and using the fact that (vp · ∇x)x = vp, we obtain

∂vp

∂t
+ Hvp +

1

a
(vp · ∇x)vp = −

1

aρ̄(1 + δ)
∇xδP −

1

a
∇xφ. (2.47)

Similar to the continuity equation, linearizing the equation yields the useful form,

∂vp

∂t
+ Hvp = −

1

a
∇xφ, (2.48)

where we have ignored the pressure term as during the matter dominated era, when most

of the linear structure growth occurs, the most important component of material in the

Universe is pressureless dark matter.

2.3.1.3 Poisson equation

The Poisson equation as expressed in (2.35) ignores the pressure term due to radiation

pressure as we are mostly interested in the matter dominated era. The equation thus

shows that the gravitational potential Φ is sourced by the density distribution of matter in

43



2.3 Linear perturbation theory

the Universe. Considering fluctuations in the density distribution, it is easy to see that the

gravitational potential will be perturbed as well,

Φ = Φb + φ. (2.49)

Transforming to comoving coordinates, the first order perturbation to the Poisson equation

becomes

∇2
xφ = 4πGa2ρ̄δ. (2.50)

2.3.2 Matter dominated Universe

As seen in Fig. 2.4, the matter dominated era spans from beyond zrec to the ‘recent’ past,

z ∼ 0.3, and thus comprises the vast majority of the structure formation in it. As a con-

sequence, we solve the equations of motion for the density fluctuation in the pressureless

limit defining this epoch. The equation governing the evolution of density perturbations

in a flat matter dominated universe can be obtained by combining the divergence of equa-

tion (2.48) with the linearised continuity equation (2.45) and substituting equation (2.50),

one finds

δ̈ + 2Hδ̇ = 4πGρ̄Mδ. (2.51)

The rhs of this equation becomes 4πGρ̄Mδ =
3
2
H2δ, when ΩM ≃ 1. We have seen that

during matter domination, ρ̄M ∝ a−3 and a ∝ t2/3, using these facts with the Ansatz δ = an,

one finds two solutions to the equation of motion,

δ ∝ a and δ ∝ a−3/2. (2.52)

The negative exponent solution constitutes the decaying mode for density fluctuations

which will decrease over time and is subdominant to the positive exponent solution, the

growing mode. One can thus see that throughout matter domination, density perturbations

grow with the scale factor, δ ∝ a. This result encodes the main reason why we see

structure around us today, even though the only departure from homogeneity in the early

Universe were minute density fluctuations. From the Poisson equation (2.50), one can

easily see that φ ∝ δ/a and thus the gravitational potential does not grow during matter

domination. The depth of the potential fluctuations are thus frozen into place until dark

energy takes over at later times.
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2.3.3 Radiation dominated Universe

At early times, the Universe is dominated by a radiation component, with a minute mat-

ter content, ρ̄M/ρ̄R ∼ 0. Note that the total density, ρ = ρM + ρR, sources the gravita-

tional potential fluctuations. Whereas special relativistic fluid equations are necessary to

analyse perturbations in the radiation component, it can be easily shown that the fluctu-

ations in the dominant component oscillate rapidly during this time, which implies that

the average density contrast at any location will be zero (see Padmanabhan et al. 2016).

Qualitatively the oscillatory nature of the radiation component can be understood as it ex-

periences radiation pressure during this time which acts against the inward gravitational

pull. Schematically the equation governing the evolution of the perturbations reads,

δ̈ + [Pressure − Gravity]δ = 0, (2.53)

where oscillations occur if the pressure term is large. It is important to note that during this

epoch, the perturbations in the dominant radiation component influences the gravitational

potential, which in turn influences the dark matter perturbations (see Dodelson 2003; for

derivation.).

Here, we are interested in how the matter component evolves during this time and

can thus look at equation (2.51) setting the rhs to zero as both δR ∼ 0 and ρ̄M ∼ 0,

δ̈ +
1

t
δ̇ = 0, (2.54)

where we have used the fact that H = 1/2t during radiation domination. This equation

has two solutions,

δ = const. and δ ∝ ln t ∝ ln a. (2.55)

Matter fluctuations therefore grow slowly, logarithmically, during this period, before their

growth speeds up once matter becomes the dominant component. This is a direct conse-

quence of the oscillations in the radiation fluctuations to which the density perturbations

are coupled.

2.3.4 Dark energy dominated Universe

Today, we observe a significant dark energy component, which drives the accelerated

expansion of our Universe. This dark energy does not cluster, such that in this regime, the

perturbation equation takes the familiar form,

δ̈ + 2Hδ̇ = 4πGρ̄Mδ, (2.56)
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where H remains roughly constant. In that case, we assume that the matter component is

small, such that

δ̈ + 2Hδ̇ ≃ 0. (2.57)

Trying an exponential solution one finds that this equation, again, has two solutions,

δ = const. and δ ∝ e−2Ht. (2.58)

One thus sees that at late times the density fluctuations stop growing. The Poisson equa-

tion then shows that due to the accelerated expansion of the Universe, the gravitational

potential decays as a−1.

2.3.5 Scales beyond the horizon

When considering superhorizon scales, a full general relativistic analysis of the perturba-

tion equations is necessary for a rigorous derivation of the evolution of perturbations on

those scales. However, by considering a perturbation on a superhorizon scale itself as a

slightly overdense universe, embedded in a flat universe, the main results can be shown

by a simple argument. Consider a flat background universe, then the Friedmann equation

(2.11) gives

H2 =
8πG

3
ρ0, (2.59)

where ρ0 denotes the density which results in zero curvature. A slightly overdense uni-

verse, with ρ1 > ρ0, will thus expose a curvature term in the same Friedmann equation,

H2 =
8πG

3
ρ1 −

kc2

a2
1

. (2.60)

We consider that both equations really represent two regions in the same universe, and

thus have the same expansion rate, we find

δ ≡ ρ1 − ρ0

ρ0

=
3kc2

8πGρ0a2
1

. (2.61)

If the perturbation is small, ie. in the linear regime, then a1 ≃ a0 ≡ a. Now, from this

result, we can see that during radiation domination, ρ0 ∝ a−4, therefore δ ∝ a2, whereas

during matter domination, where ρ0 ∝ a−3, the perturbations grow at the same rate outside

the horizon as they do inside, namely δ ∝ a.

We then see an important distinction between those scales that enter the horizon dur-

ing radiation domination, ie. small scales, and those that enter during matter domination,

ie. larger scales. Those that enter during RD are hindered in their growth by the rapid
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Figure 2.5: Summary of the growth of linear perturbations with time. We show the evo-

lution of two different scales entering the horizon at two different times. A small scale

perturbation, (1), entering during radiation domination, a
(1)
enter, experiences stifled growth

until the Universe becomes matter dominated at aeq. A larger scale, (2), perturbation en-

ters the horizon later, during matter domination, a
(2)
enter, and thus grows freely throughout.

expansion induced by the relativistic component at early times. Scales which are still

outside the horizon at this time therefore freely grow with the hubble expansion (δ ∝ a2),

and do not experience a similar lag. As a consequence we should see a suppression of

small scale structure up to a scale which is equal to the horizon scale at matter-radiation

equality, as any scales larger than that will enter the horizon once matter has become the

dominant component and will therefore never experience logarithmic growth. This effect

is called the Mészáros effect and we illustrate it in Fig. 2.5.

2.3.6 The matter power spectrum

We have already seen that different effects affect the density perturbations on different

scales, and it is therefore useful to consider these results in terms of the Fourier decom-

position of the fluctuations. Furthermore, primordial density fluctuations are inherently

random in amplitude so a statistical analysis of the fluctuations on different scales is use-

ful. A useful measure is then the power spectrum P(k), which is defined via

⟨︂

δkδ
∗
k′

⟩︂

= (2π)3δD(k − k′)P(k), (2.62)
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2.3 Linear perturbation theory

Figure 2.6: Summary of a variety of local matter power spectrum observations. The

red line shows a standard flat, scale-invariant cosmology using ΩM = 0.28, h = 0.72,

Ωb/ΩM = 0.16, and τ = 0.17. Taken with permission from Tegmark et al. (2004).

where δD denotes the Dirac delta function and for an isotropic universe the power spec-

trum depends on the scale amplitude only, P(|k|) = P(k). Inflationary models produce

close to a simple power law form for the power spectrum, with Pprim.(k) ∝ kns , and ns ≈ 1,

however, we have seen that the growth of density perturbations is affected by a stifled

growth during radiation domination at small scales, resulting in a power spectrum propor-

tional to kns−4. This scale dependence is generally separated out from the growth factor,

D(z), which encompasses the growth of perturbations as a function of time, such that the

power spectrum can be written as

P(k, z) = T 2(k)
D2(z)

D2(zeq)
Pprim.(k), (2.63)

where T (k) denotes the transfer function for the scale dependence of the evolution of the

perturbations. In a Universe containing baryons and neutrinos, the transfer function can

become complicated, however standard fitting formulae for these exist (Bardeen et al.

1986; Eisenstein & Hu 1997). Fig. 2.6 shows observations of the matter power spectrum

and clearly indicates the expected turn-over at k = keq, which is the scale of the horizon
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at matter-radiation equality, where smaller modes are suppressed and larger modes can

grow freely according to the primordial spectrum.

2.4 Non-linear structure formation

Astrophysical objects such as stars and galaxies are highly non-linear and cannot be de-

scribed with the same tools as introduced in the previous section. Here we focus on de-

scribing spherical collapse of overdense regions that have become non-linear which leads

to halo formation in the dark matter component and star formation when baryons are in-

volved. A statistical description of the dark matter distribution can then be achieved using

the excursion set formalism, and we introduce this in the context of the Press-Schechter

formalism.

2.4.1 Spherical collapse

We first consider that for some time t > tnl(λ), the scale λ has become non-linear and the

linear result that modes evolve independently breaks down. To shine light on the non-

linear evolution of a perturbation at such a scale, we consider the simplified situation of

a spherically symmetric perturbation of constant mass. We follow the evolution of the

density inside a mass shell of radius ri at some initial time ti. The density perturbation

inside this shell is δi and the background density is ρ̄i. As small scales become non-

linear first, we can assume that λ ≪ dH, so the use of the Newtonian limit is appropriate.

The dynamics of the mass shell is thus dictated by the gravitational potential and for a

pressureless component, using the Friedmann equations, we find

φtot(r, t) =
2π

3
Gρ̄r2 + δφ(r, t). (2.64)

The motion of the shell is thus given by

d2r

dt2
= −∇φtot =

(︄

−GM̄

r2
− GδM̄

r2

)︄

r̂, (2.65)

which can be rewritten as
d2r

dt2
= −GM

r2
, (2.66)

with

M =
4π

3
ρ̄r3

i (1 + δ̄i) and δ̄i =
3

4πr3
i

∫︂ ri

0

δi(r)4πr2dr. (2.67)
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The integral, with respect to t, of the equation of motion yields

1

2

(︄

dr

dt

)︄2

− GM

r
= E, (2.68)

and the constant of integration E is the specific energy of the shell. If E > 0, then ṙ > 0

as r increases, so the shell expands forever. However, when E < 0, as r increases, ṙ will

decrease to zero, eventually becoming negative, and the shell collapses. A parametric

solution to the equation of motion in this case is

r = A(1 − cos θ),

t = B(θ − sin θ),

A3 = GMB2.

(2.69)

From this we can see that the overdensity expands until it hits a radius of rta = 2A at time

tta = Bπ. After this turn-around, the overdensity starts to collapse to zero radius at time

tcoll = 2tta. Considering the energy of the mass fluctuation at ti and tta, it can be shown that

the turn-around radius solely depends on the initial density of the perturbation and not on

the total mass perturbed. We can then determine what the critical density for a spherical

region is to turn-around and collapse. By applying equation (2.69) to the expressions of

the density enclosed in the spherical overdensity and the mean background density, the

non-linear overdensity can be derived as

1 + δnl =
ρ

ρ̄
=

9(θ − sin θ)2

2(1 − cos θ)3
. (2.70)

It is instructive to compare this to the linear result as linear theory can be fully described,

while non-linear collapse can only be discussed in a simplified regime. So, for δi ≪ 1,

using the appropriate Taylor expansion for the parametric solution, the linear density can

be related to the initial perturbation in a flat, matter dominated Universe,

δlin = δi

(︄

t

ti

)︄2/3

=
3

20
(6π)2/3

(︄

t

tta

)︄2/3

. (2.71)

The turn-around density can thus be found to be δnl ≈ 5.55, at which point the linear

theory predicts δlin ≈ 1.06. At tcoll, the linear density has grown to δlin ≈ 1.68, but the

spherical collapse model diverges. Objects do not collapse to zero radius, but instead par-

ticle interactions and angular momentum virialize the material and the spherical collapse

result in the formation of virialized dark matter halos. Accounting for virial equilibrium

in the spherical collapse model shows that after virialization, the non-linear density of the
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2.4 Non-linear structure formation

Figure 2.7: Summary of the spherical collapse model for non-linear growth. Density

perturbations, once becoming non-linear, grow until the gravitational self-attraction ex-

ceeds the internal pressure and objects collapse and ultimately virialize into dark matter

halos.

perturbation has risen to δnl = 18π2, and objects stabalize at half their turn-around radius.

We illustrate these results in Fig. 2.7.

2.4.2 Halo abundance

While the spherical collapse model determines the conditions for an individual density

fluctuation to collapse and form a virialized dark matter halo, it says nothing about the

statistical distribution of these objects. Determining the abundance of dark matter halos

is a crucial step towards predicting the number and distribution of galaxies and galaxy

clusters in the Universe. An important result from the previous section is that any region

with a linear density of above δc = 1.68 should have collapsed and formed a virialized

halo. Using this result and separating out the growth factor from the density field, the

condition for halo formation becomes

δ(x) >
δc

D(t)
≡ δc(t), (2.72)

which can be seen as a static density field with a decreasing critical density boundary,

where any region exceeding the boundary is part of a collapsed halo.

In order to characterize the mass of the dark matter halos formed, we consider the

density field smoothed on some scale R, using a top-hat window function W(x; R) nor-

malized such that
∫︁

W(x; R)d3x = 1,

δ(R) = δ(x; R) ≡
∫︂

δ(x′)W(x − x′; R)d3x′. (2.73)

The convolution implies that density and window function are separable in Fourier space,

and thus we can define the variance of the smoothed density field in terms of the linear
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power spectrum,

σ2(R) =
⟨︂

δ2(R)
⟩︂

=
1

2π2

∫︂

P(k)W̃2(kR)k2dk, (2.74)

where W̃ denotes the Fourier transform of the window function. The filter scale R and

mass M for a top-hat window function are related via

M =
4πR3

3
ρ̄, (2.75)

such that we can interchange labels and discuss the halo abundance in terms of the mass

variance σ2(M) = σ2(R) of the smoothed density field.

2.4.2.1 Peak Statistics

The question to be answered is that given any region which satisfies equation (2.72) should

be part of a collapsed dark matter halo, what is the mass associated with the halo, and what

is the number density of halos as a function of mass, ie. the halo mass function. We can

associate a mass with a collapsed object by considering the density field smoothed on

mass scale M, δM = δ(R), then, at all x where δM = δc(t) a halo of mass M has formed.

An initial consideration (Bardeen et al. 1986) is to directly relate the number density of

halos with mass larger than M to the density of peaks in the smoothed density field which

exceed the boundary δc(t). Although this approach seems intuitive, when peaks persist at

multiple smoothing scales, this may lead to counting halos residing inside larger halos,

thus overestimating the total number of condensed structures.

2.4.2.2 Press - Schechter formalism

An alternative approach was proposed by Press & Schechter (1974), who postulated an

equivalence between the probability that δM > δc(t) and the mass fraction contained in

halos with mass larger than M at time t. For a Gaussian distributed density field, this

probability takes the following analytic form

P [δM > δc(t)] =
1

√
2πσ(M)

∫︂ ∞

δc(t)

exp

[︄

−
δ2

M

2σ2(M)

]︄

dδM =
1

2
erfc

[︄

δc(t)√
2σ(M)

]︄

. (2.76)

This result reveals that only half of all particles can at most contribute to structure for-

mation, as lim
M→0
σ(M) = ∞ implies that P [δM→0 > δc(t)] = 1/2. This is unphysical as

small underdense regions surrounded by larger overdensities should be part of larger col-

lapsed objects. Press & Schechter (1974) solved this by introducing an ad hoc factor of
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2.4.2.3 Excursion set formalism

The occurrence of the additional factor of 2 in the Press - Schechter formalism can be

explained using an excursion set formalism (Bond et al. 1991), and the combination is

referred to as the Extended Press - Schechter formalism. We start by reformulating the

Press - Schechter condition in terms of the variance of the density field at a particular

smoothing mass M. In a hierarchical theory of structure formation, such as our CDM

cosmology, S ≡ σ2(M) is a monotonically decreasing function in M. Considering the

density field at a given point smoothed over decreasing mass scales with a sharp k-space

filter, such as the top-hat used in section 2.4.2, results in a Markovian trajectory, as illus-

trated in Fig. 2.9. Although a sharp k-space filter implies that different mass scales are

independent, which is unphysical, such a filter generates random walks as trajectories (eg.

?). In this formulation a trajectory for which δS > δc(t) indicates that the mass element

resides in a dark matter halo with mass larger than M. The missing factor of 2 arises from

not counting trajectories such as A in Fig. 2.9. At point S 2, trajectory A indicates that the

corresponding mass element does not reside in a halo of mass M > M2, however, when

smoothed over a larger mass scale M1, the same element is found to reside in a halo of

mass M > M1 > M2. In order to account for the missed trajectories, trajectories, such as

A′, which exceed the boundary at S 2 need to be double counted. Due to the random nature

of the trajectories, these trajectories occur with the same probability as those reflected by

the boundary, and would normally be missed. This double counting then accounts for the

missing factor in the Press-Schechter formalism.

A reworded ansatz for the excursion set formalism which results in the same mass

function as the Press - Schechter formalism without the need of the unnatural factor of 2,

is that the fraction of trajectories with first upcrossing of the collapse barrier δS = δc(t) at

S > S 1 is equal to the mass fraction condensed into halos with mass M < M1 at time t.

2.4.3 Collapse of baryonic matter

Although the dark matter largely dictates the large scale distribution of structure in the

Universe, the most interesting objects, such as stars and galaxies, are made out of baryons.

Due to the gravitational force exerted on the baryonic gas by the underlying dark matter

field, the baryons follow the dark matter distribution. As the density contrast between a

gas cloud and the cosmic environment grows, the interplay between gravity and pressure

determines the evolution of the gas cloud, and ultimately the formation of bound objects.

Let us assume a spherical gas cloud which is starting to collapse under its own self gravity.

The free-fall time can be defined as the characteristic time-scale over which this collapse

would occur. The pressure resistance to this collapse can be expressed in terms of the
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δS

δc(t)

A’

B

A

S1 S2

large M small M

S

Figure 2.9: Example trajectories for the excursion set formalism as a function of smooth-

ing scale. When computing the fraction of trajectories for which δS > δc(t), trajectories

exceeding the boundaries at large mass smoothing scales but not at lower mass smooth-

ing scales are accounted for by double counting trajectories which mirror the trajectory

at low mass scales.

time that a pressure wave requires to cross the diameter of the cloud, known as the sound

crossing time. The ratio of the sound crossing time to the free-fall time then determines

whether collapse occurs, in the case of a shorter free fall time, or whether the pressure in

the gas is high enough to resist the collapse, when the free-fall time exceeds the sound

crossing time. The acceleration felt by a particle on the boundary of a spherical gas cloud

of mass M is

a = −GM

R2
. (2.81)

From Newton’s second law, the speed of the test particle can be derived as

|v| =

√︄

8πGρR2
0

3

(︃
R0

R
− 1

)︃

, (2.82)

where R0 denotes the initial radius of the gas cloud and ρ its density. Using this result, the

total collapse time is found to be

tcoll =

√︄

3π

32Gρ
. (2.83)
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The sound crossing time is based on the sound speed through the cloud,

cs =

√︃

γkBT

m
, (2.84)

where γ is the adiabatic index of the gas, kB is the Boltzmann constant, T is the gas

temperature, and m is the mass of the gas particles. The sound crossing time is then just

given as the time required by a sound wave to traverse the gas cloud,

tcross =
R

cs

=

√︃

m

γkBT
R. (2.85)

When tcoll > tcross, the pressure in the gas resists the collapse. The turn-over, tcross/tcoll = 1,

defines the condition for collapse to occur, and the radius at which this occurs is defined

as the Jeans length,

RJ = cs

√︄

3π

32Gρ
. (2.86)

We define the mass within a sphere of radius RJ as the Jeans mass,

MJ =
4π

3
ρR3

J . (2.87)

This collapse conditions crucially depends on the gas temperature through the sound

speed and thus as the temperature decreases, so does the Jeans mass and collapse of

smaller objects becomes possible. For stars to form out of large gas clouds, those clouds

thus need to fragment and cool such that the Jeans mass reduces to the mass scale of in-

dividual stars. Gas cooling in clouds inside the Milky Way is mainly controlled by the

abundance of heavy elements. However, the first stars had to rely on atomic and molecular

hydrogen in order to bring the Jeans mass down to enable star formation.

2.5 Inflation and primordial non-Gaussianities

In the previous sections, we have described the growth of structure using the concept of

primordial density fluctuations sourced by quantum fluctuations in the density field. The

mechanism by which these quantum fluctuations grow into macroscopic perturbations is

that of a short period of exponential expansion in the early Universe, known as inflation.

During this period, the Universe became shortly dominated by a negative pressure inflaton

field, which induced the stretching of a Hubble size patch by about 60 e-foldings. Any

initial curvature or inhomogeneities were inflated away which resulted in the flatness

and homogeneity of our observable patch. A number of predictions about the nature
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of primordial density fluctuations can be made from such an inflationary stage in the

evolution of the Universe, and these can be tested against observations of the large scale

structure. These observables give us a direct way to probe the detailed behaviour of the

inflationary epoch as well as the properties of the inflaton field which sourced it.

One of the prime observables able to distinguish between different inflationary mod-

els is that of primordial non-Gaussianities (Maldacena 2003; Acquaviva et al. 2003; Bar-

tolo et al. 2004; Weinberg 2005; Chen 2010; Komatsu 2010). Consider the temperature

fluctuations, ∆T (n̂) =
∑︁

ℓm aℓmYℓm(n̂), measured on the CMB and assume statistical homo-

geneity and isotropy. If the temperature signal is perfectly Gaussian, then its probability

density function (PDF) takes the following form,

Pg(a) =
∏︂

ℓm

e−|aℓm |
2/2Cℓ

√
2πCℓ

, (2.88)

where Cℓ denotes the angular temperature power spectrum and is defined through

⟨︁

aℓma∗ℓ′m′
⟩︁

= Cℓδ
K
ℓℓ′δ

K
mm′ . (2.89)

However, if non-Gaussianities in the temperature fluctuations exist, but the signal is very

close to Gaussian, then a valid description is to Taylor expand the distribution around a

Gaussian PDF (Komatsu 2010; Fergusson et al. 2012),

P(a) = Pg(a)×
⎧
⎪⎪⎨

⎪⎪⎩
1 +

1

6

∑︂

all ℓimi

⟨︁

aℓ1m1
aℓ2m2

aℓ3m3

⟩︁ [︂

(C−1a)ℓ1m1
(C−1a)ℓ2m2

(C−1a)ℓ3m3

−3(C−1)ℓ1m1,ℓ2m2
(C−1a)ℓ3m3

]︂}︂

.

(2.90)

The leading order deviation from a perfectly Gaussian field, which would be fully

described by its power spectrum, can then be seen to be the angular bispectrum,
⟨︁

aℓ1m1
aℓ2m2

aℓ3m3

⟩︁

. Thus, any primordial non-Gaussianities introduced during inflation

would be observable through the bispectrum, and more precisely through its amplitude.

One of the important distinctions between the various inflationary models is their dif-

ference in predicted bispectrum amplitude and shape. The amplitude of the primordial

bispectrum is often parametrized through the fNL parameter, defined by,

⟨︁

aℓ1m1
aℓ2m2

aℓ3m3

⟩︁

= Hm1m2m3

ℓ1ℓ2ℓ3

∑︂

i

f
(i)

NL
b

(i)

ℓ1ℓ2ℓ3
, (2.91)

where the sum is taken over the different bispectrum models introduced shortly, b
(i)

ℓ1ℓ2ℓ3
is

the reduced bispectrum, which defines the shape of the bispectrum, and H denotes the
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Gaunt integral, enforcing the triangle condition and is defined through

Hm1m2m3

ℓ1ℓ2ℓ3
=

∫︂

d2 n̂Yℓ1m1
(n̂)Yℓ2m2

(n̂)Yℓ3m3
(n̂). (2.92)

In spherical harmonic space this factor can be compared to the δD (
∑︁

ki) arising when

constructing the Fourier space bispectrum, and ensures that the coefficients form a closed

triangle on the sphere. Inflation models separate into three categories in terms of their

predictions for the angular bispectrum. The ‘local form’ bispectrum originates from the

local perturbations in the curvature field and peaks in the squeezed triangle limit. Sin-

gle field inflation models cannot give rise to a large local form bispectrum and thus any

detection of f local
NL

& 1 would be fatal for such models and a strong indication for multi-

field inflation (Maldacena 2003; Acquaviva et al. 2003; Komatsu 2010). The ‘equilateral

form’ bispectrum, which peaks in the equilateral triangle configuration, and the ‘orthog-

onal form’ bispectrum, which appears in a mixing of the other two, each arise from a

variety of single-field inflation models, and would rule in or out a number of models if

large values for f
equi.

NL
or f orth.

NL
were to be detected. The best current constraints come from

Planck Collaboration et al. (2016a) with measurements combining the temperature and

polarization data to obtain f local
NL
= 0.8 ± 5.0, f

equi.

NL
= −4 ± 43, and f orth.

NL
= −26 ± 21 with

1σ errors. Due to the large errors on these measurements, they do not currently hold much

constraining power on the various inflationary models. However, using new techniques,

enabled by the 21cm line from neutral hydrogen, σ fNL
∼ 0.03 − 1 measurements could be

achieved (Pillepich et al. 2007; Muñoz et al. 2015).

2.6 Gravitational lensing

One of the most famous predictions made by Einstein’s theory of general relativity is

the bending of light by massive objects (see Renn et al. 1997). The first observational

evidence of the phenomenon was gathered during the 1919 solar eclipse where starlight

passing close to the Sun was shown to bend due to its gravitational influence (Dyson

et al. 1920; Stanley 2003). A first observation of extragalactic lensing was later made

by Walsh et al. (1979) and thrusted the field into the forefront as a cosmological tool.

Although gravitational lensing is visually most impressive in the strong regime, where

image multiplication or even the formation of an Einstein ring can occur, cosmological

lensing due to the accumulated effect of matter distorting photon paths along the line of

sight presents a direct way to probe the statistical distribution of matter, and thereby probe

the matter power spectrum and the cosmological parameters.
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Figure 2.10: Sketch of gravitational lensing of a source on the source plane by matter on

the lens plane observed on the observer plane.

Consider the situation depicted in Fig. 2.10, where the light emitted by an object on

the source plane at a distance DS from an observer is deflected by a mass at a distance DL.

The deflection caused by the mass distribution materializes in a small angular deviation,

δθ, to the real source location θS, such that an incident angle of θI = θS+δθ is measured by

the observer. Considering a weak perturbation to the metric, one can derive the equation

of motion for the transverse coordinates of a photon in a flat universe as (see Appendix

A.1)
d2x

dη2
= − 2

c2
∇Φ, (2.93)

where x denotes the comoving transverse coordinates of the photon, η is the conformal

time, and Φ is the peculiar gravitational potential, related to the matter density field

through the Poisson equation (2.35). A solution to the equation of motion can be ob-

tained in the Born approximation, where photon paths are unperturbed and photons travel

on null geodesics, and thus the metric yields dr = −dη. Using this result, equation (2.93)

can be integrated twice, such that

xi = rθi −
2

c2

∫︂ r

0

dr′(r − r′)
∂Φ

∂x′
i

, (2.94)

where the constant of integration θi has been set to be the incident angle of the photon.

Considering the angular deviation of two nearby photons, we may write down the change

of their relative positions after being affected by matter along their path of travel by Taylor
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expanding the derivative of the gravitational potential,

∆xi = r∆θi(δ
K
i j − φi j), (2.95)

where δK
i j is the Kronecker delta function and we have defined

φi j ≡
2

c2

∫︂ r

0

r − r′

rr′
∂2Φ

∂θi∂θ j

. (2.96)

We can then write down the lensing potential which fully describes the weak lensing

distortions induced by the gravitational potential,

φ(r, n̂) = − 2

c2

∫︂ r

0

dr
S k(r − r′)

S k(r)S k(r′)
Φ(r′, n̂), (2.97)

where we have generalised to include non-flat universes. To see what the distortions in

the image are, one writes down the ratio of image areas which is given by the Jacobian

(Munshi et al. 2008),

∂θS

∂θI

= (δK
i j − φi j)

−1 =

⎛

⎜⎜⎜⎜⎜⎝

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

⎞

⎟⎟⎟⎟⎟⎠ , (2.98)

which defines the convergence κ and complex shear γ = γ1 + iγ2. The convergence

κ ≡ 1

2
(φ11 + φ22), (2.99)

describes the magnification of the image. The shear and its components

γ1 =
1

2
(φ11 − φ22) and γ2 = φ12, (2.100)

is related to the change in ellipticity of the galaxies which are weakly lensed,

e ≃ eS + 2γ, (2.101)

where e and eS are the observed and source ellipticities of the galaxies. The statistical

correlation of the ellipticities of galaxies in a sample can thus be used as a probe for the

shear correlation which is connected to the underlying cosmology.
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a) b) c)

bbb b

Figure 2.11: Sketch of the ISW effect. a) A photon enters the potential well of a galaxy

cluster. b) As the photon is falling into the well, it gains energy and experiences a blue-

shifting of its frequency. At the same time, the late time accelerated expansion of the

Universe means that the potential decays as the photon is falling in. c) The photon leaving

the potential well requires less energy than it gained upon entering, which results in an

overall blue-shift of the photon’s frequency.

2.7 The integrated Sachs-Wolfe effect

Another observable of the density perturbations in the Universe is the introduction of

anisotropies in the CMB from structure along the light travel path and its effect on the

gravitational potential that photons are travelling through. This effect was first predicted

by Sachs & Wolfe (1967) and is known as the integrated Sachs-Wolfe (ISW) effect. As

the potential is frozen during Matter domination, only a small amplitude contribution on

small scales due to the non-linear collapse of structure affects the CMB photons (Rees

& Sciama 1968). However, once the Universe transitions into the dark energy dominated

regime, the potential decays as a−1 which gives rise of the late time ISW effect (Crittenden

& Turok 1996). As the potential decays with time, photons will have to effectively climb

out of a shallower potential than they fell into, which results in an overall frequency boost

for the photon, as illustrated by Fig. 2.11.

To see the form this effect takes, one considers a small perturbation to the metric

and solves the temporal part of the geodesic equation to first order (Sachs & Wolfe 1967;

Martinez-Gonzalez et al. 1990; Dodelson 2003; Nishizawa 2014). The observed temper-

ature fluctuations over the sky can then be found to be (Nishizawa 2014)

δT0

T
(n̂) =

1

4
δγ(τ∗) + Φ(τ∗) − Φ0 + n̂ · (v0 − v) +

∫︂ τ0

τ∗

dτ(Φ′ + Ψ′). (2.102)

Each term on the rhs represents a different physical effect which introduces anisotropies

into the distribution of CMB photons. The first term represents the intrinsic temperature

perturbation at recombination. The second and third term represent the Sachs-Wolfe effect

from recombination, where, due to the perturbations in the density field, photons ‘start’

at different depths in the gravitational potential when the Universe becomes transparent.
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The fourth term is the Doppler effect induced by the relative motion of the observer to the

CMB. The final term represents the integrated Sachs-Wolfe effect, which is sourced by

the time variation of the gravitational potential. In general relativity, we equate the two

Newtonian potentials Φ and Ψ, such that the frequency shift, related to the temperature

fluctuations, due to the ISW effect can be written as

∆ν

ν

⃓
⃓
⃓
⃓
⃓
ISW

(r, n̂) =
2

c3

∫︂ r

0

dr′
∂Φ(r′, n̂)

∂t
. (2.103)

As mentioned before, during most of the Universe’s history, the gravitational potential is

constant and thus the ISW effect vanishes. However, the potential changes during two

important phases of cosmic evolution. At early times, when radiation dominates, an ap-

preciable ISW effect is to be expected4. Then, a late time ISW contribution is evidence

for a dark energy component, as such a Universe would experience a decay of the gravi-

tational potential due to the accelerated expansion during dark energy domination.

2.8 Summary

The most precise measurements of the properties of our Universe suggest that we live

in a geometrically flat Universe which largely consists of dark energy in the form of a

cosmological constant with most of the gravitational matter being cold dark matter. The

Universe in this model begins its expansion about 14 billion years ago in an inflationary

period where space-time is stretched exponentially, and quantum fluctuations in the dark

matter density field are amplified to a macroscopic level. After this time, the gravitational

pull from matter in overdense regions causes the unrelenting growth of these density per-

turbations first in a linear, then a non-linear regime. The resulting structures formed by

this process are virialized dark matter halos, which ultimately give rise to the stars and

galaxies we observe today.

In this chapter, we have reviewed the basic cosmological model as well as structure

formation in the linear regime and introduced non-linear collapse. The statistical distribu-

tion of dark matter is thus a predicted observable of the cosmological model and described

by the matter power spectrum. Although the statistics of the matter density field can be

gathered directly through the galaxy distribution, we discuss two other effects which cou-

ple to the density field and through which the parameters of the model are accessible:

Weak lensing and the integrated Sachs-Wolfe effect.

4As zeq ≫ zrec, this is usually seen as part of the primary temperature fluctuations at recombination.
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Chapter 3

The Cosmic 21cm Signal

3.1 Observing neutral hydrogen

In the previous chapter, we have broadly summarized our theoretical understanding of the

standard cosmological model with regard to structure formation. However, most of our

theoretical understanding, especially at large scales, is based only on observations of the

CMB, and although it has proven to contain a great amount of invaluable cosmological

information, it largely only shows the conditions at the time of recombination, zrec ≈
1100. This deficiency has lead to a number of discrepancies between its predictions and

low-redshift observations, which will require additional probes along the line of sight to

remedy. For example, there remain tensions between local measurements of the Hubble

parameter, h, and the value derived from Planck (Bennett et al. 2014; Riess et al. 2018a;b).

Low redshift weak lensing surveys also indicate less matter clumping than expected from

extrapolation of the CMB results (Heymans et al. 2013; MacCrann et al. 2015; Raveri

2016; Joudaki et al. 2017; Köhlinger et al. 2017).

Further, an important observational gap between the last scattering at zrec and the

formation of the first stars at z ≈ 30 exists. Hence the crucial transition between linear and

non-linear structure remains unobserved at present. The CMB photons also only weakly

constrain the timing of the Epoch of Reionization (EoR), when high energy UV sources

ionized the entire intergalactic medium (IGM), and give little to no information about the

topology of the process. Observations of this high redshift regime represents the next

frontier for observational cosmology and holds the potential to deepen our understanding

of the transition from a dark into a light Universe.

The common thread throughout the evolution of the early Universe down to the

present day is the ubiquitous presence of atomic hydrogen (HI). Direct observation of

the hydrogen distribution throughout the history of the Universe represents a promising

avenue to bridge the gap between the CMB and low redshift observations. Due to the hy-
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3.2 The cosmic 21cm signal

perfine structure of atomic hydrogen, these atoms emit at a rest-frequency of 1420 MHz

or a rest-wavelength of 21cm. The 21cm line from atomic hydrogen thus represents the

only source of light which is continuously emitted from the formation of hydrogen at

recombination to the present day. The potential for this line to deliver valuable cosmo-

logical information has been known for nearly 60 years (Field 1958; 1959; Sunyaev &

Zeldovich 1972; Hogan & Rees 1979), however only recent technological advances have

made an observational detection tangible. A new generation of radio observatories has

thus reignited interest in this elusive hydrogen line and it is today widely regarded as the

most promising avenue into the EoR and the high redshift Universe.

In this chapter we will introduce the theoretical background of the 21cm line in the

context of cosmological observations. We begin in section 3.2 by defining the brightness

temperature of the 21cm transition as a function of the relative abundance of atoms in the

two hyperfine ground states. Section 3.3 details the various physical processes contribut-

ing to the signal and section 3.4 introduces the ionization history as an additional signal

parameter. In section 3.5 we summarize the behaviour of the globally average signal as a

function of time, before we focus on the fluctuations in the signal in section 3.6. Finally,

in section 3.7 we introduce the various observational strategies to detect the cosmological

21cm signal.

3.2 The cosmic 21cm signal

The 21cm emission line originates from the hyperfine structure of the neutral hydrogen

atom, which is due to the interaction of the magnetic moments of the proton and electron.

Whereas the consideration of relativistic effects and spin-orbit coupling leads to the fine

structure of the hydrogen atom1, including the effects of the spin-spin coupling into the

perturbed Hamiltonian splits the ground state into a low energy singlet and a high energy

triplet state, lifting the spin degeneracy in the hydrogen atom. The energy difference

between the ground state singlet and triplet states2, ∆E10 = 5.9 × 10−6eV, corresponds

to a photon emission at a frequency of 1420 MHz, or equivalently a wavelength of 21cm

(e.g. Griffiths 2005).

In order to talk about the cosmological significance of this result, one has to realize

that transitions between the two hyperfine ground states are forbidden by quantum me-

chanical selection rules. This results in an extremely low spontaneous emission rate of

1This has the effect of breaking the degeneracy in the azimuthal quantum number.
2The subscripts 1 and 0 denote the triplet and singlet states respectively.
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3.2 The cosmic 21cm signal

A10 = 3 × 10−15s−1 (Furlanetto et al. 2006), and thus a large half life of

τ1/2 = A−1
10 = 3.5 × 1014s ≈ 11 Myr. (3.1)

There are however three main arguments to be made that motivate the potential use of the

21cm transition in a cosmological context. Firstly, the energy difference of the hyperfine

states is exceedingly small and corresponds to a temperature of

T∗ =
hν10

kB

≈ 0.0682K. (3.2)

The gas at any epoch in the cosmic history will therefore contain enough thermal energy

to excite HI atoms into the triplet state. Secondly, given that most of the baryonic matter

in the early Universe is HI, some fraction of it will be in the triplet state, and given

that the half life τ1/2 is very much lower than the age of the Universe at all relevant

epochs, spontaneous 21cm emission should not be rare. Thirdly, the optical depth of HI

gas is small at frequencies associate with the 21cm line, leading to a large transmittance

(Pritchard & Loeb 2012). Photons emitted at 1420 MHz can thus pass unhindered from

their source into our telescopes, carrying information about the source and the intervening

matter distribution.

The principal observable for radio telescopes, aiming to observe this redshifted 21cm

line, is the brightness temperature of the signal on the sky, Tb. The brightness temperature

corresponds to the temperature of a black body emitting at an observed intensity Iν at a

given frequency ν,

Iν ≡ Bν(Tb) =
2ν2kBTb

c2
, (3.3)

where the Rayleigh-Jeans law has been used as an approximation to the Planck law for

black body radiation, as this is a good approximation for the relevant frequencies. The

signal will be redshifted by the expansion of the Universe and one thus distinguishes

between the brightness temperature at the source, T ′
b
, which depends on the rest frame

frequency of the emitted photons, ν0, and the observed brightness temperature, which

depends on the redshifted frequency, ν = ν0/(1+ z). The observed brightness temperature

is then related to the rest-frame quantity via

Tb(ν) =
T ′

b
(ν0)

1 + z
. (3.4)

Using this result and the radiative transfer equation for photons travelling through a cloud

of neutral hydrogen, the following can be derived (e.g. Loeb & Furlanetto 2013; see
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3.3 Contributions to the spin temperature

Appendix B.1)

T ′b(ν) = TS(1 − e−τν) + T ′R(ν)e−τν , (3.5)

where the optical depth, τν ≡
∫︁

ανds, is the integral of the absorption coefficient αν along

the light ray through the cloud, and T ′
R
(ν) is the brightness temperature of the background

radiation field incident on the cloud along the ray. The brightness temperature depends

also on the relative occupation number of the two hyperfine ground states, which is quan-

tified by the spin temperature TS,

n1

n0

=
g1

g0

e−T∗/TS , (3.6)

where g1 = 3 and g0 = 1 are the statistical weights of the energy levels. The most im-

portant application considered here is when the background radiation field is the CMB. In

this case, using the fact that the optical depth is small at the relevant frequencies, allowing

us to expand the exponentials in equation (3.5), the difference between the observed 21cm

brightness temperature and the CMB temperature Tγ is

δTb(ν) ≈
TS − Tγ(z)

1 + z
τν0 (3.7a)

≈ 27xHI(1 + δb)

(︄

Ωbh2

0.023

)︄ (︄

0.15

Ωmh2

1 + z

10

)︄1/2

×
(︄
TS − Tγ

TS

)︄ [︄

∂rvr

(1 + z)H(z)

]︄−1

mK,

(3.7b)

where xHI denotes the neutral fraction of hydrogen, δb is the fractional overdensity in

baryons, and ∂rvr is the velocity gradient along the line of sight. As seen from this result,

the observability of the signal hinges on the spin temperature, only if it is different from

the Tγ can the signal be seen against the CMB. It is therefore important to understand the

physics that determine TS as well as possible, in order to make credible predictions of

the signal. Further, the signal depends on the ionization history of hydrogen gas, which

makes it an ideal probe for reionization.

3.3 Contributions to the spin temperature

The spin temperature is determined by three main mechanisms:

(a) Absorption of CMB photons and stimulated emission,

(b) collisions with other HI atoms, free electrons, and protons,

(c) and Lyman-α / UV scattering involving intermediate excited states.
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3.3 Contributions to the spin temperature

If these mechanisms are parametrized by the transition rates C10, C01 for collisions and

P10, P01 for UV coupling, the spin temperature in equilibrium is determined by (Furlanetto

et al. 2006),

n1(C10 + P10 + A10 + B10ICMB) = n0(C01 + P01 + B01ICMB). (3.8)

This conservation equation says that in equilibrium the number of particles in the triplet

state times the rate away from the triplet state is equal to the number in the singlet state

times the rate toward the triplet state. B10 and B01 are Einstein coefficients and ICMB the

energy flux of CMB photons. The equation can be written as (see Appendix B.2)

T−1
S =

T−1
γ + xcT

−1
K
+ xαT

−1
C

1 + xc + xα
, (3.9)

where xc and xα are the coupling coefficients for collisional and Lyman-α coupling re-

spectively, TK is the gas temperature, and TC is the colour temperature of the Lyman-α

radiation field. The coupling coefficients determine whether collisions or Lyman-α pho-

tons contribute to the signal at a certain time and determine how strongly the spin tem-

perature depends on these mechanisms to produce 21cm photons. Equation (3.9) then

gives a straight forward relation defining the dependencies of the spin temperature. Being

able to calculate the five parameters in the above relation gives the full evolution of the

spin temperature and thus most of the theoretical evolution of the 21cm signal as seen in

equation (3.7). We explore the physics leading to each of the contributing mechanisms in

the following sections.

3.3.1 Collisional coupling

Collisions between particles can induce spin-flips between the two hyperfine ground states

and thus directly effect the spin temperature at early epochs when the particle densities

were high. There are three main channels of collisions present in the early Universe

which all happen through elastic scattering, H-H (Zygelman 2005), H-e−(Furlanetto &

Furlanetto 2007) and H-p (Furlanetto & Furlanetto 2007). The coupling coefficient xc

can be written so as to include the three channels,

xc = xHH
c + xeH

c + x
pH
c =

T∗

A10Tγ

(︂

CHH
10 +CeH

10 +C
pH

10

)︂

. (3.10)

Then, expressing the de-excitation rates Ci
10

in terms of the rate coefficients for spin de-

excitation in collision with species i, κi, and the number density ni of the species, one
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3.3 Contributions to the spin temperature

obtains

xc =
T∗

A10Tγ

(︂

nHκ
HH
10 + neκ

eH
10 + npκ

pH

10

)︂

. (3.11)

This is to say that the coupling coefficient is defined by the rate at which the 21cm radia-

tion is produced through stimulated emission by CMB photons, modulated by the number

of particle collisions which enhance this emission as a function of the particle species

colliding and their collision frequencies. The collision rates κi (in units of cm3s−1) are

obtained by solving the Schrödinger equation for the relevant particle interactions. This

leads to a common form for all three collision channels ,

κi10 =

√︃

8kBTK

πMi

σ̄i, (3.12)

where the mean spin transition cross section is

σ̄i =
1

(kBTK)2

∫︂ ∞

0

dEσi(E)Ee
− E

kBTK , (3.13)

depending on the collision channel i = HH, eH, pH, the cross-section of the relevant

scattering process as a function of energy, σi(E), and the reduced mass Mi of the colliding

two-particle system. The prefactor in equation (3.12) can be interpreted as the mean

collision velocity for each channel. The collision rates for each case are then integrated

numerically in Zygelman (2005); Furlanetto & Furlanetto (2007); Furlanetto & Furlanetto

(2007) and we show the results in Fig. 3.1. Although the rate coefficients for the p and e

channels are higher than that for H-H collisions, the total rates also include the number

densities of the species, so that the effect of these collisions depends on the ionisation

fraction x̄i. Numerical integration of the full Boltzmann equation places the value of this

parameter at around x̄i ∼ 2×10−4 during the dark ages (Dodelson 2003), meaning that for

each free proton and electron pair there are around 5 × 103 hydrogen atoms. Therefore,

H-H collisions dominate collisional coupling. H-e− collisions are the next important

channel and are dominating only when the Universe becomes sufficiently ionized. Proton

collisions and other species collisions are even less important. Collisional coupling is

however only dominant during the dark ages and all together dominated by the Lyman-

α coupling as soon as the gas is heated up sufficiently such that Lyman-α photons are

produced. The Lyman-α domination is caused by the fact that UV-photons scatter ∼ 105

times before their energy is redshifted enough not to effect the spin temperature anymore

and only about 10% of particle collisions actually lead to a spin flip (Furlanetto et al.
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Figure 3.1: Evolution of the rate coefficients Rate coefficients for p − H collisions

(solid curve), e − H collisions (dotted curve), and H − H collisions (dashed curve). Re-

produced with permission from Fig 2. Furlanetto & Furlanetto (2007), by permission

of Oxford University Press on behalf of the Royal Astronomical Society, available on-

line at: https: // academic. oup. com/ mnras/ article/ 379/ 1/ 130/ 1132800?

searchresult= 1 . This figure is not included under the Creative Commons license of

this publication. For permissions, please contact journals.permissions@oup.com.

2006). An important consequence is that the high and low temperature regimes3 in Fig.

3.1 are of little interest.

3.3.2 Lyman-α coupling, the Wouthuysen-Field effect

The Wouthuysen-Field effect describes the coupling of the spin temperature to Lyman-

α, ie. UV, photons. The electric dipole selection rule allows for transitions only when

∆F = 0,±1, with the exception that there cannot be a transition from F = 0 to F = 0. So,

upon absorbing a Lyman-α photon, a ground state hydrogen atom can be excited to either

the 2 1P1/2 or the 2 1P3/2 state. From there, the aforementioned rule only allows the atom

to de-excite down to the triplet state 1 1S 1/2, thus resulting in a population mixing between

the singlet and the triplet state. Excitations to the 2 0P1/2 and 2 2P3/2 are forbidden by the

rule. The relevant transitions are shown in Fig. 3.2.

3Low temperatures are not reached by the IGM as heating starts when z ∼ 30 .
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Non-mixing

2P3/2

1P3/2
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0S1/2

FLJ
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Figure 3.2: Relevant energy levels for the Wouthuysen-Field effect. The dashed lines

are forbidden transitions and their Einstein coefficients can be taken to be zero. The

dotted lines show allowed transitions that do not however mix the ground state singlet

and triplet state. The solid lines show allowed transitions. Adapted with permission from

Field (1958).



3.3 Contributions to the spin temperature

The coupling coefficient xα depends on the total rate per atom at which Lyman-α

photons are scattered within a gas,

Pα = 4πχα

∫︂

dνJν(ν)φα(ν), (3.14)

whereσν = χαφα(ν) is the local absorption cross section, χα = πe
2 fα/mec is the oscillation

strength of the Lyman-α transition, φα is the Lyman-α absorption profile, and Jν is the

angle-averaged specific intensity of the background radiation field (by number). It can be

shown that P10 = 4Pα/27 (e.g. Deguchi & Watson 1985; Meiksin 2000; see Appendix

B.3), thus one can write the coupling coefficient in terms of this total scattering rate,

xα =
4Pα

27A10

T∗

Tγ
. (3.15)

Defining a suppression factor that describes the photon distribution close to the

Lyman-α resonance,

S α =

∫︂

dxφα(x)J(x), (3.16)

where x has been used to represent the relative frequency to the Lyman-α line centre.

Combining equations (3.14) and (3.15), an expression for the coupling coefficient can be

found,

xα =
16π2T∗e

2 fα

27A10Tγmec
S αJα = S α

Jα

JC
α

, (3.17)

simply using the definition for χα, evaluating Jν at the Lyman-α frequency to obtain Jα

and setting JC
α = 1.165 × 10−10(1 + z)/20cm−2s−1Hz−1sr−1.

In order to determine the Lyman-α background, the Hubble flow across the reso-

nance frequency as well as energy loss induced by atomic recoil have to be taken into

account. As Lyman-α photons scatter off hydrogen atoms, some of the energy will be

converted into kinetic energy as the atoms recoil, resulting in a net loss in energy of the

re-emitted photon. This effect adds an additional drift term to the Hubble flow across the

Lyman-α resonance. The Hubble flow and atomic recoil are both captured in the evolution

parameter of the Lyman-α flux across the line centre, J(x), in equation (3.16). Solving

the radiative transfer equation for Jν in an expanding universe, parametrised via γ, with

an additional recoil parameter η gives the result

δJ(x) = 2η

∫︂ ∞

0

dy exp

[︄

−2ηy − 2γ

∫︂ x

x−y

dx′

φα(x′)

]︄

, (3.18)

which is written in terms of δJ ≡ (J∞ − J)/J∞. Details for this derivation are given in

Furlanetto & Pritchard (2006), and numerical solutions for photons injected into the line
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centre and for photons redshifting in from infinity are shown in Fig. 3.3. This determines

Figure 3.3: Background radiation field near the Lyman-α resonance at z = 10. Upper

and lower panels are for photons redshifting in from infinity and for photons injected

into the line centre respectively. The solid and dashed lines are for TK = 10K and

1000K respectively. Reproduced with permission from Fig 1. Furlanetto & Pritchard

(2006), by permission of Oxford University Press on behalf of the Royal Astronomical

Society, available online at: https: // academic. oup. com/ mnras/ article/ 372/

3/ 1093/ 973192 . This figure is not included under the Creative Commons license of

this publication. For permissions, please contact journals.permissions@oup.com.

the behaviour of the Lyman-α background near the resonance, and is naturally related to

the suppression factor,

S α =

∫︂ ∞

−∞
dxφα(x)J(x) ≈ 1 − δJ(0) ≤ 1. (3.19)

A useful approximation for the correction factor, which is accurate to a few percent at all

TK & 1K, can be derived as (Furlanetto et al. 2006)

S α ∼ e
−0.803T

−2/3
K

(︃

10−6

γ

)︃1/3

, (3.20)

where γ−1 = τGP ∼ 3 × 105 x̄HI [(1 + z)/7]3/2 is the mean Lyman-α optical depth experi-

enced by a photon that redshifts across the entire resonance.

Further, a prediction of the detailed evolution of the Lyman-α flux is difficult as it

depends strongly on the poorly constrained star formation history. Instead, an educated

guess as to what the Lyman-α background looks like can be made. Photons contributing

72

https://academic.oup.com/mnras/article/372/3/1093/973192
https://academic.oup.com/mnras/article/372/3/1093/973192


3.3 Contributions to the spin temperature

to Jα are not inserted at line centre, because the photons redshift out of resonance very

quickly after their creation and therefore only contribute to the coupling very close to their

sources. Instead, the relevant photons are emitted at higher frequencies, in the UV, and

redshift into resonance, or possibly redshift into Lyman-n resonance and cascade down

to the Lyman-α transition as shown in Fig. 3.4. Lyman cascades ending in a Lyman-α

transition are accounted for by the recycling fraction of the Lyman-n transition, frec(n).

This factor is the probability that a Lyman-n photon will generate a Lyman-α photon and

is obtained iteratively by computing the transition probabilities between different stages

in the cascade,

frec(n) =
∑︂

m

Pnm frec(m), (3.21)

where

Pmn =
Amn

∑︁

n′
Amn′
, (3.22)

depending on the Einstein coefficients Amn for spontaneous decays between initial state

m and final state n. In the calculation of this factor it is assumed that direct Lyman-n

decays into the ground state result into photons which are quickly reabsorbed and will

not affect the population of excited states. This is achieved by setting Anp→1s = 0. Values

for the recycling fraction are tabulated in Pritchard & Furlanetto (2006), and show that

frec ≈ 0.36 for large n. Therefore, the Wouthuysen-Field coupling to Lyman-n cascades is

about a third as efficient as the coupling to Lyman-α photons directly. Two effects are thus

taken into account when writing down an estimate of the Lyman-α background, cascades

and emissivity of UV photons,

Jα(z) =

nmax∑︂

n=2

J(n)
α (z) (3.23a)

=
c

4π

nmax∑︂

n=2

frec(n)

∫︂ zmax(n)

z

dz′
⃓
⃓
⃓
⃓
⃓

dt

dz′

⃓
⃓
⃓
⃓
⃓

(︄

1 + z

1 + z′

)︄3

4π
c

H(z′)
ϵ(ν′n, z

′). (3.23b)

The emissivity, ϵ, depends on the star formation rate, and is also proportional to the rate at

which matter collapses into galaxies. There are significant uncertainties in the prediction

of these quantities, nevertheless one can write,

ϵ(ν, z) = f∗
ρb

mp

NLn(ν)
d fcoll

dt
, (3.24)

where NLn is the number of photons produced in the frequency interval ν ± dv/2 per

baryon incorporated into stars, ρb is the baryon density and mp the proton mass. Useful

estimates for the values of N, assuming that stars are the dominant source of radiation
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Figure 3.4: Ionizing photons redshift into Lyman-n resonance, and from there, they

can cascade down via multiple possible decay chains (solid lines). Some decay chains

lead to a Lyman-α emission, and thus contribute to the Lyman-α background. The figure

shows decay chains for Lyman-β and Lyman-γ. Dashed lines denote Lyman-n transitions,

the red-dashed line is the Lyman-α transition, and the dotted line shows the forbidden

2S → 1S transition. Reproduced with permission from Fig 2. Pritchard & Furlanetto

(2006), by permission of Oxford University Press on behalf of the Royal Astronomical

Society, available online at: https: // academic. oup. com/ mnras/ article/ 367/

3/ 1057/ 1039877 . This figure is not included under the Creative Commons license of

this publication. For permissions, please contact journals.permissions@oup.com.

https://academic.oup.com/mnras/article/367/3/1057/1039877
https://academic.oup.com/mnras/article/367/3/1057/1039877
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are the following: Nα = 9690 for low-metallicity Population II stars and Nα = 4800 for

massive Population III stars (Barkana & Loeb 2005).

The Wouthuysen-Field effect couples the spin temperature to the colour temperature

of the UV radiation field. TC is a measure of the shape of the radiation field as a function

of frequency, and defined by
h

kBTC

= −d log nν

dν
, (3.25)

where nν = c2Jν/2ν
2 is the photon occupation number. Given that in an optically thick

medium Lyman-α photons scatter a large number of times, the shape of the Lyman-α

profile will approach that of a black body at the gas temperature TK (Wouthuysen 1952).

Therefore TC ≈ TK for the frequencies of interest.

3.3.3 Thermal evolution of the IGM

The thermal evolution of the intergalactic medium (IGM), parametrized by the gas tem-

perature TK, is the next important ingredient to the spin temperature studied here. The

IGM is modelled as follows (Furlanetto 2006),

dTK

dt
= −2H(z)TK +

2

3

∑︂

i

ϵi

kBn
. (3.26)

The first term on the rhs is a cooling term originating from the Hubble expansion. The

second term describes the heating of the IGM which is determined by the sum of the

energies, ϵi, injected into the gas through mechanisms i. Various heating mechanisms

play a roles at different epochs of the history of the Universe.

3.3.3.1 Heating of the IGM: Compton heating

At early times, before star formation has begun in earnest, the only effect heating the

gas is Compton scattering between CMB photons and residual free electrons. Scattering

increases the energy of the electrons which can then transfer the excess energy through

collisions with other particles in the gas. The heating rate due to Compton scattering is

calculated in Peebles (1993) and Seager et al. (1999) to be

2

3

ϵcompton

kBn
=

x̄i

1 + fHe + x̄i

(Tγ − TK)

tγ
, (3.27)

where tγ ≡ 3mec/8σTuγ is the Compton cooling time, uγ ∝ T 4
γ is the energy density of

the CMB, fHe is the Helium fraction (by number), x̄i is the globally averaged ionization

fraction, and σT = 6.65 × 10−25cm2 is the Thomson cross section. This effect is most im-
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3.3 Contributions to the spin temperature

portant at high redshifts, when astrophysical sources are not yet prevalent in the Universe.

Thus, early on, Compton heating couples the gas temperature to the CMB temperature

and so the IGM cools at the same rate as the CMB, which is TK ∝ (1 + z). At some

later stage however, the IGM decouples from the CMB and thus cools down adiabatically

with the expansion after that. The redshift at which this freeze-out occurs depends on the

recombination rate and can be found to be zdec ∼ 200.

3.3.3.2 Heating of the IGM: X-ray heating

As star formation begins, the Universe becomes filled with high intensity X-ray sources,

such as Population III stars, stellar mass black holes, and quasars (Loeb & Furlanetto

2013). The X-ray photons emitted by those sources have very high mean free paths

meaning that they can heat the IGM far away from the source thus ensuring homoge-

neous heating of the medium. The comoving mean free path of an X-ray photon is given

in Furlanetto et al. (2006) to be

λX ≈ 4.9x̄
1/3

HI

(︄

1 + z

15

)︄−2 (︃
E

300eV

)︃3

Mpc. (3.28)

A conservative assumption for the poorly constrained X-ray background is that the corre-

lation between the star formation rate, SFR, and the X-ray luminosity, LX, can be extrap-

olated to high redshifts, such that (Oh 2001),

LX = 3.4 × 1040 fX

(︄

SFR

1M⊙yr−1

)︄

erg s−1, (3.29)

where fX is an unknown renormalization factor. The determination of the redshift evo-

lution of fX hinges on our understanding of high redshift X-ray sources. In order to

determine the energy input into the IGM, the mechanisms by which X-rays can heat the

IGM need to be understood. The high energy X-ray photons ionize helium and hydrogen

atoms, creating energetic free ‘primary’ electrons which heat the gas through three main

channels;

• collisional ionization, producing more secondary electrons,

• collisional excitations of HeI and HI, which produce photons capable to ionize HI

and a Lyman-α background respectively,

• Coulomb collisions with free electrons.

The fractions of the X-ray energies going into heating, ionization and excitation,

parametrized by fX,h, fX,ion, and fX,coll respectively, are determined exactly by the rela-
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tive cross sections of these mechanisms but can be approximately related to the neutral

fraction by (Chen & Kamionkowski 2004)

fX,h ∼
1 + 2x̄i

3
, (3.30a)

fX,ion ∼ fX,coll ∼
1 − x̄i

3
. (3.30b)

Then, finally one can determine the energy input into the gas, by assuming that the SFR

is proportional to the rate of gas collapse onto virialized halos (Furlanetto et al. 2006),

d fcoll/dt,
2

3

ϵX

kBnH(z)
= 103K fX

(︄

f∗

0.1

fX,h

0.2

d fcoll/dz

0.01

1 + z

10

)︄

, (3.31)

where f∗ is the star formation efficiency. This result only takes the star formation rate

into account and does not consider different X-ray sources such as quasars. These sources

need to be studied in greater detail in order to determine the X-ray heating term to higher

accuracy.

3.3.3.3 Heating of the IGM: Lyman-α heating

X-ray heating is expected to be the largest contributing heating mechanism, however a

second order mechanism would be Lyman-α heating. The effect which leads to the sup-

pression of the Lyman-α background, discussed in 3.3.2, deposits energy from atomic

recoils into the IGM. The energy loss in the radiation background thus goes into heating

the IGM. As before, continuum photons behave differently from photons injected at line

centre. Whereas continuum photons heat the gas as expected via atomic recoil, at temper-

atures of interest here (TK & 4K), photons injected at line centre can cool the gas as more

photons scatter on the red side of the line than on the blue. In this case, re-emitted photons

have higher energies in the IGM frame, thus removing energy from it. The following total

heating rate can be obtained as (Furlanetto & Pritchard 2006)

2

3

ϵα

kBnHH(z)TK

≈ 0.8

T
4/3

K

xα

S α

(︄

10

1 + z

)︄

, (3.32)

depending on the parameters discussed in section 3.3.2.

3.3.3.4 Heating of the IGM: Shock heating and dark matter heating

The effect of Lyman-α heating is already negligibly small compared to X-ray heating, so

higher order effects are very often neglected in determining the gas temperature. However,

effects like shock heating (Furlanetto et al. 2006) or dark matter heating (Evoli et al. 2014)
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can influence the gas temperature and are being studied to gain further insight into the

thermal evolution of the IGM.

3.4 Ionization history

The next step towards the evolution of the spin temperature and the brightness temperature

is the ionization history, ie. the evolution of x̄i. Most of the mechanisms driving the

gas temperature depend on the ionization state of the Universe, as does the collisional

coupling xc as described in section 3.3.1. This starts varying away from not being neurtral

around the time when X-rays start to heat up the gas (Oh 2001).

The usual assumption is that the production rate of ionizing photons is coupled to the

star formation rate. An average ionizing efficiency is assigned to all galaxies, such that

x̄i =
ζ fcoll

1 + n̄rec

, (3.33)

where n̄rec is the mean number of recombinations per ionized hydrogen atom and ζ is the

ionisation efficiency given by

ζ = AHe f∗ fescNion, (3.34)

where Nion denotes the mean number of ionizing photons produced per stellar baryon,

and AHe is a correction factor to convert the number of ionizing photons per baryon in

stars to the fraction of ionized hydrogen. At late stages of the ionization of the IGM,

recombinations become important and must be taken into account as well. This generates

a term that opposes ionization in the form of

(︄

dx̄i

dt

)︄

rec

= −αC(z, x̄i)x̄i(z)ne(z), (3.35)

where α is the recombination coefficient, C ≡
⟨︂

n2
e

⟩︂

/ ⟨ne⟩2 is the clumping factor, and ne

is the average electron density in ionized regions. This gives the overall evolution of the

neutral fraction as
dx̄i

dt
= ζ(z)

d fcoll

dt
− αC(z, x̄i)x̄i(z)ne(z). (3.36)

The terms in the above equation are complicated and depend on parameters which are

poorly constrained by observations. A detailed analysis of the reionization history is done

by Pritchard & Loeb (2012) and Furlanetto et al. (2006).
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3.5 Global signal

Figure 3.5: Time evolution of the global 21cm signal. The upper panel shows the 21cm

brightness pieced together from redshift slices through a cosmic volume, coloured ac-

cording to the signal strength. At early times, two absorption phases can be seen (purple

and blue) separated by a (black) period where no signal is observed. When reioniza-

tion begins, the signal transitions into emission (red) before disappearing (black) as the

Universe fully ionizes. The lower panel shows the sky-averaged 21cm brightness temper-

ature expected from this sample history. Taken with permission from Pritchard & Loeb

(2010).

3.5 Global signal

We have introduced the physics determining the evolution of the spin temperature, gas

temperature, ionization history, and thus the brightness temperature in the previous sec-

tions and a prediction of the global evolution of the 21cm signal can be made. The pre-

diction of the 21cm signal is model dependent as large uncertainties on the necessary

parameters exist. Nevertheless, useful information can be extracted and fundamentally

separate regimes can be identified by using conservative model parameters. One example

history is plotted in Fig. 3.5. Following Pritchard & Loeb (2012) and Mesinger et al.

(2011), the important regimes are believed to be the following.

• 1100 & z & 200: After recombination, high particle densities collisionally couple

the spin and gas temperature to the CMB temperature, setting TS = TK = TCMB ∝
(1 + z). No 21cm signal is expected, T̄b = 0.

• 200 & z & 40: The Compton scattering rate eventually falls below the expansion

rate, such that the gas decouples from the CMB, leading to adiabatic cooling of the

gas, TK ∝ (1 + z)2. At this point the spin temperature is only affected by collisional
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coupling to the gas, it follows the gas temperature and the 21cm signal can first be

seen in absorption against the CMB.

• 40 & z & z∗: Eventually, as the Universe continues to expand, the gas density

decreases so as to make collisional coupling more and more ineffective. The spin

temperature couples again to the CMB temperature and the brightness temperature

approaches 0 once more. Little to no 21cm signal is to be expected.

• z∗ & z & zα: Star formation kicks in at around z∗ ∼ 30. These first sources emit

Lyman-α as well as X-ray radiation, heating the gas significantly. The Wouthuysen-

Field effect now couples the spin temperature back to the gas, and depending on

how quickly the gas is heated above the CMB, this may lead to an absorption signal,

T̄b < 0, as it does in Fig. 3.5.

• zα & z & zh: As more star formation occurs, the Lyman-α coupling will eventually

saturate at a redshift of zα, when xα ≫ 1. Fluctuations in the Lyman-α flux no longer

affects the signal, instead, the brightness temperature fluctuations are sourced by

the gas temperature fluctuations. The gas is heated via Lyman-α , X-rays and other

mechanisms to eventually reach the CMB temperature at a redshift of zh. During

this time most of the 21cm signal is still seen in absorption against the CMB in

conservative histories.

• zh & z & zT: After the gas is heated above the CMB temperature, TK > TCMB, the

21cm signal can be seen in emission. By this point, the ionization fraction of the

Universe has likely risen to the 1% level, so that the 21cm signal is sourced by a

mixture of fluctuations in the ionization fraction, density and gas temperature.

• zT & z & zr: Heating continues as more sources turn on and drive the gas tem-

perature far above the CMB temperature, TK ≫ TCMB. At some redshift zT, the

fluctuations in the gas temperature become unimportant, TS ∼ TK ≫ TCMB, and the

dependence on the spin temperature in equation (3.7) can be ignored. Fluctuations

in the ionization fraction dominate the signal at this stage.

• zr & z: After reionization, the IGM is fully ionized and nothing contributes to a

large scale 21cm signal anymore. Any residual 21cm signal would have to originate

in self-shielded islands of neutral hydrogen, so-called damped Lyman-α systems.

The exact value of the redshifts stated above are model dependent as is their order.

All this depends on the physics of the first sources, which is still insufficiently well under-

stood. Measuring the global 21cm signal could thus constrain a large set of parameters.
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3.6 The fluctuating 21cm sky

3.6 The fluctuating 21cm sky

Whereas up to this point the discussion was mainly focussed on the sky-averaged signal,

thus producing the lower panel of Fig. 3.5, a change of gear is in order for two reasons.

The first reason is that sensitivity of upcoming radio experiments is not high enough to

probe this smoothly varying monopole term (Lidz et al. 2008) and possibly space-based

observations are needed (Burns et al. 2012). Foregrounds play a significant role here, as

they too are predicted to be smoothly varying (Chapman et al. 2014b), thus requiring very

high sensitivity to distinguish the sky-averaged signal from it. The second reason is that

each component going into the 21cm signal fluctuates, thus making the 21cm signal a

statistical quantity, as illustrated by upper panel in Fig. 3.5.

3.6.1 The 21cm power spectrum

A Fourier space power spectrum can be defined via

⟨︂

δ̃21(k1)δ̃∗21(k2)
⟩︂

≡ (2π)3δD(k1 − k2)P21(k1), (3.37)

where δ̃21 is the Fourier transform of the brightness temperature fluctuation about the

mean value. The fluctuation in the brightness temperature depends on the fluctuations of

the parameters that determine it, so

δ21 = βbδb + βxδx + βαδα + βTδT − δ∂v, (3.38)

where δi is the fractional variation in the particular quantity: δb for the baryon density, δx

for the neutral fraction, δα for the Lyman-α coupling, δT for the gas temperature, and δ∂v

for the peculiar velocities along the line of sight. The β coefficients are

βb = 1 +
xc

xtot(1 + xtot)
, (3.39a)

βx = 1 +
xHH

c − xeH
c

xtot(1 + xtot)
, (3.39b)

βα =
xα

xtot(1 + xtot)
, (3.39c)

βT =
Tγ

TK − Tγ
+

1

xtot(1 + xtot)

(︄

xeH
c

d ln κeH
10

d ln TK

+ xHH
c

d ln κHH
10

d ln TK

)︄

, (3.39d)

where xtot = xc + xα. The Fourier transform of δ21 can be written down analogous to

(3.38), such that the 21cm power spectrum contains terms Pδiδ j
for each combination
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of i and j. As the β terms can be large4, second order terms are not necessarily small.

Further, all of the components contributing to the 21cm power are isotropic apart from

the peculiar velocity contribution, which introduces an angular dependence to the signal

known as the Kaiser effect (Kaiser 1987). This further separates the 21cm power spectrum

into isotropic and anisotropic contributions and so one can write (Pritchard & Loeb 2008;

Loeb & Furlanetto 2013)

P21(k, µ) = Pµ0(k) + µ2Pµ2(k) + µ4Pµ4(k) + P f (k,µ)(k, µ), (3.40)

where µ is the cosine of the angle between the wave-vector and the line of sight. This is

useful because it separates out some of the fluctuations into different terms, eg. Pµ4(k) is a

function of the density field only. By measuring different components of the 21cm power,

one can thus isolate the various contributing factors. Moreover, as some contributions to

the 21cm signal saturate or are negligible during the cosmic history, measuring its power

at different redshifts allows the measurement of different components to the signal. So for

example, at early times fluctuations in the ionization fraction may be negligible, rendering

terms including δx zero.

3.6.2 Power spectrum estimations

The evolution of the 21cm power spectrum is inherently linked to the state of matter in

the Universe, making it a prime probe for the Epoch of Reionization (EoR) at redshifts

z ∼ 6 − 15. The shape and magnitude of the power spectrum can inform us on how

reionization proceeded, how ionized bubbles grew (Watkinson & Pritchard 2014), what

the dominating ionization mechanisms are (Mesinger et al. 2013), and when it started and

ended (Pritchard & Loeb 2008; Mesinger et al. 2013). As observations of the 21cm signal

are likely to still be a few years away, numerical simulations are necessary to compare

models and predict the signal. Detailed radiative transfer simulations are computationally

expensive and fast semi-numerical analyses tend to introduce errors at a level lower than

current astrophysical uncertainties (Zahn et al. 2011). 21cm power spectrum estimations

currently rely strongly on such semi-numerical techniques (Mesinger et al. 2011). An

example of such a simulation is shown in Fig. 3.6 leading into the EoR. The left panel

shows an example for what a direct imaging observation of the 21cm signal at z = 10 −
30 might look like and depicts the impact that some of the crucial evolutionary stages

in the early Universe have on the intergalactic medium. Lyman-α photons emitted by

first generation stars, starting at around z ∼ 30, couple the spin temperature to the gas

4Note that βb and βx are of order unity.
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temperature leading to a strong absorption feature, and thus δTb < 0. Once X-rays heat

the gas, the signal transitions into emission, shown by the δTb > 0 structure in the z = 20

simulation here. The spin temperature saturates around z ∼ 18 in this model as seen

by the homogenisation of the signal in emission. Finally, the fluctuations are dominated

by reionization and the holes in the signal it creates. The left panel thus indicates the

fluctuating nature of the signal field and need for its statistical characterisation through

the power spectrum. The right panel then shows the accompanying signature of the power

spectrum at each epoch. The results of radiative transfer simulations are shown on the left

in Fig. 3.7. The left panel here showing the evolution of the power spectrum during the

EoR and the right panel plotting the power on particular scales through most of the cosmic

history up to the dark ages. The 3D nature of the signal complicates the illustrations such

that either only particular scales or particular redshifts can be shown.

Various features, can be identified in the power spectra plotted in Fig. 3.6 and Fig.

3.7. These features include;

• The rise and fall of the amplitude of the power spectrum before the EoR. Lyman-

α emissions couple the signal to the gas temperature. Most of the gas is still in

absorption (TS < Tγ), however, regions close to the first X-ray emitters are rapidly

heated into emission (TS ≫ Tγ), resulting in a large fluctuation amplitude with

strong contrasts between emitting and absorbing regions, generating a large power

spectrum amplitude. Once the gas is heated everywhere and the signal decouples

from the gas (and before reionization has started in earnest), only the density field

contributes to the signal, decreasing fluctuation amplitudes and thus the power.

• The flattening of the spectrum during the EoR. As reionization proceeds, ionized

bubbles of hydrogen which cannot emit a 21cm signal anymore grow. Eventual

overlap of these bubbles necessarily decreases the power on large scales, thus flat-

tening the spectrum.

• The dramatic drop in power at large scales and persistent power at low scales. At

the end of the EoR, almost all of the hydrogen in the Universe has been ionized

except for pockets of self-shielded HI regions. The only left over 21cm signal is

generated in those pockets, so only power on the smaller scales survives.

3.7 Observing the 21cm line

The 21cm line holds the potential to follow the formation of the large scale cosmologi-

cal structures back to the earliest moments after the recombination of hydrogen atoms at
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high redshifts during the EoR and beyond, and those mapping the statistical 21cm inten-

sity at low redshifts. Here we will discuss these various observational techniques and the

progress made over the last few years.

3.7.1 Global experiments

Global experiments target the 21cm monopole, in essence the signal shown in the lower

panel of Fig. 3.5, and can thus in principle be observed using a single dipole. The large

beam of a radio dipole can be used to effectively detect the sky-averaged signal. Current

experiments include EDGES (Bowman et al. 2009), SARAS (Patra et al. 2013), LEDA 5,

SCI-HI (Voytek et al. 2014), and the proposed lunar orbiter DARE (Burns et al. 2012).

The EDGES collaboration have recently reported the detection of a strong 21cm absorp-

tion signal at z ∼ 17 (Bowman et al. 2018a). With an absorption signal twice as deep

as conventional model predictions, the implications of the detection are potentially great.

Among other implications, the detection could signify evidence for dark matter-baryon

interactions (Barkana 2018; Barkana et al. 2018; Kovetz et al. 2018) which would lead

to cooling of the IGM prior to the EoR, and it requires enhanced star formation rates at

high redshifts (Mirocha & Furlanetto 2018). Although the EDGES detection is exciting

in terms of its potential for new physics (e.g. Barkana 2018; Fraser et al. 2018; Muñoz

et al. 2018; Aristizabal Sierra & Fong 2018; Houston et al. 2018) confirmation of the de-

tection from comparable experiments, as well as further investigation into the systematics

are required. Recently, a number of publications call into question the analysis of the

EDGES data (Hills et al. 2018; Bradley et al. 2018; Bull et al. 2018). Hills et al. (2018)

show that the signal model used by Bowman et al. (2018a) implies unphysical foreground

parameters and the flattened trough model is not a unique fit to the data, such that using

alternative signal templates can fit the data without presenting a large absorption trough

and thus no evidence for exotic physics. Further, Bradley et al. (2018) report that subtle

systematic errors due to the instrument calibration can have large effects on the interpre-

tation of the data. Although, some of the concerns have been addressed in Bowman et al.

(2018b), future data released as well as independent detections will have to confirm their

observations. A detection of the global signal well within the dark ages will however

require complete shielding from terrestrial RFI, and the proposed DARE lunar orbiter is

currently our best hope to achieve this (Harker et al. 2012).

5http://www.tauceti.caltech.edu/leda/
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3.7.2 Epoch of Reionization experiments

Telescopes targeting the spatial fluctuations of the EoR include LOFAR (Patil et al. 2017),

MWA (Dillon et al. 2015), HERA (DeBoer et al. 2017), PAPER (Parsons et al. 2010), and

eventually the low frequency part of the SKA6. Although many observational challenges

need to be overcome for a statistical detection of the cosmic signal, these experiments are

beginning to set upper limits for the 21cm power spectrum during the EoR. The upper

limits, summarized in Fig. 3.8, are still an order of magnitude above even some exotic

model predictions, as total integration time for many of these experiments are low, and in-

strument calibration is generally not understood to a level where systematic effects would

become minimal (Bull et al. 2018). It remains questionable whether pre-SKA interfer-

ometers will indeed measure the EoR signal, however these observational efforts will aid

the understanding of signal, foregrounds and instrument when SKA sees its first light in

the coming decade. The cosmological implications for an EoR detection are potentially

wide-reaching. The 21cm signal is sensitive to the distribution of hydrogen gas in the

early Universe and can be used to infer the underlying density field. Furthermore, due to

its sensitivity to the temperature and ionization state of the IGM, the signal can be used

to identify exotic energy injection mechanism.

3.7.3 21cm intensity mapping

After the EoR, the remaining HI is found in self-shielded regions in galaxies and galaxy

clusters, and thus the 21cm emission serves as a tracer for the galaxy distribution. The

galaxy distribution is in turn a biased tracer of the underlying dark matter density field,

such that observations of the galaxy distribution allow measurements of the matter power

spectrum. By integrating the emission of these hydrogen clouds over large portions of

the sky, the 21cm emission can thus be used as a new avenue for large scale structure

observations (Maartens et al. 2014). This low-resolution intensity mapping of unresolved

galaxies provides promising prospects for precision measurements of the cosmological

parameters (Bull et al. 2014). Next generation experiments such as CHIME7, TIANLAI

(Chen 2015), BINGO (Battye et al. 2016) and the mid-frequency part of the SKA 8, have

all planned to carry out intensity mapping surveys in the coming decade. The information

gain by this technique can be credited to two important properties of these type of obser-

vations. Firstly, the new generation of 21cm experiments able to perform these intensity

mapping surveys will vastly increase the amount of comoving volume surveyed. SKA-

6https://www.skatelescope.org/lfaa/
7https://chime-experiment.ca/
8https://www.skatelescope.org/mfaa/
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Figure 3.8: Current constraints on the 21cm power spectrum as a function of redshift.

These are the results for GMRT (Paciga et al. 2013), PAPER32 (Parsons et al. 2014; Ja-

cobs et al. 2015), MWA128 (Dillon et al. 2015; Beardsley et al. 2016) and LOFAR (Patil

et al. 2017). A conservative 21cm model (solid blue curve) and a model with negligible

heating (dashed orange curve) are shown for comparison. Taken with permission from

Bull et al. (2018).

mid should be able to increase survey volumes by a factor of ∼ 2 for a fully resolved

galaxy survey and by a factor of & 3 for statistical IM as compared to current galaxy

surveys (Santos et al. 2014). Secondly, the direct relation between observed frequency of

the cosmic 21cm line and the emission redshift readily provides the redshift information

of the sources. Whereas photometric redshifts are necessary in conventional galaxy sur-

veys due to the long time required to obtain spectroscopic redshift information, intensity

mapping experiments will be able to circumvent this source of systematic errors.

As IM experiments will be probing the large scale structure of the Universe, this

technique will primarily probe the baryon acoustic oscillation (BAO) scale and can thus

serve to constrain cosmological parameters such as the dark energy equation of state pa-

rameter w and the spatial curvature ΩK (Bull et al. 2014). These scales are also useful

when measuring the effect of gravitational lensing on the 21cm signal and much higher

signal to noise for lensing measurements can be established by non-resolved IM than can

be expected from resolving individual galaxies (Pourtsidou & Metcalf 2014).

IM is thus a promising new technique, however, foregrounds, both galactic and extra-

galactic, can cause serious systematic errors and potentially bias the cosmological analysis

(Wolz et al. 2014). Foreground removal techniques often rely on the assumption that

foregrounds vary smoothly with frequency, while the cosmological signal is expected to
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Figure 3.9: The approximate redshift ranges of verious current and future large-scale

structure surveys including 21cm intensity mapping surveys. IM surveys are shown in

green (bottom), spectroscopic galaxy redshift surveys in blue (middle) and photometric/-

continuum surveys in red (top). From left to right, the grey and white shaded areas show

an approximate division of the full redshift range into different eras, corresponding to the

dark-energy-dominated regime, the onset of dark energy, the matter-dominated regime,

and the fully matter-dominated regime. Taken with permission from (Bull et al. 2018).

be highly uncorrelated from the frequency at the MHz scale (Gnedin & Shaver 2004;

Chapman et al. 2014b;a).

3.8 Summary

The hyperfine structure of the neutral hydrogen atom allows for a spin flip transition

with energy difference equivalent to a photon emission at a rest-frame wavelength of

21cm. This chapter has introduced this 21cm transition in the context of cosmological

observations to probe the most elusive epochs in the evolution of our Universe. We have

studied the various contributions to the spin temperature and the ionization history which

define the global signal of the cosmic 21cm radiation and have outlined a time-line for

this sky-averaged signal. As the 21cm signal is tracing the hydrogen distribution the

signal fluctuates on the sky and much can be learned from statistically observing and

characterizing these fluctuations.

A claimed detection of the sky-averaged signal has recently made headlines and its

unexpected findings have sparked a series of new and interesting studies to explain the ob-

served phenomena. With a new generation of radio telescopes coming online in the near
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future, discoveries akin to those made by the EDGES experiment will likely be a common

occurrence. Though many observational challenges are yet to be overcome, these experi-

ments should soon detect the statistical fluctuations of the 21cm signal, and peer deep into

the Epoch of Reionization and the Cosmic Dawn. Projects such as the ambitious Square

Kilometre Array will have the coming decade likely see a near overwhelming amount of

data. We therefore turn our attention to the numerical and analytical analysis of future

21cm data in the remainder of the text.
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“Homo sapiens is an obsolete algorithm. After all,

what’s the advantage of humans over chickens?”

− Yuval N. Harari.

Part III

Numerical Analysis of the Cosmic 21cm

Signal
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Chapter 4

Machine learning and EoR emulation

In this chapter, we explore machine learning and its use in the field of 21cm cosmology.

We focus on neural network emulation of semi-numerical EoR simulations as a way to

increase the parameter inference efficiency for future 21cm analyses. With ever increas-

ing data volumes, efficient analysis will be paramount to extracting maximal information

from datasets and thus we investigate the use of an emulator as a means to bypass ex-

pensive simulation evaluations. We find strong predictive capabilities with our emulation

technique when comparing with the direct evaluation of the model simulation. The most

important feature to any machine learning technique is the selection of the training set

which, in our case, informs the network and ultimately determines its behaviour. We

therefore include an analysis of the training set used and the implications of lowering the

training set size for our emulator. We find that the emulator retains its good predictive

capabilities with training sets as small as 100 model evaluations, which may be a realistic

number for fully numerical simulations.

This chapter explores the study of neural network emulation which was published

in MNRAS (21 March 2018, Vol. 475, Issue 1, pp. 1213-1223): C. J. Schmit and

J. R. Pritchard; Emulation of reionization simulations for Bayesian inference of astro-

physics parameters using neural networks. The published version is available through:

https://doi.org/10.1093/mnras/stx3292.

4.1 Big data in astronomy

Over the past two decades, the fields of astronomy and cosmology have experienced a

surge in data availability that will continue for the foreseeable future. The Sloan Digital

Sky Survey (SDSS) is one of the largest sky surveys conducted to date, which scans the

sky daily to capture an astonishing 200 GB of data every night, observing millions of

stars and galaxies. The great challenge for astronomical surveys in the near and distant
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• Simplicity: Although a large number of machine learning algorithms exist, by se-

lecting and applying a well suited and well tested method to the problem or dataset

studied, productivity can be increased significantly.

• Prior information: The datasets could be flexibly allowed to either speak for them-

selves or readily incorporate results from prior analyses. As will be discussed in the

next section, the distinction between supervised and unsupervised learning methods

allows for this flexibility.

• Pattern Recognition: Although humans are notoriously good at recognising pat-

terns, some patterns might even elude the shrewdest human observer due to being

hidden in enormous data mounds or due to the high dimensional nature of the pat-

tern. Machine learning techniques have been specifically designed to find these

hidden structures.

• Complementary approach: Whether the machine learning techniques increase the

scientific data output over traditional tools or not, they act as a complementary

analysis which may alleviate systematic errors.

Although the interpretability of some techniques is questionable and Ball & Brunner

(2010) detail that the limitations of the methodology are manifold, machine learning tech-

niques have been successfully used in many areas of astronomy and science at large, and

present a rich tool set to be applied in 21cm analyses as well.

Recent efforts (Shimabukuro & Semelin 2017; Kern et al. 2017), have now intro-

duced machine learning techniques into the field of 21cm Cosmology. One of the first

papers in this area, by Shimabukuro & Semelin (2017), studied the use of artificial neu-

ral networks to estimate model parameters for 21cm observations. The network they

constructed used the power spectrum outputs from a training set of semi-numerical sim-

ulation runs, and was able to recover the input parameters of a mock power spectrum

observation. This study set the precedent for the use of neural networks as a viable tool

for parameter inference. Instead of computing a single value for the model parameters

which the network thinks best describes an observation, we focussed on using a neural

network in a Bayesian parameter inference study. A common approach is to evaluate the

likelihood of a given parameter set to describe an observation, then vary the parameter set

and re-evaluate said likelihood. Over many such iterations the model likelihood is sam-

pled and we can estimate the best fit parameters of our model given the observation. In

practice one such MCMC sampling of the likelihood requires many thousands of model

evaluations and is impractical for models with considerable run-time, such as fully nu-

merical reionization simulations. However, with a sufficiently well trained network, the
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model can be approximated by the network and thus no further model evaluations, beyond

those required to build a training set, are necessary.

This has been the primary motivation to study artificial neural networks and their

potential in speeding up Bayesian parameter inference for 21cm observations and we will

discuss the findings in the remainder of the chapter. In section 4.2 we define Machine

learning and contrast the two major learning paradigms in the field. Section 4.3 looks at

artificial neural networks in detail and we present the learning algorithm used. Then in

section 4.4 we present a toy model analysis indicative of the analysis carried out in Paper

I. Section 4.5 introduces the reionization model used as well as the parameters varied in

the analysis. Once the problem is sufficiently set-up, we present our training methodology

together with our power spectrum emulation predictions in section 4.6. Finally, we discuss

the Bayesian inference problem in section 4.7 and our results are presented in section 4.8.

A final summary of this chapter is given in section 4.9.

4.2 Machine learning

A concise definition for machine learning can be found in Ivezic et al. (2014):

Machine learning is an umbrella term for a set of techniques for interpret-

ing data by comparing them to models for data behaviour, such as various

regression methods, supervised classification methods, maximum likelihood

estimators, and the Bayesian method. [...]

Machine learning can thus be regarded as applied statistics in the same way that engineer-

ing can be viewed as applied physics. The techniques used for machine learning tasks

are deeply rooted in statistics and have well formulated theoretical foundations (Ivezic

et al. 2014). This definition also alludes to the fact that a large range of machine learning

techniques exist and their usage depends on the desired outcome of the analysis using

them.

Techniques can generally be classified according to whether a feedback mechanism is

present to penalise certain learning behaviours. If the system is given certain instructions

or labels according to which the data is to be analysed, and is penalised if the system

proposes a solution that violates these instructions, the learning technique used is referred

to as a supervised learning technique. If, however, no labels are applied nor any feedback

is given and the system is left on its own to explore the dataset, an unsupervised learning

technique is used. We proceed by giving a short overview of both learning paradigms

including a non-exhaustive list of example algorithms for each case.
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4.2.1 Unsupervised learning

Unsupervised methods are descriptive of the dataset they are applied to and do not require

training. Although unsupervised learning is applied to a broad class of problems, the three

main areas in which unsupervised learning algorithms are used are density estimation,

clustering, and dimensionality reduction.

Density estimation algorithms seek to determine the probability density function un-

derlying a given dataset (Balogh et al. 2004; Ferdosi et al. 2011). A popular approach is

that of Kernel density estimation (KDE) which can be thought of as the generalization of

binning data into histograms. The method centres a kernel of arbitrary shape on the data

points and accumulates the signal of each kernel function across the data range. For a set

of N data points {xi} represented in D dimensions, KDE thus approximates the pdf from

which the points were drawn via

f̂N(x) =
1

NhD

N∑︂

i=1

K

(︄

d(x, xi)

h

)︄

, (4.1)

where K(u) denotes the kernel function with width h, and d(x, xi) is the distance between

points x and xi. Although Gaussian kernels are widely used, a large variety of kernel

functions are useful. Another density estimation technique relies on the distance to the

K-th nearest neighbour at each point. It simply estimates the density by determining the

volume which incorporates the K nearest neighbours,

f̂K(x) =
K

VD(dK)
, (4.2)

where VD(dK) is the volume of a D-sphere with radius equal to the distance to the K-th

nearest neighbour dK .

Clustering algorithms try to group data points into a number of separate clusters.

The K-means algorithm (eg. Ordovás-Pascual & Sánchez Almeida 2014), for example,

takes a number K of clusters into which the data is to be separated, and minimizes the

sum of square distances between data points and the centre of the clusters to which they

have been assigned. This algorithm requires some initial guess as to how to separate the

data, after which the method applies its minimization criterion. Whereas K-means relies

on human input for the number of clusters, other algorithms, such as mean-shift, do not

require this input and determine the number of clusters from the data. The mean-shift

algorithm uses a KDE and allocates points into clusters associated with the peaks of the

density estimate. Naturally, the number of clusters found by this algorithm depends on

the number of peaks in the kernel density estimate of the data.
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Dimensionality reduction is a way to directly address the curse of dimensionality

incurred by the growing size of analysable properties of datasets. As the dimensionality

of the data bases grow, one would like to select those properties that present the most

information as possible. Principal component analysis (PCA) (Joliffe 1986) is probably

one of the most widely used dimensionality reduction techniques and tries to transform

the data according to the eigenvectors of the data matrix. Thus transforming the data

into a basis given by the directions which contain the greatest amount of information,

and finally cutting from the analysis those directions which contain the least amount of

information. For a dataset X, with covariance matrix CX, PCA transforms the data into a

basis Y according to,

CY = RTCXR, (4.3)

where the projection matrix R is made up by the principal components, which represent

the directions of maximal variance of CX. Once an ordered set of principal components

is found, the ones containing the least information are truncated from the analysis, thus

reducing the dimensionality of the dataset retaining the most information possible. The

inherent limitation of PCA is that it relies on a linear transform of the dataset, which

can be problematic when analysing very high dimensional or non-linear datasets. More

complex non-linear dimensionality reduction techniques such as manifold learning can be

applied in those cases (Vanderplas & Connolly 2009).

4.2.2 Supervised learning

Supervised learning techniques are predictive based on a well understood training dataset.

The prediction - feedback cycles applied in supervised learning techniques are akin to

that of a student - teacher relationship. The method (student) proposes a solution to a

problem based on its current knowledge, and the feedback mechanism (teacher) penalises

the method (student) if the solution is too far off the truth. Finally, the method (student)

updates its knowledge accordingly. In a supervised learning algorithm, the penalisation

is implemented via some loss function based on the training set, which the algorithm

tries to minimize during its training. Classification and regression are the two main areas

where supervised learning techniques are applied. Whereas classification can be simply

understood as the act of classifying data into to a set of discrete classes, many machine

learning algorithm use a similar framework for regression problems by assigning data to

a set of classes which are themselves continuous numbers. This means that most of the

algorithms presented here can be applied to both categories of problems.

Decision trees (DT) are made up of a hierarchical node structure, which recursively

divides the input data at each node according to some criterion which minimizes the loss
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function. Terminal nodes, called leaf nodes, are labelled with the desired classification

label for data following the necessary path through the tree to arrive at the particular leaf.

Some example applications to astronomical data can be found in Ball et al. (2006),Vas-

concellos et al. (2011) and Franco-Arcega et al. (2013).

Support vector machines (SVM) are another supervised learning algorithm widely

applied. SVM take a training set of data with associated class labels and try to find the

hyperplane which separates the closest members of separate classes. This creates a set of

decision boundaries according to which new data is to be classified. The training points

falling on top of this decision boundary are called support vectors, and thus inform the

loss function that is minimized through the boundary creation process.

Gaussian processes (GP) are used extensively in non-linear regression problems as

they can lead to very flexible regression models (Rasmussen & Williams 2005). A GP

is a collection of random variables which have a joint multivariate Gaussian distribution.

In one dimension one can think of the GP as a mechanism to draw curves from a family

which obey the statistics set by the GP. A set of training data will then limit the set of

possible curves drawn to those passing through the training points. The more training

points that are available, the more curves drawn from the GP will resemble that of the

underlying model which produced the data.

Finally, arguably the most famous supervised learning algorithm is that of the arti-

ficial neural network. This algorithm tries to mimic the networks of neurons in animal

brains, an their interconnected nature. Once again, supervised networks learn via mini-

mization of a loss function which is informed by the training data. We will discuss neural

networks and the learning algorithm used in our analysis in more detail in the following

section.

4.3 Neural networks

Artificial neural networks (ANN) are a class of machine learning algorithms inspired by

the signal processing through consecutive firing of connected neurons found in animal

brains in Nature. The human visual cortex is a great example to illustrate naturally occur-

ring neural networks. When looking at a picture, the incoming light stimulates neurons

in the retina which send the information of the picture through the optical nerve into the

primary visual cortex. This visual cortex consists of around 140 million neurons grouped

into a number of functionally separate layers which feed forward the information received

by the optical nerve. Consecutively information is send through to 5 different areas in the

brain, again each consisting of millions of neurons which propagate signals through the

brain according to the visual input. The amalgamation of neuron activity due to the signal
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received finally ends up in what we perceive as the image observed. Our everyday expe-

rience of the world around us, allows us to progressively strengthen neuron connections

and associate certain neuron activity with familiar concepts.

4.3.1 Architecture

In our analysis, we use a multilayer perceptron (MLP) as our artificial neural network

design. A supervised MLP uses a set of training data T ⊂ X × Y , where X denotes the

input or parameter space and Y denotes the output space, upon which the neural network

tries to fit a mapping f : X → Y . This is to say that the neural network is finding a map-

ping between input and output data, which is sensitive to the key features of the training

set. This mapping can then be used on unknown data where the neural network uses its

acquired knowledge of the system to infer an output, either in form of a classification or

a number.

An artificial neural network consists of three types of layers each consisting of a set

of nodes or neurons, illustrated in Fig. 4.2. The input layer takes Ni data points into Ni

input nodes from which we want to predict some output. Each node in the input layer is

connected to all of N j nodes in the first of L hidden layers via some weight w
(1)

i j
. The input

to the nodes in the hidden layer is a linear combination of the input data and the weights,

s
(1)

j
=

Ni∑︂

i=1

xiw
(1)

i j
. (4.4)

A neuron is then activated by some activation function g : IR → IR. We use a sigmoid

activation function, g(s) = 1/(1 + e−s), as this non-linear function allows us to fit to any

function in principle (Cybenko 1989). This activation step can be interpreted as each

neuron having specialised on a certain feature in the system (Bishop 2006; Gal 2016)

and when the data reflects this feature the neuron will be activated. The output from the

neuron activation is then fed into the next hidden layer as input, such that the jth neuron

in the ℓth hidden layer computes,

t
(ℓ)

j
= g

(︂

s
(ℓ)

j

)︂

, (4.5)

where, for 1 < ℓ ≤ L,

s
(ℓ)

j
=

N j∑︂

i=1

t
(ℓ−1)

i
w

(ℓ)

i j
. (4.6)

99





4.3 Neural networks

An arbitrary learning rate does therefore not guarantee that the network will converge to

a point with vanishing gradient and second order optimization methods can be used to

guarantee convergence (Battiti 1992).

Suppose we have Ntrain training sets consisting of Ni input parameters and Nout output

data. These training sets are fed into a neural network as described in the previous section.

Training an ANN can then be viewed as an optimization problem where one seeks to

minimize the total cost function E(w), which is the sum-squared error over the training

sets.

E(w) =

Ntrain∑︂

n=1

En(w) =

Ntrain∑︂

n=1

⎡

⎢⎢⎢⎢⎢⎣

1

2

Nout∑︂

i=1

(︁

yi,n(w) − di,n

)︁2

⎤

⎥⎥⎥⎥⎥⎦ , (4.8)

where yi,n is the prediction made by the neural network in the ith neuron of the output

layer, using the nth parameter set of all training inputs, di,n is the true result for the ith

neuron in the output layer corresponding to the nth parameter set, and thus En is the cost

function associated with the nth input parameter set.

We can expand the cost function around some particular set of weights w0 using a

Taylor series,

E(w) =E(w0) + (w − w0)T g0

+
1

2
(w − w0)T H0(w − w0) + ...,

(4.9)

where g0 is the vector of gradients and H0 denotes the Hessian matrix with elements

hi j =
∂2E

∂wi∂w j

. (4.10)

Whereas back-propagation is based on a linear approximation to the error surface, better

performance can be expected when using a quadratic error model,

E(w) ≈E(w0) + (w − w0)T g0

+
1

2
(w − w0)T H0(w − w0).

(4.11)

Provided H0 is positive definite, this approximation to the error surface has a minimum,

∂E/∂w = 0, at

w = w0 − H−1
0 g0. (4.12)

Given that a quadratic approximation to the actual cost function is used, an iterative ap-

proach needs to be taken in order to find an estimate of the true minimum. Similar to back-

propagation where g is used as the search direction, second order methods use −H−1 g as
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the search direction. Thus the search direction during training iteration k is given by

∆k = −H−1
k gk. (4.13)

Solving this system of equations requires precise knowledge of the Hessian, as well as a

well-conditioned Hessian, which is not always guaranteed. Instead of computing the Hes-

sian and inverting it, the BFGS scheme seeks to estimate H−1
k

directly from the previous

iteration. Mcloone et al. (2002) give the basic algorithmic structure as follows;

• Set the search direction ∆k−1 equal to −Mk−1 gk−1, where Mk−1 is the approximation

to H−1
k−1

at the (k − 1)th iteration.

• Use a line search to find the weights which yield the minimum error along ∆k−1,

wk = wk−1 + ηopt∆k−1, (4.14)

ηopt = min
η

(E(wk−1 + η∆k−1)). (4.15)

• Compute the new gradient gk.

• Update the approximation to Mk using the new weights and gradient information,

sk = wk − wk−1 and tk = gk − gk−1, (4.16)

Ak =

(︄

1 +
tT
k

Mk−1 tk

sT
k

tk

)︄
sksT

k

sT
k

tk

, (4.17)

Bk =
sk tT

k
Mk−1 + Mk−1 tksk

sT
k

tk

, (4.18)

Mk = Mk−1 + Ak − Bk. (4.19)

The scheme initializes by taking a step in the direction of steepest descent by setting,

M0 = I.

The limited-memory BFGS scheme we are using, recognizes the memory intensity

of storing large matrix estimates of the inverse Hessian, and resets Mk−1 to the identity

matrix in equation (4.19) at each iteration and multiplies through by −gk to obtain a matrix

free expression for ∆k.

• The LBFGS thus uses the following update formula (Asirvadam et al. 2004)

∆k = −gk + aksk + bk tk, (4.20)
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4.5 Reionisation model

In order to produce the training sets upon which our neural network is ultimately trained,

we need to model the EoR and the 21cm power spectrum as a function of some tangible

model parameters.

The main observable of 21cm studies is the 21cm brightness temperature, defined by

(Pritchard & Loeb 2012; Furlanetto et al. 2006; see equation (3.7))

δTb(ν) ≈ 27xHI(1 + δb)

(︄

Ωbh2

0.023

)︄ (︄

0.15

ΩMh2

1 + z

10

)︄1/2

×
(︄

1 −
Tγ(z)

TS

)︄ [︄

∂rvr

(1 + z)H(z)

]︄−1

mK,

(4.25)

where xHI denotes the neutral fraction of hydrogen, δb is the fractional overdensity of

baryons, Ωb and ΩM are the baryon and total matter density in units of the critical density,

H(z) is the Hubble parameter and Tγ(z) is the CMB temperature at redshift z, TS is the

spin temperature of neutral hydrogen, and ∂rvr is the velocity gradient along the line of

sight. One can define the 21cm power spectrum from the fluctuations in the brightness

temperature relative to the mean,

δ21(x, z) ≡ δTb(x) − ⟨δTb⟩
⟨δTb⟩

, (4.26)

where ⟨...⟩ takes the ensemble average. The dimensionless 21cm power spectrum, ∆2
21

(k),

is then defined as

∆2
21(k) =

k3

2π2
P21(k), (4.27)

where P21(k) is given through

⟨︂

δ̃21(k)δ̃21(k′)
⟩︂

= (2π)3δD(k − k′)P21(k). (4.28)

Here, δ̃21(k) denotes the Fourier transform of the fluctuations in the signal and δD denotes

the 3D Dirac delta function.

The 21cm power spectrum is the most promising observable for a first detection of

the signal (Furlanetto et al. 2006), and encodes information about the state of reionization

throughout cosmic history. For the evaluation of the 21cm power spectrum we utilize

the streamlined version of 21cmFast, which was used in the MCMC parameter study

of Greig & Mesinger (2015). This version of 21cmFast is optimized for astrophysical

parameter searches.

The astrophysical parameters that we allow to vary in our model are three-fold.
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Ionizing efficiency, ζ: The ionization efficiency combines a number of reionization

parameters into one. We define ζ = AHe f∗ fescNion, where AHe = 1.22 is a correction

factor to account for the presence of helium and converts the number of ionizing photons

to the number of ionized hydrogen atoms, f∗ is the star formation efficiency, fesc is the

escape fraction for UV radiation to escape the host galaxy, and Nion is the number of

ionizing photons per baryons produced. These parameters are poorly constrained at high

redshifts. As Nion depends on the metallicity and the initial mass function of the stellar

population, we can approximate Nion ≈ 4000 for Population II stars with present day

initial mass function, and Nion < 104 for Population III stars. The value for the star

formation efficiency f∗ at high redshifts is extremely uncertain due to the lack of collapsed

gas. Therefore, although f∗ ≈ 0.1 is reasonable for the local Universe it is uncertain

how this relates to the value at high redshifts. Additionally a constant star formation

rate has been disfavoured by recent studies (Mason et al. 2015; Mashian et al. 2016;

Furlanetto et al. 2017). For our purpose however, a simplistic constant star formation

model is sufficient. Similarly, the UV escape fraction fesc observed for local galaxies only

provides a loose constraint for the high redshift value. Although fesc < 0.05 is reasonable

for local galaxies, large variations within the local galaxy population is observed for this

parameter. We thus allow the ionization efficiency to vary significantly in our model to

reflect the uncertainty on the limits of this parameter, and consider 5 ≤ ζ ≤ 100.

Maximal distance travelled by ionizing photons, Rmfp: As structure formation pro-

gresses, dense pockets of neutral hydrogen gas emerge where the recombination rate for

ionized proton - electron pairs is much higher than the average IGM. These regions of

dense hydrogen gas are called Lyman limit systems, or damped Lyman-α systems, and

effectively absorb all ionizing radiation at high redshifts. This effectively limits the bub-

ble size of ionized bubbles during reionization. EoR models include the effect of these

absorption systems as a mean free path of the ionizing photons. However, due to the lim-

ited resolution of 21cmFast, this sub-grid physics is modelled as a hard cut-off for the

distance travelled by ionizing photons. As our allowed range for this parameter we use,

2 Mpc ≤ Rmfp ≤ 20 Mpc.

Minimum virial temperature for halos to produce ionizing radiation, Tvir: Star forma-

tion is ultimately regulated by balancing thermal pressure and gravitational infall of gas in

virialized halos. Molecular hydrogen allows gas to cool rapidly, on timescales lower than

the dynamical timescale of the system, such that an unbalance of the two opposing forces

occurs and the gas collapses which triggers a star to form. Although initial bursts of pop-

ulation III stars are thought to be able to occur briefly in halos virialized at Tvir ∼ 103 K,

these stars produce a strong Lyman-Werner background which leads to a higher dissoci-

ation of H2 molecules. Star formation then moves to halos with Tvir > 104 K, where HI
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is ionized by virial shocks and atomic cooling is efficient. Tvir thus sets the threshold for

star formation and we consider 104 K < Tvir < 2 × 105 K.

4.5.1 EoR simulation with 21cmFast

Simulations of the EoR are difficult in practice, due to the large range of scales which need

to be simulated. In order to obtain statistically significant models of the ionization and

21cm radiation field during this epoch, GPc-sized simulation boxes are required. How-

ever, these fields are affected by small scale feedback mechanisms from sources much

smaller than the size of the simulation boxes. As a resolution large enough to model

both source behaviour and their large scale effects is impractical, approximations of the

underlying physics is essential. Numerical models, such as those presented in Iliev et al.

(2006a;b; 2014), combining full scale radiative transfer and N-body simulations of the

EoR to achieve the highest fidelity simulations of the epoch are expensive and not suitable

for parameter inference studies. In Mesinger et al. (2011) a compromise is struck between

simulations of small-scale physics and using analytical models to predict some computa-

tionally intensive behaviour, resulting in the semi-numerical approach of 21cmFast.

Simulating the 21cm radiation model, equation (3.7), is done in a number of steps.

First, the density and velocity field are generated at high redshift as random Gaussian

fields (Mesinger & Furlanetto 2007), and evolved to the EoR using the first order approx-

imation for gravitational collapse via the Zel’dovich approximation (Zel’dovich 1970).

This allows for a fast generation (∼ 10 minutes) of the density field during the EoR. Sec-

ond, the ionization field is produced using the Fast Fourier Radiative Transfer scheme of

Zahn et al. (2011). This method computes fcoll directly on the evolved density field using

a Press-Schechter type argument. In the simulation, ionized cells are thus identified as

cells where

fcoll(x, z,R) ≥ ζ−1, (4.29)

with ζ being the ionizing efficiency previously introduced and R being a variable smooth-

ing scale which is decreased down to the cell size. Third, the code introduces redshift

space distortions due to peculiar velocities. Using the Zel’dovich approximation on the

velocity field, the derivative of the line of sight velocity, vr, needed in the expression for

the brightness temperature fluctuations (equation 3.7), is written in k-space as

dvr

dr
(k, z) = ikrvr(k, z)

≈ k2
r

k2
Ḋ(z)δnl(k).

(4.30)
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The code uses the final approximation to compute the effects of redshift space distortions.

Finally, once the density field, ionization field and redshift space distortions are com-

puted, they are straight forwardly combined to produce the brightness temperature field

of equation (3.7).

4.6 Predicting the 21cm power spectrum

We use two different approaches to emulate the 21cm power spectrum. First, we use a

simple two-layer MLP, as described in section 4.3, with 30 nodes in each layer, as we

require the network to be sufficiently complex to map our set of 3 parameters to 21 power

spectrum k-bins. This is done using the MLPRegressor class from the python package

SciKit-learn (Pedregosa et al. 2011). The NN is then trained on a variety of training

sets, see 4.6.1 and 4.6.2, obtained from 21cmFast simulations. Then, for comparison we

use trilinear interpolation of the training set, simply interpolating the power spectrum on

a parameter grid.

4.6.1 Grid-based approch

In order to study the impact of the choice of training set on the predicting power of the

ANN we prepared a variety of training sets. The most basic approach, in fact the one used

for our toy model in section 4.4, is to distribute parameter values regularly in parameter

space and obtaining the power spectrum for each point on a grid. We vary our parameters

as per section 4.5, 5 ≤ ζ ≤ 100, 104 K ≤ Tvir ≤ 105K and 2 Mpc ≤ Rmfp ≤ 20 Mpc, as

these reflect our prior on the likely parameter ranges. Each training set then consists of

the power spectrum evaluated in 21 k-bins, set by the box size of 250 Mpc, upon which

the ANN is trained. We compare 5 different training sets at 2 different redshift bins, z = 8

and z = 9. These training sets consist of 3, 5, 10, 15 and 30 points per parameter, which

leads to training sets of total size 27, 125, 1000, 3375 and 27000 respectively.

This approach is the most basic and certainly the most straight forward to implement,

however it comes with a number of drawbacks. Projected down, a gridded set of parameter

values has multiple points which occupy the same parameter values. This implies that the

simulation is evaluated multiple times at the same values for some parameter at each

point in any given row in the grid, see Fig. 4.6. Furthermore, if the observable is varying

slowly in some parameter, few points are needed to model its behaviour and thus valuable

simulation time is wasted on producing points in the grid that add very little information.

Another important limitation is the exponential scaling of the total number of points

with the number of parameters in the grid. In the simple three dimensional case, which
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we are studying here, N evaluations per parameter lead to a total of N3 points on the grid.

Ultimately, it is desirable to allow the model cosmology to vary and include at least 6 cos-

mological parameters into the search as well as additional astrophysical parameters, such

as the X-ray efficiency, fX, obscuring frequency, νmin, and the X-ray spectral slope, αX.

One is then looking at a total of 12 or more parameter dimensions for which evaluations

on the grid are prohibitively expensive and other techniques are needed. A further prob-

lem is presented by the proportion of volume in the corners of a hyper-cubic parameter

space1. High dimensional parameter spaces thus profit greatly by using hyperspherical

priors which decrease the number of model evaluations in the low likelihood corner re-

gions of parameter space drastically.

4.6.2 Latin hypercube approach

A second approch is to use the latin hypercube sampling (LHS) technique, shown in Fig.

4.6. Here, the parameter space is divided more finely, such that no two assigned samples

share any parameter values. In two dimensions this method is equivalent to filling a chess

board with rooks in such a way that no two of them threaten each other. Immediately, one

of the shortcomings of the gridded parameter space is dealt with, in that the simulation

need never be run at the same parameter value twice. The other main advantage of the LH

is that its size does not increase exponentially with the dimension of parameter space. This

property makes the LH the only feasible way of exploring high dimensional parameter

spaces with ANNs (Urban & Fricker 2010).

We use a maximin distance design for our latin hypercube samples (Morris &

Mitchell 1995). These designs try to simultaneously maximize the distance between all

site pairs while minimizing the number of pairs which are separated by the same distance

(Johnson et al. 1990). This maximin design for LHS prevents highly clustered sample

regions and ensures homogeneous sampling. Prior knowledge of the behaviour of the

power spectrum could also be used to identify the regions of parameter space where the

power spectrum varies most rapidly and thus a higher concentration of samples should be

imposed on such a region. Additionally, using a spherical prior region may help reduc-

ing the number of model evaluations used in the corners of parameter space where the

likelihood is low (Kern et al. 2017).

For our training set comparisons we use 3 different LH training sets of size 100, 1000

and 10000 respectively.

1In 12 dimensions the proportion of the volume in the corners of a hypercube is ∼ 99.96%. That is the

difference between the volume of the hypercube and that of an n-ball.
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error for a power spectrum prediction over k iterations can reduce networks error bound.

Our network design limits errors at ∼ 1%, which is sufficiently below any confidence

limit associated with our model, such that optimizing design parameters is of limited use.

Optimisation via k-fold validation may be necessary when using fully numerical simula-

tions which reflect a higher degree of physical accuracy than fast semi-numerical meth-

ods. No clear difference of the MSE can be seen comparing the latin hypercube sampled

training sets and those produced on the grid in 3 dimensions and thus both methods do

equally well in this case. We expect, although have not proven this explicitly, that a more

significant discrepancy in higher dimensions of parameter space as discussed in section

4.6.2. In parameter inference studies it is common to vary large numbers of parameters.

For example, in our application, one could add six cosmological parameters as well as

three additional astrophysical parameters controlling for the epoch of heating (Greig &

Mesinger 2017). The resulting 12 dimensional analysis would require training points in

the same high dimensional space and a gridded training set would be impractically or even

impossibly large, thus rendering the only feasible option a LH approach. It is also instruc-

tive to compare the performance of the interpolation on the grid to that on the LH, as one

could conceivably just interpolate on the LHS in higher dimensions. The ANN manages

to capture the information of the unstructured training data much better than simple in-

terpolation does, whereas this is not necessarily the case for large gridded training sets.

This result indicates a better performance for unstructured data by the ANN rather than

interpolation and given that unstructured data are the only feasible way to access high

dimensional model emulation, we argue that the ANN is a reliable way to perform this

task. Similar conclusions were found in (Jennings et al. 2019), but we note that a future

analysis including astrophysical parameters should check that this result holds for high

dimensional analyses as the increased interpretability of interpolated models could be a

boon over ANN emulation if the methods achieve similar levels of precision.

Fig. 4.9 to 4.11 show the predictions of a trained neural network (solid lines) and

the true values of the power spectrum at the same point in parameter space (dashed lines).

In order to determine the dependence of the accuracy of the predictions on the particular

training set used, a subset of the training set is again randomly selected and used as the

training set. Similar to before, the network is retrained 10 times while the predictions are

averaged. The variance on the mean prediction in each k-bin is added as the expected error

on the predicted mean value of the power spectrum. The power spectrum is dominated

on small scales (k > 1 Mpc−1) by shot noise and by foregrounds on large scales (k <

0.15 Mpc−1). We therefore apply cuts at these scales in our analysis and indicate the noise

dominated ranges by the grey shaded regions in Fig. 4.9, Fig. 4.10 and Fig. 4.11.
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4.7 Bayesian inference of astrophysical parameters.

In Bayesian parameter inference one is interested in the posterior distribution of the pa-

rameters θ within some modelM. That is the probability distribution of the parameters

given some dataset x. We can then write Bayes’ Theorem as

Pr(θ|x,M) =
Pr(x|θ,M)π(θ|M)

Pr(x|M)
, (4.32)

to relate the posterior distribution Pr(θ|x,M) to the Likelihood, L ≡ Pr(x|θ,M), the

prior, π(θ|M), and a normalisation factor called the evidence, Pr(x|M). This expression

parametrises the probability distribution of the model parameters as a function of the like-

lihood, which, given a model and a dataset, can be readily evaluated under the assumption

that the data points are independent and carry Gaussian errors,

lnL = −
[︁

x − µ(θ)
]︁2

2σ2
x

+C, (4.33)

where C denotes a normalisation constant. In our case, the data will be a mock observation

of the 21cm power spectrum, x = {Pobs(ki)}, evaluated in 21 k-bins, the expectation value

of the data will be the theoretical model prediction of the power spectrum, µ(θ) = P(k, θ),

and for the variance on the data we assume that instrumental noise is the sole contributor

characterised by a noise power spectrum, σ2
x = PNoise(k).

4.7.1 Experimental design

We use 21cmSense2 (Pober et al. 2013; 2014) to compute the noise power spectrum for

HERA331, with experimental details outlined in Beardsley et al. (2015) and summarized

below. The noise power spectrum used is given by (Parsons et al. 2012)

PNoise(k) ≈ X2Y
k3

2π2

Ω′

2t
Tsys, (4.34)

where X2Y denotes a conversion factor for transforming from the angles on the sky and

frequency to comoving distance, Ω′ is the ratio of the square of the solid angle of the

primary beam and the solid angle of the square of the primary beam, t is the integration

time per mode, and Tsys is the system temperature of the antenna, which is given by the

receiver temperature of 100 K plus the sky temperature Tsky = 60 (ν/300 MHz)−2.55 K.

2Publically available at https://github.com/jpober/21cmSense.
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As our experiment design, we assume a HERA design with 331 dishes distributed

in a compact hexagonal array to maximize the number of redundant baselines, as HERA

is optimized for 21cm power spectrum observations (DeBoer et al. 2017; Liu & Parsons

2016). Each dish has a diameter of 14 m, which translates into a total collecting area of

∼ 50950 m2. HERA antennas are not steered and thus use the rotation of the Earth to drift

scan the sky. An operation time of 6 hours per night is assumed for a total of 1000 hours

of integration time per redshift. We consider both single redshift and multiple redshift

observations assuming a bandwidth of 8 MHz. Although experiments like HERA and

the SKA will cover large frequency ranges ∼ 50 − 250MHz, foregrounds can limit the

bandpass to narrower instantaneous bandwidths.

4.7.2 Markov chain Monte Carlo

We aim to compare our parameter estimation runs to those of Greig & Mesinger (2015)

by using the same mock and noise power spectrum for HERA331 as input for our neural

network parameter search. Our fiducial parameter values are ζ = 30, Rmfp = 15 Mpc and

Tvir = 30000 K.

First, we perform an independent parameter search in two redshift bins, z = 8 and

z = 9, the latter comparing directly to Fig. 3 in Greig & Mesinger (2015). The fiducial

values for the average neutral fraction at these redshifts are x̄HI(z = 8) = 0.48 and x̄HI(z =

9) = 0.71. For both the emulation and the 21CMMC runs we produce 2.1 × 105 points in

the MCMC chain for a like-for-like comparison between the two techniques. This analysis

uses the emcee python package for the Monte Carlo simulation (Foreman-Mackey et al.

2013).

Then, we analyse observations at redshifts z = 8, 9 and 10 by combining the infor-

mation in these redshift bins. We take a linear combination of the χ2 statistics in each

redshift bin. Three separate ANNs are used for each redshift and are trained on the same

training sets as for the individual redshift searches at z = 8 and 9. The fiducial neutral

fraction for our final mock observation is x̄HI(z = 10) = 0.84. A total of 2.1 × 105 are

again obtained both in the neural network search and the equivalent 21CMMC run. The

results following were then produced by combining 21cmFast, the ANN and the MCMC

sampler with the instructions above.

4.8 Discussion

Similar to Kern et al. (2017), we see a significant speed-up for the parameter estimation.

For our fiducial chain size, we observe a speed up by 3 orders of magnitude for the sam-
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Code - Training Set z ζ Rmfp log Tvir

21CMMC 9 41.28+24.85
−13.43

13.38+4.28
−5.15

4.59+0.37
−0.32

ANN - 100 LHS 9 45.47+25.19
−17.18

12.13+5.71
−5.05

4.54+0.47
−0.28

ANN - 1000 LHS 9 42.52+26.18
−13.74

12.89+4.63
−5.29

4.57+0.40
−0.31

ANN - 10000 LHS 9 42.21+25.42
−14.12

13.18+4.46
−5.14

4.58+0.39
−0.31

21CMMC 8 39.64+31.90
−16.11

14.99+2.98
−3.64

4.61+0.21
−0.23

ANN - 100 LHS 8 43.06+26.16
−17.38

14.58+3.47
−3.90

4.64+0.19
−0.25

ANN - 1000 LHS 8 42.71+31.30
−18.67

14.67+3.19
−4.26

4.62+0.21
−0.23

ANN - 10000 LHS 8 39.78+31.68
−16.22

14.61+3.15
−4.05

4.60+0.22
−0.23

21CMMC 8,9,10 31.08+8.70
−6.04

15.15+2.86
−3.21

4.51+0.17
−0.17

ANN - 100 LHS 8,9,10 31.51+8.57
−6.32

15.86+2.47
−3.62

4.49+0.16
−0.19

ANN - 1000 LHS 8,9,10 31.18+8.47
−6.08

14.97+2.91
−3.78

4.51+0.16
−0.17

ANN - 64 gridded 8,9,10 32.46+13.90
−5.72

12.52+3.47
−6.13

4.61+0.11
−0.13

ANN - 125 gridded 8,9,10 30.17+6.78
−5.04

12.97+4.09
−3.69

4.50+0.15
−0.16

ANN - 1000 gridded 8,9,10 31.32+7.52
−5.20

13.94+3.80
−4.68

4.50+0.16
−0.16

Table 4.1: Median values and 68% confidence interval found in the parameter search via

the brute-force method (21CMMC) and our ANN emulation at z = 9 and z = 8. The fidu-

cial parameter values for both redshifts are given by (ζ,Rmfp, log Tvir) = (30, 15, 4.48).

pling of the likelihood by emulation over the brute-force method. Our 21CMMC runtime

of 2.5 days on 6 cores for a single redshift is reduced to 4 minutes using the emulator.

In addition to the sampling, the neural network training requires on the order of ∼ 1

minute for 100 training samples to ∼ 1 hour for 104 training samples, which is not needed

when evaluating the model at each point. Compared to the total runtime of 21CMMC the

training time presents a minor factor.

4.8.1 Single redshift parameter constraints

Fig. 4.12 to 4.15 show the comparison between the brute-force parameter estimation

as the red dashed contours and our ANN emulation using a variety of training set sizes

at redshift z = 9 and z = 8 as the solid blue contours. For both redshifts, we show

the one and two sigma contours obtained for 100 and 1000 LH samples as well as the

marginalized posteriors convolved with a Gaussian smoothing kernel. As our posterior

1D marginalized parameter distributions are not found to be Gaussian, we compute the

median and the 68% confidence interval defined by the region between the 16th and 84th

percentile as our summary statistics in Table 5.3. We find excellent agreement between

our method and 21CMMC for training sets of 103 and 104 samples at both redshifts, and

good agreement with 100 samples.

119



4.8 Discussion

We observe that errors retrieved by our network can be smaller than those obtained

by 21CMMC, this is due to systematics. During the training period, our ANN constructs a

model which approximates the 21cmFast model and we proceed to sample the likelihood

of the approximation. Therefore, assuming convergence of the chains, any difference

between the recovered 68% confidence intervals are most likely due to systematic differ-

ences between the two models that are sampled. We estimate that we are subject to these

systematic effects on the 1% - 10% level for large to small training sets, as per Fig. 4.7

and Fig. 4.8.

The ζ − log Tvir panels in Fig. 4.12 and Fig. 4.13 show that the neural network is

sensitive to the same multi-modality found by 21CMMC, which is illustrated by the stripe

feature at low Tvir and high ζ. This region represents less massive galaxies with a brighter

stellar population, which can mimic our fiducial observation. Such a galaxy population

would ionize the IGM earlier and thus by combining multiple redshifts and adding infor-

mation about the evolution of the ionization process, this degeneracy ought to be lifted.

Similarly, the Rmfp − log Tvir panel shows a clear bimodal feature for both 21CMMC and

our neural network. Comparing to the results at z = 8 in Fig. 4.14 and Fig. 4.15, we

see this multi-modal behaviour disappearing, which suggest that this degeneracy can be

lifted by adding information in multiple redshift bins. Despite a clear downgrade of the fit

to the brute-force method in the shape of both the 2D contours and the 1D marginalized

posteriors, the training set using 100 samples still encloses the true parameter values of

the observation in the 68% confidence interval as indicated in Table 4.1.

4.8.2 Multiple redshift parameter constraints

Fig. 4.16 and Fig. 4.17 show the contraints obtained when combining observations in

three redshift bins at z = 8, 9 and 10 for training sets of 1000 and 100 samples per redshift

respectively. As noted in the previous section, adding information about the evolution of

the reionization process lifts some of the degeneracies in our recovered parameter con-

straints and both multi-modal features in the ζ − log Tvir and the Rmfp − log Tvir panels

could be lifted. Of note is that combining multiple redshift bins highly improves the fit of

the neural network trained on only 100 samples per redshift. We find that all our fiducial

parameter values are well within the 68% confidence interval set out by the median and

its 16th and 84th percentile for even this sparse training set.

Additionally, we compare the inference of a network trained on gridded training

sets with similar sizes to our LH sampled training sets. Both 53 and 103 training sets

recover similar constraints as the 100 LHS and 1000 LHS training sets, consistent with

our findings in section 4.6. However, we observe a clear deterioration of the predictive
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away from semi-numerical models such as 21cmFast and for the first time use radia-

tive transfer codes (Ciardi et al. 2003; Iliev et al. 2006b; Baek et al. 2009; 2010) in EoR

parameter searches. Semelin et al. (2017) have recently produced a first database of 45

evaluations of their radiative transfer code to provide 21cm brightness temperature light-

cones evaluated on a 3D grid. The power spectra extracted from this database could be

used as a training set for an ANN emulator. However, our analysis suggests that training

sets with lower than 100 samples should be used with caution.

(iii) In addition to determining the best fit parameters of any given model, we would

like to quantify the degree of belief in our model in the first place. Future data will be

abundant, and as such we would like to be able to use it to inform us about the choice of

model that best fits the data. Here too, the computational speed that emulation provides

can be of use. Bayesian model comparison requires the computation of the evidence as

the integral of the likelihood times the prior over all of parameter space. Nested sampling

algorithms such as MultiNest (Feroz et al. 2009) provide an estimate for the evidence of

a particular model together with the evaluation of the posterior, and thus benefits greatly

from fast power spectrum computations.

(iv) The output nodes of the neural network treats each k-bin of the 21cm power

spectrum separately. The weights of the trained network thus act to correlate the values in

each k-bin according to the training set. There is therefore no restriction to predict other

observables that are correlated to the 21cm power spectrum using the same emulator. The

same network could thus encode the skewness or bispectrum of the 21cm fluctuations at

the same time assuming the inclusion of these functions in the training sets.

4.9 Summary

With the advent of next generation telescopes such as MWA, HERA and the SKA, a first

detection of the cosmic 21cm signal from the Epoch of Reionization is expected to be

made within the next few years. One of the challenges accompanying this new generation

of telescopes will be the vast amount of raw data generated. In this chapter we have in-

troduced the machine learning paradigm as a crucial way to efficiently analyse these large

amounts of incoming data. In particular, we have focussed on the cost reduction for ex-

pensive model evaluation in the context of EoR parameter inference from observations via

model emulation. We show that emulating the models using artificial neural networks can

speed up the model evaluations significantly, while maintaining a high degree of accuracy.

We use an artificial neural network to train on a series of training sets which consist of

21cm power spectrum evaluations produced by the semi-numerical code 21cmFast. As

the limiting factor now becomes the creation of the training set, we study the evolution of

125



4.9 Summary

the error on the power spectrum predictions as a function of the training set size. We find

that as few as 100 model evaluations may be sufficient to recover reasonable constraints

on the parameters, especially when combining information across multiple redshift bins.

Machine learning techniques, such as the one presented in this chapter, will be crucial

in extracting the most information possible from future 21cm observations. They are

however by no means the only way to maximize our information gain and as such, in the

following part we will introduce a number of analytical techniques which will similarly

aid to fully characterize the information presented by the 21cm radiation.
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“Scientific knowledge is a body of statements of varying

degrees of certainty – some most unsure, some nearly sure,

none absolutely certain.”

− Richard P. Feynman.

Part IV

Analytic Analysis of the Cosmic 21cm

Signal
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Chapter 5

21cm Bispectrum

In this chapter, we utilize the inherent non-Gaussian nature of gravitational collapse to

study the 21cm bispectrum at low redshifts (z ∼ 0.35 − 3), targeted by upcoming neu-

tral hydrogen intensity mapping experiments. We focus on an analytic derivation for the

bispectrum due to gravitational collapse and a contribution by line of sight perturbations

in the form of the lensing-ISW bispectrum and compare their amplitudes at the relevant

redshifts. Within the next decade a significant number of next generation telescopes are

expected to see their first light, capable of probing vast volumes of the low-redshift Uni-

verse. These telescopes are in a prime position for a first detection of the cosmic 21cm

signal and should have the capabilities to detect both power spectrum and bispectrum of

the 21cm brightness temperature fluctuations. The main result of this chapter is a Fisher

forecast analysis of the bispectrum in the context of CHIME, MeerKAT and SKA. We

find that the bispectrum proves to be a valuable source of cosmological information and

has the potential to decrease errors on the cosmological parameters by an order of mag-

nitude compared to Planck. Combining the information from both power spectrum and

bispectrum of the observed sky yields the greatest constraining power. Finally, we com-

pute the contribution of the lensing-ISW bispectrum, and find that, unlike for the cosmic

microwave background analyses, it can safely be ignored for 21cm bispectrum observa-

tions.

The material for this chapter has been published in MNRAS (1 March 2019, Vol.483,

Issue 3, pp. 4259-4275): C. J. Schmit, A. F. Heavens and J. R. Pritchard; The gravita-

tional and lensing-ISW bispectrum of 21cm radiation. The published version is available

through: https://doi.org/10.1093/mnras/sty3400.
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5.1 Introduction

The cosmic microwave background (CMB) has truly propelled cosmology into an age of

precision science. Over the last three decades, experiments such as COBE (Smoot et al.

1992), WMAP (Bennett et al. 2003; 2013), and Planck (Planck Collaboration et al. 2016b)

have measured the CMB to an astonishing degree of accuracy, and its information is

routinely combined with various other cosmological probes such as weak lensing, galaxy

clustering and Type-1a supernovae. This great effort has allowed us to constrain many

of the parameters of the geometrically flat, cold dark matter model with a cosmological

constant (ΛCDM) to the percent level.

Although the Planck data favours a simple six parameter model over other models

(Heavens et al. 2017), there remain tensions between the CMB measurements and lo-

cal direct measurements of the Hubble parameter, h, (Bennett et al. 2014; Riess et al.

2016; 2018a;b), as well as low-redshift weak lensing measurements, which find slightly

less matter clumping than expected from extrapolating the CMB findings (Heymans et al.

2013; MacCrann et al. 2015; Raveri 2016; Joudaki et al. 2017; Köhlinger et al. 2017).

These tensions can arise if the assumed cosmological model is wrong since the CMB

photons principally reveal the conditions of the Universe at the time of recombination at

a relatively thin redshift slice at z ≃ 1100, when the Universe was matter dominated. Ad-

ditional probes along the line of sight are required to give the full 3-dimensional context

for the evolution of the Universe and study the evolution of low-redshift phenomena, such

as dark energy. Galaxy surveys, such as the 2dF Galaxy Redshift survey (Colless et al.

2001), BOSS (Anderson et al. 2012), and SDSS (Ahn et al. 2014), are one such probe

which determine the cosmological parameters by mapping the positions of galaxies in

the sky and realizing that they are biased tracers of the underlying dark matter distribu-

tion. These surveys thus relate the galaxy power spectrum directly to the matter power

spectrum from which the parameters can be determined. Weak lensing surveys, such as

CFHTLenS (Heymans et al. 2012), KiDS (de Jong et al. 2013) and DES (Jarvis et al.

2016), present another low-redshift observation that complements the CMB observations,

as the reconstructed lensing potential is directly related to the gravitational potential of

the Universe. For both galaxy redshift surveys and weak lensing surveys it is crucial to

obtain large galaxy samples by probing the largest observational volumes possible. One

of the main difficulties for these surveys is to determine the redshift information of galax-

ies in their sample, as the largest volumes are attained by rapid photometry of the sources.

Imprecise redshift information effectively blurs the radial information of the galaxies in

the sample and propagates as a systematic error into the analysis.
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Intensity mapping (IM) of the 21cm radiation at low redshifts possesses many ad-

vantageous properties which help to overcome the common challenges of conventional

survey techniques and thus presents a promising new tool for observational cosmology.

At late times most of the neutral hydrogen in the Universe has been ionized and the re-

maining atomic hydrogen resides mainly within self-shielded damped Lyman-α (DLA)

systems inside galaxies and galaxy clusters. This means that the 21cm signal is a bi-

ased tracer of the dark matter density field and can therefore directly be connected to the

cosmological parameters. When mapping the 21cm intensity, experiments integrate the

emission of unresolved clouds of hydrogen gas within a given frequency bin. This pro-

vides CMB-like maps of the brightness temperature fluctuations in each frequency bin

which each can be analysed for the statistical signal similar to the CMB. Due to the in-

herent relationship between the observed frequency of the 21cm signal and the redshift at

which it was emitted, the signal readily provides spectroscopic redshifts and hence pre-

cise 3D information about the Universe. Although advances in optical surveys, such as

DES, Euclid1 and LSST2, promise precise measurements of many aspects of dark energy

and the galaxy distribution in the near future, IM surveys performed by experiments such

as CHIME and SKA can be enormously advantageous. These surveys will best optical

surveys in terms of survey volume and speed, and will be sensitive to the baryon acoustic

oscillation (BAO) signature out to higher redshifts (Bull et al. 2018). Bull et al. (2015)

have thoroughly examined the information gained from power spectrum observation of

an extensive list of 21cm IM experiments and find competitive percent level forecasts on

the cosmological parameters. However, due to the non-linear nature of structure forma-

tion, the power spectrum cannot fully probe the information content of the field, and an

analysis of higher order statistics, such as the bispectrum, is warranted (Repp et al. 2015).

Theoretical predictions of the 21cm bispectrum due to primordial non-Gaussianities and

non-linear collapse from gravitational instability have only been made in the context of

high redshift (z > 50) observations (Pillepich et al. 2007), giving promising predictions

for the signal to noise for a bispectrum detection. Here we focus therefore on analysing

the bispectrum as an additional observable in the context of upcoming IM experiments

during the late stages of structure formation.

In addition, we examine another physical effect which can lead to a non-zero bispec-

trum and potentially contributes to the signal observed by IM experiments, the correlation

between weak gravitational lensing and the integrated Sachs-Wolfe effect. As the 21cm

emission travels towards our telescopes, it traverses the intergalactic medium and is sub-

jected to the gravitational effects of the intervening matter. Matter fluctuations act as

1https://www.euclid-ec.org/
2https://www.lsst.org/
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5.2 The 21cm signal

gravitational lenses on the 21cm photons, whose paths get distorted by their presence.

This effect should be noticeable through the statistical distribution of the 21cm photons

on the sky. In addition to this, as the Universe evolves into an acceleration-dominated era

at low-redshifts (z . 2), the growth of structure lags behind the accelerated expansion

of space. This effect causes the gravitational potentials of galaxy clusters to decrease in

amplitude over time, resulting in a boost in energy for photons traversing those poten-

tials. This late-time integrated Sachs-Wolfe effect (ISW) once again distorts the intensity

distribution of photons in a survey volume. Cross-correlations between these two lines

of sight effects improve cosmological parameter constraints from lensing surveys on the

10% level on large scales as shown by Zieser & Merkel (2016). Most importantly, how-

ever, ignoring the lensing-ISW (LISW) effect has been shown to bias CMB parameter

inferences (Kim et al. 2013), and will at some level bias 21cm bispectrum observations.

We compute both the LISW bispectrum and the bias resulting from neglecting it from

upcoming IM experiments.

This chapter is organised as follows. Section 5.2 introduces the 21cm signal model

used and we write down the angular power spectrum. In section 5.4, we revisit the

21cm bispectrum from Pillepich et al. (2007) and include a low-redshift 21cm signal

model. The effects of lensing, the ISW effect, and the angular LISW bispectrum are

discussed as well. We then compute both the 21cm bispectrum and the LISW bispec-

trum for all triangle configurations at z = 1. In section 5.5, we discuss upcoming

intensity mapping experiments able to detect the 21cm bispectrum, and include fore-

ground and noise models. Section 5.6 introduces the forecast model and determines

the expected signal to noise for a LISW bispectrum detection as well as the bias intro-

duced when neglecting it. Finally, we present and discuss the results of the parameter

forecasts in section 5.8, before we summarize our findings in section 5.9. Through-

out this chapter, we assume a six parameter ΛCDM cosmology with fiducial values

(Ωbh2,ΩCDMh2,ΩΛ, h, 109 × As, ns) = (0.022, 0.127, 0.684, 0.67, 1.562, 0.962).

5.2 The 21cm signal

The 21cm signal originates from the hyperfine ground state transition in the hydrogen

atom. Its strength is governed by the relative abundance of HI atoms in the excited,

triplet (1), state relative to the non-excited, singlet (0), state, parametrised through the

spin temperature TS,
n1

n0

=
g1

g0

exp

(︄

−T∗

TS

)︄

, (5.1)
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where T∗ = hν21/kB ≈ 68mK, gi is the statistical weight of the energy level i, g1/g0 = 3,

and TS ≫ T∗. The intensity of the signal on the sky is then measured, and we model the

signal in terms of its brightness temperature, which relates to the signal intensity via the

Rayleigh-Jeans formula, Tb(ν) ≈ Iνc
2/2kBν

2. Generally (see chapter 3), the 21cm signal

is measured using the CMB as a background,

Tb(z) =
TS − Tγ(z)

1 + z
τ, (5.2)

where Tγ(z) denotes the CMB temperature at redshift z and τ is the optical depth through

a cloud of neutral hydrogen.

The spin temperature and thus Tb depend on the underlying HI density field as well

as astrophysical effects, such that the brightness temperature is dependent on the position

and can be split into a homogeneous and a fluctuating part,

Tb[r(z), z] = δT̄b(z) {1 + δHI[r(z), z]} . (5.3)

In the context of intensity mapping, we follow the model of Bull et al. (2015) and focus

on the mean 21cm signal that is emitted by localised clumps of HI gas within galaxies

and galaxy clusters for which the average brightness temperature over the sky can be

approximated as (Santos et al. 2015)

δT̄b(z) ≈ 566h

[︄

H0

H(z)

]︄ [︄

Ω̃HI(z)

0.003

]︄

(1 + z)2µK. (5.4)

Here, Ω̃HI is the density of HI atoms in units of the current critical density (Camera et al.

2013; Villaescusa-Navarro et al. 2018),

Ω̃HI(z) ≡ ρHI(z)/ρc,0, (5.5)

with a critical density today, ρc,0 = 3H2
0
/8πG. The density of neutral hydrogen is related

to the mass of the dark matter halos in the Universe,

ρHI(z) =

∫︂ Mmax

Mmin

dM
dn

dm
MHI(M), (5.6)

where dn/dm is the halo mass function, for which we use a simple Sheth-Tormen imple-

mentation, and MHI(M) is the HI mass in a halo of mass M. Following Bagla et al. (2010),

we adopt a lower cutoff for the mass range containing HI gas, to correspond to a circular

halo velocity of 30 km/s, meaning that halos with a lower circular velocity do not con-

tain any HI gas. Typically, neutral hydrogen can be expected in star forming halos, and
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the sky can be written as

δT obs
b (n̂, ν) =

∫︂

dzWν(z)δTb[r(z)n̂, z]. (5.7)

The quantity δT obs
b

thus denotes the observed temperature field projected onto the sky in

a frequency bin labelled by ν. As seen before, the brightness temperature fluctuations

depend on the underlying HI density field. At late times, most of the neutral hydrogen is

located in self-shielded gas clouds inside galaxies, which means that the hydrogen density

field is a biased tracer of the dark matter density field,

δTb[r(z)n̂, z] = δT̄b(z){1 + bHI(z)δ[r(z)n̂, z]}. (5.8)

In most of our analysis we are only concerned with the first order term as the monopole

term is inaccessible through interferometry. Similarly to Battye et al. (2013) and Bull

et al. (2015) we assume the bias to be a constant at low-redshifts. For our computations

we fix bHI = 2, which is consistent with DLA observations (Font-Ribera et al. 2012; Hall

et al. 2013). To first order in perturbation theory, the density fluctuations simply grow as

a function of the growth factor,

δ[r(z)n̂, z] = D+(z)δ(r). (5.9)

We then Fourier transform the density fluctuations, and suppress the explicit z dependence

in our notation for simplicity,

δ(r) =

∫︂

d3 k

(2π)3
δ̃(k)eik·r, (5.10)

and subsequently expand the Fourier modes in spherical harmonics,

eik·r = 4π
∑︂

ℓm

iℓ jℓ(kr)Yℓm(k̂)Y∗ℓm(n̂). (5.11)

We find

δT obs
b (n̂, ν) =4π

∑︂

ℓm

iℓ
∫︂

dzWν(z)δT̄b(z)bHI(z)D+(z)

×
∫︂

d3 k

(2π)3
δ̃(k) jℓ[kr(z)]Yℓm( k̂)Y∗ℓm(n̂).

(5.12)

Using the definition of the harmonic transform of the signal on the sky in terms of multi-

pole moments ℓ and m,

aνℓm =

∫︂

d2 n̂δT obs
b (n̂, ν)Yℓm(n̂), (5.13)
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we can use the orthonormality condition for spherical harmonics (see Appendix C.1) to

obtain

aνℓm =4πiℓ
∫︂

dzWν(z)δT̄b(z)bHI(z)D+(z)

×
∫︂

d3 k

(2π)3
δ̃(k) jℓ[kr(z)]Yℓm(k̂).

(5.14)

Now, the angular 21cm power spectrum, Cℓ, is defined in terms of ensemble average of

two harmonic coefficients,

⟨︂

a
ν1
ℓm

a
∗ν2
ℓ′m′

⟩︂

= δK
ℓℓ′δ

K
mm′Cℓ(ν1, ν2), (5.15)

where δK denotes the Kronecker delta function and we assume statistical isotropy. Com-

bining equations (5.14) and (5.15), in conjunction with the Fourier space matter power

spectrum relation,
⟨︂

δ̃(k)δ̃(k′)
⟩︂

= (2π)3δD(k + k′)P(k), (5.16)

where δD is the Dirac delta function, we find the angular power spectrum to be

Cℓ(ν1, ν2) =
2

π

∫︂

dzWν1(z)δT̄b(z)bHI(z)D+(z)

∫︂

dz′Wν2(z
′)δT̄b(z′)bHI(z

′)D+(z
′)

×
∫︂

dkk2P(k) jℓ[kr(z)] jℓ[kr(z′)].

(5.17)

For large ℓ we can use the Limber approximation (see Loverde & Afshordi 2008; equa-

tion (C.30)) such that the angular power spectrum becomes diagonal in frequency and

reduces to

Cℓ(ν) = b2
HI

∫︂

dz

[︄

Wν(z)δT̄b(z)D+(z)

r(z)

]︄2 P
[︂
ℓ+1/2

r(z)

]︂

|r′(z)| . (5.18)

We compute the matter power spectrum, P(k), using CAMB3, and our results for the 21cm

angular power spectrum are illustrated in Fig. 5.2, including our noise and foreground

models described in section 5.5. These results were derived in Battye et al. (2013) and we

rederived them here using consistent notation with the following analysis.

5.4 Angular 21cm bispectrum

At low-redshifts (z ∼ 1), targeted by upcoming IM experiments, the dark matter density

field has become non-Gaussian mainly due to the non-linear gravitational collapse of

3Publicly available at: https://camb.info/.
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5.4.1 Non-linear gravity bispectrum

The bispectrum due to non-linear gravitational collapse of structure in the context of 21cm

brightness temperature fluctuations can be calculated similarly to that in the context of

galaxy surveys (See Fry (1984) and Appendix C.2 for details). The brightness temperature

fluctuations are sourced by the fluctuations in the HI field, which is a biased tracer of the

DM field (see equation (5.8)). The bispectrum is then defined by the Fourier transform of

the 3-point function,

B21(k1, k2, k3, z1, z2, z3) =
⟨︂

δT̃b(k1)δT̃b(k2)δT̃b(k3)
⟩︂

= b3
HIδT̄b(z1)δT̄b(z2)δT̄b(z3)

⟨︂

δ̃(k1, z)δ̃(k2, z)δ̃(k3, z)
⟩︂

,
(5.20)

where we assume a linear bias. Expanding the density perturbations to second order and

applying Wick’s theorem, the lowest order contribution to the bispectrum is (Pillepich

et al. 2007; Appendix C.2)

B21(k1, k2, k3, z1, z2, z3) =b3
HI2K(k1, k2)D2

+(z1)D+(z2)D+(z3)

× δT̄b(z1)δT̄b(z2)δT̄b(z3)P(k1)P(k2) + cycl.,
(5.21)

where we define

K(k1, k2) ≡ A0 + A1

(︄

k1

k2

+
k2

k1

)︄

cos θ12 + A2 cos2 θ12, (5.22)

with A0 = 5/7, A1 = 1/2, A2 = 2/7, and θ12 denotes the angle between k1 and k2.

We can express the signal in harmonic space using equations (5.7) and (5.13). Taking

the ensemble average of three harmonic coefficients yields the angular bispectrum. Using

the methods developed in Verde et al. (2000) and Pillepich et al. (2007), as outlined in

Appendix C.3, we compute the contribution to the angular 21cm bispectrum from the

non-linear growth of structure to be

B
NLG,m1m2m3

ℓ1ℓ2ℓ3
(z) = Bℓ1ℓ2ℓ3(z)

⎛

⎜⎜⎜⎜⎜⎝

ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞

⎟⎟⎟⎟⎟⎠ , (5.23)

where the parentheses denote the Wigner-3J symbol, which ensures that the triangle con-

dition is met, expresses isotropy, and is akin to the Kronecker delta in 3D space. The

bispectrum is non-zero if and only if,

(a) −ℓi ≤ mi ≤ ℓi, for i = 1, 2, 3,

(b) m1 + m2 = −m3,
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(c) |ℓi − ℓ j| ≤ ℓk ≤ ℓi + ℓ j, for all permutations of (i, j, k) = (1, 2, 3),

(d) ℓ1 + ℓ2 + ℓ3 is a non-zero integer unless m1 = m2 = m3 = 0.

Further, we can write the bispectrum as a sum of cyclic terms,

Bℓ1ℓ2ℓ3(z) = B12(z) + B13(z) + B23(z), (5.24)

where

B12(z) =
16

π
iℓ1+ℓ2

√︄

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

(4π)3
b3

HI

∫︂

dz1dz2dz3dk1dk2k2
1k2

2

× P(k1)P(k2)Wν(z1)Wν(z2)Wν(z3)D2
+(z1)D+(z2)D+(z3)δT̄b(z1)δT̄b(z2)δT̄b(z3)

× jℓ1[k1r(z1)] jℓ2[k2r(z2)]
∑︂

ℓℓ′ℓ′′

iℓ
′+ℓ′′(−1)ℓβℓ(k1, k2)(2ℓ′ + 1)(2ℓ′′ + 1)

× jℓ′[k1r(z3)] jℓ′′[k2r(z3)]

⎧
⎪⎪⎨

⎪⎪⎩

ℓ1 ℓ2 ℓ3

ℓ′′ ℓ′ ℓ

⎫
⎪⎪⎬

⎪⎪⎭

⎛

⎜⎜⎜⎜⎜⎝

ℓ1 ℓ
′ ℓ

0 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

ℓ2 ℓ
′′ ℓ

0 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

ℓ3 ℓ
′ ℓ′′

0 0 0

⎞

⎟⎟⎟⎟⎟⎠ .

(5.25)

Here ν ≡ ν(z), and we sum ℓ = 0, 1, 2, ℓ′ = ℓ1 − ℓ, ..., ℓ1 + ℓ, and ℓ′′ = ℓ2 − ℓ, ..., ℓ2 + ℓ and

the braces denote the Wigner-6J symbol (eg. Sobelman 1979). The βℓ(k1, k2) functions

connect to (5.22) such that

β0 = 2A0 +
2

3
A2, β1 = 2A1

(︄

k1

k2

+
k2

k1

)︄

, and β2 =
4

3
A2. (5.26)

This result has been found by Pillepich et al. (2007) and rederived here using consistent

notation for our low-z temperature model in equation (5.4). In order to simplify this

expression such that the implementation is practical and can be used in our forecasting

model, we use the Limber approximation and compute the three contributing ℓ terms

separately in Appendix C.4,

Bℓ=0
12 = bHIA

ℓ=0
ℓ1ℓ2ℓ3

∫︂

dzWν(z)δT̄b(z)D2
+(z)θℓ1(z)θℓ2(z), (5.27a)

Bℓ=1
12 = bHI

∑︂

ℓ′ℓ′′

A
ℓ=1,ℓ′ℓ′′

ℓ1ℓ2ℓ3

∫︂

dzWν(z)δT̄b(z)D2
+(z)

[︂

θ1ℓ1ℓ′(z)θ−1
ℓ2ℓ′′

(z) + θ−1
ℓ1ℓ′

(z)θ1ℓ2ℓ′′(z)
]︂

, (5.27b)

Bℓ=2
12 = bHI

∑︂

ℓ′ℓ′′

A
ℓ=2,ℓ′ℓ′′

ℓ1ℓ2ℓ3

∫︂

dzWν(z)δT̄b(z)D2
+(z)θℓ1ℓ′(z)θℓ2ℓ′′(z), (5.27c)

where the Aℓ and the θ-functions are defined in equations (C.32), (C.36), (C.38), (C.42),

(C.44), and (C.47). We have applied the Limber approximation here as the direct evalua-

tion of equation (5.25) was found to be impractical. There is however evidence to suggest
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that the Limber approximation does not remain accurate for narrow z-bins required for

intensity mapping (Di Dio et al. 2018), and fast implementations for oscillatory function

integration (Spurio Mancini et al. 2018) would be necessary to increase the accuracy of

our calculation.

5.4.2 Lensing-ISW bispectrum

The presence and evolution of the gravitational potential along the line of sight affects the

21cm radiation and imprints statistical information about the state of the matter distribu-

tion on the signal. Firstly, the photon paths are disturbed by the presence of gravitational

wells, resulting in a weak lensing contribution to the signal. The lensing potential, θ, for a

source at distance r and at an angular position n̂ is a radial projection of the gravitational

potential, Φ, (Bartelmann & Schneider 2001). In the Born approximation

θ(r, n̂) = − 2

c2

∫︂ r

0

dr′
S k(r − r′)

S k(r)S k(r′)
Φ(r′, n̂), (5.28)

where S k is determined by the curvature, and defined as

S k(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
k−1 sin (r

√
k), k > 0,

r, k = 0,
√
|k|−1 sinh (r

√
|k|), k < 0.

(5.29)

Observations of the weak lensing signal should be feasible by upcoming 21cm exper-

iments and can help map the evolution of the growth function (Pourtsidou & Metcalf

2014).

A second line of sight effect, sourced by the gravitational potential, affects the 21cm

photons. Due to the accelerated expansion of the Universe at late times, potential wells

evolve on timescales shorter than the crossing time for photons. Therefore, photons that

enter the gravitational well obtain a boost in energy, which is higher than the required

energy to leave the well due to the decay of the potential while crossing. This results in an

overall frequency gain which is additive along the photon’s path. The frequency change

due to this integrated Sachs-Wolfe (ISW) effect can be written as (Nishizawa 2014)

∆ν

ν
(r, n̂) =

2

c3

∫︂ r

0

dr′
∂Φ(r′, n̂)

∂t
, (5.30)

where t denotes the conformal time.

These line of sight effects perturb the apparent radial and angular position of the

brightness temperature signal on the sky, δTb = δTb,0(n̂ + ∇θ, ν + ∆ν), where Tb,0 is the
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true, unperturbed signal, ∆ν represents the frequency shift introduced by the ISW effect.

Expanding this signal to first order in the gravitational potential gives

δTb = δTb,0 + ∇δTb,0 · ∇θ + ν
dδTb,0

dν

∆ν

ν
. (5.31)

Considering a thin frequency shell, each term can be expanded in terms of multipole

moments ℓ and m on the sky via equation (5.13). Thus the total coefficients separate

into contributions from the signal when line of sight effects are ignored, indicated by the

superscript “0”, the lensing gradient and the ISW frequency shift,

aνℓm = a
0,ν

ℓm
+ a

L,ν

ℓm
+ a

ISW,ν

ℓm
. (5.32)

The lensing coefficient is given by (Appendix C.5)

a
L,ν

ℓm
=

∑︂

ℓ′m′ℓ′′m′′

Wmm′m′′

ℓℓ′ℓ′′ a
0,ν∗
ℓ′m′θ

ν∗
ℓ′′m′′ , (5.33)

where Wmm′m′′

ℓℓ′ℓ′′ relates to the gaunt integral,H (cf. Verde & Spergel 2002), via

Wmm′m′′

ℓℓ′ℓ′′ ≡
1

2
(−1)m+m′+m′′Lℓℓ′ℓ′′Hmm′m′′

ℓℓ′ℓ′′ , (5.34)

with

Lℓℓ′ℓ′′ ≡ −ℓ(ℓ + 1) + ℓ′(ℓ′ + 1) + ℓ′′(ℓ′′ + 1). (5.35)

Taking the ensemble average of three harmonic coefficients, we note that the line of

sight terms in equation (5.32) are linear in the potential along the line of sight. The po-

tential along the line of sight can be taken to be uncorrelated to the density field at source,

such that linear terms vanish in the bispectrum and only second-order terms remain,

⟨aνℓ1m1
aνℓ2m2

aνℓ3m3
⟩ = ⟨a0,ν

ℓ1m1
a

0,ν

ℓ2m2
a

0,ν

ℓ3m3
⟩+

∑︂

ℓ′m′
ℓ′′m′′

W
m1m′m′′

ℓ1ℓ′ℓ′′

⟨︂

a
∗0,ν
ℓ′m′θ

∗,ν
ℓ′′m′′a

0,ν

ℓ2m2
a

ISW,ν

ℓ3m3

⟩︂

+perms. (5.36)

The first term is akin to the bispectrum due to non-linear gravitational collapse as dis-

cussed in the previous section and the remaining terms make up the contribution due to

the line of sight effects. The ISW and lensing effects are uncorrelated to the undisturbed

signal, as the initial photon distribution from a distant source is not affected by any effects

that distort this signal on the line of sight. This allows us to separate the LISW contribu-

tions from the 21cm angular power spectrum in our expression for the bispectrum. We

find

⟨aνℓ1m1
aνℓ2m2

aνℓ3m3
⟩LISW = W

m1m2m3

ℓ1ℓ2ℓ3
Cℓ2(ν)Qℓ3(ν) + 5 perms., (5.37)
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where we have applied statistical isotropy to relate the 2-point statistics to the power

spectra,
⟨︂

a
∗0,ν
ℓm

a
0,ν

ℓ′m′

⟩︂

= Cℓ(ν)δ
K
ℓℓ′δ

K
mm′ , (5.38)

⟨︂

θ∗νℓma
ISW,ν

ℓ′m′

⟩︂

= Qℓ(ν)δ
K
ℓℓ′δ

K
mm′ . (5.39)

The LISW power spectrum is given by (cf. Verde & Spergel 2002) (see Appendix C.6)

Qℓ(ν) =
2η(z)

c4

∫︂ z

0

dz′
S k[r(z) − r(z′)]

S k[r(z)]S k[r(z′)]r2(z′)

∂PΦ

∂z′
(k, z′)

⃓
⃓
⃓
⃓
⃓
k=ℓ/r(z′)

, (5.40)

where

η(z) = −(1 + z)
dδT̄b

dz
(z). (5.41)

Although the derivation of the LISW in the context of the 21cm signal is new, the

LISW bispectrum is a contamination to the primordial non-Gaussianity bispectrum ob-

served on the CMB in both temperature and E-mode polarization (Goldberg & Spergel

1999; Giovi et al. 2003; Lewis et al. 2011), and, if ignored, introduces a significant bias in

the non-Gaussianity parameter fNL as measured by the Planck mission using the skew-Cℓ

statistic (Munshi & Heavens 2010). Planck Collaboration et al. (2016a) report a 2.8σ

detection of the LISW bispectrum from temperature maps alone, which increases to a 3σ

detection including their polarization data. We therefore compute the amplitude of the

21cm LISW bispectrum and its effect as a contamination on the signal due to non-linear

gravitational collapse.

5.4.3 Primordial bispectrum

Primordial non-Gaussianity (PNG) in the density fluctuations are the most direct way to

probe inflationary physics. Depending on the functional form of the inflaton field, PNG

can be generated during inflation (see Bartolo et al. (2004) and Liguori et al. (2010) for

extensive reviews). The most accurate measurements of PNG to date (Planck Collabo-

ration et al. 2016a), are consistent with perfectly Gaussian initial fluctuations. However,

with errors of order σ fNL
∼ 5 − 40, depending on the triangle shape, the CMB cannot

constrain the non-Gaussianity parameter on the fNL . 1 level, crucial for eliminating

a variety of inflationary models such as models that include an early contraction phase

(Komatsu et al. 2009). As any PNG would affect the distribution of dark matter in the

Universe, and thus that of baryons, a contribution to the 21cm bispectrum is expected.

Pillepich et al. (2007) compute the angular bispectrum from PNG during the dark ages

and compare it to the bispectrum from non-linear collapse. They find that the primordial

bispectrum is ∼ 50 times weaker than the gravitational bispectrum at large scales, but a
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Figure 5.3: We fix the order of the bispectrum modes to be ℓ1 ≥ ℓ2 ≥ ℓ3. Then, (a)

- (e) show the relation between triangle configurations and the bispectrum modes they

represent. When plotting the bispectrum as a function of the ratios of ℓ2/ℓ1 vs. ℓ3/ℓ1,

different triangle configurations separate into different areas of the plot as shown in the

lower right. The bispectrum occupies a triangular shaped region which is due to the

triangle condition obeyed by the bispectrum.

cosmic variance limited experiment could produce competitive, σ fNL
∼ 1, results. More-

over, Muñoz et al. (2015) study the 21cm bispectrum from PNG during the dark ages and

find that 21cm observations can improve CMB constraints for PNG significantly due to

the the high number of observable modes. They predict that a cosmic variance limited

experiment would be able to measure fNL down to σ fNL
∼ 0.03, and thus begin to be

able to constrain single-field slow-roll inflation (Maldacena 2003; Acquaviva et al. 2003),

which predicts fNL = 10−2, thus ruling out a large number of exotic inflation scenarios.

Observations of PNG at lower redshifts rely on the scale dependence of the halo bias and

can achieve competitive constraints for the primordial non-Gaussianity parameter (Mao

et al. 2013; D’Aloisio et al. 2013; Li & Ma 2017; Raccanelli et al. 2017; Karagiannis

et al. 2018). The prospects of constraining PNG with the cosmic 21cm signal are thus

promising.

In this analysis, we focus on the information gain toward the cosmological parame-

ters from the late-time 21cm bispectrum. As the gravitational bispectrum dominates the

bispectrum during the dark ages (Pillepich et al. 2007), the primordial bispectrum will

remain sub-dominant at late times due to the progression of structure formation. We will

therefore ignore the PNG contribution to the bispectrum here.
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5.4.4 Bispectrum representation

The bispectrum can be represented geometrically as a correlation of the signal from the

corners of a triangle where the length of the sides is related to the wavenumber of the

bispectrum. For our computation of the bispectrum we use the triangular representation of

Jeong & Komatsu (2009) shown in Fig. 5.3. We set ℓ1 ≥ ℓ2 ≥ ℓ3, and fix ℓ1, while varying

ℓ2 and ℓ3. Plotting the ratios to the largest ℓ-mode against each other results in a triangular

plot where squeezed bispectrum configurations occupy the upper left corner, equilateral

configurations occupy the upper right corner, folded triangles are in the triangle peak, and

elongated and isoceles triangles occupy the sides of the triangle. We show the relative

amplitudes of our bispectrum calculations for ℓ = 1200 at z = 1 for the NLG and the

LISW bispectrum in Fig. 5.4 and 5.5 respectively. In order to visualize the overall trend

of the bispectrum as a function of triangle configuration, we interpolate the bispectrum

between neighbouring pixels as the statistical isotropy of the signal requires the sum of

modes to be even and thus renders every other pixel zero.

We see for both cases that most of the signal is coming from squeezed or quasi-

squeezed triangle configurations. The non-linear gravity bispectrum shows a large contri-

bution from elongated triangles and three orders of magnitude lower contributions from

equilateral triangle configurations. Similarly, the LISW bispectrum experiences almost

no contributions from equilateral triangles. The dark blue stripe in Fig. 5.5 is due to a

sign flip of the bispectrum and the bispectrum approaches zero for triangle configurations

close to the feature.

An alternative representation with a single degree of freedom is presented in Majum-

dar et al. (2018), where the bispectrum is plotted for two fixed side lengths as a function of

the opening angle of the triangle. Fig. 5.6 shows our results of NLG and LISW bispectra

as a function of the opening angle for two fixed side lengths and illustrates the large am-

plitude difference of ∼ 7 orders of magnitude between the non-linear gravity and LISW

bispectrum for these modes.

Here, we also propose a new representation for the bispectrum which gives a direct

visual connection to the triangle configuration at each point. The sketch in Fig. 5.7

shows the interpretation of this representation. Fig. 5.8 shows our ‘sail’ plots of the

bispectrum for NLG and LISW which contain the bispectrum values for all unique triangle

shapes. We fix the longest side of a triangle to be the horizontal radius of a circle of length

ℓ1, OR. When labelling the second largest side ℓ2, we require ℓ2 cos θ ∈ [ 1
2
ℓ1, ℓ1] and

ℓ2 sin θ ∈ [0,
√

3

2
ℓ1] to construct all possible unique triangles, as any others are obtained

through rotation and relabelling of the sides. Now, for each point P in the shaded region,

we compute the bispectrum of the corresponding triangle configuration and show the

result as a colour scale at that point. We thus produce a colour map, where the x − y
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coordinates are identical to the coordinates of the point P of the corresponding triangle,

allowing for a direct and natural interpretation of the map.

Fig. 5.8 panel (A) shows the same behaviour as Fig. 5.4, where the largest bispectrum

is obtained by squeezed triangles, close to the x-axis, and the lowest in the equilateral

limit. Further, Fig. 5.8 panel (B) can be interpreted in the same way and compared to Fig.

5.5. Whereas the triangle plots allow the bispectrum for a given triplet of modes (ℓ1, ℓ2, ℓ3)

to be read directly, connecting regions of the plot with particular triangle shapes can be

cumbersome. On the one hand, the triangle shape corresponding to any given pixel value

in our ‘sail’ plots can directly be read off by constructing a triangle according to Fig. 5.7.

On the other hand, reading the corresponding (ℓ1, ℓ2, ℓ3) triplet may not be straightforward,

as ℓ2 =
√︁

x2 + y2, and ℓ3 =

√︂

ℓ2
1
+ x2 + y2 − 2ℓ1x.

For both triangle plots and ‘sail’ plots the full bispectrum information is only ob-

tained when stacking the plots for all different values of ℓ1. We have included figures at

ℓ1 = 1200 as an example of the value of the bispectrum.

5.5 Instrument and foreground assumptions

In this section we explore instruments and foregrounds which will both limit the de-

tectability and sensitivity of the quantities derived up to this point.

5.5.1 Instruments

We examine three different experiments in this analysis: CHIME, MeerKAT and SKA.

CHIME4: The Canadian Hydrogen Intensity Mapping Experiment (CHIME), based

in British Columbia, is an interferometer consisting of four 100 x 20 metre semi-cylinders

equipped with radio receivers sensitive to 400MHz - 800MHz (z ∼ 0.8 − 2.5). This

experiment is a dedicated low-redshift 21cm intensity mapping experiment targeting BAO

scales, with applications in FRB detection and pulsar monitoring. We select this telescope

as a currently operational intensity mapping experiment, with the potential for late-time

21cm signal detection.

MeerKAT5: MeerKAT is an array of sixty-four 13.5 metre dishes located in the Karoo

desert in South Africa. The dishes are equipped with three separate receivers, with the

low-frequency band going from 580 MHz to 1015 MHz (z ∼ 0.4 − 1.4). This SKA

precursor will eventually be fully integrated into SKA-MID. We select MeerKAT as it

4see https://chime-experiment.ca/
5see http://www.ska.ac.za/science-engineering/meerkat/
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is a near-future 21cm experiment with the potential to do low-redshift intensity mapping

and is a precursor of SKA-mid.

SKA-MID6: The SKA Mid-Frequency Aperture Array is the South African part of

the multi-purpose Square Kilometre Array and will consist of 190 15 metre dishes, at

the MeerKAT location in the Karoo desert. SKA-Mid will be able to perform intensity

mapping in both single-dish (autocorrelation) and interferometer mode. We focus on the

350 MHz - 1050 MHz (z ∼ 0.35 − 3) range which SKA-MID will be operating at. SKA-

mid is selected to illustrate the degree to which observations may constrain cosmology

over the next decade.

5.5.2 Instrumental noise

CHIME, MeerKAT and SKA-MID can all be operated in an interferometric mode, where

the noise power spectrum can be modelled as (Zaldarriaga et al. 2004; Pourtsidou &

Metcalf 2014)

CN
ℓ =

T 2
sys(2π)

2

∆νto f 2
coverℓ

2
max

, (5.42)

where Tsys is the system temperature of the dishes in the array, to is the total observ-

ing time and ℓmax = 2πDtel/λ determines the largest multipole moment accessible by

an array with diameter Dtel at an observed wavelength λ. The covering fraction, fcover,

is the ratio of the collecting area, Acoll, to the physical area covered by the array, st.

fcover = Acoll/[π(Dtel/2)2]. The system temperature is given as the sum of the angle-

averaged sky temperature and the temperature of the antenna, Tsys = Tant + Tsky. At the

frequencies considered in our analysis, the system temperature is dominated by Tant at

∼ 30− 50K, such that we assume Tsys ≈ Tant. Interferometers cannot resolve scales larger

than those set via the minimal baseline, which we model as a sharp noise increase at

ℓ < ℓmin = 2πDmin/λ.

MeerKAT and SKA-MID can also be operated in single-dish mode, for which the

thermal noise per beam is given via (Olivari et al. 2018)

σt =
Tsys

√︁

tpix∆ν
, (5.43)

where Tsys is the system temperature of the dishes, ∆ν is the frequency binwidth and tpix is

the integration time per beam. The integration time per beam is obtained by distributing

6see https://www.skatelescope.org/mfaa/
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the total integration time to, across Nd dishes,

tpix = Ndto

θ2
FWHM

S area

, (5.44)

where θ2
FWHM

= π2/ℓ2max is the beam area, which sets the smallest scale that can be ob-

served by each dish as ℓmax = 2πDdish/λ, where we use the diameter of the dish, Ddish,

as opposed to the diameter of the array in the interferometer case, and S area denotes the

survey area. Further, the signal is suppressed by the beam when angular wavenumbers ex-

ceed the resolution of the instrument. We model this beam suppression as an exponential

increase in the noise as a function of ℓ,

CN
ℓ = eσ

2ℓ2C
N,thermal

ℓ
, (5.45)

with σ2 = θ2
FWHM

/8 ln 2, setting the scale of signal suppression. The full noise power

spectrum for a single-dish array is then given by (eg. Dodelson 2003)

CN
ℓ = σ

2
t θ

2
FWHMe

θ2
FWHM

ℓ2

8 ln 2 . (5.46)

The noise parameters for each experiment are listed in table 5.1. Experiments will

likely bin their observations into bins with ∆ν ≤ 1MHz (Pourtsidou et al. 2016), how-

ever decreasing the window width for bispectrum observations increases the computa-

tion run-time to levels of impracticality, such that we take a conservative bin width of

∆ν = 10MHz. As the target emission is sourced by the discrete galaxy population, a shot

noise contribution is expected. Chang et al. (2008) find the shot noise contribution in the

case of post-EoR intensity mapping observations to be negligible, and we ignore this term

here.

5.5.3 Foregrounds

Cosmological 21cm observations suffer from large foreground contaminations from both

galactic and extragalactic sources. Successful detections of the signal hinge strongly on

the accurate modelling and removal of these contaminations which can be 4 to 6 orders of

magnitude larger than the signal (Liu et al. 2009; Alonso et al. 2014). Here, we model four

contaminating foreground sources (Santos et al. 2005): extragalactic point sources, extra-

galactic free-free emission, galactic synchrotron emission and galactic free-free emission.

Due to the smooth frequency variation of these foregrounds, a variety of foreground re-

moval strategies have been proposed (Oh & Mack 2003; Barkana & Loeb 2005; Wolz

et al. 2014; Alonso et al. 2015). All of these however leave some degree of residual am-
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Parameter CHIME MeerKAT SKA-Mid

νmin 400 MHz 580 MHz 350 MHz

νmax 800 MHz 1020 MHz 1050 MHz

Tant 50 K 29 K 28 K

Dtel 100 m 800 m 1 km

Dmin 20 m 29 m 34 m

Acoll 8000 m2 9000 m2 33000 m2

Nd 4 64 190

Ddish 20 m 13.5 m 15 m

S area 25000 deg2 25000 deg2 25000 deg2

to 104 hours 104 hours 104 hours

∆ν 10 MHz 10 MHz 10 MHz

Table 5.1: Experimental noise parameters for CHIME, MeerKAT and SKA-Mid. We

include parameters for both interferometry and single-dish noise models.

plitude on the signal. These residuals are often modelled as a power law (Bull et al. 2015),

and we will adopt this model here. Our foreground residuals are modelled as

CFG
ℓ (ν) = ϵ2

∑︂

X

AX

(︄

ℓf

ℓ

)︄nX (︃
νf

ν

)︃mX

, (5.47)

where the sum is taken over all contributing sources X. The power law coefficients nX

and mX, as well as the amplitudes associated with each foreground are listed in table 5.2.

Similar to Bull et al. (2015), we multiply our foreground model with a removal efficiency

coefficient ϵ. Then, ϵ = 1, if no foreground removal has been applied. In their analysis

they found that foregrounds would have to be removed to a level of ϵ . 10−5 to ac-

cess cosmological information. Foregrounds at redshift z & 1 can be large and complex

(Smoot & Debono 2017) and although subtraction to this level should be straight forward

theoretically, as one just needs to model the smooth frequency component and subtract

it from the observation, the large dynamic range between foregrounds and signal makes

this process difficult (Shaw et al. 2014). Additional complications due to the shape of the

beam varying as a function of frequency can result in mode-mixing and make this sim-

ple model of smooth frequency-dependent foregrounds inadequate in practice Liu et al.

(2009). Foreground removal is a key challenge for observations of this kind and strides

towards a more robust understanding are being made. Here, we focus on the capabilities

of a noise-limited detection of the bispectrum and we therefore adopt an optimistic value

of ϵ = 10−6. When this value is raised to higher than ∼ 10−5, we observe a large deterio-

ration of the constraints in agreement with Bull et al. (2015). In such a case, our forecasts

deteriorate to the 10% level at ϵ = 10−4, where the foregrounds swamp out most of the
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Foreground source AX[mK]2 nX mX

Extragalactic point sources 57 1.1 2.07

Extragalactic free-free 0.014 1.0 2.1

Galactic synchrotron 700 2.4 2.8

Galactic free-free 0.088 3 2.15

Table 5.2: Foreground model parameters (Santos et al. 2005).

cosmological information. We would like to stress however that for a real observation,

the level to which the foregrounds can be controlled, will largely determine the success of

the detection.

Fig. 5.2 thus shows an example comparison of the foreground residuals removed

with ϵ = 10−6 to the noise models of MeerKAT in single-dish and interferometer mode

and the power spectrum model at z = 1.

5.6 The Fisher matrix

The Fisher information matrix (Fisher 1935; Tegmark et al. 1997; Hobson et al. 2010)

is a powerful tool which allows us to estimate the minimum error one can expect from

an upcoming experiment by assuming that the likelihood assumes a multivariate Gaus-

sian form in the model parameters. By Taylor expanding the log-likelihood around its

maximum-likelihood value, one can define the Fisher matrix as

Fi j ≡
⟨︄

∂2L
∂θi∂θ j

⟩︄

, (5.48)

where L ≡ − ln L, the negative log-likelihood. The Cramer-Rao inequality (e.g. Heavens

2009; Hobson et al. 2010) then gives a lower bound for the errors one is expected to

attain. When marginalizing over all other parameters in the analysis, the expected error

on parameter i is given by

σi ≥
√︂

(F−1)ii, (5.49)

which reduces the problem of predicting the minimum errors for an experiment to com-

puting the Fisher matrix and inverting it. Tegmark et al. (1997) report the Fisher matrix

for Gaussian data as

Fi j =
1

2
Tr(Ai A j + C−1 Mi j), (5.50)

151



5.6 The Fisher matrix

where C denotes the covariance matrix, Ai ≡ C−1C,i, Mi j ≡ µ,iµT
, j + µ, jµ

T
,i , and µ ≡

⟨x⟩, where x denotes the data vector. We use the standard comma notation to signify

derivatives with respect to the parameter, C,i ≡ ∂C/∂θi.
For power spectrum forecasts, the data vector is taken to be the angular coefficient

observed at some frequency ν,

xνℓm = aνℓm. (5.51)

As µ =
⟨︂

aν
ℓm

⟩︂

= 0, the second term in the trace vanishes and

Fi j =
1

2
Tr(C−1C,iC

−1C, j)

= fsky

∑︂

ν

∑︂

ℓ

(2ℓ + 1)
Cν
ℓ,i

Cν
ℓ, j

(︂

C
ν,tot

ℓ

)︂2
,

(5.52)

where we have summed over all m indices, and introduced a sky covering fraction

fsky = 0.5 which effectively decreases the information gain by half and accounts for the

correlation of nearby modes by the sky mask. We assume that the signal, noise and fore-

ground residuals are all uncorrelated to each other, thus we find that

C
ν,tot

ℓ
= C

ν,S

ℓ
+C

ν,N

ℓ
+C

ν,FG

ℓ
. (5.53)

For the bispectrum analysis, to ensure that the data vector for this analysis is Gaus-

sian distributed, we use a weighted average of the angular bispectrum as the data (see

Appendix C.7)

xνℓ1ℓ2ℓ3 =
∑︂

m1m2m3

aνℓ1m1
aνℓ2m2

aνℓ3m3

⎛

⎜⎜⎜⎜⎜⎝

ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞

⎟⎟⎟⎟⎟⎠ , (5.54)

where the matrix represents the Wigner 3-J symbol. We then assume that the Fisher

matrix is dominated by the dependence of the mean bispectrum and thus the second term

of equation 5.50 as it is when the power spectrum is taken to be the data vector and a large

number of modes are observed. For computational ease, we assume that our bispectrum is

uncorrelated between different frequency bins, such that we observe the bispectrum from

a single frequency bin centred at ν only. The total Fisher matrix is thus the sum of the

contributions from all frequency bins and all contributing modes λ ≡ (ℓ1, ℓ2, ℓ3), which

obey the triangle conditions,

Fi j =
∑︂

ν

∑︂

λ

Fν,λ
i j
. (5.55)

Then, applying Wick’s theorem to evaluate the covariance matrix (ie. equation (C.77)),

C =
⟨︁

(x − µ)(x − µ)t⟩︁ , (5.56)
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after applying the sum (C.80) in computing ⟨x⟩,i, we finally find

Fi j =
∑︂

ν

∑︂

ℓ1ℓ2ℓ3

µ
ν,ℓ1ℓ2ℓ3
,i

µ
ν,ℓ1ℓ2ℓ3
, j

∆ℓ1ℓ2ℓ3C
ν
ℓ1

Cν
ℓ2

Cν
ℓ3

, (5.57)

where ∆ℓ1ℓ2ℓ3 is 6, 2, or 1 when all ℓ’s, two ℓ’s or no ℓ’s are the same respectively, and

µ
ν,ℓ1ℓ2ℓ3
,i

=
∂BNLG
ℓ1ℓ2ℓ3

(ν)

∂θi
+
∂BLISW
ℓ1ℓ2ℓ3

(ν)

∂θi
. (5.58)

This expression is similar to those used in Komatsu & Spergel (2001); Komatsu et al.

(2005); Mangilli et al. (2013); Hill (2018) when studying a Fisher forecast model for the

bispectrum.

We use equations (5.52) and (5.57) to compute the Fisher matrix for power spectrum

and bispectrum observations respectively. The information from both modes of analysis

can be combined simply by adding the Fisher matrices if we assume both statistical mea-

sures to be uncorrelated. The cross correlations of the bispectrum and power spectrum

result in a 5-point function which, to first order in perturbation theory, vanishes. A full

second order analysis of the five-point function is therefore necessary to correctly com-

bine the two statistical measures. Here we follow the approach of Takada & Jain (2004),

assume that both statistical measures are uncorrelated or the correlations are small, and

defer the computation of the 5 point function to a future analysis.

5.7 LISW detection signal to noise

Although we have seen in 5.4.4 that the LISW bispectrum signal can be significantly lower

than that of the NLG bispectrum, considering shape differences between the contribution

may allow a significant signal increase. In order to assess whether the LISW bispectrum

signal is detectable by future experiments, we assume that, for α ≡ (ℓ1, ℓ2, ℓ3,m1,m2,m3)

obeying the triangle conditions, we observe a bispectrum Bobs
α . Suppose the shape of BLISW

α

is fixed and it can be distinguished from other contributions to the bispectrum. Then, we

create and minimize

χ2 =
∑︂

α

(︂

Bobs
α − Bth

α

)︂2

σ2
α

, (5.59)

where

Bth
α ≡ ABLISW

α + BBNLG
α , (5.60)
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for some amplitudesA and B. For simplicity, it is assumed that amplitude for non-linear

gravity is known exactly, so it can be subtracted from the observations, such that

χ2 =
∑︂

α

(︂

B̃obs
α −ABLISW

α

)︂2

σ2
α

, (5.61)

where B̃obs
α ≡ Bobs

α −BBNLG
α . Minimising this function with respect to the LISW amplitude

A, we obtain an estimator

Â =

∑︁

α

B̃obs
α BLISW

α /σ2
α

∑︁

α

(︁

BLISW
α

)︁2
/σ2
α

, (5.62)

with a variance on the estimator given by

σ2

Â =
1

∑︁

α

(︁

BLISW
α

)︁2
/σ2
α

. (5.63)

The variance on the bispectrum is computed in Spergel & Goldberg (1999) as

σ2
α =

⟨︂

B2
α

⟩︂

− ⟨Bα⟩2 ≃ ∆αCν,tot

ℓ1
C
ν,tot

ℓ2
C
ν,tot

ℓ3
, (5.64)

where ∆α is 6, 2, or 1 when all ℓ’s, two ℓ’s or no ℓ’s are the same respectively. The Cℓ

here denote the angular 21cm power spectrum including detector noise.

Assuming now that a fiducial value for our estimator isA = 1, and that our estimator

is unbiased, ⟨Â⟩ = A, we compute the signal to noise ratio for an IM experiment probing

the LISW bispectrum,

S

N
=

√︄
∑︂

all α

(BLISW
α )2

σ2
α

. (5.65)

Importantly, we can sum out all m indices by applying (C.80), such that

S

N
=

⌜⎷
∑︂

ℓ1ℓ2ℓ3

(BLISW
ℓ1ℓ2ℓ3

)2

σ2
ℓ1ℓ2ℓ3

. (5.66)

Fig. 5.9 shows the detection signal to noise ratio as a function of the largest ℓ mode in-

cluded in the sum in the optimal case for which the shape of other contributing bispectra is

known exactly. Despite the large number of modes added, a direct detection of the LISW

contribution to the bispectrum is impossible as even including information from small-

scales does not increase the signal to noise ratio significantly above 10−3. In comparison

to the CMB, where the LISW contribution represents a major contaminant for primordial

non-Gaussianity observations (Kim et al. 2013; Planck Collaboration et al. 2016a), the
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Interferometer Single-Dish Combined

CHIME MeerKAT SKA MeerKAT SKA MeerKAT SKA

Parameter Fid. Value Marginalized error for bispectrum analysis

ΩCDMh2 0.127 3.1 × 10−4 3.7 × 10−4 2.3 × 10−4 1.1 × 10−3 1.0 × 10−3 2.4 × 10−4 1.7 × 10−4

Ωbh2 0.022 8.2 × 10−5 1.0 × 10−4 6.0 × 10−5 3.0 × 10−4 2.9 × 10−4 8.4 × 10−5 5.4 × 10−5

ΩΛ 0.684 2.1 × 10−4 2.4 × 10−4 1.7 × 10−4 1.7 × 10−3 1.6 × 10−3 2.3 × 10−4 1.7 × 10−4

ns 0.962 5.7 × 10−4 5.7 × 10−4 3.9 × 10−4 2.5 × 10−3 2.3 × 10−3 3.8 × 10−4 3.0 × 10−4

As × 109 1.562 5.9 × 10−3 7.2 × 10−3 4.5 × 10−3 2.1 × 10−2 1.9 × 10−2 4.2 × 10−3 3.2 × 10−3

H0 67 8.0 × 10−2 9.7 × 10−2 5.6 × 10−2 3.0 × 10−1 2.8 × 10−1 7.0 × 10−2 4.6 × 10−2

Parameter Fid. Value Marginalized error for power spectrum analysis

ΩCDMh2 0.127 9.3 × 10−4 4.9 × 10−4 3.8 × 10−4 2.5 × 10−3 1.4 × 10−3 4.6 × 10−4 3.4 × 10−4

Ωbh2 0.022 4.2 × 10−4 2.9 × 10−4 2.4 × 10−4 1.0 × 10−3 6.5 × 10−4 2.5 × 10−4 2.0 × 10−4

ΩΛ 0.684 2.9 × 10−3 1.6 × 10−3 1.2 × 10−3 1.2 × 10−2 6.4 × 10−3 1.5 × 10−3 1.1 × 10−3

ns 0.962 1.5 × 10−3 9.0 × 10−4 7.2 × 10−4 8.0 × 10−3 4.5 × 10−3 8.4 × 10−4 6.5 × 10−4

As × 109 1.562 8.4 × 10−3 8.4 × 10−3 6.3 × 10−3 4.9 × 10−2 2.5 × 10−2 7.6 × 10−3 5.4 × 10−3

H0 67 3.0 × 10−1 2.3 × 10−1 1.9 × 10−1 8.9 × 10−1 5.1 × 10−1 2.1 × 10−1 1.6 × 10−1

Parameter Fid. Value Marginalized error for combined power spectrum + bispectrum analysis

ΩCDMh2 0.127 9.2 × 10−5 1.2 × 10−4 5.5 × 10−5 6.5 × 10−4 4.9 × 10−4 1.1 × 10−4 5.3 × 10−5

Ωbh2 0.022 4.0 × 10−5 5.8 × 10−5 3.1 × 10−5 2.1 × 10−4 1.7 × 10−4 5.3 × 10−5 2.9 × 10−5

ΩΛ 0.684 1.7 × 10−4 2.2 × 10−4 1.4 × 10−4 1.7 × 10−3 1.4 × 10−3 2.2 × 10−4 1.4 × 10−4

ns 0.962 1.4 × 10−4 1.1 × 10−4 8.2 × 10−5 1.2 × 10−3 8.1 × 10−4 1.0 × 10−4 7.3 × 10−5

As × 109 1.562 1.7 × 10−3 2.2 × 10−3 1.2 × 10−3 1.3 × 10−2 9.8 × 10−3 1.9 × 10−3 1.1 × 10−3

H0 67 3.2 × 10−2 4.5 × 10−2 2.2 × 10−2 1.9 × 10−1 1.6 × 10−1 4.1 × 10−2 2.1 × 10−2
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5.8 Fisher predictions

single-dish mode, and combine their Fisher matrices in the final column as they are un-

correlated.

We find that bispectrum observations have the potential to improve the parameter

constraints from power spectrum observations significantly due to the large number of

accessible modes, Nmodes ∼ ℓ3max, but the bispectrum does not contain all the information

and a combination of both statistics is required to obtain the best constraints. All experi-

ments exhibit errors from the bispectrum forecasts which are a factor of ∼ 1.1 − 7 better

than compared to the power spectrum. Combinations of both show an order of magnitude

reduction in our error forecasts for most parameters. We find the strongest constraints

across our analysis for ΩΛ, ns and H0. This is in line with the expectation that IM experi-

ments should improve the constraints of H0 and ΩΛ the most, as well as parameters such

as ns which are correlated to these (Bull et al. 2015). Comparing our results for MeerKAT

in interferometry mode to Planck Collaboration et al. (2016b), the 21cm power spectrum

forecasts show a factor of ∼ 2 − 5 decrease in marginalized errors for most parameters,

with the exception ofΩbh2 where we do not achieve the same level of sensitivity. The bis-

pectrum promises to tighten constraints on all cosmological parameters by up to a factor

of 10, thus having the potential to bridge the gap between current low-redshift and CMB

observations of the cosmological parameters. Even in single-dish mode, we find that our

power spectrum forecasts result in similar errors as those observed with Planck, and the

bispectrum again improving these findings typically by a factor of 3. The best possi-

ble constraints are achieved by combining interferometric and single-dish observations of

both the power spectrum and the bispectrum, these combinations marginally improve the

constraints obtained from interferometric power spectrum and bispectrum combinations.

Of note is that we find that CHIME achieves better constraints from bispectrum ob-

servations than MeerKAT, even though power spectrum observations find error constraints

of a factor of ∼ 2 worse than MeerKAT. We find the CHIME noise power spectrum to be

an order of magnitude lower than that of MeerKAT and would thus naively expect the

CHIME power spectrum observations to result in stronger constraints. This is not the

case as the 21cm power spectrum peaks on scales ℓ ∼ 800 which are on the edge of

resolvability for CHIME. Thus despite higher instrumental noise, compared to CHIME,

MeerKAT is able to resolve smaller scales, due to its larger baselines, and thus is sensitive

to the peak in the signal power spectrum. For bispectrum observations, neither telescope

is sensitive to the largest amplitude triangles and despite being sensitive to a larger num-

ber of modes, they are noisier for MeerKAT observations, such that CHIME is able to use

the bispectrum to a higher potential.

Fig. 5.10 shows the 1σ and 2σ error ellipses from our analysis for both bispectrum-

only and power spectrum plus bispectrum combined observations by MeerKAT in inter-
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5.9 Summary

ferometry mode. The combination of the information gain from both bispectrum and

power spectrum is thus not only useful to decrease errors, but can be a helpful tool to

break degeneracies between parameters.

5.9 Summary

The most precise observations of the CMB to date (Planck Collaboration et al. 2016b)

have confirmed the simple picture of a six parameter cosmological model with a cosmo-

logical constant and a flat curvature. Although there is not sufficient evidence to strongly

favour any other model at this time (Heavens et al. 2017), tensions between CMB and

low-redshift observations of weak lensing and local measurements of the Hubble rate still

persist. New low-redshift probes may help to rectify these short-comings of the model

and give new insights into the cosmological evolution since the time of recombination.

The cosmological 21cm signal is an ideal probe as HI and thus the 21cm signal is present

at all epochs after the CMB is released. 21cm intensity mapping experiments will soon

supplement galaxy surveys for mapping the large scale structure of the universe by ob-

serving the diffuse 21cm emission from hydrogen gas inside low-redshift galaxies. These

experiments will probe unprecedented cosmological volumes and provide precise red-

shift information for their observations, due to the direct relation between the observed

frequency of the signal and the redshift of the source.

We have studied the 21cm bispectrum and power spectrum in the context of IM ob-

servations by CHIME, MeerKAT, and SKA-mid and derived the expression for the 21cm

bispectrum due to the non-linear collapse of structure post reionization. For the first time,

we derived the expected contribution to the 21cm bispectrum from the lensing-ISW bis-

pectrum which is due to the evolution of the density field along the line of sight. In

contrast to CMB observations, we find, as expected, that the lensing-ISW bispectrum as

only introduces a negligible bias to the parameter constraints and we predict a cumula-

tive signal to noise ratio of 10−3, making a detection impossible. We introduce a new

way of visualizing the bispectrum which allows for a direct relation between the trian-

gle shape and the resulting amplitude. Finally, we analysed the predictive capabilities

of these bispectrum contributions in the context of a Fisher forecast model and found

that the bispectrum from IM experiments has the potential to greatly improve cosmo-

logical parameter contrains. Although not sensitive to the largest amplitude triangles,

the large number of observable modes should allow interferometric IM experiments to

extract enough information to decrease parameter errors by an order of magnitude com-

pared to the Planck measurements. For the best case scenario, the combined analysis of

interferometry and single-dish observations of both power spectrum and bispectrum with
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5.9 Summary

SKA-mid, an impressive level of precision can be achieved. We find a relative marginal-

ized error of < 0.1% for all cosmological parameters, except for Ωbh2 for which we find

a relative error of ∼ 0.13%. The bispectrum is especially sensitive to ns where we find a

relative marginalized error of < 0.01%. It is important to reiterate that these results are

heavily subject to the level of foreground removal that can be achieved, and we have used

an optimistic foreground removal efficiency of ϵ = 10−6 to explore the full, noise limited

potential of bispectrum observations.
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Chapter 6

3D Power Spectrum Analysis

In this short chapter, we introduce the 3D analysis of the 21cm signal in the spherical

harmonic spherical Bessel function basis as an approach to deal with wide angle 21cm

survey data. We first express the 21cm power spectrum in this basis. Then we determine

the perturbation of this result by the presence of redshift space distortions from peculiar

velocities in the hydrogen gas emitting the signal. Finally, we introduce the window

function of a real 21cm survey into our calculation as well as the effects of an angular

mask.

6.1 Introduction

With the advent of 21cm observatories able to survey large sections of the sky, many of

the analysis techniques based on flat-sky assumptions will be inadequate to analyse the

incoming data. It is therefore essential to extend these techniques to deal with large area

observations. Additionally, one of the strengths of the 21cm observations highlighted in

the previous chapters is the direct relation between observed frequency and redshift of the

source. To take full advantage of this property, we need to introduce an alternative to the

conventional binning of the signal and analysing each bin separately.

Similar challenges were overcome in the analysis of weak lensing surveys at the start

of the millennium. For lensing studies, precise redshift information of the source galaxies

is expensive to obtain and for large volume surveys is therefore obtained photometri-

cally. Although errors on the photometric redshifts can be appreciable, their inclusion in

the analysis can remove systematic errors which makes obtaining the redshifts worth the

additional integration time. Presented with the redshift information of the sources, the

statistical analysis ought to take advantage of this additional information. Heavens (2003)

has demonstrated the proper way to deal with large angle surveys that contain redshift in-

formation of the sources in the context of weak lensing studies. Here, the idea of a natural
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6.2 21cm cosmology in three dimensions

3D basis for the source population on the spherical sky was exploited to decrease statis-

tical errors in the analysis. The natural basis considered is that of a spherical harmonic

spherical Bessel function basis, as these represent the eigenfunctions of the Laplace op-

erator in spherical coordinates. Whereas the source population for weak lensing studies

consists of individually resolved galaxies, leading to a discrete formulation of the basis

transforms, in the context of 21cm intensity mapping surveys, the signal can be consid-

ered continuous as a result of the unresolved mapping of 21cm brightness temperatures

across the sky and the presence of precise radial information of the source plane. For a

continuous field f (r, θ, φ) expressed in spherical polar coordinates, we define the spherical

harmonic spherical Bessel function transform as

fℓm(k) =

√︃

2

π

∫︂

d3r f (r, θ, φ) jℓ(kr)Y∗ℓm(θ, φ), (6.1)

where Y∗
ℓm

denotes the complex conjugate of the spherical harmonics at angular multipoles

ℓ and m, and jℓ represents the spherical Bessel function. Applying the orthonormality

relations for spherical harmonics, an inverse transform defining the field f in terms of its

coefficients in the 3D basis can be derived as

f (r, θ, φ) =

√︃

2

π

∫︂

dκκ2
∑︂

ℓm

fℓm(κ) jℓ(κr)Yℓm(θ, φ). (6.2)

The separation of modes according to their wavelengths and the freedom to analyse linear

modes only is another advantage of the radial decomposition through the spherical Bessel

function.

In this chapter we thus apply the spherical harmonic spherical Bessel function basis

to the 21cm brightness temperature field and compute the 3D 21cm power spectrum in

section 6.2. Two modifications to the resulting power spectrum are then introduced. In

section 6.3 we find the 3D 21cm power spectrum when peculiar velocities of the sources

lead to redshift space distortions. Then, in section 6.4 we discuss two effects introduced

by the limitations of observations, and thus a radial window function as well as an angular

mask are included into our calculation here. Finally we summarize the chapter and allude

to possible extensions of the calculation in section 6.5.

6.2 21cm cosmology in three dimensions

The 21cm signal, similar to weak lensing, is an inherently three dimensional signal and

information is bound to be lost due to discontinuous sampling of the signal along the

line of sight. At late times the signal is directly related to the underlying dark matter
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6.2 21cm cosmology in three dimensions

density field, as neutral hydrogen gas in the post EoR Universe is primarily located in

self-shielded gas clouds inside galaxies. We can thus write the brightness temperature as

a biased tracer of the density field, similar to chapter 5,

δTb[r(z)n̂, z] = δT̄b(z) {1 + bHI(z)δ[r(z)n̂, z]} , (6.3)

where we have split the signal into a homogeneous and fluctuating part. To first order

in perturbation theory, the density fluctuations simply grow as a function of the growth

factor,

δ[r(z)n̂, z] = D+(z)δ[r(z)]. (6.4)

In order to avoid the information loss from the discrete binning of the observations,

we transform the observed brightness temperature fluctuations into the spherical harmonic

spherical Bessel basis, using equation (6.1),

aℓm(k) =

√︃

2

π

∫︂

d3rf δTb[rt(z) n̂, z] jℓ[krf(z)] Y∗ℓm(n̂). (6.5)

In the above expression we have noted explicitly that the transformation of the signal

is performed according to some fiducial cosmology, as indicated by the subscript ‘f’.

Similarly, the signal will be observed in the context of some true cosmology, or model

cosmology when the signal is simulated, and thus we note this by the index ‘t’. In the

following, we will omit the explicit expression of fiducial functions, such that rf = r. We

can further see that this expression splits into two terms after applying equation (6.3),

where the first only contributes at ℓ = m = 0, due to the isotropic distribution of the signal

on the sky. For angular multipoles ℓ and m different from 0, the signal transform can then

be expressed as

aℓm(k) =

√︃

2

π

∫︂

dz d2 n̂δT̄b(z) bHI(z) D+(z) δ[rt(z)] jℓ[kr(z)] Y∗ℓm(n̂)
c

H(z)
r2(z). (6.6)

Next, we use (6.2) to inverse transform the density field in order to relate the coef-

ficients of the brightness temperature signal to the coefficients of the density field. This

transformation is done with respect to the underlying true cosmology of the data, therefore

δ[ρ(z)] =

√︃

2

π

∫︂

dκκ2
∑︂

ℓm

δℓm(κ) jℓ[κρ(z)]Yℓm(n̂), (6.7)
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6.2 21cm cosmology in three dimensions

where, for notational ease, we write rt = ρ. Only the model cosmology guarantees

isotropy, which is a required feature of the matter power spectrum, which we will show

this expression to be related to.

Then, combining expressions (6.6) and (6.7), the angular dependence is restricted

to the spherical harmonics. For an all-sky survey the angular dependence can thus be

integrated out using the fact that spherical harmonics are normalized and orthogonal,

∫︂

d2 n̂Yℓm(n̂)Y∗ℓ′m′(n̂) = δK
ℓℓ′δ

K
mm′ , (6.8)

where δK denotes the Kronecker delta function. Using this relation and performing the

sum over all angular multipoles, we obtain

aℓm(k) =

∫︂

dκκ2Mℓ(k, κ)δℓm(κ), (6.9)

and we have defined

Mℓ(k, κ) ≡
2c

π

∫︂

dz
r2(z)

H(z)
δT̄b(z)bHI(z)D+(z) jℓ[kr(z)] jℓ[κρ(z)]. (6.10)

The three dimensional 21cm power spectrum is then obtained as the expectation value of

two spherical harmonic spherical bessel coefficients,

⟨︁

aℓm(k)a∗ℓ′m′(k
′)
⟩︁

=

∫︂

dκdκ′κ2κ′2Mℓ(k, κ)Mℓ′(k
′, κ′)

⟨︁

δℓm(κ)δ∗ℓ′m′(κ
′)
⟩︁

. (6.11)

Heavens (2003) defines the matter power spectrum in terms of the density field coefficients

through
⟨︁

δℓm(κ)δ∗ℓ′m′(κ
′)
⟩︁

=
P(κ)

κ2
δD(κ − κ′)δK

ℓℓ′δ
K
mm′ , (6.12)

where δD is the Dirac delta function. We thus arrive at an expression which connects the

three dimensional 21cm power spectrum explicitly to the matter power spectrum, as

Cℓ(k, k
′) ≡ ⟨︁

aℓm(k)a∗ℓm(k′)
⟩︁

=

∫︂

dκκ2P(κ)Mℓ(k, κ)Mℓ(k
′, κ). (6.13)

Computing this power spectrum is numerically difficult due to the rapid oscillating

nature of the spherical Bessel functions being integrated when computing Mℓ(k, κ). The

widely used Limber approximation (Loverde & Afshordi 2008; and appendix C.4) can be

applied to reduce the number of integrals that need to be computed, and we arrive at the
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6.3 The effects of redshift-space distortions

simplified form

CLimber
ℓ (k, k′) =

2c2

π

∫︂

dz
r2(z)b2

HI
(z)

|r′(z)|H2(z)
δT̄ 2

b (z)D2
+(z) jℓ[kr(z)] jℓ[k

′r(z)]P

(︄

ℓ

r(z)
, z

)︄

. (6.14)

Although being widely used, the Limber approximations fails in a number of situations

(??Di Dio et al. 2018) and a more rigorous fast computation of the Bessel functions is

desirable (see eg. Levin 1982; 1996; 1997; Assassi et al. 2017). Recently, Spurio Mancini

et al. (2018) have compared implementations of fast numerical methods for the evaluation

of multiple integrals involving Bessel functions as an alternative to applying the Limber

approximation. In order for our formalism to be usable, a detailed study into the validity

of the Limber approximation in this context and an adaptation of such fast codes would

be necessary.

In Figs 6.1 and 6.2 we show the approximate computation of the 3D power spectrum,

using the Limber approximation, for a number of angular and radial modes.

6.3 The effects of redshift-space distortions

In this section we study the peculiar velocities of the hydrogen gas in the IGM and their

effect on the 3D power spectrum. Peculiar velocities give rise to distortions in redshift-

space, so the observed redshift does not correspond to the true cosmological redshift of

the gas observed. In a first step we will see what these distortions are for high redshift

objects and then include the effect into our 3D 21cm power spectrum.

6.3.1 Peculiar velocities

When making cosmological observations, we are inherently limited to the the observed

redshift as a means to infer the distance towards the object in question. In a completely

homogeneous universe, the mapping from the redshift to the comoving distance would be

directly given through the FRW metric, however inhomogeneities in the density field in-

troduce peculiar velocities which affect this relation (Kaiser 1987). The observed redshift

can be related to the cosmological redshift if the peculiar velocity is know. Consider a

photon travelling on a null geodesic, emitted at some time tE and detected later at tO. A

short time ∆tE later, the source, travelling with peculiar velocity u ≡ dr/dt, emits another

photon which the observer sees ∆tO after the first photon was caught. Between emitting

both pulses of light, the source has thus changed its relative comoving radial separation to

the observer by u∆tE. The expressions for the distance to the source at emission of both
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6.3 The effects of redshift-space distortions

photons is then

r =

∫︂ tO

tE

c

a(t)
dt, (6.15)

for the first, and

r + u∆tE =

∫︂ tO+∆tO

tE+∆tE

c

a(t)
dt (6.16)

for the second. Using (6.15) in (6.16) and assuming that both time intervals are short,

such that a(t) remains constant between the emission of both light pulses, we find the

observed redshift as a function of the peculiar velocity of the source as

1 + zobs ≡
∆tO

∆tE

=
a(tO)

a(tE)
+

ua(tO)

c
. (6.17)

Using the definition of the cosmological redshift from chapter 2, the observed redshift for

a source with peculiar velocity u is thus

zobs = ztrue +
u

c
. (6.18)

For cosmological observations, the distance to the source recovered from the observed

redshift is thus not identical to the radial distance to the source. Let s be the distance

derived from zobs, whereas r is the true distance to a cloud of hydrogen gas, then

s =

∫︂ zobs

0

cdz′

H(z′)
, (6.19)

and

r =

∫︂ ztrue

0

cdz′

H(z′)
, (6.20)

which can be combined with equation (6.18) to find the relation between redshift-space

and real space distances,

s = r +
u

H(z)
. (6.21)

6.3.2 Redshift-space analysis

Whereas at the beginning of this chapter we have assumed that the redshift we observe

can be directly related to a distance coordinate of the source, we will now expand on the

idea of a peculiar velocity of the source and see how the 3D power spectrum changes as

sources are no longer stationary. Observing hydrogen gas at a given redshift, the asso-

ciated distance coordinate is distorted by the peculiar velocity of the gas. Therefore, we

have to write the brigthness temperature fluctuation in terms of the observed redshift and
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the distance measure related to it, s,

δT
(s)

b
(s) =

[︂

1 + bHI(s)δ(s)(s)
]︂

δT̄b(s). (6.22)

Note that this relation is different from equation (6.3), which is expressed in terms of the

true distance to the source gas, r,

δT
(r)

b
(r) =

[︂

1 + bHI(r)δ(r)(r)
]︂

δT̄b(r). (6.23)

As before, we transform the redshift space signal

a
(s)

ℓm
(k) =

√︃

2

π

∫︂

d3s
[︂

1 + bHI(s)δ(s)(s)
]︂

δT̄b(s) jℓ(ks)Y∗ℓm(n̂). (6.24)

An application of the continuity condition for the density of neutral hydrogen reveals that

we may transform from redshift space to real space using d3s ρHI(s) = d3r ρHI(r) and thus

obtain, for ℓ and m different from zero,

a
(s)

ℓm
(k) =

√︃

2

π

∫︂

d3r
[︂

1 + bHI(r)δ(r)(r)
]︂

δT̄b(s) jℓ(ks)Y∗ℓm(n̂), (6.25)

where we have conserved the hydrogen distribution across the change of frame of refer-

ence. We will now proceed by showing that the redshift space quantities are in fact first

order quantities, which is why we have explicitly noted the zero order term in the above

expression. The redshift space distortions are thus restricted to the argument of the bright-

ness temperature signal and the spherical Bessel function. We have seen in section 6.3.1

that the radial coordinate in redshift space is related to the real distance to the source r via

a small perturbation, and thus we can Taylor-expand the redshift space quantities,

δT̄b(s) jℓ(ks) ≈ δT̄b(r) jℓ(kr) +
u(r)

H(r)

d

dr

[︂

δT̄b(r) jℓ(kr)
]︂

. (6.26)

The peculiar velocity u of a cloud of gas can be related to the underlying density field as

the baryonic matter is coupled to the bulk flow of the dark matter. In appendix D.1 we

find the relation to be

u(r) = aH(a) f (Ωm)

√︃

2

π

∫︂

dk
∑︂

ℓm

δ
(r)

ℓm
(κ)Yℓm(n̂)

d

dρ
jℓ(κρ), (6.27)

where

f (Ωm) ≡ a

δ

dδ

da
≃ Ω0.6

m . (6.28)
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6.3 The effects of redshift-space distortions

We can thus see that the second term in the Taylor expansion (6.26) isO(δ). Therefore, the

3D coefficient retains two terms contributing at first order. As before, our assumption of

an isotropic signal guarantees that the 0th order term only contributes for angular moments

ℓ = m = 0, such that the coefficient is O(δ) as long as we stay away from the monopole,

a
(s)

ℓm
(k) =

2

π

∫︂

drdκ
r2 f (Ωm)

1 + z(r)

d

dρ
jℓ(κρ)

d

dr

[︂

δT̄b(r) jℓ(kr)
]︂

δℓm(κ)

+
2

π

∫︂

drdκr2κ2δT̄b(r) jℓ(κρ) jℓ(kr)δℓm(κ).

(6.29)

The second term in this expression can be easily identified with equation (6.9). In a similar

fashion, we invert the order of integration in the first term and define

Mℓ(k, κ) =
2

π

∫︂

dr
r2

1 + z(r)

d

dρ
jℓ(κρ)

d

dr

[︂

δT̄b(r) jℓ(kr)
]︂

. (6.30)

Here we note that at low redshifts the brightness temperature signal varies only slowly

and we assume that dδT̄b(r)/dr ≈ 0, which allows us to eliminate derivatives from the

above expression. The only derivatives remaining are those of spherical bessel functions

where we can use the following identity

d

dx
jℓ(x) = jℓ−1(x) − l + 1

x
jℓ(x), (6.31)

remembering that for this calculation we have ℓ > 0. Next, we introduce the explicit

redshift evolution of the density field. It is easy to see that the growth function carries

through to this point, and we can change the variable of integration to obtain

Mℓ(k, κ) =
2c

π

∫︂

dz
kr2(z)

(1 + z)H(z)
δT̄b(z)D+(z)

×
{︄

jℓ−1[κρ(z)] jℓ−1[kr(z)] − ℓ + 1

κρ(z)
jℓ[κρ(z)] jℓ−1[kr(z)]

−ℓ + 1

kr(z)
jℓ−1[κρ(z)] jℓ[kr(z)] +

(ℓ + 1)2

kκr(z)ρ(z)
jℓ[κρ(z)] jℓ[kr(z)]

}︄

,

(6.32)

where we have factored out one factor of κ for computational ease when introducing the

power spectrum. Therefore, the spherical harmonic spherical bessel coefficient can be

written as

a
(s)

ℓm
(k) = f (Ωm)

∫︂

dκκMℓ(k, κ)δℓm(κ) + a
(r)

ℓm
(k), (6.33)

and we thus find that the effects of redshift space distortions introduce an additional term

in the 3D coefficient. Finally, a similar calculation as in section 6.2 shows that the power
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spectrum results in

C
(s)

ℓ
(k, k′) =C

(r)

ℓ
(k, k′) + f (Ωm)

∫︂

dκκP(κ)
[︁

Mℓ(k, κ)Mℓ(k
′, κ) +Mℓ(k, κ)Mℓ(k

′, κ)
]︁

+ f 2(Ωm)

∫︂

dκP(κ)Mℓ(k, κ)Mℓ(k
′, κ).

(6.34)

We finally see that the effects of redshift space distortions result in a perturbation to the

real space power spectrum, probing the function f (Ωm) directly.

6.4 Observational effects

In the context of 21cm intensity mapping experiments, real observations will be split into

a series of tomographic slices. The instrumental response within each observed frequency

bin can be modelled as a Gaussian window function, thus changing the power spectrum

from equations (6.13) and (6.34). These equations are a good approximation for the power

spectrum for observations with very closely separated frequency bins, or for modes larger

than the bin separation, k . π/∆r. In general, however, a continuous radial projection

through the spherical Bessel functions will be inappropriate for tomographic observations.

Let the observed signal from a frequency slice labelled by an index i be

δT obs
b,i (n̂) =

∫︂

dzWνi(z)δTb[ρ(z)], (6.35)

where Wνi(z) denotes the Gaussian window function centred on νi, the central frequency

of the ith tomographic slice. The radial dependence of the observed signal is then set by

the frequency bin and we transform the observed signal into spherical harmonic space,

ai
ℓm =

∫︂

d2 n̂dzWνi(z)δTb[ρ(z)]Y∗ℓm(n̂). (6.36)

As in the previous sections, when expressing the signal in terms of fluctuations in the

density field, the 0th order term vanishes for ℓ ≠ 0 ≠ m. For all modes except the

monopole, we introduce the inverse transform of the density fluctuations and resolve the

angular integral to get

ai
ℓm =

√︃

2

π

∫︂

dzdκδℓm(κ) jℓ[κρ(z)]Wνi(z)δT̄b(z)bHI(z)D+(z). (6.37)

Comparing this result to equation (6.9), we see that we find a similar result as in the

continuous case, except that the mixing matrix M is projected onto the ith tomographic
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bin as

ai
ℓm =

∫︂

dκMi
ℓ(κ)δℓm(κ), (6.38)

with

Mi
ℓ(κ) =

√︃

2

π

∫︂

dz jℓ[κρ(z)]Wνi(z)δT̄b(z)bHI(z)D+(z). (6.39)

The cross power between two frequency slices i and j is then

C
i, j

ℓ
=

∫︂

dκκ2P(κ)Mi
ℓ(κ)M

j

ℓ
(κ). (6.40)

which has a similar form to the result found in section 6.2.

Additionally, future 21cm observations, although probing large areas of the sky, may

be limited to a subset of the full-sky information. This can occur either through obser-

vational constraints which limit experiments to observe less than the full-sky, or by some

regions in the observed field being inadequate for the desired analysis and one wanting to

mask out those regions from the observation. Both cases can be modelled by the applica-

tion of an angular mask to the signal model, such that

δT obs
b (r) = δTb(r)X(n̂), (6.41)

where X(n̂) gives the sensitivity to the signal over the sky. As Heavens & Taylor (1995)

note, an analysis in spherical coordinates can naturally incorporate this angular mask, and

we find that the coefficients assume a similar form for the 21cm analysis as presented in

their work,

aobs
ℓm (k) =

∫︂

dκκ2
∑︂

ℓ′m′

Mℓℓ′(k, κ)δℓ′m′(κ)X
mm′

ℓℓ′ , (6.42)

where we define Mℓℓ′ similarly to equation (6.10) as

Mℓℓ′(k, κ) ≡
2c

π

∫︂

dz
r2(z)

H(z)
δT̄b(z)bHI(z)D+(z) jℓ[kr(z)] jℓ′[κρ(z)], (6.43)

and

Xmm′

ℓℓ′ =

∫︂

d2 n̂Y∗ℓm(n̂)Yℓ′m′(n̂)X(n̂). (6.44)

When no mask is applied or the observations achieve full-sky coverage, then the mask

X(n̂) = 1 and Xmm′

ℓℓ′ = δ
K
ℓℓ′δ

K
mm′ , reducing the coefficient to that found in equation (6.9).
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6.5 Summary

The cosmic 21cm signal is an inherently three-dimensional signal due to the ubiquitous

nature of atomic hydrogen in the Universe. Radiation of this kind will come to us from all

distances across the entire sky. When next generation telescopes observe large regions of

the sky, the flat-sky approximation that many analysis techniques are based on will even-

tually become inadequate in characterizing the signal, potentially leading to systematic

errors. We have introduced the concept of a 3D analysis in the natural spherical basis that

is the spherical harmonic spherical Bessel function basis in the context of 21cm observa-

tions as a means to analyse 21cm data from such large area observations. The resulting

3D power spectrum is an integral over mixing matrices, characteristic for the 3D analysis.

Redsift space distortions due to the peculiar motion of the gas emitting the 21cm radiation

leads to the pertubation of the real space spectrum.

In this chapter we have derived expressions of the 3D power spectrum, which pro-

vides a framework for analysis of 21cm surveys for which the flat-sky approximation

is inadequate. In this formalism, radial and transverse effects naturally separate and we

therefore propose this formalism for use in large angle 21cm studies. The computation

of the power spectrum is however numerically difficult and requires a fast evaluation of

highly oscillatory integrals. Further work is thus required to evaluate the power spectrum

in this formalism and determine the level at which statistical and systematic errors of a

21cm study may be affected when using this basis.
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“You’re not Dirac, Claude.”

− Jonathan R. Pritchard.

Part V

Conclusions

173



Chapter 7

Conclusion

7.1 Thesis conclusion

The standard cosmological model, ΛCDM, has been carefully created from a series of

theoretical advances throughout the 20th century. The details of the model have been

confirmed in the recent decades with the growing number of precise measurements of the

anisotropic nature of the CMB and the statistical distribution of structure. As a result,

we have a model of the origin, present and fate of the Universe closer to the truth than

ever before. There remain however a large number of unsolved questions, both on the

theoretical side as well as observationally. We know from supernovae observations that a

strange pressure has taken over the energy budget of the Universe causing an accelerated

expansion of space-time. Though theoretically modelled well by a cosmological constant,

we do not know of a mechanism creating this dark energy which represents around 70%

of all the energy in the Universe. Further, not even the majority of gravitational matter

is understood well. Only about 5% of the energy content can is in the form of baryonic

matter, leaving about 25% as dark matter, currently unexplained by the standard model of

particle physics. There exist also a number of statistically significant observational dis-

crepancies between different cosmological probes, which all cause tension for the model.

As an example, the locally measured expansion rate from the distance ladder is consis-

tently faster than that inferred from CMB observations. Furthermore, epochs such as the

Dark Ages and the Epoch of Reionization remain unobserved, yet present crucial devel-

opmental stages of the Universe.

Many of these current shortcomings in our understanding will be addressed in the

near future by a new generation of land- and space-based observatories. Whether it is

projects like the James-Webb Space Telescope, trying to expand on the success of the

Hubble Space Telescope, the Large Synoptic Survey Telescope and Euclid raising the

bar for dark energy and dark matter surveys, or the Square Kilometre Array peering into
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unprecedented depths for galaxy surveys and able to observe the Epoch of Reionization,

the coming decade will experience an explosion of high quality cosmological data. As a

consequence of these technological advances, the astronomical community is tasked with

the refinement of their analysis techniques which take full advantage of the incoming data.

This thesis has identified two avenues to engage with the growing quantity and quality of

the observed data in the context of 21cm observations. The two main parts of the thesis

thus discuss numerical and analytic analysis of the 21cm signal.

In part III we highlight the potential of machine learning techniques applied in the

data analysis of cosmic 21cm observations. Inferring the signatures of the first stars and

galaxies from EoR observations requires model evaluations which are potentially numer-

ically expensive. With the large influx of data upcoming, efficient numerical emulation

of the models can help to increase the rate at which the data can be analysed. Chapter 4

therefore presents the use of an artificial neural network to complete this task. We train

our network on a training sample of 21cm power spectra obtained by fast semi-numerical

simulations of the EoR. Using the latin-hypercube distribution technique for the training

parameters, an optimal learning strategy can be achieved. Not only do we show that a

speed-up of 3 orders of magnitude with respect to conventional model evaluation can be

achieved during the parameter inference, but we also show that with low size training

sets, the network still performs well enough to be used in an application with observa-

tional data. This opens a wide range of applications for neural networks to be used in data

analysis of upcoming 21cm observations. Whether it would be the first-time use of fully

numerical simulations in a parameter inference study or the inclusion of the network in a

model comparison study, neural networks, and more broadly machine learning, will play

a crucial role in tackling the large cosmological data sets of the 21st century.

In part IV we investigate two analytical techniques to enhance 21cm data analysis.

With the prospect of obtaining 21cm maps from intensity mapping surveys, the power

spectrum of the observed brightness temperature fluctuations can be readily measured.

Due to the non-linear collapse of structure, these maps should contain a significant non-

Gaussian component which will be able to aid in constraining the cosmological parame-

ters. This non-Gaussian component will be manifest in higher order statistics of the field,

and we therefore analyse the expected bispectrum due to this non-linear collapse. Fur-

thermore, we compute the bispectrum due to the cross-correlation of lensing and the ISW

effect. These line of sight effects will distort the photon path and a bispectrum contri-

bution is expected. We find that the bispectrum can indeed further constrain cosmology,

beyond the power spectrum capabilities. SKA-mid intensity mapping surveys examining

the bispectrum will be able to obtain marginalized errors of order < 0.1%. The lensing-

ISW contribution to this measurement will be negligible.
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Following this analysis, we introduce an analytic framework within which future

full-sky or near full-sky 21cm surveys could be analysed. For a three dimensional signal,

the natural basis in which to analyse the data is the spherical harmonic spherical Bessel

function basis. We derive expressions for the 3D 21cm power spectrum as well as consider

the effects of redshift space distortions due to peculiar velocities of hydrogen gas in this

basis. Finally, we consider a radial window function as well as an angular mask and adapt

the 3D power spectrum for when data is radially binned and parts of the sky are masked

out.

7.2 Scientific outlook

The work described in this thesis thus highlights the possible gain that improving our

analysis techniques will bring in a new era of 21cm cosmology. As the new generation

of telescopes sees its first light in the upcoming decade, we are well to be prepared with

the adequate tools to face the challenges that accompany them. Here we discuss a short

list of still outstanding developments based on the work presented in this thesis which we

identify as the most important extensions to our work.

The machine learning paradigm presented in chapter 4 has proven powerful already

and a potentially powerful extension should be an application of the emulation strategy

to larger scale numerical simulations. In conjunction with the appearance of public data

bases, such as Semelin et al. (2017), this presents an immediately attainable, yet important

test to our work. If the emulation model, which we have tested on a fast semi-numerical

code, can prove to be robust when applied on a fully numerical simulation, then a param-

eter inference can be used in conjunction with numerical simulations for the first time.

The largest hurdle for 21cm bispectrum observations to overcome is that of system-

atics induced by the interplay of foregrounds and calibration artefacts. These systematics

can potentially swamp the signal and need to be understood well before the bispectrum

will become a useful observable. In the same vein, in our analysis presented in chapter

5 we assume a simple model to incorporate foreground residuals, which does not take

into account real foreground reduction methods that would be applied to raw data before

it could be analysed. Here we propose that an extension of our work should include a

thorough analysis of foreground residuals in the context of the bispectrum.

Lastly, in chapter 6 we have introduced the analytic expressions of the 21cm power

spectrum in a 3D basis. Due to the highly oscillatory nature of the mixing matrices in

the power spectrum, computing the value of the 3D power spectrum has shown to be a

computationally intensive exercise. An analysis of the accuracy of the Limber approxi-
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mation and an exploration of fast integration methods for Bessel functions is desirable for

accurate power spectrum computations.
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Appendix A

Appendix for Chapter 2

A.1 Equation of motion for photons in a perturbed met-

ric

Consider the weakly perturbed FRW metric,

ds2 =

(︄

1 +
2Φ

c2

)︄

c2dt2 −
(︄

1 − 2Ψ

c2

)︄

a2(t)[dr2 + S 2
k(r)dβ2], (A.1)

where Φ and Ψ denote the perturbations to the Newtonian potential and curvature re-

spectively. We further define the comoving spherical coordinates r, θ and φ, and

dβ ≡
√︂

dθ + sin2 θdφ. Considering the distortions to photons travelling in such a per-

turbed metric, it is convenient to orient the polar axis of the coordinate system along

the photon travel path, and thus we can define the angles θx = θ cos φ and θy = θ sin φ.

Additionally, using conformal time dη = cdt/a(t), the line element becomes

ds2 = a2

{︄(︄

1 +
2Φ

c2

)︄

dη2 −
(︄

1 − 2Ψ

c2

)︄
[︂

dr2 + S 2
k(r)

(︂

dθ2x + dθ2y

)︂]︂
}︄

. (A.2)

Next, the equation of motion for the photons is then given by the geodesic equation, or

equivalently the Euler-Lagrange equation,

∂L2

∂xµ
− d

dp

(︄

∂L2

∂ẋµ

)︄

= 0, (A.3)

where p represents monotonically increasing affine parameter and the Lagrangian is de-

fined through

L2 = gµν
∂xµ

∂p

∂xν

∂p
. (A.4)
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A.1 Equation of motion for photons in a perturbed metric

Using this definition of the Lagrangian, the Euler-Lagrange equation can be written as

∂gµν

∂xλ
ẋµ ẋν − d

dp

(︂

gµλ ẋ
µ + gλν ẋ

ν
)︂

= 0, (A.5)

using the fact that ∂xµ/∂xλ = δ
µ

λ
. From the metric in equation (A.2) assuming a flat

geometry, the xλ = θx term can be shown to be.

2a2

c2

∂Φ

∂θx

η̇2 +
2a2

c2

∂Ψ

∂θx

(︂

ṙ2 + r2θ̇2x + r2θ̇2y

)︂

− d

dp

[︄

−2a2r2

(︄

1 − 2Ψ

c2

)︄

θ̇x

]︄

= 0. (A.6)

For a 0th order analysis, we can see that a photon travelling on a null geodesic implies that

the parenthesis reduces to η̇2. Further, θ̇x is first order in the potentials, which means that

Ψθ̇x in the angular brackets can be ignored being a second order term. To complete the

computation we solve the Euler-Lagrange equation to 0th order for xλ = η. We find

− 2
d

dp
(a2η̇) = 0, (A.7)

which integrated and normalized appropriately gives

η̇ = a−2. (A.8)

This result is then also used to write a2θ̇x = dθx/dη using the chain rule, and thus equation

(A.6) becomes
d2θx

dη2
− 2

r

dθx

dη
= − 1

c2r2

∂

∂θx

(Φ + Ψ). (A.9)

One can relate this equation back to the angular comoving coordinates with xi ≡ rθi for

i = 1, 2, identifying that
d2xi

dη2
= r

d2θi

dη2
− 2

dθi

dη
. (A.10)

Solving the Euler-Lagrange equation similarly for θy, it is thus easy to see that the equation

of motion for the transverse coordinates of a photon in a weakly perturbed, flat Universe

becomes
d2x

dη2
= − 1

c2
∇(Φ + Ψ). (A.11)
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Appendix B

Appendix for Chapter 3

B.1 Brightness temperature

We start with the radiative transfer equation ignoring the effects of scattering, which is

defined as
dIν

ds
= −ανIν + jν, (B.1)

where Iν(s) is the specific intensity of a source at position s, αν(s) is the absorption co-

efficient at s, and jν(s) is the emission coefficient at s. Furthermore, the optical depth

of a medium extending from an initial position s0 to s is defined to be the integral of its

absorption coefficient over the distance,

τν(s0, s) ≡
∫︂ s

s0

αν(s′)ds′. (B.2)

Multiplying both sides of equation (B.1) by a factor of eτν(s0,s), rearranging and observing

that αν(s) =
dτν(s0,s)

ds
, one finds

d

ds

[︂

eτν(s0,s)Iν(s)
]︂

= jν(s)eτν(s0,s). (B.3)

This result can then integrated from s0 to s, such that

eτν(s0,s)Iν(s) − eτν(s0,s0)Iν(s0) =

∫︂ s

s0

jν(s′)eτν(s0,s
′)ds′. (B.4)

From equation (B.2) we see that

eτν(s0,s0) = 1, (B.5)
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B.2 Spin temperature

and furthermore, we write τν = τν(s0, s), so that after rearranging one finds

Iν(s) = Iν(s0)e−τν + e−τν
∫︂ s

s0

jν(s′)eτν(s0,s
′)ds′. (B.6)

Then, we use the relation between j and α,

jν(s)

αν(s)
= Bν[T (s)], (B.7)

where Bν is the Planck function for black body radiation. This enables us to rewrite the

integral in equation (B.6) in terms of the optical depth,

Iν(s) = Iν(s0)e−τν + e−τν
∫︂ τν

0

Bν[T (τ′ν)]e
τ′νdτ′ν. (B.8)

Finally, we assume that Bν[T (τ′ν)] ≈ Bν(Tex) = Iex and define the following,

T ′b(ν) =
c2Iν(s)

2ν2kB

, (B.9)

and

T ′R(ν) =
c2Iν(s0)

2ν2kB

, (B.10)

where equation (3.5) is then simply obtained from equation (B.8),

T ′b(ν) = Tex(1 − e−τν) + T ′R(ν)e−τν . (B.11)

B.2 Spin temperature

Here we derive the relation between spin temperature and the various physical effects it is

coupled to. This calculation was first done in Field (1958). Starting from equation (3.8),

one obtains,
n1

n0

=
C01 + P01 + B01ICMB

C10 + P10 + A10 + B10ICMB

. (B.12)

Based on the assumption that T∗ ≪ 1, the definition of the spin temperature gives

n1

n0

=
g1

g0

e
− T∗

TS ≈ 3

(︄

1 − T∗

TS

)︄

. (B.13)

Then, for collisions the transition rate is proportional to the number of particles times

some function of the kinetic temperature TK of the particles. Since the ratio of rates is a
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B.2 Spin temperature

function of TK only, the Boltzmann law for thermodynamic equilibrium holds,

n1

n0

=
g1

g0

e
− T∗

TK . (B.14)

In addition conservation from the steady state implies that,

n0C01 = n1C10 = n0

g1

g0

e
− T∗

TK C10. (B.15)

Thus, assuming T∗ ≪ TK,

C01

C10

=
g1

g0

e
− T∗

TK ≈ 3

(︄

1 − T∗

TK

)︄

. (B.16)

Furthermore, we define the effective colour temperature Tc via the following relation,

P01

P10

≡ 3

(︄

1 − T∗

Tc

)︄

. (B.17)

Lastly, we look at the terms involving the Einstein B coefficients. Taking some back-

ground radiation at the 21cm frequency with specific intensity Iν, the absorption and

stimulated emission probabilities are given by the Einstein B rates times Iν. In this con-

text the only background radiation there is at this frequency comes from the CMB so

we write Iν = ICMB. One can relate these quantities to the CMB temperature Tγ via the

Rayleigh-Jeans limit, equation (3.3), and the relation between A and B (Griffiths 2005),

B10ICMB =
π2c3

ω~
A10ICMB (B.18a)

=
λ2c

2νh
A10ICMB (B.18b)

=
λ2c

2νh

2ν2kBTγ

c2
A10 (B.18c)

=
ckB

hν
TγA10. (B.18d)

Using the definition for T∗ from equation (3.2) and setting c = 1, one then finds

B10ICMB = A10

Tγ

T∗
, (B.19)

and

B01ICMB =
g1

g0

B10ICMB = 3A10

Tγ

T∗
. (B.20)
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B.3 Lyman-α coupling coefficient

Introducing these developments into equation (B.12),

3
(︂

1 − eT∗/TS

)︂

=
3
(︂

1 − T∗
TK

)︂

C10 + 3
(︂

1 − T∗
Tc

)︂

P10 + 3A10
Tγ

T∗

C10 + P10 + A10 + A10
Tγ

T∗

, (B.21)

where we can rearrange terms to find

T∗

TS

=
C10 + P10 + A10

(︂

1 +
Tγ

T∗

)︂

−
(︂

1 − T∗
TK

)︂

C10 −
(︂

1 − T∗
Tc

)︂

P10 − A10
Tγ

T∗

C10 + P10 + A10

(︂

1 +
Tγ

T∗

)︂ (B.22a)

=
A10 +

T∗
TK

C10 +
T∗
Tc

P10

C10 + P10 + A10

(︂

1 +
Tγ

T∗

)︂ (B.22b)

=
1 + T∗

TK

C10

A10
+

T∗
Tc

P10

A10

C10

A10
+

P10

A10
+ 1 +

Tγ

T∗

. (B.22c)

At this point it is convenient to introduce the coupling coefficients xα and xc,

xα ≡
P10

A10

T∗

Tγ
, and xc ≡

C10

A10

T∗

Tγ
, (B.23)

to obtain

T∗

TS

=
1 + xc

Tγ

TK
+ xα

Tγ

Tc

xc
Tγ

T∗
+ xα

Tγ

T∗
+ 1 +

Tγ

T∗

. (B.24)

Dividing through by T∗ reveals

T−1
S =

T−1
γ + xcT

−1
K
+ xαT

−1
c

1 + xc + xα +
T∗
Tγ

. (B.25)

Finally, under the assumption that T∗ ≪ 1, the fraction in the denominator can be ignored

and the result is obtained,

T−1
S =

T−1
γ + xcT

−1
K
+ xαT

−1
c

1 + xc + xα
. (B.26)

B.3 Lyman-α coupling coefficient

Here we show that,

P10 = 4Pα/27, (B.27)

and from there, it is easy to show why equation (3.15) holds.

191



B.3 Lyman-α coupling coefficient

We start by labelling the hyperfine transitions relevant to the Wouthuysen-Field effect

in ascending order in energy, referring to Fig. 3.2, thus:

0S 1/2 ≡ 0, 1S 1/2 ≡ 1

0P1/2 ≡ 2, 1P1/2 ≡ 3

0P3/2 ≡ 4, 1P3/2 ≡ 5.

Now, we let A ji be the spontaneous emission coefficient for transitions between these

energy levels. Then, we write the background flux at the frequency corresponding to the

j→ i transition as J ji. Deguchi & Watson (1985) write

P10 =
∑︂

j=2,3,4,5

⎛

⎜⎜⎜⎜⎜⎝

T B
j1

T j1

⎞

⎟⎟⎟⎟⎟⎠

(︄
g jA j1J j1

g1

)︄
A j0

∑︁

i=0,1

A ji

, (B.28)

P01 =
∑︂

j=2,3,4,5

⎛

⎜⎜⎜⎜⎜⎝

T B
j0

T j0

⎞

⎟⎟⎟⎟⎟⎠

(︄
g jA j0J j0

g0

)︄
A j1

∑︁

i=0,1

A ji

. (B.29)

In these equations, we defined the brightness temperature of the j → i transition, T B
ji ,

via the Rayleigh-Jeans law, and the temperature corresponding to the energy difference

between the two states, T ji, as follows

T B
ji =

c2

2kBν
2
ji

I ji and T ji =
hν ji

kB

. (B.30)

Further, gk denotes the statistical weight of the level k and is obtained by

gk = 2F + 1, (B.31)

and its value is related to k as shown by the table below.

k 0 1 2 3 4 5

gk 1 3 1 3 3 5

Consider equation (B.28) to interpret this result. Looking at a single term in the sum over

j, say j = 3, on obtains

P10, j=3 =
T B

31

T31

g3J31

g1

A31

A30

A30 + A31

. (B.32)

The combination of the first three factors denotes the rate at which the atom excites from

level 1 to level 3, and the last fraction is the probability for it to de-excite into the ground
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B.3 Lyman-α coupling coefficient

state. Therefore, the de-excitation rate of the ground state triplet state due to Lyman-α

scattering is composed of the various possibilities for the atom to excite away from the

triplet state and de-excite down to the singlet state.

There are a few steps that can now be taken to simplify the above equations. First, we

take the background flux to be equal for all transitions and equal to the average Lyman-α

background flux, so for all i, j:

J ji ≈ Jα.

Next, we ignore pairs that contain forbidden transitions, ie. A20 = A50 = 0. Note that this

automatically eliminates pairs that do not mix the ground state levels, ie. pairs containing

A51 and A21. We can then rewrite equations (B.28) and (B.29) as follows,

P10 = Jα

(︄
T B

31

T31

A31A30

A31 + A30

+
T B

41

T41

A41A40

A41 + A40

)︄

, (B.33)

P01 = 3Jα

(︄
T B

30

T30

A31A30

A31 + A30

+
T B

40

T40

A41A40

A41 + A40

)︄

. (B.34)

We want to relate the A ji’s to Aα, the total spontaneous emission rate of the Lyman-α

transition due to all the hyperfine states. This can be achieved using the summation rule

for transitions which states that the sum of the intensities of all transitions of given nFJ

to all and any given n′J′, summed over F′, is proportional to 2F + 1 (Meiksin 2000; Loeb

& Furlanetto 2013).
∑︂

F′

InFJ→n′F′J′ ∝ 2F + 1. (B.35)

So, we can write these sums down for the 4 different states that have downward transitions,

and for the 4 different upward transitions:

• nFJ = 22 3
2

: I22 3
2
→11 1

2
= I51 ∝ 5

• nFJ = 21 3
2

: I21 3
2
→11 1

2
+ I21 3

2
→10 1

2
= I41 + I40 ∝ 3

• nFJ = 21 1
2

: I21 1
2
→11 1

2
+ I21 1

2
→10 1

2
= I31 + I30 ∝ 3

• nFJ = 20 1
2

: I20 1
2
→11 1

2
= I21 ∝ 1

From the downward transition we can write down the following ratios,

I51

I41 + I40

=
5

3
,

I41 + I40

I31 + I30

= 1,
I31 + I30

I21

= 3. (B.36)

• nFJ = 10 1
2
→ n′J′ = 21

2
: I10 1

2
→21 1

2
= I03 = I30 ∝ 1

• nFJ = 10 1
2
→ n′J′ = 23

2
: I10 1

2
→21 3

2
= I40 ∝ 1
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B.3 Lyman-α coupling coefficient

• nFJ = 11 1
2
→ n′J′ = 21

2
: I11 1

2
→20 1

2
+ I11 1

2
→21 1

2
= I21 + I31 ∝ 3

• nFJ = 11 1
2
→ n′J′ = 23

2
: I11 1

2
→21 3

2
+ I11 1

2
→22 3

2
= I41 + I51 ∝ 3

From the upward transition we can write down the following ratios,

I40

I41 + I51

=
1

3
,

I30

I21 + I31

=
1

3
. (B.37)

Having derived all the ratios above, we use

I ji

Iα
=

g jA ji

gtotAα
, (B.38)

where Iα is the total Lyman-α decay intensity summed over all the hyperfine transitions,

Iα =
∑︁

i, j I ji, and gtot =
∑︁

j g j, to obtain the ratios of A ji/Aα. E.g. for A21,

I51 =
5

3
(I40 + I41)⇒ Iα = I21 + I30 + I31 +

8

3
(I40 + I41), (B.39a)

I40 + I41 = I30 + I31 ⇒ Iα = I21 +
11

3
(I30 + I31), (B.39b)

I30 + I31 = I21 ⇒ Iα = 12I21, (B.39c)

∴
I21

Iα
=

1

12
=

g2

g2 + g3 + g4 + g5

A21

Aα
=

1

12

A21

Aα
(B.39d)

∴
A21

Aα
= 1. (B.39e)

Similarly, for the other transitions, one gets (Meiksin 2000)

A21

Aα
=

A51

Aα
= 1, (B.40)

A30

Aα
=

A41

Aα
=

1

3
, (B.41)

A31

Aα
=

A40

Aα
=

2

3
. (B.42)

We are now finally in a situation to relate P10 to Pα. From (B.33),

P10 = JαAα

⎛

⎜⎜⎜⎜⎝

T B
31

T31

2
3×3

1
3
+ 2

3

+
T B

41

T41

2
3×3

1
3
+ 2

3

⎞

⎟⎟⎟⎟⎠ =
2

9
JαAα

(︄
T B

31

T31

+
T B

41

T41

)︄

. (B.43)

Another approximation that can be made at this point is to say that
T B

31

T31
+

T B
41

T41
≈ 2

T B
α

Tα
, such

that

P10 =
4

9
JαAα

T B
α

Tα
. (B.44)
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B.3 Lyman-α coupling coefficient

Writing down the total scattering rate of Lyman-α photons,

Pα =
T B
α

Tα

∑︂

i=0,1

∑︂

j=2,3,4,5

g jA jiJ ji

g0 + g1

=
T B
α

Tα

Jα

4

∑︂

i=0,1

∑︂

j=2,3,4,5

g jA ji (B.45)

⇒ Pα =
T B
α

Tα

Jα

4
(A21 + 3A30 + 3A31 + 3A40 + 3A31 + 5A51). (B.46)

Once again, one can apply the ratios found above,

Pα = 3JαAα
T B
α

Tα
, (B.47)

and the final result can be obtained by dividing equation (B.44) by equation (B.47),

P10 =
4

27
Pα. (B.48)

Finally, (3.15) is obtained combining this result with the definition of xα in equation

(B.23).
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Appendix C

Appendix for Chapter 5

C.1 Spherical harmonics

The spherical harmonics form a set of orthonormal basis functions, where the normaliza-

tion is chosen such that the spherical harmonics Yℓm adhere to the following orthonormal-

ity condition,
∫︂

d2 n̂Yℓm(n̂)Y∗ℓ′m′(n̂) = δK
ℓ′ℓδ

K
m′m, (C.1)

where δK denotes the Kronecker delta.

C.2 Tree-level bispectrum due to NLG

For the non-linear gravity bispectrum, we look at perturbations in the density field up to

second order as the linear perturbations are Gaussian, thus rendering the bispectrum zero,

δ(x, t) = δ(1)(x, t) + δ(2)(x, t), (C.2)

where δ(1) and δ(2) denote the first and second order contributions to the density fluctu-

ations. In the following, we suppress the explicit expression of the position and time

dependence of the density fluctuations for notational ease. The bispectrum is the ensem-

ble average of the Fourier transform of δ, such that in order to determine the bispectrum,

we must first determine the Fourier transform of the first and second order contributions

to the density perturbations, namely δ̃(1) and δ̃(2).

Let us first determine δ to first and second order. The second order equation of motion

governing the evolution of the density perturbations in the matter dominated limit can be
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C.2 Tree-level bispectrum due to NLG

shown to be (Fry 1984)

δ̈ + 2
ȧ

a
δ̇ − 4πGρ̄δ = 4πGρ̄δ2 +

1

a2
∇iδ∇iφ +

1

a2
∇i∇ j[(1 + δ)v

i
pv j

p], (C.3)

where the peculiar velocity, vi
p, relative to the Hubble flow and the gravitational potential,

φ, are related to δ via the continuity equation (2.44) and the Poisson equation (2.50)

respectively.

The first order solution is determined by the linear perturbation theory result of chap-

ter 2, and we have that

δ(1)(x, t) = δ0(x)A(t), (C.4)

where δ0 denotes the initial perturbation and A(t) ∝ t2/3 is the growing solution to the

evolution equation. The solutions for the first order peculiar velocity and potential can be

found by solving the continuity and Poisson equations to first order, defining a function ∆

as ∇2∆ = δ, such that

∆(x) = − 1

4π

∫︂

d3x′
δ(x′)

|x − x′| . (C.5)

One thus finds

v(1),i
p = −a

(︄

Ȧ

A

)︄

∇i∆(1), (C.6)

and

φ(1) = 4πGρ̄a2∆(1). (C.7)

The second order solution for the density perturbation can then be found by solving

equation (C.3), ie solving

δ̈(2) + 2
ȧ

a
δ̇(2) − 4πGρ̄δ(2) = 4πGρ̄δ(1),2 +

1

a2
∇iδ

(1)∇iφ
(1) +

1

a2
∇i∇ j[(1 + δ)v

(1),i
p v(1), j

p ]. (C.8)

Substituting the solutions for the peculiar velocity and the gravitational potential, the

equation can be expressed in terms of the first order perturbation only,

δ̈(2)+2
ȧ

a
δ̇(2)−4πGρ̄δ(2) =

⎡

⎢⎢⎢⎢⎢⎣4πGρ̄ +

(︄

Ȧ

A

)︄2
⎤

⎥⎥⎥⎥⎥⎦ δ
(1),2+

⎡

⎢⎢⎢⎢⎢⎣4πGρ̄ + 2

(︄

Ȧ

A

)︄2
⎤

⎥⎥⎥⎥⎥⎦∇iδ
(1)∇i∆

(1)+

(︄

Ȧ

A

)︄2

∇i∇ j∆
(1),2.

(C.9)

Next, we use the linear solution to express

Ȧ

A
=

2

3
t−1 =

ȧ

a
,

Ä

A
= −2

9
t−2, and 4πGρ̄ =

2

3
t−2. (C.10)
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C.2 Tree-level bispectrum due to NLG

Equation (C.9) can then be solved using the Ansatz, δ(2) ∝ A2(t), and expressing both

sides as the same power of t. We finally find

δ(2) =
5

7
δ(1),2 + δ

(1)

,i
∆

(1)

,i
+

2

7
∆

(1),2

,i
. (C.11)

We now have an expression for the first and second order perturbations, and are able to

find their Fourier transform, defined by

δ̃(k) =

∫︂

d3xδ(x)eik·x, and δ(x) =

∫︂

d3 k

(2π)3
δ̃(k)e−ik·x (C.12)

Whereas the first order perturbation is straight forwardly found to be

δ̃(1)(k, z) = D+(z)δ̃0(k), (C.13)

where we have expressed the time component in redshift space via the growth function

D+, the second order perturbation involves the multiplication of differing factors, which

result in a convolution in Fourier space, as

FT ( f1 f2)(k) =

∫︂

d3 k1

(2π)3

d3 k2

(2π)3

[︂

(2π)3δD(k1 + k2 − k)
]︂

FT ( f1)(k1)FT ( f2)(k2). (C.14)

In order to transform the second order perturbation, we first find the transform of each

factor in equation (C.11) and find,

δ(1)(x)→ δ̃(1)(k), (C.15a)

δ
(1)

,i
(x)→ ikiδ̃(1)(k), (C.15b)

∆(1)(x)→ − 1

k2
δ̃(1)(k), (C.15c)

∆(1)(x),i → −
iki

k2
δ̃(1)(k), (C.15d)

∆(1)(x),i j →
kik j

k2
δ̃(1)(k). (C.15e)

(C.15f)

Using these transforms, we can then use equation (C.14) to find

δ̃(2)(k) =

∫︂

d3 k1d3 k2

(2π)3
δD(k1+k2−k)δ̃(1)(k1)δ̃(1)(k2)

⎡

⎢⎢⎢⎢⎣

5

7
+

k1 · k2

k2
2

+
2

7

(︄

k1 · k2

k1k2

)︄2⎤
⎥⎥⎥⎥⎦ . (C.16)
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The order of terms in the second can be interchanged and one therefore writes

FT (δ
(1)

,i
∆

(1)

,i
) =

1

2
FT (δ

(1)

,i
∆

(1)

,i
+ ∆

(1)

,i
δ

(1)

,i
), (C.17)

which then results in the following form of the transform of the second order density

perturbation,

δ̃(2)(k) =

∫︂

d3 k1d3 k2

(2π)3
δD(k1+k2−k)δ̃(1)(k1)δ̃(1)(k2)

[︄

5

7
+

1

2

(︄

k1

k2

+
k2

k1

)︄

cos θ12 +
2

7
cos2 θ12

]︄

,

(C.18)

where we have defined the angle between k1 and k2 as θ12. The term in brackets is

defined as K(k1, k2) by equation (5.22) in section 5.4.1. The bispectrum of the density

perturbations is thus defined as

(2π)3BNLG(k1, k2, k3)δD(k1 + k2 + k3) =
⟨︂

δ̃(k1)δ̃(k2)δ̃(k3)
⟩︂

=
⟨︂(︂

δ̃
(1)

1
+ δ̃

(2)

1

)︂ (︂

δ̃
(1)

2
+ δ̃

(2)

2

)︂ (︂

δ̃
(1)

3
+ δ̃

(2)

3

)︂⟩︂

,
(C.19)

where we have introduced the short-hand notation δ̃i ≡ δ̃(ki) for i = 1, 2, 3. When multi-

plying our the right hand side of this expression, we find that the lowest order contribution

is the linear bispectrum which is zero as the field is Gaussian at this order,

⟨︂

δ̃
(1)

1
δ̃

(1)

2
δ̃

(1)

3

⟩︂

= 0, (C.20)

such that the lowest non-zero contribution to the bispectrum as terms involving a single

second order term,

BNLG(k1, k2, k3) ∼
⟨︂

δ̃
(1)

1
δ̃

(1)

2
δ̃

(2)

3

⟩︂

+ cyclic terms. (C.21)

Now we can apply our result for the second order transform to get

⟨︂

δ̃
(1)

1
δ̃

(1)

2
δ̃

(2)

3

⟩︂

=

∫︂

d3 kad3 kb

(2π)3
δD(ka + kb − k3)K(ka, kb)

⟨︂

δ̃
(1)

1
δ̃

(1)

2
δ̃(1)

a δ̃
(1)

b

⟩︂

, (C.22)

and the angular bracket can be expanded using Wick’s theorem,

⟨︂

δ̃
(1)

1
δ̃

(1)

2
δ̃(1)

a δ̃
(1)

b

⟩︂

=
⟨︂

δ̃
(1)

1
δ̃

(1)

2

⟩︂ ⟨︂

δ̃(1)
a δ̃

(1)

b

⟩︂

+
⟨︂

δ̃
(1)

1
δ̃(1)

a

⟩︂ ⟨︂

δ̃
(1)

2
δ̃

(1)

b

⟩︂

+
⟨︂

δ̃
(1)

1
δ̃

(1)

b

⟩︂ ⟨︂

δ̃
(1)

2
δ̃(1)

a

⟩︂

. (C.23)

Finally, using the definition of the power spectrum,

⟨︂

δ̃1δ̃2

⟩︂

= (2π)3P(k1)δD(k1 + k2), (C.24)
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C.3 Angular bispectrum due to non-linear gravity.

and combining the results above as well as reintroducing the explicit temporal depen-

dence, one finds the tree-level bispectrum due to the non-linear collapse of structure to

be

BNLG(k1, k2, k3, z1, z2, z3) = 2K(k1, k2)D2
+(z1)D+(z2)D+(z3)P(k1)P(k2) + cycl.. (C.25)

Equation (5.21) is then realised by using the fact that the brightness temperature fluctua-

tions are related to the density fluctuations through a bias factor.

C.3 Angular bispectrum due to non-linear gravity.

For the derivation of the angular bispectrum due to non-linear gravitational collapse, we

expand the brightness temperature fluctuations in spherical harmonic space and define the

angular coefficient as per equation (5.13),

aνℓm =

∫︂

d2 n̂δT obs
b (n̂, ν)Yℓm(n̂), (C.26)

with the relevant notation defined in section 5.3. The angular bispectrum is then

B
NLG,m1m2m3

ℓ1ℓ2ℓ3
=

⟨︁

aℓ1m1
aℓ2m2

aℓ3m3

⟩︁

, (C.27)

where we have suppressed the explicit frequency dependence for notational ease. By

expanding the harmonic coefficients as well as introducing the window function defined in

equation (5.7), we can write the angular bispectrum in terms of the three-point correlation

function of brightness temperature fluctuations,

B
NLG,m1m2m3

ℓ1ℓ2ℓ3
=

∫︂

d3r1d3r2d3r3W1W2W3Yℓ1m1
(n̂1)Yℓ2m2

(n̂2)Yℓ3m3
(n̂3)

⟨︁

δTb,1δTb,2δTb,3

⟩︁

,

(C.28)

where Wi ≡ W(ri) and δTb,i ≡ δTb(ri) for i = 1, 2, 3. We can introduce the tree-level bis-

pectrum into this expression by introducing the Fourier transform of the three-point func-

tion. Using equation (5.20) to introduce the power spectrum and expanding the Fourier

modes in spherical harmonics, the bispectrum can be expressed via

B
NLG,m1m2m3

ℓ1ℓ2ℓ3
(z) = Bℓ1ℓ2ℓ3(z)

⎛

⎜⎜⎜⎜⎜⎝

ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞

⎟⎟⎟⎟⎟⎠ , (C.29)

with the cyclic nature of the tree-level bispectrum resulting in the form of equation (5.24).
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C.4 Limber approximation

C.4 Limber approximation

In the Limber approximation, for large ℓ, Bessel functions are taken to be sharply peaked

and are approximated by a Dirac delta function (Loverde & Afshordi 2008), such that

∫︂

dkk2 f (k) jℓ[kr(z)] jℓ[kq(z′)]

≃ f

[︄

ℓ + 1/2

r(z)

]︄

π

2r2(z)

δD(z − z′)

|r′(z)| .
(C.30)

In order to integrate equation (5.25), we use the Limber approximation and look at each ℓ

term in turn.

C.4.1 The ℓ = 0 case

We begin with the ℓ = 0 term in (5.25), which can be written as

Bℓ=0
12 = Aℓ1ℓ2ℓ3bHI

∫︂

dzD2
+(z)δT̄b(z)Wν(z)θℓ1(z)θℓ2(z), (C.31)

where we have defined

Aℓ1ℓ2ℓ3 =
16

π

√︄

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

(4π)3
(2ℓ1 + 1)

(2ℓ2 + 1)B0

⎧
⎪⎪⎨

⎪⎪⎩

ℓ1 ℓ2 ℓ3

ℓ2 ℓ1 0

⎫
⎪⎪⎬

⎪⎪⎭

⎛

⎜⎜⎜⎜⎜⎝

ℓ1 ℓ1 0

0 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

ℓ2 ℓ2 0

0 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

ℓ3 ℓ1 ℓ2

0 0 0

⎞

⎟⎟⎟⎟⎟⎠ ,

(C.32)

and

θℓ(z) = bHI

∫︂

dz′D+(z
′)δT̄b(z′)Wν(z

′)βℓ(z, z
′), (C.33)

with

βℓ(z, z
′) =

∫︂

dkk2P(k) jℓ[kr(z)] jℓ[kr(z′)]. (C.34)

Applying the Limber approximation (C.30) to βℓ gives

βℓ(z, z
′) ≃ π

2r2(z)r′(z)
P

[︄

ℓ + 1/2

r(z)

]︄

δD(z − z′), (C.35)

such that

θℓ(z) ≃ πbHI

2r2(z)r′(z)
P

[︄

ℓ + 1/2

r(z)

]︄

D+(z)δT̄b(z)Wν(z). (C.36)
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C.4 Limber approximation

C.4.2 The ℓ = 1 case

For the ℓ = 1 case, we have that β1(k1, k2) = 2A1 (k1/k2 + k2/k1). Therefore, (5.25)

contains two terms with k integrals of the form,
∫︁

dk1dk2k3
1
k2 · · · and

∫︁

dk1dk2k1k3
2
· · · .

Defining functions similar to the ℓ = 0 case, we find

Bℓ=1
12 =bHI

∑︂

ℓ′ℓ′′

Aℓ
′ℓ′′

ℓ1ℓ2ℓ3

∫︂

dzWν(z)Tb(z)D2
+(z)

[︂

θ1ℓ1ℓ′(z)θ−1
ℓ2ℓ′′

(z) + θ−1
ℓ1ℓ′

(z)θ1ℓ2ℓ′′(z)
]︂

,

(C.37)

where we define

Aℓ
′ℓ′′

ℓ1ℓ2ℓ3
= − 16

π

√︄

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

(4π)3
(2ℓ′ + 1)

(2ℓ′′ + 1)iℓ1+ℓ2+ℓ
′+ℓ′′2A1

⎧
⎪⎪⎨

⎪⎪⎩

ℓ1 ℓ2 ℓ3

ℓ′′ ℓ′ 1

⎫
⎪⎪⎬

⎪⎪⎭

⎛

⎜⎜⎜⎜⎜⎝

ℓ1 ℓ
′ 1

0 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

ℓ2 ℓ
′′ 1

0 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

ℓ3 ℓ
′ ℓ′′

0 0 0

⎞

⎟⎟⎟⎟⎟⎠ ,

(C.38)

and

θ
q

ℓℓ′(z) = bHI

∫︂

dz′D+(z
′)δT̄b(z′)Wν(z

′)β
q

ℓℓ′(z, z
′), (C.39)

with

β
q

ℓℓ′(z, z
′) =

∫︂

dkk2+qP(k) jℓ[kr(z)] jℓ′[kr(z′)]. (C.40)

Importantly, the Wigner symbols in (C.38) reduce the sum in (C.37) to 4 terms, which

all incidentally render the powers of i even. Only terms with ℓ′ = ℓ1 − 1, ℓ1 + 1 and

ℓ′′ = ℓ2 − 1, ℓ2 + 1, as shown in the table below are non-zero.

ℓ′/ℓ′′ ℓ2 − 1 ℓ2 + 1

ℓ1 − 1 ℓ1 − 1, ℓ2 − 1 ℓ1 − 1, ℓ2 + 1

ℓ1 + 1 ℓ1 + 1, ℓ2 − 1 ℓ1 + 1, ℓ2 + 1

The difference between the ℓ indices in (C.37) is one, such that we approximate ℓ ± 1 ∼ ℓ
for Bessel function indices here. We find this approximation to work well as most of the

signal comes from large ℓ-modes. We thus apply the Limber approximation (C.30) with

f (k) = kqP(k) to (C.40), and find

β
q

ℓℓ′(z, z
′) ≃ π(ℓ + 1/2)q

2r2+q(z)r′(z)
P

[︄

ℓ + 1/2

r(z)

]︄

δD(z − z′), (C.41)
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C.4 Limber approximation

such that

θ
q

ℓℓ′(z) ≃ πbHI(ℓ + 1/2)q

2r2+q(z)r′(z)
P

[︄

ℓ + 1/2

r(z)

]︄

D+(z)δT̄b(z)Wν(z). (C.42)

C.4.3 The ℓ = 2 case

Similar to the ℓ = 0 case, B2 is independent of k, and thus we can write

Bℓ=2
12 =bHI

∑︂

ℓ′ℓ′′

Aℓ
′ℓ′′

ℓ1ℓ2ℓ3

∫︂

dzWν(z)Tb(z)D2
+(z)

θℓ1ℓ′(z)θℓ2ℓ′′(z),

(C.43)

where we define

Aℓ
′ℓ′′

ℓ1ℓ2ℓ3
=

16

π

√︄

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

(4π)3
(2ℓ′ + 1)

(2ℓ′′ + 1)β2iℓ1+ℓ2+ℓ
′+ℓ′′

⎧
⎪⎪⎨

⎪⎪⎩

ℓ1 ℓ2 ℓ3

ℓ′′ ℓ′ 2

⎫
⎪⎪⎬

⎪⎪⎭

⎛

⎜⎜⎜⎜⎜⎝

ℓ1 ℓ
′ 2

0 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

ℓ2 ℓ
′′ 2

0 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

ℓ3 ℓ
′ ℓ′′

0 0 0

⎞

⎟⎟⎟⎟⎟⎠ ,

(C.44)

and

θℓℓ′(z) = bHI

∫︂

dz′D+(z
′)δT̄b(z′)W(z′)βℓℓ′(z, z

′), (C.45)

with

βℓℓ′(z, z
′) =

∫︂

dkk2P(k) jℓ[kr(z)] jℓ′[kr(z′)]. (C.46)

Similar to the ℓ = 1 case, the Wigner symbols in (C.44) reduce the sum in (C.43) to 9 non-

zero terms, which all result in even powers of i. The terms are non-zero for combinations

of ℓ′ = ℓ1 − 2, ℓ1, ℓ1 + 2 and ℓ′′ = ℓ2 − 2, ℓ2, ℓ2 + 2 as shown below.

ℓ′/ℓ′′ ℓ2 − 2 ℓ2 ℓ2 + 2

ℓ1 − 2 ℓ1 − 2, ℓ2 − 2 ℓ1 − 2, ℓ2 ℓ1 − 2, ℓ2 + 2

ℓ1 ℓ1, ℓ2 − 2 ℓ1, ℓ2 ℓ1, ℓ2 + 2

ℓ1 + 2 ℓ1 + 2, ℓ2 − 2 ℓ1 + 2, ℓ2 ℓ1 − 1, ℓ2 + 1

Although at large ℓ, we have ℓ ± 2 ∼ ℓ, we find that this approximation does not give

robust results when applying the Limber approximation. Instead we assume that P(k)

varies slowly across the range of the peaks of both Bessel functions such that we can

effectively evaluate it at either peak. Similarly, we assume that D+δT̄b varies slowly across

the window, such that we may evaluate it at the window centre. Hence, for combinations
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C.5 Lensing coefficient derivation

involving ℓ1 ± 2 and ℓ2 ± 2, we have

θℓℓ±2(z) ≃ πbHI

2r2(z)|r′(z)|P
[︄

ℓ + 1/2

r(z)

]︄

D+(z)δT̄b(z)

∫︂

dz′dkk2 jℓ[kr(z)] jℓ±2[kr(z′)]Wν(z
′)

× 2r2(z′)|r′(z′)|
π

.

(C.47)

We need to include the factor of 2r2(z′)|r′(z′)|/π into the integral, as evaluating P(k) at the

peak of the Bessel function introduces the inverse term when setting the k-integral to a

delta function, and since we are evaluating the integral exactly here, we need to cancel

out this normalization. When ℓ′ = ℓ1 and ℓ′′ = ℓ2, we apply (C.30) similarly to the ℓ = 0

case, and recover (C.35) and (C.36).

C.5 Lensing coefficient derivation

The brightness temperature fluctuations projected onto the sky are perturbed along the

line of sight by the ISW effect, and in angle by gravitational lensing,

δT obs
b (n̂, ν) =δT obs

b,0 (n̂, ν) + ∇δT obs
b,0 (n̂, ν) · ∇θ(n̂, ν)

+ ν
dδT obs

b,0

dν
(n̂, ν)

∆ν

ν
(n̂, ν),

(C.48)

where the 0-index indicates the unperturbed field. These fluctuations can then be trans-

formed into harmonic space,

aνℓm =

∫︂

d2 n̂Yℓm(n̂)
[︂

δT obs
b,0 (n̂, ν) + ∇δT obs

b,0 (n̂, ν) · ∇θ(n̂, ν)

+ν
dδT obs

b,0

dν
(n̂, ν)

∆ν

ν
(n̂, ν)

⎤

⎥⎥⎥⎥⎥⎦ .

(C.49)

We can separate out each term in equation (C.49). Then, according to eq (32), we define

a
L,ν

ℓm
=

∫︂

d2 n̂Yℓm(n̂)∇δT obs
b,0 (n̂, ν) · ∇θ(n̂, ν) (C.50)

with

θ(n̂, ν) =
∑︂

ℓ′m′

θνℓ′m′Y
∗
ℓ′m′(n̂), (C.51)
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C.5 Lensing coefficient derivation

and

δT obs
b,0 (n̂, ν) =

∑︂

ℓ′m′

a
0,ν

ℓ′m′Y
∗
ℓ′m′(n̂). (C.52)

We thus find

a
L,ν

ℓm
=

∑︂

ℓ′ℓ′′m′m′′

∫︂

d2 n̂a
∗0,ν
ℓ′m′θ

∗ν
ℓ′′m′′

× Y∗ℓm(n̂)∇Y∗ℓ′m′(n̂) · ∇Y∗ℓ′′m′′(n̂),

(C.53)

Where we have used the fact that the fluctuations are real. Further, one can use the prop-

erties of the spherical harmonics and the following identity for functions A, B, and C,

∫︂

dn̂C∇A · ∇B =
1

2

∫︂

dn̂
(︂

AB∇2C − AC∇2B − BC∇2A
)︂

, (C.54)

to show that the angular integral becomes,

∫︂

dn̂Y∗ℓm(n̂)∇Y∗ℓ′m′(n̂) · ∇Y∗ℓ′′m′′(n̂) = Wmm′m′′

ℓℓ′ℓ′′ , (C.55)

where

Wmm′m′′

ℓℓ′ℓ′′ ≡
1

2
(−1)m+m′+m′′Lℓℓ′ℓ′′Hmm′m′′

ℓℓ′ℓ′′ , (C.56)

with

Lℓℓ′ℓ′′ ≡ −ℓ(ℓ + 1) + ℓ′(ℓ′ + 1) + ℓ′′(ℓ′′ + 1). (C.57)

Therefore, we find

a
L,ν

ℓm
=

∑︂

ℓ′ℓ′′m′m′′

Wmm′m′′

ℓℓ′ℓ′′ a
∗0,ν
ℓ′m′θ

∗ν
ℓ′′m′′ . (C.58)

The harmonic transforms can be related to the 3D fields via

aνℓm =

∫︂

d2 n̂δT obs
b (n̂, ν)Yℓm(n̂), (C.59)

where the orthonormality condition for spherical harmonics can be applied to obtain

aνℓm =4πiℓ
∫︂

dzWν(z)δT̄b(z)bHI(z)D+(z)

×
∫︂

d3 k

(2π)3
δ̃(k) jℓ[kr(z)]Yℓm(k̂).

(C.60)

Here

θνℓm =

∫︂

d2 n̂θ(n̂, ν)Yℓm(n̂)

=

∫︂

d2 n̂dzWν(z)θ [r(z)n̂, z] Yℓm(n̂),

(C.61)
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C.6 LISW power spectrum

with θ [r(z)n̂, z] given by equation (5.28),

θνℓm = −
2

c2

∫︂

d2 n̂dzWν(z)Yℓm(n̂)×
∫︂ r(z)

0

dr′
S k [r(z) − r′]

S k [r(z)] S k(r′)
Φ(r′ n̂).

(C.62)

C.6 LISW power spectrum

Let us first write down an expression for the ISW coefficients. From (C.49),

a
ISW,ν

ℓm
=

∫︂

d2 n̂Y∗ℓm(n̂) ν
dδT obs

b,0

dν
(n̂)

⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞

ην(n̂)

∆ν

ν
(n̂, ν) (C.63)

We relate the projection on the sky to the 3D field,

a
ISW,ν

ℓm
=

∫︂

d2 n̂Y∗ℓm(n̂)ην(n̂)

∫︂

dzWν(z)
∆ν

ν
[r(z)n̂, z]

=
2

c3

∫︂

d2 n̂dzY∗ℓm(n̂)ην(n̂)Wν(z)

×
∫︂ r(z)

0

dr′
∂Φ

∂t
(r′ n̂, z),

(C.64)

where we assume ην(n̂) = η(z) = ν(z)dT̄b

dν
(z) to lowest order.

We then define Qℓ(ν, ν) via equation (5.39). Applying the Kronecker deltas, we find

Qℓ(ν, ν) =

⟨︄

− 2

c2

∫︂

dn̂dzWν(z)Yℓm(n̂)

×
∫︂ r(z)

0

dr′
S k[r(z) − r′]

S k[r(z)]S k(r′)

× 2

c3

∫︂

dn̂′dz′Wν(z
′)Yℓm(n̂′)η(z′)

×
∫︂ r(z′)

0

dr′′
∂Φ

∂t
(r′′ n̂′, z′)

⟩︄

.

(C.65)

We then write Φ in terms of its Fourier transform and expand the exponential accord-

ing to equation (5.11). The resulting expression can be summed over using the spherical

harmonics closure relations and through the definition of the power spectrum for the grav-

itational potential,

⟨︄

∂Φ

∂t
(k, z)Φ(k′, z′)

⟩︄

=
(2π)3

2

∂PΦ

∂t
(k, z, z′)δD(k + k′), (C.66)
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C.7 Bispectrum data vector for Fisher analysis

we find

Qℓ(ν, ν) =
2(4π)2

c5

∫︂

dzdz′Wν(z)Wν(z
′)η(z′)

×
∫︂ r(z)

0

dr′
∫︂ r(z′)

0

dr′′
S k[r(z) − r′]

S k[r(z)]S k(r′)

×
∫︂

k2dk

(2π)3

∂PΦ

∂t
(k, z, z′) jℓ(kr′) jℓ(kr′′).

(C.67)

We then apply the Limber approximation (see Appendix C.4), integrate out the delta

function introduced, and change integration variable to obtain,

Qℓ(ν, ν) =
2

c4

∫︂

dzWν(z)η(z)

∫︂

dz′Wν(z
′)

×
∫︂ z′

0

dz′′
S k[r(z′) − r(z′′)]

S k[r(z′)]S k[r(z′′)]r(z′′)2

× ∂PΦ
∂z

(k, z′′)

⃓
⃓
⃓
⃓
⃓
k=ℓ/r(z′′)

,

(C.68)

where

η(z) = −(1 + z)
dδT̄b

dz
(z), (C.69)

and

PΦ(k, z) =

(︄

3

2
ΩM,0

)︄2 (︃
H0

k

)︃4

P(k, z)(1 + z)2. (C.70)

Finally, we assume that both ν and the integral of the power spectrum vary slowly over

the width of the window, which results in equation (5.40).

C.7 Bispectrum data vector for Fisher analysis

Based on the idea that a normalised sum of independent random variables tends towards

a Gaussian distribution via the central limit theorem, we show here that taking the bispec-

trum data vector to be

xνℓ1ℓ2ℓ3 =
∑︂

m1m2m3

aνℓ1m1
aνℓ2m2

aνℓ3m3

⎛

⎜⎜⎜⎜⎜⎝

ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞

⎟⎟⎟⎟⎟⎠ , (C.71)

results in a Gaussian distributed data vector, to which the application of the Fisher analysis

is valid.

For large ℓ-modes, the central limit theorem can be applied to determine that a

weighted average of the product of three angular coefficients

Aνλµ ≡ aνℓ1m1
aνℓ2m2

aνℓ3m3
, (C.72)
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C.7 Bispectrum data vector for Fisher analysis

where λ = (ℓ1, ℓ2, ℓ3) and µ = (m1,m2,m3), namely

b̂νλ =
∑︂

µ

Aνλµwλµ, (C.73)

where wλµ denote some weighting function, is Gaussian distributed as desired. Now, we

assume full-sky coverage to eliminate any ℓ-mode mixing and determine the weights for a

minimal-variance unbiased estimator. We have that the bispectrum, in this notation, takes

the following form,
⟨︂

Aνλµ

⟩︂

= bνλWλµ, (C.74)

where Wλµ is the Wigner-3J symbol and bν
λ

is the reduced bispectrum. The expectation

value of the data vector is then

⟨︂

b̂νλ

⟩︂

= bνλ

∑︂

µ

wλµWλµ, (C.75)

where the requirement for an unbiased estimator results in the condition

∑︂

µ

wλµWλµ = 1. (C.76)

Next, we compute the variance of the data vector with the aim to discover the weights

which minimize it. The variance is

⟨︃(︂

b̂νλ

)︂2
⟩︃

−
⟨︂

b̂νλ

⟩︂2
=

∑︂

µη

⟨︂

AνλµA
ν
λη

⟩︂

wλµwλη −
(︁

bνλ
)︁2

=
∑︂

µη

⟨︂

aνℓ1m1
aνℓ2m2

aνℓ3m3
a∗νℓ1m4

a∗νℓ2m5
a∗νℓ3m6

⟩︂

wλµwλη −
(︁

bνλ
)︁2

=
∑︂

µη

(︂⟨︂

aνℓ1m1
a∗νℓ1m4

⟩︂ ⟨︂

aνℓ2m2
a∗νℓ2m5

⟩︂ ⟨︂

aνℓ3m3
a∗νℓ3m6

⟩︂

+ cycl.
)︂

wλµwλη

= Cνℓ1C
ν
ℓ2

Cνℓ3

∑︂

µη

δK
µηwλµwλη + cycl.

= ∆λC
ν
ℓ1

Cνℓ2C
ν
ℓ3

∑︂

µ

w2
λµ,

(C.77)

where ∆λ = 6, 2, or 1, if all ℓ modes are the same, two are the same, or all are different

respectively, and we have cancelled the
(︂

bν
λ

)︂2
with the ⟨aaa⟩ ⟨aaa⟩ term after applying

Wick’s theorem. To obtain the minimal variance, unbiased estimator, we minimize the
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C.7 Bispectrum data vector for Fisher analysis

all Aν
λµ triplets

Wλµ = W1

Wλµ = W2

Wλµ = W3
Wλµ = W4

...

Aν
λµ with

Aν
λµ with

Aν
λµ withAν

λµ with

Figure C.1: We separate the ensemble of all triplets Aν
λµ

into groups within which the

Wigner-3J symbols of the index groups λ and µ are identical. Then, when performing the

sum over each group, each sum reduces to a weighted average with identical weight.

variance subject to the condition (C.76), using a Lagrange multiplier,

∂

∂wλρ

⎡

⎢⎢⎢⎢⎢⎢⎣
∆λC

ν
ℓ1

Cνℓ2C
ν
ℓ3

∑︂

µ

w2
λµ − k

⎛

⎜⎜⎜⎜⎜⎜⎝

∑︂

µ

wλµWλµ − 1

⎞

⎟⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎦
= 0

⇒2∆λC
ν
ℓ1

Cνℓ2C
ν
ℓ3

wλρ − kWλρ = 0

⇒wλρ = const.Wλρ.

(C.78)

The condition (C.76) together with the result (C.80) show that the weights taken to be the

Wigner-3J symbol would result in the unbiased minimal estimator we are after.

Finally, we need to verify that such a data vector is indeed Gaussian. Let us group

the triplets of aℓm such that within each group the Wigner-3J symbol is the same for all

triplets, see Fig C.1. Then, for large ℓ, the central limit theorem can be applied as the

elements within each sum are independent and identically distributed random variables,

making each group a Gaussian random variable itself. Finally, the sum of all groups is

a sum of Gaussian random variables and itself Gaussian, thus showing that the minimal

variance, unbiased estimator, which we have derived above, is Gaussian distributed for

sufficiently large ℓ.
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C.8 Orthogonality relations of Wigner-3J symbol

C.8 Orthogonality relations of Wigner-3J symbol

The Wigner-3J symbols obey the following orthogonality relation (Sobelman 1979):

∑︂

m1,m2

⎛

⎜⎜⎜⎜⎜⎝

ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

ℓ1 ℓ2 ℓ′
3

m1 m2 m′
3

⎞

⎟⎟⎟⎟⎟⎠ =
δℓ3ℓ′3δm3m′

3

(2ℓ3 + 1)
, (C.79)

for ℓ1, ℓ2 and ℓ3 obeying the triangle conditions. From this result we find a corollary by

summing over the last m,

∑︂

m1,m2,m3

⎛

⎜⎜⎜⎜⎜⎝

ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞

⎟⎟⎟⎟⎟⎠

2

= 1, (C.80)

where again the ℓ modes need to satisfy the triangle conditions, otherwise the sum is zero.
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Appendix D

Appendix for Chapter 6

D.1 Deriving a relation between u and δ

In linear perturbation theory, the following relation for the evolution of the matter per-

turbations can be derived from the continuity equation for the mass density (see Peebles

1993),

δ̇ +
1

a
∇ · u = 0. (D.1)

It is customary to relate δ̇ to δ directly

δ̇ = H(a)δ
d ln δ

d ln a
. (D.2)

Then, we define

f (Ωm) ≡ d ln δ

d ln a
. (D.3)

Reintroducing these equations into (D.1) yields

∇ · u = −aH(a) f (Ωm)δ. (D.4)

Let us first consider an expansion in Fourier space

∇ · u = 1

(2π)3

∫︂

d3k ik · uke
ik·r, (D.5)

and,

δ =
1

(2π)3

∫︂

d3k δke
ik·r. (D.6)

Introducing these expansions into (D.4) one finds

ik · uk = −aH(a) f (Ωm)δk. (D.7)
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D.1 Deriving a relation between u and δ

This can be used along with the fact that uk ∝ k, to show that

uk = −
a

ik2
H(a) f (Ωm)δkk. (D.8)

So finally,

u(r) =
ia

(2π)3
H(a) f (Ωm)

∫︂

d3kδkkeik·r (D.9)

Now, for the expansion in harmonic space it is instructive to change notation from u

to v as radial and transverse components are related to different transformation functions.

Here, we relate the velocity vector v to the potential Ψ,

v = −∇Ψ. (D.10)

Since k2 is an eigenvalue of the Laplacian operator ∇2 we can relate the coefficientsΨℓm(k)

and δℓm(k) directly via

(D.4)⇒ −∇ · v = ∇2Ψ = aH(a) f (Ωm)δ

⇒ −k2Ψℓm(k) = aH(a) f (Ωm)δℓm(k).
(D.11)

Now, we are only interested in the radial velocity,

u(r) = v · r̂ = −r̂ · ∇Ψ. (D.12)

In spherical polar coordinated the gradient operator can be expressed as

∇ f = r̂
∂ f

∂r
+ θ̂

1

r

∂ f

∂θ
+ φ̂

1

r sin θ

∂ f

∂φ
. (D.13)

Hence,

u(r) = v · r̂ = −∂Ψ
∂r
. (D.14)

Then, Ψ can be expanded in harmonic space using (6.2),

u(r) = −
√︃

2

π

∫︂

dkk2
∑︂

ℓm

Ψℓm(k)
d

dr
jℓ(kr)Yℓm(θ, φ). (D.15)

Finally, the factor of −k2Ψℓm(k) can be replaced by relation (D.11) and the result is ob-

tained,

u(r) = aH(a) f (Ωm)

√︃

2

π

∫︂

dk
∑︂

ℓm

δ
(r)

ℓm
(k)

d

dr
jℓ(kr)Yℓm(θ, φ). (D.16)
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E.2.4 Figures taken from articles published in ApJ

Request for Fig 2.6
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license.
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Claude Schmit
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by the journal to contact you directly.

The figure in question is Figure 1 from "Detecting the Rise and Fall of
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Best Regards,

Claude Schmit

Response

From: Adam Lidz <alidz@sas.upenn.edu>

To: Claude Schmit <claude.schmit13@imperial.ac.uk>

Date: 12/11/2018
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Sure, you are very welcome to use this figure.

Best of luck with completing your thesis! Please also send my regards

to Jonathan!

Best,

Adam

E.2.5 Figures taken from articles published in Phys. Rev. D

This permission concerns Fig 3.7. See the following pages for details.
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E.2.6 Figures taken from article pre-prints published on arxiv.org

Request for Fig 2.1

From: Claude Schmit <claude.schmit13@imperial.ac.uk>

To: George Efstathiou <gpe@ast.cam.ac.uk>

Date: 12/11/2018

Time: 14:31

Dear Prof. Efstathiou,

I was wondering if you’d be able to help me. I am currently completing

my PhD thesis at Imperial College London entitled "Analytic and numerical

analysis of the cosmic 21cm signal" supervised by Jonathan Pritchard and

Alan Heavens. I am seeking permission to include a figure from one of

the Planck collaboration papers in my thesis into my introduction chapter

and I found you to be one of the corresponding authors.

The figure in question is Figure 1 from "Planck 2018 results. VI. Cosmological

Parameters, Planck Collaboration, July 2018, https://arxiv.org/abs/1807.06209".

The figure will be referenced as follows in the figure caption: "Taken

with permission from <article reference>."

According to the Imperial College regulation my thesis will be made publically

available on Spiral, Imperial’s institutional repository

http://spiral.imperial.ac.uk/, under a non-commercial Creative Commons

license.

If you are happy to grant me the permission to reproduce this figure, please

reply to this email.

Best Regards,

Claude Schmit
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From: George Efstathiou <gpe@ast.cam.ac.uk>

To: Claude Schmit <claude.schmit13@imperial.ac.uk>
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Date: 13/11/2018

Time: 10:05

Dear Claude

No problems -- you have permission to use the figure.

Regards

George

------------------------------------------------------------------------------

George Efstathiou FRS Email: gpe@ast.cam.ac.uk Professor of Astrophysics

Kavli Institute for

Cosmology Cambridge

Madingley Road Tel (Work): 01223-337530 (44 1223- outside UK)

Cambridge Tel (Home): 01223-574001 (Mobile): 07900491495

CB3 OHA

England

------------------------------------------------------------------------------

Request for Figs 3.8 and 3.9

From: Claude Schmit <claude.schmit13@imperial.ac.uk>

To: Amanda Weltman <amanda.weltman@uct.ac.za>

Date: 12/11/2018

Time: 14:51

Dear Prof. Weltman,

I was wondering if you’d be able to help me. I am currently completing

my PhD thesis at Imperial College London entitled "Analytic and numerical

analysis of the cosmic 21cm signal" supervised by Jonathan Pritchard and

Alan Heavens. I am seeking permission to include two figures from a recent

SKA paper and I found you to be one of the editors and convenors of the

work.

The figures in question are Figures 3 and 13 from "Fundamental Physics

with the Square Kilometer Array, Bull et al., October 2018,
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https://arxiv.org/abs/1810.02680".

The figures will be referenced as follows in the figure caption: "Taken

with permission from <article reference>."

According to the Imperial College regulation my thesis will be made publically

available on Spiral, Imperial’s institutional repository

http://spiral.imperial.ac.uk/, under a non-commercial Creative Commons

license.

If you are happy to grant me the permission to reproduce these figures,

please reply to this email.

Best Regards,

Claude Schmit

Response

From: Amanda Weltman <amanda.weltman@uct.ac.za>

To: Claude Schmit <claude.schmit13@imperial.ac.uk>

Date: 12/11/2018

Time: 16:05

Hi Claude

Curiously that link takes me to the Planck results. Regardless though,

you would need to get permission from the original place they are published.

Most of our figures come from another publication so it is best to check

which in each case and ask them. Otherwise I am fine with it of course!

Congrats on finishing your PhD.

All the best

Amanda

-------------------------------------------

A/Prof Amanda Weltman

South African Research Chair in Physical Cosmology

Department of Mathematics and Applied Mathematics

University of Cape Town, South Africa

-------------------------------------------
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