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Abstract

Cosmology in the 21st century has matured into a precision science. Measurements
of the cosmic microwave background, galaxy surveys, weak lensing studies and super-
novae surveys all but confirm that we live in a geometrically flat Universe dominated by
a dark energy component where most of the matter is dark. Yet, challenges to this model
remain as well as periods in its evolution unobserved at present. The next decade will
see the construction of a new generation of telescopes poised to answer some of these re-
maining questions and peer into unseen depths. Because of the technological advances of
the previous decades and the scale of the new generation of telescopes, for the first time,
cosmology will be constrained through the observation of the cosmic 21cm signal emitted
by hydrogen atoms across the Universe. Being the ubiquitous element present throughout
the different evolutionary stages of the Universe, neutral hydrogen holds great potential
to answer many of the remaining challenges which face cosmology today. In the context
of 21cm radiation, we identify two approaches which will increase the information gain
from future observations, a numerical as well as an analytic approach. The numerical
challenges of future analyses are a consequence of the data rates of next generation tele-
scopes, and we address this here introducing machine learning techniques as a possible
solution. Artificial neural networks have gained much attention in both the scientific and
commercial world, and we apply one such network here as a way to emulate numerical
simulations necessary for parameter inference from future data. Further, we identify the
potential of the bispectrum, the Fourier transform of the three-point statistic, as a cosmo-
logical probe in the context of low redshift 21cm intensity mapping experiments. This
higher order statistical analysis can constrain cosmological parameters beyond the capa-
bilities of CMB observations and power spectrum analyses of the 21cm signal. Lastly, we
focus on a fully 3D expansion of the 21cm power spectrum in the natural spherical ba-
sis for large angle observations, drawing on the success of the technique in weak lensing

studies.
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trum (solid line) and the 21cmFast power spectrum (dashed line). We

vary Ry at 2 = 9 from Ry, = 2 Mpc to Ry, = 20 Mpc, similar to Fig. [4.9]]116
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Comparison between the recovered 1o and 20~ confidence regions of
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Comparison between the recovered 1o and 20 confidence regions of

21CMMC (red dashed lines) and the ANN emulator (blue solid lines)

at z = 8. The ANN uses 1000 LHS for the training set and a 10*

training 1terations. The dotted lines indicate the true parameter values

(, Rmip, log Tyir) = (30,15,448).[ . . . . . ... ... ... ...
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Comparison between the recovered 1o and 20~ confidence regions of

21CMMC (red dashed lines) and the ANN emulator (blue solid lines)

at z = 8. The ANN uses 100 LHS for the training set and a 10*

training iterations. The dotted lines indicate the true parameter values

(¢, Rupp, log Tyir) = (30,15,4.48). . . . . ... ... ... .........
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lines 1ndicate the true parameter values (J, Ry, log Tir) = (30, 15,4.48) | .
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Comparison between the recovered 1o and 20~ confidence regions of

21CMMC (red dashed lines) and the ANN emulator (blue solid lines)

combining redshifts z = 8,z =9, and z = 10. The ANN uses 100 LHS for

the training set at each redshift and a 10* training iterations. The dotted

lines indicate the true parameter values ({, R, log Ti:) = (30, 15,4.48) [ .
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See Crighton et al.| (2015) for full data list.| . . . . . ... ... ... ... 133
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We fix the order of the bispectrum modes to be £; > ¢, > {5. Then, (a) -
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We plot the amplitude of the angular LISW bispectrum for £,,x at z = 1.
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Part I

Preface

“It is better, I think, to grab at the stars than to sit
[flustered because you know you cannot reach them...
At least he who reaches will get a good stretch, a good view,

and perhaps even a low-hanging apple for his efforts.”

— Drizzt Do’ Urden, Sojourn, by Robert A. Salvatore.
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Chapter 1

Analytic and numerical analysis of the

cosmic 21cm signal

1.1 Introduction

Over the past few decades, technological and methodological advances have pushed the
limits of humanity’s understanding of our Universe further than ever before. The last few
years have seen sensational discoveries from the discovery of gravitational waves (Abbott
et al.|2016; Abbott et al.[2016};|2017a3b;c), over the discovery of new worlds (Gillon et al.
20165 2017), to the precision measurements of our cosmological model (Planck Collab-
oration et al.|[2016bj [2018azb). These and other discoveries have transpired because of
the transition from a science bereft of data to the data driven science that astronomy
has become today. We have, for example, progressed to where once individual parallax
measurements had to be painstakingly taken, missions like the GAIA (Gaia Collabora-
tion et al.|2018) space-telescope readily measure the positions of billions of stars within
the Milky Way. Moreover, current and future ground based telescopes will collect vast
amounts of information over the coming decades. The Square Kilometre Array (SKA[]),
one of the most ambitious projects of the astronomical community, will consist of up-
wards of 130,000 antennas and dishes deployed across two continents and will perform
frontier science for a host of fields (Bull et al.|2018). With the capability of outputting
multiple times the global internet traffic in data per year, new techniques for data manage-
ment, storage and analysis will be required and this will pose one of the major challenges
for the community in upcoming years. The availability of large data sets has become a
global phenomenon, and has brought with it an increasing interest in machine learning as

a new way to deal with these data sets. The fields of astronomy and cosmology have thus

'https://pos.sissa.it/215/
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1.1 Introduction

unsurprisingly seen a surge of machine learning applications in recent times. Ranging
from emulation of large scale simulations (Heitmann et al.|[2009; [Heitmann et al. 2013}
Heitmann et al.2014; 2016) to using Gaussian processes to separate foregrounds from ob-
served data (Mertens et al.[2018]), machine learning has already proven to be a useful tool,
and is likely to play a critical role in solving major challenges faced in the near future.
Besides the challenge of large data, recent cosmological experiments have lead to the
near exhaustion of the cosmic microwave background (CMB) radiation as a cosmological
probe, as detailed in Planck Collaboration et al.| (2018b), warranting a shift in focus for
cosmological measurements. We now have an exquisite understanding of the conditions
during the time of recombination. However, as precise as our knowledge of the Universe
at redshift z ~ 1100 is, some of the most important epochs following recombination are
left unobserved to date. The cosmic Dark Ages present an important epoch during which
the growth of structure transitions from linear to non-linear structures, yet the complete
absence of luminous sources has made any direct measurement of the epoch impossible.
This transition importantly ushers in the Cosmic Dawn as the non-linear gravitational col-
lapse leads to the formation of the first luminous structures in the Universe. Again, the
enormous distance to these faint sources have left this crucial epoch undetected. Further,
these first stars and galaxies start to produce highly ionizing radiation which leads to the
second phase transition of the Universe as the hydrogen gas in the intergalactic medium
completely ionizes over a relatively short period of time known as the Epoch of Reioniza-
tion. High redshift quasar observations probe the tail end of this era, and the optical depth
to the CMB can give us an estimate of the instantaneous redshift of this otherwise elusive
phase transition. All of these epochs exhibit a major presence of neutral hydrogen gas
in the intergalactic medium and a useful property of this gas is the existence of a ground
state spin flip transition at a wavelength of 21cm. This easily excited transition holds the
potential to open up a new frontier of cosmological measurement at all stages during the
cosmic evolution. Although 21cm science has its own inherent theoretical and observa-
tional challenges, many insights gained from previous studies can be readily applied.
The focus of this thesis is therefore twofold. With the increasing need for numerical
techniques to support cosmological data analysis, we study the application of machine
learning techniques in the context of Epoch of Reionization simulations. Furthermore,
analytical developments are needed to ensure the maximal information gain from fu-
ture 21cm experiments. We thus focus on the development and adaptation of analysis
techniques which have proven useful for the analysis of different cosmic probes to the

measurement of the 21cm signal.
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1.2 Thesis structure

1.2 Thesis structure

The thesis is organised into five parts, each subdivided into a number of chapters. Here,
we describe each part and the chapters contained within following this introductory part
of the thesis.

Part [T contains the background material for this thesis. Chapter 2] focusses on devel-
oping a basic understanding of the cosmological model used throughout the thesis. The
chapter introduces the basic concepts of the standard cosmological model and character-
izes the equations of motions which describe the dynamics of our expanding universe.
The formation of structure counts towards the most important requirements for a model
of the Universe and this chapter thus proceeds by focussing on the linear and non-linear
evolution of the dark matter density field. The evolution of the dark matter forms the
foundation for the formation of the structures we observe today. Once the conditions are
right for star formation, the first light sources appear and bring about the cosmic dawn.

In chapter [3] we focus on the cosmic 21cm signal as a new avenue for cosmological
observations at high and low redshifts. The chapter opens with an introduction of the
atomic physics that produces the electron transition in atomic hydrogen resulting in the
emission of a photon at 1420 MHz and introduces the spin temperature as the critical
signal strength parameter. Most of the chapter then discusses the physics which controls
the spin temperature of the 21cm signal and thus the evolution of the signal strength from
early times until the Epoch of Reionization. During this epoch, high energy photons ionize
the intergalactic medium thereby limiting the emission of the signal to isolated shielded
regions of atomic hydrogen after reionization has ended. We then proceed by introducing
the statistical signal from fluctuations in the global signal and finish the chapter with a
look at current and future observational methods.

Part [[TT] contains chapter 4] which focusses on the numerical analysis of the 21cm
signal in the context of machine learning. The chapter contains the findings of Paper 1
and thus opens with a description of the necessity for new computational efforts in the
age of big data astronomy. A selection of supervised and unsupervised machine learning
techniques are discussed in this context. The analysis presented in this chapter aims to in-
crease the data reduction efficiency for Epoch of Reionization observations by emulating
the model evaluation in an MCMC analysis using an artificial neural network emulator.
The analysis aims to identify the amount of training samples needed for an accurate rep-
resentation of the model emulated as well as the optimal choice for the selection of the
training samples. We find that a training set of as few as 100 samples selected in such a
way that no two samples share a common coordinate results in reliable inference of the

observed parameters by the emulating network.

26



1.2 Thesis structure

Part |[V] of the thesis contains two chapters focussing on the derivations of analytic
results aimed to amplify the information gain from future 21cm observations. Chapter 3]
introduces the work published in Paper II. The chapter principally describes the 21cm
bispectrum introduced on the signal by the non-linear gravitational collapse of structure
and analyses its detectability and information content in the context of low redshift (z ~
1 — 3) intensity mapping experiments. Besides this primary contribution, the chapter
describes an additional contribution to the 21cm bispectrum in the form of the lensing-
ISW bispectrum. A Fisher forecast model which compares the bispectrum to 21cm power
spectrum observations at the same redshifts is build up and evaluated in this chapter. The
main findings of this analysis is a significant decrease in the marginalised errors of the
cosmological parameters when the power spectrum and bispectrum analysis is combined
as compared to the current best estimate values of the cosmological parameters obtained
from CMB observations.

Chapter [6] contains unpublished work on the expansion of the 21cm power spectrum
in the 3D spherical harmonic spherical Bessel function basis. Here we introduce the
highly successful 3D formalism from Heavens| (2003) to 21cm cosmology. Similar to
the signal in weak lensing studies, the 21cm signal is an inherently three dimensional
signal which is subject to discontinuous sampling due to observational constraints. The
natural basis in which to expand the 21cm signal when large areas of the sky are surveyed
is that of a spherical harmonic spherical Bessel function basis, and we derive the 21cm
power spectrum in this basis in this chapter. Additionally we derive the form of the power
spectrum when redshift space distortions are present in the observations.

Part |V| concludes the thesis by drawing together the insights gained by the various
analyses introduced throughout the thesis and provides a scientific outlook for studies

based on the material presented in this thesis.
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Part 11

Background

“Habe nun, ach! Philosophie,
Juristerei und Medizin,
Und leider auch Theology!
Durchaus studiert, mit heiflem Bemiihn.
Da steh ich nun ich armer Tor!

Und bin so klug als wie zuvor.”

— Heinrich Faust, Faust, by Johann W. von Goethe.
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Chapter 2

Cosmology

2.1 History of physical cosmology

Humanity’s universal desire for a fundamental understanding of the cosmos is self evi-
dent from the plethora of creation myths and cosmologies that are found in religions and
traditions throughout the world. Cultures throughout history have built elaborate cos-
mological frameworks within which they could reconcile their observations of the natural
world. Most of the ancient cosmologies, such as those of the ancient Egyptians, the Baby-
lonians and the early Greeks were intricately linked to their respective myths and legends,
having gods and other supernatural beings at the centre. Tragically, despite early observa-
tions of the heavens, progress towards a deeper understanding of the phenomena they saw
was impossible for many early cultures as they too often believed all things to be simply
at the whim of the gods. It was the Greeks who for the first time subjected everything to
the flow of time, implicating that there are powers greater than the divine. This along with
the cultural exchange that followed on from trade and wars over the first millenium B.C.,
allowed the Greeks to use reason to evolve and demystify their cosmology. The birth of
deductive reasoning culminated in the first theory of physical cosmology dating back to
the 4th century B.C., a time when Aristotle argued for the circular motion of the heavenly
bodies around the Earth. Although many of the assertions used to develop his theory are
flawed, Aristotle used observations as the basis of his deductions and was able to predict
the positions of the planets using his model of the Universe. In the second century A.D.,
Ptolemy picked up on Aristotle’s ideas and formalised them in his Almagest which would
become the authority on Astronomy until the Copernican Revolution in the 16th century.

After about 10 centuries of stifled scientific progress during the Middle Ages in the
West, Nicolaus Copernicus famously rejected the then accepted geocentric model of the
Universe. With this he created the foundation for Johannes Kepler and later [saac Newton

to formalise the heliocentric model in which the planets move on ellipses around the
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2.1 History of physical cosmology

Sun. Although these ideas were only slowly accepted at the time, this marks the perhaps
most important moment in the history of cosmology as it no longer places mankind at the
centre of the Universe. After Galileo Galilei introduced the telescope as an astronomical
instrument in the 17th century, steady progress was possible using observations as the
scientific mode of inquiry.

The modern era of physical cosmology began in the late part of the 19th and the 20th
century with the foundations for and ultimately the formulation of Einstein’s general the-
ory of relativity. Limitations of Newtonian mechanics had become obvious primarily due
to the Michelson-Morley experiment, which revealed the lack of a universal frame of ref-
erence and allowed for a relative definition of time. Einstein’s formulation of special rel-
ativity fundamentally linked space and time and also equated energy and mass famously
through E = mc?. It subsequently took the inspired insight of the ‘equivalence principle’
for Einstein to dynamically link these two concepts into, perhaps, the most predictively
powerful and conceptually important theory in the history of science; the general theory
of relativity. With its help, general relativity allowed for a mathematical formulation of
the dynamical properties of the whole Universe, and thus derive a number of powerful
predictions assessing the nature of the Universe we live in. After a period of model craft-
ing by people such as Willem de Sitter, Georges Lemaitre and Alexander Friedmann in
the early part of the 20th century, it was the observational confirmation of the expand-
ing Universe by Vesto Slipher and Edwin Hubble that should steer the development of
modern cosmology for the rest of the century and up to the present day.

The discovery of the almost isotropic cosmic microwave background (CMB) by Pen-
zias & Wilson|(1963)), brought us the richest source of cosmological information yet. Over
the past three decades a series of land-based as well as space-based experiments have
measured the statistical fluctuations seen in the after-glow of the big bang, and shaped
our theoretical understanding of the Universe on the largest scales. The culmination of
this effort was the release of the 2018 data analysis of the Planck satellite (see Fig. [2.1)),
constraining model parameters on the 1% level, and setting a new high-precision standard
for cosmological observations.

The study of physical cosmology has a long and interesting history, and we will
summarize the modern standard cosmological model in this chapter. In section [2.2] we
introduce the fundamental building blocks of the standard model of cosmology and de-
velop the dynamics of the expansion of the Universe via the Friedmann equations. From
section [2.3] onwards, we focus on structure formation using concepts of first linear per-
turbation theory, culminating in a form of the linear dark matter power spectrum, before
discussing non-linear collapse in section [2.4} in addition to halo abundance models and

the formation of the first stars and galaxies. In section [2.5] we take a look at what pri-
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2.2 The standard cosmological model
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Figure 2.1: The top panel shows the temperature power spectrum as measured by Planck
Collaboration et al.[| (2018b) with 10 error bars. The best fit model (blue line) is a 6
parameter ACDM cosmology. At low ¢ the signal is dominated by uncertainties due to
cosmic variance, however exquisite precision is achieved at higher £ values as seen in the
residuals plotted in the lower panel. Taken with permission from |Planck Collaboration
et al.|(2018a)).

mordial non-Gaussianities may tell us about the inflationary period in the early Universe.
Finally, we discuss two line of sight observables in sections and First we in-
troduce weak lensing, and later the integrated Sachs-Wolfe effect as ways to observe the

large scale structure of the Universe today.

2.2 The standard cosmological model

2.2.1 The cosmological principle

The standard cosmological model is fundamentally based upon the assumptions of large
scale homogeneity and isotropy, sometimes referred to as the ‘cosmological principle’.
These two properties guarantee that structure is distributed uniformly (homogeneity) in
all directions (isotropy) when viewed on sufficiently large scales, and allow us to test
cosmological models independent of our particular location in the Universe. Although,
these properties truly had to be taken as assumptions for most of the development of the
cosmological model, and have thus come under severe criticism (Kragh 2012), we now
have good evidence in favour of the isotropy and growing confidence in the large scale

homogeneity of the Universe. Curiously, the cosmological principle seems to be valid
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2.2 The standard cosmological model
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Figure 2.2: As time progresses, objects stay at the same coordinate separation when
the physical separation increases due to the expansion of space. The scale factor, a(?),
measures the relation between physical and coordinate distance.

within the observable Universe when structure is coarse grained on scales of 100 Mpc,
whereas inhomogeneities certainly exist on smaller scales. It is also impossible to know
whether the Universe remains homogeneous and isotropic outside our observable patch,
which results in a validity of the most fundamental principle in cosmology only over a

finite range of scales.

2.2.2 The expanding Universe

Any model of the Universe must reconcile basic observed truths, and thus the observed
expansion of the Universe lies at the heart of the standard model. The expansion history
is described by a scale factor a(tﬂ which increases as time progresses, pictured in Fig.
[2.2] It is useful to define a coordinate system which expands with the space in which it
is embedded. Thus the comoving distance between coordinate points remains unchanged

while the physical distance between them increases with the scale factor, such that
r =a(tx, (2.1)

where r denotes the proper distance and x is the comoving distance.
The expansion rate observed by Hubble can thus be related to the scale factor (Hubble
1929),

H() = g (2.2)

'We use a normalised scale factor whose current value is defined to be a(ty) = 1.
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2.2 The standard cosmological model

The hubble parameter, H(t), which was discovered as a proportionality constant between
the recession velocity and the distance of galaxies, v = H(f)d, thus measures the rate of

change of the scale factor over time.

2.2.3 Geometrical features

The next step in building a reliable cosmological model, is to assure that two observers
at different points in space-time can reliably determine the distance between themselves
in an expanding Universe. We therefore need to give these observers a way to transform
coordinate distances into some invariant physical distance measure. The connecting ma-
trix for transforming between coordinates in any given system to the physical length is
known as the metric, and we can generally write the invariant distance measure in a 4

dimensional space-time, such as our Universe, as
ds* = g, dx"dx’, (2.3)

where we have used the Einstein summation convention, and repeated indices are then
summed over. The u and v indices in the above equation range from 0 to 3, and the O
index connects to the time dimension, such that dx° = cdt. The metric, g~ thus connects
coordinates to the invariant length element dss, known as the proper time, this is the fun-
damental distance in a 4 dimensional space-time, which all observers can agree on. The
form of this metric depends on the kind of universe the observers live in and their choice of
coordinate system in which they choose to measure it. For example, a flat, static universe,
fully described by the Minkowski space-time, has a metric, g,, = 1,, = diag(-1,1,1, 1),
when expressed in cartesian coordinates. In order to describe our own Universe, the met-
ric has to obey the cosmological principle, as well as incorporate the expansion of space
as a function of time according to Hubble’s law. The Friedmann - Lemaitre - Robertson
- Walker (FLRW or FRW) metric is the unique metric which obeys these constraints, and
can be most usefully expressed in spherical polar coordinates as

gu = diag|~1,a*(1), (DS {(r), & (DS }(r) sin *0)| . (2.4)
The resulting line element is then

ds* = —c*di* + (1) [dr® + S(r) (d6® + sin® 6dg?) (2.5)
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2.2 The standard cosmological model

k<0 k=0

k>0

Figure 2.3: Possible geometries of the Universe as a function of k. From left to right,
k < O implies a hyperbolic geometry where the sum of the angles of a triangle is less than
/2, k = 0 implies Euclidean geometry where the angles of a triangle always add to /2,
and k > 0 implies spherical geometry where triangles have the sum of their angles add to
more than /2.

where S (r) allows for the geometrical uncertainty we have of our Universe,

Vk~! sin (r VE) , k > 0, closed,
Su(r)=1r, k = 0, flat, (2.6)
VIK"sinh (r VIK]). & < 0, open.

The curvature constant k, which is related to the energy contents of the Universe, as we
will see later, sets the geometrical properties of the metric. A positive curvature leads to a
closed universe with a spherical geometry, a negative curvature leads to an open universe
with a hyperbolic geometry, and zero curvature leads to a flat universe. The three cases
are shown in Fig. 2.3]

2.2.4 Cosmological redshift

Although we have yet to define the dynamics of our model of the Universe, we can already
use the FRW metric to compute the trajectories on which light propagates. Defining an
observer to be at the origin, light travels on radial null geodesics (trajectories with zero
proper time). The FRW metric thus reduces to the following for photons,

ds* =0 = =c*d* + a*(t)dr*. (2.7)

As two observers, or galaxies, move apart in an expanding universe, relative to one, the
other is receding. Light emitted from a receding source is subject to a redshift z. The
redshift of an object is directly related to the change of frequency between the emitted
and observed frequency of a beam of light. It is then useful to consider two beams of light

emitted a short amount of time after another, and realise that both beams travel the same
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2.2 The standard cosmological model

comoving distance r, in order to relate the frequency shift to a change in the scale factor,

Vemit =1+7= a(tobs)

Vobs a(temit) .

(2.8)

2.2.5 Dynamics of the expanding Universe

For a dynamical description of the Universe, we require the use of general relativity (GR).
The equation of motion for a particle in a curved space-time can be obtained by applying

the principle of least action to the FRW metric and results in the geodesic equation,

oL dvad
dr? B dr dr

(2.9)

where Ffi 5 Tepresents the affine connection, and 7 is the conformal time. Further, it took
Einstein’s insight to relate the dynamical properties of the Universe’s content to the metric,

via his field equations,

Gy =Ry — %gﬂyR = 8:—4GT#V. (2.10)
The Ihs of this equation consists of the Ricci tensor R,,, which describes the degree of
curvature of a topological manifold, and the Ricci scalar R, which describes the differ-
ence in volume of a ball in the curved space to that of a ball in Euclidean space. The
rhs of equation (2.10) describes the contents of the Universe via the energy-momentum
tensor T),,. Famously summarised by John Wheeler, these equations are described by the

following two statements:
e Space-time tells matter how to move,
e Matter tells space-time how to curve.

When combining the FRW metric with Einstein’s field equations we obtain a set of
three equations that describe the expansion of space in a GR context. The Friedmann

equations, named after Alexander Friedmann, are

&G ke A
H=—"—p——+— 2.11
and. i 4nG P\ A
a T
== 3_) -, 2.12
a 3 (p * c2 " 3 ( )
which can be combined to form a third,
) P
p+3H(p+—2) _0. 2.13)
C
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2.2 The standard cosmological model

From these equations, we can derive some conditional parameters which allow insight
into the dynamics of the Universe. Evaluating the first Friedmann equation today, we see
that
H} = 8”—G,oo _kt D (2.14)
3 3
Considering a flat universe without cosmological constant, kK = A = 0, allows us to
determine a critical value for the current density, py, for which the universe has zero

curvature,

3H2
871G’
Any A = 0 universe whose energy density differs from p. will thus express non-zero

Pe (2.15)

curvature. It is then useful to define a density parameter which measures the density

relative to the critical density of the universe,

_po _ 8nGpy

Q = .
*7 e 3H;

(2.16)

Various sources contribute to the energy content of the universe and so py is the sum of
energy densities of these components. Using the first Friedmann equation and expressing

it in terms of the critical density one finds
H*(a) = Hj [Qu(a) + Qr(a) + Q@) + Qal, (2.17)

where we have introduced the matter and radiation contributions to the energy density and
defined

2

and Qu(a) = L (2.18)

kc
Q(a) = T Yo7k
0

@
as the density parameters for curvature and dark energy respectively. An appropriate time
evolution for the density parameters can be found by analysing the third Friedmann equa-
tion in the matter dominated and radiation dominated limits. For the matter dominated
case, we can assume a near pressureless fluid as most matter in the Universe is dark and

only interacts gravitationally. Then the function that solves equation (2.13) is,
oM< a, (2.19)

and as a consequenceﬂ,
a o 1213, (2.20)

2From the Friedmann equation: @ oc a™'/? = fal/zda oc fdt = a3
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2.2 The standard cosmological model

For the radiation dominated case, we use the equation of state, P = 3prc?, and thus

pr < at. (2.21)
Similarly for the radiation dominated era one find

act'? (2.22)

The fact that the scale factor and the energy densities evolve at different rates during
matter and radiation dominated epochs is a fundamental result which has implications on
the growth of structure as we will see in section [2.3]
We can then express H(a) as a function of the current values for the density parame-
ters,
H*(a) = Hy (Quoa™ + Qroa™ + Quoa™ + Quy). (2.23)

Today, there is almost no contribution from radiation in terms of the energy content of the
Universe. The CMB, which makes up the vast majority of the photons in the Universe, is
a blackbody with a temperature of Tcyp =~ 2.75K, which compared to the critical density
results in Qg ~ 5 x 107>, However, as the radiation density goes as a™*, at early times,
photons were the dominant constituent of the Universe. Observational efforts over the last
three decades, experiments such as COBE, WMAP and Planck, have pinned the values of
the other density parameters at (Planck Collaboration et al.|2018a))

Qo =0.001 £0.002, Quo=0.315+0.007 and Qs =0.685+0.007. (2.24)

We can thus see that the dominant component is that of dark energy through a cosmo-
logical constant, gravitational matter only constitutes about a third of the total energy
budget today, and the Universe is consistent with having no curvature. Furthermore, the

expansion rate inferred from the CMB is
Hy = 100h km/s/Mpc and h = 0.6727 £+ 0.0060. (2.25)

Of note is that there remain tensions between the Hubble rate as inferred from the CMB,
giving the value presented above, and other measurements. Riess et al. (2018b) have
used standard candles to calibrate the local distance ladder and thus measured the Hubble
parameter locally to find a somewhat faster expansion rate of 7 = 73.48 + 1.66. Similarly,
the HOLiCOW collaboration (Bonvin et al. 2017} Birrer et al.|2019) have consistently

3From the Friedmann equation: & o a™' = [ada o [dt = a oc 112,
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Figure 2.4: Evolution of the energy density components as a function of age of the
Universe (top axis) and redshift (bottom axis). We show that the contributions of matter
(blue), Qy, radiation (orange), Qg, and dark energy (green), Q,, dominate the energy
budget of the Universe at different times.

found high values of the Hubble constant using strong lensing time delays. Recently,
Macaulay et al.| (2018) have inferred a value of 4 = 0.6777 + 0.0130, consistent with the
Planck measurements, from BAO measurements. The determination of the expansion rate
is thus far from settled and analyses of the systematics of different methods are needed to
reconcile these results.

In Fig. 2.4] we show the evolution of the density parameters as a function of redshift
and highlight the different eras in which each component was dominant, according to the
model defined by equations (2.24) and ([2.23)). It is important to realize that the Universe

was matter dominated for the majority of cosmic history, and we will study it in more

detail when talking about structure formation in section [2.3] In the recent past, since
z ~ 1, the matter density has decreased and the dark energy component has become the
dominant contributor to the energy budget of the Universe. The model predicts that this
trend will continue on into the future until Q, =~ 1, and all other forms of energy are
dominated completely by dark energy. This would ultimately result in the “heat death”
of the Universe, a state where the Universe expands indefinitely, continuously increasing
the distances between stars and galaxies, creating an environment inadequate for star

formation.
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2.2 The standard cosmological model

2.2.6 Age and distance measures in the expanding Universe

Possibly one of the most important aspects of the Big Bang model is the fact that the
Universe has only existed for a finite amount of time. We can compute the age of our
expanding Universe, t,, by integrating a time element from the Big Bang to the present
day. Differentiating the redshift relation (2.8), we can change variables such that the

integral can be written as

g [ dz
to = Hj fo T (2.26)

where E(z) is derived from equation (2.23)) and defines the cosmological model,
3 4 2 172
EQ@) = [Quo(l +2)° + Qro(1 +2)* + Quo(1 +2)* + Qug| . (2.27)

We can thus see that the age is related to the Hubble time, H;, ! and a correction factor
which is determined by the energy content of the Universe. A simple matter dominated
universe can be shown to result in a correction factor of exactly 2/3. However, as seen
in the previous section, a significant contribution from a cosmological constant implies
that the Universe is much older than without it. The best observational constraints come
from the Planck satellite (Planck Collaboration et al. 2018a) and put the age at 1, =
13.800 + 0.024 Gyrs.

Due to the expansion of the Universe, distance measures in cosmology can be am-
biguous as the distance between two points is constantly changing (Hogg |1999). There
exist a number of useful distance definitions which are applicable in a variety of contexts.
The proper distance along the line of sight defines the physical distance we would mea-
sure if we froze the expansion of the Universe at the time of observation. At low redshifts,
the proper distance is that which we would intuitively observe. This distance depends on
the expansion history and thus on the factor E(z) introduced in equation (2.27)), such that

the proper distance between us and an object at redshift z is

4 dzl
r:cH_lf . (2.28)
* Jo E@)

For observational purposes, the most important distance measures are that of the angular
diameter distance,
Dn=(1+2)7'Dy, (2.29)

and the luminosity distance,
Dy, = (1 + 2)Dy, (2.30)
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2.3 Linear perturbation theory

which both depend on the transverse comoving distance,
Dy = cHy'S (7). (2.31)

The angular diameter distance measures the ratio of an objects physical size to its angular
size subtended on the sky. This ratio has a turn-over at z ~ 1 such that objects at high
redshifts appear larger than at low redshifts. The luminosity distance measures the ratio
between the bolometric flux observed and the luminosity of a distant object and thus

measures how far away the object is based on the amount of light arriving at the observer.

2.3 Linear perturbation theory

Up to this point we have discussed the expansion history and energy contents of a universe
adhering completely to the cosmological principle and especially to homogeneity. How-
ever, our existence is prime proof for this not being the complete picture. In a perfectly
homogeneous universe, no structure can ever form as the gravitational pull on matter at
any point cancels exactly due to the uniform pull from every direction. The theoreti-
cal framework which is most widely accepted and discussed here is that of primordial
density fluctuations which grow over time and eventually form the galaxies and clusters
we observe today. As long as these density perturbations are small, linear perturbation
theory, as developed in this section, completely describes the evolution of structure for-
mation. Once perturbations become large, a non-linear description for structure formation
becomes necessary (see section [2.4).

Considering a universe with a homogeneous density distribution, let us assume a
spherical region which is slightly overdense as compared to the surrounding, background
density,

o(x,1) = M, (2.32)

p(t)

where p(x, t) denotes the density at a comoving location x at some time #, and p(¢) denotes
the density of the background at that time. This overdensity generates an increased grav-
itational pull on the surrounding material, such that more and more matter will fall into
the overdensity and thus creating a growing perturbation. At the same time, the Hubble
expansion will exert pressure on the matter in and surrounding the perturbation which
will suppress or inhibit its growth. A sufficiently dense perturbation decouples from the
Hubble expansion and can in principle grow indefinitely. Regions with underdensities,

where ¢ < 0, exhibit the opposite and material is drawn out from them more quickly than
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2.3 Linear perturbation theory

from the surrounding areas. Over time, this process leads to the emergence of voids in the
structure distribution we see today.

Linear perturbation theory studies the evolution of these density fluctuations when
they are small, [0] < 1, in a regime where the equations of motion for the perturbed
quantities can be linearized. This regime is especially important as all fluctuations start
out in this regime such that the crucial beginning era of structure formation is modelled
by linear perturbation theory. Perturbation amplitudes appear to be scale dependent and
have higher amplitudes on small scales, such that these scales become non-linear earlier
than larger scales. This leads to hierarchical structure formation, where differing scales
are linear at different epochs, and thus the description developed in this section becomes
important for different scales throughout time. Today, scales smaller than ~ 10A~'Mpc

have become highly non-linear, yet the linear regime still applies for the largest scales.

2.3.1 Equations of motion

The main assumption of linear perturbation theory is that the gravitating contents of the
Universe can be modelled as a fluid on the scales at which the theory is applied. This is
certainly a valid assumption on the largest scales where the discrete nature of baryonic
and dark matter can be ignored. The evolution of a fluid in a gravitational field is then
subject to the following three equations;

The continuity equation:

0,
P4V (ou) =0. (2.33)
ot
The Euler equation:
0 1
2w Vu=--VP-V. (2.34)
ot 0
The Poisson equation:
V2® = 4nGp. (2.35)

We will proceed to expand these equations in terms of perturbed quantities as well as
comoving coordinates.
2.3.1.1 Continuity equation

The continuity equation (2.33)) simply guarantees that the change in mass in a volume is
equal to the flux of material into or out of the volume. Introducing comoving coordinates,

x = r/a, both temporal and spatial derivatives need to be adjusted. The spatial derivative
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2.3 Linear perturbation theory

transforms in a straightforward manner,

0 10 1
= = -V,. (2.36)

V,=— = ——
or'  adx’ a

For the temporal derivative, consider a function f(z, r), where r = a()x,

of of

= = —|d

df P rdt+ arl r

_of| L Of] .

= % rdt+ o t(axdt+adx) (2.37)
of of of

==L Hr =\ |d —\d
[ﬁtr+ rﬁr, t+aartx

In 3 dimensions, we thus find that the time derivative at a fixed r translates into comoving

coordinates via

91 _9
otl, Ot

Further, we note that in an unperturbed universe, matter simply expands with the Hubble

—Hx-V,. (2.38)

X

flow, such that
vy, = Hr. (2.39)

Deviations from the background flow due to local changes in the gravitational field will

result in peculiar velocities,

d
u = d—: = v, + ak, (2.40)

where we define the peculiar velocity, ie. the velocity deviation from the Hubble flow, as
v, = ai. (241)

Using the results derived up to this point, the continuity equation becomes

dp

o —H@ Vop+ évx : [p (vo + vp)] = 0. (2.42)

X

Expanding the spatial derivative and introducing the density perturbations via equation

(2.32)) one obtains

p
ot

0o

_ [op 1 . 1
+3Hp + 6|+ 3Hp|+p {E +-V, [+ 5)vp]} = 0. (2.43)
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2.3 Linear perturbation theory

At 0™ order in the perturbation, the first two terms sum to zero, thus the term multiplied

by ¢ equally vanishes, leaving the perturbed continuity equation

85 1
=+ Vs |1+, | =0. (2.44)

Of note is that this is a second order equation in perturbed quantities ¢ and v, and in the

linear regime, the second order term can be ignored, resulting in the linearized equation

00 1
-V,-v, =0. 2.45
ot - a Yp ( )

2.3.1.2 [Euler equation

The Euler equation (2.34)) is a consequence of momentum conservation and embodies
Newton’s second law for the fluid components of the Universe. It describes the change in
the velocity field sourced by the forces acting on the fluid. Those forces are the force due
to pressure in the fluid and the gravitational attraction by matter in the Universe. Using

the results derived for the continuity equation, the Euler equation becomes

0 1 1 1 1
& He Vou+ -y Vou+ —( - Vou = —V,P — ~V,0. (2.46)
ot a a ap a
The second and third term cancel and we expand u = vy, + v,, while at the same time
introducing the perturbations in the pressure and gravitational field. Considering only

fluctuating terms and using the fact that (v, - V,)x = v,, we obtain

Do v s Lo vy I vsp_ly (2.47)
— + Hvy + —(v, - Vyvy, = ————V, 6P — -V, ¢. :
ot Prg? P ap(1 +9) a ¢

Similar to the continuity equation, linearizing the equation yields the useful form,

W b ly (2.48)
—P 4 Hy, = —-V,4, .
ot Yp a ¢

where we have ignored the pressure term as during the matter dominated era, when most
of the linear structure growth occurs, the most important component of material in the

Universe is pressureless dark matter.

2.3.1.3 Poisson equation

The Poisson equation as expressed in (2.33) ignores the pressure term due to radiation
pressure as we are mostly interested in the matter dominated era. The equation thus

shows that the gravitational potential ® is sourced by the density distribution of matter in
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2.3 Linear perturbation theory

the Universe. Considering fluctuations in the density distribution, it is easy to see that the

gravitational potential will be perturbed as well,
D =, + ¢. (2.49)

Transforming to comoving coordinates, the first order perturbation to the Poisson equation
becomes
V2 = 4nGa*po. (2.50)

2.3.2 Matter dominated Universe

As seen in Fig. 2.4] the matter dominated era spans from beyond z.. to the ‘recent’ past,
z ~ 0.3, and thus comprises the vast majority of the structure formation in it. As a con-
sequence, we solve the equations of motion for the density fluctuation in the pressureless
limit defining this epoch. The equation governing the evolution of density perturbations
in a flat matter dominated universe can be obtained by combining the divergence of equa-
tion (2.48)) with the linearised continuity equation and substituting equation (2.50),
one finds

0 +2HS = 4nGpyd. (2.51)

The rhs of this equation becomes 41Gpyo = %Hzé, when Qy ~ 1. We have seen that
during matter domination, gy o< a~> and a o /3, using these facts with the Ansatz 6 = a”,

one finds two solutions to the equation of motion,
Soca and &oca (2.52)

The negative exponent solution constitutes the decaying mode for density fluctuations
which will decrease over time and is subdominant to the positive exponent solution, the
growing mode. One can thus see that throughout matter domination, density perturbations
grow with the scale factor, 6 o a. This result encodes the main reason why we see
structure around us today, even though the only departure from homogeneity in the early
Universe were minute density fluctuations. From the Poisson equation (2.50), one can
easily see that ¢ « §/a and thus the gravitational potential does not grow during matter
domination. The depth of the potential fluctuations are thus frozen into place until dark

energy takes over at later times.
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2.3.3 Radiation dominated Universe

At early times, the Universe is dominated by a radiation component, with a minute mat-
ter content, py;/or ~ 0. Note that the total density, p = pm + pgr, sources the gravita-
tional potential fluctuations. Whereas special relativistic fluid equations are necessary to
analyse perturbations in the radiation component, it can be easily shown that the fluctu-
ations in the dominant component oscillate rapidly during this time, which implies that
the average density contrast at any location will be zero (see Padmanabhan et al. 2016).
Qualitatively the oscillatory nature of the radiation component can be understood as it ex-
periences radiation pressure during this time which acts against the inward gravitational

pull. Schematically the equation governing the evolution of the perturbations reads,
0 + [Pressure — Gravity]s = 0, (2.53)

where oscillations occur if the pressure term is large. It is important to note that during this
epoch, the perturbations in the dominant radiation component influences the gravitational
potential, which in turn influences the dark matter perturbations (see Dodelson 2003} for
derivation.).

Here, we are interested in how the matter component evolves during this time and

can thus look at equation (2.51) setting the rhs to zero as both 6g ~ 0 and py ~ 0,
. 1.
o+ ;5 =0, (2.54)

where we have used the fact that H = 1/2¢ during radiation domination. This equation
has two solutions,
o=const. and 0 xInt o« Ina. (2.55)

Matter fluctuations therefore grow slowly, logarithmically, during this period, before their
growth speeds up once matter becomes the dominant component. This is a direct conse-
quence of the oscillations in the radiation fluctuations to which the density perturbations

are coupled.

2.3.4 Dark energy dominated Universe

Today, we observe a significant dark energy component, which drives the accelerated
expansion of our Universe. This dark energy does not cluster, such that in this regime, the

perturbation equation takes the familiar form,

0 + 2HS = 4nGpyo, (2.56)
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where H remains roughly constant. In that case, we assume that the matter component is
small, such that
O+2HS6 = 0. (2.57)

Trying an exponential solution one finds that this equation, again, has two solutions,
6 =const. and & oc e 2, (2.58)

One thus sees that at late times the density fluctuations stop growing. The Poisson equa-
tion then shows that due to the accelerated expansion of the Universe, the gravitational

potential decays as a™'.

2.3.5 Scales beyond the horizon

When considering superhorizon scales, a full general relativistic analysis of the perturba-
tion equations is necessary for a rigorous derivation of the evolution of perturbations on
those scales. However, by considering a perturbation on a superhorizon scale itself as a
slightly overdense universe, embedded in a flat universe, the main results can be shown

by a simple argument. Consider a flat background universe, then the Friedmann equation

(2.11) gives
8nG
H® = —=po, (2.59)
where py denotes the density which results in zero curvature. A slightly overdense uni-
verse, with p; > pg, will thus expose a curvature term in the same Friedmann equation,
8nG kc?
2
H” = Tpl -5 (260)
1
We consider that both equations really represent two regions in the same universe, and
thus have the same expansion rate, we find

- 3kc?
5 P1—Po _ c

= . (2.61)
00 8nGpoa?
If the perturbation is small, ie. in the linear regime, then a; ~ ay = a. Now, from this
result, we can see that during radiation domination, pg o a~*, therefore & « a?, whereas

during matter domination, where p, oc a~>

, the perturbations grow at the same rate outside
the horizon as they do inside, namely ¢ o« a.

We then see an important distinction between those scales that enter the horizon dur-
ing radiation domination, ie. small scales, and those that enter during matter domination,

ie. larger scales. Those that enter during RD are hindered in their growth by the rapid
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Figure 2.5: Summary of the growth of linear perturbations with time. We show the evo-
lution of two different scales entering the horizon at two different times. A small scale

perturbation, (1), entering during radiation domination, agﬂer, experiences stifled growth

until the Universe becomes matter dominated at a.q. A larger scale, (2), perturbation en-
(@)

ters the horizon later, during matter domination, a ..

and thus grows freely throughout.
expansion induced by the relativistic component at early times. Scales which are still
outside the horizon at this time therefore freely grow with the hubble expansion (6 o a?),
and do not experience a similar lag. As a consequence we should see a suppression of
small scale structure up to a scale which is equal to the horizon scale at matter-radiation
equality, as any scales larger than that will enter the horizon once matter has become the
dominant component and will therefore never experience logarithmic growth. This effect
is called the Mészaros effect and we illustrate it in Fig.

2.3.6 'The matter power spectrum

We have already seen that different effects affect the density perturbations on different
scales, and it is therefore useful to consider these results in terms of the Fourier decom-
position of the fluctuations. Furthermore, primordial density fluctuations are inherently
random in amplitude so a statistical analysis of the fluctuations on different scales is use-

ful. A useful measure is then the power spectrum P(k), which is defined via

(640, ) = (2m)*6°(k — K")P(k), (2.62)
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Figure 2.6: Summary of a variety of local matter power spectrum observations. The
red line shows a standard flat, scale-invariant cosmology using Qy = 0.28, & = 0.72,
O, /Oy = 0.16, and 7 = 0.17. Taken with permission from|Tegmark et al.|(2004)).

where 6P denotes the Dirac delta function and for an isotropic universe the power spec-
trum depends on the scale amplitude only, P(|k|) = P(k). Inflationary models produce
close to a simple power law form for the power spectrum, with Py, (k) o< k™, and ng = 1,
however, we have seen that the growth of density perturbations is affected by a stifled
growth during radiation domination at small scales, resulting in a power spectrum propor-
tional to k=%, This scale dependence is generally separated out from the growth factor,
D(z), which encompasses the growth of perturbations as a function of time, such that the

power spectrum can be written as

D*(2)

P(k,z) = Tz(k)m
eq

Pprim.(k), (263)
where T (k) denotes the transfer function for the scale dependence of the evolution of the
perturbations. In a Universe containing baryons and neutrinos, the transfer function can
become complicated, however standard fitting formulae for these exist (Bardeen et al.
1986; [Eisenstein & Hu|[1997). Fig. 2.6 shows observations of the matter power spectrum

and clearly indicates the expected turn-over at k = k.q, which is the scale of the horizon
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at matter-radiation equality, where smaller modes are suppressed and larger modes can

grow freely according to the primordial spectrum.

2.4 Non-linear structure formation

Astrophysical objects such as stars and galaxies are highly non-linear and cannot be de-
scribed with the same tools as introduced in the previous section. Here we focus on de-
scribing spherical collapse of overdense regions that have become non-linear which leads
to halo formation in the dark matter component and star formation when baryons are in-
volved. A statistical description of the dark matter distribution can then be achieved using
the excursion set formalism, and we introduce this in the context of the Press-Schechter

formalism.

2.4.1 Spherical collapse

We first consider that for some time ¢ > (1), the scale A has become non-linear and the
linear result that modes evolve independently breaks down. To shine light on the non-
linear evolution of a perturbation at such a scale, we consider the simplified situation of
a spherically symmetric perturbation of constant mass. We follow the evolution of the
density inside a mass shell of radius r; at some initial time #;. The density perturbation
inside this shell is ¢; and the background density is p;. As small scales become non-
linear first, we can assume that 4 < dy, so the use of the Newtonian limit is appropriate.
The dynamics of the mass shell is thus dictated by the gravitational potential and for a

pressureless component, using the Friedmann equations, we find
2 .,
Puorlr, 1) = ==Gpre + 64(r, 1). (2.64)

The motion of the shell is thus given by

d’r GM GoéM) .
P Voo = (—7 R )", (2.65)
which can be rewritten as 2 M
,
- 2.
dr? r’ (2.66)
with
dr_ 4 - - 3 i )
M=—pr;(1+6;) and 6,=—= o0;(r)anr-dr. (2.67)
3 47rrl.3 0
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2.4 Non-linear structure formation

The integral, with respect to ¢, of the equation of motion yields

2
! (dr) _GM _ (2.68)

2\ar

r

and the constant of integration E is the specific energy of the shell. If E > 0, then 7 > 0
as r increases, so the shell expands forever. However, when E < 0, as r increases, i will
decrease to zero, eventually becoming negative, and the shell collapses. A parametric

solution to the equation of motion in this case is

r=A(1 —cos6),
t = B(6 — sin ), (2.69)
A®=GMB.

From this we can see that the overdensity expands until it hits a radius of r, = 2A at time
tn = Bm. After this turn-around, the overdensity starts to collapse to zero radius at time
feon = 2t,. Considering the energy of the mass fluctuation at #; and ¢, it can be shown that
the turn-around radius solely depends on the initial density of the perturbation and not on
the total mass perturbed. We can then determine what the critical density for a spherical
region is to turn-around and collapse. By applying equation (2.69) to the expressions of
the density enclosed in the spherical overdensity and the mean background density, the

non-linear overdensity can be derived as

_9(0 - sin6)?

l+oy==-=———"—.
: 2(1 — cos §)3

(2.70)

el e}

It is instructive to compare this to the linear result as linear theory can be fully described,
while non-linear collapse can only be discussed in a simplified regime. So, for §; < 1,
using the appropriate Taylor expansion for the parametric solution, the linear density can

be related to the initial perturbation in a flat, matter dominated Universe,

2/3 2/3
B t 3 3 23 (1
Olin = 0; (t ) = 20(67r) ( ) } .71

i ta

The turn-around density can thus be found to be 6, =~ 5.55, at which point the linear
theory predicts 0y, = 1.06. At 7.y, the linear density has grown to dy, =~ 1.68, but the
spherical collapse model diverges. Objects do not collapse to zero radius, but instead par-
ticle interactions and angular momentum virialize the material and the spherical collapse
result in the formation of virialized dark matter halos. Accounting for virial equilibrium

in the spherical collapse model shows that after virialization, the non-linear density of the
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Figure 2.7: Summary of the spherical collapse model for non-linear growth. Density
perturbations, once becoming non-linear, grow until the gravitational self-attraction ex-
ceeds the internal pressure and objects collapse and ultimately virialize into dark matter
halos.

perturbation has risen to 8, = 1872, and objects stabalize at half their turn-around radius.
We illustrate these results in Fig.

2.4.2 Halo abundance

While the spherical collapse model determines the conditions for an individual density
fluctuation to collapse and form a virialized dark matter halo, it says nothing about the
statistical distribution of these objects. Determining the abundance of dark matter halos
is a crucial step towards predicting the number and distribution of galaxies and galaxy
clusters in the Universe. An important result from the previous section is that any region
with a linear density of above 6. = 1.68 should have collapsed and formed a virialized
halo. Using this result and separating out the growth factor from the density field, the

condition for halo formation becomes

o(x) > % = 0.(1), (2.72)
which can be seen as a static density field with a decreasing critical density boundary,
where any region exceeding the boundary is part of a collapsed halo.

In order to characterize the mass of the dark matter halos formed, we consider the
density field smoothed on some scale R, using a top-hat window function W(x; R) nor-
malized such that f W(x;R)d’x =1,

O(R) = 6(x;R) = f(i(x’)W(x - x";R)d’x’. (2.73)

The convolution implies that density and window function are separable in Fourier space,

and thus we can define the variance of the smoothed density field in terms of the linear
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power spectrum,

oX(R) = (52(R)> = 2%2 f P()W2(kR)Kdk, (2.74)

where W denotes the Fourier transform of the window function. The filter scale R and
mass M for a top-hat window function are related via
B 4nR?

M ===, (2.75)

such that we can interchange labels and discuss the halo abundance in terms of the mass
variance 0?(M) = o?(R) of the smoothed density field.

2.4.2.1 Peak Statistics

The question to be answered is that given any region which satisfies equation should
be part of a collapsed dark matter halo, what is the mass associated with the halo, and what
is the number density of halos as a function of mass, ie. the halo mass function. We can
associate a mass with a collapsed object by considering the density field smoothed on
mass scale M, 6, = 6(R), then, at all x where 6, = 6.(¢) a halo of mass M has formed.
An 1nitial consideration (Bardeen et al.|[1986) is to directly relate the number density of
halos with mass larger than M to the density of peaks in the smoothed density field which
exceed the boundary 6.(7). Although this approach seems intuitive, when peaks persist at
multiple smoothing scales, this may lead to counting halos residing inside larger halos,

thus overestimating the total number of condensed structures.

2.4.2.2 Press - Schechter formalism

An alternative approach was proposed by Press & Schechter (1974), who postulated an
equivalence between the probability that ), > 9.(f) and the mass fraction contained in
halos with mass larger than M at time . For a Gaussian distributed density field, this

probability takes the following analytic form

0c(f)

PSy > 0.(0)] = ! ) X [ S ]dé —lerfc[—
M C - p M — 2 \/EO'(M)

- M . (276
2o (M) fm)e 20%(M) ] (270

This result reveals that only half of all particles can at most contribute to structure for-
mation, as }}rr%) o(M) = oo implies that P [0y > 6.(#)] = 1/2. This is unphysical as
small underdense regions surrounded by larger overdensities should be part of larger col-

lapsed objects. Press & Schechter| (1974) solved this by introducing an ad hoc factor of
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Figure 2.8: The Press-Schechter halo mass function at several redshifts: from right to
left we have z = 0 (blue), z = 6 (green), z = 10 (red), z = 20 (teal), and z = 40 (pink).

2, resulting in

(2.77)

F(> M,t) = erfc [60—0)]

V2o(M)]
A natural explanation for this additional factor is achieved through the excursion set for-
malism and will be described in the following section.

The halo mass function n(M, t)d M represents the number of halos with mass within
arange [M, M +dM] per comoving volume at time ¢ and is thus obtained by the derivative

of the mass fraction contained in halos of mass M or above per volume, such that

P oF(> M, t)
M, tH)YdM = ———dM, 2.78
n(M,t) U oM (2.78)
which is customarily written as
dln dlnv,
M, t)ydM = c dM, 2.79
(M. 0abt = £ o | (2.79)

where v, = 6.(1)/0 (M), and the multiplicity function is given by

fos(v) = \/%ve—vz/z. (2.80)

The Press - Schechter mass function gives an analytic point of comparison for numerical
simulations, and we show its form in Fig. 2.§]
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2.4.2.3 Excursion set formalism

The occurrence of the additional factor of 2 in the Press - Schechter formalism can be
explained using an excursion set formalism (Bond et al.| [1991), and the combination is
referred to as the Extended Press - Schechter formalism. We start by reformulating the
Press - Schechter condition in terms of the variance of the density field at a particular
smoothing mass M. In a hierarchical theory of structure formation, such as our CDM
cosmology, S = o*(M) is a monotonically decreasing function in M. Considering the
density field at a given point smoothed over decreasing mass scales with a sharp k-space
filter, such as the top-hat used in section results in a Markovian trajectory, as illus-
trated in Fig. [2.9] Although a sharp k-space filter implies that different mass scales are
independent, which is unphysical, such a filter generates random walks as trajectories (eg.
?). In this formulation a trajectory for which ds > 6.(¢) indicates that the mass element
resides in a dark matter halo with mass larger than M. The missing factor of 2 arises from
not counting trajectories such as A in Fig. [2.9] At point S, trajectory A indicates that the
corresponding mass element does not reside in a halo of mass M > M,, however, when
smoothed over a larger mass scale M, the same element is found to reside in a halo of
mass M > My > M,. In order to account for the missed trajectories, trajectories, such as
A’, which exceed the boundary at S, need to be double counted. Due to the random nature
of the trajectories, these trajectories occur with the same probability as those reflected by
the boundary, and would normally be missed. This double counting then accounts for the
missing factor in the Press-Schechter formalism.

A reworded ansatz for the excursion set formalism which results in the same mass
function as the Press - Schechter formalism without the need of the unnatural factor of 2,
is that the fraction of trajectories with first upcrossing of the collapse barrier 65 = 6.() at

S > S, is equal to the mass fraction condensed into halos with mass M < M, at time .

2.4.3 Collapse of baryonic matter

Although the dark matter largely dictates the large scale distribution of structure in the
Universe, the most interesting objects, such as stars and galaxies, are made out of baryons.
Due to the gravitational force exerted on the baryonic gas by the underlying dark matter
field, the baryons follow the dark matter distribution. As the density contrast between a
gas cloud and the cosmic environment grows, the interplay between gravity and pressure
determines the evolution of the gas cloud, and ultimately the formation of bound objects.
Let us assume a spherical gas cloud which is starting to collapse under its own self gravity.
The free-fall time can be defined as the characteristic time-scale over which this collapse

would occur. The pressure resistance to this collapse can be expressed in terms of the
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Figure 2.9: Example trajectories for the excursion set formalism as a function of smooth-
ing scale. When computing the fraction of trajectories for which 85 > 6.(¢), trajectories
exceeding the boundaries at large mass smoothing scales but not at lower mass smooth-
ing scales are accounted for by double counting trajectories which mirror the trajectory
at low mass scales.

time that a pressure wave requires to cross the diameter of the cloud, known as the sound
crossing time. The ratio of the sound crossing time to the free-fall time then determines
whether collapse occurs, in the case of a shorter free fall time, or whether the pressure in
the gas is high enough to resist the collapse, when the free-fall time exceeds the sound
crossing time. The acceleration felt by a particle on the boundary of a spherical gas cloud

of mass M is
GM

a = —F. (281)
From Newton’s second law, the speed of the test particle can be derived as
87GpR} (R,
_ Ko _ 1), 2.82
v \/ (5 (2.82)

where R, denotes the initial radius of the gas cloud and p its density. Using this result, the

total collapse time is found to be

(2.83)

teonl = .
coll 32 Gp
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The sound crossing time is based on the sound speed through the cloud,

P v L (2.84)
m

where 7y is the adiabatic index of the gas, kg is the Boltzmann constant, 7" is the gas
temperature, and m is the mass of the gas particles. The sound crossing time is then just

given as the time required by a sound wave to traverse the gas cloud,

R m
feross = — = 4| R. 2.85
Cs vkgT ( )

When 7.1 > fcr0ss, the pressure in the gas resists the collapse. The turn-over, # s /tcon = 1,

defines the condition for collapse to occur, and the radius at which this occurs is defined

as the Jeans length,

3
R; = ¢ . 2.86
j=¢ 32Gp ( )
We define the mass within a sphere of radius R; as the Jeans mass,
4
M, = ?ﬂpR?. (2.87)

This collapse conditions crucially depends on the gas temperature through the sound
speed and thus as the temperature decreases, so does the Jeans mass and collapse of
smaller objects becomes possible. For stars to form out of large gas clouds, those clouds
thus need to fragment and cool such that the Jeans mass reduces to the mass scale of in-
dividual stars. Gas cooling in clouds inside the Milky Way is mainly controlled by the
abundance of heavy elements. However, the first stars had to rely on atomic and molecular

hydrogen in order to bring the Jeans mass down to enable star formation.

2.5 Inflation and primordial non-Gaussianities

In the previous sections, we have described the growth of structure using the concept of
primordial density fluctuations sourced by quantum fluctuations in the density field. The
mechanism by which these quantum fluctuations grow into macroscopic perturbations is
that of a short period of exponential expansion in the early Universe, known as inflation.
During this period, the Universe became shortly dominated by a negative pressure inflaton
field, which induced the stretching of a Hubble size patch by about 60 e-foldings. Any
initial curvature or inhomogeneities were inflated away which resulted in the flatness

and homogeneity of our observable patch. A number of predictions about the nature
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2.5 Inflation and primordial non-Gaussianities

of primordial density fluctuations can be made from such an inflationary stage in the
evolution of the Universe, and these can be tested against observations of the large scale
structure. These observables give us a direct way to probe the detailed behaviour of the
inflationary epoch as well as the properties of the inflaton field which sourced it.

One of the prime observables able to distinguish between different inflationary mod-
els is that of primordial non-Gaussianities (Maldacena 2003; /Acquaviva et al.[[2003; Bar-
tolo et al.[2004; [Weinberg 2005; (Chen 2010; Komatsu 2010). Consider the temperature
fluctuations, AT (1) = )., @emYem(it), measured on the CMB and assume statistical homo-
geneity and isotropy. If the temperature signal is perfectly Gaussian, then its probability

density function (PDF) takes the following form,

—laem |2/2Ci
P.(a) = — (2.88)
’ D \27C,
where C, denotes the angular temperature power spectrum and is defined through
(agmd;,, ) = Cio8, 0% . (2.89)

However, if non-Gaussianities in the temperature fluctuations exist, but the signal is very
close to Gaussian, then a valid description is to Taylor expand the distribution around a
Gaussian PDF (Komatsu|2010; Fergusson et al.|2012),

1
P(a) = Pg(a)x I+ 8 Z <a€1m1a€2m2a€3m3> [(C_la)flml(C_la)fzmz(c_la)fglm
all ¢;m; (290)

—3(C‘l)glml,gzmz(C‘la)ams]} :

The leading order deviation from a perfectly Gaussian field, which would be fully
described by its power spectrum, can then be seen to be the angular bispectrum,
(Agym, Atymyesmsy-  Thus, any primordial non-Gaussianities introduced during inflation
would be observable through the bispectrum, and more precisely through its amplitude.
One of the important distinctions between the various inflationary models is their dif-
ference in predicted bispectrum amplitude and shape. The amplitude of the primordial

bispectrum is often parametrized through the fy; parameter, defined by,

— qmimom; (@) 7,(0)
(Atm @emyesms) = H]' Z a6, (2.91)
i

where the sum is taken over the different bispectrum models introduced shortly, bgl)fz 6 18

the reduced bispectrum, which defines the shape of the bispectrum, and H denotes the
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Gaunt integral, enforcing the triangle condition and is defined through
H™ = f AP 0Y ¢, 0, ()Y pyy ()Y g1 (P). (2.92)

In spherical harmonic space this factor can be compared to the 6 (3 k;) arising when
constructing the Fourier space bispectrum, and ensures that the coefficients form a closed
triangle on the sphere. Inflation models separate into three categories in terms of their
predictions for the angular bispectrum. The ‘local form’ bispectrum originates from the
local perturbations in the curvature field and peaks in the squeezed triangle limit. Sin-
gle field inflation models cannot give rise to a large local form bispectrum and thus any
detection of £ > 1 would be fatal for such models and a strong indication for multi-
field inflation (Maldacena2003; |Acquaviva et al.[[2003; Komatsu 2010). The ‘equilateral
form’ bispectrum, which peaks in the equilateral triangle configuration, and the ‘orthog-
onal form’ bispectrum, which appears in a mixing of the other two, each arise from a
variety of single-field inflation models, and would rule in or out a number of models if
large values for f;‘ﬁm‘ or flf}rL‘h' were to be detected. The best current constraints come from
Planck Collaboration et al. (2016a) with measurements combining the temperature and
polarization data to obtain £19 = 0.8 + 5.0, f&3"" = —4 + 43, and fo™ = 26 + 21 with
1o errors. Due to the large errors on these measurements, they do not currently hold much
constraining power on the various inflationary models. However, using new techniques,
enabled by the 21cm line from neutral hydrogen, o4, ~ 0.03 — 1 measurements could be

achieved (Pillepich et al. 2007; Munoz et al.|2015]).

2.6 Gravitational lensing

One of the most famous predictions made by Einstein’s theory of general relativity is
the bending of light by massive objects (see [Renn et al.|1997). The first observational
evidence of the phenomenon was gathered during the 1919 solar eclipse where starlight
passing close to the Sun was shown to bend due to its gravitational influence (Dyson
et al. [1920; Stanley 2003)). A first observation of extragalactic lensing was later made
by (Walsh et al.| (1979) and thrusted the field into the forefront as a cosmological tool.
Although gravitational lensing is visually most impressive in the strong regime, where
image multiplication or even the formation of an Einstein ring can occur, cosmological
lensing due to the accumulated effect of matter distorting photon paths along the line of
sight presents a direct way to probe the statistical distribution of matter, and thereby probe

the matter power spectrum and the cosmological parameters.
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Figure 2.10: Sketch of gravitational lensing of a source on the source plane by matter on
the lens plane observed on the observer plane.

Consider the situation depicted in Fig. where the light emitted by an object on
the source plane at a distance Dg from an observer is deflected by a mass at a distance Dy..
The deflection caused by the mass distribution materializes in a small angular deviation,
00, to the real source location 6s, such that an incident angle of 6; = 65 + 66 is measured by
the observer. Considering a weak perturbation to the metric, one can derive the equation

of motion for the transverse coordinates of a photon in a flat universe as (see Appendix

AD d*x 2

d_172 = —c—2V(I>, (2.93)
where x denotes the comoving transverse coordinates of the photon, 7 is the conformal
time, and @ is the peculiar gravitational potential, related to the matter density field
through the Poisson equation (2.33). A solution to the equation of motion can be ob-
tained in the Born approximation, where photon paths are unperturbed and photons travel
on null geodesics, and thus the metric yields dr = —dn. Using this result, equation (2.93)

can be integrated twice, such that

oD
5 (2.94)
X

2 ' 7 /
Xi:”gi—gf(;d”(r_”)a

where the constant of integration 6; has been set to be the incident angle of the photon.
Considering the angular deviation of two nearby photons, we may write down the change

of their relative positions after being affected by matter along their path of travel by Taylor
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expanding the derivative of the gravitational potential,
A.X'i = I’AHI(CSS - ¢ij)7 (295)

where 65 is the Kronecker delta function and we have defined

2 (Tr—r 90
— , 2.96
¢j Cz‘f(; rr’ 691(9@ ( )

We can then write down the lensing potential which fully describes the weak lensing

distortions induced by the gravitational potential,

2 (TS
o(r, i) = czj(:drSk(r)Sk(r’)(D(r’n)’ (2.97)

where we have generalised to include non-flat universes. To see what the distortions in
the image are, one writes down the ratio of image areas which is given by the Jacobian
(Munshi et al.|2008]),

00 K 4 1—k-—1vy —Y2
— =00 — ;i) = , 2.98
06, (0 = 4u) —¥> I —k+7y (2.98)

which defines the convergence x and complex shear y = vy, + iy,. The convergence

K=

(P11 + ), (2.99)

N =

describes the magnification of the image. The shear and its components
1
Y1 = §(¢11 —¢») and y; = ¢, (2.100)
is related to the change in ellipticity of the galaxies which are weakly lensed,
e~ eg+2y, (2.101)

where e and eg are the observed and source ellipticities of the galaxies. The statistical
correlation of the ellipticities of galaxies in a sample can thus be used as a probe for the

shear correlation which is connected to the underlying cosmology.
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c)

o

Figure 2.11: Sketch of the ISW effect. a) A photon enters the potential well of a galaxy
cluster. b) As the photon is falling into the well, it gains energy and experiences a blue-
shifting of its frequency. At the same time, the late time accelerated expansion of the
Universe means that the potential decays as the photon is falling in. ¢) The photon leaving
the potential well requires less energy than it gained upon entering, which results in an
overall blue-shift of the photon’s frequency.

2.7 The integrated Sachs-Wolfe effect

Another observable of the density perturbations in the Universe is the introduction of
anisotropies in the CMB from structure along the light travel path and its effect on the
gravitational potential that photons are travelling through. This effect was first predicted
by Sachs & Wolfe (1967) and is known as the integrated Sachs-Wolfe (ISW) effect. As
the potential is frozen during Matter domination, only a small amplitude contribution on
small scales due to the non-linear collapse of structure affects the CMB photons (Rees
& Sciama|1968). However, once the Universe transitions into the dark energy dominated
regime, the potential decays as a~' which gives rise of the late time ISW effect (Crittenden
& Turok|1996). As the potential decays with time, photons will have to effectively climb
out of a shallower potential than they fell into, which results in an overall frequency boost
for the photon, as illustrated by Fig. [2.T1]

To see the form this effect takes, one considers a small perturbation to the metric
and solves the temporal part of the geodesic equation to first order (Sachs & Wolte||1967;
Martinez-Gonzalez et al.|1990; Dodelson|2003}; Nishizawa 2014). The observed temper-

ature fluctuations over the sky can then be found to be (Nishizawa|2014)

oT 1 70

To(fz) = 4—167(1*) + (1) —Dy+it-(vo—v) + f dr(®" +¥). (2.102)
Each term on the rhs represents a different physical effect which introduces anisotropies
into the distribution of CMB photons. The first term represents the intrinsic temperature
perturbation at recombination. The second and third term represent the Sachs-Wolfe effect
from recombination, where, due to the perturbations in the density field, photons ‘start’

at different depths in the gravitational potential when the Universe becomes transparent.
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The fourth term is the Doppler effect induced by the relative motion of the observer to the
CMB. The final term represents the integrated Sachs-Wolfe effect, which is sourced by
the time variation of the gravitational potential. In general relativity, we equate the two
Newtonian potentials ® and W, such that the frequency shift, related to the temperature

fluctuations, due to the ISW effect can be written as

2 [T 8D R
(i) = = f a0 ) (2.103)
ISW c3 0 ot

Ay

v

As mentioned before, during most of the Universe’s history, the gravitational potential is
constant and thus the ISW effect vanishes. However, the potential changes during two
important phases of cosmic evolution. At early times, when radiation dominates, an ap-
preciable ISW effect is to be expectecﬂ Then, a late time ISW contribution is evidence
for a dark energy component, as such a Universe would experience a decay of the gravi-

tational potential due to the accelerated expansion during dark energy domination.

2.8 Summary

The most precise measurements of the properties of our Universe suggest that we live
in a geometrically flat Universe which largely consists of dark energy in the form of a
cosmological constant with most of the gravitational matter being cold dark matter. The
Universe in this model begins its expansion about 14 billion years ago in an inflationary
period where space-time is stretched exponentially, and quantum fluctuations in the dark
matter density field are amplified to a macroscopic level. After this time, the gravitational
pull from matter in overdense regions causes the unrelenting growth of these density per-
turbations first in a linear, then a non-linear regime. The resulting structures formed by
this process are virialized dark matter halos, which ultimately give rise to the stars and
galaxies we observe today.

In this chapter, we have reviewed the basic cosmological model as well as structure
formation in the linear regime and introduced non-linear collapse. The statistical distribu-
tion of dark matter is thus a predicted observable of the cosmological model and described
by the matter power spectrum. Although the statistics of the matter density field can be
gathered directly through the galaxy distribution, we discuss two other effects which cou-
ple to the density field and through which the parameters of the model are accessible:

Weak lensing and the integrated Sachs-Wolfe effect.

“As Zeq > Zrec, this is usually seen as part of the primary temperature fluctuations at recombination.
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Chapter 3

The Cosmic 21cm Signal

3.1 Observing neutral hydrogen

In the previous chapter, we have broadly summarized our theoretical understanding of the
standard cosmological model with regard to structure formation. However, most of our
theoretical understanding, especially at large scales, is based only on observations of the
CMB, and although it has proven to contain a great amount of invaluable cosmological
information, it largely only shows the conditions at the time of recombination, Z,. ~
1100. This deficiency has lead to a number of discrepancies between its predictions and
low-redshift observations, which will require additional probes along the line of sight to
remedy. For example, there remain tensions between local measurements of the Hubble
parameter, &, and the value derived from Planck (Bennett et al.|2014}; Riess et al.[2018azb)).
Low redshift weak lensing surveys also indicate less matter clumping than expected from
extrapolation of the CMB results (Heymans et al. 2013; MacCrann et al. 2015; Raver1
20165 Joudaki et al. 2017} |Kohlinger et al. [ 2017).

Further, an important observational gap between the last scattering at z.. and the
formation of the first stars at z ~ 30 exists. Hence the crucial transition between linear and
non-linear structure remains unobserved at present. The CMB photons also only weakly
constrain the timing of the Epoch of Reionization (EoR), when high energy UV sources
ionized the entire intergalactic medium (IGM), and give little to no information about the
topology of the process. Observations of this high redshift regime represents the next
frontier for observational cosmology and holds the potential to deepen our understanding
of the transition from a dark into a light Universe.

The common thread throughout the evolution of the early Universe down to the
present day is the ubiquitous presence of atomic hydrogen (HI). Direct observation of
the hydrogen distribution throughout the history of the Universe represents a promising

avenue to bridge the gap between the CMB and low redshift observations. Due to the hy-
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perfine structure of atomic hydrogen, these atoms emit at a rest-frequency of 1420 MHz
or a rest-wavelength of 21cm. The 21cm line from atomic hydrogen thus represents the
only source of light which is continuously emitted from the formation of hydrogen at
recombination to the present day. The potential for this line to deliver valuable cosmo-
logical information has been known for nearly 60 years (Field [1958; 1959} [Sunyaev &
Zeldovich 1972; Hogan & Rees||1979), however only recent technological advances have
made an observational detection tangible. A new generation of radio observatories has
thus reignited interest in this elusive hydrogen line and it is today widely regarded as the
most promising avenue into the EoR and the high redshift Universe.

In this chapter we will introduce the theoretical background of the 21cm line in the
context of cosmological observations. We begin in section [3.2]by defining the brightness
temperature of the 21cm transition as a function of the relative abundance of atoms in the
two hyperfine ground states. Section [3.3|details the various physical processes contribut-
ing to the signal and section [3.4] introduces the ionization history as an additional signal
parameter. In section [3.5|we summarize the behaviour of the globally average signal as a
function of time, before we focus on the fluctuations in the signal in section Finally,
in section|3.7|we introduce the various observational strategies to detect the cosmological

21cm signal.

3.2 The cosmic 21cm signal

The 21cm emission line originates from the hyperfine structure of the neutral hydrogen
atom, which is due to the interaction of the magnetic moments of the proton and electron.
Whereas the consideration of relativistic effects and spin-orbit coupling leads to the fine
structure of the hydrogen atonﬂ including the effects of the spin-spin coupling into the
perturbed Hamiltonian splits the ground state into a low energy singlet and a high energy
triplet state, lifting the spin degeneracy in the hydrogen atom. The energy difference
between the ground state singlet and triplet state AE;, = 5.9 x 107%V, corresponds
to a photon emission at a frequency of 1420 MHz, or equivalently a wavelength of 21cm
(e.g. Grifhiths 2005)).

In order to talk about the cosmological significance of this result, one has to realize
that transitions between the two hyperfine ground states are forbidden by quantum me-

chanical selection rules. This results in an extremely low spontaneous emission rate of

I'This has the effect of breaking the degeneracy in the azimuthal quantum number.
2The subscripts 1 and 0 denote the triplet and singlet states respectively.
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Ao = 3 x 107s7! (Furlanetto et al.[2006), and thus a large half life of
T = Ay = 3.5 x 10Ms ~ 11 Myr. (3.1)

There are however three main arguments to be made that motivate the potential use of the
21cm transition in a cosmological context. Firstly, the energy difference of the hyperfine
states is exceedingly small and corresponds to a temperature of
hV10
T, = o © 0.0682K. (3.2)

B

The gas at any epoch in the cosmic history will therefore contain enough thermal energy
to excite HI atoms into the triplet state. Secondly, given that most of the baryonic matter
in the early Universe is HI, some fraction of it will be in the triplet state, and given
that the half life 7,/, is very much lower than the age of the Universe at all relevant
epochs, spontaneous 21cm emission should not be rare. Thirdly, the optical depth of HI
gas is small at frequencies associate with the 21cm line, leading to a large transmittance
(Pritchard & Loeb|2012). Photons emitted at 1420 MHz can thus pass unhindered from
their source into our telescopes, carrying information about the source and the intervening
matter distribution.

The principal observable for radio telescopes, aiming to observe this redshifted 21cm
line, is the brightness temperature of the signal on the sky, 7,,. The brightness temperature
corresponds to the temperature of a black body emitting at an observed intensity /, at a

given frequency v,
2V2kB Tb

Iv = BV(Tb) = 2 >

(3.3)

where the Rayleigh-Jeans law has been used as an approximation to the Planck law for
black body radiation, as this is a good approximation for the relevant frequencies. The
signal will be redshifted by the expansion of the Universe and one thus distinguishes
between the brightness temperature at the source, 77, which depends on the rest frame
frequency of the emitted photons, vy, and the observed brightness temperature, which
depends on the redshifted frequency, v = v, /(1 + z). The observed brightness temperature
is then related to the rest-frame quantity via

(3.4)

Using this result and the radiative transfer equation for photons travelling through a cloud

of neutral hydrogen, the following can be derived (e.g. Loeb & Furlanetto 2013; see
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3.3 Contributions to the spin temperature

Appendix
T\(v) = Ts(1 — &™) + T4()e ™, (3.5)

where the optical depth, 7, = f a,ds, is the integral of the absorption coefficient @, along
the light ray through the cloud, and T (v) is the brightness temperature of the background
radiation field incident on the cloud along the ray. The brightness temperature depends
also on the relative occupation number of the two hyperfine ground states, which is quan-

tified by the spin temperature T,

B8, (3.6)
no 8o
where g; = 3 and gy = 1 are the statistical weights of the energy levels. The most im-
portant application considered here is when the background radiation field is the CMB. In
this case, using the fact that the optical depth is small at the relevant frequencies, allowing
us to expand the exponentials in equation (3.5)), the difference between the observed 21cm

brightness temperature and the CMB temperature 7', is

Ts—T
STy(v) ~ %TVO (3.7a)
Q2 \(0.15 1 +z\"?
~ 27 1+6
Faa(l + b)(0.023)(£2mh2 10 )
.y ) » (3.7b)
X( S y) Vr ] mK,
Ts ||(1+2HE)

where xy; denotes the neutral fraction of hydrogen, ¢, is the fractional overdensity in
baryons, and d,v, is the velocity gradient along the line of sight. As seen from this result,
the observability of the signal hinges on the spin temperature, only if it is different from
the T, can the signal be seen against the CMB. It is therefore important to understand the
physics that determine Ts as well as possible, in order to make credible predictions of
the signal. Further, the signal depends on the ionization history of hydrogen gas, which

makes it an ideal probe for reionization.

3.3 Contributions to the spin temperature
The spin temperature is determined by three main mechanisms:
(a) Absorption of CMB photons and stimulated emission,
(b) collisions with other HI atoms, free electrons, and protons,

(¢c) and Lyman-a / UV scattering involving intermediate excited states.
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3.3 Contributions to the spin temperature

If these mechanisms are parametrized by the transition rates Cjgy, Cy; for collisions and
Py, Py for UV coupling, the spin temperature in equilibrium is determined by (Furlanetto
et al.|2000)),

n(Cio + Pio + Ajo + Biolems) = no(Cor + Por + Boilewms)- (3.8)

This conservation equation says that in equilibrium the number of particles in the triplet
state times the rate away from the triplet state is equal to the number in the singlet state
times the rate toward the triplet state. By and By, are Einstein coeflicients and Icyp the

energy flux of CMB photons. The equation can be written as (see Appendix [B.2))

T, + x T + x, T¢'

TS = , (3.9)

1+ x. + x,

where x. and x, are the coupling coeflicients for collisional and Lyman-a coupling re-
spectively, Tk is the gas temperature, and 7¢ is the colour temperature of the Lyman-a
radiation field. The coupling coefficients determine whether collisions or Lyman-« pho-
tons contribute to the signal at a certain time and determine how strongly the spin tem-
perature depends on these mechanisms to produce 21cm photons. Equation (3.9) then
gives a straight forward relation defining the dependencies of the spin temperature. Being
able to calculate the five parameters in the above relation gives the full evolution of the
spin temperature and thus most of the theoretical evolution of the 21cm signal as seen in
equation (3.7). We explore the physics leading to each of the contributing mechanisms in

the following sections.

3.3.1 Collisional coupling

Collisions between particles can induce spin-flips between the two hyperfine ground states
and thus directly effect the spin temperature at early epochs when the particle densities
were high. There are three main channels of collisions present in the early Universe
which all happen through elastic scattering, H-H (Zygelman 2005), H-e~(Furlanetto &
Furlanetto|[2007) and H-p (Furlanetto & Furlanetto 2007). The coupling coefficient x,
can be written so as to include the three channels,

T.
Xe = xIH 4yt P = AT (et + el + ). (3.10)
Y

Then, expressing the de-excitation rates C} in terms of the rate coefficients for spin de-

excitation in collision with species i, ', and the number density n; of the species, one
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obtains
T

H
X = —— (nHK‘lqu + Nkl + Kl ) (3.11)
AlOTy

This is to say that the coupling coeflicient is defined by the rate at which the 21cm radia-
tion is produced through stimulated emission by CMB photons, modulated by the number
of particle collisions which enhance this emission as a function of the particle species
colliding and their collision frequencies. The collision rates ' (in units of cm®s™!) are
obtained by solving the Schrodinger equation for the relevant particle interactions. This

leads to a common form for all three collision channels ,

. RknTx _
Kio= 37 00 3.12)

where the mean spin transition cross section is

L )
& = . f dEo(E)Ee ™, (3.13)
(ks Tx)~ Jo

depending on the collision channel i = HH,eH, pH, the cross-section of the relevant
scattering process as a function of energy, o;(E), and the reduced mass M; of the colliding
two-particle system. The prefactor in equation (3.12)) can be interpreted as the mean
collision velocity for each channel. The collision rates for each case are then integrated
numerically in|Zygelman, (2005); Furlanetto & Furlanetto (2007); Furlanetto & Furlanetto
(2007)) and we show the results in Fig. Although the rate coefficients for the p and e
channels are higher than that for H-H collisions, the total rates also include the number
densities of the species, so that the effect of these collisions depends on the ionisation
fraction X;. Numerical integration of the full Boltzmann equation places the value of this
parameter at around %; ~ 2 x 10~ during the dark ages (Dodelson/|2003), meaning that for
each free proton and electron pair there are around 5 x 10° hydrogen atoms. Therefore,
H-H collisions dominate collisional coupling. H-e~ collisions are the next important
channel and are dominating only when the Universe becomes sufficiently ionized. Proton
collisions and other species collisions are even less important. Collisional coupling is
however only dominant during the dark ages and all together dominated by the Lyman-
a coupling as soon as the gas is heated up sufficiently such that Lyman-a photons are
produced. The Lyman-a domination is caused by the fact that UV-photons scatter ~ 10°
times before their energy is redshifted enough not to effect the spin temperature anymore

and only about 10% of particle collisions actually lead to a spin flip (Furlanetto et al.
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Figure 3.1: Evolution of the rate coefficients Rate coefficients for p — H collisions
(solid curve), e — H collisions (dotted curve), and H — H collisions (dashed curve). Re-
produced with permission from Fig 2. \Furlanetto & Furlanetto| (2007), by permission
of Oxford University Press on behalf of the Royal Astronomical Society, available on-
line at: https: //academic. oup. com/mnras/article/379/1/130/ 11328007
searchresult=1, This figure is not included under the Creative Commons license of
this publication. For permissions, please contact journals.permissions @ oup.com.

2006). An important consequence is that the high and low temperature regimesﬂ in Fig.

B 1l are of little interest.

102
T (K)

103

104

3.3.2 Lyman-«a coupling, the Wouthuysen-Field effect

The Wouthuysen-Field effect describes the coupling of the spin temperature to Lyman-
a, ie. UV, photons. The electric dipole selection rule allows for transitions only when
AF = 0, +1, with the exception that there cannot be a transition from F = 0 to F = 0. So,
upon absorbing a Lyman-a photon, a ground state hydrogen atom can be excited to either
the 2P, or the 2 | P3); state. From there, the aforementioned rule only allows the atom
to de-excite down to the triplet state 1 ;5 , thus resulting in a population mixing between

the singlet and the triplet state. Excitations to the 2 (P, and 2,P3,, are forbidden by the

rule. The relevant transitions are shown in Fig.

3Low temperatures are not reached by the IGM as heating starts when z ~ 30 .
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Figure 3.2: Relevant energy levels for the Wouthuysen-Field effect. The dashed lines
are forbidden transitions and their Einstein coefficients can be taken to be zero. The
dotted lines show allowed transitions that do not however mix the ground state singlet

and triplet state. The solid lines show allowed transitions. Adapted with permission from
Field|(1958).



3.3 Contributions to the spin temperature

The coupling coefficient x, depends on the total rate per atom at which Lyman-«

photons are scattered within a gas,

Py = 4nyo f v, (V) (v), (3.14)

where o, = x,¢,(v) is the local absorption cross section, y, = we’f, /m,c is the oscillation
strength of the Lyman-« transition, ¢, is the Lyman-« absorption profile, and J, is the
angle-averaged specific intensity of the background radiation field (by number). It can be
shown that Py = 4P, /27 (e.g. Deguchi & Watson| 1985} Meiksin/[2000; see Appendix
[B.3)), thus one can write the coupling coefficient in terms of this total scattering rate,

4P, T,
Xa = T

= . 3.15
27A1 T, G-15)

Defining a suppression factor that describes the photon distribution close to the

Lyman—oz resonance,

Sa = f dxgo(x)J (%), (3.16)

where x has been used to represent the relative frequency to the Lyman-a line centre.
Combining equations (3.14) and (3.15)), an expression for the coupling coefficient can be

found,
Jo
F )

a

167°T % f,
Xo =

= — S8/ =35,
27A10Tymec

(3.17)

simply using the definition for y,, evaluating J, at the Lyman-« frequency to obtain J,
and setting JS = 1.165 x 107'°(1 + z)/20cm~2s'Hz 'sr™".

In order to determine the Lyman-a background, the Hubble flow across the reso-
nance frequency as well as energy loss induced by atomic recoil have to be taken into
account. As Lyman-a photons scatter off hydrogen atoms, some of the energy will be
converted into kinetic energy as the atoms recoil, resulting in a net loss in energy of the
re-emitted photon. This effect adds an additional drift term to the Hubble flow across the
Lyman-a resonance. The Hubble flow and atomic recoil are both captured in the evolution
parameter of the Lyman-a flux across the line centre, J(x), in equation (3.16). Solving
the radiative transfer equation for J, in an expanding universe, parametrised via y, with

an additional recoil parameter n gives the result

5,(x) = 21 f " dyexp [—2ny—2y f " ] (3.18)
0 x=y (PQ(X/)

which is written in terms of §; = (Jo — J)/J. Details for this derivation are given in

Furlanetto & Pritchard (2006), and numerical solutions for photons injected into the line
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centre and for photons redshifting in from infinity are shown in Fig. [3.3] This determines
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Figure 3.3: Background radiation field near the Lyman-a resonance at z = 10. Upper
and lower panels are for photons redshifting in from infinity and for photons injected
into the line centre respectively. The solid and dashed lines are for 7x = 10K and
1000K respectively. Reproduced with permission from Fig 1. |Furlanetto & Pritchard
(2006)), by permission of Oxford University Press on behalf of the Royal Astronomical
Society, available online at: https: // academic. oup. com/mnras/ article/ 372/
3/ 1093/ 973192\ This figure is not included under the Creative Commons license of
this publication. For permissions, please contact journals.permissions @ oup.com.

the behaviour of the Lyman-a background near the resonance, and is naturally related to

the suppression factor,

So = fw dxgp,(x)J(x) = 1 —6,00) < 1. (3.19)

A useful approximation for the correction factor, which is accurate to a few percent at all
Tx 2 1K, can be derived as (Furlanetto et al. 2006)

-2/3( 106\
~0.803771%(12)

Sqa~e , (3.20)

where y! = 7gp ~ 3 X 10°Xy [(1 + 2)/71°'* is the mean Lyman-a optical depth experi-
enced by a photon that redshifts across the entire resonance.

Further, a prediction of the detailed evolution of the Lyman-a flux is difficult as it
depends strongly on the poorly constrained star formation history. Instead, an educated

guess as to what the Lyman-a background looks like can be made. Photons contributing
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to J, are not inserted at line centre, because the photons redshift out of resonance very
quickly after their creation and therefore only contribute to the coupling very close to their
sources. Instead, the relevant photons are emitted at higher frequencies, in the UV, and
redshift into resonance, or possibly redshift into Lyman-n resonance and cascade down
to the Lyman-« transition as shown in Fig. [3.4] Lyman cascades ending in a Lyman-a
transition are accounted for by the recycling fraction of the Lyman-n transition, fi..(n).
This factor is the probability that a Lyman-n photon will generate a Lyman-a photon and
is obtained iteratively by computing the transition probabilities between different stages

in the cascade,

Frec) = )" Pun frec(m), (3.21)

where A
Py = ——, 3.22
Z Amn’ ( )

depending on the Einstein coefficients A,,, for spontaneous decays between initial state
m and final state n. In the calculation of this factor it is assumed that direct Lyman-n
decays into the ground state result into photons which are quickly reabsorbed and will
not affect the population of excited states. This is achieved by setting A,,_,;s = 0. Values
for the recycling fraction are tabulated in |Pritchard & Furlanetto| (2006), and show that
Jree = 0.36 for large n. Therefore, the Wouthuysen-Field coupling to Lyman-n cascades is
about a third as efficient as the coupling to Lyman-a photons directly. Two effects are thus
taken into account when writing down an estimate of the Lyman-a background, cascades

and emissivity of UV photons,

HMmax

Jo@ = ) IP@) (3.230)
n=2
wma® v (142 e
= rec ’ 4 7). 2
i nZ:;f (n) Z dz 'dz’ (1 - Z,) ﬂH(z')E(V” 7) (3.23b)

The emissivity, €, depends on the star formation rate, and is also proportional to the rate at
which matter collapses into galaxies. There are significant uncertainties in the prediction

of these quantities, nevertheless one can write,

dfcol]
dt ’

€(,2) = ﬂfT"NLn(w (3.24)
p

where Np, is the number of photons produced in the frequency interval v + dv/2 per
baryon incorporated into stars, py, is the baryon density and m, the proton mass. Useful

estimates for the values of N, assuming that stars are the dominant source of radiation
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S P D

Figure 3.4: Ionizing photons redshift into Lyman-n resonance, and from there, they
can cascade down via multiple possible decay chains (solid lines). Some decay chains
lead to a Lyman-a emission, and thus contribute to the Lyman-a background. The figure
shows decay chains for Lyman-£ and Lyman-y. Dashed lines denote Lyman-» transitions,
the red-dashed line is the Lyman-« transition, and the dotted line shows the forbidden
2§ — 1S transition. Reproduced with permission from Fig 2. |Pritchard & Furlanetto
(20006), by permission of Oxford University Press on behalf of the Royal Astronomical
Society, available online at: https: // academic. oup. com/mnras/ article/ 367/
3/ 1057/ 1039877. This figure is not included under the Creative Commons license of
this publication. For permissions, please contact journals.permissions @ oup.com.
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are the following: N, = 9690 for low-metallicity Population II stars and N, = 4800 for
massive Population III stars (Barkana & Loeb|2005).

The Wouthuysen-Field effect couples the spin temperature to the colour temperature
of the UV radiation field. T¢ is a measure of the shape of the radiation field as a function

of frequency, and defined by
h  dlogn,

= 3.25
kBTC dv ( )

where n, = ¢J,/2v* is the photon occupation number. Given that in an optically thick
medium Lyman-a photons scatter a large number of times, the shape of the Lyman-a
profile will approach that of a black body at the gas temperature Tx (Wouthuysen||1952).
Therefore T ~ Tk for the frequencies of interest.

3.3.3 Thermal evolution of the IGM

The thermal evolution of the intergalactic medium (IGM), parametrized by the gas tem-
perature T, is the next important ingredient to the spin temperature studied here. The
IGM is modelled as follows (Furlanetto|[2006),

dTK 2 €;

—X = 2H@Tx+ =

—. 3.26
dt 3 & kgn (3.26)

The first term on the rhs is a cooling term originating from the Hubble expansion. The
second term describes the heating of the IGM which is determined by the sum of the
energies, ¢, injected into the gas through mechanisms i. Various heating mechanisms

play a roles at different epochs of the history of the Universe.

3.3.3.1 Heating of the IGM: Compton heating

At early times, before star formation has begun in earnest, the only effect heating the
gas is Compton scattering between CMB photons and residual free electrons. Scattering
increases the energy of the electrons which can then transfer the excess energy through
collisions with other particles in the gas. The heating rate due to Compton scattering is
calculated in |Peebles| (1993) and Seager et al. (1999) to be

gecompton _ X (Ty - TK)
3 kgn 1+ fie+ Xt

, (3.27)
where 1, = 3m,c/80tu, is the Compton cooling time, u, o T;‘ is the energy density of

the CMB, fy. is the Helium fraction (by number), X; is the globally averaged ionization

fraction, and o1 = 6.65 x 10~>cm? is the Thomson cross section. This effect is most im-
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portant at high redshifts, when astrophysical sources are not yet prevalent in the Universe.
Thus, early on, Compton heating couples the gas temperature to the CMB temperature
and so the IGM cools at the same rate as the CMB, which is Tx « (1 + z). At some
later stage however, the IGM decouples from the CMB and thus cools down adiabatically
with the expansion after that. The redshift at which this freeze-out occurs depends on the

recombination rate and can be found to be z4.. ~ 200.

3.3.3.2 Heating of the IGM: X-ray heating

As star formation begins, the Universe becomes filled with high intensity X-ray sources,
such as Population III stars, stellar mass black holes, and quasars (Loeb & Furlanetto
2013). The X-ray photons emitted by those sources have very high mean free paths
meaning that they can heat the IGM far away from the source thus ensuring homoge-
neous heating of the medium. The comoving mean free path of an X-ray photon is given
in |[Furlanetto et al.| (2006) to be

3

_ 1+z -2 E
x z4.9x11{/13( = ) (550557) Mee. (3.28)

A conservative assumption for the poorly constrained X-ray background is that the corre-
lation between the star formation rate, SFR, and the X-ray luminosity, Lx, can be extrap-
olated to high redshifts, such that (Oh/ 2001},

SFR
Ly =34x10° | ——— -1 3.29
X x 10™ fx ( Moy ) ergs (3.29)

where fx is an unknown renormalization factor. The determination of the redshift evo-
lution of fx hinges on our understanding of high redshift X-ray sources. In order to
determine the energy input into the IGM, the mechanisms by which X-rays can heat the
IGM need to be understood. The high energy X-ray photons ionize helium and hydrogen
atoms, creating energetic free ‘primary’ electrons which heat the gas through three main

channels;
e collisional ionization, producing more secondary electrons,

e collisional excitations of Hel and HI, which produce photons capable to ionize HI

and a Lyman-« background respectively,
e Coulomb collisions with free electrons.

The fractions of the X-ray energies going into heating, ionization and excitation,

parametrized by fxn, fxion. and fxcon respectively, are determined exactly by the rela-
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tive cross sections of these mechanisms but can be approximately related to the neutral
fraction by (Chen & Kamionkowski|[2004)

1+ 2X%;
Sxn ~ 3 (3.30a)
1 - X
fX,ion ~ fX,coll ~ 3 . (330b)

Then, finally one can determine the energy input into the gas, by assuming that the SFR

is proportional to the rate of gas collapse onto virialized halos (Furlanetto et al.| 2006)),

dfeon/dt, /

2 & 3 fe fxndfeon/dz 1 +z

z = 103K fy | Lo L Dol /T2 7 T %) 331
3 kgnH(z) 9102 001 10 (3.31)

where f, is the star formation efficiency. This result only takes the star formation rate

into account and does not consider different X-ray sources such as quasars. These sources
need to be studied in greater detail in order to determine the X-ray heating term to higher

accuracy.

3.3.3.3 Heating of the IGM: Lyman-« heating

X-ray heating is expected to be the largest contributing heating mechanism, however a
second order mechanism would be Lyman-a heating. The effect which leads to the sup-
pression of the Lyman-a background, discussed in [3.3.2] deposits energy from atomic
recoils into the IGM. The energy loss in the radiation background thus goes into heating
the IGM. As before, continuum photons behave differently from photons injected at line
centre. Whereas continuum photons heat the gas as expected via atomic recoil, at temper-
atures of interest here (Tx 2 4K), photons injected at line centre can cool the gas as more
photons scatter on the red side of the line than on the blue. In this case, re-emitted photons
have higher energies in the IGM frame, thus removing energy from it. The following total
heating rate can be obtained as (Furlanetto & Pritchard|2006)

2
3

. 08 x, [ 10
€ ~ x( ) (3.32)

ksnyH(2)Tx N Téﬁ S_a l+z
depending on the parameters discussed in section[3.3.2]

3.3.3.4 Heating of the IGM: Shock heating and dark matter heating

The effect of Lyman-o heating is already negligibly small compared to X-ray heating, so
higher order effects are very often neglected in determining the gas temperature. However,
effects like shock heating (Furlanetto et al.|2006) or dark matter heating (Evoli et al.[2014)
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can influence the gas temperature and are being studied to gain further insight into the
thermal evolution of the IGM.

3.4 Ionization history

The next step towards the evolution of the spin temperature and the brightness temperature
is the ionization history, ie. the evolution of X;. Most of the mechanisms driving the
gas temperature depend on the ionization state of the Universe, as does the collisional
coupling x, as described in section[3.3.1] This starts varying away from not being neurtral
around the time when X-rays start to heat up the gas (Oh|2001).

The usual assumption is that the production rate of ionizing photons is coupled to the

star formation rate. An average ionizing efficiency is assigned to all galaxies, such that

- éu.ﬁ:o]l

i — D)
1 + Ao

(3.33)

where 7. is the mean number of recombinations per ionized hydrogen atom and ¢ is the

ionisation efficiency given by
{ = Anef. feseNion, (3.34)

where N, denotes the mean number of ionizing photons produced per stellar baryon,
and Ay, 1s a correction factor to convert the number of ionizing photons per baryon in
stars to the fraction of ionized hydrogen. At late stages of the ionization of the IGM,
recombinations become important and must be taken into account as well. This generates

a term that opposes ionization in the form of

(%) = —aC(z, X)Xi(2)n.(2), (3.35)

where « is the recombination coefficient, C = <n§> /{n,)? is the clumping factor, and n,
is the average electron density in ionized regions. This gives the overall evolution of the
neutral fraction as

dx,  dfeon
a9

The terms in the above equation are complicated and depend on parameters which are

— aC(z, %)% (2)n.(2). (3.36)

poorly constrained by observations. A detailed analysis of the reionization history is done
by |Pritchard & Loeb| (2012)) and |Furlanetto et al.| (2006)).
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Figure 3.5: Time evolution of the global 21cm signal. The upper panel shows the 21cm
brightness pieced together from redshift slices through a cosmic volume, coloured ac-
cording to the signal strength. At early times, two absorption phases can be seen (purple
and blue) separated by a (black) period where no signal is observed. When reioniza-
tion begins, the signal transitions into emission (red) before disappearing (black) as the
Universe fully ionizes. The lower panel shows the sky-averaged 21cm brightness temper-
ature expected from this sample history. Taken with permission from |Pritchard & Loeb

(2010).

3.5 Global signal

We have introduced the physics determining the evolution of the spin temperature, gas

temperature, ionization history, and thus the brightness temperature in the previous sec-

tions and a prediction of the global evolution of the 21cm signal can be made. The pre-

diction of the 21cm signal is model dependent as large uncertainties on the necessary

parameters exist. Nevertheless, useful information can be extracted and fundamentally

separate regimes can be identified by using conservative model parameters. One example
history is plotted in Fig. Following Pritchard & Loeb (2012) and Mesinger et al.
(2011), the important regimes are believed to be the following.

e 1100 2 z 2 200: After recombination, high particle densities collisionally couple

the spin and gas temperature to the CMB temperature, setting s = Tx = Tcuvp <

(1 +z). No 21cm signal is expected, Ty, = 0.

e 200 = z = 40: The Compton scattering rate eventually falls below the expansion
rate, such that the gas decouples from the CMB, leading to adiabatic cooling of the
gas, Tk o (1 + z)%. At this point the spin temperature is only affected by collisional
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coupling to the gas, it follows the gas temperature and the 21cm signal can first be

seen in absorption against the CMB.

e 40 = z 2 z.: Eventually, as the Universe continues to expand, the gas density
decreases so as to make collisional coupling more and more ineffective. The spin
temperature couples again to the CMB temperature and the brightness temperature

approaches 0 once more. Little to no 21cm signal is to be expected.

® 7. 2 7 2 Z,: Star formation kicks in at around z. ~ 30. These first sources emit
Lyman-a as well as X-ray radiation, heating the gas significantly. The Wouthuysen-
Field effect now couples the spin temperature back to the gas, and depending on
how quickly the gas is heated above the CMB, this may lead to an absorption signal,
Ty, < 0, as it does in Fig.

© 7,2

~

Z 2 zn: As more star formation occurs, the Lyman-a coupling will eventually
saturate at a redshift of z,, when x, > 1. Fluctuations in the Lyman-« flux no longer
affects the signal, instead, the brightness temperature fluctuations are sourced by
the gas temperature fluctuations. The gas is heated via Lyman-a , X-rays and other
mechanisms to eventually reach the CMB temperature at a redshift of z,. During
this time most of the 21cm signal is still seen in absorption against the CMB in

conservative histories.

.Zh>

~

z 2 zr: After the gas is heated above the CMB temperature, Tx > Tcums, the
21cm signal can be seen in emission. By this point, the ionization fraction of the
Universe has likely risen to the 1% level, so that the 21cm signal is sourced by a

mixture of fluctuations in the ionization fraction, density and gas temperature.

e 7r > 7 2

~y YNV

z,: Heating continues as more sources turn on and drive the gas tem-
perature far above the CMB temperature, Tx > Tcyp. At some redshift zr, the
fluctuations in the gas temperature become unimportant, 7s ~ Tx > Tcyp, and the
dependence on the spin temperature in equation can be ignored. Fluctuations

in the ionization fraction dominate the signal at this stage.

e 7. = z: After reionization, the IGM is fully ionized and nothing contributes to a
large scale 21cm signal anymore. Any residual 21cm signal would have to originate

in self-shielded islands of neutral hydrogen, so-called damped Lyman-a systems.

The exact value of the redshifts stated above are model dependent as is their order.
All this depends on the physics of the first sources, which is still insufficiently well under-

stood. Measuring the global 21cm signal could thus constrain a large set of parameters.
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3.6 The fluctuating 21cm sky

Whereas up to this point the discussion was mainly focussed on the sky-averaged signal,
thus producing the lower panel of Fig. [3.5] a change of gear is in order for two reasons.
The first reason is that sensitivity of upcoming radio experiments is not high enough to
probe this smoothly varying monopole term (Lidz et al.|2008)) and possibly space-based
observations are needed (Burns et al.|2012)). Foregrounds play a significant role here, as
they too are predicted to be smoothly varying (Chapman et al.[2014b), thus requiring very
high sensitivity to distinguish the sky-averaged signal from it. The second reason is that
each component going into the 21cm signal fluctuates, thus making the 21cm signal a

statistical quantity, as illustrated by upper panel in Fig. [3.5]

3.6.1 The 21cm power spectrum

A Fourier space power spectrum can be defined via
(521153 (k2)) = 1) °6° (k) — Ko)Pay (K, ), (3.37)

where 65, is the Fourier transform of the brightness temperature fluctuation about the
mean value. The fluctuation in the brightness temperature depends on the fluctuations of

the parameters that determine it, so

021 = Bupdp + BxOx + Bo0q + B1OT — 4y (3.38)

where ¢; is the fractional variation in the particular quantity: 6y for the baryon density, oy
for the neutral fraction, ¢, for the Lyman-a coupling, ot for the gas temperature, and &,

for the peculiar velocities along the line of sight. The g coefficients are

Xc

=1+ — 3.39
Po Xiot(1 + Xior) ( 2
JHH _ jeH
=14 S c . 3.39b
p Xiot(1 + Xior) ( )
Xa
= , 3.39
p Xiot (1 + Xior) ( 2
T, 1 qd1n K55 adIn Kot
= + ¢ + , 3.39d
P T, e+ xe)  dnTe T dinTy (5-35d)

where x = Xx. + x,. The Fourier transform of 6,; can be written down analogous to

(3.38), such that the 21cm power spectrum contains terms Ps,s, for each combination
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3.6 The fluctuating 21cm sky

of i and j. As the § terms can be largeﬂ second order terms are not necessarily small.
Further, all of the components contributing to the 21cm power are isotropic apart from
the peculiar velocity contribution, which introduces an angular dependence to the signal
known as the Kaiser effect (Kaiser|1987). This further separates the 21cm power spectrum
into isotropic and anisotropic contributions and so one can write (Pritchard & Loeb 2008}
Loeb & Furlanetto|[2013)

Pai(k, 1) = Po(k) + p* P (k) + 1* P (k) + P e (k, 1), (3.40)

where u is the cosine of the angle between the wave-vector and the line of sight. This is
useful because it separates out some of the fluctuations into different terms, eg. P,+(k) is a
function of the density field only. By measuring different components of the 21cm power,
one can thus isolate the various contributing factors. Moreover, as some contributions to
the 21cm signal saturate or are negligible during the cosmic history, measuring its power
at different redshifts allows the measurement of different components to the signal. So for
example, at early times fluctuations in the ionization fraction may be negligible, rendering

terms including dx zero.

3.6.2 Power spectrum estimations

The evolution of the 21cm power spectrum is inherently linked to the state of matter in
the Universe, making it a prime probe for the Epoch of Reionization (EoR) at redshifts
z ~ 6 — 15. The shape and magnitude of the power spectrum can inform us on how
reionization proceeded, how ionized bubbles grew (Watkinson & Pritchard [2014), what
the dominating ionization mechanisms are (Mesinger et al.[2013)), and when it started and
ended (Pritchard & Loeb|2008;[Mesinger et al. 2013). As observations of the 21cm signal
are likely to still be a few years away, numerical simulations are necessary to compare
models and predict the signal. Detailed radiative transfer simulations are computationally
expensive and fast semi-numerical analyses tend to introduce errors at a level lower than
current astrophysical uncertainties (Zahn et al.[[2011)). 21cm power spectrum estimations
currently rely strongly on such semi-numerical techniques (Mesinger et al.[[2011). An
example of such a simulation is shown in Fig. [3.6]leading into the EoR. The left panel
shows an example for what a direct imaging observation of the 21cm signal at z = 10 —
30 might look like and depicts the impact that some of the crucial evolutionary stages
in the early Universe have on the intergalactic medium. Lyman-a photons emitted by

first generation stars, starting at around z ~ 30, couple the spin temperature to the gas

“Note that 8, and S are of order unity.
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temperature leading to a strong absorption feature, and thus 67}, < 0. Once X-rays heat
the gas, the signal transitions into emission, shown by the 67 > 0 structure in the z = 20
simulation here. The spin temperature saturates around z ~ 18 in this model as seen
by the homogenisation of the signal in emission. Finally, the fluctuations are dominated
by reionization and the holes in the signal it creates. The left panel thus indicates the
fluctuating nature of the signal field and need for its statistical characterisation through
the power spectrum. The right panel then shows the accompanying signature of the power
spectrum at each epoch. The results of radiative transfer simulations are shown on the left
in Fig. The left panel here showing the evolution of the power spectrum during the
EoR and the right panel plotting the power on particular scales through most of the cosmic
history up to the dark ages. The 3D nature of the signal complicates the illustrations such
that either only particular scales or particular redshifts can be shown.

Various features, can be identified in the power spectra plotted in Fig. and Fig.
These features include;

e The rise and fall of the amplitude of the power spectrum before the EoR. Lyman-
a emissions couple the signal to the gas temperature. Most of the gas is still in
absorption (Ts < T,), however, regions close to the first X-ray emitters are rapidly
heated into emission (7s > T,), resulting in a large fluctuation amplitude with
strong contrasts between emitting and absorbing regions, generating a large power
spectrum amplitude. Once the gas is heated everywhere and the signal decouples
from the gas (and before reionization has started in earnest), only the density field

contributes to the signal, decreasing fluctuation amplitudes and thus the power.

e The flattening of the spectrum during the EoR. As reionization proceeds, ionized
bubbles of hydrogen which cannot emit a 21cm signal anymore grow. Eventual
overlap of these bubbles necessarily decreases the power on large scales, thus flat-

tening the spectrum.

e The dramatic drop in power at large scales and persistent power at low scales. At
the end of the EoR, almost all of the hydrogen in the Universe has been ionized
except for pockets of self-shielded HI regions. The only left over 21cm signal is

generated in those pockets, so only power on the smaller scales survives.

3.7 Observing the 21cm line

The 21cm line holds the potential to follow the formation of the large scale cosmologi-

cal structures back to the earliest moments after the recombination of hydrogen atoms at
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Figure 3.6: The left column shows slices through a 67T}, simulation box of 1Gpc per side
with a depth of 3.3 Mpc. The colouration indicates the signal brightness. The corre-
sponding 21cm spherically averaged power spectrum is plotted in the right column. Four
redshifts are shown, z = 30.07,21.19,17.94 and 10.00 from top to bottom. These red-
shifts are chosen to highlight various epochs in the 21cm signal (Compare with Fig. [3-3):
the Cosmic Dawn and with it the start of Lyman-a coupling, the start of X-ray heating,
saturation of the spin temperature and decoupling from the gas temperature, and the mid-
point of reionization (black regions indicate ionized HII bubbles) are shown from top to
bottom. Reproduced with permission from Fig 12. [Mesinger et al.|(2011)), by permission
of Oxford University Press on behalf of the Royal Astronomical Society, available online
at: \https: //academic. oup. com/mnras/article/411/2/955/ 1273635, This
figure is not included under the Creative Commons license of this publication. For per-
missions, please contact journals.permissions @oup.com.
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Figure 3.7: On the left, the evolution of the dimensionless spin-flip background through-
out the EoR is shown for varying average ionization fractions. To get the 21cm signal,
one needs to multiply this quantity by the mean brightness temperature in a fully ionized
medium. Keeping the ionization fraction fixed and changing the redshift does not sig-
nificantly change this power, such that the ionization fraction is used as a redshift proxy
here. On the right, the redshift evolution of the 21cm power-spectrum, of a model where
reionization ends at z ~ 10, through most of the cosmic history is plotted for a number
of different scales. The diagonal lines show contours of a fixed fraction of the sky bright-
ness as a function of frequency. The left panel is taken with permission from|Lidz et al.
(2008), the right panel is taken with permission from|Pritchard & Loeb, (2008).

z ~ 1100. The prospect of following the linear evolution of structure through the EoR
until today has made this line a popular target for current and future experiments. As the
expansion of the Universe elongates the emission wavelength of the photons as they travel
toward us, the observational efforts to detect this signal operate at radio frequencies. How-
ever, a number challenges need to be overcome before a detection is possible. Firstly, the
frequency range targeted by many EoR and Cosmic Dawn experiments is heavily used by
radio and TV stations as well as other communication channels, resulting in a significant
component of radio frequency interference (RFI), which needs to be understood, removed,
or avoided for a first detection. Secondly, ionospheric dynamics affects incoming photons
and requires new calibration techniques in order to avoid diffractive delays and image
distortions. Thirdly, the 21cm line is not the only signal at these low frequencies, as the
galactic synchrotron emission as well as extra galactic sources like AGN or star form-
ing regions obfuscate the hydrogen signature. Foreground removal is thus of paramount
importance for cosmic 21cm observations (Chapman et al.|2014a; |(Chapman et al.|2015
2016). Experiments are generally split into a number of categories, those that observe the

sky-averaged, global signal, those observing 21cm brightness temperature fluctuations at
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high redshifts during the EoR and beyond, and those mapping the statistical 21cm inten-
sity at low redshifts. Here we will discuss these various observational techniques and the

progress made over the last few years.

3.7.1 Global experiments

Global experiments target the 21cm monopole, in essence the signal shown in the lower
panel of Fig. [3.5] and can thus in principle be observed using a single dipole. The large
beam of a radio dipole can be used to effectively detect the sky-averaged signal. Current
experiments include EDGES (Bowman et al. 2009), SARAS (Patra et al. 2013)), LEDA
SCI-HI (Voytek et al.[|2014)), and the proposed lunar orbiter DARE (Burns et al.[2012).
The EDGES collaboration have recently reported the detection of a strong 21cm absorp-
tion signal at z ~ 17 (Bowman et al.[2018a). With an absorption signal twice as deep
as conventional model predictions, the implications of the detection are potentially great.
Among other implications, the detection could signify evidence for dark matter-baryon
interactions (Barkanal 2018} [Barkana et al.[[2018; |[Kovetz et al.[2018)) which would lead
to cooling of the IGM prior to the EoR, and it requires enhanced star formation rates at
high redshifts (Mirocha & Furlanetto|2018). Although the EDGES detection is exciting
in terms of its potential for new physics (e.g. |Barkana 2018; Fraser et al.[2018}; Munoz
et al. 2018} |Aristizabal Sierra & Fong|[2018; Houston et al.2018]) confirmation of the de-
tection from comparable experiments, as well as further investigation into the systematics
are required. Recently, a number of publications call into question the analysis of the
EDGES data (Hills et al. 2018}; Bradley et al.[2018; [Bull et al.|2018). [Hills et al. (2018)
show that the signal model used by Bowman et al. (2018a)) implies unphysical foreground
parameters and the flattened trough model is not a unique fit to the data, such that using
alternative signal templates can fit the data without presenting a large absorption trough
and thus no evidence for exotic physics. Further, |Bradley et al. (2018) report that subtle
systematic errors due to the instrument calibration can have large effects on the interpre-
tation of the data. Although, some of the concerns have been addressed in Bowman et al.
(2018b)), future data released as well as independent detections will have to confirm their
observations. A detection of the global signal well within the dark ages will however
require complete shielding from terrestrial RFI, and the proposed DARE lunar orbiter is

currently our best hope to achieve this (Harker et al.[2012).

Shttp://www.tauceti.caltech.edu/leda/
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3.7.2 Epoch of Reionization experiments

Telescopes targeting the spatial fluctuations of the EoR include LOFAR (Patil et al.|2017)),
MWA (Dillon et al.[2015)), HERA (DeBoer et al.[2017), PAPER (Parsons et al.[2010)), and
eventually the low frequency part of the SKAﬂ Although many observational challenges
need to be overcome for a statistical detection of the cosmic signal, these experiments are
beginning to set upper limits for the 21cm power spectrum during the EoR. The upper
limits, summarized in Fig. [3.8] are still an order of magnitude above even some exotic
model predictions, as total integration time for many of these experiments are low, and in-
strument calibration is generally not understood to a level where systematic effects would
become minimal (Bull et al. 2018)). It remains questionable whether pre-SKA interfer-
ometers will indeed measure the EoR signal, however these observational efforts will aid
the understanding of signal, foregrounds and instrument when SKA sees its first light in
the coming decade. The cosmological implications for an EoR detection are potentially
wide-reaching. The 21cm signal is sensitive to the distribution of hydrogen gas in the
early Universe and can be used to infer the underlying density field. Furthermore, due to
its sensitivity to the temperature and ionization state of the IGM, the signal can be used

to identify exotic energy injection mechanism.

3.7.3 21cm intensity mapping

After the EoR, the remaining HI is found in self-shielded regions in galaxies and galaxy
clusters, and thus the 21cm emission serves as a tracer for the galaxy distribution. The
galaxy distribution is in turn a biased tracer of the underlying dark matter density field,
such that observations of the galaxy distribution allow measurements of the matter power
spectrum. By integrating the emission of these hydrogen clouds over large portions of
the sky, the 21cm emission can thus be used as a new avenue for large scale structure
observations (Maartens et al.[|2014). This low-resolution intensity mapping of unresolved
galaxies provides promising prospects for precision measurements of the cosmological
parameters (Bull et al.|2014). Next generation experiments such as CHIMEE], TIANLAI
(Chen 2015}, BINGO (Battye et al.|[2016) and the mid-frequency part of the SKA ﬂ, have
all planned to carry out intensity mapping surveys in the coming decade. The information
gain by this technique can be credited to two important properties of these type of obser-
vations. Firstly, the new generation of 21cm experiments able to perform these intensity

mapping surveys will vastly increase the amount of comoving volume surveyed. SKA-

®https://www.skatelescope.org/lfaa/
"https://chime-experiment.ca/
$https://www.skatelescope.org/mfaa/
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Figure 3.8: Current constraints on the 21cm power spectrum as a function of redshift.
These are the results for GMRT (Paciga et al.|2013)), PAPER32 (Parsons et al.|2014; |Ja-
cobs et al.|2015), MWA128 (Dillon et al.|2015; Beardsley et al.|2016)) and LOFAR (Patil
et al.|2017). A conservative 21cm model (solid blue curve) and a model with negligible
heating (dashed orange curve) are shown for comparison. Taken with permission from
Bull et al.| (2018)).

mid should be able to increase survey volumes by a factor of ~ 2 for a fully resolved
galaxy survey and by a factor of = 3 for statistical IM as compared to current galaxy
surveys (Santos et al.[2014). Secondly, the direct relation between observed frequency of
the cosmic 21cm line and the emission redshift readily provides the redshift information
of the sources. Whereas photometric redshifts are necessary in conventional galaxy sur-
veys due to the long time required to obtain spectroscopic redshift information, intensity
mapping experiments will be able to circumvent this source of systematic errors.

As IM experiments will be probing the large scale structure of the Universe, this
technique will primarily probe the baryon acoustic oscillation (BAO) scale and can thus
serve to constrain cosmological parameters such as the dark energy equation of state pa-
rameter w and the spatial curvature Qg (Bull et al. 2014). These scales are also useful
when measuring the effect of gravitational lensing on the 21cm signal and much higher
signal to noise for lensing measurements can be established by non-resolved IM than can
be expected from resolving individual galaxies (Pourtsidou & Metcalf|2014).

IM is thus a promising new technique, however, foregrounds, both galactic and extra-
galactic, can cause serious systematic errors and potentially bias the cosmological analysis
(Wolz et al.|2014). Foreground removal techniques often rely on the assumption that

foregrounds vary smoothly with frequency, while the cosmological signal is expected to
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Figure 3.9: The approximate redshift ranges of verious current and future large-scale
structure surveys including 21cm intensity mapping surveys. IM surveys are shown in
green (bottom), spectroscopic galaxy redshift surveys in blue (middle) and photometric/-
continuum surveys in red (top). From left to right, the grey and white shaded areas show
an approximate division of the full redshift range into different eras, corresponding to the
dark-energy-dominated regime, the onset of dark energy, the matter-dominated regime,
and the fully matter-dominated regime. Taken with permission from (Bull et al.|2018).

be highly uncorrelated from the frequency at the MHz scale (Gnedin & Shaver 2004;
Chapman et al.[2014bga).

3.8 Summary

The hyperfine structure of the neutral hydrogen atom allows for a spin flip transition
with energy difference equivalent to a photon emission at a rest-frame wavelength of
21cm. This chapter has introduced this 21cm transition in the context of cosmological
observations to probe the most elusive epochs in the evolution of our Universe. We have
studied the various contributions to the spin temperature and the ionization history which
define the global signal of the cosmic 21cm radiation and have outlined a time-line for
this sky-averaged signal. As the 21cm signal is tracing the hydrogen distribution the
signal fluctuates on the sky and much can be learned from statistically observing and
characterizing these fluctuations.

A claimed detection of the sky-averaged signal has recently made headlines and its
unexpected findings have sparked a series of new and interesting studies to explain the ob-

served phenomena. With a new generation of radio telescopes coming online in the near
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future, discoveries akin to those made by the EDGES experiment will likely be a common
occurrence. Though many observational challenges are yet to be overcome, these experi-
ments should soon detect the statistical fluctuations of the 21cm signal, and peer deep into
the Epoch of Reionization and the Cosmic Dawn. Projects such as the ambitious Square
Kilometre Array will have the coming decade likely see a near overwhelming amount of
data. We therefore turn our attention to the numerical and analytical analysis of future

21cm data in the remainder of the text.
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Part 111

Numerical Analysis of the Cosmic 21cm

Signal

“Homo sapiens is an obsolete algorithm. After all,

what’s the advantage of humans over chickens?”

— Yuval N. Harari.
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Chapter 4
Machine learning and EoR emulation

In this chapter, we explore machine learning and its use in the field of 21cm cosmology.
We focus on neural network emulation of semi-numerical EoR simulations as a way to
increase the parameter inference efficiency for future 21cm analyses. With ever increas-
ing data volumes, efficient analysis will be paramount to extracting maximal information
from datasets and thus we investigate the use of an emulator as a means to bypass ex-
pensive simulation evaluations. We find strong predictive capabilities with our emulation
technique when comparing with the direct evaluation of the model simulation. The most
important feature to any machine learning technique is the selection of the training set
which, in our case, informs the network and ultimately determines its behaviour. We
therefore include an analysis of the training set used and the implications of lowering the
training set size for our emulator. We find that the emulator retains its good predictive
capabilities with training sets as small as 100 model evaluations, which may be a realistic
number for fully numerical simulations.

This chapter explores the study of neural network emulation which was published
in MNRAS (21 March 2018, Vol. 475, Issue 1, pp. 1213-1223): C. J. Schmit and
J. R. Pritchard; Emulation of reionization simulations for Bayesian inference of astro-
physics parameters using neural networks. The published version is available through:
https://doi.org/10.1093/mnras/stx3292.

4.1 Big data in astronomy

Over the past two decades, the fields of astronomy and cosmology have experienced a
surge in data availability that will continue for the foreseeable future. The Sloan Digital
Sky Survey (SDSS) is one of the largest sky surveys conducted to date, which scans the
sky daily to capture an astonishing 200 GB of data every night, observing millions of
stars and galaxies. The great challenge for astronomical surveys in the near and distant
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Figure 4.1: Data volumes of recent and upcoming telescopes. Adapted with permission

from |K remer et a2.| (|201 7|).

future is that the data rates of modern survey telescopes will dwarf those of SDSS by
orders of magnitudes. Fig. .1 summarizes the average data acquisition rates of past and
future surveys. It can clearly be seen that over the last few decades and especially with
upcoming experiments, the explosion of data rates will pose an important problem for the
astronomical community. How to best deal with these enormous datasets and what tools
to use to extract the most information possible has become a focus for many research
areas. With the advent of SKA, which is expected to produce many exabyte of raw data
every night, this challenge lies at the heart of 21cm science. Luckily, this surge in data
availability has been accompanied, as being partially caused by, an exponential rise in
available computing power. These resources are applied in digitally scouring new and
existing databases to extract information on scales that no human is able to do. This
increased interest in data mining is again accompanied by the advancement of machine

learning techniques, which seek to automate the knowledge discovery with minimal input

from the scientist. [Ball & Brunner](2010) rightfully pose the question of usefulness of data

mining in a scientific context, when the techniques used do not have the physical insight
a scientist looking at datasets might have. They proceed by listing 5 major advantages of

machine learning and its application in data mining, which we summarize here.

e Getting anything at all: As seen in Fig. 1] future datasets will almost be over-
whelmingly large, to the degree that a prudently automated approach to extract

scientific information becomes necessary.
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e Simplicity: Although a large number of machine learning algorithms exist, by se-
lecting and applying a well suited and well tested method to the problem or dataset

studied, productivity can be increased significantly.

e Prior information: The datasets could be flexibly allowed to either speak for them-
selves or readily incorporate results from prior analyses. As will be discussed in the
next section, the distinction between supervised and unsupervised learning methods

allows for this flexibility.

e Pattern Recognition: Although humans are notoriously good at recognising pat-
terns, some patterns might even elude the shrewdest human observer due to being
hidden in enormous data mounds or due to the high dimensional nature of the pat-
tern. Machine learning techniques have been specifically designed to find these
hidden structures.

o Complementary approach: Whether the machine learning techniques increase the
scientific data output over traditional tools or not, they act as a complementary

analysis which may alleviate systematic errors.

Although the interpretability of some techniques is questionable and [Ball & Brunner
(2010)) detail that the limitations of the methodology are manifold, machine learning tech-
niques have been successfully used in many areas of astronomy and science at large, and
present a rich tool set to be applied in 21cm analyses as well.

Recent efforts (Shimabukuro & Semelin|2017; Kern et al.|2017), have now intro-
duced machine learning techniques into the field of 21cm Cosmology. One of the first
papers in this area, by Shimabukuro & Semelin (2017), studied the use of artificial neu-
ral networks to estimate model parameters for 21cm observations. The network they
constructed used the power spectrum outputs from a training set of semi-numerical sim-
ulation runs, and was able to recover the input parameters of a mock power spectrum
observation. This study set the precedent for the use of neural networks as a viable tool
for parameter inference. Instead of computing a single value for the model parameters
which the network thinks best describes an observation, we focussed on using a neural
network in a Bayesian parameter inference study. A common approach is to evaluate the
likelihood of a given parameter set to describe an observation, then vary the parameter set
and re-evaluate said likelihood. Over many such iterations the model likelihood is sam-
pled and we can estimate the best fit parameters of our model given the observation. In
practice one such MCMC sampling of the likelihood requires many thousands of model
evaluations and is impractical for models with considerable run-time, such as fully nu-

merical reionization simulations. However, with a sufficiently well trained network, the
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model can be approximated by the network and thus no further model evaluations, beyond
those required to build a training set, are necessary.

This has been the primary motivation to study artificial neural networks and their
potential in speeding up Bayesian parameter inference for 21cm observations and we will
discuss the findings in the remainder of the chapter. In section [4.2] we define Machine
learning and contrast the two major learning paradigms in the field. Section looks at
artificial neural networks in detail and we present the learning algorithm used. Then in
section {f.4] we present a toy model analysis indicative of the analysis carried out in Paper
I. Section introduces the reionization model used as well as the parameters varied in
the analysis. Once the problem is sufficiently set-up, we present our training methodology
together with our power spectrum emulation predictions in section4.6 Finally, we discuss
the Bayesian inference problem in section |4.7|and our results are presented in section

A final summary of this chapter is given in section 4.9

4.2 Machine learning

A concise definition for machine learning can be found in |Ivezic et al.|(2014):

Machine learning is an umbrella term for a set of techniques for interpret-
ing data by comparing them to models for data behaviour, such as various
regression methods, supervised classification methods, maximum likelihood

estimators, and the Bayesian method. |...]

Machine learning can thus be regarded as applied statistics in the same way that engineer-
ing can be viewed as applied physics. The techniques used for machine learning tasks
are deeply rooted in statistics and have well formulated theoretical foundations (lvezic
et al.|2014)). This definition also alludes to the fact that a large range of machine learning
techniques exist and their usage depends on the desired outcome of the analysis using
them.

Techniques can generally be classified according to whether a feedback mechanism is
present to penalise certain learning behaviours. If the system is given certain instructions
or labels according to which the data is to be analysed, and is penalised if the system
proposes a solution that violates these instructions, the learning technique used is referred
to as a supervised learning technique. If, however, no labels are applied nor any feedback
is given and the system is left on its own to explore the dataset, an unsupervised learning
technique is used. We proceed by giving a short overview of both learning paradigms

including a non-exhaustive list of example algorithms for each case.
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4.2.1 Unsupervised learning

Unsupervised methods are descriptive of the dataset they are applied to and do not require
training. Although unsupervised learning is applied to a broad class of problems, the three
main areas in which unsupervised learning algorithms are used are density estimation,
clustering, and dimensionality reduction.

Density estimation algorithms seek to determine the probability density function un-
derlying a given dataset (Balogh et al.| 2004} Ferdosi et al. 2011). A popular approach is
that of Kernel density estimation (KDE) which can be thought of as the generalization of
binning data into histograms. The method centres a kernel of arbitrary shape on the data
points and accumulates the signal of each kernel function across the data range. For a set
of N data points {x;} represented in D dimensions, KDE thus approximates the pdf from

which the points were drawn via

A T d(x, x;)
In(x) = NiD Z K(T), 4.1)

i=1

where K(u) denotes the kernel function with width £, and d(x, x;) is the distance between
points x and x;. Although Gaussian kernels are widely used, a large variety of kernel
functions are useful. Another density estimation technique relies on the distance to the
K-th nearest neighbour at each point. It simply estimates the density by determining the

volume which incorporates the K nearest neighbours,

o K
= — 4.2
Jx(x) Vode) (4.2)

where Vp(dk) is the volume of a D-sphere with radius equal to the distance to the K-th
nearest neighbour d.

Clustering algorithms try to group data points into a number of separate clusters.
The K-means algorithm (eg. Ordovas-Pascual & Sanchez Almeida 2014), for example,
takes a number K of clusters into which the data is to be separated, and minimizes the
sum of square distances between data points and the centre of the clusters to which they
have been assigned. This algorithm requires some initial guess as to how to separate the
data, after which the method applies its minimization criterion. Whereas K-means relies
on human input for the number of clusters, other algorithms, such as mean-shift, do not
require this input and determine the number of clusters from the data. The mean-shift
algorithm uses a KDE and allocates points into clusters associated with the peaks of the
density estimate. Naturally, the number of clusters found by this algorithm depends on

the number of peaks in the kernel density estimate of the data.
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Dimensionality reduction is a way to directly address the curse of dimensionality
incurred by the growing size of analysable properties of datasets. As the dimensionality
of the data bases grow, one would like to select those properties that present the most
information as possible. Principal component analysis (PCA) (Joliffe|[1986)) is probably
one of the most widely used dimensionality reduction techniques and tries to transform
the data according to the eigenvectors of the data matrix. Thus transforming the data
into a basis given by the directions which contain the greatest amount of information,
and finally cutting from the analysis those directions which contain the least amount of
information. For a dataset X, with covariance matrix Cy, PCA transforms the data into a
basis Y according to,

Cy = R"CxR, (4.3)

where the projection matrix R is made up by the principal components, which represent
the directions of maximal variance of Cx. Once an ordered set of principal components
is found, the ones containing the least information are truncated from the analysis, thus
reducing the dimensionality of the dataset retaining the most information possible. The
inherent limitation of PCA is that it relies on a linear transform of the dataset, which
can be problematic when analysing very high dimensional or non-linear datasets. More
complex non-linear dimensionality reduction techniques such as manifold learning can be

applied in those cases (Vanderplas & Connolly 2009).

4.2.2 Supervised learning

Supervised learning techniques are predictive based on a well understood training dataset.
The prediction - feedback cycles applied in supervised learning techniques are akin to
that of a student - teacher relationship. The method (student) proposes a solution to a
problem based on its current knowledge, and the feedback mechanism (teacher) penalises
the method (student) if the solution is too far off the truth. Finally, the method (student)
updates its knowledge accordingly. In a supervised learning algorithm, the penalisation
is implemented via some loss function based on the training set, which the algorithm
tries to minimize during its training. Classification and regression are the two main areas
where supervised learning techniques are applied. Whereas classification can be simply
understood as the act of classifying data into to a set of discrete classes, many machine
learning algorithm use a similar framework for regression problems by assigning data to
a set of classes which are themselves continuous numbers. This means that most of the
algorithms presented here can be applied to both categories of problems.

Decision trees (DT) are made up of a hierarchical node structure, which recursively

divides the input data at each node according to some criterion which minimizes the loss
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function. Terminal nodes, called leaf nodes, are labelled with the desired classification
label for data following the necessary path through the tree to arrive at the particular leaf.
Some example applications to astronomical data can be found in Ball et al. (2006),Vas-
concellos et al.| (2011)) and [Franco-Arcega et al.|(2013).

Support vector machines (SVM) are another supervised learning algorithm widely
applied. SVM take a training set of data with associated class labels and try to find the
hyperplane which separates the closest members of separate classes. This creates a set of
decision boundaries according to which new data is to be classified. The training points
falling on top of this decision boundary are called support vectors, and thus inform the
loss function that is minimized through the boundary creation process.

Gaussian processes (GP) are used extensively in non-linear regression problems as
they can lead to very flexible regression models (Rasmussen & Williams 2005). A GP
is a collection of random variables which have a joint multivariate Gaussian distribution.
In one dimension one can think of the GP as a mechanism to draw curves from a family
which obey the statistics set by the GP. A set of training data will then limit the set of
possible curves drawn to those passing through the training points. The more training
points that are available, the more curves drawn from the GP will resemble that of the
underlying model which produced the data.

Finally, arguably the most famous supervised learning algorithm is that of the arti-
ficial neural network. This algorithm tries to mimic the networks of neurons in animal
brains, an their interconnected nature. Once again, supervised networks learn via mini-
mization of a loss function which is informed by the training data. We will discuss neural
networks and the learning algorithm used in our analysis in more detail in the following

section.

4.3 Neural networks

Artificial neural networks (ANN) are a class of machine learning algorithms inspired by
the signal processing through consecutive firing of connected neurons found in animal
brains in Nature. The human visual cortex is a great example to illustrate naturally occur-
ring neural networks. When looking at a picture, the incoming light stimulates neurons
in the retina which send the information of the picture through the optical nerve into the
primary visual cortex. This visual cortex consists of around 140 million neurons grouped
into a number of functionally separate layers which feed forward the information received
by the optical nerve. Consecutively information is send through to 5 different areas in the
brain, again each consisting of millions of neurons which propagate signals through the

brain according to the visual input. The amalgamation of neuron activity due to the signal
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received finally ends up in what we perceive as the image observed. Our everyday expe-
rience of the world around us, allows us to progressively strengthen neuron connections

and associate certain neuron activity with familiar concepts.

4.3.1 Architecture

In our analysis, we use a multilayer perceptron (MLP) as our artificial neural network
design. A supervised MLP uses a set of training data 7 C X X Y, where X denotes the
input or parameter space and Y denotes the output space, upon which the neural network
tries to fit a mapping f : X — Y. This is to say that the neural network is finding a map-
ping between input and output data, which is sensitive to the key features of the training
set. This mapping can then be used on unknown data where the neural network uses its
acquired knowledge of the system to infer an output, either in form of a classification or
a number.

An artificial neural network consists of three types of layers each consisting of a set
of nodes or neurons, illustrated in Fig. The input layer takes N; data points into N;
input nodes from which we want to predict some output. Each node in the input layer is
connected to all of N; nodes in the first of L hidden layers via some weight WEJI.). The input

to the nodes in the hidden layer is a linear combination of the input data and the weights,

Ni

si.l) = Z x,-ngl.). 4.4
i=1

A neuron is then activated by some activation function g : R — IR. We use a sigmoid
activation function, g(s) = 1/(1 + ¢™*), as this non-linear function allows us to fit to any
function in principle (Cybenko [1989). This activation step can be interpreted as each
neuron having specialised on a certain feature in the system (Bishop|[2006} Gal| 2016)
and when the data reflects this feature the neuron will be activated. The output from the
neuron activation is then fed into the next hidden layer as input, such that the j® neuron

in the £ hidden layer computes,

) _ (6)
10 = g(s), (4.5)
where, for 1 < £ < L,
Nj
&) _ (t-1). (6)
5O = 3K, (4.6)
i=1
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Figure 4.2: Multilayer perceptron layout.

Finally, the output layer combines the outputs from the final hidden layer into N, desired

output values,
Nj
L) (L+1
e = Z £OWED, 4.7)
i=1

()
ij
we apply the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm
(Ziegel et al.|[1987) to minimize the mean-square error between the true value provided
by the training data and the value predicted by the network. This training algorithm is

ideal for sparse training sets and a low dimensional parameter space (Le et al|2011), and
will be discussed in the following section.

The weights between neurons w:’” are obtained during the training of the network, where

4.3.2 Learning algorithm

A popular training algorithm for machine learning problems is back-propagation via gra-

dient descent (Rumelhart et al.|[1986; (Cheng & Titterington| [1994; [Abu-Mostafal 2012;

[Shimabukuro & Semelin|2017). However, back-propagation requires the user to manu-

ally set a learning rate which must fall within a finite range, too small and each training

iteration produces vanishingly small changes, too large and the training steps overshoot.
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4.3 Neural networks

An arbitrary learning rate does therefore not guarantee that the network will converge to
a point with vanishing gradient and second order optimization methods can be used to
guarantee convergence (Battiti1992).

Suppose we have Ny, training sets consisting of V; input parameters and N, output
data. These training sets are fed into a neural network as described in the previous section.
Training an ANN can then be viewed as an optimization problem where one seeks to

minimize the total cost function E(w), which is the sum-squared error over the training

sets.
Nirain Nirain Nout
Ew)= ) Ew) = ) |5 D 0uw) = du)’|. (4.8)
n=1 n=1 i=1

where y;, is the prediction made by the neural network in the i™ neuron of the output
layer, using the n™ parameter set of all training inputs, d;, is the true result for the i
neuron in the output layer corresponding to the n' parameter set, and thus E, is the cost
function associated with the n™ input parameter set.

We can expand the cost function around some particular set of weights w( using a

Taylor series,
E(w) =E(wo) + (W —wo)" g

. (4.9)
+ E(W —wo) Ho(w — wo) + ...,

where g 1s the vector of gradients and H, denotes the Hessian matrix with elements

b= PE
v Gwi(?wj'

(4.10)

Whereas back-propagation is based on a linear approximation to the error surface, better

performance can be expected when using a quadratic error model,

E(w) ~E(wg) + (w — wo)" g,
) 4.11)
T
+ E(w —wo) Ho(w — wy).

Provided H, is positive definite, this approximation to the error surface has a minimum,
OE/ow =0, at
w=wy—H;'g,. (4.12)

Given that a quadratic approximation to the actual cost function is used, an iterative ap-
proach needs to be taken in order to find an estimate of the true minimum. Similar to back-

propagation where g is used as the search direction, second order methods use —H"! g as
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the search direction. Thus the search direction during training iteration & is given by
Ay = —H{'g,. (4.13)

Solving this system of equations requires precise knowledge of the Hessian, as well as a
well-conditioned Hessian, which is not always guaranteed. Instead of computing the Hes-
sian and inverting it, the BFGS scheme seeks to estimate Hk‘1 directly from the previous

iteration. Mcloone et al.| (2002) give the basic algorithmic structure as follows;

e Set the search direction A;_; equal to —M;_,g,_,, where M;_, is the approximation
to H;', at the (k — 1)™ iteration.

e Use a line search to find the weights which yield the minimum error along A1,
Wi = Wit + NoptAi-1, (4.14)
Mopt = mnin(E(wk_l + A1) (4.15)

e Compute the new gradient g,.

e Update the approximation to M, using the new weights and gradient information,

Sk=wir—wiand & = g, — 8> 4.16)
tIM_ it sesT

Ak:(1+"Tk1k)l;", (4.17)
Sktk Sktk
SktT My + My_i tis

k:kk le klkk’ 4.18)

Sktk
M, =M, + A, — By. (419)

The scheme initializes by taking a step in the direction of steepest descent by setting,
My=1.

The limited-memory BFGS scheme we are using, recognizes the memory intensity
of storing large matrix estimates of the inverse Hessian, and resets M;_; to the identity
matrix in equation (@.19)) at each iteration and multiplies through by —g, to obtain a matrix

free expression for Ay.

e The LBFGS thus uses the following update formula (Asirvadam et al.|2004)

Ak = -8+ QS + bktk, (420)
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Figure 4.3: Observations (blue dots) from toy linear model (orange line) drawn in 50
equispaced x bins with a normal error. We also show the ANN prediction for the true
parameter combination (black dashed line). Note that this is almost indistinguishable
from the true model showing the excellent performance of the ANN.
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4.4 Emulation and toy model

In this section we apply our MLP to a toy model seeking to illustrate the emulation
paradigm explored in our work.

Consider the following problem; We have a set of data to which we want to fit a
certain model. Our data, shown in Fig. [4.3] is drawn from a linear model with errors
drawn from a normal distribution with unit standard deviation. Our toy model has the
following functional form,

f(x)=ax+b, (4.22)

where we have chosen (a, b) = (4, —3) as our set of fiducial parameters which thus defines
the model from which the data was drawn. An observer who only has access to the data
might want to know which coefficients of the model does the observed data prefer. An
immediate approach to solving this problem is of course to use a Markov Chain Monte
Carlo (MCMC) algorithm, to map out the likelihood of the parameter values given the
data and associate the coefficients which present the highest likelihood values as the best
fit parameters. What if, however, the evaluation of the model in question is much more
cumbersome than simply evaluating a linear model at a point in parameter space, to the

point where it becomes impractical to evaluate the model a large number of times. In this
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Figure 4.4: MCMC inference of the toy model via neural network emulation. From
dark blue to light blue, we show the 1o, 20~ and 30 confidence intervals. Above the
marginalized likelihood curves, we note the maximum likelihood value with 1o error
bounds.

case, one might want to approximate the behaviour of the model, f(x) ~ f(x), in some
way that is quick to evaluate at any point in parameter space. This approximating of the
model evaluation step, through a faster evaluation mechanism is what we call emulation of
the model. Here we approximate our toy model via an ANN, as described in the previous
section, which trains on a set of model evaluations, evaluated on a grid of 20 parameter
values in each direction. We assign the output of each output node of the ANN to a bin in
the x range. Therefore, we have

yi = f(x), (4.23)

where i indexes the x bins of the observed data and the output nodes of the ANN. When
computing the likelihood for an MCMC step, one now replaces the model evaluation with
a prediction from the neural network. Such that the log-likelihood evaluated at each step
of the MCMC becomes

) - F Gl

202 ’

(4.24)

Inf=— Z [d(xi

where f denotes the neural network prediction for x-bin i at the parameters 6 = (a, b).
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Figure 4.5: Bootstrapped MCMC inference of the toy model via neural network emula-
tion (red) and the analytic model (blue). We show the 1o and 20" contours. Both methods
recover the fiducial values within the 10~ confidence interval.

In Fig. 4] we present the results for this toy model for predicting the best fit values
for the coefficients a and b, and find that the neural network indeed recovers the fiducial
values within its 1o error bounds.

The random nature of the Gaussian errors imposed on our mock observations means
that we do not know whether any discrepancy between the fiducial values and the values
recovered by the MCMC is due to some ineptitude of the network or due to the noise.
We therefore bootstrap 10 observation-MCMC cycles in which any random fluctuations
should average out. These predictions are shown in Fig. 4.5]and we compare the neural
network emulation (red) to using the analytic expression for f in the likelihood (blue).
Both methods manage to determine the parameters used to produce the mock observations
to the same degree, implying that the emulation in this case was successful. We now
continue by examining the usage of the neural network for emulation in the context of

21cm simulations.
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4.5 Reionisation model

In order to produce the training sets upon which our neural network is ultimately trained,
we need to model the EoR and the 21cm power spectrum as a function of some tangible
model parameters.

The main observable of 21cm studies is the 21cm brightness temperature, defined by
(Pritchard & Loeb|2012; [Furlanetto et al.|2006} see equation (3.7))

Quh?\( 0.15 1+z\*

0.023)(QMh2 10 )
0,v,

(I +2)H(z)

(STb(V) X 27)6].11(1 + 6b)(

X (1 - TY(Z))
Ts

(4.25)

-1
] mK,

where xy; denotes the neutral fraction of hydrogen, ¢y is the fractional overdensity of
baryons, €, and Qy; are the baryon and total matter density in units of the critical density,
H(z) is the Hubble parameter and T,(z) is the CMB temperature at redshift z, T is the
spin temperature of neutral hydrogen, and d,v, is the velocity gradient along the line of
sight. One can define the 21cm power spectrum from the fluctuations in the brightness
temperature relative to the mean,
0Ty(x) —(0TYy)
1) ,J) = ———————, 4.26

21(x, 2) GTs) ( )
where (...) takes the ensemble average. The dimensionless 21cm power spectrum, A%l(k),
1s then defined as

k3
A3, (k) = 5P, (4.27)

where P, (k) is given through
(521082 (K)) = @m)*6°(k — K')Py (). (4.28)

Here, 6, (k) denotes the Fourier transform of the fluctuations in the signal and 6" denotes
the 3D Dirac delta function.

The 21cm power spectrum is the most promising observable for a first detection of
the signal (Furlanetto et al.[2006)), and encodes information about the state of reionization
throughout cosmic history. For the evaluation of the 21cm power spectrum we utilize
the streamlined version of 21cmFast, which was used in the MCMC parameter study
of \Greig & Mesinger| (2015). This version of 21cmFast is optimized for astrophysical
parameter searches.

The astrophysical parameters that we allow to vary in our model are three-fold.
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lonizing efficiency, {: The ionization efficiency combines a number of reionization
parameters into one. We define { = Agef.fescNion, Where Age = 1.22 is a correction
factor to account for the presence of helium and converts the number of ionizing photons
to the number of ionized hydrogen atoms, f, is the star formation efficiency, f. is the
escape fraction for UV radiation to escape the host galaxy, and N, is the number of
ionizing photons per baryons produced. These parameters are poorly constrained at high
redshifts. As N, depends on the metallicity and the initial mass function of the stellar
population, we can approximate N,, = 4000 for Population II stars with present day
initial mass function, and N,,, < 10* for Population III stars. The value for the star
formation efficiency f, at high redshifts is extremely uncertain due to the lack of collapsed
gas. Therefore, although f. =~ 0.1 is reasonable for the local Universe it is uncertain
how this relates to the value at high redshifts. Additionally a constant star formation
rate has been disfavoured by recent studies (Mason et al.|2015; Mashian et al. |2016;
Furlanetto et al.|2017). For our purpose however, a simplistic constant star formation
model is sufficient. Similarly, the UV escape fraction f.,. observed for local galaxies only
provides a loose constraint for the high redshift value. Although f.;. < 0.05 is reasonable
for local galaxies, large variations within the local galaxy population is observed for this
parameter. We thus allow the ionization efficiency to vary significantly in our model to
reflect the uncertainty on the limits of this parameter, and consider 5 < ¢ < 100.

Maximal distance travelled by ionizing photons, Ryg,: As structure formation pro-
gresses, dense pockets of neutral hydrogen gas emerge where the recombination rate for
ionized proton - electron pairs is much higher than the average IGM. These regions of
dense hydrogen gas are called Lyman limit systems, or damped Lyman-a systems, and
effectively absorb all ionizing radiation at high redshifts. This effectively limits the bub-
ble size of ionized bubbles during reionization. EoR models include the effect of these
absorption systems as a mean free path of the ionizing photons. However, due to the lim-
ited resolution of 21cmFast, this sub-grid physics is modelled as a hard cut-off for the
distance travelled by ionizing photons. As our allowed range for this parameter we use,
2 Mpc < Ry, < 20 Mpe.

Minimum virial temperature for halos to produce ionizing radiation, T.;: Star forma-
tion is ultimately regulated by balancing thermal pressure and gravitational infall of gas in
virialized halos. Molecular hydrogen allows gas to cool rapidly, on timescales lower than
the dynamical timescale of the system, such that an unbalance of the two opposing forces
occurs and the gas collapses which triggers a star to form. Although initial bursts of pop-
ulation III stars are thought to be able to occur briefly in halos virialized at T\;; ~ 10° K,
these stars produce a strong Lyman-Werner background which leads to a higher dissoci-

ation of H, molecules. Star formation then moves to halos with T,;; > 10* K, where HI
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is ionized by virial shocks and atomic cooling is efficient. T; thus sets the threshold for

star formation and we consider 10* K < T;; <2 % 10° K.

4.5.1 EoR simulation with 21cmFast

Simulations of the EoR are difficult in practice, due to the large range of scales which need
to be simulated. In order to obtain statistically significant models of the ionization and
21cm radiation field during this epoch, GPc-sized simulation boxes are required. How-
ever, these fields are affected by small scale feedback mechanisms from sources much
smaller than the size of the simulation boxes. As a resolution large enough to model
both source behaviour and their large scale effects is impractical, approximations of the
underlying physics is essential. Numerical models, such as those presented in [lliev et al.
(2006azb; 2014), combining full scale radiative transfer and N-body simulations of the
EoR to achieve the highest fidelity simulations of the epoch are expensive and not suitable
for parameter inference studies. In Mesinger et al.[|(2011) a compromise is struck between
simulations of small-scale physics and using analytical models to predict some computa-
tionally intensive behaviour, resulting in the semi-numerical approach of 21cmFast.
Simulating the 21cm radiation model, equation (3.7), is done in a number of steps.
First, the density and velocity field are generated at high redshift as random Gaussian
fields (Mesinger & Furlanetto|2007), and evolved to the EoR using the first order approx-
imation for gravitational collapse via the Zel’dovich approximation (Zel’dovich |(1970).
This allows for a fast generation (~ 10 minutes) of the density field during the EoR. Sec-
ond, the ionization field is produced using the Fast Fourier Radiative Transfer scheme of
Zahn et al. (2011). This method computes f,; directly on the evolved density field using
a Press-Schechter type argument. In the simulation, ionized cells are thus identified as
cells where
feon(x,2,R) = ', (4.29)

with £ being the ionizing efficiency previously introduced and R being a variable smooth-
ing scale which is decreased down to the cell size. Third, the code introduces redshift
space distortions due to peculiar velocities. Using the Zel’dovich approximation on the
velocity field, the derivative of the line of sight velocity, v,, needed in the expression for

the brightness temperature fluctuations (equation [3.7)), is written in k-space as

dv,
dr

(k,z) = ik,v,(k,2)
, (4.30)

K2
~ ﬁD(Z)@ﬂ(k)-
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The code uses the final approximation to compute the effects of redshift space distortions.
Finally, once the density field, ionization field and redshift space distortions are com-

puted, they are straight forwardly combined to produce the brightness temperature field
of equation (3.7).

4.6 Predicting the 21cm power spectrum

We use two different approaches to emulate the 21cm power spectrum. First, we use a
simple two-layer MLP, as described in section #.3] with 30 nodes in each layer, as we
require the network to be sufficiently complex to map our set of 3 parameters to 21 power
spectrum k-bins. This is done using the MLPRegressor class from the python package

SciKit-learn (Pedregosa et al.2011). The NN is then trained on a variety of training

sets, see4.6.1]and 4.6.2] obtained from 21cmFast simulations. Then, for comparison we

use trilinear interpolation of the training set, simply interpolating the power spectrum on

a parameter grid.

4.6.1 Grid-based approch

In order to study the impact of the choice of training set on the predicting power of the
ANN we prepared a variety of training sets. The most basic approach, in fact the one used
for our toy model in section is to distribute parameter values regularly in parameter
space and obtaining the power spectrum for each point on a grid. We vary our parameters
as per section 5<¢<100,10*K < Ty < 10°K and 2 Mpc < Ry, < 20 Mpe, as
these reflect our prior on the likely parameter ranges. Each training set then consists of
the power spectrum evaluated in 21 k-bins, set by the box size of 250 Mpc, upon which
the ANN is trained. We compare 5 different training sets at 2 different redshift bins, z = 8
and z = 9. These training sets consist of 3, 5, 10, 15 and 30 points per parameter, which
leads to training sets of total size 27, 125, 1000, 3375 and 27000 respectively.

This approach is the most basic and certainly the most straight forward to implement,
however it comes with a number of drawbacks. Projected down, a gridded set of parameter
values has multiple points which occupy the same parameter values. This implies that the
simulation is evaluated multiple times at the same values for some parameter at each
point in any given row in the grid, see Fig. Furthermore, if the observable is varying
slowly in some parameter, few points are needed to model its behaviour and thus valuable
simulation time is wasted on producing points in the grid that add very little information.

Another important limitation is the exponential scaling of the total number of points

with the number of parameters in the grid. In the simple three dimensional case, which
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we are studying here, N evaluations per parameter lead to a total of N° points on the grid.
Ultimately, it is desirable to allow the model cosmology to vary and include at least 6 cos-
mological parameters into the search as well as additional astrophysical parameters, such
as the X-ray efficiency, fx, obscuring frequency, v, and the X-ray spectral slope, ay.
One is then looking at a total of 12 or more parameter dimensions for which evaluations
on the grid are prohibitively expensive and other techniques are needed. A further prob-
lem is presented by the proportion of volume in the corners of a hyper-cubic parameter
spaceﬂ High dimensional parameter spaces thus profit greatly by using hyperspherical
priors which decrease the number of model evaluations in the low likelihood corner re-

gions of parameter space drastically.

4.6.2 Latin hypercube approach

A second approch is to use the latin hypercube sampling (LHS) technique, shown in Fig.
4.6l Here, the parameter space is divided more finely, such that no two assigned samples
share any parameter values. In two dimensions this method is equivalent to filling a chess
board with rooks in such a way that no two of them threaten each other. Immediately, one
of the shortcomings of the gridded parameter space is dealt with, in that the simulation
need never be run at the same parameter value twice. The other main advantage of the LH
is that its size does not increase exponentially with the dimension of parameter space. This
property makes the LH the only feasible way of exploring high dimensional parameter
spaces with ANNs (Urban & Fricker|2010).

We use a maximin distance design for our latin hypercube samples (Morris &
Mitchell|[1995). These designs try to simultaneously maximize the distance between all
site pairs while minimizing the number of pairs which are separated by the same distance
(Johnson et al.|[1990). This maximin design for LHS prevents highly clustered sample
regions and ensures homogeneous sampling. Prior knowledge of the behaviour of the
power spectrum could also be used to identify the regions of parameter space where the
power spectrum varies most rapidly and thus a higher concentration of samples should be
imposed on such a region. Additionally, using a spherical prior region may help reduc-
ing the number of model evaluations used in the corners of parameter space where the
likelihood is low (Kern et al.|2017)).

For our training set comparisons we use 3 different LH training sets of size 100, 1000

and 10000 respectively.

'In 12 dimensions the proportion of the volume in the corners of a hypercube is ~ 99.96%. That is the
difference between the volume of the hypercube and that of an n-ball.
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Figure 4.6: Visualization of the two training techniques. The parameter space is pro-
jected down to two dimensions in each plot. Top right: 27 regularly gridded parameters.
Bottom left: 9 samples which are obtained using the latin hypercube sampling technique.
Note that the number of samples are chosen such that the same number of projected
samples are visible.

4.6.3 Power spectrum predictions

We now test the predictive power of our trained ANN. First, we define the mean square

error between the true value of the power spectrum and an estimate given by the ANN,

p Ng

N, i 2
1 PFrue( k}) _ Pc_:stlmate( k})
MSE = - . , 4.31
o 2| ) @

i=1 j=1

where N, is the number of parameter combinations we estimate and compare, and Ny the
number of k-bins used in the comparison. We produced a test set of 50 21cmFast power
spectra at z = 9, sampled from a LH design to ensure a homogeneous spread in parameter
space. This test set was then compared to a prediction from our ANN trained on three
sizes of training sets, using 100, 1000 and 10000 samples distributed again using a LH
design. We vary the training duration on each set and compare the predictions to the true
values of the test set in Fig. The error bars are obtained by selecting 75% of the
total points in the training set at random for the network regression. The network is then
trained on this subset and a value for the MSE is obtained. A new training sample is then
selected at random and the process is repeated 10 times. The error bars thus signify the

expected error from any given latin hypercube sampled training set of comparable size.
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Figure 4.7: Mean square error of the neural network prediction compared to a fixed test
set of 50 points at z = 9 as a function of the training iterations. At each number of training
iterations, the training is repeated 10 times and we show the mean value of each resulting
MSE and the variance on the mean as error bars. Shown are the behaviours for neural

networks using 100 (blue), 1000 (orange) and 10000 (green) latin hypercube samples in
the training set.

In the case of 10° and 10* samples in the training set, the neural network quickly
approaches a relative mean square error of less than 1%. With more than 10° training
iterations, both training sets show a clear reduction in the training efficiency. The 100
LHS curve is dominated at high training iterations by outlier parameter points which are
particularly poorly constrained. We find that these outliers can affect the MSE heavily
while having a relatively small effect on the final parameter inference. We define an
outlier to be any k-bin whose square error is larger than 1, meaning a relative error of over
100%. For a training set of 100 points, one should then expect up to ~ 2% of all k-bins
to be outliers at any given training iteration. This unexpected behaviour may indicate an
insufficient coverage of the training set, or that our neural network retains a high degree
of flexibility even after regressing over 100 training samples. For our training set of 1000
points, the fraction of outliers produced reduces to less than ~ 1%, when the training
iterations are low, and we cease to find any outliers at more than 100 training iterations.
This indicates a significant reduction in the freedom of the neural network and an increase
of the confidence in our prediction. Of note is that some outliers have a greater impact
than others and we find some whose square error ~ 10, indicating a complete failure to
predict the power in that particular k-bin. One should thus be cautious when using small

training sets that may not sufficiently constrain the freedom of the neural network. Based
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Figure 4.8: Comparison between the mean square error of interpolation on a grid (red
solid line), the neural network using gridded training sets (blue dot-dashed line), interpo-
lation (green solid line) and the neural network using LHC training sets (orange dashed
line). Neural networks are trained using 10 training iterations. Plotted are the mean val-
ues after the NN is retrained 10 times, and the standard deviation to the mean is shown
as error bars.

on the results for our two larger training sets, we proceed by using 10* training iterations
in all our neural network training.

Further, we compare the mean square error between our training techniques against
the training set size and sampling technique. In Fig. B.8] we compare the mean square
error in the prediction when the gridded parameter values are interpolated (red), or used
to train our neural network (blue), with the predictions obtained when using a Latin hy-
percube sampled training set (green and orange). Similar to Fig. we compute the
mean and variance of the MSE over 10 separately trained networks by selecting 75% of
the samples in the training set at random at a time.

As expected, when using a finer grid of parameters to interpolate the power spec-
trum, the accuracy of the prediction increases. Although the neural network predictions
increase in accuracy for both the grid and the LHC, a clear plateauing in the addition of
information by a larger training set can be observed. We thus observe a fundamental limit
to the relative mean square error for the neural network design. This limit depends on
the design parameters of the neural network and can be optimized via k-fold validation
of the network’s design or hyper-parameters. Varying the design parameters, such as the

number of hidden layers or number of nodes per layer, and minimizing the mean square
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error for a power spectrum prediction over k iterations can reduce networks error bound.
Our network design limits errors at ~ 1%, which is sufficiently below any confidence
limit associated with our model, such that optimizing design parameters is of limited use.
Optimisation via k-fold validation may be necessary when using fully numerical simula-
tions which reflect a higher degree of physical accuracy than fast semi-numerical meth-
ods. No clear difference of the MSE can be seen comparing the latin hypercube sampled
training sets and those produced on the grid in 3 dimensions and thus both methods do
equally well in this case. We expect, although have not proven this explicitly, that a more
significant discrepancy in higher dimensions of parameter space as discussed in section
In parameter inference studies it is common to vary large numbers of parameters.
For example, in our application, one could add six cosmological parameters as well as
three additional astrophysical parameters controlling for the epoch of heating (Greig &
Mesinger| 2017)). The resulting 12 dimensional analysis would require training points in
the same high dimensional space and a gridded training set would be impractically or even
impossibly large, thus rendering the only feasible option a LH approach. It is also instruc-
tive to compare the performance of the interpolation on the grid to that on the LH, as one
could conceivably just interpolate on the LHS in higher dimensions. The ANN manages
to capture the information of the unstructured training data much better than simple in-
terpolation does, whereas this is not necessarily the case for large gridded training sets.
This result indicates a better performance for unstructured data by the ANN rather than
interpolation and given that unstructured data are the only feasible way to access high
dimensional model emulation, we argue that the ANN is a reliable way to perform this
task. Similar conclusions were found in (Jennings et al.|2019), but we note that a future
analysis including astrophysical parameters should check that this result holds for high
dimensional analyses as the increased interpretability of interpolated models could be a
boon over ANN emulation if the methods achieve similar levels of precision.

Fig. {.9to show the predictions of a trained neural network (solid lines) and
the true values of the power spectrum at the same point in parameter space (dashed lines).
In order to determine the dependence of the accuracy of the predictions on the particular
training set used, a subset of the training set is again randomly selected and used as the
training set. Similar to before, the network is retrained 10 times while the predictions are
averaged. The variance on the mean prediction in each k-bin is added as the expected error
on the predicted mean value of the power spectrum. The power spectrum is dominated
on small scales (k > 1 Mpc™') by shot noise and by foregrounds on large scales (k <

0.15 Mpc™!). We therefore apply cuts at these scales in our analysis and indicate the noise
dominated ranges by the grey shaded regions in Fig. Fig. and Fig.
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Figure 4.9: Comparison between neural network prediction of the 21cm power spectrum
(solid line) and the 21cmFast power spectrum (dashed line). We vary £ at z = 9 from
{ = 10to ¢ = 80, and use 1000 training iterations on 75% of the 1000 LHS training set
selected at random. This process is repeated 10 times and the mean values are shown
with the variance on the mean as error bars.

We observe that the network produces a good fit to the true values within the region
of interest. The size of the error bars indicates a very low dependence on the training sub-
set used for training such that we conclude that the exact distribution of training sets in
parameter space has little influence as long as it is homogeneously sampled. We also ob-
serve that the network manages to fit 7; particularly well at large scales compared to the
other two parameters whose error bars noticeably increase as k approaches the foreground
cut-off. This shows that a sampling scheme that varies according to the dependence of the
power spectrum on the input parameters may be advantageous to achieve some desired
accuracy.

In the context of outliers, discussed earlier in this section, we see that the prediction
for the power spectrum at (£, Rmsp, log Tvir) = (30, 2,4.48), in Fig. @ overestimates
the power at k ~ 0.5 Mpc™' by a factor of ~ 2. This point would have a relatively large
impact on the MSE as recorded in Fig. even though the network is very well behaved

for most regions in parameter space.
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Figure 4.10: Comparison between neural network prediction of the 21cm power spec-
trum (solid line) and the 21cmFast power spectrum (dashed line). We vary Ty at z = 9
from Tyir = 10* K to Tyir = 10° K, similar to Fig.
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4.7 Bayesian inference of astrophysical parameters.

4.7 Bayesian inference of astrophysical parameters.

In Bayesian parameter inference one is interested in the posterior distribution of the pa-
rameters @ within some model M. That is the probability distribution of the parameters
given some dataset x. We can then write Bayes’ Theorem as

Pr(x|0, M)m(6IM)

Pr(0lx, M) = PrieM) , (4.32)

to relate the posterior distribution Pr(6|x, M) to the Likelihood, £ = Pr(x|6, M), the
prior, (6| M), and a normalisation factor called the evidence, Pr(x|M). This expression
parametrises the probability distribution of the model parameters as a function of the like-
lihood, which, given a model and a dataset, can be readily evaluated under the assumption

that the data points are independent and carry Gaussian errors,

[x — (@)

2
204

InL=- +C, (4.33)
where C denotes a normalisation constant. In our case, the data will be a mock observation
of the 21cm power spectrum, x = {Py(k;)}, evaluated in 21 k-bins, the expectation value
of the data will be the theoretical model prediction of the power spectrum, u(6) = P(k, 6),
and for the variance on the data we assume that instrumental noise is the sole contributor

characterised by a noise power spectrum, oﬁ = Proise(k).

4.7.1 Experimental design

We use 21cmSenseE] (Pober et al.|2013; 2014) to compute the noise power spectrum for
HERA331, with experimental details outlined in Beardsley et al. (2015) and summarized
below. The noise power spectrum used is given by (Parsons et al.[2012)

B QY

PNoise(k) =~ XzY_

5355 T (4.34)

where X?Y denotes a conversion factor for transforming from the angles on the sky and
frequency to comoving distance, €’ is the ratio of the square of the solid angle of the
primary beam and the solid angle of the square of the primary beam, ¢ is the integration
time per mode, and Ty, is the system temperature of the antenna, which is given by the

receiver temperature of 100 K plus the sky temperature Ty, = 60 (v/300 MHz) > K.

ZPublically available at https://github.com/jpober/21cmSense.
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As our experiment design, we assume a HERA design with 331 dishes distributed
in a compact hexagonal array to maximize the number of redundant baselines, as HERA
is optimized for 21cm power spectrum observations (DeBoer et al. 2017; |Liu & Parsons
2016). Each dish has a diameter of 14 m, which translates into a total collecting area of
~ 50950 m?. HERA antennas are not steered and thus use the rotation of the Earth to drift
scan the sky. An operation time of 6 hours per night is assumed for a total of 1000 hours
of integration time per redshift. We consider both single redshift and multiple redshift
observations assuming a bandwidth of 8 MHz. Although experiments like HERA and
the SKA will cover large frequency ranges ~ 50 — 250MHz, foregrounds can limit the

bandpass to narrower instantaneous bandwidths.

4.7.2 Markov chain Monte Carlo

We aim to compare our parameter estimation runs to those of (Greig & Mesinger (2015)
by using the same mock and noise power spectrum for HERA331 as input for our neural
network parameter search. Our fiducial parameter values are { = 30, Ry,;, = 15 Mpc and
T,;, = 30000 K.

First, we perform an independent parameter search in two redshift bins, z = 8 and
z = 9, the latter comparing directly to Fig. 3 in|Greig & Mesinger (2015). The fiducial
values for the average neutral fraction at these redshifts are Xy;(z = 8) = 0.48 and Xy(z =
9) = 0.71. For both the emulation and the 21CMMC runs we produce 2.1 x 10° points in
the MCMC chain for a like-for-like comparison between the two techniques. This analysis
uses the emcee python package for the Monte Carlo simulation (Foreman-Mackey et al.
2013).

Then, we analyse observations at redshifts z = 8, 9 and 10 by combining the infor-
mation in these redshift bins. We take a linear combination of the y? statistics in each
redshift bin. Three separate ANNSs are used for each redshift and are trained on the same
training sets as for the individual redshift searches at z = 8 and 9. The fiducial neutral
fraction for our final mock observation is Xy(z = 10) = 0.84. A total of 2.1 x 10° are
again obtained both in the neural network search and the equivalent 21CMMC run. The
results following were then produced by combining 21cmFast, the ANN and the MCMC

sampler with the instructions above.

4.8 Discussion

Similar to Kern et al.|(2017), we see a significant speed-up for the parameter estimation.

For our fiducial chain size, we observe a speed up by 3 orders of magnitude for the sam-

118



4.8 Discussion

Code - Training Set 4 Ryiy  log Ty

41284775 13.387078 4.59707]

21CMMC
45471508 12137201 4547057

ANN - 100 LHS
ANN - 1000 LHS 42.52+1510 12.89+255 4.57+0%0

Z
9
9
9
ANN-10000LHS 9 422175% 13.18*4%0 45870%
21CMMC S
8
8 42717130 14677319 4 627021
8
=6.04 321 —0.17

39.64179 14.9973% 4.6110-21

ANN - 100 LHS

ANN - 1000 LHS Hser ey 2023
39.78+31'68 14.6l+3'15 4.60+0'22

ANN-100LHS 8,9,10 31.51*%37 15.86*7¢) 4.49*01¢

ANN - 1000 LHS 8,9,10 31.18*%47 14,97+291 4.51+0-16

43.062519 14587347 4647010
ANN - 10000 LHS ~16.22 —4.05 -0.23

~17.38
21CMMC 8,9,10 31.08*%70 15.15%286 4517017

—6.08 —3.78 =0.17
ANN - 64 gridded 8,9,10 32.4671%%0 125273474 617011
ANN - 125 gridded 89,10 30.17°5/ 12.97-4%974.507015
ANN - 1000 gridded 8,9,10 31.327732 13.047750 4507010

Table 4.1: Median values and 68% confidence interval found in the parameter search via
the brute-force method (21CMMC) and our ANN emulation at z = 9 and z = 8. The fidu-
cial parameter values for both redshifts are given by (£, Rifp, log Tvir) = (30, 15,4.48).

pling of the likelihood by emulation over the brute-force method. Our 21CMMC runtime
of 2.5 days on 6 cores for a single redshift is reduced to 4 minutes using the emulator.
In addition to the sampling, the neural network training requires on the order of ~ 1
minute for 100 training samples to ~ 1 hour for 10* training samples, which is not needed
when evaluating the model at each point. Compared to the total runtime of 21CMMC the

training time presents a minor factor.

4.8.1 Single redshift parameter constraints

Fig. [@.12] to [4.15] show the comparison between the brute-force parameter estimation
as the red dashed contours and our ANN emulation using a variety of training set sizes
at redshift z = 9 and z = 8 as the solid blue contours. For both redshifts, we show
the one and two sigma contours obtained for 100 and 1000 LH samples as well as the
marginalized posteriors convolved with a Gaussian smoothing kernel. As our posterior
1D marginalized parameter distributions are not found to be Gaussian, we compute the
median and the 68% confidence interval defined by the region between the 16th and 84th
percentile as our summary statistics in Table We find excellent agreement between
our method and 21CMMC for training sets of 10? and 10* samples at both redshifts, and

good agreement with 100 samples.
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We observe that errors retrieved by our network can be smaller than those obtained
by 21CMMC, this is due to systematics. During the training period, our ANN constructs a
model which approximates the 21cmFast model and we proceed to sample the likelihood
of the approximation. Therefore, assuming convergence of the chains, any difference
between the recovered 68% confidence intervals are most likely due to systematic differ-
ences between the two models that are sampled. We estimate that we are subject to these
systematic effects on the 1% - 10% level for large to small training sets, as per Fig.
and Fig. 4.§]

The ¢ — log T;; panels in Fig. and Fig. show that the neural network is
sensitive to the same multi-modality found by 21CMMC, which is illustrated by the stripe
feature at low T;, and high . This region represents less massive galaxies with a brighter
stellar population, which can mimic our fiducial observation. Such a galaxy population
would ionize the IGM earlier and thus by combining multiple redshifts and adding infor-
mation about the evolution of the ionization process, this degeneracy ought to be lifted.
Similarly, the Ry, — log T'y;; panel shows a clear bimodal feature for both 21CMMC and
our neural network. Comparing to the results at z = 8 in Fig. and Fig. we
see this multi-modal behaviour disappearing, which suggest that this degeneracy can be
lifted by adding information in multiple redshift bins. Despite a clear downgrade of the fit
to the brute-force method in the shape of both the 2D contours and the 1D marginalized
posteriors, the training set using 100 samples still encloses the true parameter values of

the observation in the 68% confidence interval as indicated in Table 4.1

4.8.2 Multiple redshift parameter constraints

Fig. {4.16] and Fig. show the contraints obtained when combining observations in
three redshift bins at z = 8, 9 and 10 for training sets of 1000 and 100 samples per redshift
respectively. As noted in the previous section, adding information about the evolution of
the reionization process lifts some of the degeneracies in our recovered parameter con-
straints and both multi-modal features in the { — log 7\;; and the Ry; — log T, panels
could be lifted. Of note is that combining multiple redshift bins highly improves the fit of
the neural network trained on only 100 samples per redshift. We find that all our fiducial
parameter values are well within the 68% confidence interval set out by the median and
its 16th and 84th percentile for even this sparse training set.

Additionally, we compare the inference of a network trained on gridded training
sets with similar sizes to our LH sampled training sets. Both 5° and 10° training sets
recover similar constraints as the 100 LHS and 1000 LHS training sets, consistent with

our findings in section 4.6 However, we observe a clear deterioration of the predictive
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Figure 4.12: Comparison between the recovered 1o and 20 confidence regions of
21CMMC (red dashed lines) and the ANN emulator (blue solid lines) at z = 9. The
ANN uses 1000 LHS for the training set and a 10* training iterations. The dotted lines
indicate the true parameter values (£, Rifp, log Tvir) = (30, 15,4.48).

Rmfp

1
A
o)
—_ T
= 1
3¢ :
[s)) 1
SENE :
1
T 1
lI T T
b-‘" ).;-b "a.-\
Rmfp log(Tvir)

Figure 4.13: Comparison between the recovered 1o and 20 confidence regions of
21CMMC (red dashed lines) and the ANN emulator (blue solid lines) at z = 9. The
ANN uses 100 LHS for the training set and a 10* training iterations. The dotted lines
indicate the true parameter values (£, Rifp, log Tvir) = (30, 15,4.48).
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Figure 4.14: Comparison between the recovered 1o and 20 confidence regions of
21CMMC (red dashed lines) and the ANN emulator (blue solid lines) at z = 8. The
ANN uses 1000 LHS for the training set and a 10* training iterations. The dotted lines
indicate the true parameter values (£, Rifp, log Tvir) = (30, 15,4.48).
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Figure 4.15: Comparison between the recovered 1o and 20 confidence regions of
21CMMC (red dashed lines) and the ANN emulator (blue solid lines) at z = 8. The
ANN uses 100 LHS for the training set and a 10* training iterations. The dotted lines

indicate the true parameter values (£, Rifp, log Tvir) = (30, 15,4.48).
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Figure 4.16: Comparison between the recovered 1o and 20 confidence regions of
21CMMC (red dashed lines) and the ANN emulator (blue solid lines) combining red-
shifts z = 8,z = 9, and z = 10. The ANN uses 1000 LHS for the training set at each
redshift and a 10* training iterations. The dotted lines indicate the true parameter values
(£, Rmp, log Tyir) = (30, 15, 4.43).
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Figure 4.17: Comparison between the recovered 1o and 20 confidence regions of
21CMMC (red dashed lines) and the ANN emulator (blue solid lines) combining red-
shifts z = 8,z = 9, and z = 10. The ANN uses 100 LHS for the training set at each
redshift and a 10* training iterations. The dotted lines indicate the true parameter values
(£, Runfp, log Tyir) = (30, 15, 4.48).

power as we reduce the number of gridded training parameters to 4 points per parameter.
Although the fiducial parameter values are recovered within the 16th to 84th percentile in
Table we fail to recover the fiducial values within the 20~ contours for 4° points.

4.8.3 Applications

With a speed-up of ~ 3 orders of magnitude, 21cm power spectrum emulation can be used
for a variety of new or existing analyses, and we aim here to highlight some potential uses:

(i) 21cm experimental design studies (eg.|Greig et al.[2015)) use much the same prin-
ciple as our model parameter inference outlined above. By varying the experimental
layout or survey strategy, we effectively vary the noise power spectrum Pyp;se(k) in equa-
tion (4.33)), and can thus fit the optimal layout or survey strategy. These studies require
fast model evaluations in order to be able to compare a multitude of survey strategies and
experimental designs.

(if) We find that using small training sets of 100 model evaluations, our emulation
recovers parameter constraints to a similar degree of accuracy as those obtained when

evaluating the model at each point in the chain. This may open up the possibility to move
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away from semi-numerical models such as 21cmFast and for the first time use radia-
tive transfer codes (Ciardi et al.|[2003} [[liev et al.|[2006b; Baek et al.|[2009; [2010) in EoR
parameter searches. |Semelin et al.| (2017)) have recently produced a first database of 45
evaluations of their radiative transfer code to provide 21cm brightness temperature light-
cones evaluated on a 3D grid. The power spectra extracted from this database could be
used as a training set for an ANN emulator. However, our analysis suggests that training
sets with lower than 100 samples should be used with caution.

(7ii) In addition to determining the best fit parameters of any given model, we would
like to quantify the degree of belief in our model in the first place. Future data will be
abundant, and as such we would like to be able to use it to inform us about the choice of
model that best fits the data. Here too, the computational speed that emulation provides
can be of use. Bayesian model comparison requires the computation of the evidence as
the integral of the likelihood times the prior over all of parameter space. Nested sampling
algorithms such as MultiNest (Feroz et al.[2009) provide an estimate for the evidence of
a particular model together with the evaluation of the posterior, and thus benefits greatly
from fast power spectrum computations.

(iv) The output nodes of the neural network treats each k-bin of the 21cm power
spectrum separately. The weights of the trained network thus act to correlate the values in
each k-bin according to the training set. There is therefore no restriction to predict other
observables that are correlated to the 21cm power spectrum using the same emulator. The
same network could thus encode the skewness or bispectrum of the 21cm fluctuations at

the same time assuming the inclusion of these functions in the training sets.

4.9 Summary

With the advent of next generation telescopes such as MWA, HERA and the SKA, a first
detection of the cosmic 21cm signal from the Epoch of Reionization is expected to be
made within the next few years. One of the challenges accompanying this new generation
of telescopes will be the vast amount of raw data generated. In this chapter we have in-
troduced the machine learning paradigm as a crucial way to efficiently analyse these large
amounts of incoming data. In particular, we have focussed on the cost reduction for ex-
pensive model evaluation in the context of EoR parameter inference from observations via
model emulation. We show that emulating the models using artificial neural networks can
speed up the model evaluations significantly, while maintaining a high degree of accuracy.
We use an artificial neural network to train on a series of training sets which consist of
21cm power spectrum evaluations produced by the semi-numerical code 21cmFast. As

the limiting factor now becomes the creation of the training set, we study the evolution of
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4.9 Summary

the error on the power spectrum predictions as a function of the training set size. We find
that as few as 100 model evaluations may be sufficient to recover reasonable constraints
on the parameters, especially when combining information across multiple redshift bins.

Machine learning techniques, such as the one presented in this chapter, will be crucial
in extracting the most information possible from future 21cm observations. They are
however by no means the only way to maximize our information gain and as such, in the
following part we will introduce a number of analytical techniques which will similarly

aid to fully characterize the information presented by the 21cm radiation.
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Part IV

Analytic Analysis of the Cosmic 21cm
Signal

“Scientific knowledge is a body of statements of varying
degrees of certainty — some most unsure, some nearly sure,

none absolutely certain.”

— Richard P. Feynman.
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Chapter 5
21cm Bispectrum

In this chapter, we utilize the inherent non-Gaussian nature of gravitational collapse to
study the 21cm bispectrum at low redshifts (z ~ 0.35 — 3), targeted by upcoming neu-
tral hydrogen intensity mapping experiments. We focus on an analytic derivation for the
bispectrum due to gravitational collapse and a contribution by line of sight perturbations
in the form of the lensing-ISW bispectrum and compare their amplitudes at the relevant
redshifts. Within the next decade a significant number of next generation telescopes are
expected to see their first light, capable of probing vast volumes of the low-redshift Uni-
verse. These telescopes are in a prime position for a first detection of the cosmic 21cm
signal and should have the capabilities to detect both power spectrum and bispectrum of
the 21cm brightness temperature fluctuations. The main result of this chapter is a Fisher
forecast analysis of the bispectrum in the context of CHIME, MeerKAT and SKA. We
find that the bispectrum proves to be a valuable source of cosmological information and
has the potential to decrease errors on the cosmological parameters by an order of mag-
nitude compared to Planck. Combining the information from both power spectrum and
bispectrum of the observed sky yields the greatest constraining power. Finally, we com-
pute the contribution of the lensing-ISW bispectrum, and find that, unlike for the cosmic
microwave background analyses, it can safely be ignored for 21cm bispectrum observa-
tions.

The material for this chapter has been published in MNRAS (1 March 2019, Vol.483,
Issue 3, pp. 4259-4275): C. J. Schmit, A. F. Heavens and J. R. Pritchard; The gravita-
tional and lensing-ISW bispectrum of 21cm radiation. The published version is available
through: https://doi.org/10.1093/mnras/sty3400.
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5.1 Introduction

5.1 Introduction

The cosmic microwave background (CMB) has truly propelled cosmology into an age of
precision science. Over the last three decades, experiments such as COBE (Smoot et al.
1992), WMAP (Bennett et al.[2003;2013)), and Planck (Planck Collaboration et al.[2016b)
have measured the CMB to an astonishing degree of accuracy, and its information is
routinely combined with various other cosmological probes such as weak lensing, galaxy
clustering and Type-1a supernovae. This great effort has allowed us to constrain many
of the parameters of the geometrically flat, cold dark matter model with a cosmological
constant (ACDM) to the percent level.

Although the Planck data favours a simple six parameter model over other models
(Heavens et al.[|2017), there remain tensions between the CMB measurements and lo-
cal direct measurements of the Hubble parameter, 4, (Bennett et al. 2014; Riess et al.
2016; [2018aib), as well as low-redshift weak lensing measurements, which find slightly
less matter clumping than expected from extrapolating the CMB findings (Heymans et al.
2013; MacCrann et al. 2015 Raver1 2016; Joudaki et al. 2017; Kohlinger et al. 2017).
These tensions can arise if the assumed cosmological model is wrong since the CMB
photons principally reveal the conditions of the Universe at the time of recombination at
a relatively thin redshift slice at z ~ 1100, when the Universe was matter dominated. Ad-
ditional probes along the line of sight are required to give the full 3-dimensional context
for the evolution of the Universe and study the evolution of low-redshift phenomena, such
as dark energy. Galaxy surveys, such as the 2dF Galaxy Redshift survey (Colless et al.
2001), BOSS (Anderson et al. [2012)), and SDSS (Ahn et al. 2014)), are one such probe
which determine the cosmological parameters by mapping the positions of galaxies in
the sky and realizing that they are biased tracers of the underlying dark matter distribu-
tion. These surveys thus relate the galaxy power spectrum directly to the matter power
spectrum from which the parameters can be determined. Weak lensing surveys, such as
CFHTLenS (Heymans et al. 2012), KiDS (de Jong et al. 2013) and DES (Jarvis et al.
2016)), present another low-redshift observation that complements the CMB observations,
as the reconstructed lensing potential is directly related to the gravitational potential of
the Universe. For both galaxy redshift surveys and weak lensing surveys it is crucial to
obtain large galaxy samples by probing the largest observational volumes possible. One
of the main difficulties for these surveys is to determine the redshift information of galax-
ies in their sample, as the largest volumes are attained by rapid photometry of the sources.
Imprecise redshift information effectively blurs the radial information of the galaxies in

the sample and propagates as a systematic error into the analysis.
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5.1 Introduction

Intensity mapping (IM) of the 21cm radiation at low redshifts possesses many ad-
vantageous properties which help to overcome the common challenges of conventional
survey techniques and thus presents a promising new tool for observational cosmology.
At late times most of the neutral hydrogen in the Universe has been ionized and the re-
maining atomic hydrogen resides mainly within self-shielded damped Lyman-a (DLA)
systems inside galaxies and galaxy clusters. This means that the 21cm signal is a bi-
ased tracer of the dark matter density field and can therefore directly be connected to the
cosmological parameters. When mapping the 21cm intensity, experiments integrate the
emission of unresolved clouds of hydrogen gas within a given frequency bin. This pro-
vides CMB-like maps of the brightness temperature fluctuations in each frequency bin
which each can be analysed for the statistical signal similar to the CMB. Due to the in-
herent relationship between the observed frequency of the 21cm signal and the redshift at
which it was emitted, the signal readily provides spectroscopic redshifts and hence pre-
cise 3D information about the Universe. Although advances in optical surveys, such as
DES, Euclicﬂ and LSSTE], promise precise measurements of many aspects of dark energy
and the galaxy distribution in the near future, IM surveys performed by experiments such
as CHIME and SKA can be enormously advantageous. These surveys will best optical
surveys in terms of survey volume and speed, and will be sensitive to the baryon acoustic
oscillation (BAO) signature out to higher redshifts (Bull et al.|2018)). Bull et al.| (2015)
have thoroughly examined the information gained from power spectrum observation of
an extensive list of 21cm IM experiments and find competitive percent level forecasts on
the cosmological parameters. However, due to the non-linear nature of structure forma-
tion, the power spectrum cannot fully probe the information content of the field, and an
analysis of higher order statistics, such as the bispectrum, is warranted (Repp et al.[2015)).
Theoretical predictions of the 21cm bispectrum due to primordial non-Gaussianities and
non-linear collapse from gravitational instability have only been made in the context of
high redshift (z > 50) observations (Pillepich et al.[2007), giving promising predictions
for the signal to noise for a bispectrum detection. Here we focus therefore on analysing
the bispectrum as an additional observable in the context of upcoming IM experiments
during the late stages of structure formation.

In addition, we examine another physical effect which can lead to a non-zero bispec-
trum and potentially contributes to the signal observed by IM experiments, the correlation
between weak gravitational lensing and the integrated Sachs-Wolfe effect. As the 21cm
emission travels towards our telescopes, it traverses the intergalactic medium and is sub-

jected to the gravitational effects of the intervening matter. Matter fluctuations act as

"https://www.euclid-ec.org/
“https://wuw.lsst.org/
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5.2 The 21cm signal

gravitational lenses on the 21cm photons, whose paths get distorted by their presence.
This effect should be noticeable through the statistical distribution of the 21cm photons
on the sky. In addition to this, as the Universe evolves into an acceleration-dominated era
at low-redshifts (z < 2), the growth of structure lags behind the accelerated expansion
of space. This effect causes the gravitational potentials of galaxy clusters to decrease in
amplitude over time, resulting in a boost in energy for photons traversing those poten-
tials. This late-time integrated Sachs-Wolfe effect (ISW) once again distorts the intensity
distribution of photons in a survey volume. Cross-correlations between these two lines
of sight effects improve cosmological parameter constraints from lensing surveys on the
10% level on large scales as shown by Zieser & Merkel| (2016). Most importantly, how-
ever, ignoring the lensing-ISW (LISW) effect has been shown to bias CMB parameter
inferences (Kim et al. 2013), and will at some level bias 21cm bispectrum observations.
We compute both the LISW bispectrum and the bias resulting from neglecting it from
upcoming IM experiments.

This chapter is organised as follows. Section [5.2]introduces the 21cm signal model
used and we write down the angular power spectrum. In section we revisit the
21cm bispectrum from [Pillepich et al.| (2007) and include a low-redshift 21cm signal
model. The effects of lensing, the ISW effect, and the angular LISW bispectrum are
discussed as well. We then compute both the 21cm bispectrum and the LISW bispec-
trum for all triangle configurations at z = 1. In section [5.5] we discuss upcoming
intensity mapping experiments able to detect the 21cm bispectrum, and include fore-
ground and noise models. Section introduces the forecast model and determines
the expected signal to noise for a LISW bispectrum detection as well as the bias intro-
duced when neglecting it. Finally, we present and discuss the results of the parameter
forecasts in section [5.8] before we summarize our findings in section [5.9] Through-
out this chapter, we assume a six parameter ACDM cosmology with fiducial values
(Quh?, Qcpmh?, Qa, h, 10° X A, ng) = (0.022,0.127,0.684,0.67, 1.562,0.962).

5.2 The 21cm signal

The 21cm signal originates from the hyperfine ground state transition in the hydrogen
atom. Its strength is governed by the relative abundance of HI atoms in the excited,
triplet (1), state relative to the non-excited, singlet (0), state, parametrised through the

spin temperature T,
T.
mo_ g_lexp(__), (5.1)
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5.2 The 21cm signal

where T, = hv, /kg ~ 68mK, g; is the statistical weight of the energy level i, g1/go = 3,
and Ts > T.. The intensity of the signal on the sky is then measured, and we model the
signal in terms of its brightness temperature, which relates to the signal intensity via the
Rayleigh-Jeans formula, T,(v) =~ I,c?/2kgv?. Generally (see chapter , the 21cm signal

is measured using the CMB as a background,

TS - Ty(Z)

T =
b(2) 1+2

T, (5.2)

where T,(z) denotes the CMB temperature at redshift z and 7 is the optical depth through
a cloud of neutral hydrogen.

The spin temperature and thus 7}, depend on the underlying HI density field as well
as astrophysical effects, such that the brightness temperature is dependent on the position

and can be split into a homogeneous and a fluctuating part,
Tolr(2), 2] = 6To(2) {1 + Swulr(2), 21} - (5.3)

In the context of intensity mapping, we follow the model of Bull et al.| (2015) and focus
on the mean 21cm signal that is emitted by localised clumps of HI gas within galaxies
and galaxy clusters for which the average brightness temperature over the sky can be
approximated as (Santos et al.[2015)

(1 + 2)°uK. (5.4)

6Ty(2) ~ 566h [ﬁ] [Q‘“(Z)

H(z)

0.003

Here, Qy is the density of HI atoms in units of the current critical density (Camera et al.
2013}, |Villaescusa-Navarro et al.|[2018)),

Qu(2) = pri@)/peos (5.5)

with a critical density today, p.o = 3H;/87G. The density of neutral hydrogen is related

to the mass of the dark matter halos in the Universe,

Mmax dn
pni(z) = mem dM%MHI(M)’ (5.6)
where dn/dm is the halo mass function, for which we use a simple Sheth-Tormen imple-
mentation, and My (M) is the HI mass in a halo of mass M. Following|Bagla et al.| (2010)),
we adopt a lower cutoff for the mass range containing HI gas, to correspond to a circular
halo velocity of 30 km/s, meaning that halos with a lower circular velocity do not con-

tain any HI gas. Typically, neutral hydrogen can be expected in star forming halos, and
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1.4
1.2 S S
1.0 I
m
Io 4 1
= 0.8 /\—"—
=
G 061 ~
—— Model ] Lah
0.4 1 k  Zwaan 4+ Rao
+ ¢ Braun Noterdaeme
4 Martin 4 Songaila & Cowie
0.21 I Delhaize 4 Crighton
¢ Rhee
0.0 T T T T T
0 1 2 3 4 5
redshift z

Figure 5.1: Comparison between our analytic model for the HI density, Qy, as a func-
tion of redshift with current measurements. Included are the results from [Zwaan et al.l
(2015); Braun| (2012); Martin et al| (2010); [Delhaize et al| (2013); Rhee et al. (2013);
[Lah et al.|(2007); Rao et al.|(2006); Noterdaeme et al.|(2012); [Songaila & Cowie| (2010);
(Crighton et al.|(2015). See [Crighton et al|(2015) for full data list.

gas in halos with circular velocities of larger than 60 km/s can be expected to form stars.
Additionally, self-shielding damped Lyman-a systems can be found in lower mass halos,
justifying a somewhat lower velocity cut-off. The HI mass density is measured locally

using 21cm emission (Zwaan et al.|[2005; Martin et al|2010) and at higher redshifts via

damped Lyman-a systems, as they trace the HI distribution after the EoR (Prochaska et al.|

2005). (Crighton et al. (2015)) summarize recent measurements of Qg;, and we compare
the analytic model with these observations in Fig. [5.1] [Villaescusa-Navarro et al| (2018)

simulate the behaviour of Qg and find good agreement with the observations.

5.3 The 3D angular power spectrum

Similarly to CMB experiments, fluctuations of the 21cm brightness temperature on the
sky allow us to construct an angular power spectrum. 21cm experiments have a smooth
frequency response around a central observed frequency v, which we model with a Gaus-

sian window function W,(z), such that the observed brightness temperature fluctuation on
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5.3 The 3D angular power spectrum

the sky can be written as
ST (R, v) = f dzW,(2)5To[r(2), 2]. (5.7)

The quantity (STt?bS thus denotes the observed temperature field projected onto the sky in
a frequency bin labelled by v. As seen before, the brightness temperature fluctuations
depend on the underlying HI density field. At late times, most of the neutral hydrogen is
located in self-shielded gas clouds inside galaxies, which means that the hydrogen density

field is a biased tracer of the dark matter density field,
6Ty[r(2)i, 2] = 6Tp(2){1 + b (2)S[r(2), 21} (5.8)

In most of our analysis we are only concerned with the first order term as the monopole
term is inaccessible through interferometry. Similarly to Battye et al.| (2013) and Bull
et al. (2015) we assume the bias to be a constant at low-redshifts. For our computations
we fix bgr = 2, which is consistent with DLLA observations (Font-Ribera et al.|2012; [Hall
et al.|2013)). To first order in perturbation theory, the density fluctuations simply grow as

a function of the growth factor,
6lr(2), z] = D, (2)5(r). (5.9)

We then Fourier transform the density fluctuations, and suppress the explicit z dependence

in our notation for simplicity,

_ d3k S ik-r
(5(r)—f(2ﬂ)3(5(k)e , (5.10)

and subsequently expand the Fourier modes in spherical harmonics,
v = A Y i jekr)Yen(R)Y (). (5.11)
tm

We find
ST (11, v) :4nZif f dzW,(2)5To(2)bri(2)D+(2)
L (5.12)

fd3k3k'k Yen(K)Y: (R
X 2y (k) jelkr(2)1Y em(K) Y, ().

Using the definition of the harmonic transform of the signal on the sky in terms of multi-

pole moments ¢ and m,
Ay = f d*AST™ (R, )Y (R), (5.13)
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5.4 Angular 21cm bispectrum

we can use the orthonormality condition for spherical harmonics (see Appendix [C.I) to
obtain

a =dnit f W, (26 To(Dbru (D, (2)
(5.14)

&Pk -
X f (27_()36(k)j€[kr(z)]yé’m(k)~

Now, the angular 21cm power spectrum, Cy, is defined in terms of ensemble average of

two harmonic coefficients,

(aptar,) = 0508, Ce(vi, va), (5.15)

&'m’ oY mm

where 6* denotes the Kronecker delta function and we assume statistical isotropy. Com-
bining equations (5.14) and (5.13), in conjunction with the Fourier space matter power
spectrum relation,

(3(k)5(k")) = (2)’6° (k + K')P(k), (5.16)

where 67 is the Dirac delta function, we find the angular power spectrum to be
2 -
Cevi,va) =~ f dzWy, (2)To(2)bri(2)D+(2)
f dz W, (2)8To(2)br(2)D4(2) (5.17)

X f dkk>P(k) jelkr(2)]jelkr(z)].

For large ¢ we can use the Limber approximation (see Loverde & Afshordi2008; equa-
tion (C.30)) such that the angular power spectrum becomes diagonal in frequency and

reduces to

(5.18)

s ([ W@ty D, | P15
Co(v) = by fdz [ Y ] - :
r(2) [’ (2
We compute the matter power spectrum, P(k), using CAMBE], and our results for the 21cm
angular power spectrum are illustrated in Fig. including our noise and foreground
models described in section@ These results were derived in Battye et al.|(2013) and we

rederived them here using consistent notation with the following analysis.

5.4 Angular 21cm bispectrum

At low-redshifts (z ~ 1), targeted by upcoming IM experiments, the dark matter density

field has become non-Gaussian mainly due to the non-linear gravitational collapse of

3Publicly available at: https://camb.info/.
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Figure 5.2: Angular 21cm power spectrum, noise and foreground residuals at z = 1. We
show the noise curves for MeerKAT operated in single-dish (SD, green) mode as well
as in interferometer (IFM, black) mode. Foreground residuals are plotted for a removal
efficiency of € = 107°.

structure. As such, we expect the 21cm signal to contain a non-zero bispectrum. The
nature of the bispectrum provides a radical increase of observable modes as compared to
the power spectrum and thus presents a promising probe for cosmology. Non-Gaussianity
can be added to the signal through multiple channels, and here we focus on two main
effects that contribute to the 21cm bispectrum. In addition to the non-Gaussianities due

to structure formation, denoted as BN-C

, if the primordial density fluctuations are non-
Gaussian, then that non-Gaussianity permeates through to late times as a contribution to
the 21cm signal, which we write as B™NS. Furthermore, line of sight effects due to the
gravitational distortion of light around massive objects and the accelerated expansion of
the Universe, specifically via the integrated Sachs-Wolfe effect (Sachs & Wolfe||1967),
induce a non-Gaussian contribution to the signal, denoted as B>V, We can then write
the total angular 21cm bispectrum as the sum of these contributing effects. Let @ =

(gl s 525 535 my, my, m3), then

Bl = BNLG 4 BLISW | pPNG (5.19)
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5.4 Angular 21cm bispectrum

5.4.1 Non-linear gravity bispectrum

The bispectrum due to non-linear gravitational collapse of structure in the context of 21cm
brightness temperature fluctuations can be calculated similarly to that in the context of
galaxy surveys (SeeFry|(1984) and Appendix [C.2]for details). The brightness temperature
fluctuations are sourced by the fluctuations in the HI field, which is a biased tracer of the
DM field (see equation (5.8)). The bispectrum is then defined by the Fourier transform of

the 3-point function,

B (ky, ko, k3, 21,22, 23) = (6T (k1) Ty (k2)o Ty (ks))

_ - _ - - . (5.20)
= biudTo(z)6To(22)0Ty(z3) (3(k1, B(ka, D5(Ks, 2))

where we assume a linear bias. Expanding the density perturbations to second order and
applying Wick’s theorem, the lowest order contribution to the bispectrum is (Pillepich
et al.[2007; Appendix [C.2)

B (ky, ky, k3, 21, 22, 23) =bi 2K (ky, k) D (21)D4(22)D1(23)

_ _ _ (5.21)
X 0Tv(21)0Tv(22)0Tv(23)P(k1)P(ky) + cycl.,
where we define
kl k2 2
7((’(1, kz) =A)+ A4 k_ + k_ cos 0y, + A, cos” 65, (522)
2 1

with Ay =5/7, A, = 1/2, A, =2/7, and 6, denotes the angle between k; and k,.

We can express the signal in harmonic space using equations and (5.13). Taking
the ensemble average of three harmonic coefficients yields the angular bispectrum. Using
the methods developed in Verde et al.| (2000) and Pillepich et al.| (2007), as outlined in
Appendix we compute the contribution to the angular 21cm bispectrum from the

non-linear growth of structure to be

Bri"™" (@) = Biy,2) (m : 3], (5.23)

mp; mj

where the parentheses denote the Wigner-3J symbol, which ensures that the triangle con-
dition is met, expresses isotropy, and is akin to the Kronecker delta in 3D space. The

bispectrum is non-zero if and only if,
(@) = <m; <¢,fori=1,2,3,

(b) my +my = —mj,
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5.4 Angular 21cm bispectrum

(©) |6 = €| <t < € + ¢, for all permutations of (i, j, k) = (1,2, 3),
(d) £, + &, + {5 1s a non-zero integer unless m; = m; = m3 = 0.
Further, we can write the bispectrum as a sum of cyclic terms,

By 6,6,(2) = B12(2) + B13(2) + Bx3(2), (5.24)

where

16 \/(26’1 + 126 + D26 + 1)

Bio(e) = —if™" e by f dzidzydzzdky dkok 33

X P(ky)P(k2)W,(21)W(22) W\ (23) D7 (21) D+ (22) D+ (23)8 T (21)8 T (22) 5T (23)

. . L , / 5.25
X jolhrlinlkerz)] Y 4 (<1 Btk k) + DL + 1) -2
gf/f//
. . 6t 6 Gl ¢ )6 7 L) ¢ 7
X jelk als .
Jelkir(z3)]jer kar(z3)] {f” / f}(o 0 0) [0 0 0] (O 0 O]

Herev=v(z),andwesum { =0,1,2, ' =€, —¢{,...,61 +,and ¢ =€, — €, ...,{, + € and
the braces denote the Wigner-6J symbol (eg. Sobelman|[1979). The B,(k;, k») functions
connect to (5.22)) such that
2 ki k 4
ﬁo =2A0 + —Az,ﬁl =2A, L + el , and,B2 = —A,. (526)
3 ky ki 3
This result has been found by |Pillepich et al.| (2007) and rederived here using consistent
notation for our low-z temperature model in equation (5.4). In order to simplify this
expression such that the implementation is practical and can be used in our forecasting
model, we use the Limber approximation and compute the three contributing £ terms

separately in Appendix [C.4]

B3’ = buA,,, f dzW,(2)6T(2) D7 ()0, (2)0r, (2), (5.272)
B! = b ) Apir” f AW (OTHDDL) |01, (D) + 00 (D01, D]+ (527b)
[/5//
B = by y A2 f W26 Ty (D2 (1,02 (2), (5.27¢)
f/f//

where the A’ and the #-functions are defined in equations (C.32)), (C.36), (C38), (C-42),
(C.44)), and (C.47). We have applied the Limber approximation here as the direct evalua-

tion of equation (5.25) was found to be impractical. There is however evidence to suggest
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5.4 Angular 21cm bispectrum

that the Limber approximation does not remain accurate for narrow z-bins required for
intensity mapping (D1 Dio et al.[2018), and fast implementations for oscillatory function
integration (Spurio Mancini et al.|2018]) would be necessary to increase the accuracy of

our calculation.

5.4.2 Lensing-ISW bispectrum

The presence and evolution of the gravitational potential along the line of sight affects the
21cm radiation and imprints statistical information about the state of the matter distribu-
tion on the signal. Firstly, the photon paths are disturbed by the presence of gravitational
wells, resulting in a weak lensing contribution to the signal. The lensing potential, 6, for a
source at distance r and at an angular position 7 is a radial projection of the gravitational
potential, ®, (Bartelmann & Schneider|2001). In the Born approximation

2 Sr=)
O(r, i) = szo dr Sk(r)Sk(r’)q)(r’n)’ (5.28)

where S is determined by the curvature, and defined as

Vi 'sin(rvk), k>0,
S« =< r k=0, (5.29)
VIk["! sinh (r V|k]), k < O.

Observations of the weak lensing signal should be feasible by upcoming 21cm exper-
iments and can help map the evolution of the growth function (Pourtsidou & Metcalf]
2014).

A second line of sight effect, sourced by the gravitational potential, affects the 21cm
photons. Due to the accelerated expansion of the Universe at late times, potential wells
evolve on timescales shorter than the crossing time for photons. Therefore, photons that
enter the gravitational well obtain a boost in energy, which is higher than the required
energy to leave the well due to the decay of the potential while crossing. This results in an
overall frequency gain which is additive along the photon’s path. The frequency change
due to this integrated Sachs-Wolfe (ISW) effect can be written as (Nishizawal[2014)

A 2 (7 0D,
lmm:—fdﬂilﬁ, (5.30)
% A Jo ot

where ¢ denotes the conformal time.
These line of sight effects perturb the apparent radial and angular position of the

brightness temperature signal on the sky, 67y, = 6T, o(f2 + VO, v + Av), where Ty is the
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true, unperturbed signal, Av represents the frequency shift introduced by the ISW effect.

Expanding this signal to first order in the gravitational potential gives

dé Tb’() Ay

oTy, = 5Tb,0 + V5Tb,() -VO+v .
dv v

(5.31)

Considering a thin frequency shell, each term can be expanded in terms of multipole
moments ¢ and m on the sky via equation (5.13). Thus the total coefficients separate
into contributions from the signal when line of sight effects are ignored, indicated by the
superscript “0”, the lensing gradient and the ISW frequency shift,

_ ISW,y
a, = a€m+a€m+a[ . (5.32)

The lensing coefficient is given by (Append<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>