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1. Introduction

One approach to a quantum theory of gravitation is through the so called oantiza-
tion” [1]. Despite general relativity, it is reasonable to expect that swemtization method should
also work for theories sharing basic features of this first one, sudiffasmorphism invariance
and being fully constrained. Here we show how one can apply this quantizzheme to Chern-
Simons theory, regardless its relation to gravity. A detailed discussion éer@mees are given
at [3].

Notably we have here also the possibility to follow in great details the methodsiesg in
books about the subject, which makes this work also interesting from tlagpgtal point of view.

We shall mainly treat here the case where the 2-dimensional space man#odglinder or,
equivalently, the pierced real plai\ {0}. We shall also briefly consider the case of a disk with
boundary.

2. Canonical treatment of Chern-Simonstheory

The action reads [4]
2
S= —K/ d3x eHVP Tr (AudvAp + 3A“A\,Ap> (2.1)
M

with A= A'“ dx* (u = 0,1,2) being the dynamical field; a Lie algebra valued connection 1-form.
The gauge groufs will be assumed to be compact and semi-simple.

General covariance is broken by the assumption.tiat =~ x R, i.e., by splitting spacetime
into spaceX) and time, which leads us to

S= _K/R/Zdt d?x £2° Tr (AaAp + AoFab) (2.2)

whereF), = .A — 6uA, + T AJAS is the spatial restriction of the curvatuef. .. = 1,2).
The Hamiltoniafh and the symplectic structure after Dirac-Bergman’s algorithm then read

H =G(e) = [yd*x €' (x)G' (x) ~ 0 {A), AL (Y)} = £eand % (x—y)  (2.3)
whereG' = —gsabFe'lb ~ 0 is the Gauss constraint, whose algebra (gauge group algebra) is
{G(¢),G(")} =G (e x &) (ex€) =1y elek (2.4)

We see that the system is fully constrained, and the spatial compa@eansA), form a pair of con-
jugate variables. Diffeomorphism invariance follows from gauge invagamhus, implementation
of Gauss constraint guarantees - in the classical regime - invarianee spatial diffeomorphism,
that can be seémafter calculating the Lie derivative of the canonical variable along a $patitor

¢ LrPAa= EPRpat Da(fbAb) ~ Da(fbAb)-

Litis the smeared Gauss constraint. Eg) is a test function.
2This is equal to a gauge transformation with param&fex,.
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3. TheHilbert space

In order to get the quantum theory we need to construct the kinematicalrtsib@ce 7},
and then select the physical states by implementing the constraints.

We choose a specific topology for the spacezasR x S', so the range of the coordinates
areze R and6 € [0,2r1. Then, canonical variables are defined as operators in the Schgeedin
picture, satisfying _

~ ~ [

[A(x). A ()] = - 8" 8%(x~y) (3.1)
and the states are described by the wave functioHgdg] = (Ag|W). Field operators act on these
states as A A

(RolAp(x)|W) = Ay ()W[As]  (PalAL(X)|W) = & 5205 WIAel. (3.2)
Using this representation, a particular solution of the Gauss constﬁ"alﬂAe] = 0is given by [2]
W, [Ag] = €M% with

0. = g o (T (070,001 0,0 071050)) — 5 | aBxTr (Aog M s0)

whereg € G is defined in terms ofg by Ag = g~1dgg. A general solution [2] is
W[Ag] = Wo[Ag] '™ [Ag]

where the functionav,li”" [Ag] is B-gauge invariant,e., satisfies

Jd o o i
N f KAJ _ nv Aol = 0. )
By 6-gauge transformations we mean
OA}, = Dgé' oA, = f,, ' ALeK. (3.4)

The Hilbert space needs a well-defined scalar product, compatible witesGannstraint (so,
gauge invariant). We then writd[Ag] = W, [Ag]@[Ag] and look forY[Ag]. This will be done
in the spirit of LQG, by changing the focus from the connectignto its holonomyh(y; 6, 6,) =
Zexp feef do Ag, restricted to paths with constantotherwiseA, would be involved, which is not
compatible with our choice of polarization for the wave functional.

The cylindrical space Cyl consists of functionals of the aforementiooed, fwith ¢ being

YlAs] = Yr t[Ag] = f (h (Yzl,el,ei> ;o5 h (Vzk,ek,eé) ;-.sN (VzN,eN,e,g»

wherell = {yzk,9k79k,,k: 1...N} is a graph: a finite set of paths. These cylindrical functions,
and therefore, our wave functional (apart from that phase fadepend only on the values that
its argument takes on the graph. Finally, the wave functional is a functianfioite number of
holonomies (elements of the gauge gragBp which leads us to define the scalar product in Cyl
using the invariant Haar measgmh,:

N
<F,f\|’,f’>:/k|j|ldm Fho,. ) f(he,..., ) (3.5)

3More details and generalization (straightforward) to vectors associatiffeient graphs are found in [3]
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The basis of the kinematical Hilbert space is found with the use of the Petgrithiéorem. To every
pathy, g.6, ON the graptH™ we associate a spijkx representation o6, and vectors associated to
different graphs are orthogonal.

YrilAg] = WolAo] 3 cgan R (n(vaee) ) RAM (W (vwae)) @)
j.a.B

The kinematical Hilbert space (non-separable) is then the direct®ym= P 74, where 7t

is the separable Hilbert space associated with the draph

It's possible to define the local operator associated to the holondwwth[Ag, V[T, f) =
h[Ag, y|(Ae|l", f). The RHS is an element of Cyl associated to a new gfapKy} and a new
functionh[Ag, ] f.

We impose the constraint in the form of invariance under all finite gaugsftranations. This
implies that the reduced functional must be functions of the trace of the ¢rolies along closed
paths (cycles, or Wilson loops) = Tr (h(y, 6, 8)), which depends on thecoordinate, but not on
6. Thus, each cycle is characterized by its ‘height’, and the graphsoaresetsC of cycles. This
defines the Hilbert spacef;,,5s Whose basis is the orthonormal set of ‘spin network’ vectors
|IC,J), given by

(A6|C.J) = WolAd] ity X (ha) with  xJ(h;) = TrRI(h,) 3.7)

whereJ stands for(j;... jn). These vectors are orthonormal, in the se{@d|C',J') = &y y.
Now we considelS,, the space of all finite linear combination of spin-networks, &g, ssis
the Cauchy completion of it. It is the direct sum overGibf %é:auss the Hilbert space associate
to a graphC, which is separable. This is not the case $é§ 5,55 Since te graphs are indexed by
n-arrays of real numbers.

Since|C,J) depends on thecoordinate, 75 4,,sdS not diffeomorphism invariant. The gauge
transformation concerningdiffeomorphisms was not contemplated when we solved Gauss con-
straint, which must be corrected now. This is done with the use of the grmraging method,
based on the Gel'fand tripl®, C #5aussC S, beingS, the dual of the spin-networks space. The
z-diffeomorphism invariant states are shown to be elements of this duat spastructed from
any spin-network state through the application of a functional ‘proje&g : S, — S, defined
by (Ppoig W, V') = S (W'|W), VW) €S, and the sum is done over all vectd¥d’) obtained
from|W¥) by az-diffeomorphism. We conclude that the functionglgg W span the physical Hilbert
space#phys

The vectors of%’bhys only depend on the equivalence classes of spin-network states under
z-diffeomorphisms. In particular, a state defined as explained above|@aih does not depend
on the particular positionz of the cycles, but only on the number of such cycles and on the spin
value associated with each of them. We have then a s-knot|3}ate| j1,..., jn) = Ppjf [C,J). It
worth to mention that one must identify a graph with another, whose cycldgtianefore, spins)
are in the reversed order. This is in fact the reason why the secondgrears in the following
formula for the scalar product of two s-knots:
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The s-knots form an orthonormal basis for the physical Hilbert sptusy; are invariant under
all diffeomorphisms, and consist of a solution of the Gauss constrainte @ecset of s-knots is
countable, the physical Hilbert space is separable.

4. Including boundaries

In order to include boundary contributions to this formalism we consideittly Chern-
Simons theory on a three-dimensional manifold with the topolefjy= D x R, with D being the
disk with boundangD, with coordinates & r < R, 0< ¢ < 2m1. The action is given by

= %_[/J//(A/\ dA) 4.1)

and the canonical quantization of this model was considered in [5, 6].Watiaheir construction
4 the Gauss law constraint is smeared with the test funetfon

G(N0) = %T /D A° A dA 4.2)

and generates gauge transformations if we consider the boundarji@ond | ;o = 0. The ob-
servables are defined by

QIA) = 2kn /D dAAA, 4.3)

being perfectly differentiable iA even if the functiom\ is nonzero ordD. Recall that, any gauge
invariant object is an observable and hence its Poisson bracket withailes Gaw vanishes. The
PB’s of Q(A\)'s are easy to compute, and reg@(A), Q(\)} = 5% [50 A A dA showing that they
generate a U(1) Kac-Moody algebra @b [7]. It is important to notice that test functions with the
same boundary values, up to a constraint, define the same observable,

QA) —Q(N) = —G(A=N') (4.4)
The strategy for quantization is the following. We choose a function
AN’ﬁD((p):)\(r)eiNd) ) NEZ? )‘(O>:Oa A(R):lv (45)

and the polarization in whicld is multiplicative andA, derivative. As in the previous case,
where boundary terms were not considered, we observe that thste@functionf[A] = 219
satisfyingGpo Yo[Ay] = 0, wherea = X [, d?x (g1 d,gg*d,0) and

da = 4kn/D d?x{; (g 1ogwy) — 29 1590 wy } (4.6)
Calling Qn the quantum operator f@(/An) and applying on the functiogig[Ag] we get
k k
QuilAs] = 2w (R 00) [ dAs wolg]+ 5 | dbAn(R ) A olAy] (4.7)
Qv On WolAy] = %T/\N(Rv ¢0)/[;Dd¢A¢ Qm YolAyp]| + 4k7T/ng¢ AnAy Quio[Ag] (4.8)
ik
+ g [, 00N (R9)9pAwolAg

“4For other approaches to this problem see [8] and references therein.
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and we have that [7]
[Qn, Qm] = NKkdnim.0 (4.9)

is verified at quantum level.

5. Conclusions

As it was mentioned in the introduction, we found here a great opportunityply ¢he LQG
scheme, and the most pleasant fact is that due to the simplicity of the theergaarreally see
what is going on at each steplt is interesting how LQG’s approach fitted well in the proposal
given in [2] for the construction of a wave functional. So, what we hdmoee here is basically a
continuation of [2], not only finding such functional, but also defining ghgsical Hilbert space
and a compatible scalar product.

Concerning the boundary inclusion, our next step is the constructioneoHilbert space
spanned by the aforementioned states. Once this aim is achieved, we wificerpr analysis
to non-abelian groups in order to apply the method not only for non-abEliann-Simons theory
but for 3d gravity as well. Other types of topology may be also studied [9].
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