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Loop Quantization of Chern-Simons theory G. Luchini

1. Introduction

One approach to a quantum theory of gravitation is through the so called “loop quantiza-
tion” [1]. Despite general relativity, it is reasonable to expect that suchquantization method should
also work for theories sharing basic features of this first one, such asdiffeomorphism invariance
and being fully constrained. Here we show how one can apply this quantization scheme to Chern-
Simons theory, regardless its relation to gravity. A detailed discussion and references are given
at [3].

Notably we have here also the possibility to follow in great details the methods explained in
books about the subject, which makes this work also interesting from the pedagogical point of view.

We shall mainly treat here the case where the 2-dimensional space manifold isa cylinder or,
equivalently, the pierced real planeR2\{0}. We shall also briefly consider the case of a disk with
boundary.

2. Canonical treatment of Chern-Simons theory

The action reads [4]

S=−κ
∫

M

d3x εµνρ Tr

(

Aµ∂νAρ +
2
3

AµAνAρ

)

(2.1)

with A= AI
µτI dxµ (µ = 0,1,2) being the dynamical field; a Lie algebra valued connection 1-form.

The gauge groupG will be assumed to be compact and semi-simple.

General covariance is broken by the assumption thatM = Σ×R, i.e., by splitting spacetime
into space (Σ) and time, which leads us to

S=−κ
∫

R

∫

Σ
dt d2x εab Tr

(

ȦaAb+A0Fab
)

(2.2)

whereF I
ab = ∂aAI

b−∂bAI
a+ f I

JK AJ
aAK

b is the spatial restriction of the curvature (a,b. . .= 1,2).

The Hamiltonian1 and the symplectic structure after Dirac-Bergman’s algorithm then read

H = G(ε)≡
∫

Σ d2x ε I (x)GI (x)≈ 0 {AI
a(x),A

J
b(y)}=

1
κ εabδ IJδ 2(x−y) (2.3)

whereGI ≡−κ
2 εabF I

ab ≈ 0 is the Gauss constraint, whose algebra (gauge group algebra) is

{G(ε),G(ε ′)}= G(ε × ε ′) (ε × ε ′)′ ≡ f I
JK εJε ′K (2.4)

We see that the system is fully constrained, and the spatial componentsAI
1 andAI

2 form a pair of con-
jugate variables. Diffeomorphism invariance follows from gauge invariance. Thus, implementation
of Gauss constraint guarantees - in the classical regime - invariance under spatial diffeomorphism,
that can be seen2 after calculating the Lie derivative of the canonical variable along a spatial vector
ξ : Lξ Aa = ξ bFba+Da(ξ bAb)≈ Da(ξ bAb).

1It is the smeared Gauss constraint. Theε(x) is a test function.
2This is equal to a gauge transformation with parameterξ aAI

a.
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3. The Hilbert space

In order to get the quantum theory we need to construct the kinematical Hilbert spaceHkin
and then select the physical states by implementing the constraints.

We choose a specific topology for the space, asΣ ∼ R×S1, so the range of the coordinates
arez∈ R andθ ∈ [0,2π]. Then, canonical variables are defined as operators in the Schroedinger
picture, satisfying

[

ÂI
θ (x), Â

J
z(y)

]

=
i
κ

δ IJδ 2(x−y) (3.1)

and the states are described by the wave functionalsΨ[Aθ ] = 〈Aθ |Ψ〉. Field operators act on these
states as

〈Aθ |ÂI
θ (x)|Ψ〉= AI

θ (x)Ψ[Aθ ] 〈Aθ |ÂI
z(x)|Ψ〉= 1

iκ
δ

δAI
θ (x)

Ψ[Aθ ]. (3.2)

Using this representation, a particular solution of the Gauss constraintĜI Ψ[Aθ ] = 0 is given by [2]
Ψ◦[Aθ ] = e2π iα◦ with

α◦ =
κ
6π

∫

Σ̃
d3x

(

εµνρTr
(

g−1∂µg g−1∂νg g−1∂ρg
))

−
κ
2π

∫

Σ=∂ Σ̃
d2x Tr

(

Aθ g−1∂zg
)

whereg∈ G is defined in terms ofAθ by Aθ = g−1∂θ g. A general solution [2] is

Ψ[Aθ ] = Ψ◦[Aθ ]ψ inv[Aθ ]

where the functionalψ inv[Aθ ] is θ -gauge invariant,i.e., satisfies

i

(

∂
∂θ

δ
δAI

θ
+ f K

IJ AJ
θ

δ
δAK

θ

)

ψ inv[Aθ ] = 0. (3.3)

By θ -gauge transformations we mean

δAI
θ = Dθ ε I δAI

z = f I
JK AI

zεK . (3.4)

The Hilbert space needs a well-defined scalar product, compatible with Gauss constraint (so,
gauge invariant). We then writeΨ[Aθ ] = Ψ◦[Aθ ]ψ [Aθ ] and look forψ [Aθ ]. This will be done
in the spirit of LQG, by changing the focus from the connectionAθ to its holonomyh(γz,θ1,θ2) =

P exp
∫ θ2

θ1
dθ Aθ , restricted to paths with constantz, otherwiseAz would be involved, which is not

compatible with our choice of polarization for the wave functional.
The cylindrical space Cyl consists of functionals of the aforementioned form, withψ being

ψ [Aθ ] = ψΓ, f [Aθ ] = f
(

h
(

γz1,θ1,θ ′
1

)

, · · · ,h
(

γzk,θk,θ ′
k

)

, . . . ,h
(

γzN,θN,θ ′
N

))

whereΓ =
{

γzk,θk,θk′
,k= 1. . .N

}

is a graph: a finite set of paths. These cylindrical functions,
and therefore, our wave functional (apart from that phase factor)depend only on the values that
its argument takes on the graph. Finally, the wave functional is a function ofa finite number of
holonomies (elements of the gauge groupG), which leads us to define the scalar product in Cyl
using the invariant Haar measure3 dhk:

〈Γ, f |Γ, f ′〉=
∫ N

∏
k=1

dhk f (h1, . . . ,hN) f ′(h1, . . . ,hN) (3.5)

3More details and generalization (straightforward) to vectors associated todifferent graphs are found in [3]
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The basis of the kinematical Hilbert space is found with the use of the Peter-Weyl theorem. To every
pathγzk,θk,θk′

on the graphΓ we associate a spinjk representation ofG, and vectors associated to
different graphs are orthogonal.

ΨΓ, f [Aθ ] = Ψ◦[Aθ ] ∑
~j,~α,~β

cα1,...αN
β1...βN, j1,..., jN

Rj1β1
α1

(

h
(

γz1,θ1,θ ′
1

))

· · ·RjNβN
αN

(

h
(

γzN,θN,θ ′
N

))

(3.6)

The kinematical Hilbert space (non-separable) is then the direct sumHkin =
⊕

Γ HΓ, whereHΓ

is the separable Hilbert space associated with the graphΓ.

It’s possible to define the local operator associated to the holonomy:〈Aθ |ĥ[Aθ ,γ ]|Γ, f 〉 =
h[Aθ ,γ ]〈Aθ |Γ, f 〉. The RHS is an element of Cyl associated to a new graphΓ∪{γ} and a new
functionĥ[Aθ ,γ ] f .

We impose the constraint in the form of invariance under all finite gauge transformations. This
implies that the reduced functional must be functions of the trace of the holonomies along closed
paths (cycles, or Wilson loops)hz ≡ Tr(h(γz,θ ,θ)), which depends on thezcoordinate, but not on
θ . Thus, each cycle is characterized by its ‘height’, and the graphs are now setsC of cycles. This
defines the Hilbert spaceHGauss, whose basis is the orthonormal set of ‘spin network’ vectors
|C,J〉, given by

〈Aθ |C,J〉= Ψ◦[A◦]∏N
k=1 χ jk(hzk) with χ j(hz) = TrRj(hz) (3.7)

whereJ stands for( j1 . . . jN). These vectors are orthonormal, in the sense〈C,J|C′,J′〉= δC,C′δJ,J′ .
Now we considerS◦, the space of all finite linear combination of spin-networks, andHGaussis
the Cauchy completion of it. It is the direct sum over allC of H C

Gauss, the Hilbert space associate
to a graphC, which is separable. This is not the case forHGauss, since te graphs are indexed by
n-arrays of real numbers.

Since|C,J〉 depends on thez coordinate,HGaussis not diffeomorphism invariant. The gauge
transformation concerningz diffeomorphisms was not contemplated when we solved Gauss con-
straint, which must be corrected now. This is done with the use of the group averaging method,
based on the Gel’fand tripleS◦ ⊂ HGauss⊂ S′◦, beingS′◦ the dual of the spin-networks space. The
z-diffeomorphism invariant states are shown to be elements of this dual space constructed from
any spin-network state through the application of a functional ‘projector’PDiff : S◦ → S′◦ defined
by 〈PDiff Ψ,Ψ′〉 = ∑Ψ′′〈Ψ′′|Ψ′〉, ∀|Ψ′〉 ∈ S◦, and the sum is done over all vectors|Ψ′′〉 obtained
from |Ψ〉 by az-diffeomorphism. We conclude that the functionalsPDiff Ψ span the physical Hilbert
spaceHphys.

The vectors ofHphys only depend on the equivalence classes of spin-network states under
z-diffeomorphisms. In particular, a state defined as explained above from|C,J〉 does not depend
on the particular positionszk of the cycles, but only on the number of such cycles and on the spin
value associated with each of them. We have then a s-knot state|J〉 ≡ | j1, . . . , jN〉= PDiff |C,J〉. It
worth to mention that one must identify a graph with another, whose cycles (and therefore, spins)
are in the reversed order. This is in fact the reason why the second termappears in the following
formula for the scalar product of two s-knots:

〈J|J′〉= δNN′(δ j1 j ′1
. . .δ jN j ′

N′
+δ jN j ′1

. . .δ j1 j ′
N′
).
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The s-knots form an orthonormal basis for the physical Hilbert space;they are invariant under
all diffeomorphisms, and consist of a solution of the Gauss constraint. Once the set of s-knots is
countable, the physical Hilbert space is separable.

4. Including boundaries

In order to include boundary contributions to this formalism we consider theU(1) Chern-
Simons theory on a three-dimensional manifold with the topologyM = D×R, with D being the
disk with boundary∂D, with coordinates 06 r 6 R, 06 ϕ 6 2π. The action is given by

S =
κ
4π

∫

M

(A∧dA) (4.1)

and the canonical quantization of this model was considered in [5, 6]. Following their construction
4 the Gauss law constraint is smeared with the test functionΛ0

G(Λ0) =
k

2π

∫

D
Λ0∧dA (4.2)

and generates gauge transformations if we consider the boundary condition Λ0 | ∂D = 0. The ob-
servables are defined by

Q(Λ) =
k

2π

∫

D
dΛ∧A, (4.3)

being perfectly differentiable inA even if the functionΛ is nonzero on∂D. Recall that, any gauge
invariant object is an observable and hence its Poisson bracket with the Gauss law vanishes. The
PB’s of Q(Λ)′s are easy to compute, and read{Q(Λ),Q(Λ′)} = κ

2π
∫

∂D Λ∧dΛ′ showing that they
generate a U(1) Kac-Moody algebra on∂D [7]. It is important to notice that test functions with the
same boundary values, up to a constraint, define the same observable,

Q(Λ)−Q(Λ′) =−G(Λ−Λ′) (4.4)

The strategy for quantization is the following. We choose a function

ΛN | ∂D(ϕ) = λ (r)eiNϕ , N ∈ Z , λ (0) = 0 , λ (R) = 1, (4.5)

and the polarization in whichAϕ is multiplicative andAr derivative. As in the previous case,
where boundary terms were not considered, we observe that there exists a functionψ0[Aϕ ] = e2π iα

satisfyingĜΛ0 ψ0[Aϕ ] = 0, whereα = k
4π

∫

D d2x (g−1 ∂rgg−1 ∂ϕg) and

δα =
k

4π

∫

D
d2x{∂r (g

−1δgwϕ)−2g−1δg∂r wϕ} (4.6)

CallingQN the quantum operator forQ(ΛN) and applying on the functionψ0[Aϕ ] we get

QN ψ0[Aϕ ] =
k

4π
ΛN (R,ϕ0)

∫

∂D
dϕ Aϕ ψ0[Aϕ ]+

k
4π

∫

∂D
dϕ ΛN (R,ϕ)Aϕ ψ0[Aϕ ] (4.7)

QM QN ψ0[Aϕ ] =
k

4π
ΛN(R,ϕ0)

∫

∂D
dϕ Aϕ QM ψ0[Aϕ ]+

k
4π

∫

∂D
dϕ ΛN Aϕ QMψ0[Aϕ ] (4.8)

+
ik
8π

∫

∂D
dϕ ΛN (R,ϕ)∂ϕΛMψ0[Aϕ ]

4For other approaches to this problem see [8] and references therein.
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and we have that [7]
[QN,QM] = N kδN+M,0 (4.9)

is verified at quantum level.

5. Conclusions

As it was mentioned in the introduction, we found here a great opportunity to apply the LQG
scheme, and the most pleasant fact is that due to the simplicity of the theory, one can really see
what is going on at each step5. It is interesting how LQG’s approach fitted well in the proposal
given in [2] for the construction of a wave functional. So, what we havedone here is basically a
continuation of [2], not only finding such functional, but also defining thephysical Hilbert space
and a compatible scalar product.

Concerning the boundary inclusion, our next step is the construction of the Hilbert space
spanned by the aforementioned states. Once this aim is achieved, we will expand our analysis
to non-abelian groups in order to apply the method not only for non-abelianChern-Simons theory
but for 3d gravity as well. Other types of topology may be also studied [9].
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