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Abstract

Considering the existence of the large extra dimensions, creation of

the micro black holes during the high energy collisions is unavoidable.

Having formed in these kind of process, these tiny objects won’t have

chance to live for long and they evaporate instantly after formation.

Different aspects of evaporation of micro black holes have been dis-

cussed in this dissertation.

In this dissertation we reviewed the importance of the grey-body fac-

tors as well as the existing techniques for their derivation. We also

investigated an alternative way for calculation of the grey-body fac-

tors which simplifies the wave equations drastically and gives us the

opportunity to have analytical form of these factors even in the high

energy ranges. We used the large-D limit of general relativity to cal-

culate the graviton grey body factors for a non-rotating micro black

hole and we found exactly the same analytical expression for tensor

and vector type gravitational perturbations as it was in the litera-

ture. We also investigated the properties of possible signals of micro

black hole decay that might be seen in the detectors using most recent

Monte-Carlo micro black hole event generators.

We investigated the wave equations of a perturbed dynamical space

time, out-going Vaidya space-time with linear mass function, in de-

tails. Using both numerical and analytical techniques we calculated

the quasi-normal modes of an evaporating black hole in the out-going

Vaidya background.

Keywords: micro black holes, evaporation, gravitons, grey-body fac-

tors, large dimensions, quasi-normal modes,Vaidya metric





Povzetek

Nastanek mikroskopskih črnih lukenj pri visokoenergijskih trkih je,

ob upoštevanju velikih dodatnih dimenzij, neizogiben. Tako nastale

mikroskopske črne luknje so kratkožive in izhlapijo takoj po svojem

nastanku. V tej disertaciji smo obravnavali različne vidike njihovega

izhlapevanja.

V sklopu disertacije smo pregledali pomen faktorjev sivih teles, kot

tudi že obstoječe načine njihove izpeljave. Pri tem smo raziskali al-

ternativni način za njihov izračun, kar drastično poenostavi valovne

enačbe in omogoča analitično izpeljavo faktorjev pri visokih energi-

jah. Pri izračunu faktorjev sivih teles za primer nevrteče mikroskopske

črne luknje smo uporabili večdimenzijsko limito splošne relativnosti,

tako imenovano veliko-D limito, ter pri tem našli povsem enake anal-

itične izraze za tenzorsko in vektorsko gravitacijsko motnjo, kot ju

zasledimo v literaturi. Prav tako smo raziskali lastnosti morebitnih

detektorskih signalov razpada mikroskopskih črnih lukenj z uporabo

najsodobneǰsih Monte-Carlo generatorjev dogodkov črnih lukenj.

Podrobno smo raziskali valovne enačbe dinamičnega perturbiranega

prostor-časa izhodni Vaidya prostor-čas z linearno masno funkcijo.

Z uborabo numeričnih in analitičnih metod smo izračunali kvazi-

normalne načine izhlapevanja črnih lukenj v izhodnem Vaidya ozadju.

Ključne besede: mikroskopske črne luknje, izhlapevanje, gravitoni,

faktor sivega telesa, visokodimenzionalni prostori, kvazinormalna stanja,

Vaidya metrika
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1

Introduction

1.1 Motivations for physics beyond the Stan-

dard Model

The effort of thousands of physicists over time has resulted in a remarkable insight

into the fundamental structure of matter. The Standard Model (SM) of particle

physics explains how the building blocks of matter interact. All interactions

are governed by four force; the electromagnetic, strong, weak and gravitational

forces. The SM includes all of these forces and all their carrier particles except

gravity. Gravity, the most familiar force in our everyday lives, is not part of the

SM because to describe the interactions between particles at very high energies

of the order of Planck mass, MPl∼ 1016 TeV, a theory of quantum gravity is

required. While the SM is an effective field theory that is valid up to some

certain energy scale, MEW∼ 1 TeV. There are also some other issues like dark

matter and dark energy, matter-antimatter asymmetry, neutrino masses and the

quantum instability of the Higgs mass that cannot be explained in the context of

the SM. The study of physics Beyond the Standard Model (BSM) is motivated

by the desire to have a more complete fundamental model.

The main theme of this dissertation is the study of the final stages of tiny black

holes evaporation. These tiny black holes are hypothetical black holes that can

be classified in two different families. The astrophysical black holes with masses

much smaller than the solar mass belong to the first family and micro black holes

1



1. INTRODUCTION

(µBH) can make the second family. Regarding the µBHs, our will be on the

study of the grey-body factors. Moreover by study the quasi-normal modes of an

evaporating black hole we will provide a strong reason for the validity of a new

model for the end point of black hole evaporation. This latter scenario can be

applicable to any type of black hole including the tiny astrophysical black holes

that might be evaporating in our era.

1.2 General relativity and Einstein equations

In general relativity, in contrary with Newtonian mechanics, space and time are

not absolute concepts. In a given system, space-time is related to the matter

distribution on that system. In other word details of the space-time that is en-

coded in the metric are determined by this matter content. The relation between

the matter content and the geometry of the space-time is given by the Einstein

equations,

Rµν −
1

2
Rgµν = 8πGTµν . (1.1)

where Rµν is Ricci tensor and R is Ricci scalar. The geometry of the space-time

is described by the metric gµν , all the information related to the geometry and

casual structure of the space-time is encoded in it. Tµν is the energy momentum

tensor that describes the amount of mass-energy at a given event. Finally, G

is Newton’s constant in four dimensions and it determines the strength of the

gravitational coupling.

It is possible to define a surface gravity, κ, for black holes that are the solutions of

(1.1). Recalling that the event horizon is a Killing horizon, which means the null

horizon generators are orbits of a Killing field, χa, then κ can be defined as the

magnitude of the gradient of the norm of the horizon generating χa, evaluated at

the horizon

κ2 = −(∇a|χ|)(∇a|χ|). (1.2)

Equivalently one can say that the surface gravity is the magnitude of the ac-

celeration of a stationary particle with zero angular momentum just outside the

2



1.2 General relativity and Einstein equations

horizon. This is the same as the force per unit mass that must be applied at infin-

ity in order to hold the particle on its path. For a given energy-momentum tensor

one can use equation (1.1) to find the solutions for the corresponding metric.

1.2.1 Black holes in 4 dimensions

In this section we discuss three different solutions to the Einstein equations upon

which the major part of discussion of black hole physics fundamentally depends.

These solutions are the vacuum solutions to the Einstein equations. Study of these

solutions may give us a general overview of black hole physics. The First solution

is vacuum solution for Tµν = 0 which is called Schwarzschild solution. Next

solution is when the source of radiation, energy-momentum, is electromagnetic

source. This solution is called Reissner-Nordstrom solution. The last one that

we discus here is the Kerr vacuum solution, which models space-time outside a

rotating body such as a star or a black hole.

1.2.1.1 Schwarzschild solution

A few months after publishing the Einstein equations in 1916, Karl Schwarzschild

surprised the physics community by publishing the first non-trivial exact solution

of these equations. This solution describes the gravitational field around a charge-

less, static spherically symmetric body with mass M in the Vacuum. Since Tµν = 0

Rµν −
1

2
Rgµν = 0, (1.3)

solution to this equation is the Schwarzschild metric

ds2 = −(1− rs
r

)dt2 + (1− rs
r

)−1dr2 + r2dΩ2 (1.4)

where dΩ2 = dθ2 + sin2 θdϕ2 is the line element on the 2-sphere and rs is the

Schwarzschild radius and for G = c = 1 this radius is equal to 2M . This solution

is also called Schwarzschild black hole.

By calculating an invariant factor like Kretschmann scalar from Riemann curva-

ture tensor, Rµνρδ

Ks = RµνρδR
µνρδ =

12r2
s

r6
=

48M2

r6
(1.5)
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1. INTRODUCTION

One can see that the physical singularity is located at r = 0, where the curvature

of the space-time becomes infinite; while at r = rs, (1.5) is well behaved [8].

For r →∞ (1.4) becomes like a flat space-time (Minkowski) solution.

1.2.1.2 Reissner-Nordstrom solution

Reissner-Nordstrom solution is a solution of the Einstein equations with the

source that is the stress energy tensor, T emµν , for the electric and magnetic field

from a point source.

Rµν −
1

2
Rgµν = 8πGT emµν . (1.6)

with the solution

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2, f(r) = 1− 2M

r
+
q2

r2
(1.7)

where q is the total electric and magnetic charge. This solution describes the

geometry of the space-time outside of a spherically symmetric charged body with

mass M.

Function f(r) in (1.7) has two roots

r± = M ±
√
M2 − q2 (1.8)

Considering (1.8) there are three different possibilities:

• If M2 − q2 < 0, f(r) has no real root. There is a curvature singularity at

r = 0 that is time-like and it is not protected by an event horizon; these kind

of singularities are called “naked singularity”. This situation may be un-

physical due to the conjecture called Cosmic Censorship Conjecture [9]. In

terms of this conjecture collapse of physically realistic matter configuration

will not form a naked singularity.

• If M2 − q2 = 0, f(r) has a double zero at r+ = r− = M . This solution is

also known as extreme Reissner-Nordstrom solution and it may look also

unphysical because for mass M, it contains maximum amount of charge.

Though this case is allowed by the Cosmic Censorship Conjecture, one

cannot cross the same horizon in two different directions.

4



1.2 General relativity and Einstein equations

• If M2 − q2 > 0 f(r) has a two real zero. In this case we have two horizons,

inner and outer horizon, and outer horizon (r+ > M) is the event horizon

which prevents anything to escape from the inner space.

1.2.1.3 Kerr solution

We know that astrophysical stars as well as young black holes rotate, thus it is

interesting to study an axially symmetric object in the empty space-time, Tµν =

0, with mass M rotating with angular momentum J . In 1963 Kerr suggested

the Kerr metric which is an exact solution to Einstein equations and describes

the geometry of the space-time around a rotating uncharged axially symmetric

isolated object.

ds2 = −ρ
2∆

Σ
dt2 +

Σ

ρ2
sin2 θ(dφ− Ωdt)2 +

ρ2

∆
dr2 + ρ2dθ2, (1.9)

where

∆ = r2 − 2Mr + a2

ρ2 = r2 + a2 cos2 θ

Σ = (r2 + a2)2 −∆a2 sin2 θ

(1.10)

with Ω = 2Mar
Σ

that can be interpreted as angular velocity and a = J/M as

oblateness. With the condition |a| < M to avoid naked singularities, by calcu-

lating Kretschmann scalar one can see that there is a curvature singularity at

(r = 0; θ = π/2) [10]. This metric is independent of the angle φ and time t

which means this is an stationary axially symmetric solution. The presence of off

diagonal terms

gtφ = gφt =
−2Mra sin2 θ

ρ2
(1.11)

tells us that there is inertial frame dragging. The frame dragging means that

any object (or light) that comes close enough to the black hole will participate in

its rotation. The region that this co-rotating effect for radially in-falling objects

holds is called ergoregion whose boundary being the so called ergosphere. The

speed of the dragging space-time along the direction of black hole rotation may

vary with respect to its distance from event horizon. To find the position of this

5
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surface for a stationary observer one needs to calculate where the gtt of the metric

is zero

r2 − 2Mr + a2 cos2 θ = 0. (1.12)

Solving the above equation for r leads to

re(θ) = M +
√
M2 − a2 cos2 θ, (1.13)

and regions with gtt > 0 and gtt < 0 mark the regions inside and outside of this

ergosphere respectively. Any object that comes to this sphere and splits to two

parts, may have one part falling into the black hole and the other gaining energy

at the expenses of the spin of the black hole. As this object is still outside of the

event horizon it may be able to escape and carries the energy away. This process

is called Penrose process after Roger Penrose suggested it in 1969. This process

can simply be explained using figure(1.1). If a particle falls into the ergosphere

gtt > 0

gtt < 0

E0

E1

E2

Figure 1.1: The Penrose process

it may split to two particles because of the rotational energy in this region. One

of these particles may fall into horizon and the other one travels to infinity. By

Momentum conservation

p0 = p1 + p2, (1.14)
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1.2 General relativity and Einstein equations

where p is the 4-momentum of the particle and by energy conservation at the

point of decay

E0 = E1 + E2. (1.15)

By considering the Killing vector ξt = (1, 0, 0, 0) the energy will be E = p.ξt. If

particle 1 wouldn’t fall into event horizon and instead was traveling to infinity

then E1 had to be positive. However inside the ergosphere (ξt.ξt = gtt > 0),

which means ξt is a space-like vector within the ergosphere. This means that

−E1 is a component of spatial momentum inside ergosphere, so it can be positive

or negative. If the decay trajectories are arranged such that E1 < 0 then from

(1.15) one expect that E2 > E0, implementing that the particle that crosses the

event horizon and falls into black hole adds a negative angular momentum. As

a result angular momentum and total energy of the black hole reduces in order

to balance the angular momentum and energy that carries away by the particle

that escape black hole.

The horizons of the Kerr black hole can be calculated by taking ∆ → 0 which

gives us

r± = M ±
√
M2 − a2, (1.16)

where r− marks the Cauchy horizon and r+ is the event horizon and it is also

the surface of the constant t. Comparing (1.13) and r+ in (1.16) shows that

for non-zero a the surface re(θ) lies outside the event horizon r+, except at the

poles, where the two surfaces are coincident and when a = 0 both r+ and re(θ)

define the same surface. The Penrose process is reversible if the horizon area

doesn’t change. This condition can be reached if the incoming particles enters

to the black hole on a trajectory tangent to the one of the null generators of the

horizon. This behavior of the horizon area which governs on efficiency of energy

extraction from black hole is similar to the relation between area and entropy and

this analogy was also motivation for study of the black hole thermodynamics.

Since astrophysical black holes are electrically neutral, Kerr’s solution can be

considered the most general description of astrophysical black holes.
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1.2.2 Results from the golden age of general relativity

The next decade after Kerr’s discovery was a golden age for general relativity and

black hole physics. First the uniqueness theorem [11] was proved by Israel, then

in 1973 the four laws of black hole mechanics were proved by Bardeen, Carter

and Hawking [12]. Soon after Bekenstein suggested that black holes have entropy

[13] and finally in 1975 Hawking showed that black holes evaporate [14]. In the

following sections we will explain more about these concepts.

1.2.2.1 The uniqueness theorem

The first uniqueness theorem that was announced by Israel [15] was only the be-

ginning of an approach that continues today. The main motivation behind the

uniqueness theorem is answering to the question: how many different types of

black holes do exist? Uniqueness theorem for four dimensional black holes guar-

antees that , the static electro-vacuum, asymptotically flat, black hole solutions to

the Einstein equations are presented by the Reissner-Nordstrom metric which can

be parametrized by its mass and electric and magnetic charges, whereas allowing

for angular momentum the stationary (non-static) and axisymmetric solutions

are given by the Kerr-Newman metric. Apart from these solution a number of

black hole uniqueness theorems have been proved under various reasonably well

motivated assumptions not only for 4 dimensional black holes but also for higher

dimensional ones, although one cannot clearly answer to the former question yet.

1.2.2.2 The laws of black hole mechanics

Laws of black hole mechanics have brought out connections between classical

general relativity, quantum physics. The key idea in these laws is that the area

A of event horizon and the surface gravity κ of the black hole, have analogy

with entropy and temperature respectively. Therefore the four laws of black hole

mechanics are similar to four laws of thermodynamics [12].

Zeroth law As we mentioned before, surface gravity κ is analogous to temper-

ature, and for a stationary black hole, κ is constant over the event horizon.
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1.2 General relativity and Einstein equations

First law The first law in thermodynamics is about conservation of energy and

the analogous law in black hole mechanics can be stated by

δM =
κ

8πG
δA+ ΩδJ (1.17)

where M is mass of black hole, Ω is the angular velocity, J is the angular

momentum. Eq. (1.17) shows that the change in the black hole parameter

like angular momentum or horizon area cause the change in the energy

(mass) of the back hole.

Second law or the area theorem states that the area A of event horizon of each

individual black hole should not decrease with time

δA ≥ 0 (1.18)

(1.18) reminds us the corresponding law in thermodynamics which states

that total entropy does not decrease.

Third law It is impossible, by any procedure no matter how idealized, to reduce

κ to zero. In other word it is impossible to form a black hole with zero

surface gravity.

It is important to say that at the classical level temperature and entropy are both

zero. With considering the quantum mechanical effects, one finds that at some

special temperature black holes have thermal radiation.

1.2.2.3 Black hole entropy

The fact that both black hole area and entropy tend to increase irreversibly

showed that there are similarities between thermodynamics and black hole physics

[13]. Black hole increases its horizon surface area when it makes a transition

from one equilibrium state to a nearby one and similarly any changes in a closed

thermodynamical system is also in the direction of increasing entropy. From

(1.17) one can find that the black hole entropy is Sbh = 1
4G
A.

According to classical general relativity when matter drops into a black hole and

vanishes from views into the space time singularity, the total entropy of universe

will decrease as it is not possible to compensate these lost of entropy and this is
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violation of the second law of thermodynamics. To solve this problem, Bekenstein

who was inspired by the Hawking area theorem, proposed that black holes have

intrinsic entropy. If the black hole had an associated entropy Sbh and the mass

and energy of the remaining Universe had an entropy Sm, then the total entropy

would be,

δ(Sbh + Sm) ≥ 0 (1.19)

Expression (1.19) is non-decreasing, thus, avoiding the violation of the second

law of thermodynamics.

Microscopic description of entropy has been found for some special classes of black

holes like extremal, stationary black hole in context of string theory [16].

1.2.2.4 Hawking discovery

We mentioned earlier how the energy can be extracted from the rotating black

hole by Penrose process. This process together with finding the analogy between

black hole and thermodynamics suggest that if a black hole behaves like a ther-

modynamical system, one would expect it to also radiate were motivations for

reconsidering the classical definitions were implementing that nothing can escape

from a black hole.

In 1975 Stephen Hawking published a paper in which he described his semiclas-

sical (studying quantum field in a classical black hole background) calculations

that showed black holes emit particles with a characteristic black body spectrum

Γ(ω) =
1

eβω − 1

d3k

2π3
, (1.20)

where β = 1
TH

. Therefore black holes were shown to radiate and the emerging

radiation was labeled as “Hawking radiation”. From (1.20) one can obtain the

temperature known as “Hawking temperature” as TH = 1
β
, and relates to the

surface gravity, κ

TH =
κ

2π
(1.21)

Associating the temperature to the black holes was a strong proof that black

holes are thermal systems. The discovery of Hawking radiation phenomenon

reveals a remarkable connection between thermodynamics, quantum mechanics,
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1.2 General relativity and Einstein equations

and gravity. The fact that black holes have non-vanishing entropy, tells us that

they have microscopic degrees of freedom and to study them one needs to consider

the quantum gravitational effects.

1.2.2.5 Black hole evaporation

In a simple word one can say that when a pair of virtual particle is around the

event horizon, the negative energy partner might travel cross singularity before

being able to recombine and leaving its partner to escape as a real radiation that

can be observed at infinity. When these particles fall into the singularity, they

decrease the energy and mass of the black hole and make it smaller and smaller.

This is the phenomenon known as black hole evaporation.

Hawking’s discovery demonstrated that black holes behave like blackbody emit-

ters, possessing a temperature and emitting particles from the event horizon. This

was the direct consequence of the gravitational field at the event horizon which

forms a surface of infinite redshift in one side while in the far past, the space-

time is nearly Minkowski. Hawking assumed that the quantum state is empty of

in-particles near past null infinity. After a star collapses and forms a black hole,

near future null infinity the vacuum state of in-particles contains a thermal flux

of out particles. This means that any outgoing wave with finite frequency that

reaches the observer at infinity corresponds to an exponentially high frequency

mode near the horizon as he took the early time positive frequency modes to be

the solutions of the wave equation that behave exponentially near the past null

infinity.

It is worthwhile to review Hawking’s original calculations. For the mathematical

details we refer to Appendix (A).

If we take φin be a complete basis of the solutions to the scalar wave equation

gab = ∇a∇bψ = 0 (1.22)

where gab is the space-time metric which for Minkowski space-time is gab = ηab

and φins are the positive frequency modes that near past null infinity behave like

φin ∼ e−iωv, (1.23)
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where v is the ingoing null coordinate.The quantum field ψ can be expanded in

the basis of φin, φ
∗
in in terms of creation, a+

ω , and annihilation, aω, operators as

ψ =

∫
dω(aωφin + a+

ωφ
∗
in) (1.24)

where aω satisfies

aω|0 >in= 0 (1.25)

and |0 >in is the lowest energy state. For the second basis solutions φout, one can

take the boundary conditions such that on future null infinity wave is positive

frequency

φout ∼ e−iωu (1.26)

where u is the outgoing null coordinate. The field ψ has an expansion on this

basis as well

ψ =

∫
dω(bωφout + b+

ωφ
∗
out) (1.27)

where

bω|0 >out= 0 (1.28)

and |0 >out is the second vacuum state. Hawking studied a wave propagat-

ing backwards in time in the collapsing star space-time, means considering this

boundary condition one should find out what will be the behavior of the scalar

field on the past null infinity. Then ignoring the back reaction effects one relates

the φin and φout by a reparametrization

φin(v) = φout(u(v)) (1.29)

The (1.26) propagates along a path from future null infinity along u and passes

close to black hole horizon and going through the collapsing star, finally propa-

gates out to past null infinity along a geodesic v. Then u takes the form

u(v) =
−1

κ
ln(

v0 − v
C2

) (1.30)

where C is a constant and κ is the surface gravity. With (1.30) wave on past null

infinity is

φout ∼ e
iω
κ

ln(
v0−v
C2 ), for v < v0, (1.31)
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1.3 A motivation for the presence of large extra dimensions

while for v > v0 the wave vanishes. Therefore the Bogoliubov coefficients which

in terms of the inner product of basis functions are

αωω′ = (φoutω , φinω′ ), βωω′ = −(φoutω , φ
∗
inω′

) (1.32)

can be written as

αωω′ =
(iω′)(−iω/κ)

iπ
√
ωω′

Γ(1 + i
ω

κ
) (1.33)

βωω′ = −iαω,−ω′ (1.34)

Using (1.34) the spectrum of produced particles is1∫
dω′|βωω′|2, (1.35)

and this integral will result in (1.20). One should note that at very large values

of ω′ this integral is divergent [14]. But using the normalized wave packets one

can find a finite number of particles produced in a given frequency per unit time.

1.3 A motivation for the presence of large extra

dimensions

One of the open questions of SM physics is related to the hierarchy of the scales:

the fact that the electroweak scale is much lower than the Planck scale. More

technically, one loop corrections to the Higgs mass are quadratically divergent

and to regulate the divergence a cut off (Λ) must be introduced in the loop mo-

mentum integral and in the SM a natural value for Λ would be the Planck mass

implying that the bare Higgs mass should also be of this order. However, after

the discovery of the Higgs boson we know that the Higgs mass is around 125

GeV and this either demands extreme fine tuning of the bare parameters of the

Lagrangian to give loop cancelation or a cut off less than 1TeV.

One way to resolve this problem is by considering the presence of the additional

symmetries like conformal symmetry or supersymmetry. The other solution has

been suggested by introducing a brane world model (motivated by string theory)

1For more details see (A).
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with large, flat, extra dimensions that can result in low scale gravity.

The fundamental objects in string theory are vibrating strings that are living in

more than three space-like dimension that we experience everyday. SM interac-

tions are like open strings which start and end on a brane but gravitons that are

considered as closed strings can propagate in all the spatial dimensions. In the

brane world models our Universe is considered as a slice lying inside an extra

dimensional space-time that is called bulk. One of the key features of this model

is that the SM particles and forces are confined to live just on the brane however

gravitational degrees of freedom can travel into the bulk. This means that gravity

can see the higher dimensions and the reason why it looks like so much weaker

than any other forces is because it gets diluted by traveling to extra dimensions.

1.3.1 Extra dimensional model: ADD

One of the models that may provide a resolution of the hierarchy problem is the

“large extra dimensions” model that was introduced by Arkani, Dimopoulos and

Dvali (ADD model) in 1998 [17]. In this model all the SM particles are confined to

a 3-dimensional brane that is located in a higher dimensional bulk. The graviton

can propagate in the compactified d-extra spatial dimensions through the bulk.

The 4-dimensional Planck scale and the 4 + d-dimensional gravity scale MD are

related via

M2
Pl = VdM

2+d
D , (1.36)

where Vd is the volume of the compactified dimensions. The ADD model as-

sumes that MD is of the order of a few TeV so that the hierarchy between MD

(the fundamental gravity scale) and MEW is due to the large volume of the higher

dimensional space. Although in this model the electroweak scale is the only

fundamental energy scale, LHC results from the first run showed that this funda-

mental scale is larger than 1 TeV [18] and is at least around 3 TeV and increases

as the number of extra dimensions increase.
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1.3 A motivation for the presence of large extra dimensions

1.3.2 Trans Planckian energy domain

If one considersMD as the fundamental scale of gravity, depending on the center of

mass energy of the collision,
√
s, one can have black hole production in elementary

particles collisions. We may define three different energy domains; the Planck

domain (
√
s ∼ MD), trans-Planckian domain (

√
s � MD) and sub-Planckian

domain (
√
s � MD). This gives us the opportunity to study the formation

and evaporation of the micro black holes that may form during the high energy

processes in which the center of mass energy of the colliding particles is much

higher than the higher dimensional Planck scale. So in this sense one can say

that trans Planckian energy domain may be accessible in man made colliders

like LHC or free colliders where the high energy cosmic rays (UHCRs) hit the

Earth’s atmosphere. Thus if the Planck scale is in the TeV range µBHs might

be created at the Large Hadron Collider (LHC) [19] or by the collision of ultra

high energy cosmic rays with the Earth’s atmosphere [20]. When these micro

black holes evaporate, they may reach the Planck domain at the end stage of

their evaporation. The Planck domain is the most unknown energy domain and

the knowledge of quantum gravity is essential to study it. On the contrary, it

is possible to apply perturbative quantum field theory and Einstein gravity for

trans-Planckian domain. One can investigate this domain using the semiclassical

approximations where the knowledge of quantum gravity in not required.

1.3.2.1 Micro black hole formation

One way to reveal extra dimensions would be through the production of micro-

scopic black holes (µBH). If the centre-of-mass energy of two colliding particles

is higher than the fundamental Planck scale, and their impact parameter b is less

than the Schwarzschild radius RS, in terms of the hoop conjecture a black hole

should be produced. The number of black hole signals that might be produced

at LHC can be calculated using LHC luminosity, LLHC , and production cross

section,σ(pp→ BH +X) , and the branching ratio of the decaying black hole to

the signal, Br(BH→ signal)

NBH signal = σ(pp→ BH +X)× LLHC ×Br(BH → signal) (1.37)
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where the production cross section in the proton-proton collisions can be calcu-

lated by integrating over the parton distribution functions (PDF), fi(x, ŝ), and

parton level cross section, σ̂ij→BH, which is a geometrical cross section

σ(pp→ BH +X) =

(∫ 1

M2
D/s

du

∫ 1

u

dv

v

∑
ij

fi(u, ŝ)fj(
u

v
, ŝ)σ̂ij→BH

)
, (1.38)

the sum runs on i, j = (q, q̄, g), where q = (u, d, s, c, b) are the partons in proton.

The partonic level cross-section

σ̂ij→BH = Fπrs(
√
ŝ)2 (1.39)

contains a factor, F, which is called form factor. All the information related

energy loss, angular momentum, charge and all other dynamical modification

should be considered to calculate this factor.

1.3.2.2 Micro black hole evaporation

The µBH lifetime is very short (for instance, in the ADD model with fundamental

Plank scale of order of few TeV the life time is of the order of 10−26 s) and its

temperature (typically about 100 GeV),

TH ∼
MD(D − 3)

4π

(
M

MD

)−1/D−3

, (1.40)

is much lower than that of a black hole with the same mass in a four-dimensional

space. Nevertheless, if they do appear in collisions created by the LHC or UHE-

CRs, they will disintegrate rapidly. They would decay into SM or supersymmetric

particles, creating events that have a high multiplicity, a large transverse energy,

a democratic coupling to all particles and a rapid increase in the production cross-

section with energy. The detection of these events would depend on the number

of extra dimensions, the mass of the black hole, the size of the extra dimensions

and the energy at which the µBH is produced. To distinguish the events that

come from µBH decays one needs to simulate all the processes of µBH formation

and evaporation. These simulations must be done according to the existing µBH

models. However, the existing theoretical models fail to completely explain every

aspect of the µBH formation and evaporation processes.
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The theoretical model for black-hole evaporation essentially assumes that the

Hawking formula for black-hole radiation is valid all the way up to the point at

which its mass reaches the Planck mass. This is justified by the fact that the

temperature is not very high and the evaporation proceeds slowly (adiabatically)

up to this point. The Hawking radiation is modified by grey-body factors which

determine how much of the radiation outgoing at the horizon can penetrate the

potential barrier which surrounds the black-hole. These factors can be calculated

from the absorption cross section of the waves, that scatter off the black hole.

1.3.2.3 Superradiance

The absorption cross section for an incident wave can be calculated by solving

the relevant wave equation with appropriate boundary conditions corresponding

to an incident wave of amplitude I from spatial infinity scattering to a reflected

wave of amplitude R and a transmitted wave of amplitude T at the horizon.

If the reflection coefficient is greater than the amplitude of the incident wave,

|R|2 > |I|2, this implies that the energy incident on the black hole can be amplified

[21] and this amplification is called super-radiance.

For a charged static black holes the condition that may result in the super-

radiance is [22]

ω − qQ/r+ < 0, (1.41)

where ω and q are respectively the frequency and the charge of the wave and

Q is the black hole charge. The condition for superradiance amplification from

rotating black holes is

ω −mΩH < 0, (1.42)

where m is the azimuthal quantum number and ΩH is the angular velocity. This

simply means any wave that satisfies (1.42) can extract energy from the black

hole horizon. In the low-frequency regime, condition (1.42) is valid for any field’s

spin s with ` � 2s2, and the maximum of the amplification occurs for modes

with angular momentum quantum number ` equal to m.
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1.4 Structure of this thesis

In this thesis we will concentrate on different aspects of black hole evaporation.

We start with reviewing Hawking radiation and grey-body factors in the chapter

2 and at the end of the chapter we will present the results of our analysis using

the most recent micro black hole event generators and finally we investigate how

important is to have the exact form of the grey-body factors as the input of the

black hole event generators.

In the chapter 3 we explain the quasi-normal modes and their importance in

different sectors of astrophysics. This chapter will be an introduction for our

final work which is the calculation of the quasi normal mode of out-going Vaidya

space-time at the end stage of the black hole evaporation.

In the chapter 4 we review some of the interesting features of the large-D limit

of general relativity and in the next chapter we will use this large-D method to

calculate the graviton grey-body factors of a non-rotating black hole in order to

check if this method can give us the same result as the ones that already exists

in the literature.

In the chapter 6 we will explain the out-going Vaidya space-time and after calcu-

lating the quasi-normal like modes of a special class of this space-time we present

our results. In chapter 7, the last chapter, we discuses about our results.
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2

Hawking radiation and grey body

factors

Hawking radiation is a thermal radiation that shows black holes are not just

perfect absorbers but they can also emit particles. The temperature that is as-

sociated to this radiation is proportional to the surface gravity. For instance

consider the Schwarzschild black hole space-time, this black hole has a negative

specific heat which means that by emitting particles the temperature increases,

as the surface gravity ∼ 1
M

, and the black hole gets hotter and hotter until finally

it explodes/vanishes.

The Hawking radiation is a semi-classical radiation which by semi-classical we

mean study of quantum fields in a classical space-time. Although Hawking’s

original derivation is completely independent of the Einstein equation and only

had been performed for the scalar fields, it is possible to perform the calculation

for all fields and also for higher-dimensional black holes. We already explained

Hawking’s original derivation in (1.2.2.4) and we introduced the classical black

body spectrum (1.20). Hawking in his calculations never considered the effect of

any gravitational potential that arises from the interaction of the considered fields

with the space-time geometry. Effect of this interactions are not negligible and

considering this effect will modify the classical black body spectrum to a more

realistic one and the modification factor is called the ”grey-body factor”. In spite

of the complication and difficulties of doing these kind of calculations grey-body

factors have been calculated for almost all the degrees of freedom.
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2. HAWKING RADIATION AND GREY BODY FACTORS

One of the recent motivations for calculating these factors comes from the possi-

bility of detection of micro black holes that may be produced in the high energy

process at LHC or by the ultra high energy cosmic rays. If these tiny black holes

can be produced, they cannot live for a long time and they evaporate almost

instantly after production. The spectrum that one may expect to see in detectors

can be predicted by calculating the grey-body factors and subsequently calcu-

lating the energy emission rate and the fluxes using these factors. Thus, having

this information, one can carry out a detailed experimental study of black hole

evaporation and detecting those objects can be possible.

2.1 Decay process

If the theory of large extra dimensions is a correct theory, as a results of this

theory one may expect that micro black holes form during the high energy pro-

cesses either in man made colliders or by collision of high energy cosmic rays with

the Earth’s atmosphere. If a micro black hole forms in a high energy collision,

one can learn about this micro black hole by studying its decay products. The

micro black hole after formation spins very fast and it decays immediately after

formation. Its decay process can be classified to four stages [23].

Balding phase If a micro black hole forms, at energies well above the TeV scale

in hadronic collisions, the intermediate resonance that is created during the

parton collision carries the gauge and spin quantum numbers of the parent

partons. The initially formed micro black hole, which is more like an excited

state, also carries these charges and quantum numbers and its horizon has a

very asymmetric shape. Because of the distribution of these gauge charges

and energy-momentum, the created multipole moments will add also some

extra hairs. Micro black holes quickly become bald by shedding the charges

that are associated with the multipole moments by emission of gravitational

radiation and classical gauge radiation to the gauge fields on the brane.

The frequency of the oscillation of these multipole moments, as well as the
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2.1 Decay process

balding time scale, can be explained in terms of the Schwarzschild radius

ω ∼ c

rh
, τb & rh (2.1)

If one takes the ratio of the power emissions (energy loss) of the gauge

and gravitational radiation, which are respectively dominated by the dipole

mode and energy momentum quadruple moments

Pgauge
Pgravity

∼ α

(rhMp)D−2
(2.2)

where α is the fine structure constant, one can see that this parametrical

calculation shows that the energy loss by gravitational radiation is dominant

during the balding phase.

The gauge charges from the initial partons will also be discharged by the

Schwinger process [24] both in the balding phase and at the beginning of

the evaporation phases. At the end of this stage the micro black hole still

rotates but has lost most of its charges. This rotating stationary black

hole can be described using the Myers-Perry [25] solution. Because of the

high asymmetry during the balding phase, that is a result of the violent

formation of micro black hole, the modeling of it is very difficult and most

of the studies for understanding this phase are numerical studies.

At the end, evaporation of this micro black hole continues via Hawking

radiation which takes place in two stages: spin down and the Schwarzschild

phases.

Hawking radiation: spin down phase During this phase the micro black hole

loses its angular momentum and becomes more symmetrical. Angular mo-

mentum will be shed in quanta with typical energy E ∼ 1/rh which will

account for about 25% of the mass loss. The emitted modes will be ra-

diated to both the brane and bulk but the dominant process of mass loss

is by radiation along the brane [26]. This can be because of predominant

emission of Hawking radiation in the S-wave. Moreover black hole decays

mostly to the SM particles that are confined to the brane. This proce-

dure will continue until the micro black hole settles down into a stationary

Schwarzschild state. At the end of this stage the micro black hole has zero

angular momentum.
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2. HAWKING RADIATION AND GREY BODY FACTORS

Hawking radiation: Schwarzschild phase In the Schwarzschild phase, the

micro black hole continues to Hawking radiate and loses its mass until it

reaches the Planck scale where MµBH ∼ MD. One can compute the power

spectrum and relative emission rates for this process and this is where the

importance of grey body factors emerges. Mostly because for any experi-

mental searches for evaporation signatures of micro black holes one might

need to consider the effects of these factors in modifying the emission rate

to present a more realistic picture of Hawking radiation process which by

including the grey body factors will be different from the black body radia-

tion. This stage together with the spin down phase are expected to be the

most dominant stages in the life time of a micro black hole.

Planck phase When the micro black hole mass is close to the fundamental

Planck scale it enters the Planck phase. To describe this phase a full quan-

tum gravitational description is required and due to the lack of a theory

of quantum gravity the Planck phase is the least understood phase of the

decay process. However it is believed that µBH may completely decay to

few partons with energies of the order of Planck scale.

2.2 Wave scattering by black hole

Study of scattering problems involving black holes is slightly different from the

classical scattering problems. For scattering by black holes the curvature of space-

time should be considered in the equations that describe the propagation of dif-

ferent waves (scalar, electromagnetic and gravitational waves) in the space-time

under consideration, in addition to taking into account curvature effects, bound-

ary conditions may also be different from the classical scattering problems.

In order to learn more about the different concepts of waves scattering by black

holes one can study the scalar field for which all the equations are simpler.

2.2.1 Scalar waves scattering

To have a general overview we will consider a scalar field Φ propagating in a static,

spherically symmetric d-dimensional, d = 4 + n, space-time like d-dimensional
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2.2 Wave scattering by black hole

Schwarzschild space-time [27]. The line element for d-dimensional Schwarzschild

is

ds2
d = −f(r)dt2 + f(r)−1dr2 + r2dΩ2

d−2 (2.3)

and

f(r) =

(
1−

(r0

r

)d−3
)

(2.4)

where the event horizon is at r0. The evolution of the scalar field is governed by

the Klein-Gordon equation,

1√
−g

∂µ(
√
−ggµν∂ν)Φ(t, r, θ, φ) = 0 (2.5)

Because of spherical symmetry Φ can be discretized as

Φ = r1− d
2ψ(r)eiωtYlm(θ, φ) (2.6)

where the Ylms are the spherical harmonics and ω is the complex frequency of

the wave. In the above space-time (2.3), the wave equation for the scalar field

reduces to the following Schrödinger-type equation for the radial part(
d2

dr2
∗

+ ω2 − Vl(r)
)
ψ(r) = 0 (2.7)

where the so-called tortoise coordinate is defined by

d

dr∗
= f(r)

d

dr
. (2.8)

Using the tortoise coordinate we push the event horizon to −∞, namely we map

the semi-infinite interval (r0,+∞) that represents space-time external to the black

hole into the infinite interval (−∞,+∞). The potential Vl(r) is given by [28]

Vl(r) = f(r)

(
l(l + d− 3)

r2
+

(d− 2)(d− 3)f(r)

4r2
+

(d− 2)f ′(r)

2r

)
, (2.9)

this potential is like a barrier and its maximum indicates the location of the

unstable circular photon orbit. Understanding the behavior of this potential is

important for problems dealing with the black hole perturbations. Solutions of

(2.7) will tell us how an incoming wave originating at r∗ = +∞ or outgoing wave

originating at r∗ = −∞ is scattered by the potential Vl(r). The potential vanishes
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2. HAWKING RADIATION AND GREY BODY FACTORS

when r∗ → ±∞, showing that the solutions will behave asymptotically like plane

waves, e±iωr∗ . This potential is an obstacle for incident waves. Waves with short

wave length or high frequency may be transmitted through it easily but those

with low energy will be partially transmitted and partially scattered by the black

hole barrier, see figure (2.1).

Figure 2.1: A schematic description of the scattering of waves in the Schwarzschild

background. The effective potential is shown as a function of r∗. An incident wave

I is decomposed into a transmitted component T and a scattered component S

2.2.2 Boundary conditions, reflection and transmission fac-

tors

To be able to calculate the reflection and transmission coefficients for a given po-

tential one needs to define proper boundary conditions. Let’s consider ψω(r∗) and

ψ−ω(r∗) as two solutions of the equation (2.7) for an incoming wave originating

at r∗ = +∞ where both of them satisfy the boundary condition that requires

purely ingoing radial wave at the horizon,

ψω(r∗) ∼
{

eiωr∗ +Re−iωr∗ r∗ → +∞
Teiωr∗ r∗ → −∞

ψ−ω(r∗) ∼
{

e−iωr∗ + R̃eiωr∗ r∗ → +∞
T̃ e−iωr∗ r∗ → −∞

(2.10)

Where R and T are respectively reflection and transmission coefficients. If we

build the conserved flux and evaluate at r∗ → ±∞

F =
1

2i

(
ψ−ω

dψω
dr∗
− ψω

dψ−ω
dr∗

)
r∗→±∞

(2.11)
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2.3 Grey body factors

From the quantum mechanical point of view considering energy conservation law,

we know that if a wave of unitary amplitude is incident on one side of the potential

barrier, it gives rise to a reflected and a transmitted wave such that the sum of

the square of their amplitudes is one. Thus we require that the flux should be

the same in both limits, r∗ → ±∞, and we get

RR̃ + T T̃ = 1 (2.12)

It should be noted that if we consider outgoing waves which originate at r∗ →
−∞, we can write them as linear combination of incoming waves. In this way,

after some simple manipulation, one finds that there is no difference between

incoming and outgoing transmission coefficients. Namely, one can consider the

scattering of the wave by the black hole for either incoming waves that come from

spatial infinity or outgoing waves that originate from black hole itself.

2.3 Grey body factors

The spectrum of radiation from the black hole that can be observed at infinity

is,

Γ(ω)dω =
γ(ω)

eβω ± 1

d3k

(2π)3
, (2.13)

where γ(ω) is the grey body factor. This factor can be defined in terms of

the transmission and reflection coefficients of the potential barrier. For generic

frequency ω ∈ C using transmission coefficient one can define

γ(ω) = T (ω)T̃ (−ω). (2.14)

In this respect grey-body factor can be considered as the absorption cross section

which tells us how much of the incident field is transmitted through the potential

and absorbed by black hole. One can also find the grey body factor by comparing

the flux that is coming from infinity with the flux of the radiation that originated

from black hole horizon, thus we define it as follow,

γ(ω) =
Fhorizon

Finfinity
. (2.15)
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2. HAWKING RADIATION AND GREY BODY FACTORS

In general depending on the space-time under consideration or the fields that

encounter to the space-time potential this factor may change. For instance these

factors can be calculated for both bulk and brane emissions as well as for rotating

and non-rotating space-times. Thus one can say that this factor depends on the

spin and frequency of the field under consideration and also on the angular mo-

mentum; for different mode quantum numbers we may have different grey-body

factors. However if we want to obtain the flux of particles or angular momen-

tum and energy emission rates we need to sum over all modes. The differential

emission rates per unit time and frequency have the following form

d2E

dtdω
=

1

2π

∑
j

∞∑
`=s

∑̀
m=−`

γs,ω,`,mNs,ω,`,m
ω

exp((ω −mΩ)/TH)± 1
, (2.16)

d2N

dtdω
=

1

2π

∑
j

∞∑
`=s

∑̀
m=−`

γs,ω,`,mNs,ω,`,m
1

exp((ω −mΩ)/TH)± 1
, (2.17)

d2J

dtdω
=

1

2π

∑
j

∞∑
`=s

∑̀
m=−`

γs,ω,`,mNs,ω,`,m
m

exp((ω −mΩ)/TH)± 1
. (2.18)

where s is the particle spin and TH is the Hawking temperature

TH =
(n+ 1) + (n− 1)a2

∗
4π(1 + a2

∗)rh

, (2.19)

and Ω is the angular velocity defined by

Ω =
a∗

(1 + a2
∗)rh

. (2.20)

where a∗ is a dimensionless spin parameter defined as a∗ = a/rh, and rh is the

horizon radius. As can be seen, all of these fluxes depend on the grey-body factor

as well as the degeneracy factor Ns,ω,`,m. The degeneracy factors do not depend

on the frequency and the azimuthal quantum number but considering different
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Figure 2.2: Energy power spectrum for spinor, gauge and scalar fields for n = 2.
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fields they depend on ` and j and the number of extra dimensions. They account

for the multiplicity of modes with quantum numbers (s, ω, `,m). In (2.16) to

(2.18) the sum over j is associated with the hyper-spherical harmonics and is

only relevant for the scalar field emission in the bulk and tensor-type graviton

emission from a rotating black hole [29]. The energy power spectrum has been

presented for different spin parameters in figure (2.2) for spinor, gauge and scalar

fields in the presence of two extra dimensions.

2.3.1 Different energy regimes

In order to be able to find any analytical solution to the field equations one can

simplify the process by considering different energy regimes by studying the field

equations in different frequencies. We can consider two limits of high and low

frequency regimes where high and low may be considered relative to the black

hole horizon radius r0. Setting r0 = 1 one can define two frequency regimes:

Low frequency regime In this frequency regime where ω � 1, the near hori-

zon and far region can be defined respectively by r − 1� 1/ω and r � 1.

In this range the wavelength of the wave is much larger than the radius of

the black hole. With this approximation one can use the known matching

techniques to find a solution on the whole space time. We should mention

here that low frequencies give a significant contribution to the total power

emission [30]. The procedure of analytical solution in the low frequency is

as follows [31]

• Solve the radial equation in the near horizon region and expand the

solution as ingoing and outgoing waves

• Implement the boundary condition in near horizon requiring that only

purely outgoing wave should be accepted

• Solve the radial equation for the far region and expand the solution as

ingoing and outgoing waves

• Match the two stretched solutions in the overlapping region to find the

integration constant
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2.4 Hawking radiation from non-rotating and rotating black holes in
the brane or bulk

• Calculate the absorption cross section using the integration constant

that we have already obtained

High frequency regime This frequency regime is relevant when ω � 1. In

this regime the wavelength becomes almost of the same order as the black

hole radius. The waves with high frequency can easily penetrate into the

gravitational potential therefore one can use the monodromy matching tech-

nique [32] to solve the wave equations with the highest contribution coming

from high-` modes.

One should take note that the solution to the wave equations will not depend

on the choice of energy regions but by considering different energy regions one

can use proper analytical techniques to solve the wave equations. If one wants

to solve the wave equations for all the frequencies one can also use the numerical

techniques. However as you will see in this chapter this is also not an easy task as

depending on the spin of emitted particles one may encounter some difficulties.

2.4 Hawking radiation from non-rotating and

rotating black holes in the brane or bulk

As we explained earlier in this chapter, one should start to consider the Hawking

emission during spin-down and Schwarzschild phase. The geometry of the space

time during these two phases is different; during the spin-down phase the black

hole is rotating so its space-time can be described by a Kerr like solution in higher

dimensions, for instance Myers-Perry solution. However during the Schwarzschild

phase the black hole no longer rotates, so its geometry can simply be described

by higher dimensional Schwarzschild metric. The important point is that particle

emission should be considered during these two phases separately as their emis-

sion rates should be modified by different grey-body factors as a result of having

different geometry.

Besides considering whether the particle emission is from a rotating or a non-

rotating black hole, it is also important to consider if these particles will be

emitted to the brane or to the bulk. Modeling black holes in the ADD scenario,
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which is our preferred extra dimensional model to study micro black holes, the

forces and particles of the Standard Model are confined on the 3-dimensional

brane but gravitational degrees of freedom (gravitons and scalars) can propagate

in the bulk. Thus, as much as it is important to study the particle emission into

the brane the emission of fields through the higher dimensional bulk may also

be important. Although only the propagation of particles into the brane may

be detectable for brane localized observers the portion of energy that may be

emitted to the bulk can be counted as the missing energy. Knowing about the

amount of energy that may be emitted into the bulk will give us the required

knowledge to answer the question of energy balance between bulk and the brane.

We know that the number of degrees of freedom that propagate into the brane

are much larger than those that travel to the bulk, so if one knows how much

energy is emitted to the bulk, the missing energy, one can evaluate how much

energy should we expect to have during Hawking emission into the brane.

All types of emissions from either rotating or non-rotating black holes have been

studied in the literature extensively. However there are some difficulties to calcu-

late the emission of the gravitons from a rotating black hole which we will discuss

about them in this chapter. In this section we will review some of the methods

and results of Hawking emission from both rotating and non-rotating black holes

through bulk and brane. We consider the ADD model in which the extra space-

like dimensions are flat and compactified with a compactification radius that is

larger than the Planck length R � `p and a horizon radius that is smaller than

the size of the extra dimensions rH < R; such a higher dimensional black hole will

be centered on the brane and it will have some extension into bulk as well. We

also consider a tensionless brane and we assume that all the fields that propagate

into the brane or bulk are massless. One should note that grey-body factors have

also been calculated for some degrees of freedom assuming the tension on the

brane as well as for the propagation of massive fields. We may review some of the

effects of considering these two issues in the calculation of the grey-body factors

at the end of this chapter.
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2.4 Hawking radiation from non-rotating and rotating black holes in
the brane or bulk

2.4.1 Hawking emission from a non-rotating black hole

One expects that Schwarzschild phase be the longest phase in the black hole evap-

oration process and black hole losses most of its mass in this phase [31]. To start

one should consider the gravitational background that the particles propagate

through. For a non-rotating background the proper line element is

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2+n, (2.21)

where

f(r) = 1−
(rH
r

)n+1

, (2.22)

and the angular part is

dΩ2
2+n = dθ2

n+1 + sin2 θn+1

(
dθ2

n + sin2 θn
(
...+ sin2 θ2(dθ2

1 + sin2 θ1dφ
2)...

))
.

(2.23)

Depending on the brane or bulk emission different parts of (2.21) should be taken

into account. After choosing the proper part one just needs to consider the spin

of particles in order to obtain the right formalism. Considering Newman-Penrose

formalism [33] for fields with spin s = 0, 1, 1/2 for the motion of a particle in

the assumed background one needs to obtain (2.5) for spin-0, Dirac equation for

spin-1/2 and Yang-Mills equation for spin-1 particles. Then using the relevant

field factorization one may obtain radial and angular equations that can be solved

either analytically [34, 35] or numerically [31].

2.4.1.1 Brane emission

If we want to calculate the brane emission we need to project the black hole onto

our 3-dimensional brane world. To do that we choose θi = π/2 for i ≥ 2 in (2.23).

By using the following separation of variables [31]

ψs = e−iωteimφRs(r)S
m
s,`(θ), (2.24)

in the corresponding equations (namely the perturbation equations for different

spins) and separating them into radial and angular equations one then obtains

the following equations valid for all spins with ∆ = f(r)r2

∆−s
d

dr

(
∆s+1dRs

dr

)
+

(
ω2r2

f(r)
+ 2iωsr − isωr2f(r)′

f(r)
+ s(∆′′ − 2)− λs`

)
Rs(r) = 0,

(2.25)
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for the radial equation while the angular equation is

1

sin θ

d

dθ

(
sin θ

dSms,`
dθ

)
+

(
−2ms cot θ

sin θ
− m2

sin2 θ
+ s− s2 cot2 θ + λs`

)
Sms,`(θ) = 0,

(2.26)

where Sms,`(θ)s are spin-weighted spherical harmonics and λs` is the separation

constant which can be derive from solving (2.26)

λs` = `(`+ 1)− s(s+ 1). (2.27)

Solutions to the radial equation (2.25) have the form (2.10) for the near horizon

and far regions. Having this solution one can calculate the grey body factors as

explained in (2.2.2). Subsequently one can use (2.16) and (2.17), for rotation

parameter a∗ equal to zero, to obtain the desired fluxes.

Results of the numerical calculation for the brane channel that is the only ob-

servable channel for the brane localized observers have shown that as the number

of the extra dimensions increases the energy emission rate also increases and this

holds for all types of the brane emissions [31]. The numerical calculation in [31]

shows that grey-body factors will decrease by increasing the number of extra di-

mensions. However the energy emission has an increasing rate and that is because

of the black hole temperature that increases as the number of extra dimension

increases and this will compensate the suppression of the grey-body factors.

2.4.1.2 Bulk emission

The only particles that can propagate into the bulk are gravitons and scalar fields.

To compute the bulk emissions we need to consider the propagation of the scalar

fields and graviton on the background of (2.21). We also need to substitute Sms,`(θ)

in (2.24) by Ỹ`(Ω) which is the generalization of the usual spherical harmonic

functions depending on the angular coordinates. Using this new factorization the

radial equation for scalar emission into bulk will be [34]

f(r)

rn+2

d

dr

(
f(r)rn+2dR

dr

)
+

(
ω2 − f(r)

r2
`(`+ n+ 1)

)
R = 0 (2.28)

The solution to this equation has been obtained both analytically for low fre-

quency range and numerically for all frequencies respectively in [31, 34].
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For graviton emission one needs to consider the gravitational perturbation in the

back-ground (2.21). Computing the graviton emission is more complicated be-

cause the perturbation equations that describe the motion of a graviton subjected

to the potential of (2.21) will decompose into three parts: a scalar, a vector and a

symmetric traceless tensor part. The formalism for the treatment of these three

types have been discussed in [36]. All the equations which describe these three

gravitational degrees of freedom are separable and the equation of radial part is

[36]

f(r)
d

dr

(
f(r)

dR

dr
+ (ω − V(S,V,T ),(`,n,ω))

)
R(r) = 0, (2.29)

where VS,V,T is the gravitational potential for scalar, vector and tensor perturba-

tions. This potential for tensor and vector part can be written as

VT,V =
f (r)

r2
[`(`+ n+ 1) +

n(n+ 2)

4
− k(n+ 2)2

4
(
rH
r

)n+1], (2.30)

where k = −1, 3 stands for tensor and vector type respectively and for scalar

perturbation

VS =
f (r)

r2

qx3 + px2 + ωx+ z

4(2m+ (n+ 2)(n+ 3)x)2
, (2.31)

where

m ≡ `(`+ n+ 1)− n− 2, x ≡
(rH
r

)n+1

= 1− f,

q ≡ (n+ 2)4(n+ 3)2, z ≡ 16m3 + 4m2(n+ 2)(n+ 4),

p ≡ (n+ 2)(n+ 3)[4m(2n2 + 5n+ 6) + n(n+ 2)(n+ 3)(n− 2)],

ω ≡ −12m(n+ 2)[m(n− 2) + n(n+ 2)(n+ 3)].

(2.32)

It should be noted that the angular functions are simple spin-weighted hyper

spherical harmonics. The radial equation (2.29) has been solved using different

techniques in the low [7] and intermediate energy regions [37].

The amount of energy which is channeled into the bulk is not observable for us and

it can be counted as missing energy. For scalar emission in the bulk the behavior is

like brane emission but the suppression of grey-body factor at low energy regime is

milder [31] and in contrast with brane emission this won’t cause any enhancement

in the energy emission rate. However in the high energy limit the increase of the

temperature by number of dimensions again cause an enhancement in the energy
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emission rate. The analytical solutions to the perturbation equations for graviton

emission into the bulk revealed that vector perturbation is the dominant mode

emitted in the bulk for all the number of extra dimensions, n, however emission

rate of the scalar and tensor modes depends on n and it can be higher for small

n for scalar modes and at higher n the emission of tensor modes is prevalent and

the energy emission rates of all these three types decreases as the number of extra

dimensions increases [7]. Comparing the scalar emission rate with the graviton

emission rate for all modes in the low energy limit shows that scalar field emission

is dominant and this is due to the absence of the ` = 0, 1 modes for graviton. At

intermediate energy [37] the total graviton cross-section, which is the sum of the

perturbations (scalar, vector and tensor) is of the same order of magnitude as the

scalar case.

2.4.2 Hawking emission from a rotating black hole

Emission of Hawking radiation from a micro black hole during the spin-down

phase has been studied in the literature for the case of brane emission regarding

scalar and gauge boson as well as for the fermion field [38, 39, 40, 41, 42, 43]

and in the case of bulk emission for the scalar fields [44, 45] and partially for

gravitons [46]. To study the Hawking emission from a rotating black hole first

we need to introduce the proper line element that describes the space-time of a

rotating black hole in the bulk. This line-element has been introduced by Myers

and Perry (MP)[25]. In general when studying the Hawking emission from the

rotating space-time it will be very difficult to deal with the general MP solution.

Instead one can consider a relevant sub-class of MP solutions consistent with

the conditions under which the micro black hole has been formed. If we assume

that the micro black hole formation takes place in the collision of particles in the

LHC in which the propagation of colliding particles is restricted to an infinitely-

thin 3-brane, thus formed micro black hole will only have one non-zero angular

momentum parameter about an axis in the brane and this is because micro black

hole has been created by particles that are localized on the 3-brane and have a

non-zero impact parameter only along a brane space-like coordinate. In this case
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all the rotation parameters ai are equal to a and the line-element has the form

ds2 = (1− µ

Σrn−1
)dt2 +

2aµ sin2 θ

Σrn−1
dtdϕ− Σ

∆
dr2 − Σdθ2

− sin2 θ

(
a2µ sin2 θ

Σrn−1
+ a2 + r2

)
dϕ2 − r2 cos2 θdΩ2

n,

(2.33)

where

∆ = a2 + r2 − µ

rn−1
, Σ = a2 cos2 θ + r2, (2.34)

and dΩ2
n denotes the metric for the unit n-sphere. The parameters µ and a in

(2.34) are associated to the micro black hole mass MBH and angular momentum

J using the following relations

MBH =
(n+ 2)A2+nµ

16π
, and J =

2aMBH

n+ 2
, (2.35)

where A2+n is the area of the (n+2)-dimensional unit sphere

A2+n =
2π(n+3)/2

Γ[(n+ 3)/2]
. (2.36)

In (2.33) dΩ2
n is the part of the metric that comes from the extra dimensions

while the rest of the metric describes the space-time of a rotating black hole in

the brane.

2.4.2.1 Brane emission

If we are to study the Hawking emission that radiates on the brane we need to

consider the proper background which in this case can be obtained by projecting

the higher dimensional one (2.33) onto the brane, as in the non-rotating case

by fixing all additional azimuthal coordinates to π/2. Doing so the dΩ2
n part

of the metric disappears while the rest remains unchanged. The formalism for

describing the perturbation of this rotating space time can be deduced from the

generalization of Teukolsky equations [47, 48] using Newman-Penrose formalism.

This work was first done by Ida-Oda-Park in [38]. The resulting equation for

different spins, s = 0, 1, 1/2, can be written in one master equation which by

using the proper factorization

ψs = e−iωteimφRΛ(r)SΛ(θ), Λ = {s, ω, `,m} (2.37)
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is separable to the radial and angular equations [43, 49]

∆−s
d

dr

(
∆s+1dRΛ

dr

)
+ (∆−1(K2

ωm − isKωm∆′) + 4isωr + sδs,|s|(∆
′′ − 2)

− a2ω2 + 2maω − λΛ)RΛ(r) = 0,

(2.38)

1

sin θ

d

dθ
+

(
sin θ

dSΛ

dθ

)
+ (−2ms cot θ

sin θ
− m2

sin2 θ
+ a2ω2 cos2 θ − 2asω cos θ

+ s− s2 cot2 θ + λΛ)SΛ(θ)

(2.39)

where

Kωm = (r2 + a2)ω − am (2.40)

and λΛ is the angular eigenvalue that can be found by numerically solving the

angular equation (2.39) which is the spin-weighted spheroidal harmonic equation.

The radial equation has been solved analytically in the low energy limit using the

matching technique in [38] however for high energy regime this technique doesn’t

work any more and one needs to use numerical methods to find the solution to

(2.38). Solution to the wave equations for different particle species shows that

the angular distribution of the total power flux respect to the axis of rotation is

different for the scalar, gauge and femionic fields. As can be seen in figure (2.3)

the rotating black hole prefers to emit energy in the form of scalars and fermions

while fermionic emission is slightly dominant compared to scalar emission. More-

over from (2.3b) it is clear that black hole has to spend large amount of energy

in order to emit gauge bosons. The integrated emission rate over all frequency

regims shows that this emissivity for all the degrees of freedom enhance respect

to increase of n and rotation parameter a∗.

2.4.2.2 Bulk emission

Hawking emission from a rotating black hole into the bulk have been calculated

for scalar field in [44, 45] and partially for gravitons in [46]. To calculate the

emission of these fields into the bulk one needs to consider the whole metric

(2.33), not just a slice like in the case of brane emissions. The perturbation

equations for the scalar bulk emission are separable but this is not the case for
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cos HΘLΩ r
h

Power Flux Hs = 1 � 2L
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(a) fermions
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(c) scalars

Figure 2.3: Angular distribution of the power spectra for (a) fermions, (b) gauge

bosons, and (c) scalars in the presence of 2 extra dimensions with a∗ = 1 [1]

gravitons. To obtain the perturbation equations for scalars one needs to include

a hyper-spherical harmonic,Yjn(Ω), in the field factorization (2.37)

ψ0 = e−iωteimφRΛ(r)SΛ(θ)Yjn(Ω), Λ = {ω, `,m, j, n} (2.41)

using this factorization in the Klein-Gordon equation for a field that is minimally

coupled to the background one obtains three equations, one equation that de-

fines the hyper-spherical harmonics on the n-sphere and two radial and angular

equations that are coupled through one angular eigenvalue that can be find using

different methods, although it is not possible to find an analytical solution. The

equation for Yjn(Ω) is

n−1∑
k=1

1∏n−1
i=1 sini θi

∂θk

[(
n−1∏
i=1

sini θi

)
∂θkYjn∏n−1
i>k sin2 θi

]
+

∂φφYjn∏n−1
i=1 sin2 θi

+j(j+n−1)Yjn = 0,

(2.42)
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where the j index is an integer and it is related to the bulk coordinates. Radial

and angular equations are

1

rn
∂r(r

n∆∂rRΛ) +

(
K2
ωm

∆
− j(j + n− 1)a2

r2
− EΛ + 2maω + a2ω2

)
RΛ = 0,

(2.43)

∂θ(sin θ cosn θ∂θSΛ)

sin θ cosn θ
+

(
a2ω2 cos2 θ − m2

sin2 θ
− j(j + n− 1)

cos2 θ
+ EΛ

)
SΛ = 0.

(2.44)

The exact solution of these equations has been presented in [44] and it turns out

that some parts of the calculation are similar to the 4-dimensional case.

Another interesting case of emission into the bulk is graviton emission. While

one can derive a set of partial differential equations (PDEs) describing the grav-

itational perturbations of a higher-dimensional rotating black hole, these PDEs

can not be decoupled into ordinary differential equations (ODEs) for all modes.

The only mode that up to now could be decoupled to the ODEs is the tensor

mode under some special assumptions regarding the MP background.

The numerical results [44] for the emission of scalars by a rotating higher dimen-

sional black hole demonstrated that grey-body factors are enhanced with angular

momentum of black hole compared to the non-rotating one. In contrast to the

brane scalar emission, energy emission rate doesn’t increase with angular momen-

tum while it still increases with the value of n. This is because the enhancement

in the grey-body factors cannot be compensated by the decrease in the black

hole temperature with rotation parameter. Comparing the brane and bulk scalar

emissions reveals that the bulk scalar emission is only a portion of the brane

emission and becomes important for large values of extra dimensions moreover,

it may be suppressed as the rotation parameter increases. This study confirmed

that a rotating black hole, considering the scalar channel, emits a small fraction of

its mass and angular momentum into the bulk. However to give the final answer

to the energy balance between brane and the bulk one also needs to consider the

detailed study of the bulk graviton emission from a rotating black hole.

Partial results [46] (tensor type gravitational perturbation) for graviton emis-
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sion from a simply rotating black hole1 shows that the gravitational tensorial

grey-body factors decrease as the number of space-like dimensions increase while

for the fixed dimension they will enhance as the angular momentum parameter

increases. The energy emission rate has the same dependence on the angular

momentum parameter and the value of n as the scalar emission into the bulk.

Comparing the total emission power (mass loss rate) of the tensor type gravitons

with scalars demonstrates that at small values of n gravitons have very small

contribution to this rate but as n increase their contribution becomes dominant.

2.5 Micro black hole event generators

The potential creation of the micro black holes during high energy collisions

arose this question that how might the possible signals from micro black hole

decay look like in the detectors. These hadronic collisions may take place at the

LHC or collision of high energy cosmic rays by the Earth’s atmosphere which

is subsequently followed by their evaporation through the emission of Hawking

radiation. To answer this question all the process of production and evaporation

of the micro black hole have been studied in detail and using the results of these

studies black hole simulations have been created. Using these simulators one can

estimate the relative background contributions from the real data samples that

have been recorded in different experiments. In recent years several micro black

hole event generators have been developed for simulating the formation and decay

of micro black holes formed in high energy collisions. Among them, CHARYB-

DIS2 [50] and BlackMax [51] are the most recent ones, and they include all the

grey body factors which are known up to now as well as the effect of rotation

has been taken into account in these two generators. The effect of rotation is

very important as most of the black holes that might form at LHC might form

at non-head on collisions, thus they would be highly rotating. The decay of this

highly rotating black hole can be simulated by the black hole event generator and

elementary particles are the output of these generators.

1A higher dimensional rotating black hole with a single angular-momentum component

along the brane under the assumption that space-time metric is the warped product of two

sub-manifolds [46].
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The heavy particles (top quarks, Higgs and EW bosons, etc.) emitted by micro

black hole evaporation decay quickly, i.e. before entering the detectors, and the

partons and charged leptons emitted both by micro black hole evaporation and by

these decays are further subject to parton and photon shower emissions, degrading

their energy down to a scale where perturbative QCD can not be applied anymore,

and hadronization takes place, followed by hadron decays. Non-perturbative ef-

fects in this context are described by means of phenomenological models. This

same chain of processes also occurs in p-p collisions in the framework of the SM

and the corresponding physics and model parameters have been constrained over

the years by results obtained at accelerators. In particular, shower Monte Carlo

(SMC) programs like PYTHIA [52], HERWIG [53] are commonly used to describe

these processes. Thus for simulation of the following hadronization process micro

black hole event generators can be interfaced to PYTHIA or HERWIG Monte

Carlo event generators.

2.5.1 BlackMax phenomenology

A black hole is allowed to form if

b < bmax ≡ 2rnh(Ecm, bmaxEcm/2) (2.45)

where b is the impact factor of two partons collision and is the function of the

total center of mass energy of the parton-parton collision as well as the horizon

radius. The horizon radius itself is again function of Ecm, the fundamental Planck

scale, and number of extra space like dimensions n. The momenta and location

of these colliding partons can be obtained by knowing their energies and types.

The most likely types in the proton-proton collision are the valence quarks u and

d with electric charges 2/3 and −1/3 respectively. Thus the formed black hole

which is highly rotating also initially carries gauge and electric charges. This

black hole before emitting any kind of Hawking radiation first loses some fraction

of its energy, mass and angular momentum. These parameters evolves in the

next step of the evaporation after their initial values reduces using the mass fE,

momentum fp and angular momentum fL loss factors. These three factors are

input parameters in BlackMax with values in the range [0, 1]. As the result of
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the initial angular momentum loss the black hole angular momentum will change

its direction, the new direction can be reset using an introduced tilt θ in angular

momentum. Then an angle φ will be randomly chosen and the angular momentum

axis will be reset to (θ, φ).

At the next stage one can start to consider the Hawking radiation by including the

available grey body factors for the all degrees of freedom. These factors have been

calculated for different quantum numbers and different number of extra space-

like dimensions and saved in different data files that can be used by BlackMax as

input spectra, though it is necessary to transform them to the laboratory frame.

Taking into account the degrees of freedom of SM particles the expected radiated

flux for each type of particles can be calculated. The probability of emission of

each particle type i with assigned energy, ~ωi, can be determined using the former

spectra. BlackMax lets this particle be emitted in one generator time step, ∆t,

if for a random number, Nr, in the interval [0, 1]

LFiNi∆t > Nr, (2.46)

where LFi is the total number flux of particles of type i which can be obtained from

the power spectrum and Ni is the number of degrees of freedom of that particle

type. The next step is to choose the angular momentum quantum numbers (`,m)

of the emitted particle by calculating the emission probability of that particle

using again the emission spectrum. Then using these quantum numbers the

direction of emission according to the corresponding spheroidal wave functions

can be calculated. Moreover if the particle carries SU(3) color, a 3-dimensional

vector representing color will be randomly assigned to that particle. To prevent

the black hole to gain a large electric or color charge two suppression factors

as functions of two suppression parameters related to each charges have been

introduced. The suppression parameters have approximately same orders as the

electromagnetic and strong coupling constants. These suppression factors then

will be compared to Nr and the particle can be emitted only if they are smaller

than this value. In this sense the chance of emission will be given to the particles

which reduces the electric or color charge of the black hole.

Effects of rotation in BlackMax can be switch on or off. If one decides to take

the rotation into account then BlackMax may also need an angular momentum

41



2. HAWKING RADIATION AND GREY BODY FACTORS

suppression factor. Different suppression factors have been included in BlackMax

and one can choose each of them when setting the input parameters. The same

comparison with Nr takes place here as well and if the suppression factor is greater

than the value of Nr, the emission of particles will be aborted.

For the final stage of the black hole evaporation, where the black hole mass is

close to the fundamental Planck scale, BlackMax assumes that evaporation is a

burst of particles which conserves energy, momentum, and all the other quantum

gauge numbers.

2.5.1.1 Primary analysis from BlackMax

In this section we investigate the behavior of the event generators at LHC energies

as well as at higher energies such as those reachable in the interactions of ultra

high energy cosmic rays with the Earth’s atmosphere, leading to extended air

showers (EAS). In particular, we work with the last version of BlackMax (2.02.0),

both in the standalone mode, and interfaced to the PYTHIA SMC code. We

perform simulations of the formation of both rotating and non-rotating micro

black holes in p-p collisions in the ECM = 14 TeV, for the fundamental Planck

scale MD = 3.5 TeV, a micro black hole minimum mass is constrained to be

Mmin = 4.5 TeV. In the simulation of micro black hole evolution, the mass,

linear and angular momentum loss fractions were assumed to be equal to 0.1,

whereas angular momentum and charge suppression factors were assumed to be

equal to 1 and 20 for the case of color suppression factor, moreover baryon and

lepton numbers, as well as their difference, conserved. With these settings we

investigated the kinematical properties of particles emitted during the micro black

hole evolution as computed by BlackMax and also after the Parton Shower +

Hadronization + Hadron decay chain, as computed by the interface of BlackMax

with PYTHIA. The micro black hole signals may appear in the detectors as high

multiplicity of particles with high transverse momentum. Thus it is interesting to

study the multiplicity of the different degrees of freedom in different transverse

momentum regions. Examples of our selected results are presented in the figures

(2.4), (2.5), (2.6) and (2.7). In figure (2.4) one can see that the number of

produced gravitons intensively increases with number of extra dimensions.
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Figure 2.4: Transverse momentum distribution of gravitons expressed in terms of

yield (number of particles)/bin/event for different number of spatial extra dimen-

sions for non-rotating micro black hole

However if one compares this multiplicity with multiplicities of other produced

particles which are shown in the figures (2.5b), (2.5d), (2.5f), (2.6b) and (2.6d) one

can see that graviton multiplicity doesn’t have long pT tail and in general even in

low pT range, with a peak as pT → 0, graviton multiplicity is much lower than the

other SM particles. This may imply that the number of particles carrying missing

energy and not contributing to the visible signals is not large. In figures (2.5),

(2.6) and (2.7) this dependence is presented for different particles taking into

account their electric charges as well as the effect of rotation. From these figures

it is evident that for the non-rotating micro black holes the multiplicity increases

by number of spatial extra dimensions however this increase is not drastic if one

compares it with the same case for the rotating-black hole.

In figure (2.6e) and (2.6f) the multiplicity versus pT is presented for different

particle species regarding their electric charge only for the case n = 2 extra

dimensions for both rotating and non-rotating micro black holes. In both plots

the higher multiplicity belongs to the particles with positive charges compared

with negatively charged particles and emission of quarks and gluons is preferred

over all other types of particles.

This effect is also shown in figure (2.7) with a comparison of the multiplicity of

up quarks in different energies with all the other particles. It is evident that the

number of emitted quarks has a large rate compared with all the other particles.
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(a) all non-charged particles
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(b) all non-charged particles
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(c) positively charged quarks
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(d) positively charged quarks
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(e) negatively charged quarks
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(f) negatively charged quarks

Figure 2.5: Transverse momentum distribution of all the non-charged particles,

quarks with positive charges and negative charges expressed in terms of number of

particles/bin/event for different number of spatial extra dimensions receptively for

the rotating micro black hole at (a),(c) and (e) and for non-rotating micro black

hole at (b), (d) and (f).

44



2.5 Micro black hole event generators

n=2

n=3

n=4

n=5

0 500 1000 1500 2000 2500 3000
0.000

0.002

0.004

0.006

0.008

0.010

pTHGeVL

y
ie

ld
�b

in
�ev

en
t

(a) positively charged leptons
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(b) positively charged leptons
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(c) negatively charged leptons
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(d) negatively charged leptons
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(e) all particle species for n = 2
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(f) all particle species for n = 2

Figure 2.6: Transverse momentum distribution of leptons with positive and neg-

ative charges expressed in terms of the number of particles/bin/event for different

number of spatial extra dimensions and the same distribution for different particle

species for n = 2, for rotating micro black hole at (a),(c) and (e) and non-rotating

micro black hole at (b), (d) and (f).
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This is because the micro black hole is created from the collision of two protons
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(a) rotating black hole
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(b) non-rotating black hole

Figure 2.7: Energy distribution of up quark and all the other positively charged

particles expressed in terms of number of particles/bin/event for number of spatial

extra dimensions n = 2 for rotating micro black hole at (a) and non-rotating micro

black hole at (b).

and each proton has two up and one down valence quarks, so one may expect to

see more up quarks in the decay products. Moreover the up quark has a positive

electric charge and one can say that the formed micro black hole right after

creation is positively charged, thus it prefers to emit particles that carry positive

charges. One should note that quarks and gluons also carry the color charge

and they have more degrees of freedom in comparison with other particles and

that is another reason to see higher multiplicity of quarks and gluons. The other

interesting feature of the emission of quarks and gluon is appeared in the plot

for rotating black hole for which they have a peak at high pT . This means that

micro black holes signals are likely to appear as an enhancement in the number

of quarks and gluons at high pT s.

2.5.1.2 Behavior in higher energies than LHC reach

Searches for micro black holes have been conducted by the CMS and ATLAS

collaborations at LHC in the framework of the more general “searches for ex-

otica”. The analyses conducted so far have not lead to any evidence for micro

black hole formation in p-p collisions at ECM = 7 TeV. However, these analyses

have been criticized, since quantum gravity effects, expected to be important at
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LHC energies, have been neglected or treated too naively in the event generators

used. The situation is globally still controversial, and the exclusion at the present

LHC energy certainly does not limit the possible formation of micro black holes

at higher energies.

We performed simulations of the formation of non-rotating micro black holes in

p-p collisions in the ECM = 100 and 50 TeV, at two different values for the fun-

damental gravity mass scale, i.e. MD = 4 and 15 TeV, a micro black hole mass

constrained in the range 2 MD < MMBH < ECM , and n = 2 spatial extra di-

mensions without fermion splitting [54]. Like before in the simulation, the mass,

linear and angular momentum loss fractions were assumed to be equal to 0.3,

whereas angular momentum, charge and color suppression factors were assumed

to be equal to 0.2, and baryon and lepton numbers, as well as their difference, con-

served. With these settings we performed the simulation using BlackMax and also

we interfaced the BlackMax output with PYTHIA. Examples of selected results

are presented in figurs: (2.8), (2.9), (2.10) and (2.11). In figure (2.8a) and (2.8b)
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Figure 2.8: Parallel (a) and transverse (b) momentum distributions for different

SM degrees of freedom as computed by BlackMax for a micro black hole formed at

a center of mass p-p collision energy ECM = 50 TeV for MD = 4 TeV.

the longitudinal and transverse momentum distributions (expressed in terms of

number of particles/bin/event) are shown for different SM particle species for the

case of micro black hole production at ECM = 50 TeV. After evaporation of the

micro black hole the (anti-)quarks give rise to the largest contributions followed

by gluons, (anti-)leptons and photons. Contributions from particles with opposite
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Figure 2.9: Gluon parallel and transverse momentum distributions as computed

by BlackMax for a micro black hole formed at two different center of mass p-p

collision energies (ECM = 50, 100 TeV) for MD = 4 TeV and MD = 15 TeV.

charges are shown separately: for any given flavor the contribution of positively

charged particles is larger than that coming from negatively charged particles,

due to the fact that during the final burst in the micro black hole evolution, pos-

itive charged particles are predominantly emitted, because the majority of micro

black holes are positively charged.

The pz distributions are almost monotonically decreasing with similar slopes for

all SM particles, whereas the pT distributions show some broad peaks, located at

different pT values according to the particle species. (Anti-)leptons are emitted

in pairs, i.e. as `ν`, `
+`− or ν`ν̄`, due to imposed lepton number conservation.

Graviton distributions are also shown, and display a high pT profile with a slope

that decreases more rapidly than do those for SM particles, leading to a suppres-

sion of gravitons with respect to SM degrees of freedom at high pT . In figure

(2.9a) and figure (2.9b), the pz and pT distributions of a specific particle species,

i.e. the gluon in this example, are shown as a function of the p-p collision ECM ,

for different values of MD. It is evident that, for a fixed value of MD, the shape of

the distributions at different ECM ’s is preserved with the total number of gluons

increasing with ECM . This is as expected because the cross-section for µBH for-

mation increases with ECM . On the other hand, changing the value of MD leads

to distributions with different shapes in addition to a changing value of the total

cross-section. In particular, the position of the pT maximum for gluon emission
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Figure 2.10: Photon (upper part) and all lepton (lower part) yields as a function

of the yield of all hadronic tracks after BlackMax + PYTHIA. Each point corre-

spond to a different simulated event. Regions with different colors correspond to

different ECM and MD parameters adopted in the µBH simulation.

increases with MD, ranging from pT ∼ 1.1 TeV for MD = 4 TeV to pT ∼ 4.3 TeV

for MD = 15 TeV.
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Figure 2.11: Energy distributions of photons and gravitons emitted by a micro

black hole at a CM p-p collision energy ECM = 50 TeV (a) and ECM = 100 TeV

(b), for MD = 4 TeV. Results after both BlackMax and BlackMax + PYTHIA are

presented in each panel for comparison.

The SM yields from micro black hole evaporation are in general modified af-

ter parton and photon shower + hadronization + hadron decay, as simulated
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by SMC codes, such as PYTHIA, which leads to hundreds of hadrons and pho-

tons. In particular, the number of emitted photons in each event turns out to

be correlated to the number of emitted hadronic tracks, with a constant slope

at increasing ECM , as shown in figure (2.10). This slope is also independent of

MD, at a fixed ECM . On the other hand, the total yield of emitted leptons turns

out to be small (a few tens of particles) and does not show evident correlations

with the number of hadronic tracks. This points towards the conclusion that the

large number of photons is probably due light hadron (in particular π0) decays,

whereas electromagnetic shower effects are suppressed. It is also interesting to

compare the shapes of particle spectra at different stages of the evolution of the

entire system. In particular this can be carried out for distributions of particles

that are not subject to hadronization, such as leptons, photons and gravitons.

In figure (2.11a) and (2.11b) the energy distributions of photons and gravitons

at the parton level after micro black hole evaporation and at the hadron level

after PYTHIA are shown, for two different ECM energies. It is evident that the

contributions of the parton shower, the hadronization and hadron decay lead to a

complete distortion of the original photon spectrum, disproportionately populat-

ing the region of low energies with photons emitted in these last processes. The

photon distributions at the evaporation level are very similar for both ECM = 50

and 100 TeV, whereas, at the hadron level, the photon distribution at ECM = 100

TeV is clearly much more populated than the corresponding one for ECM = 50

TeV due to the stronger SMC effects. On the other hand, the graviton distribu-

tions are completely unaffected by shower effects, and in the case of ECM = 100

TeV display a flatter profile in comparison to that at ECM = 50 TeV.

To investigate the spectra of the emitted particles from rotating black hole at

different energies we performed the simulation using CHARYBDIS2, considering

the same initial parameters as BlackMax, and we interfaced it to HERWIG for

SMC, see figure (2.12). In contrary with non-rotating case we see that for higher

center of mass energies we have less produced particles, while the spectrum of

emitted particles is harder in higher energies figure (2.12b).
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Figure 2.12: Multiplicity of the positively charged quarks at (a) different pseudo-

rapidity and (b) different transverse momentum and for 3 different center of mass

energies Ecm = 14, 40 and 60 TeV

2.5.1.3 A test in BlackMax

It is important to know about the sensitivity of the micro black hole event gen-

erators to the exact form of the grey body factors. To test this sensitivity we

changed grey body factors by 15% in the BlackMax codes [55]. Then we investi-

gated the final output of the BlackMax before and after this change of the grey

body factors for spinor and gauge particles. Results of this study are shown in

figures (2.13) and (2.14). Figures (2.13a) and (2.14a) represent the implemented

change in the grey body factors for gauge bosons and spinor fields and figures

(2.13b), (2.14b) and (2.14c) show the multiplicity of the gauge bosons, quarks

and charged leptons before and after the change in grey body factors. As is clear,

the multiplicity of the gauge bosons has not changed and the change of the quark

and charged lepton multiplicities is negligible, indicating that BlackMax has low

sensitivity to the exact form of grey body factors. In this sense, in the absence of

the grey body factors for graviton emission from a rotating micro black hole one

may introduce an approximate profile for graviton emission and possibly study

the final products of the micro black hole decay. This may help one to see, in

particular, if the graviton emission increases with rotation and possibly competes

with emission of the SM particles.

For the case of non-rotating micro black holes we used CHARYBDIS2 to inves-

tigate the effect of grey-body factors. We switched off the grey body factors at
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Figure 2.13: (a) Energy power spectrum from a gauge field and (b) gauge boson

multiplicity

two different energies, Ecm = 14 and 100 TeV, in CHARYBDIS2 and we com-

pared the multiplicity of the positively charged quarks and gravitons with the

time that this switch was on figure (2.15). One can see that even in the case of

non-rotating micro black holes final product is not changing drastically with or

without including grey body factors. It is evident in figure (2.15b) that for higher

energies the effect of grey-body factor is more weak suggesting that the spectrum

is more like the black body spectrum.
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Figure 2.14: (a) Energy power spectrum from a spinor field, (b) and (c) quark

and charged lepton multiplicities
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Figure 2.15: (a) Quarks, gluons and (b) graviton multiplicity with grey body

factor switch on and off.
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3

Quasi-Normal Modes

One way to study the properties of a black hole is to investigate how the black hole

interacts with its environment. One can carry out this investigation by perturbing

the black hole space-time and then studying how the black hole responds to this

perturbation. The black hole space-time can be perturbed by scattering of the

wave packets on the black hole [56], letting a test particle fall into the black hole

or passing close by black hole [57, 58, 59], etc.

The first study regarding scattering of radiation by a black hole was carried out

by Vishveshwara [56]. He found that black holes leave their fingerprints on the

scattered waves and using these fingerprints one can obtain useful information

about the black hole and the related space-time.

3.1 Quasi-normal modes

It is known that when we excite objects they respond to the excitation with a

very specific sound that is like their fingerprint. The same thing holds also for

black holes. It should be noted that response to the perturbation of the black

hole space-time, either by oscillation of fields in its vicinity or oscillation of the

space-time itself, is part of the evolution of the gravitational waves emission in

time. In general this evolution can be divided into three stages: first an initial

wave burst in a relatively short time by the source of perturbation, then a long

period of exponentially damped “ringing” or oscillations that are dominated by

frequencies that do not depend on the source of the perturbation, the so called
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“quasi-normal modes”, and finally a power law tail suppression of QNMs at very

large time, see figure (3.1). The frequencies associated to the QNMs are called

“quasi-normal frequencies”.

Figure 3.1: Left: response of the Schwarzschild black hole to the perturbation by

a gaussian wave packet. Right: Evolution of gaussian wave packet in vicinity of a

Schwarzschild black hole in log-scale.

3.1.1 Quasi-normal modes vs. normal modes

Lets consider some familiar objects around us like a bell, a guitar or a pendulum.

If we excite these systems their response to the excitation is by set of natural real

frequencies, the normal frequencies, that is given as a superposition of stationary

modes, the normal modes. If one neglects the dissipation the preferred time

dependent harmonic states [60] of motion are

χn(t, x) = eiωntχn(x), n = 1, 2, 3, ..., (3.1)

where ωn’s are real and we can assume that χ is some complex valued field and

the general solution can be expressed as a superposition of normal modes

χ(t, x) =
∞∑
n=1

ane
iωntχn(x). (3.2)

Normal modes are stationary states, namely if a system oscillates in a purely

normal mode, it will never stop oscillating. Clearly, when we assume that there

is no damping this means that these modes form a complete set. However in a
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more realistic case, with considering an energy loss mechanism, modes (QNMs)

will not form a complete set and it is not possible to write a stationary normal

mode expansion because these modes appear only over a limited time interval.

The latter situation is relevant for black holes; when their space-time oscillations

generate gravitational waves that carry energy to infinity. So dissipation here

cannot be neglected and that’s why their characteristic sounds are expressed by

quasi-normal modes not normal modes. Here “quasi” means that the system is

open and it loses energy through gravitational wave radiation. [3]

3.1.2 Quasi-normal modes importance

Black hole parameters The importance of the study of quasi normal modes

is very much related to the crucial role that black holes play in general

relativity. Black holes can be described by their intrinsic parameters: mass,

angular momentum and charge and they may be counted as the hydrogen

atom of quantum mechanics. So any tool that leads us to an estimation of

these parameters is valuable and one way to identify these parameters is

using quasi normal frequencies.

Gravitational wave detection Another motivation for studying quasi normal

modes comes from gravitational wave detection. In general these signals are

so weak that in order to be able to detect them one needs strong source of

gravitational wave emission such as black hole collisions or stellar collapse

[61]. There are various experiments that have been designed to detect grav-

itational waves and between them experiments like LISA [62], VIRGO [63]

and LIGO [64] are to detect gravitational wave signals from black holes.

The dominant signal that may be detected will be the signals from fun-

damental modes: quasi normal mode with the lowest frequency or lowest

imaginary part.

Thermalization time-scales in the AdS/CFT On one hand we know that

QCD is based on the gauge group SU(3) and at low energies QCD becomes

strongly coupled and very difficult to study. This is because one cannot use

perturbative methods to study processes involving energies of the order of
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ΛQCD or lower. At these energies one can use conformal field theory that

includes SU(N) Yang-Mills theory in the limit N →∞ and study the fields

using perturbative methods.

On the other hand one has string theory that contains a particle with

zero mass and spin two, namely graviton. The correspondence between

these theories at very large N limit ( inverse string coupling constant in

string theory) is called the AdS/CFT correspondence [65]. According to

the AdS/CFT correspondence (gauge-gravity duality), a black hole in AdS

space-time corresponds to an approximately thermal state of a strongly

coupled system in the CFT. The AdS/CFT offers an approach to deal with

non-perturbative nature of QCD. For example it is possible to perform the

expansion of the correlators on the supergravity part and using them obtain

correlation functions in a gauge theory at strong coupling.

Quasi normal modes as the response to the black hole perturbation in AdS

space-time are the same as the response to the perturbation of a thermal

system. It is very complicated to calculate these modes in the strongly cou-

pled systems in CFT but one can calculate these modes using black hole

perturbation. Finally one can compute the thermalization time-scale in the

strongly coupled CFT from the quasi normal frequencies [66] that have been

computed in AdS.

Black hole area quantization The Ehrenfest principle [67] states that any

classical adiabatic invariant corresponds to a quantum entity with discrete

spectrum. Using this principle Bekenstein conjectured that the horizon

area of a non-extremal quantum black hole that behaves like an adiabatic

invariant should have a discrete eigenvalue spectrum [68]. In [69] Beken-

stein suggests that when a black hole captures a neutral particle, its horizon

area will change. This area is minimized when the particle center of mass

is at a turning point of a proper distance that cannot be smaller than ~/µ,

∼ its Compton wavelength, where µ is the rest mass of the particle. Us-

ing this assumption he set a lower bound on the increase of the black hole

surface area. Later Hod [70] set the lower bound on the area increase for

the situation that the black hole captures a charged particle. Although the
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physical mechanisms where different for two cases of charged and neutral

particles the latter lower bound was at the same order of magnitude as the

neutral case. After finding this universality Hod suggested that the black

hole surface area has the following form

An = γnl2p, n = 1, 2, 3, ..., (3.3)

where γ is a dimensionless constant that can be determined using the black

hole quasi normal modes, and lp is the Planck length. At the next step

Hod investigated the black hole perturbation equations and quasi-normal

modes as the solutions to these equations. He considered the asymptotic

limit of quasi normal modes in which the mode number n→∞. This limit

was considered because his analysis was based on “Bohr’s correspondence

principle” which naively says “quantum transitions should not take time”

[70]. When n → ∞ the black hole oscillations are highly damped which

means they have very big imaginary part and consequently a very small

relaxation time (τ = ω−1
I ). These modes for the Schwarzschild black hole

[71] are given by

Mωn = 0.0437123− i

4

(
n+

1

2

)
+O

[
(n+ 1)−1/2

]
. (3.4)

Hod argued that the numerical value of the real part of (3.4), ωR, agrees

with the expression (ln 3)/(8π). He justified this by using the relations A =

16πM2 and dM = E = ~ω. He found that ∆A = 4l2p ln 3 and consequently

γ = 4 ln 3. Finally he conclude that the area spectrum for the quantum

Schwarzschild black hole is given by

An = 4 n l2p ln 3, n = 1, 2, 3, .... (3.5)

Hod established these results just according to the numerical coincidence

however later on Motl [72] and Motl and Neitzke [32] obtained the same

results using analytical techniques. We should mention that this result does

not depend much on the details of black hole geometry.

59



3. QUASI-NORMAL MODES

3.1.3 Quasi-normal modes and black hole parameters

Black hole quasi normal modes may provide help to identify the black hole pa-

rameters. If one considers the Schwarzschild, Reissner-Nordstrom or Kerr black

holes, the fundamental parameters are mass, charge and angular momentum ac-

cordingly. One should note that depending on the type of black hole under con-

sideration we may be able to extract some helpful information from quasi-normal

mode about other parameters like cosmological constant, extra dimensions, ex-

ternal magnetic field. The dependence of these parameters on the quasi normal

modes for the case of three former types is described in below.

Black hole mass It is possible to investigate the dependence of quasi-normal

modes on the mass of a black hole using two different assumptions. We

may either assume that the mass is not changing by considering a stationary

background like Schwarzschild or we may consider the black hole mass as a

function of time in the case of evaporating black holes in a time dependent

background like Vaidya background [73, 74].

For instance the fundamental quasi normal frequency for the quadrupole

mode (l = 2) in Schwarzschild background in geometrical units is given by

[3]

ωM = 0.37367− 0.08896i (3.6)

To convert (3.6) into kHz, one can multiply ωM by 2π(5.14kHz)M�/M

then the oscillation frequency is

ν = νR + iνI = (12.074− 2.875i)
M�
M

kHz (3.7)

The real part of ν is the frequency and 1
νI

represents the damping timescale.

It is worthwhile to mention that the band width of a ground based gravi-

tational interferometer like Virgo and LIGO is about 10 - 40Hz up to few

kHz and this can detect the signal from black holes with mass range

10M� .M . 103M� (3.8)

The same dependence (ω ∼M−1) holds for the case of time-dependent black

hole background. It should be noted that the black hole mass changes with
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time in realistic cases. A Schwarzschild black hole gaining or losing mass

via absorption or evaporation is a good example. In [75] the evolution of

the massless scalar field in the time-dependent Schwarzschild black hole

background have been studied numerically. It has been shown that in con-

trary with the stationary black hole case the decay and oscillation timescale

change with the evolution of time. In the absorption process that black hole

gains mass, both the real and imaginary parts of the quasi-normal frequen-

cies decrease with the increase of time. While when the black hole loses

mass, both the real and imaginary parts of the quasi-normal frequencies

increase with the increase of time.

We will discuss about this kind of space-time in more detail in chapter (6).

Black hole electric charge The relation between the quasi normal modes and

black hole electric charge, Q, has been investigated with study of the

Reissner-Nordstrom black hole in [76, 77]. To study the perturbation equa-

tions in this charged background one might consider both axial and polar

modes, however quasi normal modes for both of these perturbations are

identical as the two effective potentials carry the same physical information.

For small electric charge both the oscillation frequency and damping rate

increase with increase of Q. If one considers electromagnetic perturbations

in this background, because of electric charges there will be interactions

between these two fields. This effect may increase the electric charge and

oscillation frequency while the damping rate decreases.

Black hole angular momentum To understand the relation between the black

hole rotation parameter and black hole quasi normal modes one can cal-

culate the quasi normal modes of the Kerr black hole [78]. In the Kerr

geometry quasi normal modes are distinguished by their azimuthal and

longitudinal indices m and l and also by their overtone number n. Quasi

normal modes of Kerr black hole are functions of the rotation parameter a

and total black hole mass M . Depending on different l and m the behavior

of the real and imaginary parts of the quasi normal modes may change. For

any kinds of perturbation the damping rate depends on whether m > 0 or

m < 0. For increasing a, with m > 0 the damping rate decreases, also for
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m < 0 damping rate decreases but more quickly while oscillation frequency

increases with increase of m. For all kinds of perturbations in the high

damping limit the behavior is universal. In the high damping limit, the

real part of all modes with m > 0 typically shows a minimum as a function

of the rotation parameter a, and then approaches the limit ωR = m for

a→M [79].

Detailed study of quasi-normal modes of rotating black holes is always of

interest because it will give information about the stability of the black

hole. We will discuss this issue in details in this chapter.

3.1.4 Quasi-normal tail

At the beginning of this chapter we discussed about three different stages of the

response of a black hole to the perturbation. The last stage of this respond is a

power law falloff of the field. This phenomenon is known as quasi normal tail. It

was first shown by Price [80] that for the Schwarzschild geometry at late times

of the formation a black hole in any multipoles with l ≥ s of a field perturbation

with spin, s, slowly dies with a power-law tail,

ψ ∼ t−(2l+p+1). (3.9)

Where p depends on the presence of a static l-pole field. For the field outside the

star prior to the onset of the collapse p = 1. If developing the l-pole perturbation

takes place during collapse process p = 2. He argued that this tail is because

of backscattering of the potential at very large spacial distances. This behavior

was confirmed by numerical studies in linearized perturbation as well as in a non-

linear evolution [81, 82] . What we mean by tail is the decay of the wave as the

tail of the perturbation at late times is not a sharp cut off of the wave. This

behavior is the same for stars and black holes because it is independent of the

initial data and it only depends on the asymptotic far region. These power law

tails form even when no horizon is present in the background.
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3.1.4.1 Green’s function approach

Beside explaining this phenomena by considering it as the result of the gravita-

tional wave scattering from the effective potential, it can be also explained by

considering it as the branch cut in the associated Green’s function [2, 3]. Using

the Klein-Gordon equation (2.7) (without implying Ψ ∼ e−iωt), the time evolution

of the field Ψ(r∗, t) can be written as

Ψ(r∗, t) =

∫
dr′∗G(r∗, r

′
∗; t)∂tΨ(r′∗, 0) +

∫
dr′∗∂tG(r∗, r

′
∗; t)Ψ(r′∗, 0), (3.10)

using (2.7) one can define two operators D and D̄(ω) which act on Green’s func-

tion as

DG(r∗, r
′
∗; t) = δ(t)δ(r∗ − r′∗), D̄(ω)Ḡ(r∗, r

′
∗;ω) = δ(r∗ − r′∗) (3.11)

We can consider that the potential is zero at left and right boundaries. The

boundary condition at infinity is purely outgoing for both black holes and stars

while for the left boundary depending on the object that we may consider it can

be

Boundary condition =

 Black holes Ψ̄(r∗, 0) ∝ e−iωt, r∗ → −∞

Stars Ψ̄(r∗, 0)→ 0, r∗ → 0
(3.12)

Taking two functions f(ω, r∗) and g(ω, r∗) that satisfy the left and right boundary

conditions respectively as the solution of the equation

D̄(ω)f(ω, r∗) = D̄(ω)g(ω, r∗) = 0 (3.13)

one can write

Ḡ(r∗, r
′
∗;ω) =

 f(ω, r∗)g(ω, r′∗)/W (ω) , r∗ < r′∗

f(ω, r′∗)g(ω, r∗)/W (ω) , r∗ > r′∗

(3.14)

where W (ω) is the Wronskian of g and f functions. If one considers the inverse

transformation

Ḡ(r∗, r
′
∗;ω) =

∫ ∞
0

dt G(r∗, r
′
∗; t) eiωt, (3.15)
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3. QUASI-NORMAL MODES

Figure 3.2: Singularity structure of Ḡ(r∗, r
′
∗;ω) in the lower half of ω plane [2]

one may close the counter on the complex ω−plane by a semicircle with radius C

in the lower half plane where it will led to take the limit C →∞, see figure (3.2).

Then one has to consider the the negative imaginary part of the ω−plane because

of the singularities of the Green’s function. Apart from the shape of potential

the function g(ω, r∗) that was to satisfy the boundary condition in spatial infinity

has form of the branch cut on Imω < 0 and this contribution is called tail

contribution.

It should be noted that the decay tail for massive and massless fields is not the

same. If one considers the massive fields the late time tail is more oscillating than

decaying [83]. In fact quasi normal oscillations decay with an oscillatory inverse

power tail profile. In this case a late time tail will appear in the Minkowski space

time, this space time is dispersive for the massive field and this may cause a

different decay behavior. For instance for a massive scalar field in the Minkowski

space time the late time tail has the form [3]

|Ψflat| ∼ t−`−
3
2 sinµt, (3.16)

where µ is the inverse Compton wavelength.

The late time behavior for D-dimensional (D > 4) backgrounds also have a differ-

ent form depending on whether D is even or odd. The reason is that the Green’s

function has completely different structure for odd and even dimensions [61]. In

odd dimensional background tail is due to the contribution of flat background

Green’s function

|Ψodd| ∼ t−(2`+D−2), (3.17)
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3.2 Quasi-normal modes: derivation

however for even D-dimensional background there is not such a contribution and

all the contribution to the tail is from black hole itself

|Ψeven| ∼ t−(2`+3D−8). (3.18)

As it is clear for the even D-dimensional background the power-law decay takes

place more rapidly than the odd D-dimensional one.

3.2 Quasi-normal modes: derivation

To calculate quasi-normal modes one needs to perturb the related wave equation

in the assumed background. The type of the quasi-normal modes will depend on

the type of ordinary differential equations that one solves. One may consider per-

turbations to the scalar field, electromagnetic field for scalar and electromagnetic

quasi-normal modes or the linearized perturbation to the Einstein’s equations

itself to obtain gravitational quasi-normal modes. The methods for studying all

of these three kinds are not different regarding each case, but in general there

are various methods to calculate quasi-normal modes and we will explain some of

them in the following. The most important thing to derive quasi normal modes

is defining the proper boundary conditions.

3.2.1 Boundary conditions

To determine the quasi-normal modes of any kind one has to solve the wave

equations that we discussed earlier. Solutions to these equations should satisfy

specific boundary conditions both at the black hole horizon and at null infinity.

If we consider the case of the Schwarzschild black hole an asymptotically flat

space-time, quasi-normal modes will be defined by the condition that there are

only pure ingoing waves at the event horizon and a purely outgoing wave at null

infinity.

For instance, if Ψevent horizon ∼ e−iωr∗ and Ψnull infinity ∼ eiωr∗ are two indepen-

dent solutions at the event horizon and null infinity for vanishing potential at

these points, it is easy to see that the required boundary conditions has been
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3. QUASI-NORMAL MODES

satisfied

Ψevent horizon ∼ pure ingoing wave ∼ e−iωr∗ , r∗ → −∞ (3.19)

and far from horizon in null infinity

Ψnull infinity ∼ pure outgoing wave ∼ eiωr∗ , r∗ → +∞ (3.20)

At event horizon we have a purely in-going wave because this solution has not

seen the potential yet while solution to the wave equation far from horizon can

have both ingoing and outgoing parts due to the effective potential that out to

get through it. This potential falls off asymptotically both at the event horizon

and null infinity. In this case boundary condition has to be imposed in such a

way that the in-going part of the solution at infinity cannot survive. Then one

only remains with purely out-going wave at infinity.

3.2.2 Analytical methods and numerical integration of per-

turbations equations

Because of the importance of the quasi normal modes in gravitational wave detec-

tion and determining the black hole parameters various analytical, semi-analytical

and numerical methods have been developed during the recent years. We will

give a short explanation of some of them in the following section. Details of these

methods have been presented in [3].

The numerical method for integration of the wave equation has been presented in

various literature. The method that mostly has been used is originally introduced

by Gundlach, Price and Pullin in [81]. According to this integration technique

one should rewrite the wave equation in the light cone coordinates. Thus we

rewrite the wave equation like (2.7) in the new light cone coordinates (u, v)(
4
∂2

∂u∂v
+ V (u, v)

)
Ψ(u, v) = 0, (3.21)

to integrate (3.21) numerically, we act the time evolution operator

exp

(
h
∂

∂t

)
= exp

(
h
∂

∂u
+ h

∂

∂v

)
(3.22)
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3.2 Quasi-normal modes: derivation

on Ψ(u, v) and we use (3.21) to obtain

ΨN = ΨE + ΨW −ΨS − V`
h2

8
(ΨE + ΨW ) +O(h4) (3.23)

where the points N = (u+h, v+h), S = (u, v), E = (u, v+h), and W = (u+h, v)

form a null rhombus, figure (3.3), and h is the grid scale factor. We can calculate

the values of the Ψ function inside the rhombus that is build on two null surfaces

u = u0 and v = v0 starting from initial data specified on them. In this way

one can find out the time-domain profile of the perturbation. Then using other

methods like Prony method [3] one can extract the quasi normal frequencies from

the time-domain profile of the perturbation.

Figure 3.3: The integration grid. Each cell of the grid represents an integration

step. The points illustrate the choice of (S, W , E, and N) for the particular step

of the integration. The initial data are specified on the left and bottom sides of

the rhombus. [3].

3.2.2.1 WKB method

This method is a semi-analytic technique that is based on an analogy between

perturbative equations in the Schwarzschild background and the Schrödinger

equation of a particle encountering a potential barrier. For instance, consider

a Schrödinger like wave equation

d2ψ

dr2
+R(r)ψ = 0 (3.24)
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3. QUASI-NORMAL MODES

where R(r) has the form

R(r) =
1

f(r)2
(ω2 − V (r)) (3.25)

where ω is a complex frequency, V (r) is the potential and f(r) is the black hole

metric function. The two complex and linearly independent solutions to the wave

equation (3.24) are Ψt
1(r) = Q−1/2(r) exp (+i

∫ r
t
Q(r′)dr′)

Ψt
2(r) = Q−1/2(r) exp (−i

∫ r
t
Q(r′)dr′)

(3.26)

where Q2 = R. Having the asymptotic WKB solution of the wave equation at

both event horizon and spatial infinity, one needs to match these solutions near

the top of the potential barrier.

This method is applicable for the equations that include the effective potential

that approaches a constant value at the event horizon and at spatial infinity. Us-

ing this method one can derive a formula that gives the real and imaginary part

of the quasi normal frequency in terms of the black hole parameters.

For instance in the large multipole limits the quasi normal modes of the Schwarzschild

black holes for the Pochl-Teller potential [84] were calculated [85]

ω =
1

3
√

3M

(
`+

1

2
− (k +

1

2
)i

)
+O(

1

`
), (3.27)

where k is the overtone number and ` is multipole number. This formula is valid

for scalar, Dirac and electromagnetic fields.

The WKB method is a powerful method in the case of wave propagation in

stationary background, however for the cases that mass or charge are function of

time this method is less accurate [74].

3.2.2.2 Continued fraction

The continued fraction method is an accurate method for calculating the quasi

normal modes. This method was first applied by Leaver [86]. According to this

method if one lets Ψ(t, r, θ, φ) be a component of a perturbation to a massless

spin s field, the wave equation is

r(r − 1)Ψ`,rr + Ψ`,r −
[
ρ2r3

r − 1
+ `(`+ 1)− ε

r

]
Ψ` = 0, (3.28)
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3.2 Quasi-normal modes: derivation

where ρ = −iω is a new frequency variable and ε = −1, 0,+3 stands for scalar,

electromagnetic or gravitational field respectively. Applying the boundry condi-

tions at the event horizon r = 1 and spatial infinity r = +∞, the solution can be

written as

Ψ` = (r − 1)ρr−2ρe−ρ(r−1)

∞∑
n=0

an(
r − 1

r
)n (3.29)

The boundary conditions will be satisfied for those values of ω = ωn, quasi

normal modes, that makes (3.29) convergent. The expansion coefficient an can

be determined by the following recurrence relation that starts with a0 = 1

α0a1 + β0a0 = 0, (3.30)

αnan+1 + βnan + γnan−1 = 0, n = 1, 2... (3.31)

where αn, βn and γn are simple functions of n, ρ and other parameters of dif-

ferential equation. This recurrence relation gives us the condition under which

the series in (3.29) is convergent. For this purpose, if one looks at the n → ∞
behavior of the an coefficients, one can find that the ans form a solution sequence

to the recurrence relation (5.4) and the ratio of successive an can be written in

the form of a continued fraction

an+1

an
=
−γn+1

βn+1−
αn+1γn+2

βn+2−
αn+2γn+3

βn+3−
..., (3.32)

this equation is like an n = ∞ boundary condition on the sequence an. Thus

from (3.32) at n = 0 and using (3.30) at n = 0 as boundary condition on the

ratio a1
a0

we will get two expressions such that if we equate them we will have

0 = β0 −
−γ1

β1−
α1γ2

β2−
α2γ3

β3−
... (3.33)

as αn, βn and γn are functions of the frequency ρ, and the determination of quasi

normal frequency can be carried out by finding the roots of (3.33) numerically.

It turns out that the convergence of the continued fraction is slow when the

imaginary part of the quasi-normal frequency increases in comparison with its

real part. This problem is investigated by Nollert at [71].
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3.3 (In)stability

Knowing whether a black hole solution or in general a compact object is stable

against perturbations or not is a very important issue in physical studies. The

4-dimensional solutions of Einstein’s field equations are guaranteed to exist by

the uniqueness theorem, however higher dimensional solutions require some other

methods to approve their existence since uniqueness theorem is not applicable for

these solutions.

One way to verify the existence of higher dimensional solutions is by proving that

the assumed solution is stable under small perturbations. There are different

ways to investigate the stability of a solution against perturbations. To inves-

tigate the stability of a wave equation one should consider all the three types

of perturbations, namely, scalar (in D = 4 polar), vector (in D = 4 axial) and

tensor perturbations. Studies of 4-dimensional solutions have shown that they

are usually stable against perturbations but for higher dimensional black holes

the scenario is different because different types of instabilities will emerge when

one studies them.Types of instabilities for the case of non-rotating and rotating

black holes are also different.

The instabilities of higher-dimensional rotating black holes, like the Myers-Perry

solution, have received much attention in recent years. Though the full analy-

sis of this case is not available as the perturbation equations are not separable,

the numerical study for some special case of this solution shows the existence of

instabilities for large angular momentum [87].

3.3.1 What do the quasi-normal modes tell

us about (in)stabilities?

One method to find out about in(stability) of a solution is by studying the quasi

normal modes. If one investigates these modes either numerically or analytically

and finds out that all of them decay in the time domain, it means that the solution

is stable but if even one of the modes is growing this tells us that the solution is

unstable.

We mentioned earlier in this chapter that the quasi normal frequencies have
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3.3 (In)stability

complex forms and the imaginary part of this frequency shows how damped the

oscillation on that frequency is, taking into account that damping means that the

imaginary part has to be negative. Hence modes that have positive imaginary

parts can be considered as the growing modes and existence of these modes implies

the existence of an instability. If one can show that there are no growing modes

in the quasi-normal frequency spectrum of a black hole, this can be a proof of

the stability of a black hole. In other words, modes with positive imaginary

parts, unstable modes, are purely imaginary, namely, they have zero real parts.

This means that these modes are non-oscillatory [88]. Beside the non-oscillatory

property of unstable modes, one can distinguish them from the evolution of the

time domain profile. For instance consider figure (3.4).

 0.0001

 0.001

 0.01

 0.1

 0  50  100

d

t / µ1/3

Figure 3.4: Evolution of deformation parameter η for 6-dimensional Myers-Perry

black hole of single spin parameter for different initial spin parameters between

1.039 to 0.674 from upper to lower curves and for initial perturbation amplitude

equal to 0.005 [4].

As is clear from an initial spin parameter (red thick solid curve) to higher initial

spin parameters, the deformation parameter increases exponentially with time

which shows an instability, otherwise, an exponential damping is seen for the

curves below the red thick solid curve and the growth and damping rates of η are

quite small, showing an stability [4]. For the curves that indicate instability, the
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3. QUASI-NORMAL MODES

Figure 3.5: The picture of instability, developing at large multipole numbers:

D = 6, ` = 8 (red), ` = 12 (green), ` = 16 (blue), α = 1.3. Tensor type of

gravitational perturbations [5].

time domain of the instability starts immediately after the initial outburst.

There is also another possibility that the time domain of evolution develops after

a long period of damped quasi-normal oscillations. An example is from the black

holes in the Einstein-Gauss-Bonnet theory. One can see in figure (3.5) that as

the multipole number increases the instability starts earlier in the time-domain

evolution [5].
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Large-D limit method

We all know that Einstein’s equations even in the simplest case of symmetric

vacuum solutions are not easy to solve. One way that helps to deal with the

difficulties is by using numerical relativity but even in this case one may encounter

some numbers that are not easy to explain. Thus having an analytical solution

is always preferable. One can learn from SU(N) Yang-Mills and Chern-Simons

gauge theories that while number of colors N is large one can use a very small

parameter, 1/N , to simplify these theories and extract more physics out of them.

This method was introduced by ,t Hooft in [89] and is a very powerful non-

perturbative method to investigate non-linear gauge theories. The successful

application of the method of the large N limit to study the structure of gauge

theories like Yang-Mills and Chern-Simons theories was a motivation to search

for a very small parameter in general relativity as well.

The natural parameter in general relativity is the number of space-like dimensions

D. If one takes this parameter to be very large then one may find very small

parameter 1/D and expansion using this small parameter enables one to perform

perturbative calculations and understand different aspects of general relativity.

One should notice that taking the number of space-like dimensions to be large

doesn’t mean that there are infinite number of dimensions, however this can be

a tool to help us to highlight some aspects of the theory that are hard to study

by the other means. As the gauge group of gravity is the local Lorentz group

SO(D − 1, 1), it is possible to extract a lot of information by study of the 1
D

expansion using the large D method. Of course there are analogies between
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4. LARGE-D LIMIT METHOD

the large D limit and the large N limit techniques but one should not forget

that D is the dimensionally of space-time which may impose more difficulties in

calculations compared to the large N limit calculations of SU(N) gauge theories.

Thus one should note that it is not clear if this works in the quantum gravity

level or not but what confidently have been confirmed is the application of this

method in the context of classical general relativity. This is because classical

general relativity is very well defined in any number of dimensions. One can say

that general relativity is the theory of black holes and using the large-D method

[90] is an alternative method for studying this theory and its fundamental objects,

black holes. You will see in the following section that in this limit black holes

will behave like non interacting particles and one can consider them as a system

of dust particles. Using this method general relativity may simplify drastically.

This simplification is the result of the appearance of two scales in the theory; one

very small 1/D and one very large r0, the horizon radius. The hierarchy between

these two scales defines two different regions in black hole space time while each

of these regions contains different physics.

Although the idea of the large D limit has been already discussed in [91, 92, 93],

it was just recently that was shown that black holes can be considered as non

interacting particles that they do not attract each other and their collision cross

sections vanishes [90] and in this chapter we follow the logic of this recent study.

4.1 Vacuum solution in large D limit

For a start we consider the Schwarzschild-Tangherlini solution, a solution that

generalizes the four-dimensional Schwarzschild solution, in D = 3 +n dimensions

with a horizon r0

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

n+1, f(r) = 1−
(r0

r

)n
, (4.1)

where dΩ2
n+1 is the line element of the (n+1)-sphere. When D → ∞ this area

will decrease in the radial direction rapidly as the number of dimension grows.

This also implies a vanishing cross section for colliding black holes. In general
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one can say that the large D black hole is very small. For instance consider the

length scale which is related to the surface gravity at the horizon r0 by

`κ = κ−1 ∼ r0

D
, (4.2)

it is clear that in the limit where D →∞ this length scale is much smaller than

the horizon radius r0.

Note that if one considers D as a large parameter, it is appropriate to keep r0

fixed. In this regard because of very strong localization of the gravitational field

in this limit the length scale r0
D

appears to be very small. This is like a measure for

the extension of a near horizon region, where all the non-trivial physics happens,

and this scale for large D is very small as well.

The potential develops a very large gradient near the horizon, ∼ D/r0. This

means that the geometry at distance scales of r0 from the horizon is flat. More-

over, because of lack of any gravitational field outside the horizon the horizon

acts like a surface of infinite curvature. This implies that there is no interaction

between black holes.

By introducing a new coordinate R = (r/r0)n and considering that at large n

near the horizon the limit is defined by lnR � n, the metric (4.1) will turn to

[94]

ds2 = −R− 1

R
dt2 +

r2
0

n2

dR2

R(R− 1)
+ r0dΩ2

n+1 (4.3)

for the near horizon region.

4.1.1 Different regions in large D limit

One of the important features of the large D limit is scale hierarchy. There is a

hierarchy between the parameter 1/D compared to the radius of the horizon r0

r0

D
� r0 (4.4)

This hierarchy has some implications that results in the classification of the dif-

ferent regions in the black hole space-time. One can define a far region where

|r − r0| � r0/D and a near region where |r − r0| � r0. The far region has the

trivial geometry of flat space-time. The near region, influenced by the dynamics
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of the black hole itself, has the non-trivial but well known geometry of the two

dimensional string black hole [94]. There is also an overlap region in which the

far and near regions interact, r0/D � |r − r0| � r0. For a better understand-

ing of this geometry one can consider a sphere of influence. If r0 is the horizon

radius at the D → ∞ the gravitational field will effectively vanish for all r > r0

however for large but finite D there is a very small area around the horizon,

r − r0 . r0/D + O(D−2), where the black hole still exerts some gravitational

influence and it will vanish exponentially fast outside this region.

This means that if a particle falls into the black hole, it takes some times to reach

the singularity at r = 0. It is possible to calculate the proper time of this particle

between the moment that it crosses the radius r = R until it reaches r = 0. This

time is

t =

∫
dr

(
r

r0

)(D−3)/2

=
2r0

D − 1

(
R

r0

)D−1
2

, (4.5)

in the large D limit this particle takes a time that diverges exponentially with D

to get to the region of the sphere of influence from any finite distance outside this

sphere but the time that it takes to get from the moment that it enters this region

until it reaches the singularity is very short; from (4.5) starting from r = r0 one

can find

t ' 2r0

D
+O(D−2). (4.6)

This particle spends most of this time in the sphere of influence that includes the

region r0− r . r0/D but after passing this region again it reaches the singularity

exponentially fast in D. This tells us that this interior is very small.

One may think that the existence of these regions is the result of taking the long

wavelength limit of the field that is propagating in the black hole background

however this is not the case here as having this structure in different regions is a

property of the geometry itself.

Although here we are speaking about the Schwarzschild-Tangherlini solution this

classification of different regions is valid for all black holes for which the horizon

length scale as well as their gravitational field remains finite at large D.
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4.1.2 Myers-Perry black hole

The Myers-Perry (MP) solution of Einstein’s equations describes the space-time

of a higher dimensional rotating black hole. For the odd space-time dimension

D = 2N +31 with equal angular momenta, ai = a, the metric is cohomogeneity-1

(only depends on the radial coordinate) and has the form [95]

ds2 = −g(r)

h(r)
dt2 +

1

g(r)
dr2 + r2h(r)(dψ−Ω(r)dt+Aadx

a)2 + r2ĝabdx
adxb, (4.7)

where

g(r) = 1−
(r0

r

)2N
(

1− a2

r2

)
, (4.8)

h(r) = 1 +
a2

r2

(r0

r

)2N

, (4.9)

Ω(r) =
a

r2h(r)

(r0

r

)2N

, (4.10)

and Aa is Kahler potential and ĝab is the Fubini-Study metric on CPN 2. One may

consider this form of MP solution because of the symmetries of CPN that will

help to decouple the perturbation equations when it is needed. However finally

using the relation between CPN harmonics and spherical harmonic of S2N+1 one

can get the desired results. The solution (4.7) is asymptotically flat and the event

horizon is located at r = r+, the largest positive root of g(r) where r+ can be

defined as the size of the CPN factor of the horizon. At large N , r+ becomes [96]

r+ ' r0

(
1− a2

r2
0

)1/2N

, (4.11)

and at any r > r+ the space time is flat when N →∞. If one takes the large N

limit in (4.11) one gets

r+ = r0(1 +O(N−1)) (4.12)

1MP solution is parametrized by a mass radius parameter, r0, and b(D − 1)/2c angular

momenta, so when D is odd one get N + 1 independent angular momenta which enhance the

symmetry.
2See Appendix (B) for more details
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Then one can set r0 = 1 for the rest of the calculations. One should note that

here a and r0 are kept fixed in such a way that the metric remains finite and in

general one can take a < r0 in large N to be away from extremal limit of angular

momentum.

To get the form of the metric in the near zone region, one can change the coor-

dinate in (4.7) as follows

R = r2N

(
1− a2

r2

)−1

, (4.13)

and setting a = tanhα gives

ds2 =
1

4N2

dR2

R(R− 1)
− (1− cosh2 α

R
)dt2 + (1 +

sinh2 α

R
)(dψ + Aadx

a)2

− 2 sinhα coshα

R
dt(dψ + Aadx

a) + ĝabdx
adxb.

(4.14)

If one takes α = 0, the limit where there is no rotation, the Schwarzschild metric

in the near zone region can be recovered. Alternatively, there is possibility to

implement the following frame transformations to get to the (4.14) again as it

has been shown in [96].

dt→ dt coshα− (dψ + Aadx
a) sinhα, (4.15)

dψ + Aadx
a → (dψ + Aadx

a) coshα− dt sinhα. (4.16)

Thus one can say that the near zone metric (4.14) is just a local boost of the

near zone Schwarzschild metric. This is very important concept for the large D

analysis of a higher dimensional rotating black hole. The reason is that when

one considers the gravitational perturbations in the MP background which may

classify into scalar, vector and tensor type modes, the resulting equations for

each of these modes normally are coupled to each other and this makes them

analytically hopeless to solve. However, in the large D limit and using the former

boost relation, it will be less difficult to decouple the equations. This is a very big

achievement for this method as one can use the decoupled equations to investigate

the stability of the MP black hole, or one can use them to calculate the different

types of graviton emission into bulk from this rotating black hole, something that

up to now has been done only for some special class of MP solutions and only for

the tensor mode emission, not scalar and vector emissions.
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4.2 Quasi normal modes in the large D limit

4.2 Quasi normal modes in the large D limit

We have reviewed the quasi-normal mode physics in chapter (3). It is still inter-

esting to see how it would be possible to calculate these modes using the large D

limit method. In the large D limit quasi-normal modes, like other quantities in

this limit can be controlled by the scale r0/D. In [6] it has been shown that in the

large D limit a large class of black holes (non-extremal, static and asymptotically

flat ones) have a universal set of quasi normal mode with frequency that depends

only on the horizon radius

ω(`,k)r0 =
D

2
+ `−

(
eiπ

2

(
D

2
+ `

))1/3

ak, (4.17)

with ak

ak '
(

3π

8
(4k − 1)

)2/3

, (4.18)

where k is the overtone number. Equation (4.17) is only valid for modes such

that `/D and overtone number are of order D0. The damping ratio for these

modes goes like D−2/3 and their lifetime is very long in the r0/D time scale, so

they resonate almost like normal modes.

These modes can be classified into two different classes [97]. For the first class

in which most of them reside, a class of non-decoupled modes that are the non-

normalizable states of the near horizon geometry with frequencies of order D/r0.

The second type are the modes that can be decoupled from the asymptotic far

region and their frequencies are of order 1/r0. These modes have very small

amplitude and they cannot tunnel between the near and far regions so they will

be strongly suppressed in the far region.

If one considers a potential barrier close to the horizon, then the only waves that

can penetrate the potential are the ones with frequencies of order D because of the

height of the potential. For instance, in the case of the Schwarzschild space-time

Vmax → D2ω2
c . (4.19)

Where ωc is a critical frequency of O(1/D). It is clear that waves with frequencies

ω = O(1/r0) � D2ω2
c will be trapped either outside or inside the barrier and
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they don’t have a chance of tunneling as D → ∞. In figure (4.1) the effective

potential for large D is shown. Quasi normal modes correspond to bound states in

Figure 4.1: Effective potential at large D. The maximum of this potential is

a sharp peak at large D and the inverted potential −V that contains the least

damped modes for two lowest overtone numbers [6].

the inverted potential −V . These modes are the least damped modes with small

|Imω| for small overtone numbers k � D, and they are only sensitive to the

structure near the tip of the potential. One should note that this approximation

breaks down when k ∼ D. The right hand side of figure (4.1) represents the

barrier to the flat space time. Waves with frequencies ω > D/2r0 will be perfectly

absorbed by the black hole and waves with ω = O(D0/r0) will be perfectly

reflected by this potential. The sharp peak at r∗ = r0 is the same for most

of the background metrics in the large D limit and thus they share the same

universal modes, however their potential may have a more complicated structure

that is responsible for the other quasi normal modes that cannot be derived by

this calculation.

4.2.1 MP quasi normal modes using large D

Quasi normal modes of MP black holes have been discussed in [96] using the

large-D method to investigate the MP black hole instabilities. In this work they

have considered the odd dimensional MP and they assumed that all the angular

momenta are equal and non-zero. The quasi normal mode in this case can be
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4.2 Quasi normal modes in the large D limit

calculated by perturbing the metric (4.7) and solving the decoupled equations

by implementing the proper boundary conditions, ingoing at the event horizon

and outgoing in the asymptotic far region. We already mentioned that in the

asymptotically far region the space-time is flat, so if one requires purely outgoing

modes as a boundary condition at large space time dimension then it will result

in, far field solution = O(R−1). This can also be used to put constraints on the

overlap zone that subsequently gives a condition on near zone modes. Imple-

menting the ingoing boundary condition in the near region is more complicated

as this near region has the form of (4.14). The next step is to implement the

boundary condition at the event horizon in the near region. One can demand that

the metric perturbation must be regular at the event horizon. So near R = 1,

after expanding the perturbation at large N one will have

(R− 1)−2i(ω−mΩH)/κ = 1− i(ω − am)

2
√

1− a2N
log (R− 1)− (ω − am)2

8(1− a2)N2
(log (R− 1))2

+
i log (R− 1)

4(1− a2)3/2N2

[
−2a2(ω − am)− ((1− 2a2)ω + am) log (1− a2)

]
+O(N−3),

(4.20)

where κ is the surface gravity. The next-to-next-to-leading order frequencies of

perturbations with the regular boundary conditions satisfy the following cubic

equation

0 =
1

ω − a(m+ 2) + i(`− 2)
√

1− a2
[ω3 + ω2

(
−3am+ i(3`− 4)

√
1− a2

)
+ ω

(
3a2`2 − 6iam

√
1− a2(`− 1)− 6a2`+ 3a2m2 − 3`2 + 7`− 4

)
+ am(2 + (4a2 − 5)`+ 3(1− a2)`2 − a2m2)

+ i
√

1− a2(−(1− a2)`3 + (3− 2a2)`2 + `(3a2m2 − 2)− 2a2m2)].

(4.21)

Roots of this equation give the frequencies of the three independent quasi normal

modes. For instance, non-axisymmetric modes can be derived when ` = m, then

using (4.21) one can write

ω(1)
m,m = am− im

√
1− a2, (4.22)
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ω(2)
m,m = a(m− 1)−

√
(m− 1)(1− a2)− i

[
(m− 1)

√
1− a2 + a

√
m− 1

]
, (4.23)

ω(3)
m,m = a(m− 1) +

√
(m− 1)(1− a2)− i

[
(m− 1)

√
1− a2 − a

√
m− 1

]
. (4.24)

For axisymmetric modes when m = 0, one of the roots of (4.21) is purely imag-

inary and the other ones are related, Reω(+) = −Reω(−) and Imω(+) = Imω(−).

For the lowest mode ` = 2 one can find

ω
(0)
2,0, ω

(±)
2,0 = ±

√
1 + a2 − i

√
1− a2. (4.25)

4.3 (In)stability of black holes in the large-D

limit

(In)stability of black holes in general and more specifically stability of rotating

black holes in the MP back ground has received considerable attention in recent

years. We already mentioned in section (4.1.2) the difficulty of decoupling per-

turbation equations in the MP background, however, even in the simplest cases,

such as the Schwarzschild black hole, it is not trivial to carry out the decoupling

of the equations and determining the stability or instability directly from the

equations of motion.

It should be noted that for higher dimensional rotating black hole one should ex-

pect two kinds of instabilities: axisymmetric and non-axisymmetric instabilities.

These types of instabilities have been investigated in [4, 98, 99] numerically. In

[98] the gravitational perturbation equations for equal spin odd dimensional MP

black holes have been studied and it has been shown that these equation can

be reduced to ODEs with only radial dependance, but still coupled. Hence it

is not possible to solve them analytically. However, if one expands these equa-

tions in the large D limit [96] for zero rotation parameter, these equations can

be decoupled. One can do this for a = 0 because of the boost symmetry that

exists at leading order in the 1/D expansion when D →∞. This means that the
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MP metric is the boosted Schwarzschild metric up to leading order and coupling

effects appear for source terms only in the higher order equations in the 1/D

expansion. It should be noted that these source terms don’t have the boost sym-

metry. Fortunately even having the decoupled equation up to the leading term

means that one can solve the equations analytically. The analytical solution of

these equation shows that linearized gravitational perturbations become unstable

whenever the rotation parameter is larger than some critical value

ac
r∗

=

√
1− 1

`
, (4.26)

For the smallest critical value one finds the non-axisymmetric instability for the

dominant mode ` = m = 2
a

r∗
>

1√
2
. (4.27)

The dominant modes have complex frequencies and all of them satisfy the super-

radiance condition. For m = 0 the first unstable axisymmetric mode with ` = 4

gives
a

r∗
>

√
3

2
. (4.28)

and these axisymmetric modes are purely imaginary. Comparing these results

with the ones from the numerical calculation of [99] shows good agreement, which

again confirms the validity of the large-D limit as a tool for simplifying general

relativity.
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5

Grey-body factors in large-D

limit of general relativity

In [90] it has been shown that it is possible to use the large-D limit as a tool to

calculate the absorption probability or in a simple word the grey-body factors.

In that paper they have chosen to perturb a scalar field in a non-rotating back-

ground and solve the perturbation equations in the limit where the number of

spatial space-like dimension is large. While the grey-body factors for this kind of

perturbation and background are well known both analytically and numerically,

using the large-D method, it has been shown that it is possible to obtain the

same absorption probability as the ones that are already in the literature. This

motivated us to apply this method to calculate the absorption probability consid-

ering gravitational perturbations of a non-rotating background and if we could

obtain the same results as the ones in the literature we will apply it for more

sophisticated case of rotating black hole. To this end one needs to consider the

metric of the desired space-time in higher dimensions and write it in an appro-

priate coordinate to be more convenient when one takes the large-D limit. Then

one can write the perturbation equations for any incident field using the former

metric. The simplification in the large-D limit shows up when one tries to solve

the perturbation equations.

For example, considering the case of a scalar perturbation in the higher dimen-

sional Schwarzschild background, the solution to the wave equation can be char-

acterized by using the reflection Rl(ω) and absorption Tl(ω) amplitudes at infinity
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and at the horizon. Then the absorption probability is simply

γl(ω) = |Tl(ω)|2. (5.1)

In this chapter we will show that using this limit the expressions which will lead

us to a great simplification in this absorption probability.

5.1 Gravitational grey-body factor

The flat space-time has the following line-element

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΩ2

2+n (5.2)

where

f (r) = 1−
(r0

r

)n
(5.3)

The linearized gravitational perturbations of the metric (5.2) can be decomposed

into tensor (T), vector (V) and scalar (S) perturbations. The grey-body factors

can be found by solving the equation of motion using the classical scattering

theory in this space-time. The radial part of all these three kinds satisfies the

following equation

f
d

dr

(
f
dΦ

dr

)
+ (ω2 − V (r))Φ = 0, (5.4)

where V(r) is the radial potential and for the vector and tensor type1 can be

written as

V (r)T,V =
f (r)

r2

[
`(`+ n) +

n2 − 1

4
− q(n+ 1)2

4

(
1

r

)n]
, (5.5)

where we set the r0 = 1 and q will be equal to −1 and 3 for tensor and vector

type perturbations respectively. At large n we can write (5.4) as

f
d

dr

(
f
dΦ

dr

)
+ n2(ω̂2 − V̂ (r))Φ = 0, (5.6)

1The potential for scalar type is very different from tensor and vector types. In this chapter

we concentrate on tensor and vector type graviton emissions.
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with the potential

V̂T,V (r) =
1

4r2
[(1 + 4ˆ̀+ 4ˆ̀2)− (

1

r
)n(k + (1 + 2ˆ̀)2)], (5.7)

where we scaled ω and ` as

ω̂ =
ω

n
, ˆ̀=

`

n
, (5.8)

moreover we have ignored the term with power 2n, namely O(1/2r)2n term. The

maximum of this potential happens at

r = rmax = 1 +
1

n
log

n

2

(
1 +

k

4ˆ̀2

)
+O

(
1

n

)2

, (5.9)

for ˆ̀� 1. The value of the potential at this maximum is

V̂ (rmax) = (ˆ̀+ 1/2)2 +O

(
1

n

)
, (5.10)

and the maximum of the potential V̂ (r) occurs for the frequency ω̂ = ωc, so

ωc = ˆ̀+
1

2
+O

(
1

n

)
, (5.11)

while the maximum of V (r) is proportional to n2ω2
c , this implies that only waves
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Figure 5.1: (a) potential at n = 4 and ` = 2 and (b) potential at n = 1500 and

` = 2

with frequencies much larger than this frequency, nωc, can penetrate into the
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potential. Because in the limit where n→∞ the height of the potential becomes

infinite, only waves with large frequencies compare to this height have the chance

of tunneling through the potential. One should note that the maximum of this

potential at large D is the same for both vector and tensor type perturbations

figure (5.1).

5.1.1 The near-horizon solution

For the near horizon solution we should consider the radial distances close to the

horizon r ∼ r0 and we already set the r0 = 1. To solve the (5.6) we change the

variable as r → f (r) and after taking large-D limit we obtain

(1−f)fΦ′′(f)+(1−2f)Φ′(f)+

(
ω̂2

(1− f)f
−

ˆ̀(ˆ̀+ 1) + 1
4

1− f
+
q

4

)
Φ(f) = 0, (5.12)

changing the function Φ(f) = f α(1− f )βF (f) we will have

0 =(1− f)fF ′′(f) + (1 + 2α− 2f (α + β + 1))F ′(f)

+

(
q − 1

4
+ 2ω̂2 − α (2β + 1)− β − ˆ̀(ˆ̀+ 1)

)
F (f),

(5.13)

where

α = −iω̂, β = −
√
ωc2 − ω̂2, (5.14)

equation (5.13) is a hypergeometric equation with the solution

F (f) =A1 2F1(a, b, c; f)

+ A2(−1)−2αf−2α
2F1 (1 + a− c, 1 + b− c, 2− c; f) ,

(5.15)

where

a = α + β +
1

2
−
√
q + 1

2
, b = α + β +

1

2
+

√
q + 1

2
, c = 1 + 2α (5.16)

and A1 and A2 are the integration constants. The boundary condition at event

horizon demands that no outgoing wave should survive, thus we set A2 = 0 and

we use Φ(f) = f α(1− f )βF (f) to obtain the near horizon zone solution

ΦNH(f ) = A1f
α(1− f )βF (a, b, c; f ), (5.17)
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taking R = rn (5.17) becomes

ΦNH = A1

(
1− 1

R

)α(
1

R

)β
F (a, b, c; 1− 1

R
), (5.18)

using hypergeometric functions properties we can write (5.18) in the following

form

ΦNH = A1Γ(c)(R− 1)αR−(α+β)[
Γ(−2β) 2F1(a, b; a+ b− c+ 1; 1

R
)

Γ(c− a)Γ(c− b)

+
Γ(2β)R2β

2F1(c− a, c− b; c− a− b; 1
R

)

Γ(a)Γ(b)
].

(5.19)

If we take the limit 1 � logR � n, which will give us the behavior of the wave

at distances far from horizon, we will have

ΦNH = A1Γ(c)

[
Γ(−2β)

Γ(c− a)Γ(c− b)
R−β +

Γ(2β)

Γ(a)Γ(b)
Rβ

]
(5.20)

5.1.2 The far-field solution

Taking into account that in the far-field, where r →∞, we can set f (r)→ 1 and

equation (5.4) will be

Φ′′(r) + n2

(
ω̂2 − (ˆ̀+ 1/2)2 − 1/4n2

r2

)
Φ(r) = 0. (5.21)

Substituting Φ(r) = rαψ(r) we obtain

ψ′′(r) +
2α

r
ψ′(r) +

(
α(α− 1)

r2
+ n2

(
ω̂2 − (ˆ̀+ 1/2)2 − 1/4n2

r2

))
ψ(r) = 0.

(5.22)

Then we change the radial coordinate to r = z
ω

and we set α = 1/2

ψ′′(z) +
1

z
ψ′(z) +

(
1− ν2

z2

)
ψ(z) = 0, (5.23)

where ν = n(ω2
c − 1/4n2)1/2 and at n → ∞ it is equal to nωc. The solution to

(5.23) can be stated in terms of Bessel functions

ΦFF =
√
r(B1Jnωc(nrω̂) +B2Ynωc(nrω̂)) (5.24)
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If we take R = rn and we stretch the far field solution to smaller values of

r, some intermediate region between the horizon and the asymptotic region, or

equivalently using the following expression which is valid for frequencies smaller

than critical frequency ω̂ < ωc [90]

ω̂

ωc
r = sechα for ω̂ < ωc, (5.25)

equation (5.24) will turn into

ΦFF = R1/2n(B1Jnωc(nωc sechα) +B2Ynωc(nωc sechα)) (5.26)

Then in the limit that ν = nωc →∞ one can use Debye’s expansion

Jν(ν sechα) ∼ eν(tanhα−α)

√
2πν tanhα

Yν(ν sechα) ∼ −2eν(tanhα−α)

√
2πν tanhα

(5.27)

to expand the Bessel functions in (5.26)

ΦFF =
R1/2n

√
2πnωc tanhα

(B1e
−nωc(α−tanhα) − 2B2e

nωc(α−tanhα)), (5.28)

in the limit where 1� logR� n we have

α− tanhα = α0 − tanhα0 − tanhα0
lnR

n
+O(n−2), (5.29)

and using the above expansion (5.28) takes the form

ΦFF =
1√

2πnωc tanhα0

(
B1Kω̂R

−β − 2B2

Kω̂

Rβ

)
, (5.30)

where

β = −
√
ωc2 − ω̂2 = −ωc tanhα0, (5.31)

and

Kω̂ = e−nωc(α0−tanhα0) ω̂ < ωc. (5.32)

If we expand the far field solution (5.24) for r →∞

ΦFFr→∞ =
1√
2πω

[
(B1 − iB2)ei(rω−nωc−

π
4

) + (B1 + iB2)e−i(rω−nωc−
π
4

)
]
, (5.33)
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this limit is equivalent to studying the wave for frequencies ω̂ > ωc and thus once

more we define
ω̂

ωc
r = secγ for ω̂ > ωc. (5.34)

Using (5.34) for the limit logR� n we obtain

ΦFF =
1√

2πnωc tan γ0

(
(B1 − i B2)Kω̂R

−β − (B1 + i B2)

Kω̂

Rβ

)
, (5.35)

where

β = −
√
ωc2 − ω̂2 = −i ωc tan γ0, (5.36)

with

Kω̂ = e−nωc(γ0−tan γ0)−i π/4 ω̂ > ωc. (5.37)

5.1.3 Matching the solutions

To construct a valid solution for the whole radial regime we should connect the

two solutions in the intermediate point. Using (5.20) and (5.30) we can derive

the integration constants B1 and B2

B1

A1

=
Γ(c)Γ(−2β)

√
−2nπβ

Kω̂Γ(c− a)Γ(c− b)
, (5.38)

B2

A1

= −Kω̂Γ(c)Γ(2β)
√
−2nπβ

2Γ(a)Γ(b)
. (5.39)

The reflection coefficient R` can be defined as the ratio of the amplitude of the

outgoing wave over the incoming wave

R` =
B1 − i B2

B1 + i B2

. (5.40)

Thus the absorption probability can be written as

|A`|2 = 1− |R`|2 = 1−
∣∣∣∣B − iB + i

∣∣∣∣2 (5.41)

where B is

B ≡ B1

B2

= − 2Γ(a)Γ(b)Γ(−2β)

K2
ω̂Γ(2β)Γ(c− a)Γ(c− b)

. (5.42)
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5.1.4 The absorption probability for low energy limit

In the low energy regime the absorption probability (5.41) can be written as

follows

|A`|2 =
2i(B −B∗)

BB∗
. (5.43)

In (5.43) we only kept the dominant term in the denominator. The simplified

analytical form of the grey-body factor for the tensor and vector parts is

|A`|2 =
K2
ω̂ sinh 2πω̂

∣∣∣Γ(
√
q+1
2
− β + iω̂ + 1

2
)
∣∣∣2 ∣∣∣Γ(−

√
q+1
2
− β + iω̂ + 1

2
)
∣∣∣2

2πβ |Γ(−2β)|2
(5.44)

when ω̂ � ωc, K
2
ω̂ turns to

K2
ω̂ =

(
eω̂

2ωc

)(2nωc)

� 1 (5.45)

For these frequencies ω̂ � ωc we can rewrite (5.44) using (5.8) and (5.11) as

|A`|2 ∼
(

e

2`+ n

)2`+n(
2

2`+ n

)(
ω2`+n+1

∣∣Γ( `
n

+ 1−G)
∣∣2 ∣∣Γ( `

n
+ 1 +G)

∣∣2∣∣Γ(2`
n

+ 1)
∣∣2

)
,

(5.46)

where G = − q+1
2

. Recalling that at the beginning of our calculations we assumed
ˆ̀� 1, the first parenthesis in (5.46) can be written in terms of the Γ function(

e

2`+ n

)2`+n(
2

2`+ n

)
= 4π

(
1

2

)2`+n+1 ∣∣∣∣Γ(
2`+ n

2
+ 1)

∣∣∣∣−2

(5.47)

and substituting (5.47) in equation (5.46) we find

|A`|2 ∼ 4π
(ω

2

)2`+n+1
(∣∣Γ( `

n
+ 1−G)

∣∣2 ∣∣Γ( `
n

+ 1 +G)
∣∣2∣∣Γ(2`+n

2
+ 1)

∣∣2 ∣∣Γ(2`
n

+ 1)
∣∣2

)
. (5.48)

The value of G is 0 for tensor gravitational perturbations; we compared the large-

D limit results with grey body factors in [7] and we found good consistency with

their results, see figure (5.2). While the expression (5.48) is equal to the absorp-

tion probability in [7]1 for tensor type gravitons, there is a difference between

our results and [7] for vector type gravitons, figure (5.3). This difference arises

1nin this thesis = npaper + 1
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n = 2 n = 4 n = 5 n = 6n = 3

0.2 0.4 0.6 0.8 1.0
Ωr0

2. ´10-9

4. ´10-9

6. ´10-9

 A{¤2

Figure 5.2: Absorption probability for ` = 2, for tensor perturbation and n =

2, 3, 4, 5, 6 using large-D and without using large-D tool [7].

from the term G which in our case is equal to 1 for vector type and in the [7]

is G = 1 + 1
n
. It should be mentioned that this difference is negligible for the

` > 4 as you can see in the figure (5.4). In spite of having this agreement, one

should note that the absorption probability for ` > 4 cases is very small and

the dominant probabilities belong to the lower values of angular momentum.

Normal

Large-D

n = 5n = 4n = 3n = 2

0.2 0.4 0.6 0.8 1.0
Ωr0

1.´ 10-7

2.´ 10-7

3.´ 10-7

4.´ 10-7

5.´ 10-7

6.´ 10-7

ÈA{
2

Figure 5.3: Absorption probability for ` = 2, for vector perturbation and n =

2, 3, 4, 5 using large-D and without using large-D tool [7].

It is worthwhile to mention that we derived the analytic formula for absorption

probability for small frequencies only because we wanted to compare our results
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1.´ 10-18

2.´ 10-18

3.´ 10-18

4.´ 10-18

5.´ 10-18

6.´ 10-18
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2

Figure 5.4: Absorption probability for n = 2, for vector perturbation and ` =

4, 5, 6, 7 using large-D and without using large-D tool [7].

with the one in literature. However using the large-D method one can have the

analytical solution for all the frequency ranges and the approach to obtain it is

much simpler than the normal higher dimensional case.
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6

Vaidya Metric Quasi-Normal

Modes

6.1 Outgoing Vaidya space-time

The Vaidya metrics [100] are exact solutions of the Einstein equations. In the

radiating coordinates (w, r, θ, φ) this metric has the form

ds2 = −
(

1− 2m(w)

r

)
dw2 + 2cdwdr + r2dΩ2, (6.1)

where c = 1,−1 respectively corresponds to ingoing and outgoing radial flow and

m(w) is a monotonic mass function. In the presence of spherical symmetry this

mass function can be the measure of the amount of energy within a sphere with

real radius r and at a time t [101, 102]. For constant mass this solution reduces to

the Schwarzschild solution in ingoing or outgoing Eddington-Finkelstein coordi-

nate. One can also write this metric using null coordinates, c = +1, w = v = t+r

(advanced time) and, c = −1, w = u = t − r (retarded time). Then the ingoing

Vaidya metric can be written using advanced time and in this case the metric

describes collapsing null dust [103]. The outgoing Vaidya space-time

ds2 = −f(u, r)du2 − 2dudr + r2dΩ2, f(u, r) = (1− 2m(u)

r
) (6.2)

describes the evolution of a radiating star or black hole, where m(u) is the mass

function of retarded time u that labels the outgoing radial null geodesics. In the
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following we will restrict our analysis to the outgoing case as we are interested

in the final stages of black hole evaporation. For (6.2) the only non-vanishing

component of the Einstein tensor is

Guu = −
(

2

r2

)
dm(u)

du
(6.3)

The stress-energy tensor that leads to this solution is

Tαβ = −
dm(u)
du

4πr2
(kα)(kβ) (6.4)

where kα is tangent to radial outgoing null geodesic, kαk
α = 0. This stress-energy

tensor describes a pressure less fluid with energy density ρ = −dm(u)
du

4πr2 moving

with the four-velocity δua = kα (such a fluid is called “null dust”). To satisfy

the null energy condition for which ρ ≥ 0, the mass function m(u) must be a

decreasing function of increasing retarded time, namely dm(u)
du

< 0, which means

that the mass function decreases in response to the outflow of radiation and that

is why this metric is appropriate for the study of the evolution of a radiating star

or an evaporating black hole.

6.1.1 Vaidya symmetries

In addition to the obvious spherical symmetry of this space-time (6.2) when we

consider also a linear mass function there is in addition a scaling symmetry. In

fact this space-time possesses a conformal Killing vector K[104]

Kµ;ν +Kν;µ = 2ρgνµ (6.5)

where ρ is a constant, indicating that this is actually a homothety symmetry.

Homothety means that the metric with linear mass function scales upon a scaling

of the coordinates by an overall factor

(u, r)→ (ζu, ζr) ⇒ ds2 → ζ2ds2, (6.6)

for any real ζ. One consequence of this symmetry is that if (u(τ), r(τ)) is a

solution to the geodesic equations then (ζu(τ), ζr(τ)) is also a solution.

96



6.1 Outgoing Vaidya space-time

6.1.2 Vaidya mass function

Mass in the Vaidya space-time is a function of time and depending upon consid-

ering whether one is the outgoing or ingoing Vaidya metric it may decrease or

increase by time. The choice of mass function in the Vaidya metric is important

because it can alter the space-time. In [105] a general mass function has been

introduced that is an arbitrary function of (v, r)1 and it has been shown that for

different choices of this arbitrary function most of the known solutions of Ein-

stein field equations with spherical symmetries can be found. For our analysis,

we choose the linear mass function m(u) = −µu. This choice of mass function

will let us to study very interesting phenomena at the end point of black hole

evaporation and recover the Minkowski space-time after complete evaporation.

The linear mass function is the only mass function for which (6.5) is satisfied.

Hence if we choose this mass function the space-time will enjoy homothety symme-

try. Considering this symmetry we will show later that the perturbation equations

in this space-time can be drastically simplified.

6.1.3 Vaidya horizons

In general, in the case of static black holes like the Schwarzschild black hole,

the location of both apparent and event horizon is the same and it is marked by

Schwarzschild radius rs = 2M , where M is the mass of black hole and is constant.

For Vaidya space-time which is a dynamic space-time the mass of the black hole

changes, so the apparent and event horizons no longer coincide.

The apparent horizon for outgoing Vaidya space-time (6.2) can be derived by

setting f(u, r) to zero and then one can obtain the following hypersurface

rapp = 2m(u, r) (6.7)

This hypersurface marks a past apparent horizon and the induced metric for this

hypersurface is

ds2 = −4m′(u)du2 + (2m(u))2dΩ2. (6.8)

1The same holds for (u, r)
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Knowing that m′(u) < 0, (6.7) is a past apparent horizon and it is space-like. In

contrary with the apparent horizon which is a local geometric notion the event

horizon is a more global object and in general is more difficult to determine. To

determine the location of the event horizon one needs to know the future behavior

of the light ray and this requires that one knows the future evolution of the entire

space time. We will return to this in (6.1.5) where we discuss the conformal

structure of this space-time.

6.1.4 Vaidya singularities

Based on Geroch’s [106] definition of a singularity, a “curvature singularity” can

be defined if a scalar invariant is unbounded on an incomplete geodesic. Shell

focusing singularity is one kind of curvature singularity that has been studied in

[104] for ingoing Vaidya space-time. This type of singularity indicates a break-

down on the manifold and it occurs at the center of a spherically symmetric col-

lapsing configuration of a perfect fluid or radiation shells. To study the singulari-

ties of outgoing Vaidya one can calculate a scalar invariant like the Kretschmann

scalar

KαβγδK
αβγδ = K2 =

48µ2u2

r6
. (6.9)

From (6.9), it is clear that r = 0 is a curvature singularity. To see if this singu-

larity is a shell focusing singularity or not one needs to look at the null geodesic

equations.

Homothetic null geodesics can be defined by setting (6.2) to zero for linear mass

function m(u) = −uµ while θ and φ are constant. Taking et as affine parameter

[107], from null geodesic equations one can write

dr

dt
= r + 2µu,

du

dt
= −2r, (6.10)

writing this system of linear equations (6.10) in a matrix form one can calculate

the eigenvalues

η1,2 =
1±
√

1− 16µ

2
, (6.11)

solving the null geodesic equation using this eigenvalues lead to

u = −1±
√

1− 16µ

4µ
r. (6.12)

98



6.1 Outgoing Vaidya space-time

From (6.12) in order to see where the r = 0 intersects with u, one needs to study

three different possibilities for µ because choice of µ influences the description of

space-time directly. If µ ≤ 1
16

, u will be zero only at r = 0 and the singularity at

this point is shell focusing singularity and is naked. For u < 0 mass is not zero

anymore and we will have a central singularity at r = 0. For µ > 1
16

, there are no

positive real roots for (6.12) and to study the nature of the singularity one may

need more detailed investigation of the geodesic equations. In our studies we are

interested in the limit where µ < 1
16

due to the special features of the space-time

that emerges only for this range and we will explain it in this chapter.

6.1.5 Conformal diagram

In general the choice of mass function in Vaidya space-time determines its global

and local structure and singularities. Here we will consider only the case of a

linear mass function m(u) = −µu for different values of µ [108]. For µ > 1/16

the conformal diagram has been shown in figure (6.1). The red line shows the

r = 0

u
=

0 I
+

i

i0

+

i0

Figure 6.1: Conformal diagram for outgoing Vaidya with linear mass function for

µ > 1/16, red line represents r = 0 singularity.

singularity at r = 0 for u < 0. The next case is µ = 1/16 which is represented in

figure (6.2). In the last case in figure (6.3) the conformal diagram for µ < 1/16

is shown. In this case the u = 0 boundary to the future of the endpoint of the

r = u = 0 singularity is special in that the space-time there approaches that of

Minkowski space. Indeed it has been shown in [109] that one can continuously

attach the metric along this part of the u = 0 hypersurface to Minkowski space

without introducing curvature singularities.
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r = 0

r =
0

I
-

u
=

0 I +

Figure 6.2: Conformal diagram for outgoing Vaidya with linear mass function for

µ = 1/16, red lines represent r = 0 singularities.

r = 0

r =
u

=
0

u
=

0 I +

I
-

Figure 6.3: Conformal diagram for outgoing Vaidya with linear mass function for

µ < 1/16, red lines represent r = 0 singularities.

6.1.6 New model: disappearance of black hole at end of

its evaporation

Considering the outgoing Vaidya metric with linear mass function, a new model

for the final fate of black hole at the end of its evaporation has been has been

suggested in [110]. As discussed in [108] for a linear mass function, different

scenarios can be considered for different ranges of µ and this model suggests that

for 0 < µ < 1/16 the space time contains a null singularity that vanishes at

an interior point of the space-time. This space-time can be divided into three

different regions characterised by a transition time ut and illustrated in figure 4:
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I-

I+

u
=

0
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evaporating

Schwarzschild
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u

m
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u
-

u 0
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<

rs = 0

v
=

0

Figure 6.4: Conformal diagram for outgoing Vaidya with linear mass function

an adiabatic Schwarzschild region for all v with u < ut with m(u) ∼ |u − u0|1/3

and also most of the region v < 0; a Vaidya region with linear mass function

for ut < u < 0, v ≥ 0; a Minkowski space-time region for u > 0, v > 0. In

this model the linear mass function is used when the mass of black hole becomes

Planckian. This model suggests that black hole evaporation may result in the

complete disappearance of the black hole and the singularity that it contains after

which the space-time returns to Minkowski space-time [109]. An elaboration of

this picture has been presented in [110] motivated by a detailed investigation of

the future directed null geodesics for non-zero angular momentum together with a

preliminary investigation of the wave equation for electromagnetic perturbations.

There it is shown that the null singularity close to the vanishing point effectively

becomes repulsive and thus is conjectured to be stable under effects of small

perturbations.

6.1.7 Vaidya in double null coordinates

As our purpose is to find the quasi-normal modes of the outgoing Vaidya space-

time, it is very useful to introduce the double null coordinate [108] for which both

analytical and numerical calculations can be performed. In these coordinates
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6. VAIDYA METRIC QUASI-NORMAL MODES

(u, θ, φ, v) the general form of the metric is

ds2 = −2f(u, v)dudv + r2(u, v)dΩ2 (6.13)

For the outgoing metric, the energy momentum tensor has the form

Tµν =
µ

4πr(u, v)2
(δuµ)(δuν ) (6.14)

Considering linear mass function with ∆ =
√

1− 16µ, f(u, v) is

f(u, v) =
1 + ∆

2∆r(u, v)
(r(u, v) + u(1−∆)/4)2/(1+∆), (6.15)

where r(u, v) can be derived by solving this equation(
v

|u|2∆/(1+∆)

)1+∆

=

(
r(u, v)

|u|
− 1 + ∆

4

)1+∆

/

(
r(u, v)

|u|
− 1−∆

4

)1−∆

, (6.16)

The values of r(u, v) have been presented in [110] for specific values of ∆.

6.2 Vaidya potential

In order to study the quasi-normal modes of Vaidya space-time, we need to study

the Klein-Gordon equation

∂2ψ

∂u∂v
+W (u, v)f(u, v)ψ = 0 (6.17)

where W (u, v) is given by

W (u, v) =
`(`+ 1)

2r2(u, v)
+ σ

m(u)

r3(u, v)
(6.18)

where σ = 1 and σ = 0 correspond, respectively, to the scalar and to the electro-

magnetic perturbations. From here on, for calculational convenience, we extend

the linear mass function m(u) = −µu to all values of u < 0 and not just for the

ut < u < 0 as was shown in figure (6.4). Equation (6.17) describes wave prop-

agation in the Vaidya background and f(u, v)W (u, v) is the effective potential

which describes how waves, electromagnetic and scalar fields are scattered by the

geometry. It is clear that this potential depends on the black hole geometry and

also on the spin of the perturbation under consideration.
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6.2 Vaidya potential

6.2.1 Integrating the PDE

Following this goal, we insert the functions f(u, v) and V (u, v) into (6.17) for a

linear mass function and we obtain,

∂2ψ(u, v)

∂u∂v
+

1 + ∆

4∆r(u, v)4

(
r(u, v) +

(1−∆)

4
u

)2/(1+∆)

(`(`+ 1)r(u, v)− 2σµu)ψ(u, v) = 0

(6.19)

One can then use the integration technique for derivation of quasi-normal modes

proposed in (3.2.2) to solve this equation numerically. In the present context this

equation was already studied for the special case of electromagnetic perturbations

with ` = 1 in [110] where it was observed that an initially ingoing gaussian wave-

packet coming in from I− with centre at small negative v appears to develop a

quasi-normal like ringing as it evolves towards u → 0.The numerical integration

was carried out by sending in the direction of increasing u a Gaussian wave

localized around vc < 0.

In this thesis, in addition to the calculation for the electromagnetic field we also

present the numerical integration to obtain the time profile of the perturbed

outgoing Vaidya for both electromagnetic σ = 0 and scalar perturbations σ = 1

and for different angular momentum values. The results for the shape of the

ingoing wave for u . 0 are presented in figure (6.5). In these figures the results of

the integration with ∆ = 1/21 are displayed. Similar results can also be obtained

for other values of ∆. The initial conditions were a gaussian wave form in v with

centre at v = vc at u = u0 = −40 and with varying widths. One can see that

in particular there is a ringing of varying period reflecting the changing mass

of the evaporating Vaidya metric, for v . 0. The ringing dies out rapidly and

is not present for v > 0 in line with the fact that the “Planckian” black hole

has vanished. The general form of these oscillations doesn’t change for different

values of the initial Gaussian, though their detailed structure does. This indicates

that there are not true quasi-normal modes at particular discrete frequencies in

contrast to what one finds for the Schwarzschild black hole. We believe that this

is due to the time-dependent nature of the outgoing Vaidya metric.

1For the other values of ∆ see the appendix (C)
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Figure 6.5: Time profile of respond of outgoing Vaidya space-time to the electro-

magnetic perturbations for ∆ = 1/2 and ` = 1 for different values of initial data.

The dashed line indicate the Gaussian function that has been used as initial data

which w is the width and vc marks the center of the Gaussian.
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Figure 6.6: Time profile of respond of outgoing Vaidya space-time to the scalar

perturbations for ∆ = 1/2 and ` = 0 for different values of initial data. The dashed

line indicate the Gaussian function that has been used as initial data which w is

the width and vc marks the center of the Gaussian.
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Figure 6.7: Time profile of respond of outgoing Vaidya space-time to the scalar

perturbations for ∆ = 1/2 and ` = 1 for different values of initial data. The dashed

line indicate the Gaussian function that has been used as initial data which w is

the width and vc marks the center of the Gaussian.
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These results are in line with earlier studies of quasi-normal modes for dynamical

backgrounds [111] where it has been pointed out that when the black hole mass

decreases with time the oscillation period becomes shorter in contrast to the con-

stant frequency quasi-normal modes of the Schwarzschild black hole.

These solutions show a constant tail after few oscillations for large values of v > 0,

however we will see in the next section that as a consequence of the homothety

of the metric, the |ψ| → const behavior at large positive v is most likely a con-

sequence of numerical errors. In [112, 113] has been shown that there is a time

window between the dominant period of quasi-normal ringing and the tail of these

modes. In fact the tail behavior with a pure power law decay is only expected

at infinitely late times. In practice the numerical integration is for a finite time

interval and this causes an inherent error in the behavior of the tail.

In the next subsection we will show that, as a consequence of the scaling sym-

metry, the wave-equation can be separated, thus reducing the problem to that

of an ordinary differential equation. We will also see from the separation ansatz

that evolution is essentially a frequency dependent rescaling of the modes that

are used to construct the initial Gaussian profile.

6.2.2 Reduction to an ODE

The main purpose of the current research was to present the wave-profiles that

one can obtain from the numerical mesh integration method for different initial

conditions and fields, as carried out in the previous section, and to then compare

them with the individual mode solutions that we will obtain below via a more

analytic method that takes advantage of the scaling symmetry of the space-time

and equations. We will now look at individual modes of the wave-function that

we obtain by using the homothety symmetry of the equations to carry out a

separation of variables in the differential equation (6.19).

The homothety symmetry of this space-time suggests that we change the variable

as follows

ū = −u = |u|, v̄ = v(−u)−2∆/(1+∆), (6.20)

giving (from (6.16))

r = r(u, v) = |u|g(v/|u|2∆/(1+∆)), (6.21)

107



6. VAIDYA METRIC QUASI-NORMAL MODES

applying these changes to the equation (6.19) we find(
−ū ∂2

∂ū∂v̄
+

2∆

(1 + ∆)

∂

∂v̄
+

2∆

(1 + ∆)
v̄
∂2

∂v̄2

)
ψ(ū, v̄) =

− 1 + ∆

4∆g(v̄)4

(
g(v̄)− (1−∆)

4

)2/(1+∆)

(`(`+ 1)g(v̄) + 2σµ)ψ(ū, v̄)

(6.22)

and with the ansatz

ψ(ū, v̄) = ūλV (v̄) (6.23)

we obtain the following differential equation

v̄
∂2V (v̄)

∂v̄2
+ (1− κ)

∂V (v̄)

∂v̄
+ F (v̄)V (v̄) = 0 (6.24)

where κ = λ/α with α = 2∆
(1+∆)

and

F (v̄) =
1

2α2g(v̄)4

(
g(v̄)− (1−∆)

4

)2/(1+∆)

(`(`+ 1)g(v̄) + 2σµ). (6.25)

In the figure (6.8) we have shown the function F (v̄) for ∆ = 1/2. Notice that

Σ=0, {=1

Σ=1, {=0

Σ=1, {=1

-10 -5 5 10
v

2
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FHvL

Figure 6.8: (a) F (v̄) for ∆ = 1/2 and σ = 0, 1, for 3 different values of angular

momentum

this separation of variables leads to a very simple picture of the evolution of the

wave function. In the following we will consider the setup where initial conditions

for the wave-function profile are given at ū→∞ and then this profile is evolved

towards ū = 0. For given λ the wave-profile is then scaled by ūλ while its profile

is simultaneously squashed in the v direction due to the ū dependence in v̄. Each
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mode, corresponding to different allowed values of λ as evolves.

Writing (6.24) in the form of an ODE Schrödinger like equation leads to

∂2φ(v̄)

∂v̄2
+ χ(v̄)φ(v̄) = 0 (6.26)

where

χ(v̄) =

(
F (v̄)

v̄
− (κ2 − 1)

4v̄2

)
(6.27)

can be read as the potential. This potential falls off asymptotically as v̄ → ±∞.

This form of potential can lead us to a correct boundary condition by setting

constrains on the value of κ. One should note that the value of the κ that

appears as the power of advanced coordinate u in (6.23) can fix the necessary

condition for having a non-flat geometry at u → −∞ while requiring regularity

of V (v̄) at v̄ → 0, as we know that physically the solution has to be well behaved

at this limit, can put restriction on value of κ.

To obtain some more information about the eigenvalue λ we will first consider

the behaviour of the solutions to (6.24) around v̄ = 0. Expanding V (v̄) around

v̄ → 0

V (v̄) = v̄s
∞∑
n=0

anv̄
n F (v̄) =

∞∑
n=0

bnv̄
n (6.28)

with b0 6= 0. From (6.24) we obtain the indicial equation

s(s− κ) = 0, (6.29)

which to leading order gives

V (v̄) = α + βv̄κ (6.30)

and thus

ψλ = αū2κ/3 + βvκ. (6.31)

Decomposing κ = −iω+ε into real and imaginary parts, we see that well-behaved

solutions around v = 0 require that ε ≥ 0. Note that this also means that around

v = 0 the ū dependent term is finite as ū→ 0, in agreement with the results of the

numerical integration presented in the previous section. Obviously this implies a
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divergence for large ū, but our physical setup does not include this region.

To obtain further information about the global structure of the solutions to the

wave-equation we can expand around large positive v̄. For large v̄ approaching

I+ we make the substitution v̄ = ex̄ and to leading order we also have F (v̄) ∼
c `(` + 1)/v̄5/2, for some constant c. Together with the above substitution we

obtain the equation

V̈ − κV̇ + c `(`+ 1)e−5x̄/2 = 0. (6.32)

The leading large x̄ solution is

V (x) = γ + δeκx̄ (6.33)

leading to (with v = ex),

ψλ = γū2κ/3 + δeκx (6.34)

and thus one has an outgoing wave of frequency ω for κ = −iω, requiring that

ε = 0. Note that the expansion around infinity has the same leading behavior as

that around v = 0 due to the fact that the non-derivative term in the differential

equation is subleading in both cases.

As in scattering problems for static space-times also here there will be a non-

trivial relation between the coefficients α, β of the expansion around v = 0 and

the coefficients γ, δ of the expansion around v → ∞, and for outgoing waves at

∞ we require that γ = 0. The derivation of this transformation is beyond the

scope of the current thesis as the numerical errors do not allow a complete and

accurate integration from v̄ = 0 all the way to v̄ →∞.

As a consequence none of the solutions ψλ(u, v) contain constant large v compo-

nents.

We can now see from this more analytic approach and in particular the factoriza-

tion of the wave-funtion for large v̄ that the long constant tails that were obtained

in the numerical integration of section 2. are numerical artifacts. An initial gaus-

sian wave form in v at some u = u0 will have a Fourier decomposition onto the

basis of waves with outgoing modes. More precisely, the full solution for a given

initial condition is

Ψ(ū, v̄) =

∫ ∞
0

ωaωū
−iωψω(v̄) (6.35)
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6.2 Vaidya potential

This clearly will remain unchanged due to the asymptotic form of the wave-

funcion (6.34).

6.2.3 Numerical solution for ∆ = 1/2

To study the differential equation in double null coordinates we will proceed as

in [110] and extract the g(v̄) from (6.21) using the expression that already have

presented for r(u, v) and different values of ∆, ∆ = 1/21

g(v̄)1/2 =
1

8

(
3 +

4

32/3

(
3

√
9v̄3 −

√
3
√
v̄6 (27− 64v̄3) +

3

√
9v̄3 +

√
3
√
v̄6 (27− 64v̄3)

))
(6.36)

To proceed further one can rewrite the (6.25) using this g(v̄) and solve the equa-

tion (6.24) numerically. We used the NDSolve package in mathematica to solve

these perturbation equations. To use this package one needs proper initial con-

ditions. Hence we first solve the perturbation equations analytically considering

leading orders in the expansion of function F (v̄) around zero. For instance the

analytical solution for ∆ = 1/2 is

V (v̄)→ v̄κ/2(c1J−κ(
8 6
√

2
√
v̄√

3
) + c2Jκ(

8 6
√

2
√
v̄√

3
)), (6.37)

due to the possible presence of singularities in the numerical integration through

v̄ = 0 we imposed initial conditions at two different v̄ = −0.000001 and v̄ =

0.000001 and integrated forwards and backwards in v̄ to obtain the numerical

solution. The results of numerical solution to these equations has been presented

in the figures (6.9), (6.10) and (6.11). We show the solutions for ε = 0 and also

for ε = 1. Note in particular that the ε = 0 solutions show a ringing with vari-

able frequency for v̄ < 0 together with no oscillations for v̄ > 0. This provides

a confirmation of the ringing that was found in the previous section from the

integration of the full wave equation for gaussian initial conditions.

6.2.4 Results and comments

It is worthwhile to mention several points about our results.

1For ∆ = 1/3, and 1/5, see the appendix (C).
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Figure 6.9: Time profile of electromagnetic, σ = 0, 1 for ` = 1, and scalar

perturbations, for ` = 0 and 1, for ∆ = 1/2 and ε = 0 .
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Figure 6.10: Time profile of electromagnetic perturbations, σ = 0, for ` = 1, for

∆ = 1/2 with κ = −7i+ 1.
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Figure 6.11: Time profile of scalar perturbation, σ = 1, for ` = 0, 1, for ∆ = 1/2

with κ = −7i+ 1.
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Our analytical analysis shows that the constant tail that appears in the mesh cal-

culation corresponds to constant part of the solution to the ODE wave equation,

however the other part with κ = −iω + ε supports the decay of the oscillations

at different values of v̄.

Moreover for numerical solution to the ODE equations we used the initial condi-

tion that were coming from the leading term in potential, however for performing

the integration we used the complete form of the potential and we found oscil-

lations for both v̄ > 0 and v̄ < 0. If one compares the ODE solutions with the

PDE ones, one can easily see that oscillations mostly are present for v < 0 and

this can be because of the numerical error as it is pointed out in [112]. In this

sense our ODE results confirm the existence of the quasi-normal type oscillations

for the outgoing linear mass Vaidya metric with very high accuracy.

Up to now quasi normal modes for time dependent back grounds have been cal-

culated for ingoing Vaidya and only using the double null coordinate technique

while taking advantage of homothety symmetry of the background for the first

time we were able to transform the equation to the ODE type and investigate

the properties of the evaporating black hole at the end of its life in more details.

The uncertainties in the numerical integration do not appear to allow us to find

exactly these solutions, or there is a mixing between the ingoing wave (expansion

around small v̄) and the solutions for large |v̄|. One may expect to see the expo-

nential decay of the oscillations in mesh figures (6.5), (6.6) and (6.7) due to the

exponential fall off of the Gaussian however one should note that, as we shown

in this section, solution to the wave equation for small and large values of v has

two parts; while one part has constant value . Hence the tail of the time profile

may correspond to the constant part but it doesn’t mean that the exponential

fall off doesn’t happen.

Having this result and knowing the special property of this sub-class of Vaidya

can provide some evidence that the final stage of black hole evaporation may

be modeled by linear mass Vaidya. In particular we see that although the linear

mass Vaidya metric is not the same as Schwarzschild (in particular due to the null

singularity), it does appear to display one well-known feature of the Schwarzschild

black hole, quasi normal like oscillations as an ingoing wave approaches u = 0.
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6.2 Vaidya potential

Indeed, one clearly sees that oscillations of increasing frequency appear just be-

fore reaching v = 0, indicating the approach to zero mass. Furthermore, as these

oscillations appear with infinitesimally small wavelengths, this is also a clear indi-

cation of the breakdown of a semi-classical analysis around the final evaporation

point.

Although they do not appear to play a clear role in the current analysis, the solu-

tions to the ODE for Vλ(v̄) contain solutions that have a scale invariant (fractal-

like) oscillation around v̄. These solutions occur for ε > 0, and for finiteness at

v̄ → ∞ these solutions must have δ = 0. This clearly introduces non-analytic

behavior in the wave-function around v̄ = 0 and also some instability at infinity,

nevertheless it is intriguing to speculate that upon entering the large back-reaction

(Planckian) regime this feature remains. In such a case we would find a scaling

close to the point of complete disappearance of the Vaidya-singularity analogous

to the Choptuik scaling [114] that has been observed at the point of formation of

black holes in numerical models that include the back-reaction between classical

matter and the space-time metric.

The biggest obstacle to further progress is the difficulty in the numerical calcula-

tion of the Bogoliubov transformations required to obtain complete information

about the modes Vλ. One possible approach to this question is the large-D limit.

As there exists a Vaidya-metric in any dimension [115], one can take the large-D

limit [90] and thus obtain a simplification of the potential F (v̄). One may then

use this to obtain a WKB matching of Vλ between the v̄ = 0 expansion and that

at v̄ →∞, preliminary work is presented in appendix (D).
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7

Discussion

One of the interesting and yet not well known part of the physics is study of

the evolution of the black holes in general and micro black holes in particular.

The study of the evaporation of the latter case is in our interest as any evidence

of observing their signals in detectors would be a confirmation of the validity of

theories which have been built by hypothesizing the existence of extra spatial

dimensions. To this end, in this thesis, we have investigated different aspects of

micro black hole evaporation.

7.1 Discussion of the results

In order to find out how micro black hole signals may look in the high energy ex-

periments or ultra high energy cosmic rays observatories we performed a detailed

analysis of the micro black hole event generator, BlackMax; the summary of our

investigation is as follow

• We investigated the particle yield after hadronization in different transverse

momentum ranges and for different numbers of extra spatial dimensions for

both rotating and non-rotating micro black holes. For all particles we ob-

served an enhancement in the particle yield as the number of extra dimen-

sions increases. This enhancement is more drastic in the case of rotating

micro black hole confirming the analysis in [50, 51].
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• Moreover if the evaporating micro black hole is created from proton-proton

collision as in LHC and also the most relevant process for the collision of

UHECR’s with the Earth’s atmosphere then there is preferential emission

of positively charged particles and also the emission of quarks and gluons

in general is preferred over all other particles.

• Performing the analysis of the Monte Carlo data from a non-rotating micro

black hole before and after hadronization we find out that effects of parton

shower + hadronization + hadron decay may dramatically modify particle

distributions after micro black hole evaporation, especially in the case of

an SM quanta, such as photon. This is certainly a challenge that must be

confronted when trying to distinguish the effects of different micro black

hole models, potentially observable through micro black hole formation,

evaporation and decay in high-energy and ultra-high-energy collisions, such

as those explored at LHC and in cosmic ray experiments. Furthermore,

from our preliminary investigations it appears that lepton distributions are

less affected than photon ones and should thus be preferred for these micro

black hole studies.

• The absence of proper simulation of graviton emission from a rotating black

hole due to the lack of graviton grey-body factors in the micro black hole

event generators lead us to check the sensitivity of the BlackMax to changes

in the grey-body spectrum. After changing the grey-body factors we find

out that the final products are either un-changed or the change is less than

5 percent. This can be a motivation for using the grey-body profile of other

particles for gravitons just to check how the bulk emission of the graviton

might change the emitted particles multiplicities and distributions on the

brane.

• For the next step of our investigations regarding the graviton emission,

we used large D method, a method in which the number of spatial extra

dimensions can be arbitrarily large and this may give us an extra small

parameter that can simplify the perturbation equations. We followed this
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approach for graviton emission from a non-rotating black hole and we ob-

tained an analytical expression at low frequencies for the tensor and vector

type gravitational emission that is in complete agreement with the one

which is already in the literature. This encourages us that one can use the

large-D limit to also calculate the graviton emission from a rotating black

hole and this work is still in progress.

• Finally in the last part of our research we studied the electromagnetic and

scalar perturbation of out-going Vaidya space-time with linear mass func-

tion. We performed the detailed investigation of the relevant wave equations

both numerically and analytically. First we solved these PDE equations nu-

merically and we found that the time profiles contains oscillations that can

be interpreted as quasi-normal modes. For further investigation we used the

homothety symmetry of this space-time and we rescaled the fields which en-

abled us to write the equations in the form of ODE’s. Having this simpler

form of the perturbation equations enabled us to solve them analytically

for different limits. Furthermore with detailed investigation of these solu-

tions we could find the proper boundary conditions for solving the ODE’s

numerically. We were able to monitor how this space time respond to dif-

ferent types of perturbations, before it completely vanishes, by calculating

the time profile of this respond. This time profile is similar to the ones

that we obtained from the mesh calculations. Our results show that the

out-going Vaidya space time with linear mass function has quasi-normal

behavior close to the point where the singularity vanishes like the quasi

normal behavior of the Schwarzschild black hole.

7.2 Future work

The most interesting application of this research is the possibility of confirming

its validity in high energy experiments and observations.

First thing that we are concerned to do in the near future is to perform a more

detailed analysis using black hole event generators. This work should be done to

explain the peak that we observed in high pT for colored particles out of rotating

119



7. DISCUSSION

black hole evaporation. The first step may be to investigate the invariant mass

of hadronic jets before hadronization. We are motivated for this analysis also

because of the bump that CMS and ATLAS observed in their data around 2 TeV

at first run of the LHC. Although more analysis is required to find out if this

bump is a statistical fluke or a new very heavy particle or maybe the micro black

hole evaporation signal.

Our other task is to calculate the graviton grey-body factors of a rotating black

hole at the large-D limit of general relativity. We already showed that using the

large-D limit technique perturbation equations can be simplified drastically for

the non-rotating case. Knowing that that the same simplification may hold also

for the rotating case we are to start the graviton grey body calculation for this

case. In the absence of graviton spectrum, this calculation (even if it won’t be so

exact) may help to improve the accuracy of the micro black hole event generators.

120



Appendices

121





Appendix A

Bogoliubov transformations

In order to calculate Hawking radiation spectra it is useful to introduce the Bo-

goliubov Transformation. Let’s start with number operator for in and out modes

which measures the number of in or out particles in a state

N in
ω = a+

ωaω, N out
ω = b+

ω bω (A.1)

where a+
ω , aω and b+

ω , bω are creation and annihilation operators of two different

vacuum states with following canonical communication relations

[aω′ , a
+
ω ] = δ(ω′ − ω), [aω, aω′ ] = [a+

ω , a
+
ω′ ] = 0, (A.2)

and the second vacuum state

[bω′ , b
+
ω ] = δ(ω′ − ω), [bω, bω′ ] = [b+

ω , b
+
ω′ ] = 0. (A.3)

Using the (A.1) one can say that the state (aω)n|0 >in contains n in-particles and

state (bω)n|0 >out contains n out-particles. Now defining a linear transformation

known as Bogoliubov transformation

φoutω =

∫
dω′(αωω′φinω′ + βωω′φ

∗
inω′

) (A.4)

φinω =

∫
dω′(α∗ω′ωφoutω′ − βω′ωφ

∗
outω′

) (A.5)
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one can express the number of out-particles in terms of the creation and annihila-

tion operators of in-particles. Where αω′ω and βω′ω are the Bogolubov coefficients

and it can be expressed in terms of inner product of φoutω and φinω

αωω′ =< φoutω , φinω′ >, βωω′ = − < φoutω , φ
∗
inω′

> (A.6)

These coefficients satisfy∫
dω′(|αω′ω|2 − |βω′ω|2) = δ(ω′ − ω) (A.7)

Using (1.24), (1.27) and above-mentioned transformation the relation between in

and out particles is

bω =

∫
dω′(α∗ω′ωaω′ − β∗ωω′a+

ω′) (A.8)

Finally we are able to produce the spectrum of the out-particles using vacuum

state of the in-particles

in < 0|N out
ω |0 >in=in< 0|b+

ω bω|0 >in=

∫
dω′|βωω′|2 (A.9)
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Appendix B

The geometry of the CPN

N -dimensional Complex projective space is a symmetric space and mathemati-

cally can be expressed by a complex manifold, CN+1, by complex coordinates ZA

for A = (0, α) where 1 < α < N . The point set CPN is covered by the patches

and coordinates of each patch can be defined by N inhomogenous coordinates

[98] as follow

ζα =
Zα

Z0
, for Z0 6= 0 (B.1)

Using ZA the flat metric has the form

ds2
2N+1 = dZAdZ̄A (B.2)

Then if we introduce a new set of coordinates vi with 0 < vi < N − 1 and we

change the coordinates to RN and ψN using following relations

Z0 = eiτ |Z0|, Zα = Z0, ζα = RNu
α, ZAZ̄A = r2, f = 1 + ζαζ̄α = 1 +R2

N .

(B.3)

and also for vi

uN = eiψN/2|uN |, ui = uNvi with uαūα = 1. (B.4)

The metric (B.2) will take the form

ds2
2N+2 = dr2 + r2dΩ2

2N+1 (B.5)

whith

dΩ2
2N+1 = (dτ + A(N))

2 + dΣ2
2N (B.6)
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where dΣ2
2N is the unit CPN metric and A(N) is the CPN Kähler potential and

they can be written in terms of coordinates (ψN , RN).

dΣ2
2N =ĝabdx

adxb

=
dR2

N

(1 +R2
N)2

+
1

4

R2
N

(1 +R2
N)2

(dψN + 2A(N−1))
2 +

dR2
N

1 +R2
N

dΣ2
N−1

(B.7)

ĝab is the Fubini-Study metric and the Kähler potential is

AN =
1

2

dR2
N

1 +R2
N

(dψN + 2A(N−1)) (B.8)

The advantage of using this analysis is that one can start from the CP1 and

iteratively construct the CPN geometry as well as the complex coordinates ZA

that define how this geometry embedded in CN .
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Appendix C

Vaidya calculations for different

values of ∆

All the calculations that we performed in chapter (6) for ∆ = 1/2 can be carried

out for different values of ∆. In this appendix we present the relevant calculations

for ∆ = 1/3 and 1/5. The solution to the electromagnetic and scalar perturbation

equations in double null coordinate for ∆ = 1/3 and 1/5 is shown in figures (C.1),

(C.2), (C.3), (C.4), (C.5) and (C.6). In these figures the integration is carried out

for different values of the initial data, namely, different forms of Gaussian waves.

The general shape of these time profiles is similar to the ones for ∆ = 1/2.

For numerical integration we need the g(v̄) which for ∆ = 1/3 is

g(v̄)1/3 =
1

2

(
v̄2 + v̄

√
v̄2 +

2

3
+

2

3

)
, (C.1)

and for ∆ = 1/5

g(v̄)1/5 =
1

30
(9 + 10v̄3 +

3
√

5v̄(
3

√
27 + 200v̄6 + 180v̄3 − 3

√
3
√

40v̄3 + 27

+
3

√
27 + 200v̄6 + 180v̄3 + 3

√
3
√

40v̄3 + 27))

(C.2)

using (C.1) and (C.2) one can calculate the F (v̄) function that is presented in

figure (C.7) for two values of ∆. The same argument as in chapter (6) is valid for

the derivation of initial conditions in order to solve the perturbation equations

numerically. As v̄ → 0 the leading order solution for ∆ = 1/3 is
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Figure C.1: Time profile of respond of outgoing Vaidya space-time to the electro-

magnetic perturbations for ∆ = 1/3 and ` = 1 for different values of initial data.

The dashed line indicate the Gaussian function that has been used as initial data

which w is the width and vc marks the center of the Gaussian.
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Figure C.2: Time profile of respond of outgoing Vaidya space-time to the scalar

perturbations for ∆ = 1/3 and ` = 0 for different values of initial data. The dashed

line indicate the Gaussian function that has been used as initial data which w is

the width and vc marks the center of the Gaussian.
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Figure C.3: Time profile of respond of outgoing Vaidya space-time to the scalar

perturbations for ∆ = 1/3 and ` = 1 for different values of initial data. The dashed

line indicate the Gaussian function that has been used as initial data which w is

the width and vc marks the center of the Gaussian.
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Figure C.4: Time profile of respond of outgoing Vaidya space-time to the electro-

magnetic perturbations for ∆ = 1/5 and ` = 1 for different values of initial data.

The dashed line indicate the Gaussian function that has been used as initial data

which w is the width and vc marks the center of the Gaussian.
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Figure C.5: Time profile of respond of outgoing Vaidya space-time to the scalar

perturbations for ∆ = 1/5 and ` = 0 for different values of initial data. The dashed

line indicate the Gaussian function that has been used as initial data which w is

the width and vc marks the center of the Gaussian.
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Figure C.6: Time profile of respond of outgoing Vaidya space-time to the scalar

perturbations for ∆ = 1/5 and ` = 1 for different values of initial data. The dashed

line indicate the Gaussian function that has been used as initial data which w is

the width and vc marks the center of the Gaussian.
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Figure C.7: (a) F (v̄) for ∆ = 1/3 and (b) F (v̄) for ∆ = 1/5; for σ = 0, 1, for 3

different values of angular momentum

V (v̄)→ v̄κ/2
(
c1J−κ

(
2

4
√

233/4
√
v̄
)

+ c2Jκ

(
2

4
√

233/4
√
v̄
))

(C.3)

and for ∆ = 1/5

V (v̄)→ v̄κ/2
(
c1J−κ

(
2 102/3

√
v̄√

3

)
+ c2Jκ

(
2 102/3

√
v̄√

3

))
(C.4)

Using this solutions, for both cases, the initial conditions at two different points

v̄ = 0.000001 and v̄ = −0.000001 were calculated for different values of κ =

−iω+ ε. Results of numerical integration for ε = 0, 1 is shown in figure (C.8) and

(C.9) for ∆ = 1/3 and in figure (C.10) and (C.11) for ∆ = 1/5, respectively.
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Figure C.8: Time profile of electromagnetic, σ = 0, 1 for ` = 1, and scalar

perturbations, σ = 1, 1, for ` = 0, 1, for ∆ = 1/3 and κ = −5i
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Figure C.9: Time profile of electromagnetic, σ = 0, 1 for ` = 1, and scalar

perturbations, σ = 1, 1, for ` = 0, 1, for ∆ = 1/3 and κ = −7i+ 1
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Figure C.10: Time profile of electromagnetic, σ = 0, 1 for ` = 1, and scalar

perturbations, σ = 1, 1, for ` = 0, 1, for ∆ = 1/5 and κ = −4i
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Figure C.11: Time profile of electromagnetic, σ = 0, 1 for ` = 1, and scalar

perturbations, σ = 1, 1, for ` = 0, 1, for ∆ = 1/5 and κ = −7i+ 1
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Appendix D

Out-going Vaidya metric at

large-D

We already discussed the large-D limit of general relativity in chapter (4) in

which by taking the number of space-like dimensions to be large many interesting

features of the model will let us simplify the black hole theory. In this section we

will take the large-D limit of the higher dimensional out-going Vaidya space-time

[115] in order to understand its properties more deeply. For the mass function

m(u) = µ̄(−u)D (D.1)

the higher dimensional out going Vaidya metric can be written

ds2 = −

(
1− 2µ̄

D

(
−u
2r

)D)
du2 − 2dudr + r2dΩ2

D+1 (D.2)

where the mass parameter, µ̄, is restricted in the following interval [116]

0 < µ̄ <
1

2

(
D

D + 1

)D+1

(D.3)

in order to let the metric to have the homothety symmetry. For mass function

(D.1), metric (D.2) is a solution to the Einstein equation with the following

stress-energy tensor

Tuu =
µ̄(D + 1)

8πGu2

(
−u
2r

)D+1

(D.4)
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Figure D.1: gζζ element of Vaidya metric for D = 8.

To make (D.2) mathematically simpler for the time that we want to take the

large-D limit as well as for better understanding the geometry of this space-time

we introduce the following new coordinate

z =
−u
2r
, u = −eζ (D.5)

using which (D.2) will change to

ds2 =
e2ζ

4z2

(
f(z)dζ2 − 4dζdz + dΩ2

D+1

)
, (D.6)

where

f(z) = 4z(1− z +
2µ̄

D
(z)D+1). (D.7)

It can easily be shown that f(z) has only two non-zero real roots for any number

of dimensions. This has been shown in figure (D.1) for D = 8. The structure of

this space time is shown in figure (D.2). The null homothetic lines are the zeros

of gζζ of the (D.6) and, like the four dimensional case, for the limit (D.3) these

zeros are the lines with constant values which emanate at null past infinity and

they terminate at u = 0. We are particularly interested in the null line (z = z−)

which meets u = 0 at the point where the naked singularity vanishes as [110]

suggests. The (z = z−) corresponds to the smallest root of f(z) and at large-D

the perturbations around this root is desired z = z−− z̃
D

and this perturbed region

is located in the 0 < z < z+ that is marked by red arrow in figure (D.1). For this

marked range z is an angular coordinate around ζ. Perturbation in this region is

interesting because the evaporating Schwarzschild black hole at end stage of its
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evaporation can be continuously attached to outgoing out-going Vaidya space-

time and by perturbing this space-time around the vanishing point it is possible

to investigate the structure of this space-time more carefully.

Perturbing metric (D.6) by scalar field and solving the perturbation equation

which is equivalent to solve the Klein-Gordon equation in the former background

we will get(
−f(z)

2
∂2
z + (

f(z)

z
− f ′(z)

2
− 2)∂z − 2∂z∂ζ +

∂ζ
z
− 2`(`+D)

)
ψ(ζ, z) = 0,

(D.8)

considering the homothety symmetry of the metric and implementing following

separation

ψ(ζ, z) = eκζg(z), (D.9)

we can write (D.8) in the form of ODE equation

g′′(z) + A(z)g′(z)−B(z)g(z) = 0, (D.10)

where

A(z) = −
2
(
−f ′(z)

2
+ f(z)

z
− 2κ− 2

)
f(z)

, and B(z) =
2
(
−2`(D + `) + κ

z

)
f(z)

(D.11)

u
=

0

I +

I-z = z+

z = z-

D

Minkowski

Figure D.2: Conformal diagram for outgoing Vaidya with linear mass function
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D. OUT-GOING VAIDYA METRIC AT LARGE-D

writing (D.10) in the form of Schrodiner equation the potential will be

v(z) = −A
′(z)

2
− 1

4
A(z)2 −B(z). (D.12)
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Figure D.3: (a): potential log |v(z)| at D = 1500 for ` = 2 at and κ = 2. (b):

potential log |v(z)| at D = 8 for ` = 2 and κ = 2

This potential is represented in figure (D.3a) and (D.3b) for D = 1500 and D = 8

respectively. One should note that the mass parameter, µ̄, for large-D is in the

interval [0, 1
2e

]. It can be seen that at large-D the distance between two real

positive roots of f(z) is vanished implementing that at large-D the metric may

have much simpler form.

Thus we find out that to take the large-D limit it is more appropriate to perform

the following changes in the coordinates of metric (D.6)

z = y1/D+1, ζ =
ζ̃

D + 1
+ log (D + 1), (D.13)

then we will have

ds2 =
e2ζ̃/(D+1)

y(D+2)/(D+1)

(
(1− y1/(D+1) +

2µ̄y

D
)dζ̃2 − dydζ̃

)
+

e2ζ

4y2/(D+1)
dΩ2

D+1 (D.14)

looking at the (D.14) one finds that at large-D limit the gζ̃ζ̃ part of the metic will

be zero. To be more close to the point where the null line z− meets the vanishing

point, once more we implement the following change

y = y− − ỹ (D.15)
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where y− is equivalent to z−. Thus at large-D one finds

ds2 =
1

(y− − ỹ)
dỹdζ̃ + r2

0e
−4Φ/(D+1)dΩ2

D+1, (D.16)

where

r0 =
1

2y
1/(D+1)
−

, and Φ =
−1

2
(ζ̃ +

ỹ

y−
) (D.17)

It should be noted that ỹ
y−

is a very small value compareing with y− and we

used this approximation to get the Φ. Furthermore we only kept the first term

when we were rescaling the ζ using (D.13). Metric (D.16) is the standard dilaton

vacuum solution to 2D string theory [94]. One can find this by comparing (D.16)

with

ds2 = gµνdx
µdxν + r2

0e
−4Φ/(D+1)dΩ2

D+1. (D.18)

where gµν is a 2D metric and Φ is a scalar field. Moreover the D-dimensional

action of this metric at large D

I =
ΩD+1r

D+1
0

16πG2

∫
dx2
√
−ge−2Φ

(
R +

4D

D + 1
(∇Φ)2 +

D(D + 1)

r2
0

e4Φ/(D+1)

)
,

(D.19)

reduces to the 2D string action

I =
1

16πG2

∫
dx2
√
−ge−2Φ(R + 4(∇Φ)2 + 4λ2), (D.20)

where λ = (D + 1)/2r0 and

G2 = lim
D→∞

G

ΩD+1r
D+1
0

. (D.21)

Geometry of (D.18) is a well known geometry and considering any perturbation

of this geometry gives us an infinite number of massive two dimensional non-

minimally coupled massive scalers.
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