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Preface to the CCAST ™ World Laboratory Series

The China Center of Advanced Science: and Technology (CCAST) was
established in Beijing on October 17, 1986 through the strong support of
World Laboratory and the Chinese Government. Its purpose is to introduce
- important frontier areas of science to China, to foster.their growth by pro-
viding a suitable environment, and to promote free exchange of scientific in-~
formation between China and other nations. _

An important component of CCAST’ s activities is the organization of
domestic and international™ symposium/w‘orkshops. Each academic year we
hold about 15 domestic symposium,/workshops which last an average of one
month each. The su‘t‘)jects‘ are carefully chosen to cover advanced areas that
are of particular interest to Chinese scientists. About 20 — 60 participants,
from senior scientists to graduate students, are selected on a nationwide basis
for each program. During each workshop these scientists hold daily seminars -
- and work closely with each other.

Since 1990, CCAST has also sponsored a vigorous program for young
Chinese scientists who have alreadly made world—class contributions and are
currently doing research abroad. They return to China to lecture at CCAST
and to collaborate with their colleagues at home. In this way, they can bring
to China their own expertise, and when they go back to their institutions
abroad they will be able to circulate in turn the knowledge they have acquired .
in China.

China is at a pivotal point in her scientific development. She is gradual-
ly emerging as an important and dynamic force in shaping the advanced sci-
ence and technology of the future. This series is part of this remarkable evo-
lution. It records the effort, dedication, and sharing of knowledge by the
Chinese scientists, at home and abroad.

T.D. Lee

* The CCAST international symposiuxﬁ/workshop series is published sepa-
rately by Gordon and Breach Scientific Publishers.
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Elliptic Zamolodchikov-Faddeev
| - Algebra and |
Q-Deformed Affine Algebra

Heng Fan®’,Bo-yu Hou’,Kang-jie Shi*®
Wen-li Yang®?,Rui-hong Yue®
“*CCAST(World Laboratory)

P.0.Box 8730,Beijing 100080,China,
*Institute of Modern Physics,Northwest University

P.0.Box 105,Xian, 710069,China |

Abstract

We propose a method to construct the factorizable L-operator of '
elliptic Affine algebra in term of the vertex-face intertwiners.In the
level one representation,we give explicitly L% operator and vertex op-
erators.The L operator can be used to set up the comodule of elliptic.
Zamolodchikov- Faddeev algebra.



1 introduction

Recently. the studies on the systems with the degrees of infinite freedom have been
successed. Of the important ones [1] is that the one-dimensional infinite size lattice
six vertex model {H..) at the principle regime favours a g-deformed affine algebra
svmmetry ( with no-zero central extension ) [2.3]. Tt is different from the ¢-deformed
lie algebra sug(2) symmetry in same model with finite size lattice and fixed boundary
condition [4]. By using the crystal bases. Davies. Foda. Jimbo. Miwa and Nakayashiki
give an approach to set up the infinite dimensional representation spaces of an affine
algebra Ul :\12) in physical system {1.3]. They also sﬁ1dy systemly the trigonomertric
statistical models and relared Sine-Gordon and Thirring models in term of vertex oper-
ator { dynamical operator J in admissible configuration space. With rhiese mathemarical
tools they derive the difference equarion satisfied by correlation functions and get some
physical quantities such as stragged spontaneous polarization. Besides. they géneral-
ize the idea into elliptic eight vertex model (Hyy: chain) i7;. We find that the ellipric
generalization of affine algebra has a devep mathematical-background. The s}’nunﬂrff
of physical systems relared to elliptic R matrices is the elliptic g-deformation of affine

alzebra (Sklyanin algebra with centre extension) {8.9,10].

2 Vertex-Face Intertwiner and ZF Algebra

Belavin {12} Z, & Za model can be defined as following. For a vertex. an intersection

of a vertical line and a lorizonral line. we associate a Boltzmann weicht R;;uiz) (see
a

Figure 1j. The subscripts i.j. k.l go around the verrex from down edge in the clockwise

order and rake value in {01 = 1}

7

Figure 1: Vertex Boltzmanu weight R
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R{z)86=(z +w) .. . L
Riulz) = | FAuypenz) (TS =FE] modn (1)

0 if l—]——/\-—l mod n
where
Jie; 90')(:)

i 1/2—j/m ],
o9(z) = 9.[ /1/2’/ ]‘-f’"")

r , .

9[ ](:,T) = Ze\p{z ; m+r) +2x(m + 1)z + 8} {2
meZ

where = and w are spectral and crossing pdlametel': respectively. We point out here

that the R matrix defined by equatlon {1) is same as one given by Jimbo et al {131 It is

the transposition of one in reference {14]. This R matrix satisfies Yang-Baxter equation
R12(S1 — 32)R13(:1 - :g)Rgg(Sg -3 = R23(52 - 33)}?131':1 -3 1R, I3 — ) i3

and some useful properties | 14,15.16.19].

1.Initial condition Riji(0) = 0aése (4
. . . . o hizswihiz—y
2.Unitary condition Rk jil ) Ryjprsr( —2) = — "’(u Qi Oger i
i
. - hiz)hi=z —nuw) _
3.Crossing condition Ry k(= Rk:, ail—z—nuw)= T Cj51 ki 0]

In the dual representation the R matrix is s {2.3]

R"W'(z) = R™M(z) R%Vi: = Rt—1i 2

R'V.V'(:) Ro=Yz) RV'Vi:) = Rt - ;

er-,V-(:) - Rt;,tz(:)



From the known results of reference {17,18,19]. we can show

. (w) " oo(w) |
RV'V - - _ ol W ‘ ) o p-
v (<) Joolz +w) ooy ooz — pw‘)(l &P ,
XRY(z—w)--- RY(z = (n - 1uw)l® Po,)
ey, (u) ot O'o(’LL’)
RVV(z) = ——2 18 P}
L ooz +(T’I + 1)11_’) i JO(z —‘;—pur)( & n-1)
X(18 P )R (z+(n —1hw) - R*(z + w)(1® PL,)
(8)
oo el .
Bz = T ) _pe gy
ool + w) =5 oo(z — pw)
xRV (z—w)--- Rz —(n— DwlP_,&1)
R ogiw) =l go(w) _ .
Rz = - : 2 (P, %1)

aolz +in+1)w) 7ol + pu)

p=1
1., ~1,n, e 1
XR'™z—(n—1uw) Rz 4+w) P, g 1)

where P;_, is an antisymmetric projecting operator in tensor space |7%m~1

Before introducing the IRF model we recall several notations. Let ¢, be set of

orthogonal bases and A, be the fundamental weight A0 satisfving

n—-1 *
A ) 111—1
t) = e B = G-t "
(Aoey) = 0 Apy = A\ +4
or N
g o= (0.---.0.1 0)
N —— )
K (10
\, = (1,---.1.0 01 (20)
N
73

Denote by Po{n.l) the set of dominate integral weights of level !
n-1
Pinl)=Ra=1N+ > [l,€Z g2l >lny (113
p=0
For,an clement of P.(n.l). there exists a one-to-one correspondence with a voung di-

agram of (n — 1) x [ rectangle. [, represents the length of p-th row. An ordered pair

{a.b) is said to be admissible if

a—=b = if pu €(0.n-1) {12)




ik

KWe firther detine

{13)

py =

wihere 1y, 1s an arbitrary complex parameter. Now. we introduce the IRF model {131
Form wortex lattice. woe can oot a dual lattice hy purtine foue indeses . b e ad o Lo
oriarortex lattice. we can get a dual lattice by purting four indexes o, boe and o on rhe
corners i the clockwise order connting from northwest one instead of on lines (Figure

2).

Figure 2: IRF Boltzmann weight W,

The boltzmann weight represented by Figire 2 takes the forw

\

a bz — 2\

U: (l C " ] }

which is not zero ualess (b, @).(¢, b).(d, a) and (. d) are all admissible

) a  a—ft i1+
W v o=t -
a—fr a=20 (1
B a a— i le,, + ol .
T ) U = - Lr“ . joFE {14}
I N T 17 e i
3 a a— [/ lilla,, =1
" P e
T N i e
where
[1/2 ,
ul =0 LT
=0 2l




The notation of our paper is different from one appearing in reference [13]. The W

defined by equation (14) satisfies Y: ang-Baxtef equation

A e L P e LI P
| : (15)
z9 — I . 5=z .
The IRF model and vertex model have the following correspondence relation
Yoo Bapre(z1 — 22)0] ,_5(21) @ Da-pa-p-ol32)
o B N a a—fi E :1—:; (m)
R PR T P T
where ¢3,_a(z) = 9(“)(: + nway). In the right hand side of the above equa.tion, there

exists one term if p = v, and if g # v two terms b = p.v contribute.
For the further consideration, it is convenient to extend the ‘é"‘ﬁllifi()ll of g €
{0.n —1) by
p¥n=p-¢ ' (17)

where 6 is the image root of AL_,. In this case, the definition of v, changes into

oo .
aP=1u~~Zl.,+zt'# (18)
n v=1 .
From equation {16). we know that there exist n? intertwinning vecrors o; a it TS

(0.1 —1). After the extension. we have infinite number of interrwinning vectors. How-
ever, the extension of a, only contributes a spectral shift. The number of independent
intertwinning vectors is still n?. On other language. for a given k. we z:‘a.u define a new
weight o such rhat (.1:‘ = Onksp o0 € (0.n = 1) In this way. one can also got n?

mtertwinning veetors. but rranslates the initial weight o into o', Therefore. the infinite

1

number of extended oF |~ can be written as a lincar combination of #? independent in-

terrwinning veerors. Inthe following we will take v, = pinequation 1171, Let o = \,,.

jio == Tand 7 — =2 The left haud side of cquation (167 conrains originally two

terins. Due to iy, == 1oone ean find

. ( '\“,\ Ao ; I — 39 — 4
'\I-‘ — = 2 /\‘_‘_2 ] -

\




So, we have derived the following relation from equation (16)

Y i -
Lrg Rz — 22)075 4, (21) @ D), 4, ,(22)

_ h(m—zm4w) (5% ] (19)
- —W——OAF A2 ) OA,‘,A ("2)
Rescaling the R matrix by a factor as R=Rx -—(—)—h(n ) One ‘ﬁna_lly obtain .
P 1L WYNCIL T WPWREY
(20)

= @,A“_MA,‘ ) ® ‘-’A“,A“_l(sz)

This is nothing but the definition of Zamolodchikov-Faddeev algebra. Precisely speak-
ing, we get a realization of ZF algebra in term of intertwinning vectors. It is worthy to

note that the rescaled R satisfies only unitarity but crossing svmmetry, i.e.

R Ryl —2) = BurSpn : : (21
h(z (=2 — nas Lo
VNS T — nw = - - éiilé 7 22
R kJ( )Rk”l( n’u ') h(: + w)h{w — = — nw) kk (22)

Arranging the @, oz a5 the element of a matrix o located in /-th row and p-column.

Similar to the defiuition of R¥"" we can define the conjugate of o as

n—l ’ n-2
%] —_— ‘- -v * U v'
Ohphpssn = P, , O 4L _A‘__ (z+ (n ——1 hw) @ a4, (5+(n=2he)
1
X O A (2 w)P._, » (23)

n—1 n-2
* . _ - - f e I3 T, YO
OApApsrn = XP, 0 A, (2—w) o ApciAug 15— 2w)

1
0N s Mmoot (z=(n—-1we)P_, . (24)
n—1
J - e
=18 1% 08 --R1 - (23)
\———V——J

It is clear that there exists a homonmorphisim o*(z) — "o(z) = 0%z — nw). which is a

spectral shift operator. I i not difficult 1o show

Ve ) X
R vt — '_-2\1,')‘.\2_“\;‘ (..l) /(7/\ A “|‘:2| _

. C N,

= a0 S (26)
1/” { ' & { )4 - gl
AcAzioat-l \pot Apont =2 4000 “2

— ot i - 9~

AT T W “’\ Apir_nl®2) (27)




Notice that the parameter w, is not generic and the crossing parameter w # 1/iV. Thus,
our model is not-cyclic one. ‘From equations (20) and (27) we can get a comodule of ZF

algebra.

3 Vertex Operator

In this section we will introduce a vertex operator acting on the path. :For the.conve-
nience we pay our attention on level 1 case. The high level case will be considered in
future. Considering a half-infinite chain in north-south direction; we can introduce a

* face-like path F(k) (see Figure 3).

F(0) F(1) F(2)

Figure 3: Face path

where k is the coordinate of chain counting from south. F(k) takes value in the weight
lattice P(n.1) and satisfving that the neighbour pair are admissible. Physically. ‘t-h;':
configurations of face model in principle regime must be ground states at the low tem-
peraturc. On the other hand. ¥ contributes only one term in low temperature limit,

Au+2 Ay::-l
Appr Ay

1

Thus, the ground state pathes are
FARY=Apx . p=0,--,n=-1. k=0.1.---

and the configuration space decomposes into n subspaces (p-like sectors ) according to
the gronnd stare properries. Iina pi-like sector. the pathes there exists many pathes

which have the same structure as the ground state in infinite, i

These pathes stand for the excired states. By purring sowe veetors EFent ) & O

on {1.i+1) sides of a face path step by step. we can get a vertex-like patly ¢ Figure -4




F(2)

F(1)

F(0)
Figure 4: Vertex path
We denote by ‘P(k) the set of vertex-like pathes. In this graphic representation, the ¢
and o in above section can be depicted as
) ) Avye
ol-’\i+x.-"\i(:) = lt
A4
2
Figure 5: vertex o
Now, we introduce dan operator §p(a .., ).p(a,} ACHg ‘on P(A). The graphic representa-

tion is

Fisr(M)=Aipy — = N;=Fi(M)

CP(an ). p(an(T) =

Figure 6:
For example. we explicitly write out v in a finite N-lattice as

[k ~ X pathyy Ly el
(ehats)),, = S RMUaRRE

{t:} -

(R
[¥2)

or R . , r
.A.Rizl':-_["_'l("';;\' \ [ (

Apat

[t s elear thai CP(Aue).P(A) d0tIng o a p-like patly gives w4+ 1-like path fe.

P(A 110 P800
—_—

PN PNyt U



By using (19) and Yang-Baxter equation, one canr show
ZR‘J“(“l - '/’P(AM)P(AH DR, )P, 72)

= Uh () (22 B0, ) (1) (1) (29)
It 1s worthy to note.that (29) is obtained in finite Siée lattice. When \\(—‘ consider half-
infinite system ( thermodynamical limit), they will be divergent. In order to cancel this
divergency, we have to renormalize R, 1. Mathematically, there is an amblouous to

arrange the order of operators in the above equations. Thus, we take normal order as

o) (z2) = f(F = z) () (z,) ; (30)
Taking care of the two-point function, one can find the following difference cquations
"f(:l — z9) _ h(z =z ) .
flz1 — 22 + nw) h(w)r(zy — z,) (31)
where w(z) appears in reference [19] . It is not difficult to find
‘ Kz — pn.w)h(-w) v .
fle) = | 132,
) }l h{z+ 1w — pnw) (32)
and
gl: R{j’kl(?l - :2)¢Y§(A“)'P(An—l)(:1 )dJP(A#—X)-P(AA—?)( :2)
= UB(a.).P(he) 22 P(au ) P(A (1) (33)

R —_._‘_.__1‘_.. . K ; o 1t P . .
where R(z) = R(z)~x7' (=) is normalized boltzmann weights which sarisfies nnitariry and
the crossing svmmetrv. In a similar way we can define #* = o"R--." After proper

normalization 1t has

EP(A)P(Ans1) © YP(Aung1 ). P(An) = 0 3
ZRJ*!‘:I — 22 )P, 1P (et =) FUC By ) P2y T2

=t , (o)

CPNRP(Napron) T2 P(AL L) P(AL n) ’ e

Up to now. we =ct up the vertex operators o and o in the fundogenrad representi-
tion in the halfinfinite svsrem. The physical space s finite. So we neod ro cousider

another half-infinite space.

10




4 'The dual representation and vertex operator

In this section we will construct another vertex operater in the dual representation. The

dual weights of ‘AQ) is labeled by

(@) = (eliy) € g8

‘ (36)
(¢*) = (a") (mod 1,---.1)
and «* can be expressed as
n-1
at = PASHD B
p=1" )
p-l (37)
AL = A+ Y
v=0
or
A = (1,---,1,0 0
(An) = (1, E )
u-1 o
(4*) = (0,---,0,~1,0.---.0j (38)
u-1
Define
. 1 n-1 . -
a‘.: = l“_ Tl;luTu-p (39)
a;y = a; —_— a':

Similarly, we can define the admissible path (a*, b*) in the dual space by setting a*—b* =

7. g € (0.n — 1). The no-zero boltzmann weights are

e a a* + gt [1+
II ‘ * ~ * ane | U = 1
at+ ot oat+240 (1]
I".-_{_ a’ a4+ ‘[I,’ ; u . _ [H -+ (I;u} (40,
at + :[[. at + /nl’ 10t ) E”;y.‘ B /
o+ a* at 4ot u - E_‘j'“;u — 1]
at+ ot et +pt ot M dag,i

It ix casy to show that Wiy satisfies Yang-Baxter equation. Define the intertwinnine

vectors i the daal space as

+k

a*®,

e
s

) Q.H‘.(’:):9(]“)(:—111(‘(1;), -

11



and define ¢ the cofactor matrix of #*. One can verify the following vertex-face

correspondence relation -

- -\ atk o L+l .
Z ]{ij,kl(z«l - -2)‘?')3-'“.1._,‘-‘.(..1} oy ‘pa‘+ﬁ',a'+ﬁ‘+f1‘(:2)
k!

= T4+ (z) 867 ()W
k

o +ke g+t 400 asar ke .

-+ , —+ ;
Gar i 71) @ Pge gripel 22)R(21 — 22)

= S8t ik (1) B Ok arspr o ()WY
k

Taking a* = A} i = =1 and 7* = iTQ', one can find from (44)

el . —-+.
(f) - . z Dae avw Z o —
Bp:  ar (1) ® Pazny  (22) Rl — 22)
hzy— 22+ w)=
- I_I__L'_lL_)OX a2 F of 4l (22)
/I(V‘IU) IR et HERRE PR
- . 3 -+ .
In the graphic repreentation the ¢ is
7
- L _
@A.n’,\.tw) =
Al A7
Figure 7: vertex ¢
Also we define the vertex operator by
]
7
'—+J o R
v pan ) Panls) =
F—.‘-;-'.(.-\'f):;\‘f‘:1 3 AI=FA{M)

-

Fienre 80 vertex o
which maps DeA7) to Py i Us

Vpiar, nplAr;

: AIEY ll!‘ l‘ . - LY
PiA R PN % d

12

ot + oot +pt+ 0t

21-222

2t —22 )

o (44)

(42)

(43)




In the finite size chain the Wk satisfies

—i o
g‘/’P(A;“).P(A;H)(-’ 2 JBp(ag, e (1) Bisad(er = =)

h(z1 — 22 + w)—4j T+ _
=T Ry PZAM)P(A (2% p(az, 1, P(az)(72) (45)

Based upon the same reason for ¢ we introduce the normal order
FHP () = o —22) B () =) (46)

and get a difference equation of f

f(zl_—— 22 + nw) __ h(z; — 23 + nw) (a7)
f(z1 — z2) h(w)s(z1 — 22) .
By using equation (48) and renormalized R, one can show ' ' v o \\
—+1 L
- Yp(As,,)P(! p+1)("2)bP P ;)~_(31)Rij,kl(31 = 22)
=45 ‘ T+ N
= Up(ay,p05,0 ()0 Pag, Py (2) (48)

With this method we can also define the vertex operator i satisfying ¥o E+ = id.

5 Elliptic g-deformed Affine Algebra
From the definition of vertex operator, we know & sequence mapping
PAN % P(AL) 8 T P8 P(AL,) & ¢ — - - P(A]) @ 1V (49)

This means that n s acting on a path sector P(\}) as a identity operator. Using
this property. we can define the antomorphism operators L* as following: Taking anti-
symmetric fusion of n — 1 ¢'s and rransforming it from south to north with the corner

tronsfer matrix in clockwise and anticlockwise. The new operators act on PLA®)& P)

s

j
4w f2) (7= nuw/2)

e
St
L]
I

Li(z) = iz — ILIL‘/Q)Q:;F+j(;' + nw /2 (50}

13



where ® stands for the tensor product in quantum space. They satisfy
—RIZ(Sl - 52)-["—{&(31 )LQII(:'Z) = L'zi'(sz)L'li(Z1)_E12(21 - 52) (51)
ﬁlz(él —m+nw)Li(z)L7 () = L; (‘EZ)LT(:I)RIZ(’ZI — z3 — nw) (5‘2_) ‘

The proof of them is very similar. Here we show (53). Taking a element of (53), we.

have

Lhs = 3 Regulsi = 22 + nw)e’ (21 + nw/2)8"(zp — nw/2)

Gz —n u:/'Z_)_‘z?(:z + cnw /2)

2 — ‘:7111’/2)'1,!":(31 — mu/?):é”;?(:l - n'w/?,ﬁ;j(zg + nw/2)

rhos = Z vl 2y - nte /205 5y — nw/2)

rs

S {40 u*/?)?f(:l - nu'/i)??_;]-,,,(:l — Zp =]
= s — Ilu"/'z)l."k(::l — )7.'(,0/2)(5@;'(?1(:1 — :12_11.‘/2);.5](::2 + 77,-1[;/2)
= lhs

oy . . . —_ & - .
In the rest of this section, we study the exchauge relations between ¢, 1 and L=. Using

(29) and (46]) we find

.  k . o\
Lﬁ:(:z) (1.‘p(,\“+2),p(_\““)(~1)&]P(Au“),P(A“HO

> Rijuiny — T F w2 ({"';EA““),P(A,_L_-l)(-tl)Q%TP(;\,+2),‘”(A\“+‘_)) L5(=2) (33)
I :

+ btk ' -
[‘J'-J"* "2 (TP(‘\‘;-:)*P(-\‘ yt P(A,-.L—:)-P(A‘;-.'.)( -1 ‘)

= Z‘ Rojw sy = 2 5 0y 20 (\TP(‘\;H)-P(-‘\;?:‘)'::{’.'I";(If\u+2),?(‘\uv:)(‘ 1 )> LJ;’( z2) (D)
ki N

\\711(‘1‘(‘
o

vp{"‘u*i) = H (\“‘";.-7(}*'"“1)»“—),.'—!(k)
ko=t

s o translation operstor i the face path spaces Inthe proof of equations (341, we have

used the explicit expression of ¢ and o in a fixed parh. The coproduct of L= is defined
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A(L*(z)) = L*zFenw/2) @ L*(z £ cynae/2) (55)

then they satisfy

Rua(s1 = 2)AL(2))ALF(z)) = ALF()AMLEE) Runls — =) (

57)
(58)
ﬁlz(;l — 22+ 2nw)A(L] (21))A(L7 (22))
= A(LEtgz))5(Lf(Zl))Rlz(21 — 22 — 2nw) (59)
Define
SHL™(2)7 = ¥"(z + ne/2)@3 (2 — nw/2) . (60

One can show the following difference equation from equations ( 34). (36) and (61)

\I“(: = NW)P(A)P(Apney) = L;Ef;y)'},m#_l)(: - 3”“'/2)‘1"“{:)P(A“_l),P(A#_Z)
xSHL™(z = 3nw /_2))1;,’? M) () 6L

6 conclusion

In this paper, we construct the vertex operator in term of the intertwinning vectors
and derive out the difference equation. In fact the L* is written as tensor product in
two half-infinite space. The vertex operators in up-space aud down-space are all I-tvye.
This is different from ones in reference [20}. .\Iiki constructs the L= using I-type aud
Il-type vertex operators. However. one can set up the relations betwoen the [-ivpe
vertex operator in up-space and the IT-type one in down-space vise vs by using the
conner transfer matrix as pointed out by Miki. Precisely speaking. the construcrion of
vertex operator in this paper is based upon the highest weight vecror, Oue can show in
principle that they are true for arbitrary degenerate vectors. But how to do it is still

open.
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QUANTUM GROUPS SU,(N) AND
¢-DEFORMATIONS OF CHERN CHARACTERS

Zhong-Qi Ma

Institute of High Energy Physics, P. O. Boz 918(4)
Beijing 100039, P. R. of China

ABSTRACT

This talk is based on two preprints completed by Bo-Yu Hou, Bo-Yuan Hou and
Zhong-Qi Ma L2 For the quantum groups S Uq(N ), we compute some important
quantities in the bicovariant differential calculus, generalize the g-deformed BRST
algebra 3, define the g-deformed Chern class P,., and find the general calculation
method for the g-deformed Chern-Simons Q2:m—1, satisfying dQzm-1 = P...

1. Introduction

Recently, quantum groups have attracted increasing attention. Since the quantum
group is provided by a noncommutative algebra, the noncommutative geometry pre-
sented by Connes * plays-a basic role like the differential geometry in the usual gauge
theory. Following the general ideas of Connes, Woronowicz 5 developed the framework
of the noncommutative differential calculus. There have been a lot of papers treating the
differential calculus on quantum groups and the deformed gauge theories from various
. viewpoints. ,

CSWW °© presented a systematic construction of bicovariant bimodules on the quan-
tum groups SUy(N) and SO4(N) by using R, matrix. They described the conjugate
of the fundamental representation for SUy(N) as antisymmetrized product of (N-1)
fundamental representations, and showed the expressions appearing in the bicovariant
differential calculus on SU,(N) both by formulas and by diagrams. However, the anti-
symmetrized product makes the calculation of explicit forms very complicated. In the
later paper Watamura 3 investigated the g-deformation of BRST algebra for the quan-
tum group SU,(2). Its generalization to SU(IN) depends on the explicit forms of the
important quantities in the bicovariant differential calculus on SUg(NV), such as the ¢-
deformed structure constant C/§ and the g-deformed transposition operator A. In fact,
the key for solving this problem is to change the description for the conjugate represen-
tation. The conjugate of the fundamental representation in SU(NYis also equivalent
to a basic highest weight representation described by the last fundamental dominant
weight Ay_,. The monoid ¢ plays a very important role in the calculations for the
quantities appearing in the bicovariant differential calculus on SUg(N).

‘The plan of this paper is as follows. In Sec. 2 we discuss the main properties of f?q

matrices in the product representation spaces of Ay @ A;, Anv-1 @ An-1, M @ Ay-1, and
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An-1®X:. The monoid e®® is introduced to relate those Rq matrices. It is proved that the
monoid transforms the conjugate of the:fundamental representation ); into the highest
weight representation Ay_,. Some important quantities in the bicovariant differential.
calculus on SU,(N) are computed, and the ¢-deformed BRST algebra for the quantum
group SU,(N) is constructed in Sec. 3. ;From the condition 6P, = 0 and dP, =0,
we define the g-deformed generalized Killing form and the m-th g-deformed Chern class
P, in Sec. 4. In Sec.5, the g-deformed homotopy operator is introduced in SUL(N) to
compute the g-deformed Chern-Simons Q2m-1 by the condition dQm-1 = Pr.

2. Algebra of Functions on the Quantum Group SU,(N)

In the quantum enveloping algebra Uy Ay, there are (V.- 1) fundamental dominant
weight An. A highest weight representation is denoted by its highest weight, that is a
positive integral combination of A;. The states in the representation are described by
their weights that are the infegral combinations of A;. The fundamental representation
A1 is N—dimensional.. The states in this representation are described by their weight
(Ae = A1), that can be enumerated by one integer a for simplicity. The conjugate of

.the representation A; is equivalent to the representation Ay_;, where the states have
- the weights A;—1 — Ac and are enumerated by one index @ = —a. '

The. standard method for calculating the solutions R, of the simple Yang-Baxter
equation 7® is to expand it by the projection operators. In the direct product spaces of
MM, Av_1® Av—1, M1 ® Av_1, and Ay_1 ® A1, the solutions of the simple Yang-Baxter
equation are as follows, respectively: :

(B, = 0 (P, - o (P)”

. :_ cd - cd
- ©yab ab ab
AN_1AN-1L = — ( AN—l’\N—l) _ 41 An—1An-1)?
(Rq : g = ¢ (P ek B U i o7 2.1
1-N (PALAN—l)ab 2.1)
(< 0 . od

(o)) = 4 (PGL)% + (o
(

- b ab
An_1h1 )¢ _ AN-1M '
(Rq ] ) =4 rp& +An-1 v

1-N ('PAN-V\x)“b
&d &d o

ad
where the superscripts, for example A;Aq, have been implied in the super- and sub-scripts
ab and cd, and can be neglected.

We define the monoid €% as follows:

eul; — (_1)N—1 €s = Sab (_1)N—a 'qu—(N+1)/2
e = (—=1)N71 e = 6y (=1)N-2 gmot(N+1)/2 (2.2)
e e, = 82, €ap €° = &
where and‘hereafter, summation of the repeated indices is underatood.
Four f?q matrices can be related by € matrices:

Ax1\d a1 (AT ed ot o (pE\T

(Rq )a‘b = e (Rq )bbg e (Rq )_r;a €3 (2.3)

S+1 _ 41 .ar (pF1)”? _ a1 2ES AR -

(B) = o & (BF), e = 0% e (B, €
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Aisa Hopf algebra, freely generated by non—cormnu‘catmﬂr matrix entries T of the
fundamental represen’ca’uon of quantum group SUy(N), satisfying the relation:
. - ~ \ab . _ e Tb 2 \T3 5
()", Tors = T3 () 2

R b . . . ' . .. ) .

where (Rq)a ; is given in (2.1). The conjugate of the fundamental representation A ls
c! . .

equivalent to the representation Ay_i. Defining:

¢ = g k(T) €%, k(T%) = & Tha 0 (23)

where x denotes antipode, we are able t.o prove that 7% € A belongs to the representa-
tion Ay-_1: - ‘
()" T.7% = T2 T, (R)|
(Rq)“s T Ty = T8 T (Ry)
()2 171y = T3 T (Ro),

73

R O“8

(2.6)

[ Px!]
it
@l

The direct product of T and Tb spans the mixed space of the adjoint and 1denut\
representations. The generalized g¢- Pauh matrices are introduced to separate the singlet
and the adjoint components:

wly = (o1)g T4 T (o) = (o1 T% M(T%) (o3,
MY =1, MYy =M% =

(M) = DI, MR (DY, D% = 1. DU = ¢

o
-1
pa—

~ where D is a diagonal matrix. The explicit forms of ¢ matrices are listed in Ref. 2. In

the present paper, if without special notiﬁ'cat.ion, the small Latin letter. except n and
m, such as a and i, runs over 1, 2 , N, and a capital Latin, such as I. runs over
(i7) where i # j, and (jj) w here J > 7 In order to describe both singlet and adJomt
components, a capital Latin with a hat, like I. runs over 0 and I.

As usual, the linear functionals (L*)%, belonging to the dual Hopf algebra A'. are
defined by their values on the entries T4 °: ‘

T = O B%. BT = MBS (29
3. Bicovariant Differential Calculus and-¢-deformed BRST Algebra on Quan-
tum Groups SUG(N)
The bases nf of the right-invariant elements in the bimodule I' satisfy:

Ar(r?) = 77 @ 1, Aun?) = My & 1F (3.1)
an’ = nf(a x L), a€A LieA ’
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where Ay and Ap are the left' and right action of the quantum group on T, and

= (07)ur { K (LH)) (D7) e} (o)

J 3 (3:2)
(p * LI) (L ® id) Ar(p) -
- Now. the quantum permutative operator can be ca.lcula.ted as follows;
Anfen’)y = Al nFent, AL = L) (33)
o (o AT 2 : &

(07)® (a5) A, (aK)G (O—L)u = (0% )‘J LS(T%) L (T ) (@)

R_ R us R-l be R ad . (34)
=( )xu(q)ik(q)rﬁ(q)ﬂ_

;From the symmetry of the quanfum Clebsch-Gordan coefficients (Ref. 8, P.156) .
we have: E)ED
~1\ = A : =
(a7) @Bl . (dE)(a) (35)
Through direct calculation for (3.4), we obtain the 'non-vanishing components of Ajf:”:
as follows:

AI}T{L = 5.?’{ 5£ + f}‘;" fI};L + ‘@I{{La AOOoo = (A7 1)0000 =1

Ay = (-’\_1_)05'}{ = Afix, M = ANHE =Af% (36)
A = (A = 8 A = (AP, = (1) 8
The non-vanishing components of A’f;. K and f{¥ are listed in Ref. 2
‘Define some projection operators:
' 7)5 = PZAL?'PZAN._> (PAzapAN 2
Pa = (Pon-Pa ) (PA;,%N L) (3.7)
Ps -+ Py = :

where, for example.

(Pan- Poag )%

A E; ar 7 ~ us L= = 38
= (@M (D)t (B7")", (Pos) (Poa % ()", (o (o2 @Y
Now., from the definition for the exterior product of the elements in I
pAr = p &P — Alp &) (3.9)
we have: N
(Ps)f%z (1% A nf) =0 (3.10)
The g-deformed exterior derivative ¢ is defined as a map:
§: A = T, §:T™M — DAt
ba = {1g/A} (n° @ — a ), a€ A 3.11)
bn = {zg/A}{n A+ A% (3

A=gq- gt
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When the operator 6 acts on the fields. Watamura ? called it the BRST transformatlon
operator and the fields in T have the crhost number 1. '

“Introduce functlonals xy €A, that are ‘the g- analogues of the tangent vectors at
the identity element of the group:

ba="n" (@ * A5). x5 = if (e~ L) . (312)

Aj(T%) are proportional to the g-deformed Pauli matrices:

xi(T%) = —ig [N]7V2 =N (o) L (3.13)
xo(T5) = —ig g [N]/? {q-h PVNTT 4+ AT (1'92/N)} (007,
The q- deformed structure constants can be computed from (3 17) and 3.6):
= oAt o _ Kk _
COK = '-‘ Yg)\ CK“ CJK = —1g fJK
The g¢-deformed Cartan-Maurer equation can be derived from (3.11):
n° = {ig/x} {n° A 77 -+ 77 AP} =0 :
ént = {w/)\} {77 A 77 + 0t A 77} {3.13)

='C (gr; = (M2 +2)71Ch (77 /\77)
From the condmon &a =0, the Iuncmonals X7 span the ‘g~ deformed Lle alnebrd :

Xixs — Niiag e = Cf5 Az (3.16)

X7 (T% :) X5 (19) — ABL \2(T%) xz (T9) = CH\a(T3)
(Pasi)'s xx (T%) \L\Id) = £(02+2)7 CF xa(T9) (3.17)
£ =™ {1 - xg¥ N}

Watamura 3 investigated the g-deformed BRST algebra B for SUy(2). The investi-
gation can be generalized into the quantum groups SU,(N) straightforwardly, if some
1mportant quanties in the bicovariant differential calculus on ST,(N) are known.

7! in the bimodule T is defined as the ghost field in the BRST algebra, that has the
ghost number 1, but the degree of form 0. The gauge potential AT has the degree of form
1, but the ghost number 0. There are two nilpotent operators in the BRST algebra:
The operator ¢ increases the ghost number by one. and the operator d increases the
degree of fo‘rm‘by one. Neglecting the matter field. that is irrelevant to our following
discussion, we are only interested in four fields in the BRST algebra B: 7, dn, 4, and
dA, that satisfy the following algebraic relations.
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Firstly, we introduce an index n that is equal to the diﬁerence betw éen the degree
of form and the ghost number. The indices n for 7, dn, 4 and dA are -1, 0, 1, and 2,
respectively. Both nilpotent operators § and. d satisfy the Leibniz rule in the ffra,ded
sense for the index n. and are covariant for the left and right actions.

Secondly, the gauge potentials AT are assumed ® to have 51m11a.r propertles like 77
Hereafter. we neglect the wedge sign A for simplicity. :

C(Ps); (4R al) =0 T (3.18)
.From the consistent conditions 3, dy’ and dA” have to satisfy another relation:
Py (&% dn?) =0, (Pa)f; (dA%dal) =0 (319

Thirdly, the covariant condition of the covariant derivative in the BRST transfor-
mation requires:

4 = 0. SAT = dpf + L (Al 4 A 170) (3.20)

A

Fourthly, for two different fields X7 and Y¥ in B with mdlces ng and ny, ng > ny,
respectively, the consistent condition requires the followmer commutative relations:

(-1y=m xTy7 = vE (X7« L}) = ATL, vE xt (3.21)
It 15 prov ed that the commurative relations (3.21) can be rewritten as follows:

v (B2, v () = ()T, V()

‘ 9/ ¢ - (3.22)
xe = X! (67)%, Y5 =Y¥! (o7)%
At last. the gauge fields F7 satisfy:
= d47 + {ig/x} (4° &7 + 47 4°) ,
6F = {ig/3} (i° FT = FIn°) = o/ FRCE (3.23)
dFT = — {ig/3} (4°FI — FT4°) = — 47 a4k}
4. ¢-Deformed Chern Class
Define the "generalized ¢-deformed Killing forms” and the g-trace as follows:
9L L = Da21 Xn (Tzlz)' X1 (Tﬂaza) T XIm (Tag:) (4 1)
(X, _X sy Xp) = XB _;;Iz o X gpner '

where X; are fields 7, dn, 4 or dA in the BRST alvebra B. In (4.1) the fields can also
be replaced by, for example, XY°, Y°X or F. The m-th ¢- deformed Chern class P, for
the quantum group SU (N) is deﬁned as follows:

Pm=(FaF7"'aF> . (47)
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jFrom ( 3 ) and (3.23) we ha'xe

5Pm = q2m/N_ (“igql—N[~Kv]f1./2)m+l {Dao Faalz Faazs Fau'g (4.3‘)
- Db, o FY, o Pt
Owing to 7 (R*l) o D¢ = ¢=N g, the second term cancels the first term:
Db, Fo, Foz - Fimn% '
= Db, P P Fen {DJ E)oh s
- ¢ oy s (B0 ) )]
R F” - p (R ( Ve P (R
v Db, D (R") i (R;l)”; s Fa:: R Fa,,, ( )“;

e 4N pa i <1\¥ Fr a; ... KGm— a
= q Dgl‘Djn'c (R )n achzzg FamlFa’g
— a a r a; Qe Gm .

= D% o7 v, Fe ... Fepo Fom

Thus, 6P, = 0. The proof of dP, = 0 can be performed aﬁaloaouslv Note that
the components of the identity and the adjoint representations are separated in the ¢-
deformed Chern class, although they are mixed in the commutative relations of BRST
algebra. B '

5. ¢g-Deformed Chern-Simons and Cocycle Hierarchy

- In the classical casé Zumino 1° introduced.a homotopy operator k to compute the
Chern-Simons. Generalizing his method we compute the m-th ¢g-deformed Chern-Simons
for STU,(N). Introduce a g-deformed homotopy operator k that is nilpotent and satisfies
the Leibniz rule in the graded sense for the index n: ‘

=0 dk+kd=1 | (5.1)

If k exsits, we are able to compute the g-deformed Chern-Simons QZm_l(.-l from the
m-th g-deformed Chern class as follows:

Pn = (dk + kd) Pn = d(k Pn) = d Qam-1()
sz—l( ) =k

where we used dP,, = 0.
In the following we are going to show the existence of k. Introduce a real parameter
t. When ¢ changes from 0 to 1, the gauge potentials 4] change from 0 to A”:

Al =147, F] = tdd? + {igt? 2} (447 + 47 4%) (5.3)
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Define the g¢- deformed derivative along t ', that satlsﬁes the g-deformed Leibniz
rule:

] — f(g
AP (OB )
T it = 0 1 i 201 o
LN o ) '
: o f(t)g(t) = ot g9(gt) -r"f( t) 5 24t
The g-deformed integral is defined by:
to oo .
[ dt £ = w1 ¢?) 3 o () (5.3)

Define the g-deformed operator [t that satisfies the g- -deformed Lelbmz rule in the
graded:sense for the index n:

4] =0, LF = dg AJ (s 6)
It is easy to check that for all formal polynomials ('vamshmg at FJ =0 and 47 = 0):
- , ) : 0 , -
Et Ct = 0, [t d + d ft = 6q = dqt - (O.l)
. Ogt : S

Comparing it with (5.1) we obtain:

1 . .
I - /0 f, | (5.8)

The (2m —1)-th g-deformed Chern-Simons can be computed from (5.2) straightfor-
wardly. For examples, when m = 2 we have:

Qs(4) = k (P, S
= (4 F) = {8 (4L 4L ) (59

Just like those in the classical case 2. the gauge fields F” are invariant under the
transformation: ,
‘ Al - 4T — ) 4 d s , (5.10)

In fact.

Fl - 77
= (d + 8 (47 -’

g )
+ _3\_ {(A.O _ 7]0)(.4.] “"T]J) + (.4.7 _ 77]_)(-40 _ TZO)}
= F'+ {MJ - dy’ ~ % (A7 + AJUO,)}

2
_ {677-7 - f (,’]0771 -+ 77]770*‘4077J _ nJ‘40)}
= FJ
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Now, transforming (5.2) and expanding it by the ghost number. we obtain:

2m~1. .

C»?an—.l(‘ji - 77) = Z w2m-—‘n—

n=0 : ‘ 5.11
Pm — dwgm_]_, 5w2m—1 =0 ( )
6w2m —n—1 + dw;rtln—? = ;0- n= O'- 17 T (2m - 2)

where the subscripts denote the degrees of form of the quantities. and the superscripts
denote the ghost numbers. For example, for m = 2 we have:

8= (4 ddy + a4l g

- - 5-1 (77 ’ A : 77)
o = (B s, )

£
!

I
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ABSTRACT

Quantum measurement process 1s studied by éonsidering a quantum object
and the measuriﬁg detector as ia closed system. A method for tvo‘ coﬁsﬁuct
explicitly soluble models is suggested. Several models of an uitmrélativi@;tic
particle coupled with vaﬁpus_mgasuring detectors are given and hdiscussed.

Meanwhile some ambiguities in some literature 1s pointed and overcame.
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Now, transforming (5.2) and expanding it by the ghost number, we obtain:

o 2m-1. s
sz—1('-4*;77) = Z ""’Zm -n—-1
n=0 . ' 511
Pm = dwl, _,, 6™ =0 (11
bW ay Fdwitt o =0. n=0 1,---, (2m—-2)

where the subscripts denote the degrees of form of the quantities. and the superscripts
denote the ghost numbers. For example, for m = 2 we have:

W = (.4‘, d4) + G TR

¢[3}[2]
wy = —{(n,d4) - (5.12)
w? = _§-1<77)A-. 77)
wo = B} {m,m,m)
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ABSTRACT

Quantum measurement process is studied by éOnsidering a guantum object
and the measuriﬁg detector as a‘ closed system. A method for tol cohsiruct
explicitly soluble models is suggested. Several models of an ultrarélativisiic
particle coupled with vafip’us mgasuring detectors are given q_nd discussed.

Meanwhile some ambiguities in some literature is pointed and overcame.
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- In order to understand quantum mechanics completely, the measurement prob-
lem [1] in quantum mechanics is a sticky question, in which Von Neumann's or
Liider’s projection postulate plays a curial role. The postulate says that if a phys-
ical quantity of a quantum ob ject is measured twice in succession, then the same
value is obtained each time. This means that once a determined value about the
observable 4 is measured the state vector of the quantum ob Ject Q (usuallx a cer-
tain superposition of some kind of basis in Hilbert space) must collapse 1nto the

corresponding eigenstate of the operator A. Simplified solvable models in quantum

- mechanics is undoubtedly very helpful for to comprehend the called measurement

problem(1,2]. In Ref[3], the author multiply the evolution operator of his model
only on one of the components of the initial state of the quantum object and mea-

suring device system. So the discussion is only about a quantum phase shfiter .

1instead of wave packet collapse. In present letter, we will analysis measure process

formally in terms of quantum mechanics and formulate a condition of explicitly
solvab1l1tv From this condition we construct sev eral explicitly solvable models.

the\ are ultrarelativistic particle 1nteract1n¢ W1th fermionic or bOSOIllC oscillators

-in one dimension. we also formulate models interacting with spin array and an-

gular momentum array. One can ﬁnd that the energy fluctuation of measuring
device in the model of Ref[4] is dl‘verdent When the 1nteract1on between Q and M

vanishes. This is overcame in the models of present letter.

As is known[5,6] that quantum mechanics is a fundamental theory governing
the whole universe, we consider the quantunﬁ object ‘Q to be measured and the
measuring device M as a closed quantum system Q-+M. Let Hq and Hys stand
for the Hilbert spaces of Q and M respectively. We assume that the operator 4
on Hgq representing the observable quantity under consideration has a spectrum
{A}. Let [¥(\) >€ Hg be normalized eigenvectors corr?spondixlg to eigenvalue .
Obviously if there are no interaction between Q and M, the evolutions of the states

in Hilbert space Hgq is independent with that in Hjs. Thus the evolution of the
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state of the closed system Q + M is simply a tensor product of the indei)e'ndent

evolution of the states in Hilbert spaces Hg and H,,.

Z CA(t)Du(t)er > g, > . o (1)

Von Neumann's postulate requests such final state of Q+M after measure process
ta.l\.mtr place that A and u are correlated i.e. y:= = p(A). Of cause the correlation
do not happen unless the mutual interaction between Q and M in measure pro-
cess is take into account. The models which we constructed exactly lead to such

correlations.

In order to find dynamical models which can realize Von Neumann’s postulate,

we consider a total Hamiltonian for Q+M system

H=Hq+Hy+ H' (independent of time), (2

where HQ and H a is the free Hamiltonian of Q and M respectn ely, and H' the
interaction Hamiltonian. Here the ‘free’ means that the Hamﬂtoman H Q and Hpr
contain the operators of their own system only z.e. the_3 commute each other. In
this case, it is convenient to \VQI‘I{ in interaction pictufe and is eésy to obtain the

time evolution of state in Hilbert space Hg. .

[B(t) >= e w(HerBrkt 114 41y c(Ho+Ha) |g(¢t) > (3)

where |¥ >€ Hginr and the evolution operator satisfies

al/ t 1‘ ¥ - !
with |
H)(t) = (ot Hak i)~ (s Hacke (5)
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and U(t,t) =1, t'is a pa'rz‘m_meter‘ due to there are infinite many interaction
pictures. |

From eq.(4) we can write out the evolution operator as an integral-integral

- — 1 t . N
U(t,¢) =eZp (ﬁ / H}(t”)dt”) ()
th Ju
Evidently, If the commutator of the interaction Hamiltonians in interaction picture

at different time vanishes, i.e.

[ Hi(t), Hi(t")]=0, (7)
then the evolution operator has an explicit solution. Therefore eq.(7) is a start

point to construct explicitly solvable models for quantum measure process.

Let us first consider an ultrarelativistic particle as the quantum object and con-
sider an one-dimensional free bosonic or fermionic oscillator array as the measure

detector. In this case, the free Hamiltonian for Q and M are

B

~

.HQ = CP._
N 1

Hy = th(a?az—}-;)- (8)
=1 - :

where P is the momentum operator of the particle. aj or a is the creative or
annihilative operator of the oscillator in Ith site on the array. The interaction
Hamiltonian must contain some of the operators of both Q and M. Considering
the changes from H' to H} brought out by the free Hamiltonian eq.(8), we can

write out the interaction Hamiltonian as the following -

N ) \ . . .
H =3 V(z—a)f(ae=", a7 %), (9)

=1
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where z is the position operator of the particle,z; is a parameter indicating the
site of Ith oscillator, V is a real potential and f can be any analytical functions.
This interaction Hamiltonian is transformed into the one in interaction picture via
eq.(5). The change is that V(z — 2,) becomes V(z + ¢t — Zn) only. And it is easy

to show that the condition eq.(7) is really satisfied. Thus the evolution operator

_is explicitly solvable.

Let us consider the one photon interaction case

N
H =%"V(z- o) (aete® + afe™'e"), (10)
=1 :
It is also the general case for fermionic oscillators. Then the evolution operator is

solved as following product, -

. .
S= lim U(t,¢) =T] Sw, (11)
tl::ow =1
where
: 0262 0w v w
— A D —— "t T 4t D — P e T &
Suy = ekp(mé—)e:\p(ihce aj )exp(ihce a) (12)

where v6 := [%, V'(z)dz. In deriving the above result, the known Baker-Compell-

Hausdorff formula [7] has been used.

Suppose the initial state of Q is a plane wave |p > (eigenstates of Hg) and M is
in its rest state (i.e. ground state) |0 > before interaction. Notice that |0 >= 0,
the evolution of the initial state is obtained without much difficulty. For the case

of M being bosonic oscillators, the result is

[Uy> = S|, >

R ST EANRY VAL R )
= e Sy e s 13)

n=0
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Here and the following |p’,n > stands for |p’ > ®|n > and [n > is the symmetmzed
state of M. For the case of fermionic oscillator, the creative and annihilation op-

erators are Grassmanian (at)? = ¢? = 0. Taking this in mind we obtained the

following evolution

N (N\? B
SllIlt > eN(vé/hc)2 Z ( ) U(Sc)n lp-—- nhw n>. (14)

Z\n 271

N : ,
where ( ) stands for the binomial coefficients. If M is a spin array, one can also

construct an explicit solvable interaction Hamiltonian. The following is the total

Hamiltonian of this case.

H = D L . d )] ol Tl on (l) —-i%z 0 1 = (1~)
_cP+57inaz +ZI/(:3 ) |oy’e +ol . S
= =1

=1
This is nearly the Hamiltonian as in [4], a development of the Coleman -Hepp
model [8]. One can solve the evolution operator, which is also a product of indi-

" vidual ones,

: 6. ” i%e
S = cos(22) — isin( 2 )(aPeite 4 o0eite), (16)
“he he ‘

It leads to the following evolution of state

‘ N [N : 1) » CLovd. Che -
5|p,0>:2(1.) [cos(% | "’[—zsm(%)]’ ip—]—c.—,j>. (17)

5=0

where |7 > stands for the state of \/I in which there are j spin up and N — j spin

down states.

Similarly, one can find the solvable Hamiltonian of ultrarelativistic particle

coupling with angular momentum array. There are two possibilities
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=1 =1 .

N N
H=cP+he) JO+3 V(e —a,) It 4 j0eit= 4 g,

‘or: -

. N J? N ) ‘ o .
H=cP+lX:,)—}l- + Y V(z-2,)b-1T. - (18)
=1 I=1

For the sake of saving space of the letter, We would like to omit further calculations

of this case.

From the above explicit solvable models, we may find that the evolution caused
by the interaction Hamiltonian really lead to the correlation of the eigenstates in
'HQ and fhat in Has. Thus they do realize Von Neumann postulate. As we have ob-
tained the evolution of the system Q + M for M ’being bosonic oscillators. fermionic .
oscillators and spin array respectively, we can calculate the energy fluctuation of

M around the average of them. The results are

 <6Hy > = h¢~\/z\—?(;—i);

b
. )
<bHpy > = ﬁu\/ﬁ—-%—
‘ 1+ (32)?
“he
R 6. :
<6Hy > = hg*\/ﬂ_’sin(‘%;)cos(%); (19)

for bosonic, fermionic and spin array cases respectively. The relative fluctuations

are

vé
<6Hy> 2 (h_.é
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fic
vé. vé
< 5.HM > _ 2 Sln(h COS(EC) (90)
<Hy> \/A—r'Q'sm —)—1 o

for bosonic, fermlomc and spin array cases respectively. From eq.(19) we can see
that for either of bosomc case, fermionic case or spin arra:y, the energy fluctuations
of them is proportional to hwy/N. Moreover, the relative fluctuation of them

eq.(20) is reversely proportional to the Sqﬁare root of 'N. Furthermore we can find
 that both eq.(19) and eq.(20) are model independent in the limit of week coupling

~t.e. v6/hc becomes very small.

In above we discussed the quantum measurement process. The key point is
that Q + M is considered as a closed svstem. Thus the total Hamlltoman is a sum
of their free Hamiltonian Hg + Hpr and the inter acmon Hamﬂtoman H' between
Q and M. In order that the time evolution operator is .explicitly solvable, the
interaction Hamiltonians eq. (9), eq.(13) or eq. (18) was. constructed by cons1dermcr
. that the commutator of the interaction Hamiltonian at different time is des1red to
vanish in interaction picture (although do not commute in Schrodmrrer ‘picture).
It is also worthwhile to mention that the so called free Hamiltonian in [3] is not
really a free one, because the Hamiltonian for the : spin array director there’ contams
functions of z which is the position operator of the ultrarelativistic. particle. In
[3] a discussion about decoherence of quantum phase shifter in the macroscopic
limit was confused as wave packet reduction. It is also worthwhile to mention that
the relative fluctuation in [4] is divergent when the interaction between quantum
object and measuring detector vanishes. This is due to-that the energy of ground
state of the detector was defined as zero in [4]. However, this-problem has been

overcome in present letter.
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1 Introduction

‘Recently people have pay more a.tten,,tivqp_‘tp'jt‘ht‘a_ investigation of completely
integrable discrete variants of conformal field theory such as lattice Wess-
Zumino-Witten model [1], quantum Vt;lterra model [2], the lattice Liouville
model and the lattice sine-Gordon model [3]. Bruschi et al studied the prop-
erties and behaviors of integrable symplectic maps from the lattice evolution
equation[él]'. In order to providing the new way to construct the conservation
laws and to discuss the nature of quantum integrabilit by using the discrete -
space-time method [5,6] Faddeev et al investigated the lattice Virasoro al-
gebra and the. correspoﬁdi_ng hierarchy of ch;serf{ratioh laws from the lattice
current algebra where the shift operator with |¢| < 1 is discussed in detail
[7]. |

We know tha,tv the dﬂogarithin appeared firstly in the discussion of the |
X X Z-model at small magnetic field [8], then appeared in the 2-dimensional - "
quantum filed theories and solvable lattice rﬁddels [9]. The quantum dilog- .
arithm idenfity introduced in Ref. [10.] 1s equiffalent to the restricted star- |
triangle relation of the three-dimensional Baxter-Bazhanov model [11,12] and :
more recently Kashaev built a connection between cyclic 6j-symbol and the

quantum dilogarithm.

In this letter, we will construct the shift operator from the cyclic quantum
dilogarithm and give a representation of the lattice current algebra which
combined with free discrete time dynamics. It is proved that the “theta-
function” is also factorizable in the case of |g| = 1 by using the star-square
equation [13,14] of the three-dimensional Baxter-Bazhanov model. In section
2 we give the cyclic quantum dilogarithm and the representation of the lattice

. current algebra. The shift operator is constructed and the “theta-function”

is proved to be factorizable in section 3. Finally some remarks are given..
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2 Cycl1c Quantum D1logar1thm and the Lat-
tice Current Algebra |

By following the Refs.[11,13], define the function

. ) }
w(a, b, cll) = [[ b/(c— aw?), aF+b" =l 1>0, (1)
=1 '
with w(d, b,¢|0) = 1. For any operator A whose L-th power is the identity
operator, the spectrum of the operator A is given by L distinct numbers

Sy =0 Do ®)

We define the cyclic quantum dilogarithms ¥(A4) and ®(A4) (See Ref. [10])
are the commuted operators which depend on the operator A and commute
with A which has the spectrum (2). The spectrums of ¥(A) and ®(A) have

the following forms:
T(w!) = U(1)u(a, b, ),

2(w) = (1)w(c,w /b, wall), (3)

where V(1) and ®(1) are the non-zero complex factors. And the “furictional”

 relations of the cyclic quantum dilogarithms ¥(A) and ®(A) can be written

as

Y A)Y(A) = (- )b,
P(wrA)B(A) = (w%/za ~w A/, (4)

which determine the operators ¥(A) and ®(A) up to the complex factors.

Furthermore, from the above relations, we have

L-1 1
U(4) = Al S 5
(4) pl§> Jch 5 (o?
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. L-1 1 ‘
l .. ¢ ‘
@(A) - p2 g A :]I-Il aw bwl/z_j" : L ‘ (6)

where p, and p; are also the non-zero complex factors. In this way, ¥(1) and

®(1) can be expressed as

Lll

T(1) = P1 g I—I1
L 11 . ‘ .
‘1)(1) - P2 Z ]:[1 bwl/z_J ; . (7)

By using the cyclic quantum dilogarithms (4) we will construct the shift

operator with |g| = 1, in the following section, from the lattice current algebra

Wpo1Wp = ¢ WpWp-1, N =2,3,--+,2N,

-szw1=q2w1w2N,_ Co (8)

WnlWn = WaWm, 1 < |m —n| < 2N -1,

which reduces to the periodic free field in the continuous limit [7]. Set

'—I®I® ®I®m®I®I® -® 1,

1_1 N—z—l
=T0l8  ®leyolols ol ©)
-1 N:;-l

with ¢ = 1,2,---, N — 1, where the L-by-L matrices z,y are given by

0100 --00 10 0 -+ 0 ]
0010 --00 0w 0 0
z=|: 1ttt y=|00w -0 1 (10
0000 --- 01| Pt
1000 --- 0 0] (000 0 - wil]

with w = exp(2m/ L) and [ is the L-by-L unit matrix. When we fix that
wk=1(n=12,-,2N ) the répresentation of the lattice current algebra
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(8) with ¢* = w is given from the following relations:

Wai41 = m-i_lxi+1, 1= Oa 172a . )N — 17
;'—y:n .7—12’3N—'17 l (11)
WaN = Hl-—ll _17 . ‘ i

‘where zo = =y = 1 and z;,yi(i = 1,2,---, N — 1) are the N —1 independent
Weyl pairs satisfied the relations z;y; = ¢*viz;. ‘

3 Shift Operator and Factorized “Theta Func-
tion”

In the d1screte space-time picture the equatlon of motion of the free field p(:c)
pi(z,t) + pz(z,t) = 0, has the form w,(t + 1) = wp_1(t) W ith wn(O) = Wp.
- Then it exists that the shift operator which satisfy

wnU an_ o (12)

The main aim in the rest of th1s letter is to discuss it by using the cyclic

-quantum dilogarithms. Let

ho= U(wa)@(wi?) (13)
with w2 =1 for n = 1,2,---,2N. From relation (4) we have
wnhn—-l = ;—wl/zhn—lw;twn—la hn;'wn-—l : _Ql/zwnwn—l hn'l | (14)

It can be obtained easily that

wnhn—lhn = hn—lhnwn—ly n=123,-- 72]\71 (15)

with wo = way. By considering that the two central elements Cy = [] wWoda

and Cy = [] Weven are equal 4, from the above relation, we can express the

*We can always get the lattice current algebra with the two equal central elements Cl
and C; by choosing w,, properly.
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shift operator U as -
U = hih, e h2N—:1‘7’“ o (16) |
which satisfies the relation (12). And operators hn“»give a representation of the |
~braid group of the 42N 1 type. It is intefesting that the above relations hold
also when we substitute operators Ay, by A = ®(w,)¥(w;?). In the other
hand, the shift operator with |g| # 1 can be denoted by the theta functions
‘ [10 15] Then we can ask the questions that what is the difference between -
'the operators h and Ay, and what happened about the theta functlons when
it denotes the shift operator with |¢| = 1. The answers of them are given as
the follows. We know that the star—square relation of the three dlmensmnal k

‘Baxter Bazhanov model can be written as [13, 14]

{ w($1,y1,21|a+a)w(:cz,yz,zzlb_{_ a)}
cE€EZN U)(.'I,‘3,y3, ZSIC + U)w(x4,y4,z4|d+ 0’) o

_ ($2y1/wlzz)a(xlyz/l‘»zh)b(zs/ys)c(z4/y4)d
B y(a = bwlettlz | ’L‘

w(wzaTez129/T1T22324|c +d — a — b)

o (8510 - o) (221e —) (22 - o) (322010 -0)

with the constraint condition Y1Y22324/(2122y3ys) = w where the subscript ;

- .

X

"0” after the curly brackets indicates that the 1. h. s. of the above equatlon
is normahzed to unity at zero exterior spms and the following notations are g

used:

w(,y,2[) = (y/2)'w(z/2|1), v(a—b) = wle-A)Ete=t)/2,

From Egs. (5), (6) and (7), the operators h, can be denoted as

L-1
hn. = pP1pP2 Z akwﬁ
k=0
where
’ L-1 E 1 .- ‘
%= g w(w=1b, a, c|)w(w=1/2b, c,walk + 1)
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g the above Star—square relation it can be proved that
ar = v(k)ao (21)

(k) is given in Eq. (18). Then we have

| . L-1 . -
hn = 6op1p26(wa), O(wn) = Z(—)kwkz/zwn’c- (22)

k=0
more we can proved that h, = h, by using Eqs. (17) and (21). There-
shift operator is constructed from the cyclic quantum dilogarithms

h the “theta function” is factorized when |q| = 1.

onclusions and Remarks

1g the cyclic quantum dilogarithms (4) the shift operator of the peri-
: field in the discrete time-space picture is constructed from the lattice
algebra for which the cyclic representation is given from N —1 inde-
- Weyl pairs. And we show that the “theta function” is also factoriz-
en |g| = 1 by using the star-square relation of the three dimensional

Bazhanov model.

ct, the “shift” property can be connected to many domains of physics
the quantum field theory, the solvable models of statistical mechanics
. dynamical systems. Recently Faddeev and Volkov discussed the
the saw S corresponding to the solution of Hirota Equation along
rete time axis as an example of an integrable symplectic map [16].
ft operator also appeared in the differential forms when we set 8, f =
R f(k) = f(k+1), then f(k+ 1)X = X f(k) on the lattice where
‘orm and it will be useful in the lattice gauge theéry [17]. Another
he developments is in the domain of the superfnanifolds and it is not

ar about the structure of it when the relations similar to thé lattice
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current algebra is intrduced. Due to the cyclic quantum dilogarithms have
the deep connections with the solved lattice models we can discuss the shift
properties of the two and three dimensional lattice model further.

One of the authors (Hu) would like to thank H. Y. Guo, K. Wu for the
helpful discussions and B. Yua. Hou, Z. Q. Ma, K. J. Shi, X. C. Song ,
S. Y. Zhou and P. Wang for the interests in this job at the workshop of
CCAST(World Laboratory) in Beijing.
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Recently many interests have been paid on the investigatiohs of the higher
dimensional integrable systems in the quantum field thebry [1] and in the
sta.tisticé,l mechanics [2]. For the lower dimension case of them, the Yang-
Baxter equation (YBE) plays a crucial role of which the structure is now fairly
: well understood. - As a substitution of YBE the tetrahedron equation becomes
a integrability condition of the exactly solved model in three dimensions [3],

. from which the community of the layer-to-layer transfermatrixeév is preserved.

One of the .approaches is the n-simplex equation [4] and it is said that the case |

of n = 3 is corresponding to the tetrahedron eqﬁat‘io'n. The aim of this letter

is to expose some procediire for deriving solutions of n-simplex equation from

~ braid group representations ( ie. solutions of parameter independent YBE) o

[5]. Meanwhile we would like to derive some symmetry transformation in r

solution space of 3-simplex equation as an example.

The 3-simplex equation we will consider takes the following form
R1233214R341‘R43i = RypqRigaRa13Ran ; (1)

where the order of subscripts are chosen in such a way that the normal of
each surface of the 3-simplex is always toward the inside of the 3-simplex

(tetrahedron)’

1 3
Certainly, the positive direction of the normal of a surface determined

by a cycle ( fior example, (123), (341) etc.) following the right-hand helicity.

The madkrices; in eq.(1) stands for the scattering of three strings, for example

Rovalpn, pias s, pra >= Y, R (g, vp, pa,va > . (2)
v )
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Solving solutions of eq.(1) is a complicated problem. It is known that many
represeﬁtations of braid groﬁp have been found in recently years. We will
show that if one have a representation of braid group,v one can obtain a kind
of solutions of the 3-simplex equation. A braid group is a category of free

group under the constraint of the following equivalence relations
,bibi+1 b; = bi+1 bibit1

bib; = bk for li—j|> 1. (3
It is called a braid group due to it has a simple realization on N-strings by
identify .
i it 1 1 i+l

1
veo os0 —mpy bi, ‘ [.ch L — bi—l

Then the equivalence relation (3) becomes an evident topological equiv-

alence relation. If a representation of braid group takes as
pib;— Siig = MNg.. 1609 s [+ g ... [¥) e (4)

where S € End(V ®V) satisfying the following parameter independent Yang-

Baxter equation

512523512 = 523512523 (5)
If we define an operator |
n 1-1
t= H H b;
' i=1j=1

which is understood as an ordered product from right to left or vise versa.

We can show that the following identity holds -
titataty - = tatataty o, | (6)

where the number of #'s in alternative product is n + 1. The case n = 2 1s

exactly the elementary equivalence relations of braid group eq.(3). Forn =3

49




we have

tatatsts = tatitaty, g (7) -

where ty = bibaby, ty = bobsba. Thus if we know a representation of braid
group, we will have a solution of the following equation

RigaRasaRizsRozs = RoasRizaRaasRins - (8)

where Rygs:= R®I, Ry :=IQRand Re End(V®V ® V). This is easily
realized by |
p:ti— Riss

due to t; = bibyby etc., then the following identities holds
_ Ry = 512523512 QI et | (9)

As to eq.(S'), one may find some symmetry transformation of it. If one write
~out eq.(8) into component form instead of matrix form, one can easily find

“that the equation can be symbolized by Kauffman diagram.r That says if we

denote
a bc . abec
Habc - V " abe
def ™~ % , R ldef ~
- def def

The inverse relation and eq.(8) are depicted respectively as

|

and
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abecd

abcd‘ )
g - (10)
e fgh efgh

where the inner line connecting legs of two shadows implies the summation
over the repeated labels on the legs, and a simple vgrtical line stands for
a unit matrix. It is not difficult to find that the diagram eq.(10) has the

following symmetries:

Flipping via a horizontal axis, denoted by H

efgh

abcd (11)

or via both in term VH = HV.
hgfe

(13)
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Thus we have

,,,,,,,

eq. (8) has a d1screte group symmetry {zd H V VH IH 2 _ 'zd V2

VH}.. The actlon of this. group: brmgs one solutlon of ) 1nt6 other three new

" abc abe

solutions. i.e. if- Rgg; is a solution of eq.(8), then R’ def = R}i‘fi, R” dof T RZ‘ZfC
and R’"ab; = Rz will be solutlons of eq. (8)

Furthermore, if giving a d1rectlon to the Ka.uffnman diagram Rszjc ~ % ;
and adding a minus sign to the Iabels on the t1p Qf the arrow, we can find that
the summation of such labels ¢ 0 ! both slde of thé dlagram eq.(10) are equal.

~ This brings about a chtmeous fr ‘ansformatlon-,f,rom a solution of eq.(8) into

another

Rake — Rf“"c t“+”+°—d"e"f R;’;; | (14)

Starting from the matrix form. of eq. (8) we can, obta,m two more contmeous

transformations in solution space They are an overall factor transformation

R - 7R; a similar transformatlon by a tensor oduct of matrices R —

(AQAQA)R(ATT®ATTQA” B Becausé elgenv

of a matrix are invariant

he latter 1s‘ a

under a similar transformatl il“_ Hnsformation within the

subset of solution space, Wh1ch is spec1a1ﬁed by the e1genva1ues of R.

In above we made much chscussmn on eq. (8) now we mtroduce a new

R-matrix

(15)

where P is defined as

Plus, pgs pi3 >i= |pa, pray g >
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Then we can show the R-matrix satisfing the following equation as long as

the R-matrix satisfing eq.(8)..

Ris3Ry14Rs41 Razs = RosaRiasRarzRan (16)
which is'an variant of the FM 3-simplex equé,tion we have introduced at the
begining of our discussion. '

~ In a similar way, one may discuss the case of 4-simplex equation and so
on. The key poiﬁt is that eq.(6) is an identity on braid group, then if one has
a representation of braid group, one can write down a expression from the
expression of t; on the basis of S-matrix, which is supposed to be éolutions

of parameter independent Yang-Baxter equation.
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Abstract

We express the vacuum expectation value of the S U(3)g parafermion =~ -
fields by that of two bosons and SU(3)x current algebra. When k=1,2;3," RS
the later becomes an inner product of an unitary representation, and oo
T(z),W(3)(z) are equivalent to ”quasi-self adjoint” operators in this
representation. ‘ : ‘
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1 Introdilct ion

W algebra is an extension of the conformal algebra, which can be realized
by several ways [1]. We can construct W algebra by parafermion [2]. In this
construction, a crucial problem is the W algebra, which can be rigorously
proven by the unitarity argument. S _

In ref [2], we formulate W) by SU(3) parafermions. One can easily
show that such W’@ 1s a primary field of dimension 3. Then the singular

part of operator product expansion (OPE) of T/V(3)(z)W‘(3)(w). contains a new

primary field W®), which must be null for the closure of the W5 algebra. We
can show that when £ = 3, the two point function < WE()WE(w) > equals
to zero. If such construction is unitary and if W*) is quasi-self adjoint, then
one can conclude that W*) is a null field. We only sketch the proof of this
in ref.2. This paper is a detailed proof. The main idea is as follows.

We can realize the SU(3) current algebra by parafermion and two bo-
son field [3,4,2]. One can thus express the vacuum expectation value of
parafermion fields by that of currents and boson fields [4,2]. From this
relation, we can find a subset B of the operators representing the SU(3)
~ parafermions. We can use these operators of the subset to calculate the vac-
uum expectation value of parafermions fields. In the subset B, these is an
ideal, the vacuum expectation value of which is zero. When % is a positive
integer, ‘the vacuum expectation value of currents can be expressed as an
inner product of a unitary highest weight representation. In the composed
representation of current and bosons, which is also unitary, the T, W) and
W@ of SU (3) parafermions are expressed as essentially self adjoint operators
¢, w® and w® plus ideal operators. These ideas operators are equivalent
to zero in the vacuum expectation value of fields of the subset B. We can
thus use these quasi-self adjoint operators ¢, w® and w(® to calculate the
vacuum expectation values of T, W) and W) with all parafermion fields
and prove that W® is null for k = 3.

2 W algebra from SU (3) parafermion

Let a root system of SU(3) be depicted by Fig.1, denote it of as A+. The

operator product of SU(3) parafermion is [4,7,2]

o6




Ya(2)s(w)(z — w)*#/*

= (76__5)2 z/’a+ﬁ(w) +. ZO(’ —w)™( %I/}ﬁ(?ﬂ)) (w)
where |
Kag _{Eaﬁ/\/— ifa+ B €A

otherwise

‘and €, g are the structure constants of S U(3),

€ayo; = ~€aza; = €—qy—ay = 1.

For o = -3,

Va(2)p-a(w)(z - w)
e D WCE w) (7 _, ()

n=0

We define T, W) as

)= 5 73) % () +A476)
WO = 5,3 () )

=1

Bs = (K*/6(k + 1)(k +3)) """

(1)

(2)

3)

(®)

(9 corresponding to «;, and we can calculate the OPE of W (3)(2)W(3)(w)

by
(1), from which we define PT/'(4)(2)

c/3 B
(z —w)® + (.

WE ()W (w) = (k — 2){
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+(%w>—2 (2#°A(w) 2 T(w))

_|_—-z_1—w- (bzﬁwz\(w) -I—H%aaT(w))}

33 L 1 4
(i e LU LA CERC

where
) = (T Th(w) - $0T(w), o= G2

16 _4k+3) e _ 128(2k + 3)(4k — 3)
22 +5¢  13k+9° * 3(k +3)(13k + 9)

b =

(7)
and (T -T)o is defined through the OPE of T(z)T(w), we can show that T(z)
is the stress tensor satisfying

c/2
G-y

due to ( 1). We find W), W) are primary fields, with d1men31on 3 and 4
respectively using (1) [2 ]

T(2)T(w) =

+ T(w) OT(w) +(T - T)o(w)+..., (8)

e

3. 5 : |
©)
e

4 0

(z—w)2 z—w

T(z)WE) = (
T(z2)W® = (

) w4 - (9)
and the vacuum expectation value of W*(z)W®(w) is

(k —2)(k — 3)c/4

(z —w)

< WOEWE(w) >= (10)

which is zero for k = 3.
¥ W® is a null field then we have a closed W; algebra from (9), (8 and
(6). This will be true if W® is self adjoint in a unitary framework.
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| Ya(2)a(w)(z — w)o/k |
”(,6_‘5)2 T esn0) £ e ) O, () (D

where

Ka’ﬂz{ea,ﬂ/\/k—; ZfCY+,6 €A

0 otherwise (2)
‘and €, g are the structure constants of SU(3),
| Car e = o = ooy = 1. (3)
For a = -3,
Ya()p-a(w)(z — w) M
= Gar nz_%(.o —w) () _ (w) @
We define 7, W as
T(z) - Q(k 13 £ Z (67 +77%02)
WO = B3 () - 5702)
=1
By = (k*/6(k + 1)(k +3)) " - ®

(0 corresponding to oy, and we can calculate the OPE of YfV(3)(z)W(é)(w)
by
(1), from which we define W(%)(z)

¢/3 2T(w)  8,T(w) |
(z —w)e + (z —w)t * (z —w)3

W)W (w) = (k - 2){
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1

. (2 A(w) + Z5T(w)

(z —w)?
oot — (Yaur(w) + 1—15-33T(w)>}
1 4 1

(z—w)? 2z-w

+C3 ( )a,,,) WS (w) + ... (6)

where

R 6(k —1)

Aw)=(T-T — = = -7
o 16 _Ak+3) e _ (128(2k +3)(4k —3)
224+ 5¢ 13k+97 * 3(k 4 3)(13k + 9)

(7)

and (T -T)o is defined through the OPE of T'(z)T(w), we can show that T(z)
is the stress tensor satisfying _

T(z)T(w) =

(z c—/i))4 T (% fw)z T(w)z _lwé)T(w) +(T-To(w)+..., (8)

due to ( 1). We find W), W® are primary fields, with dimensi(.)n 3 and 4
respectively using (1) [2]

T(z)W(‘”:( AN aw> AR

T(z)W“‘):( t 9 )W(")+... o (9)

(z—w)? z-w

‘and the vacuum expectation value of WH ()W *)(w) is

(k — 2)(k — 3)c/4
(= — w)?

< WEEWE (w) >= (10)

which is zero for k = 3.
If W® is a null field then we have a closed Wi algebra from (9), (8 and
(6). This will be true if W®) is self adjoint in a unitary framework.
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3 TUnitarity of T W® and W®

Introduce two boson fields ¢1(z), ¢2(z) and su(3)g currents Jo(2), Halz) =
a - H(z), with-a? = 2. They satisfy[5,6]

$:(2)i(w) = —8isin(z — w),

k + H,(w)

(z—w)? z—w

Ja(2) T —a(w) =

+sg(w)+(z—w)ua+...

’

Jo(2)Jg(w) =

zZ—w

Jos@) 4o (@4BEA) (D)
Ha(z)Jp(w = -(;l—_%)-Jg(w) S

Ha(z)Hﬁ(w) = -(-z—:]%;)—z(a ' ,3) +. |

Let a- ¢ = ay¢1 + asgy, we have
(@ HE) ) o (B HNTES) ()b, (12)

The vacuum expectation value of boson fields can be expressed as the
inner product of Fock spaces Hy, which is unitary [6]. The vacuum expecta-
tion value of currents can also become the bilinear form of the highest weight
representation, with the highest weight vector |0 >, satisfying

H?|0 >=0, |0 >=k|0 > .

When k is a positive integer, such a representation is unitary [4]. The con-
- jugate operator of the currents are

(o) = (ZPIa(e),  Ha(2)' = () H_a(2) (13)

where 2z’ = 1/z*, and the conjugate of the vacuum states are

0 >l=4 <0, o >h= ;<0
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Consider the direct product of the currents and the bosons as an algebra
Ajxs with the highest weight vector

10 >=10 > ®|0 >4, |0 Stoc 0| s < 0| ® 7 <0,

and _ ‘ ' i

(419 45) = Al ® A}, |
The composed representation of >A]x¢ is also unitary, and equation (13) still
holds. 4 ’

It is well known that the currents can be expressed by parafermions and

bosons giving [3,4,7,8]

< Jay(z1)Jay(22) - o - Jan(20) >
= B2 <ty (21) 0y (22) - - - Yan(2a) > ij(zi gy )eelk, (14)

where «; are roots of the algebra The multiponit funct1on of paraferrmon is
related to that of currents by

. < ¢d1("1 )¢a2(72) 7w[)mn(zﬂ») > :'z
— 2 < Jay (21) oy (22) - - - Jan(2n) > H z, — z;)7 “’/k (15) '

Consider a mapping of the parafermion algebra A¢ to the algebra Ajxe
M(a(2)) = k72 : 2@V, (16)
with
M(aX +0bY) =aM(X) + WM(Y), M(XY)=MX)M(Y) (17)

For example

M (k@ba(s)@b—a(w)) (Z — ’I.U)—az/k =kM ('Qba(ff)) M (ip_a('w)) (Z _ ,w)__a2/k, ,
= Ja(2) : e EAVE L T (w) X IVE (5 — )=/
k :

- (z —w)?

+ - _1 ” (VFa - 0¢(w) + Ha(w))
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{JXD How

-the algebra’: Avss, -

.'actualh 7610 element of’ -ld, as N ﬁelds For e\ample f° (= ) i :
“becatse wehave | it ST b AR A

PR

=G —wp Tz wf?(“’) +'f'5"(w) +(: —w)folw)+ ...

When X; are polynomials of _genera.bi.ng parafermion.;yb

s this mapping obeys

T . ) —:

< X1(z1) X (2 2) .:x.n(% ) >= <M(X’ )M(.Xg L M(Xn(za)) >
(19) .

due 10 (15 We can thus e\pfess the vacuum e\pectation value of the ele-

Ay. say ay, we ﬁrst choose an e\pansmn)qf thls element b\'\the ‘polyhomials
of cre'1e1at1ng parafernnons Then we obtain the image of this expansion via

vacuum e\pectauon value ( 19) if X; "are elements of " -l Thl< is Because”
the 4, algebra is in consistent with (15). —’&ctu'ﬂlv the images of different

58\13&:151011‘: of the same element ay form an-équivalence class in 4 Jxg- Lhe
..,dne*ence of the elements in the same, class has a prennaoe Z€T0 111 .-& For |

dvet. iriside & mulmpomffunctmn Sf Belds mth ‘the iniages of -l¢
I3 always gives a zero factor(\ote that A7 4y is not the whole aloebra ~bx¢)
O R A S N P ,

pn

< ay(z1,22,. -,z fT >=0 o (20)

where ay, is an element of M| ~i¢] For conv emence we deﬁne the follov\ ing in

e Yoy

{2) The image of Ay'ls (,alled B ﬁeld
, fD)1ns1de the sef of B ﬁeld we call those elements w nose preimages are .
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- -
= (w) = — (di) ((= = 0P M (ol 2)p-a(w)) (= —w) =) _ |

( + ) zZ=w
The fields
5(1 w) = k7 ZZ ($+w ) (foi(w) + f5¥(w)),
F(z,w) =k~ 3§f°‘*(w +22)fi(w + 2) fi¥ (w),
and

mew = g (37) (),

are N fields. We see that B fields form a closed set under linear operation
and multiplying, while N fields form and ideal of B fields. The expectation
value of an N field with a B field is vanish

< BN >=0 ‘ (21)

Using the fact 7 a; = 0, o® = 2 and (11 12), we can show that the limits of
S(z,w), F(z,w) and R"‘(:v w) exist when z — 0. We denote them as S(w),
F(w), R*(w) respectively. From the definition of T, W® and W, we have

3 . 3 . w
MT)=CY (2 +£7), Mw®) = &Y (fi‘i -9,
) =1 ‘ =1

MW®) = C,M <(W(3)W(3))2 — 26%(TT)o — 13—0(1 - 262)62’1“) :

where f) corresponding to o; as mentioned above, we will not explain this
Later, and (U’ (3)TV(3))2 =4 ( ) ((~ w)GIfV(e‘)(a)VV(e')(w)). From (18) we
ave

3

M(T(w))=C2), (: (@;0(w))? : _|_2Ha\7]; - 0p(w) + sq; (W) + 3~a‘.(w)>

=1
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V 2
MOIF) = Co 3L (@dstw): 45 (5 06())

=3V vk

. +(Sai(w) + S—GE.(w))% ~do(w) + ua(w) — u—ai(.w)} . (22)'
where They are not ”quasi-self conjugate” however. This is because (do(z))*
does not fit the relation as (3). We then try to compensate these fields by
some N fields. This is equivalent to choose different expansions of ¥s for T.
W3 and W*). We find S(w), F(w) and R*(w) are good enouoh to do this.
After some derivation, we have :

Flaw) =" 53 19w + 200 + )9 o)

=1
= Z{\/_ a;00(w + 22) +2a;00(w + ) + a;00(w))

2

22 (Ha(w +22) + 2Ho (0 + ) + Hao H(w))}

con 91‘ o
k

3 .

+572 30 A w + 200 e+ 2) O ) (23)
i=1 ,

we obtain

Flzw)=: F(z,w)

- and has a limit for z — 0,

2

: 3 . :
Fw) =limz_oF(z,w) = Z : {(% . ao(zt‘ )) +3 (—\C—;—_;\— . Q@(w)) %Ha(-u‘:)

\/Z L 96(w) ( Ha(w) )2. (%Ha(_u-v)f} o4

Similarly

S(w,w) = k7 3 7w +2) (f8(w) + 57 (w)

=1

63




+%Ha¢<w)\‘“—;a¢(w> + 2o +9-2))

Z <a10¢(w)+azH(w))+Z \FH (w +2) (sa +5ai)

i

-5 (S ostw 0+ o) (0

+Z {1 o a¢(w 4+ 2) (g + 5-e) + —= \/% d¢(w + ) (\/—‘ans(w)) |

T

2 oy () 208 + ) fa¢<w)+ et +2) ( 520600
g Halw + ) Hay(0) 2208w} + (25)

After simming over %, first term becomes zero, other terms are regular for
z — 0, thus

S(w) = lim oS (@, w) = 3 75 Hao(ae(1) + 5 (1)

)3

F 3 (e 06(w)oa() + om0 + -

2 Huw) (Se00(0)) + 5 (Halw) S5O0} (20)

Equation (24) and (26) are good for the compensation of (22). We also have

-

= (o H(w))"

= (CY . 6¢(w))2 k3/2

Which can compensate (22). Thus we can rewrite (22) as

M(T)=t+2®,  MW®) =13 4,0
M(W®Y) =) 4 p®) (27)

These ) are quasi-self adjoint

(#9(2))" = ()N () oo,
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n(®) are N fields. The explicit form of these fields are

1

Hw) = €33 ({sa,.(w) o (w)) — % : H‘fw‘:)_ |

n®(w) = Cok i R*(w)

0O (w) = O 3 H(ttas(10) = hoag()) = 7 a0+ 2) (50(1) + ()

+32 Hm(w -+ 2$)Ha (w + x)Hai(w)}x—*o
(3>(w) = C3k (3F(w) — S(w))

( 2) ( d > (¢ (o))
_. (gbz(t t)o + 1—0(1 — sz)azt(w)) j -

w(4)(w) C4{

(28)
n(w) = mg:g; (di) (= = w)* (2wl (w)
+}9(3)(z)n(3)(w) + n(a)(z)n(a)(w)'))z=w

_i_b!z (Cgiz) {(z— AUJ_)4‘ (n(z)(z)t(w')' + t(%)n(z)(w) + _7{(2)(3)71(2)‘(10)) }z=w

_ 1_.3_0(1 —2%) (Ez‘i) n?(2) sz (29)

It is easy to see that n(®), n® are N fields. Since M(T) , M(W®) are B
fields. Thus t and w(® are B fields. and n(®), n® are B fields. From (28, 29)
we see that w(® is a B field and n{*) is an N field. From (28) and

d \' 4, ,d_y
(d&X> —dZTX - d~X
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we can check -

t)' =P, (0O) = (). (30)
We then obtain v )

(w(«s)(z))f = (Pu(), o (31)

after some derivations. Thus the vector w{*)(2)|0 > satisfies

< 0] (09(2)) w®(@)0 >= (') < 0@ (Y ®(z)[0 >
= (2')® < w®W () (z) >
= ()® < (w™(=") + n9(z)) (w®(z) +n®) >
= (P <WHE W) >=0,  (32)

for k = 2, 3. This implies
< ajx¢|w(4) >: 0

for every element of Ajys. Finally we have for a¢ € Ay
< agW® >=< M(ag)w® >=0

due to (21).
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As extensions of the conformal algebra, W algebras have turned out to be

important in two-dimensional field theory[ﬂ They are related not only to the

classification of conformal field theory but also to some 1mportant physical

problem such as gauged WZ Vf/'-models[2 3 Toda field theories!4! , reductions
of K P-hierarchyl®], Chern-Simons theory and strmg field theor1es[6] etc. Cor-
responding to different Hamiltonian reductions of S L(n) gauge connectlons
there are different W algebras, of which the W(l) ( < n) series!”l are par-
‘ticularly interesting. In particular, for n =3, there are two inequivalent
algebras in this series, W(l) and W'(z) W( Vi is standard W, algebra (i.e. the
Zamolodch1kov algebra) and W( ) contams a spin-1 ﬁeld U and two spin-
fields G+ besides the stress tensor T'.

" On the other hand, the classical exchange algebras' have appeared as

important characteristics in many classical integrable systems, especially in

various Toda contexts®®l. Such structures not only appeared in conformally.

invariant systems but also in some nonconformal systems. Therefore they
have- to be considered as a 'm_o,re “foundamental” structures compared to
the W algebras. Moreover, provided the model is conformal symmetric, the
exchange algebras will yield both the integrability and the conformality of the
model 1. It is therefore interesting to ask whether it is possible to construct
various W algebras starting from the exchange algebra. This problem is
answered afﬁrmatively in the case of the standard W, algebras in ref.[8], and
we put it as the task for this letter to consider this problem in the case of
Wéz) algebra. The more general case of W is still under investigation.

Let us start by considering following exchange algebra,

K@, B0} = 3Xe(e) ® Gw)bx — p)r* + 0y — )], (1)
(a,b = 1,2)

Here, X; = 0, Xz = p, r* are solutions of the classical Yang-Baxter equation,
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_ system,

7t = S(KViH,@H+2Y E:®F,

2,7=1 ‘ i>0 :
o= - | S (ETYVIHQH+2Y ReE| (2.
i,j=1 - >0

{H,, E;, F;} are Chevalley generatoré of s(n) and K Cardan matrix. if n = 2,

o and p have three exponents respectively. They satisfy the following Poisson

brackets,
(@), KW= — X@XQ)6GE —y) ~ 0y — o)
XX - B —y) — b )iy — )
(a,b = 1,2,3) IA

Now,let us define a 3 x 3 matrix F,

o ot &2 as |
F=| o0 2 |, (4)
~90! —-00? -0o°

and introduce the symbols A;(7 = 1,2, 3), which are determinants of the ¢ x ¢

‘square submatrices of F' taken from the northwest corner of F. We then

define another 3 x 3 matrix Q such that Q;; = ﬁ i A(1,9)Fy, where
Ay(1,7) is the algebraic co-minor of A; with respect to the (I,i)-th entry, Fy;
is the (I, 7)-th entry of the matrix F. We have the following Drinfeld-Sokolovy

80 =10 (5)

‘with
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"

Ok, —P2 -1 o
[0 otk mnl -
00 o) |

here,

. .. . 1
CETEER RPN kl Eaa 111 Gooyreis RIS
e kg = ln(0'1)0 Bl Pt ) o e vl L s

h = —3

p? = o-lp —02p (7)

Usmg (3) we have the followmg P01sson bracket satlsﬁed by k and p,,
' ]_ SON U R
{ki(z), ki(y)} = 3[0(z —y) - 6(y - ),
' 1 L S Sy A;‘j} e e 1.'_,:,‘”;,':
{ki(z), ka(y)} = E[G(m =y)y=Qly=))y o e
{pi(z), p(y)} = 0,
{p(2), pz(y)} = Sz-vy), |
{ki(z), pa(y)} =0 e o (8)
‘Select a suitable g € SL(2), . - ¢ -

D L W I S S P B T S S e me
LR 1 wE AR B X N SOy e § S [ERES

S 1 o 0 0
o= om 1 R SR ) :
2[P1P2 O(ky + kz)] SR B I R R S :

we have a gauge transformatlon to L,

LI = gLy +08gg~"
o U 0 -1
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T.Gy and U may be expressed by k; and p; as follows,

U = Oki— 0k + pips,

G. = —pi0k;+ 2p16k; +p_fpz + 9p1..
G- = —p20ky + 2p,0k; — pip3 + Opa. |
1. N i : '
T = —0kiOks — Oks0k; + Ok;10k; — S0(Oky + Ok2) + 5(p20py — p1OIL) -~

Using (8), we obtain

{Ula), U@} = —58e=v),
{Gz(z). Ge(y)} =0, =
{T(z). Gely)} = FCa(z)6(z —y), . |
{G-i2). G(y)} = —BU-To(z~y) —,"gmm LU (e —y) - 6"(z — y),
{T12). T} = @ +TE -1+ 56% -y,
T T} = U -y)
{T2). Galy)} = Gala)f(z —y) + 3Ga(y)d(x ~y). (12)
T. G: and U are nothing but generators of B2 |
In the end of this letter let us mention that it is highly probable that the
above construction may be extended to the case of arbitrary W algebras.
To achieve this the intermediate free fields k; and“ p; have to be replaced
by appropriately chosen algébraic co-minors of the determinants %hic_h are

analogous to A;. This work is now undertaken.
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Abstract
By introducing a pair of canonical conjugate two-parameter deformed operators qu , X
we can naturally obtain the form of gs-analogous Taylor series of an arbitrary analytic functlon,
and explicitly construct the realizations of Heisenberg and two-parameter deformed quantum .
Heisenberg algebra by means of the operatorsD and X gs » and show that the gs-analogous
Hermite polynomials are:the representations of Heisenberg. and the quantum Heisenberg
algebra. .

L. Introduction
The development of the quantum inverse scattering method[l] has led to a very important
concept, quantum group or quantum algebra. As a powerful tool to .explore the mathematical
structure of quantum groups, Macfarlanel2] and Biedenharn[3] independently proposed the
- concept of g -deformed oscillator. This may lead to a new kind of field theory. On the other
hand, from the point of view of physical applicability in concrete phy51cal 9problems quantum
algebra with multiparameter deformations have received much attentlon Many properties
of multiparameter deformed quantum groups and algebra are quite similar to or richer than the
ones of the usual Lie groups and Lie algebra with both the representation theory and the
possible physical applications[10,11
More recently, a lot of attention has been paid to the analogue of special function, because of
their importance to integrable model, representatlons of quantum groups and Yang -Baxter
equations. In particular, Chang, Guo and Yanl12] discussed q -series, q-Hermlte polynomial
and representations of Heisenberg and ¢ -deformed quantum Heisenberg. Thus, a question
naturally arises whether there exist similar constructions for the case of multiparameter
deformation. This paper is addressed to this question. By introducing a pair of canonical

conjugate two-parameter gs-deformed operators Dqs , X gs» W€ discuss in detail the relations
between the deformed operators Dqs , X o and gS-series, and explicitly construct the
realizations of Heisenberg and quantum Heisenberg algebra by means of the operators D and

X - Particularly, we show that the gs- analogous Hermite polynomials can be representations
of the algebra.

IL. gs-derivative and gs-series
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Let us recall the definition of gs-derivative- D,, . For any continuous function f(x),
its gs-derivative is defined[13:14] by '

D)= L& WS

> )
(s'g=-s"qg")x |
Obviously, when s—>1 the operator D, reduces to so-called g -derivative D , and

g —> 1,5 — 1, the operators D, just is usual differential operator 0. It follows easily that _
| D,x"=[n] x"" , | @

qs

where

o, - =G
9-5797)

called gs-number . One finds a gs-Leibniz rule:

Dy, f(x)g(x) = (D, f (x)) g(s™'qx) + f (s"'g™'x) (D,,&(x))

, ©))

- @
= f(s7'qx) (D,,8(x)) +(D,.f (x)) g(s”'q7'x).
We may introduce the gs-exponential as follows:
. @ xn . . | S
exp,(x) = . ;)

| gs\" ; [n]qs! - )

From Eq. (1) apd (5), we have :
D, e, (ax)=ae,(ax) . o Q)

Therefore the gs-exponential function is nothing but the eigenfunction of the gs-derivative
D, just as the usual exponential function exp(x) is the eigenfunction of the differential

operator 9. To gain more information about the operator Dqs , it is necessary to know about
its canonical conjugate X gs - FOI this purpose, we introduce a function as follows

OO YO G’} GO0 M

- - = . 7

(s'q- S‘q‘)x x @
It is obvious that & (x) and its inverse (&, (x)) ™" are both well defined for real number s and
g . If let x take operator-value x0, one obtains the operator-valued function

_[xal,,

qs = gs / x a (8)
Now , we introduce a pair of canonical conjugate two-parameter deformed operatoqus and
X gs .
D, =[x, =0, . on |
-1
qu = qus X, (9'2)
obviously
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. D g->1.5>1 6

X q->1,5-1 >X .

Notice that ‘
DX, =0-x, _ (10-1)
quDqs x0 , | (10-2)
- and ;
D, . x,]=[0.x]=1 . (10-3)
Therefore the algebra generated by the operators D, , X, and X 4s'D;s s isomorphic to the

Heisenberg algebra ‘
_ [a,a*] =1,

[N,a]=-q, [N,a*]-—-a*, - 11

: N=a%a, . o
" generated by a* =x, =28 and N=a"a=x0 . It is not difficult to see X is a gs-
analogous coordinate' operator, the canonical conjugate of D . From following discussion,
we know X is closely related to the gs-series. o
For an analytic function F(x) defined over R, it can be expanded into Taylor series :

F(x —Lx" (12)
| (x)= Z = | | |
where ¢, are coefficients in R. Similarly, we define the operator-valued function F'(X) as

F(X )= Z "X . Ca3)

- n=0 N
- Let us observe the properties of the operator-valued function F'(X, ) from the action of

F( qs) on an arbitrary analytic function f{x) defined on R

@ c . »
F(qu)'f(x)EZn—",qu S (x), (14)
n=0 t+
© for special case of f{x)=1,
© Cn X )
F(X,)1= E;!qu 1. (15)
One finds that -
n!
X;: 1= x" (16)

[7],.!

Thus we naturally obtain the two-parameter analogous gs-Taylor series

b

fo@=F(X,) 1= s a7)
. o,
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by the actions of operator-valued function (X ) on 1, where

[l =l -0, . (18)
is gs-factorial with the convention [O]qs I'=1.Itis easy to se¢ that _
exp,,(ax) =exp(aX,)-1= Z (aa]c) i (19-1)
n=0 1]
’ . . el 2n+1
inh_ (ax) =sinh(aX,) 1= 3 {20 :
iy (@) = ) 1= L e 1 09
cosh s(ax) = cosh(aX, 1 . i (ax)zn - | "(;19;‘3)
! n=0 [21’1] )

III. Heisenberg Algebra and the qs-Hermite Polynomials

Let us consider a system with the following Hamiltonian .

H =__1_D2 lXZ B o . : . C (20)

®o2 2° %

obviously, when q -1, S—)l it reverts to standard a harmomc oscﬂlator w1th the
Hanmltoman IR R

AR T B

If we introduce the operators : »
% as 7(Dqs + qu) , (22-1)
a E—\/—i—(_DqA -E"X"qs) ’ . (22'2)
N=a‘a. . (22:3)

The Harmiltonian (20) can be written as '
| I v

Hqi = N+§ . (23)

It is easy to check that @, a* and N form a realization of the Hei'sénbérg“alg‘ébra satisfying

relation (11). Here a and a’ is annihilation operator and creation operator respectively, and N
is the number operator. Therefore the Hatmiltonian can be diagonalized. We notice that this
system is formally identical to the ordinary system of simple harmonic oscillator. Thus each
state can be represented by operator-valued Hermite polynomial times operator-valued Gaussian
function, i.e.

1 -xL/2
¥ (X,)= e v S
o (Xy5) 2”n!n‘/2e H,(X,) (24)
where
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_ [g] 1l . o oo
H,.,('qu);ho k!((n;zz’z)ﬁzxgs)n-zk S T e

and ’:g} is the biggest pdé’itive integer less, than g .- Thus a formal time-independent
-Schrodinger equation reads . o ’ . o -
HY¥(X)=EY,(X,). | 26)
It should be noticed that ¥, (X, s) is only formal solutions, because X gs IS DOt a true
coordinate, but only an operator. Therefore W, (X)) f(x) are at all the solutions to the
system and its hamiltonian, i.e. '

- HE(X) f()=EY,(X,) f(x). @
Here we are only interest in the explicit form of gs-analogous Heimite polynomial, so we choose
the simplest case of f(x)=1, ’ ’ ' ’

‘P,:”(x)e?,,(xqs>-1-=——\/§nl"w By @)
: . nn’ .
where - :
5 (—1) n! n—2k :
He =y —~2 (3 s 29
(%) ;k![n__zk] NG @

. : gs
is just the gs-analogous Hermite polynomial. It is not difficult to check that the gs-analogous
. Hermite polynomial satisfies the following gs-analogous recursive relations:

. D HP(x)=2nH? (x), : © (30-1)
H (%) = 2xH" (x) - 2nHZ (x) , . (30-2)
HP (-x)=(-1)"H?(x) . (30-3)

IV. Quantum Heisenberg Algebra and Its Representations
Now let us turn to the study of gs-deformed oscillator with the Harmitonian

I7 1 + + S
Hqszg(aq,saqf*'aqsaqs') S Gn

Recall that the creation and annihilation operators (denoted by a; and a,, respectively )
-~ satisfy the following relations: '

’ | ’ 32)
[N R a;‘s] = a;: , [N , aqs] =-a,
Here we notice that
aga, =[N] , (33-1)
a.a. =[N+ l]qs (33-2)
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Now let us consider a realization of two-parameter deformed quantum Heisenberg algebra as
follows ' : .

aqs =a N s (34’1)
+ _ [N]qs +

. aqs N a. ’ (34'2)

N=a"a=——;~D,js+%X;s—l s (34-3)

which is a quantum algebra with the co-product, co-unit and antipode mapping well
_deﬁned[l?’]. _ I

Where @, a© and N satisfy the commutation relations (11). Because the infinite dimensional
" representation of the gs-oscillator algebra is isomorphic to that of the simple harmonic
oscillator algebra in Eq.(28), i.e.

1y =X 1= ey
where using |n)qs to symbol the eigenstate of gs-deformed oscillator."[herodinger equation is
H(X)¥,(X,)1=EY,(X,)1 - (36)

~ where the energy spectrum is

N (X)), (35)

o E = .i([ﬁ]qs +[n +_l]qs) . 37
We define the peseudo-vacuum state IO)qS =¥, (X,,)-1.and have
' a, ¥y (X,)-1=0, - 38-1)
7). E"f’,,(qu)-1=~(%%¢o(qu)-l- C(382)
n| .
We verify that !
_@) 5 _@y e
{m),. = N By (X)) 1= Fo(X,) 1=]n) (39-1)
a,|n), = [n] ¥ (X,)1=[n] |n-1), . (39-2)
a*uln), = 1 +1] B (X,)- 1= [[n+1] |n+1), . 69
and '
N I n)qs = n?, (X,)-1= nl n)qs . (39-4)
Therefore the Hilbert space of the gs-deformed oscillator is
F={ IO n=0,1,2,~-} . ‘ (40)
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V. Conclusion and Dlscussmn

So far, we have explicitly constructed the realizations of Heisenberg and quantum Helsenberg
algebra by means of a pair canonical-conjugate operators D and X g5 » and have shown that
the gs-analogous. Hermite polynomials are representatlons ‘of the algebra. In particular, a
systematic way to gs-series is given. This is an useful tool to study multlparameter analogous
special functions and the representations of multiparameter deformed quantum groups. Finally,
we point out that the extension of the constructions to other multiparameter deformed models in
quantum mechanics, as for gs-deformations of the Hydrogen atom is also p0551b1e The details
will be published elsewhere.
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Non-perturbatlve ‘appltoach for non—local currents
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Abs_tract

In thzs pape7 we review the recent developments of the non- local con-
“served currents in the massive quantum field theories. T he necessity of
the non-perturbatwe appmach for ‘non-local conserved currents is em-
phaszzed we analyze the applicability y of the non-local current method
to sine-Gordon. and Zhiber-Mikhailov-Shabat (ZMS) systems within the
Chang and Rajazamans nomn- pertmbatwe framework. Based on the chiral
‘quantization, finally, we develop a non-perturbative method for non-local
conserved currents for Toda-type integrable systems.

I.. Introduction.

Symmetry in quantum field theory is widely recognized as being of fun-
~damental 1111p01tance In 3+1 space—tnne dimensions, the likely symmetries
of the S-matrix are subJect to the severe limitations of the Coleman-Mandula
theorem [1]. The theorem states that any symmetry group is necebsarlly 1s0-
mo1pluc to the direct product of an internal symmetry group and the Poincare
group. These possible symmetries are normally not restrictive enough to aHow
a non-perturbative solution of the themy -

In lower- dunenswnal quantum ﬁeld theory, some of the postulates of Coleman- :
Mandula theorem may be relaxed in a non-trivial way. There exist some new
quantumn symumetries in a wide variety of integrable quantum field theories in
1+1 dimensions. The conserved currents that generate the symmetries are
non-local and further characterized by non-trivial equal-time commutation, or
blaldmg, relations. These e\ceptlona] properties of the currents are responsi-
ble for the non-trivial comultiplication of the ¢harges when acting on multi-
particle states. Meanwhile, the assumption of the trivial comultiplication in
the Coleman-Mandula theorem is violated.
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Non-local current approach in 2-dimensional quantum field theories ap-
peared originally in perturbed conformal field theories (perturbed CFTs)[2,
- 3]. Its physical:background is:that many integrable models of quantum field
theories could be formulated as conformal field theories perturbed by :certain
relevant operators [2]. Some conformal field theories preserve their integrability
under pertulbatlon which breaks the.initial conformal i 111Vd,11ance Zamolod-
chikov claimed that only the first order terms of couplmcf, in. perturbed
CFTs, do the équations of conservation of the non-local ‘currents involve in
[2]. Bernard and LeClair (BL) further pointed out that.such nonlocal currents
are subject to so exceptional braiding relations ( or operator product expan-
sions: (OPEs) ) that they can:be used to expose the quantum group symmetries
that are hidden in the considered 2-dimensional integrable quantum field mod-
els [3,4]. Among these quantum integrable models, there exist a large class of

interesting ones, such as sine-Gordon model, for which we can find out four

nonlocal conselved charges in the framewoxk of perturbed-CFTs. These four
charges are p1oved to obey such equal time comnmtatmn relations: that turn
out to form the quantum algebla of certain quantum group. It is also proved
that the nontrivial quantum group comultiplication laws will arise when the
nonlocal charges act on multi-soliton states, which would imply that the soli-
ton S-matrix of the system underconsideration is factorizable. . Moreover, by
some scaling arguments BL have justified that-the charge algebra. 1,s,exact to
all orders in perturbation theory.  Hence the quantum group:symmetries are
actually non-perturbative symmetnes of the mtegxable systems.

In perturbed-CFTs, the quantxzatlou scheme is the so-called radial quan-
tlzatmn Although the radial quantization in conformal field theories (CFTs)
and their perturbed versions is essentially equivalent to its canonical counter-
- part, the nonlocal currents obtained by BL in the perturbed-CFT framework
for an off-conformal theory may be not valid, if one goes over to the traditional
‘canonical quantization instead which is realized though equal-time commuta-
tors and Hamiltonian evolution in the usual time. Then it becomes an inter-
esting issue to develop a non-perturbative approach for the nonlocal conserved
currents themselves. The goal of this paper is to introduce some attempts had
been - made by Chang et al [5], and us {6] in this direction. The organization.of
the paper is as follows. Section 2 is a review of BL.current method based on the
version of perturbed CFT. The Zamolodchikov equatiion in perturbed CFT is
the key point in the BL’s method., The fundamental objects are introduced for
us to describe the Zamolodchikov equation. In section 3, we analyze the appli-
cability of the non-local current method to the ZMS system in the Chang and
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Rajaraman’s non-perturbative framework. In section 4, a non-perturbative
method for non-local conserved currents for Toda,—type mteglable systems ‘is
developed based on the chiral quantization. A short remark is included in the
last section. T

IL. Zamolodchlkov equatlon aud BL’s current ‘method in"the per-
turbed CFT framework. : :

Conformal S) mmetry of CFT is genelatéd by ‘the left and right bompdnents

T = T% and T = T% of symmetric traceless stress- energy tensor T#¥. By

assuming spatlal reflection symmetry. one can discuss only the left chiral part
of the conformal algebra. The component T satisfies the equation

ar=o, | y

which makes it possﬂale to define infinte set of Virasoro generators L,, n =

0, il, +2 .- - acting in the space A of local fields of CFT
LiA(:,2) = § (¢ = 2/ T A 2) (2)

where A € A. According to (1), the operators' L, are integrals of motion. It -
is well known that they satisfy the Virasoro algebra. The identity operator I
is the particular field in A, satisfying the equations’ '

LI=0 for n>-1. - 3)

The application of the operatdrs L, with n < —2 to I gives rise to infinite set
of local fields. For instance

(LDe) = fTQC -7 =T @

The ﬁelds obtained by the successive applications of more than one operators

L_, with n > —2 can be identified with the composite fields made of T'(z) and
its derivatives, i.e., : T2z : T2, : (0.T)? :, etc. Let A be the infinite dimen-
sional space spaned by these compomte ﬁelds including the identity operator L.
By definition, the space A is an irreducible Virasoro module with the highest
weight equal to zero. The space A admits the following decomposition

A=Br Q
5=0 . . .
in terms of eigen-spaces of the operator Lg

LOAS = SAS; L()As = 0. . (6)
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All the fields beli_jﬁg to A, have the conformal dimensions (s,0) and.therefore ..
the spin s. The' fields constituting A are all analytic, i.e., they satisfy the
equations like (1) - ' C

3:A=0. . (7)

Every field TS(“) € A, gives rise to an infinite set of operators

FLTOQOE =20, n=0 a2 ()

which are integrals of motion. Clearly, these operators are not all linearly
independent. This is because there are some fields in A which are total 4,
derivatives. In order to seperate linearly independent set, one can take the
factor space A= A/L_;A instead of A, here L_1A C A is the subspace in
A constituted by the total derivatives. Like A itself, the space A enjoys the
following decomposition

A=A, Lok, =sA,. 9)

We denote basic vectors of A, as T{®). Furthermore, the operators

LEA(z,2) = § dCTH(C)(C - 2T Az, ) (10)

with » = 0,41, £2,--- constitute an infinite set of linearly indqpeﬁdent inte-
grals of motion in any CFT. '

In the following, we shall how some of these operators can survives as
integrals of motion if the CFT is pertuebed by particular relevent field. A
relevent primary field is defined as its conformal dimensions obeying the rela-
‘tions A = A and A < 1. Now, let us restrict attention to the case where only
one relevent primary field @ is taken as perturbation. The action of perturbed
CFT is read as ‘

Hy=Herr + /\/(I)(a;)(l2;v, (11)

where Hepr is the action of CFT ( the fixed-point hamiltonian in statistical
mechanics ) and A the "coupling constant”. In order to compute the cor-
relation fuctions of this thoery by means of techniques of the original CFT,
Zamolodchikov proposed the assumption that the space A of local fields in the
perturbed field theory (11) has the same structure as that in the original CFT.
He [2] argued that his assumption is resonable. Hence, one can keep the same
notation of the fields as in-the original CFT. Moreover, the fields @, and their
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"descendents in ‘the” pertur ved the01y { jhave exactly the same spins and;
sedle dimersions s i CET#Of course, the perturbed field: theory is’ not scale"j
Eu\/aua'u since (11) (mtam, a dunenslonful constant A. o

Let ug consider tua Dcu e Ain pe1turbed theory (11) At ) # 0 the fields |
T e A, do not of colivde ¢ itisfy’ (7). Ratheér thé 9; derivative {)f T(") has the .”

B \RUL 4 anRI o (12)

:;where R Toare somé local: ﬁelcls belonging, to- A+, The  dimensions of each
:'tam in tlm r.his-of(12) amstbe (s, 1) to agree w1th those:in. L h.s. Hence the
limensions of the field:R) are (s+nA—n,14+nA —n) where (A;A) are the

: dﬂnﬁhsl.ullb of ©.uNow we ccncentx ate attention:on- the ﬁxst or der contrlbutlon ‘
L Thee P( uat.ou (12)is. Ipducc»d | Fo R R IRRURD SR PIUETSTF IR B SRS SNSRI E

8T<~>=,\R("” o @®)

Let V be the irreducible hlohebt weloht mo i‘,_:,le"over the ]eft Virasoro-algebra
with the mg;) st ow eloht vector <I> Thls is the space spanned by the vectors

i T R

L-,HL_M ..i'_'nN’d»” o R

with vV > 0 and ny. > ny >'- > nN > 0 In fact the confOI mal class [®] is
the direct product V. @ 3/ _ ull\t‘ ( ) the space V en]oys the decomposmwn

Tﬁe dmwnmoucd counting es \plamed above shows that Rs_l 6 Vs_q Thelefme'
tlte symbol 9z 1 (13) can be considered as linear operator.d; : - A= V.
The action of ¥ extended to thie whole'space’ A and-the abave mapping is its-
restriction to the factor space A= A/L_1A. Since the operator 0; commutes
with L _y, the mapping carries all 51g111ﬁ_c‘antvmf01.matlon about 0s. -

:The first ordercorrection to: any..correlation. functlon mvolvmg the ﬁeld o
( ) ig given. by the mt\,g’ al i T e e : ; :

v(16)

where < - >o standsiforthe- Couelatlon functlon of: unpeltulbed CFT obvx-
ously, the contributicn to 97 can comié énly from the vicinity of the:singular
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point (¢,{) — (2,%), where we can use the operator product expansion

o]

T, 0) = Y (= - O (£82.2)(¢, 0, ()

n=0

here ﬁﬁflnq) are the certain local fields. U'sing (17) and taking count of contri-
bution of the perturbative term, one can show that the r.h.s. in (13) reduces
to the integral

8T =) f 2(¢, TV (z) N (18)

taken over small closed contour suuoundlng z. Here the operator product
expansion of unperturbed CFT is implied in the r.h.s. The contour in (18) is
closed because in the CFT the fields T{*) are analytic and local with respect
to @. Recalling the fact that the contour integral in (18) is equivalent to
commutator, we can rewrite (18) in the form

0.T09(z,7) = [T, o, (19)
where . ' , .
Hu=A[dc0(C2. (20)
The equa,tionV(.lS) or (19) is the so-called Zamolodchikov’s equation.

The starting point of the BL’s non-local current method is to formularize
the Zamolodchikov’s equation into the conserved form of current. in order
“to do this, they introduce chiral fields F(z,2), F(z,2) satisfying 0;F(2,2) =
9.F(z,Z) = 0 in the conformal limit. The Zamolodchikov’s equation leads to
equations of motion for the perturbed chiral fields which are local with respect
to the perturbed field to first order in perturbation theory

F) =2 f sa()F(:),  0.F(57) =Af 20 CFG). (1)

Let us now suppose that there: are currents conserved to first order in pertur-
bation theory

0:J%(z,7) = 0,H(=,3), 0.J%(z,2 = 0:H'(2,%). (22)

'Furthermore, we assume that in the conformal theory these currents are chiral
fields, i.e., when A = 0 they satisfy 8;J* = 8,J% = 0. The condition for
the currents to be conserved to first order in perturbation theory is then a
condition on the residue of the operator product expansion between them and
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the perturbing field. Namely, the conservation laws (22) hold if the residues of
these operator product expansions are total derivatives. From the conserved
currents (22) we can define the conserved charges

1

Qo= :)‘zl;('/dzuru/dsm), Q= 5=([ @z ,+'/dzv17&). (23)

AYs

However, as emphasized by Bernard and LeClair, the currents can be non-

local. Let us illustrate how the BL’s method is used to construct the non-local |

currents for the sine-Gordon system.

The quantum sine-Gordon theory is described by the action

1 [ o o, A | ‘
S = Z;/dzz():@()gq) + ;/dzz : cos(ﬁfb) i (24)

The parameter B is a coupling constant, and the parameter A defines the mass

scale of the model. We treat the Acos(f®) term as a perturbation of the con-
formal field theory corresponding to a single free boson. Following Zamolod-
chikov, one can suppose that all the operators O(z, t) of the sine-Gordon theory
have a smooth ultra-violet limit and that they are in correspondence with the

fields of the ultra-violet CFT. We can thus label in a unique way the fields of

the sine-Gordon theory by the corresponding fields-in the ultra-violet limit. In:
the massless limit, the free boson can be expanded as ®(z,z) = ¢(z) + o(z)
with < ¢(w)¢(z) >= —log(w — z) and similarly for ¢(Z). In the deep ultra-

violet limit the chiral and anti-chiral components ¢(z,t) and é(z,t) can be

expressed in a non-local way in terms of the sine-Gordon field ®(z,t), The
relations are '

8e.t) = 500+ [ oY), 8wt = 500~ [ dyad,.

(25)

Subsequently, we can derive the existence of conserved currents generated by

fields of the form J, = exp(iag) and J, = exp(iad). Using the operator
product expansions of them, one can see that the condition for a conservation

law for J, ( and similarly for the anti-holomorphic sector ) amounts to a
condition on a, namely a = +2//3. Therefore we find the following conserved
currents

0:J. =0.Hy, 0,Jy = 0:H,, (26)
where o .
2i P L2
Ji(z,t) = e:vp(:‘:ggé(:x,t)), Hy = Amew])[il(-ﬁ— - B)p(x
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F r  m these conserv:

}and a,ntl I-C

' most subject to th

o g 18 Bhom gob R
Ji = ea:p(:}:ﬁ o(x,t)), Hy :v)\EZ_—‘)emp[q-z(B-—ﬁ) stz ﬂ:ngﬁ( t)]
Padiaret plgt v oanilipion adi Sadw ino tadi o baig fey Clunls §

Q cuuquts we can:d leﬁne four. couselve claarges by means
PR 3 : ,
o uch ¢ consel ved,

Ty

is the l\nown sine- Gm don\S {natn‘{. L

Up b9 now; T eaders can see. tl}at. the BL s 1nethoch for Lh‘e non-local: cur-

ML

b_ased on the«peltuxbed CFI

Q[l(

B AL U’au (C,R) 1ave made Some. enhohtenmg at-
.tempts sy the clue(,tlon of icoustriction-of non-local currents; in- perturbative
framewm 1\ [] They obtamed new nonloca] d.l]d L01entz covariant consexved

, N N < 3 by
non- pextmbatlvely tlecrtmg th]s off- confmmal system in the traditional canon-
i «'c_tl quantization scheme. CR’s nonlocal currents have different expressions
vflom the currents given by BL. Névér the]ess thec cor respoudmcr charges are al-
anie conunutatlon relatlons as BL . Relymﬂ on thls fact

i A [ AT
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quantum sine-Gordon model {5].

It should be pointed out that only when the coupling 3 falls into the inter-
val 3 < #2 < 3 3 does CR’s method lead to the similar results (for sine-Gordon
model) to those deduced by BL from the perturbed-CFT point. That is to

“say, in CR’s non- peltunbatlve framework, the other two important coupling
regions 0 < 2 < land 2<% <2 whele ‘the sine-Gordon model is also well
defined have been left out Furthermore, as pointed by BL [3], when 8% = 2 the

sine-Gordon theory can be formulated as a current-current perturbation sys-

tem of the k =1 SU(2) WZW model, and its hidden symmetry at thisspecial
coupling will limit to the Yangian symmetry [3, 7] with which the sine-Gordon
soliton S-matrix will degenerate to a rational solution of the Yang-Baxter equa-

tion. This is of course interesting. Since CR’s method could say nothing for 1

the nonlocal currents of sine-Gordon model at this fascinating coupling, as well
as could say nothing within the other two coupling regions aforesaid, it may
be hot appropriate to the descnptlou of the integrable p10pe1 ties of quantum
sine-Gordon model when 0 < 2 < Jand 2 <52 <2

" 'We feel anxious if there arise more serious troubles besides the coupling
restrictions when the CR’s method is applied to other off-conformal integrable
" models. ‘To examine whether such worries and misgivings is true or not, in

the present section we investigate the application of CR’s method to the fa- “
mous Zhiber- Mikhailov-Shabat (ZMS) model. After some careful analyses,

we find out that in CR’s non-perturbative framework the existence of nonlo-

cal conserved currents will split the regions of coupling B for ZMS model into

two separate oties, and in each region of B there exist two (not four) nonlocal
conserved charges merely, which together with the topological charges do only
satisfy a finite dimensional quantum algebra sl;(2). We have known from BL’s
perturbed-CFT framework that ZMS model is complete integrable and its S-

matrix has an infinite dimensional symmetry qu [1 8,9]. Unfortunately, the . |

nonlocal charges with their commutation algebras obtained with CR’s method
are not sufficient to determine the factorizable soliton S-matrix of ZMS model.

Let us now demonstrate the application of CR’s method to ZMS model in
detail. Our starting point is the following Langrangian density

Ao
L= La#qsaw +5 (g (29)

The system described by (29) is known as the Zhiber-Mikhailov-Shabat model

with imaginary coupling constant (Imf# = 0). One can easily verify that Lan-

gragian (29) is not invariant under conformal transformation. Whereas ZMS f
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) model is still completely integrable. In Ref.[8], with the introduction of the -
background charge ZMS§misdel (29) hasbeen associated with a- complex Li--
ouville theory descubmg the minimal models of CFTs putulbed by ¢, field,

which is just among the set of Zamolodchikov’s leleva,nl, operators [2]. From
the point of view of pertiurbed-CE T, the constant X ) Jappearing in (29) plays
& role of characterizing the order of pexturbatlon e\cpanblon So far, many of
integrability ddtaincluding the BL nonlaéal‘conserved;currents; the infinite di-
mensional quantum group symmetry and the factorizable sohton S- -matrix; of

- the ZMS. model, thave.been,obtained.in theiperturbed-CFT: framework. Hence
icompare:BL monlocalicurrents of ZMS model with -

it:is-convenient: for. us to _
those whichswerare:goingito findiin: the; CR's non-perturbative framework,
and judge whether.CR’s method:could be '=usecl to study the mtegrabxhty of
quantum ZMSfield-theory. i:» : SOREIE

For the above purpose, we are obliged to quantize thé ZMS model (29) .‘

in the traditional: canomcal quantlzatlon scheme, just as what CR did. The

canonical quantlzatxon nyearts that we ta}\P the folIowulg equal-time commuta-

tion rela&non

It is worthwhile tb"tidd th4t "E:é‘c’a
nonlinear equation of motion, which is.not.a genuine free. field. Thereby, cﬁ(:c)

can not be expanded in terms of the plane wave actuall‘_y, agdmst that. in -

" non-interaction case. (32) should be correctly understood as the expansions
of the field opera‘tér"é(w) aiid its eanenical mothenta at :an arbitrary given
time, say z°% in terms of theu Fou11e1 compouents [5] Owing to (30), the
,‘opexatm’s 7 aud"’*‘ §1 ¢

,‘, L
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Rajaraman; we now 1nt1odme two chiral- lll\e components ot the ﬁeld (,D(:c)

deﬁned as ,ﬁ

D
~~~
LN
1l
=

—
S el
1
N =

Lol L

The readers:shouldi be awoken that here the nonlocally defined operators p(z) "
and p(z) doinot obey tlie chiral conservation laws unless the interaction terms:
in (29) are vanishing, which'is the most striking difference-between the' CR’s
non-perturbative method and the BL’s method of perturbed:CFT. In (33) p4-
(p;) and p_ (p-) are made of the annihilation part and:creation’part of p (5

) respectively

sifefes wus eur g

I

@) (Bale)) = dban [ e + 1 (1) iHLJ dyeuy; i

@) (p@)) =3 T ;u;az._[j_me—m i f ¥ dye""y]

Flom the amnhllatlon and c1eat10n plopeltles of the opemtoxs ak and az, we
~can easily derive the canomt,al coummta,tms of thebe chnal hl\e operators. The
results are : -

o [ p+(SL'),p (y ] =—In [ (SE i y — ZE) ] A
[ p+(),p-(y) ] = ~1n [—iko (21 — o _ZE)] (35)
[ p+(z), P (y ]= [ (), p+(y) ] = —.-m.

with [ px, px ], [ pi,pi ] and [ pi,pi ] wunshmo Note- that the choice of
normalization in (32) is very similar to that of masslebs field,; which yields
lntloducmg an infrared cutoff koe™ (‘y is the Euler constant, ky — 0) into
k-integrals when we calculate the.commutation relation (35).

-~ We tultheI mtx oduee soine »eltex opex atoxs in tel ms ot thé above chua] 111\e '

ﬁelds P and p° -

ek )E,i,éi%é?’%'ibb"’ = (- i W ole )Wo o) (3@)};

ot

which wxll be more convenient for us to denve the C,R’s nonlocal cu11ent:> f01

ZMS model. It is evidently that the interaction potential enelgy —_— «(e ’ﬁ"s +: -}
e=i20 ) . in (29) can be recast as —-"— ( I/Vﬁ, s+ W_ss_25) . Moreover, the |

quantum Poincare generators (txanslatlon P, Hamiltonian H and the Lorentz

92

(34)

ot}



generator M) for the system can be expressed w1th sych ver te\ operators and
the chiral-like operators -

/dy (ayﬁ)2]
= — / dy' | +(0yp) o)X (W, ply) + W_op, —2p(y) ) ]

M= 47 f ' [ (0 +9") (B0) — (5° = v") (B,0)* = 2wy’ (W, p(y)

22

+ Wosg, —26(y) ) + il

Then it is the direct consequences of the canonical comrnutatlon relations (35)
that

[ Wa,(z), P =10W,, u(2)
[ Wa, s(z), H] =1i0W,, o(2)

: 2 2 —b
(W s(e), M] =i (2% +a'0+ 0t 4

5t 73

+oo
3 [ @ =) [ W, (), W, a(9) + We, —as(0) 139)

| Was(2)

as well as

Wa o(2)We, aly) = ()00 ko(ad —y' —ie) 1* [ ko(a' —y' +ie)
; . glap(@)iba(z)tiep(y)+idaly) : (39)

The first two equations in (38) form the foundation of evaluating the CR’s
nonlocal conserved currents for ZMS model. Combining these equations and
taking (37) in mind we get

W, o(z) = i3 f dy' [ Wy, o(x), Wp, ly) + W_ap, —26(¥) ],

= (40) .

84 Wo, o(z) =13 f dy* | Wo, o(2), W, p(y) + Weap, —28(y) ] -

. These results are much enlightening for deriving the nonlocal conserved cur-
rents of ZMS model (29). In fact, Eqs.(40) will become conservation equations
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of the currents consisting of vertex operators, for some special values of pa-
rameters @ and b. To. determine such a and b, let us ﬁISt lecall an useful
mathematical formula

lim [ (2! —y'—ie )™= (&' —y'+ie)™] =2m (=1 5(”_1-)(:z1—y1). (41)
e—0 ‘ (n—=1)"
n=123,--- "
Thus, when @, b= —3 and a, b— 7 the eqs.(40) might become the equations
of conservation of some currents. As a matter of fact, the first one of (40) 1n
a= —% case yields :

-W_2/8,0= i(z"#)&i [ =50+ ( Wa_z5, 0 Wo, 5 ) = 0-( Wp—2/p, 0 Wo, )]
? , _ a

| (42)
Contrary to the Efthimiou’s corresponding. equation obtained in perturbed-
CFT framework, (42) includes an extra term X () which appears because the

chiral-like fields p and p are not true chiral-functions of space-time:
X(\) =i} 2 +f°°dy‘ Wl W)+ W _ap(y) ]
| {W Dyt (@ -y 0 -y
el /3—"//3) (@) +iBp() +iBo) +i8p) ] - D)
PR dy (@ -y O 0 - )
. expl i( B—2/B)pla) +iB(z) - i2Bply) — 285(y) | : }-

The existence of such an extra term X(A) has us not to be able to consider (42)
as an equation of current-conservation unless X () could be set to zero. Only
~in certain special cases is this requirement satisfied. In (43) the possﬂale singu-
larities 1espeut1ve1y come from the factors (2! —y")?%* and (21 — yt)4e- -£?)

when z! — y!. In view of this fact and taking the contributions of the deriva-
tives of é-function into account, we find out that X(\) = 0 if and only if
1/2 < B% < 5/4. Namely, only in the region of 1/2 < f? < 5/4 does Eq.(42)
become a equation of conservation of nonlocal current:

0-j+(z) + 945-(z) =0, (44) |

where the nonlocal conserved currents ji(z) are read as
J+(e) = W—Z/ﬁ o(x) + Fiz Woozs, p(z),  for 1/2<p? <5/4
| i-() = 25 Wo-asp, ol2). |
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Just as what we have indicated earlier, the first equatlon of (40) could also
result in another conservation equatlon of current when « = L. It is directly
followed from (40) that '

0-Wip, 0 =i~ w?)m = 23+( Wl/ﬁ 20,0 Wo, 228 )

2 o (46)
—0_ ( vvl/ﬁ—lﬁ, 0 I’V, )] - z (2= 4ﬁ )QL 2[3; Y(/\) ’ »
where
Y(X) = l% 2”7:: Sy [ Wayp_ap, —2(2): W, 5(y) + Wosp, ~25(y) ]
3 { kG foo dy' (@ — ') 6Ot —y!) ,
(47)

: exp[ (vllﬁ—"ﬁ)p(w) i287(z) + iBp(y) +iBp(y) | :
- e’ f dy' (2! —y") ¥) s (@t —y!)

: expl i 1/8 — 28)0(z) — i287(x) — 2Bp(y) — 265(3) | - }.

After a similar analysis to that for X(A), we find that the vanishing of Y(A)
does also produce an restriction to the values of the coupling constant f:
1/8 < % < 1/2. Noticeably different from the case 6f sine-Gordon model
where the potential energy possesses a symmetry under the transform g — —f
2, 5, 10], this region 1/8 < #? < 1/2 does not coincide with the above one
1/2 < % < 5/4 determined by (43), and there is no intersection between them.
The nonlocal conserved current derived from (46) and (47) turns out to be

Ji(z) = Wl/'ﬁ o(' )+ g3 Wipoap, —ap(z),  for 1/8 < B2 <1/2
() = Fgatim Wi, (@)
(48)
Of course, we have from the second one of eqs.(40), other two conservation
equations moreover. To save the lengthy of the paper we had better list out
the corresponding nonlocal conserved currents here:

3():2quﬁzlvf3ﬁoﬁ ) fOI‘_ 1/2<,32<5/4
J-(2) = Wo, zp(2) + J Wp, po/p(2). ]

(49)
and .
Ji(z) = b S Wiap, 1/5-29(2), for 1/8<p?<1/2
J-(2) = Wo,1(2) + Fz Wesp, 1/5-20(2)-
| (50)

95



All these nonlocal currents are Lorentz covariant. With the help of Lorentz
operator M given in (37), one can easily check that these currents (Gas T-)
(G4, 3-)s (J4y J-) and (J4, J-) carry Lorentz weights (0, 2), (2, 0), (2—27, —3’73—5—33)
and (3%;—3, —3%7) respectively. In a sense, such “spin” spectra are compatible
with the fact that ( 8;/0- ) carries Lorentz weight 2, which is just what we
have anticipated. '

Up to now, we have obtained a set of nonlocal Lorentz covariant conserved
currents for ZMS model in CR’s non-perturbative framework. The charges
~ corresponding to these currents are

@ =
¢ =

Paut [a(e) + j-(2)]  for 1/2<BP<5/4
T | (51)
[ da* [j4(z) + 3-(2) ],

—00

[

[

and

_+f°°?dz1, [Je(2) + J-(2)]  for 1/8<B2<1/2

1l

o=

Ql
o' = 1 Tt [ i) + L)1,

-0

(52) +

Since the two regions of 1/2 < % < 5/4 and 1/8 < B% < 1/2 have not any
domains in common, only two CR’s nonlocal charges exist there at most for a
definite ZMS theory. Such an outcome is neither similar to the CR’s discussion
for sine-Gordon theory nor compatible with the corresponding BL’s charges
obtained by Efthimiou in perturbed-CFT scheme for ZMS model. Can these
two charges (51) or (52) provided enough physical information for displaying
the integrability of ZMS model? To answer this question let us examine the
equal-time commutation relations obeyed by these charges in the following.
Without losing genérality, we would like study the algebraic and topologocal
properties of the nonlocal charges (51) only. Following Bernard and LeClair
we introduce a topological conserved charge

. B +oo'_1 dp dp =
T = %—‘[o de' [(57) + (37) ] (53)

Then a tedious but straightforward calculation lead

[T, Q] =-2Q°, [T, Q"] =20Q°,
QQ - ¢7QQ =a(l-qg"),
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which are based on the commutation- relations (35) and (38). In (54),

a = ;_2% [2nifq 2= BV 1,  q = exp (<2mi/F).  (55)
The quantum charge algebra (54) is obviously the Chevalley basis of the finite-
dimensional quantum algebra sl;(2). The same conclusion is also valid for the
charge algebra of T, Q! and Q. However, the quantum algebra of the four -
BL-type nonlocal conserved charges for ZMS mode] obtamed in perturbed-
CFT framework has proved to be affine algebra A [8] The generators of

A(2) consist of the topological charge and the four BL type charges, which can
nontrivially carry a spectrum parameter relating to the Lorentz weights of the
BL-type nonlocal conserved charges. This implies that the quantum group
symmetry of the ZMS model is infinitely dimensional [8,11]. The algebras
obeyed by CR’s charges (51) and (52) are merely its.two finite-dimensional
subalgebras. Comparing with the case of the infinitely dimensional quantum
group, the number of the equations of the S-matrix governed by the above
finitely dimensional charge algebras must decrease. Therefore, the physical
S-matrix of the ZMS solitons, which has been obtained by Efthimiou [8], can
not be covered by the corresponding charge algebras of the CR’s charges. In
this sense, the CR approach for nonlocal currents may be not as universal as
the BL peltulbed CFT approach. '

" IV. A non-perturbative approach for non-local conserved currents
- based on the chiral quantization.

In our previous section, it has been shown that the Chang and Rajaraman’s
(CR’s) non-perturbative method [8] in the traditional canonical quantization
scheme is not universally appropriate for studying the quantum group symme-
tries, factorizable S-matrices and then the integrabilities of non-simply laced
afﬁne Toda systems, e. g., the famous ZMS model. CR’s non- -perturbative

“framework can merely display partial quantum group symmetries of non-simply

laced affine Toda theories, which are not enough to determine the physical soli-
ton S-matrices for such systems. Taking account of this fact, we are necessary
to pursue new non-perturbative methods to evaluate nonlocal conserved cur-
rents, which should be applicable to investigating the quantum integrabilities
of both simply laced affine Toda systems and their non-simply laced analogues.
In a sense, the present paper is a primary attempt on this direction. In the
following context, we suggest a candidate for the desired non-perturbative
nonlocal current approach. Our approach is based on the chiral quantiza-

tion prescription, 7. e., the light cone coordinate z_ = ~% (z°—2')or
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T= % ( 2° 4+ z' ) being characterized as the time-evolution parameter. This
quantization prescription is strictly different from both the radial quantization
used by Bernard and LeClair to study nonlocal currents in the perturbation
theories of the conformal field theories (perturbed-CFT) [3] and the canonical
quantization used in CR’s non-perturbative method. As a matter of fact, it is
well known that in the conformal field theories (CFT) the radial quantization
is intrinsically equivalent to the traditional canonical quantization.. In below,
one can see that the employment of the chiral quantization will lead to con-

structing in a non-perturbative way two nonlocal conserved currents for affine - -

Toda systems, regardless they are simply laced or not, and these two currents
will cover most of the physical information about these systems.

For definiteness let us consider the sine-Gordon and the ZMS models con-
cretely. These two models are the most typical delegates to the simply-laced
Toda and nonsimply-laced Toda systems respectively, of which the classical
actions can be written into the following unified form | )

= [ &= L gup0ng+ 2 (9 om0 )], (56)
3w -2

where 8 is a real constant and the parameter “s ” is assumed to be among

the set { 1, 1/2, 2 }. When “s ” is taken as one, the action (56) describes

sine-Gordon model. Otherwise (56) describes the ZMS model. It is easily from

(56) to read off the equation of motion in laboratory coordinates ‘

0,0"6 — 2miAp (P4 — seT#PP) = 0. (57)

By using the light cone coordinates 24, the Eq.(2) can alternatively be ex-
pressed as. :

3+9_¢‘+WiA,B ( e gemilh ) = Q. : (58)

* The purpose of this section is to investigate the nonlocal currents of the quan-
tum versions of systems (56) in light cone quantization framework and to study
the integrabilities of them. For more transparent, we choose the light cone co-
ordinate z_ as the time-evaluation parameter. Then it is apparent that (58) -
is the Euler-Lagrange equation from the following Lagrangian density

1 A

b oo A s —ispe
L=1-0:90-¢- 5 (¢ +e )- (59) .

It deserves to be pointed out that the chiral quantization scheme does not

simply describe the tesults of the conventional canonical quantization in the ~f

light cone coordinate system because the light cone coordinate z_ ( rather than -
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z° ) will be regarded as “time” variable throughout the chiral quantization
scheme we work. Keeping this fact in mind, we see from the definition of the
canonical energy-momentum tensor that

- ac o
T = Gangy 28 = Lo mv = = ()
of which the off-diagonal components are Ty, y = 1/47(0:¢)?. This means

that the energy-momentum tensor for system (59) in chiral scheme is not sym-
metric, then and the angular momentum which generates the Lorentz trans-
formation will not be conserved with respect to z_-“time”. Hence T, (60) is
the non-physical energy-momentum tensor of the system (59) since both the
sine-Gordon field theory and the ZMS theory are Lorentz invariant in the usual
space-time.

- Now we perform the chiral quantization for the considered system (59).
In order to do so, let us first describe the classical dynamics in Hamiltonian
formalism. According to the light cone time z_, the canonical momentum
conjugate to ¢ is 73 = -0;4. Thus “velocity” d_¢ can not be solved in
terms of momentum ,, which means that there exist an infinite numbex of
constraints with respect to the spatial pomts

Cle) = my(x )— 1 Ordl2) = (8D

Recalhng the equal-lightcone Poisson blaCl\(,t defined by .
Aw). B 1. . - A(w) §B(x)  8A() 6B(2)
(A B Jocms = [ at: (555 Sro€)  mele) 54(6)

we get the Poisson bracket between the constraints

{C(2), C(y) Yoomye = —1/27 048(zs —y4) (62)
which turn out to be a kernel rather than a matrix. Following Dirac’s quan-
tization prescription for the system involved the second-class constraints [12],

‘the Poisson bracket must be modified for the system under consideration. Note
that the inverse of the kernel (62) which is defined by [ dé4A(x,€){C(€),C(y)}e_=y_=
_ 6y —yy) is

I

A(.’IJ, y) = —-r E(:l:+ - !/+) ’ (63)
where () denotes sign(z). Then the expected new Poisson bracket, called as
Dirac bracket in usual, for the considered system (59) is defined as

{ A(z) , Bly) }:}_:y_ = { A(l), »B(y) | PS— .
4 / / derdCy [ { Az), C(€) Ya_=c_ e(&4 — (1) { CO)y By) Yeymys )-
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In particular, we have

{4(z), $) Yomy = — el —ye). (64)

With this Dirac bracket replacing the naive Poisson bracket, we acquire a
well-defined Hamiltonian description for the system (59) in light cone coordi-
nate framework. The evolution of our system in light cone “time” z_ will be
governed by the above Dirac bracket and the following Hamiltonian quantity

A ’ |
H =3 / duy (&0 4 =i ) (65)

The chiral quantization for system (56) is carried out by regarding the field

¢(z) and its conjugate momentum 74(z) as the Hermitian operators in Hilbert
space, and postulating these operators obeying the following equal- hghtcone
commutatlon relation

[6(2), 60) | oomse = —im e = 04), - (66)

instead of Dirac bracket (64). [ To save writing we will suppress the subscript
z_ = y_ .] For the same reason as that indicated in our previous section, the
field ¢(z) can not be expanded in terms of the plane wave modes. Nevertheless
it can be expanded at an arbitrary given “time”, called as z_, in terms of its
Fourier components. In this sense, we divide ¢(z) into its annihilation and
creation parts as follows:

bx) = da()+ po(a)

where ¢, (z) and ¢_(x) are nonlocally dependent upon the positive light-cone
coordinate x4

bele) =1 fﬂm“@““—dﬁfw ],

(67)
$-(a) =3 T dhal [ = 4 /il I dyaemoe ).

In accordance with the commutator (66), the annihilation operator a; and

creation operator az_ satisfy the standard commutation relations | ak,a}:, | =

S(k—k), [amay ] = [az,dz, ] = 0. Hence it follows directly from (67) that |

[ ¢+(w)’ Qb—
[ 62(2).¢2(v) 1= 0.

S
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]

In (68) the factor ko (ko — 0) comes from introducing an infra-red cut-off
koe™ into k-integrals, where « is the Euler constant. '

An important mgxechent of the method for non-perturbatively studying the
nonlocal conserved currents of Toda-type systems is the concept of so-called
vertex operators. In our case such operators are defined as

Agx) = : ) = clad-(2) ginde(a) (69)

Tt is easily deduced that the above vertex oper atms satisfy the following oper-
ator product arithmetic

Ad(z) Ap(y) = 1% [ kolay — yq — de) ]“b  glb@)Fib) (70)

and commutation relation

G Aue) | = trad(@oes —u) (7D

As a fundamental hypothesis, thie Heisenberg equation of motion of vertex
operator Aq(z) is assumed as 10_A,(z) = [A.(2), H] in our chiral- quantiza-
tion scheme. Due to this equation and (65) and (70), we see that the evolution
of Ay(z) in “z_-time” is governed by

i0_Au(z) = [Adz),H] |
= “ﬁ;\k“ﬁ/dy+ [ (24 =gy —ie)*” = (yg —ay —ie)*? ]
- . iab(@)+iBe(y) |
+i‘_asﬂgl‘»‘5a3ﬁ/d'y+ [ (z4 — ?/+ —ie)™*F — (y+ — 24 — i)™ ]
(@) HB() . : (72)

The equation (72) is very eulightening for constructing nonlocal conserved
currents for system (56). Taking account of {s-=1/2, 1, 2} and the mathe-
matical formula )

. : . o (=1t
i [ (#" =y ie) 7 (o —ypie) ™) = 2ei

n=123---

we find out that Eq (72) will become into the equation of current conservation

O-j4(x) +045-(2) = 0,

§n=) (2! —y ) (73).
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when the parameter ¢ is taken to be —2/f or 2/sf. In such a way we can
obtain two nonlocal conserved currents altooethex for sine-Gordon and ZMS:

models: 0 :
Jt (z) = A_gyp(z) ’
g ™ 74
{ J(_)(x) = —z(z}.zfﬁz_Aﬁ 2/p(2) e
and )
]-(i—l)("l") AZ/Sﬁ( [1) (75)
J- (=) = %Z(S(sﬁ)- Azfop-sp(2) -

These conserved nonlocal currents do exist for all real coupling constant 8 on
which the system (56) is well defined, which is just the reason why we develop
non-perturbative method in chiral quantization scheme. As a price the above
nonlocal currents have no longer the Lorentz covariance, relying on the fact .
that the action (56) does not possess the “Lorentz invariance in view of the = |
light cone coordinate z_ being “tlme :

It is worthwhile to stress that although there are only two nonlocal con-
served currents acquired from the non-perturbative scheme based on the chiral
quantization, rather than four currents as those appearing in perturbed-CFT
framework, there is no missing of the main’ physical information and the quan-
tum integrability of the system (56) can be displayed still. In order to make
this argument transparent, let us focus our attention to the case of s = 2, ¢. e.
the ZMS model firstly. Fol]owmg (74) and (75), the two non]ocal charges of
this system read

Qo = [dzy ]+ (L) = [dz, :exp(—i%qS(:v)):

\ (76)
@ = [duy i) = [duy rexplile(z)) (76)

Moreover, there are two conserved topological charges Ty and T for the ZMS
system as well

1 .
Ty =— 'B/dz+ (3 ' (77)

Then it is a consequence of commutator (71) that the nonlocal charges defined
above are subject to the algebra

(Ti, Qi) = @ Q; i, j =0, 1, (78)

where




1

This tell us that the conserved charges frame the affine Lie algebra A(Q) with
zero center, which is a subalgebra of the quantum loop' algebra A ) the sym-
metric algebla of ZMS system as well [8]. To confirm that the dommant data
about the physical S-matrix of the ZMS solitons are preserved, we have to de-
fine the soliton fields besides. These fields will create the ZMS solitons when
they act on the vacuum. In the procedure of constructing such fields, one
should take the following 1equu ements in mind: since the fundamental repre-

‘sentation of the zero-center A(z algebra is three dimensional, the fundamental

soliton fields must appear as a triplet and carry topological chmges -2, 0, 2
respectlvely Such fields are found to be

Ua(z) = :exp (2ild(s) ) |
Uo(z) =: (9+ exp ( tad(z) ) : rexp ( —iad(z) ):
where a is an arbitrary real constant. It is a trivial thing to check that soli-

ton fields (79) turn out to be the eigenvectors of the operator T} with the
eigenvalues +2, 0 respectively

[T1, U,(2)] = n(0)¥,(z), - o=+, -0,  (80)

where 71(4+) = 2, (=) = -2 and 71(0) = 0. Thus, by acting with Q; on
these soliton fields one will find fields with topolomcal charge 7 increased by

(79)

-2 with respect to the initial ones. In fact, the Wick product formula (70) will

result in a set of important braiding ; 1elat10ns when one acts with the nonlocal
conserved current components ‘]_(}_) and ]+) on the soliton fields, glven by

0 ' T
30) Ualy) = ¢ Vo(y) 1)
-(1 T1(o -(1
(@) Voly) = ) ly) 1(w)
where 79(0) = —27(0) and ¢ = exp ( —ir/28% ) . These braiding relations
induce the following comultiplications for the conserved charges

A(Qi )= Qi1 + T 0,
AT )=T:®1 + 1&7T;

forzy <y, , (81)

(82)

by the charges acting on the tensor products of two soliton fields. In (82) the
second relation is deduced from the additivity of the topological charges T;.

. The commutators (78) tied with comultiplications (82) could set up the
bridge between the charge algebxa and the infinite dimensional ‘Borel’ subal-
gebla of the quantum algebra 4 . It is not difficult to see that there is an

isomorphism

Qi = Ei‘]%i , T = H; - (83)
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between the charges and the generators of A ) In (83), Hyand £; i =10, 1
form the Chevalley basis of such a ‘Borel’ subalgebla, which can explicitly be
explessed as the 3 x 3 matrices

1 0 0 T1 0 -0

Hy = —4]0 0 0 H =20 0 0
1o 0 -1 0 -0 —I

0 0 0 0o 1 0

Ey =2\[0 0 -0 E, =20 0 -1

—
(=]
O

"O
O
o

in the fundamental representation of A @) Note that an arbitrary A-par ameter

appears in the generator Fg as the loop pdldll]?tt‘l of this zero-center qu

With the generators H; and E;, the comultxphuxtxon laws (82) can alternately

be recast as
A(Hi)=H091+1®H : (34)
H 84
A(E)—E0§q12+q1 %)E
where ¢; = q*/2. Since the above ‘Borel’ subalgebra has non-trivially carried
the spectrum parameter A, it describes an infinite dimensional symmetry of
the ZMS model. As a result, the physical S-matrix of the two-soliton states
‘must be commutative with the comultiplications of the generators H; and FE;

(S, ACH )] =[S A(E)] = 0. (85)

Compaled with the conebpondmg result obtained in perturbed- CFT approach
[8], the commutators [ S, A(F; )] =0, (1 =0, 1) are suppressed here because
there do only exist two nonlocal conser ved charges in our scheme. Nevertheless
this outcome provides the sufficient data for demonstrating the integr ability
of ZMS model. In terms of the ‘proposition 2’ proved by Jimbo in Ref.[12], a

solution of the second equation in (83) is also the solution of the first one in

(85), as well as that of [S, A(F;)] =0(:=0, 1). This solution is unique,
which is proportional to the wel] known Izexom Korepin R-matrix [13]. In
view of this analysis, we see that the S-matrix of the ZMS model determined

by Eq.(85) well be almost the same as that obtained by Efthimiou [8] except
(2)

S-matrix will be associated with the so-called homogencous gr ctdc\,tIOIl of qu )
rather than with the spin gradation.
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Secondly, we discuss the application of our method to sine-Gordon model
for completeness. In this case, the non-perturbatively defined nonlocal charges
and the corresponding topological charge are 'written as

Qo = [dzy a“( ) = [dzy :exp(—i f;sb( z)) :

& = [dzg j_,_ () = [dz, :exp(i é—qﬁ( z)): | (86)
which gives | _ : _
[ Ta QO ] = _?'QOa : [Tv Ql ] = QQl . T (87)

Corresponding to this commutator algebra, the fundamental soliton fields
should be among the families of operators with topological charge +1:

[T, Vi(x)] = £Ts(z). These fields are defined as Uy (z) =:exp (:l:i';gb(a,)): |

which possess the followmg braiding pxopeltles with the nonlocal currents

(@) Ualy) = 07 0a(y) i)
iV@) Vi) = ¢ Valy) iV (2)

for :1:+.< Yt s | (88)

where ¢ = =27/ Thexefme the comultlphcdtlon of the Chmges eXlllbltS

(Qo)= Q®1 + ¢ ®Q
CA(Qr)= @9l + ¢Teo (89)
A(T)=T®1l +1®T.

Associating with this comultiplication, we see that (87) is actually an infinite
dimensional subalgebra of the ¢-deformation sf() of the sl(2) Kac-Moody
algebra. Let E;, H; (: =0, 1) denote the Chevalley b<leb for this centerless
~ quantum algebra, we have o

Qi = Eg® (i=0,1), T =—H = H, (90)
- This is in fact the isomorphic relation between the conserved charges and the
generators of quantum loop algebra si,(2) (or 4(1 with zero center). Along
the lines of the discussions below Eq.(84), one can see that the S-matrix de-
termined by means of the symmetric algebra (87) and (89) is indeed in accord
~ with that obtained by Bernard and LeClair in the perturbed-CFT framework

[3].
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V. Remark.

In summary, we have established a non-perturbative framework for nonlocal
conserved currents in sine-Gordon'and ZMS models based on the chiral quan-
tization. Although sine-Gordon and ZMS models, considered as Hamiltoniad
systems in light cone coordinates, are quite dissimilar to those in laboratory -
coordinates, the equivalent amounts of information could be obtained from the
either. This fact was noticed in Ref.[14] earlier at the level of soliton solutions
of classical sine-Gordon equation. Now we have got the same conclusion at
the level of multi-soliton S-matrix for quanturn ZMS and sine-Gordon fields.
Opposed to appearance of four nonlocal charges from the perturbed-CFT in
laboratory coordinate, in our scheme only two nonlocal charges arise and they
are not Lorentz covariant quantities. Fortunately, such two charges together
with the topological charges generate infinite dimensional subalgebras of the
quantum algebras A,(,‘;) and Agl]),‘ respectively for ZMS and sine-Gordon sys-
tems. In addition, these charges satisfy some nontrivial comultil))lication laws
which turn out to be the part ingredients of algebras AE]?Z) and Agzz . The soliton
S_matrices obtained in this way are evidently in agreement with those given 1
by BL for sine-Gordon system and Efthimiou for ZMS model. Relying on :
these facts, we have reason regarding the present method here as a reasonable
candidate of the non-perturbative counterpart of the Bernard and LeClair’s

approach..

This work is partially supported by the NSF-of China. Y. X.Chen is also
grateful to the Fok Ying Tong Education Foundation in China for the support.
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Hawkmg evaporatlon for the 2 +1 dlmensmnal

radlatmg black hole
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Abstra,ct

The Hawking evaporation for the 2+1 dimensional radiating black

hole is investigated. The Hawking temperature of this radiating

“black hole is given.

PACS number(s): 97.60.L
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Since the discovery of the black hole solution to 2 4 1 dimensional (3D)
general relativity with a negative cosmological constant by Banados, Teit— |
elboin and Zanelli (BTZ) [1], much effort has been devoted to studying the
* properties of this black hole, including geoxﬁetry [2], gauge formulation (3],
supersymmetry [4], back reaction [5], thermodynamics and statistical me-
chaniés [6]. More recently, Husain [7] has obtained a 3D radiating black hole
solution by adding a pure radiational field. His metric is a counterpart df 4D

~ Vaidya metric
‘ | - ,
ds? = —(—m(v) + Zl‘-z-)dv2 —I—‘ 2dvdr + ridy? (1)

where [72 is the negative cosmological constant and m(v) the mass. The ob-
jective 'o‘f this paper is to use the Husain’s metric to investigate the Hawking

evaporatidn of the 3D black hole. A reniarkabl'e property of black hole. is
| that it can radiate quantum partic'les‘like a blackbody with a temperature
' ﬁroportional to its surface gravity. Hereafter we will use the method which
was introduced by Damour and Ruffini [8] for discussing the static and sta-
tionary black holes first and generalized by Zhao et. -al [9] for the evolutional
black hole to calculate the HaWking temperature of the radiating 3D black
hole. o |

To specify the location of the horizon rg, using the condition

of of
w2 Y
5:3“6:1:” 0 " - (2)

and considering the symmetry, we find the equation of ry from egs.(1) and

(2) as

r —ml? = 2%y =0. | (3)
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- The horizon’s location is
here a dot over ri denotes the derivative with respect to v.

Considering a massless scalar field in the black hole background
g“”@,_‘qﬁa,,(ﬁ =0 ' (5)

and setting ¢ = R(v,r)ef"‘P , (n=0, £1, £2,...), we find R(v,r) satisfies -

#R OR r? 2R 32 R  n?R
T@v@r+—3_;+r(—'m+-l;)5;2—+(—m.+— ——_—20.' (6)

2

Introducing the generalized tortoise coordinate transformation [9],

Ve =0V

1
{r*=7'+-2—ﬁln(r——rH),

where x denotes the surface gravity, we can rewrite eq.(6) as

' 72 1 215 R &R
[(_m + _l?)(1 + 26(r — 7‘H)> 2k(r — TH)] or? * 261),,87’*

+[7’(1+§$(—,~1f}§j)]-1{[ rig __ Tm r(—m 472/l %) t

k(r—rg)?  2&(r—rmg) B 2k(r—rg)
3 1 OR OR n?
+H=m+ )1+ o — TH))} T o TR} =0.(8 |

Using the condition that eq.(8) will change to a standard wave equation near :

the horizon, one has

(—m + Zl;)(21<z(7* —rH)— 27H) B

.
o 26(r —rH)
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ie.,

oty
w= B+ml2—rf - ' ' (10)

Near the horizon, eq.(8) has the standard solutions of the ingoing wave Ri®

and outgoing wave R°*, respectively,

in _ _—iwv
R® =e

, | (11)
Rout — eziwr.eiwv . - (12)'

At the horizon, R** is singular. We must continue B°® to the inside of the

horizon analytically and get

Rout — e—iwve2iwr*9(r _ TH) + evrw/ne-—iuveZt'wng(,rH _ 7") . (13)

According to ref. [8] and with the help of eq.(11)-(13), we obtain the particle -

-spectrum,
I, 3
<N, >= m— (14:)
where
» K T‘H- »
T=—= 15
2 2n(P4+mi2 —r¥) (15) :

is the Hawking temperature of the radiating 3D black hole, rj is determmed
by eq.(3) or eq.(4). B}
 Inorder to compare our result with that given by ref. [1] and [5], let us

consider the condition: 7 is small. In this case eq.(15) reduces to

_m ! !

e —((1+— \/— m + %m) : (16)
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If rh = 0, eq.(16) reduces to

2l

T= )

This is just the Hawking temperature of a 3D BTZ black hole which was first
given by BTZ [1]. |

In summary, by using the method of ref. [8] and [9], we have obtained
the Hawking temperature of 3D radiating black hole. When m is zero, our
result reduces to that given by ref. [1]. When ri is small, an approximate

expression for the Hawking temperature is given.
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Abstljact

In the framework of thermo field dynamics, the temperature and den-
sity effects on nucleon-nucleon interaction for chiral 0 — w model are in-
vestigated. The effective masses of nucleon, pion, o-meson and w-meson
at finite-temperature and -density are calculated. We have found that the

- potential well of thé nucleon-nucleon interaction becomes shallow as the den-
sity increases. At a critical density p., the potential well disappears and the

nuclear matter becomes a hadron gas.

PACS number(s): 21.30.4+Y, 13.75.Cs, 11.30.Rd.
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I. INTRODUCTION

It is generally believed that in future relativistic heavy ion collision exper-

iments, a very hot and dense hadronic matter and/or quark gluon plasma will
be produced. The behaviour of a nuclear matter under high temperature and

high density condition has attracted much attention nowadays [1-12]. Since

the nucleon-nucleon (NN) interaction plays a very important role in nuclear

physics and hadron physics, it is of interest to study the temperature and

density effects on NN interaction.

In a previous paper [12}, employing the imaginary-time Green’s function

method, we have extended the chiral o — w model to finite temperature and

studied the temperature dependence of NN interaction. We have found two

interesting results:

1. Under one-loop approximation, the potential well of the NN interaction

becomes shallow as the temperature increases. The temperature plays a

“repulsive” role for NN interaction.

2. At a critical temperature T¢, the potential well disappears and no

bound states can exist when T > Tg.

Since the extreme coﬁdition including not only high temperature effect,
but also high density effect, it is of interest to extend our study to finite
density regions. In particular, if we want to extend our investigation from
NN system to nuclear matter, we must consider the density effect. To extend
our previous study of chiral ¢ — w model to finite density is thg objective of

the present paper.
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- As a working framework, we will employ the thermo field dynamics (TFD)
tfxeory which was suggested b& .Umezawa. et al. many years ago [13,14]. TFD
'vis a real-time formalism of finite temperature quantum field theory. It can
Bg proved that under one-loop approximation, the self-energy gi\}en by TFD
wAill equal to that by real-time Green’s function method [10,14]. In ref.[11],
we have employed TFD to study the NNw interaction at finite-temperature
and -density. '

There are nucléon, pion, o-meson and w-meson in the chiral ¢ —w model.
The masses of nucleon and mesons will be modified by the corrections of the
temperature a.nd density dependent self-energy in hot and dense medium.
After summing the self-energy Feynman diagrams (Fig. 1), we can obtain
eﬂ'elctive masses of the corresponding particles. The NN potential .can be
obtained by calculating the scattering aﬁplitude diagrams [7-12] in which
t}he propagators of mesons have been corrected by the corresponding effective '

masses. All these calculations can be done in the framework of TFD.

As in ref. [12], we will calculate the self-energy under one-loop approxi-
mation. We will prove that the effective masses of mesons and nucleon are
almost linear dependent on density for a fixed temperature. The NN poten-
tial well will becomes shallow as the density increases. To a critical density
p. = 0.41fm™3 (T =0), the NN potential well disappears, the bound state of
nucleon-nucleon will be dissolved, and the phase transition of nuclear mat-
ter to hadron gas will take place. The density plays the same role as the

temperature under the extreme condition.

The organization of this paper is as follows. We will summarize the Feyn-
man propagators of mesons and nucleon in TFD in section II. In section 111,

we will investigate the propagators and the effective masses of mesons and
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nucleon in a hot and dense medium. In section IV, the density effects on
NN interaction are calculated. Our numerical results and discussions will be

summarized in the last section.

II. THE FEYNMAN PROPAGATORS IN THERMO FIELD
DYNAMICS B

In order to investigate the behaviour of chiral ¢ —w model in hot and dense
nuclear matter, we employ the thermo field dynamics, which is a powerfﬁl_
framework for describing many-body systems at finite-temperature and -

density. In this theory, the ground state is identified as the thermal vacuum

state which depends on temperature. All statistical averages are calculated
as the thermal vacuum expectation values. In this framework, almost all
operator formalisms in quantum field theory at zero temperature can be

extended to finite temperature and density directly [13,14].

In TFD, each dynamical degree of freedom has double components and

they lead to 2 X 2 matrix propagator. The propagator of fermion field in

TFD is
, _ .iAn(k) A% (k)
(k) = iAT(k) A%(K) W
where i
11 1 | : = 2 2
A k) = (K+m) {m + 2me[0(ko)np (k) + 8(—ko)mr (k)]6(k* — m )}

— —A"*(k) ,
(22)
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AB() = 2riem W3-+ )0k} S () — (ko) Mt ()] (32 — )
= —eBH2AT (k) | ‘

(2b)

where (ko) is step function, m is the mass of fermion, nr (k) and 7p (k) are,
respectively, fermion and antifermion distributive function
1 o 1
nr(k) = eBkol+h) + 1 (k) = Bllkol—1) + 1 ° (3)

and B = T~ is the inverse temperature, where we have chosen unit kp=1.

The chemical potential p is determined by

o=y | i () = (4] | (4

where v is the spin-isospin degeneracy, and for nuclear matter, v = (2s +

1)(2r +1) = 4.
The propagator of scalar field with mass mp in TFD is
_ iD(k) iD'(k) |
1D(k) = ( ) (5)

iD?(k) iD% (k)

where

11 _ — —orinalk\6(k: — m2) = —D?**
D*K) = ot e oming(k)§(k* —~mp) = —D*(k),  (62)

DY (k) = —2mib(k? = mb)efFol/ing (k) = D™(K) (6b)

and np is the Boson distributive function

no(k) = e - (7)

118




For the massive vector vbosoh field, for example, the w-meson, the propaga-

tor can be obtained from scalar boson by adding a prefactor ( —guy—l-k,,k; /m?)

to each terms of Egs. (6a) and (6b).

We would like to point out that the topological structure of the Feynman
~diagrams in TFD is the same as that of the quantum field theory at zero

temperature, and then their contribution can be separated into T=0 and

T # 0 two parts.

III. THE CHIRAL 0 — w MODEL AT FINITE-TEMPERATURE AND
' -DENSITY

The Lagrangian density of chiral ¢ — w model is [4,12]

L= P~ g6+ T Pas) — gt + 21(3,6) + (3,7

1 1 A2 ' 1
— GG+ 5“2 (¢* +7) — z(¢>2 + )% + Emiw“w“ +L:, (8)

Ly=cé, |

where ¢, ¢, 7 and w* are the fields of nucleon, o-meson, pion and w-meson
z respectively, G,;,, = Ouw, — Jyw,, and g, g,, A are the coupling constants,
L, is the chiral symmetry breaking term, which leads to partially conserved

axial vector current (PCAC), and u? > 0. Since this model has spontaneous

symmetry breaking, the expectation value of ¢ is non-zero. Shifting the field

¢ as l
p=otv, ©)

and taking < 0|¢[0 >= v, < 0|a|0 >= 0, < 0|7|0 >= 0, we have
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A =N =0 (10)

Substituting Egs. (9) and (10) into (8), we get
o : o 1 .
L'=9l §—gv—go+i7 - Pys) — guruwh]v + 51(8u0)* — 23%%07)

1, 2 ‘ ,
+5(07) — 2™ — %(02 +7)? = Xuo(o? + 72)
2

1 A :
+5mww“wﬂ + Tu‘* + 12'1 s | - (11)

This model can be renormalized and the detail procedure of the renormaliza-
tion has been discussed in refs. [4,12]. Following [4,12], we choose the masses
of nucleon and mesons as free parameters and define the coupling constants
g and A as
my = gvu

gv , ( 12)
m2 _ m2 — 2)\2,02
where my, m,, m, and m, are the physical masses of nucleon, o, 7 and w

mesons respectively.

In order to extend the chiral ¢ — w model to finite- temperature and
-density, we will calculate the self-energies of mesons and nucleon at
finite-temperature and -density by using TFD method under one loop-

approximation.

In the framework of TFD, the propagator has 2 X 2 matrix structure, but _ 7

only the 1-1 component contributes to the real part of the self-energy. Using
the Dyson’s equation in TFD [14], the full 1-1 component propagators of

scalar mesons can be found as
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Da(q) =

FETRe =T @)

where £, (@ = 7, 0) are the self-energies of the pion and g-meson ai finite-
temperature and -density under one-loop approximation. Acgording to the
calculation rules [14] of TFD, the self-energies of pion and o-meson illustrated

in Fig. 1 can be written as
d*k

Z—zg/ W

+iA? / (ZW)4[D;1(k)+5D;1(k)]; - o (14)

5 :—ing d*k
i (

o [ d%k
2y TTIAT (A (k — g)] + 302 /
4
ity / Ak

Tr[ys i AT (k)ysry A (k — g)] + 462402 / DM (k) D (k — q)

1(k) + D2 (k)]

(2n)?

S BDMBD (K- 9 + DREDEK -] (1)

The treatment of the vector w-meson self-energy has a slight difference

from that of the scalar meson. Under the condition of baryon current conser-

vation [4] g, T* = 0, the general expression of the vector w-meson self-energy

at finite- temperature and -density can be expressed as [15,16]
T = DY PP + ETP | (16)
where
2
¢ = —g—zupuUZﬁ" , B}
oY = 5 (Fu“uu — g“,,) o,

and u, is the four-velocity of the medium. In the rest frame of the medium,

u, = (1,0). P{” and P2 are the projection tensors defined as
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PR—PY PP =0, |
P =61-¢¢[q?, (18)
P’ + P = —g" +¢*¢"/q" .

Therefore, the full propagator of w-meson in the hot and dense medium

can be obtained as

P PR d o
Dy.v(q) - L _ T _ qaq , (19)
v @?-—mi—%¢ g-ml-%4% mlg

and the self-energy of w-meson at finite-temperature and -density in one
. loop-approximation be
4

d*k
TH — g 2/
w 19y (27!‘)4

Triy AR (k)7 A (k = q)] - " (20)

Substituting the TFD Feynman propagators into Egs. (14), (15) and
-(20) respecf,ively, we can prove that the self-energies of 7, 0 and w mesons
can be divided into two parts: the vacuum part which is independent of -

temperature and density‘ and the part of finite- temperature and -density.

The vacuum part is divergent, and can be absorbed in the renormalized

masses by renormalization [4,12]. Hereafter we focus our attention on the

part of finite-temperature and -density only.

In the limit gy = 0, § — 0, the temperature and density dependent part | 1

of self-energy of pion X,(go,q; T, p) can be obtained

} 2g2 3N
(0,4 — 0;T,p) = —7?2—12 + Er_?(Iz +I7) (21)

where I, I7 and If are the convergent integrals, their expressions are shown = §

in the appendix.
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Therefore, we can define the “effective” mass of pion at finite-temperature

and -density from Eq. (13) in the above limit {7,8,11,12]
mt = [m2+ 3%, ( ,§— 0; T, p)]"/?

a1
]

= [m + ——Iz + (22)

Similarly, the effective mass of o-meson is.
= [m? + £,(0,§ — 0; T, p)]"/

2 92 2 }‘4 2 \ 3)‘2 x o MR
= [+ St - i) - D o+ ) + 1)

The convergent integrals I3y, I3, /2 and I§ |3 are also given in the appendix. It

can easily be seen that the Feynman propagators of the pion and o-meson in

above limit are

1

R T

(a =m,0). : (24)

For the vector w-meson, In the limit qu: 0, ¢ — 0, using Egs. (17) and
(20), we find that the longitudinal and transverse temperature and density

dependence self-energies are

¥$(0,§—0;T,p) = 0,
o
272

(25)

200, — 0;T,p) = =2(2L + m§Is/2)

respectively. By using Egs. (18) and (19), we obtain that the Feynman

propagator of w-meson in the hot and dense medium are

DOD_ DsD DO:_ .
Yot md’ (26)
3 1 N

D3=m(5’—M’/qz)
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where m/, is

*

m: = [m? +32(0,§ — 0; T, p)]*/?
T s e

9
Juw
= |[md + F(le + "??VI3/2_)

The numerical results for the effective masses of 7, 0 and w mesons will

be given in the last section.

The effective mass of nucleon in the hot and dense medium can also be
Hcalcula,ted [3,4,12] under one-loop approximation. We can prove that the
effective mass of nucleon is

’ 2 (] . T / | 2
. g L+21 81, 3(I+2I7) m .
| mN=mN{1‘4wz [mg\,_mg““mﬁm“s L)
+gi[%h+2w)_l{ﬂ_

2 2 _ o2 2
4rt | my —my = mg

e

IV. NN POTENTIAL IN NUCLEAR MATTER

" Using the same procedures as our previous works [7-12], the NN inter-
action of chiral o — w model due to exchange 7, o, and w mesons at finite-

temperature and -density in the coordinate space can be found as

V(r) = Vi(r) + Vo(r) + Vo (r) , (29)
()= & 2(s,) ( (30)
Ve(r) = T _Z(z,)S12 + Y (z,)(7y - 0)|(71-72) ,
47 12m%, 12 )@ 82)](7 - 72)
2 %2 %2
g m m* - 21 d _
Voir) = —Lme | (1= e R 31)
(r) 47rm° {( 4m§,) Y (zo) 2m§vs L:z:a dzaY(xa)] ’ ( )
2 2 2
9. m . m; = 1 d ,
wlr) =-—"my ||1 —_
Vu(r) 47rm [( + 4m§v> Y(z) + 2m§vs z!, dz!, (x“’)}
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9 . ‘l(m&‘,)2 (m;)z -1 d
Ju. sl S I——Y(z,
+47rm”{4 my Y(zu) + my wadzw‘y(z)
2

ot

:)) [Z ()51 + Y»(zw)(él -02)] + 1 (:}%)2 Y(zw) (E; ' Oté)} (32)

where

Tr=m;r, T, =m'r, mwzm;r,_:c"‘,:mwr,

Y(z) =€z, Z(g)=(1+3/c+3/)Y(z), (33)
Su=200@0) 4 5

and 0; (r;) (i = 1,2) are the spin (isospin) of nucleon, S = a1+ &2), EIS
the angular momentum in coordinate Space, and r is the distance between

two nucleons.

The numerical results of the NN potential will be given in the next section.

V. RESULTS AND DISCUSSION

The numerical results of the effective masses of nucleon, pion, o-meson and
‘w-meson and the NN potential are shown in Figs. 2—4, where we choose the
parameters as my = 939 MeV, m, = 600 MeV, m, = 139 MeV, m,, = 783
MeV, g = 10, and g2 /47 = 10.7 as in refs. [4] and [12]. Since the temperature
dependence of the chiral o-w model has been investigated in our previous

study in details, hereafter we will discuss the density dependence mainly.

The effective masses of 7, 0 and w-mesons change with density at zero
temperature are shown in Fig. 2. We see from Fig. 2 that the effective

masses of 7 , o and w-mesons all almost linearly depend on density but their

slopes are different.
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The effective mass of nucleon vs. density for different temperature are
shown in Fig.’ 3a where curves A, B and C refer to T = 0, 100, 120 MeV
respectively. We see that the slopes of curves A, B and C almost equal

each other. It means that the slope of m}y vs. p curve is independex'lt of

temperature. In order to show the temperature and density dependence of - |

m}, more transparently, we show mj vs. T curve for different densities in

Fig. 3b, where curves A, B and C refer to p = 0, 0.1, 0.17 fm™3 respectively.

The numerical results of the NN potential V(r) for the I=0 and S=1 state
are shown in Fig. 4. We show that the NN poi;ential curves of zero tempera-
ture for p = 0 (curve A), 0.3 fm™3 (curve B) and 0.41 fm™* (curve C) in Fig. 4
respectively. We see that the potential well of V(r) becomes sha,llowelj as the
density increases. At a critical density p. = 0.41 fm™3 (T = 0), the potential
well disappears. It means that NN boﬁnd states will not be exist'above p,
in nuclear ma,tter. When p > p. énd/or T > T¢ [12], the nuclear matter
will become hadron'gas. The density as well as the temperature plays the
same “repﬁlsive” role in NN interaction. Whén density and/or temperature
increases higher and higher, the attractive interaction bétween nucleon and
nucleon become weaker and weaker. When density approaches to pc' and/or
temperature to T, the attractive interaction disappears. This result is in
agreement qualitatively with that given by ref. [8] for one pion exchange

potential.

In summary, we would like to point out that the effect of density on NN in- = 1

teraction is important. The density plays the same role as the temperature in

nuclear force. Based on TFD, we have obtained the density and temperature

dependence of NN potential for the chiral 0 —w model. We have found that |

the potential well becomes shallower when density increases. When density
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approaches to the critical demnsity p., the bound state of nucleons disappears -

and the nuclear matfer to hadron gas phase transition takes place.
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FIGURES
FIG. 1. Feynman diagrams for the self-energies of ‘pion, o-meson and w-meson.
The full line denotes nupleon, dashed line: pion, dash-dotted line: g-meson, wavy

line: w-meson.

FIG. 2. The density dependence of effective masses vs. density curves for pion, v

o-meson and w-meson at zero temperature.

FIG. 3. The density and temperature dependence of effective nucleon mass my.

(a) my vs.. density curves for various temperature, A: T = 0, B: T = 100 MeV,
C: T = 120 MeV. (b) m} vs. temperature curves for various density, A: p =0, B:
p=0.1fm3, C: p=017 fm~3. '

FIG. 4. The NN potential V(r) for various densities at zero temperature. A:
p=0,B:p=03 fm~3, C: p =041 fm~3.
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APPENDIX -

The integrals in section III are defined as follows

I, = /°° dz z? ( _ 1 n 1 )
0 \/x2+m§v exp(ﬁ\/xz-i-m%,—ﬂ,u) +1 exp(ﬂ\/z2+m§v;|-ﬁu) +1
| ' (A1)

Ton = /'°° dzx z? 1 + 1
3/2 = :
/ o (22 +m})3/? e:Jcp(,[i\/:it:2 +mk —Bp)+1 exp(ﬁ\/:c"’ +mk + fu)+1

(A2)
e dzz? 1 '
I":/ : i Na=m0,w A3
P Jo /22 + mZ exp(By/z? + m3) — 1 o ) (43)
bl dz z? 1
I, = [ o=
V2o (@ + mi)i exp(ﬁ\/-’li2 +mg) -1 (o= m0) (A4)
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Abstract

Employing the LeWis—Riesenﬁel_d invariant operator method, the
q-deformed geometric phase is presented with its explicit depen-
dence on adjustable parameters and the physical significance is

also discussed.
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It is well known that g-deformation, as a realization of the quan-
tum algebral, has provided us a bractical way to approach the real
physical world. However, it is always puzzling whether the quantum
q—deformatlon with a free parameter q is only sort of parametnzatlon
or indeed refers to practical physics processes. It motivates us to
apply this obscure theory to study the observable geometrlc phase (
GP) 2 ,

- For a quantum system in an adiabatic cyclic evolutmn the GP is
just the famous Berry phase®, which can be interpreted as a holonomy
associated with the parallel transpdrt around a circuit in a parameter
~ space®. In a generalization of Berry’s idea, Aharonov and Anandan (
 AA)¥ removed the adiabatic restriction and studied the geometric AA
phase for any cyclic evolution, which have been observed in optical

and NMR experiments®. The Aharonov-Bohm effect” can be regarded
Casa special realization of the AA phase. Further, it is pointed that
GP also appears even when the motion of a quantum system is neither
unitary nor cyclic®. |

In this letter we mainly concentrate on the q-deformed GP for a .
time dependent harmonic oscillator by means of the Lewis-Riesenfield
invariant operator method® and discuss its parameter dependence,
which eliminate the discrepancy between the e\:penmental value and
theoretical one for GP in certain quantum system?°.

A GP exists in a coherent-state system and bears a close resem- |
blance to AA phase!!. The problem of how a coherent state in evo-
lution can be preserved as a coherent state was answered by the

invariant operator theorem®. Given a time dependence Hamiltonian
H(t) = w(t)N + d(t) 1

where N is the particle number operator, w(t) and d(t) are two non-
singular functions of time ¢ respectively.
A coherent state will remain in its evolution as a coherent state

up to a phase. We choose the invariant operator as
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RN

I(¢) A: é"'d —zat — 2*a +g(t) A ‘ (2)

Then by the invariant operator method

df(t)_é_f_+[I,H].
dt 0Ot ik

we have the follbwing'solutions :

_o, e

2(t) = c.cap(—i / w(t)dt) : (4)

g(t) = const. - . (5) |

with an arbitrary function d(t) and constant ¢ undetermined. They
can be specified in a concrete physical model with appropriate initial
conditions. '

The GP then can be written as

ole) = [{eli-s|e)a (6)

. where |z) is a coherent state as

1>-—e:cp-|c|/2>2fln NG

n=0

and|n)are the eigenstates of the Hamiltonian Similarly, if the Hamil- -
tonian (1) is q-deformed and a deformed 1nvar1ant operator of I(t) in
Eq.(2) is taken to the form

I(t)g = (ag — 2")(ag — 2) — 2"z + g(t) (8)

where aq and a, are the commonly adopted form of the q~deformed

annihilation and creation operators, and

o ag — qagal = ¢~ (9)

- where N, is the g-deformed particle-number operator. We can have

the g-deformed GP as
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0= [Clighd

Inserting the coherent state’s _Fock»representation

|2)e _equ( ICI/)ZO\/—]— -y

into Eq.(7), where

eTpgla) = 7 12
‘p‘() ,Z% o (12)

! = [nlln = 1)-..2J0] o

—q | :

b= L= a8
=

n)g = —2—|0), (15
o= W)

then, we can derive the g-deformed GP as

'n.—l

9(a,¢) = eapy(— |c|>z pfewa a8

It can be easily Checked that when ¢ — 1,9(g,c) = g(c).
To manifest the physical signiﬁcancés of parameters q and c, we

define a function of

fla,0) = L2 o

One can imagine that for some ranges of q with fixed ¢, the function
f(q,c) may have values more than one. We have drawn figures of the
dependence of the function f(q, ¢) on q with some ¢, from which one -
can observe that the function f(g,c) is multi-valued. As one can see,

in certain regions of the parameter q with a fixed ¢, the q-deformed
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GP is larger than the undeformed one. This might present us an
‘access to remedy the difference between experimental data and the-
oretical value for GP of certain quantum system in evolution.. The
figures and more details of the calculation will be published in our
forthcoming work'?. Moreover, a straightforward consideration is the
q-deformed gauge potential induced from the g-deformed GP of the
harmonic oscillator. Their meanings and possible results will be de-

tailed in our forthcoming paper too.
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Abstract
The chiral Wa.rd-Takaha.shi identities with composite fields at finite

temperature are utilized to study the mechanism of chiral phase tran-
sition in the presence of a current mass in a 241 dimensional chiral
four-fermion model. The mass spectra of fermion and bound states at
_ finite temperature are obtained in terms of these identities. By evalu-

cating the vertex correction in next to the leading 1/N order, thermal

screening effect and chiral transition are discussed.. It.turns out that
when temperature reaches a critical temperature T¢, the screening ef-
fect will make dynamical breaking restored. This shows that screening

effect plays an important role in chiral transition.
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Lattice Quantum Chromodynamics provides us a non-perturbative method | :
ték Stﬁay the low-energy hadron physiés oﬁ the basis of tﬁe first principles. -
Many Monte Carlo simulations show that at high temperature ana /or den-
sity QCD vacuum undergoes structural changes a.nd there is a deconfinement
transition. These results are verified in some models.

At ﬁnife temperature, there are two aspects of thermal effects. One is
to excite fermion pair condensate. This makes the fermion pair condensate -
gradually melted as temperatﬁre arises. The other is t6 prodﬁce a scr‘eening 'j
effect and make an influence on the interaction. However, in the mean field
approximation, the screening effect is neglected[1][2]. In this paper, we study
the screening effect and it’s influence in chiral phase transition.

In order to study the screening effect, it is necessary to calculate the '
- vertex correction. As the vertex correction is neglected in the mean-field .
approach,we adopt. chiral Ward-Takahashi identities to study the screeﬁing )

effect. It was shown that it is more convenient to investigate the high or-

der effects on phase structure than the Schwinger-Dyson equation[3]. In the
point of view that four-fermion couplings are not ren.ormalizable‘ in 3+1 di-
mensions but renormalizable in 2+1 dimensions in 1 /N expansion[4], in this
section we take a 2—!—\1"di1‘nensi0nal chiral four-fermion model as an example
to study dynamical mass generation, the screening effect and the chiral phase}
transition at finite temperature.

At finite temperature, the quantum statistical partition function Zp[J ]
is[5] |

Zg[J] = Tre PHs ~

= [ DB, wlexp(— I dr § PalL + 7()b(2) + Bl ()
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K (@B () () + Ks(2)Bla)inet(z)])

= ¢ Wl | | (1)

where composite external sources K (z), K;(z) are introduced in the partition
function Zj[J] to describe dynamical breaking, and J denotes the abbrevia-

tion of (77,7; K, Ks). The Lagrangian density is

L= - Ls— mO"L—"pa
Ls = =P7 8% + & [($9)* + (Finw)?]. (2)

where g? is positive, and L possesses chiral UV-(I)‘ ® Ugp(1) symmetry.
Since a current mass term can be regarded as an external source[6], it is

easy to see
Wﬂ[ﬁsn;‘K7 K5] = W;[ﬁﬂ?;K - mOaKS]: ' | . (3)

where a physical meaningless constant term has been omitted.

At finite temperature, the Gibbs average of fields are defined as

T — ge)

T = tla)
6377—(5(;737%Wﬁ[=7] = Gy(z),
5n(a:)i'756ﬁ(x)wﬁ[‘” = Gsp(z), (4)

Similar to zero temperature field theory, one can obtain the effective action
T'[¢p] by performing the Legendre transformation. From the fact that the
~ connected partition function WilJ] remains invariant under chiral transfor-

mation, we can obtain the finite temperature chiral Ward-Takahashi identities|3].
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After shi‘ftin'g the externa.l source K — K — my, we obtain chiral Ward-

Taka.ha.shl identities in the presence of the current mass

L d"/d% [J’ﬁ( )::Z[(?p]) :iﬁp])vll (z)] =0, o (5)

5t . oT(6s]  6T[ds) i
[j ar [ & [’pﬂ(‘”)z W) &/;,3(5;) 5 5¥s()
| +[Pp(2)ivs¥s(z) + Gs(z)]mo

ol Gugle) - s Ga(@] 0. (©

Differentiating egs. (6) several times with respect to fields g, v¥s,Gp and
Gsp, We can get some Ward-Takahashi identities for proper vertexes at finite
temperature.

With the aid of the Ward-Takahashi identities for two-point vertexés, we
' can obtain the mass spectra of fermion and bound states. In 1/N expansion,
four-fermion couphngs are renormahza.ble In order to obtain physical results,
it is necessary to mtroduce a fermion wavefunction renormalization constant
Zy, a coupling renormahzatlc}n constant Z,z, a composite field renormal-
ization constaht Z5y(= Z}?*) and a current mass renormalization constant
 Zmo (8-

When the broken direction is chosen as’

o £0, NG
(Pivs)o =0, | | (8)

and {(iivsih)p Temains zero, the finite temperature mass spectra of fermion

and the bound states are

My (B) = mi +r$:,3:;: 3, (P2 =230) oo (Gren) s (9)
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m (ﬂ ) = m(r)m(’/”p) B (Urcn} >
(ﬂ) =m (ﬂ) + I‘g?’:;xﬂ (pa —Dp; 0) IP3=O (0'ren)ﬂ’

where p = (iw, p, p;). The bound states are defined as[3]

o(z) = ab(a)h(2),

m(z) = m/—l(z)i’fsi/_’(x)v ,
_ {o)o
(¢¢>o

where the subscript ‘0’ denotes zero temperature.

ref.[7]. The propagators are

t

G(p) = ————6;;,
. 27 : 1
Da(p) =37
N 2(M; — M) + pTLM—J"-tan \/-—pi/ZMf
27
Dr(p) = 1_—

N 2(M; — M) + \/~p2tan‘1\/—p2/2Mf’
Here My and M are '

i ' M= 1[M + VM? + m?|,

_/ —p2+M2’ '
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(10)
(11)

(12)
(13)

(14)

‘At zero temperature, the Feynman rules in 1 /N expansion are given in

(15)

’('1‘6)‘

(18)

(19)

where m is a parameter to Adescribe the explicit breaking—, which is related
to the current mass mo by the relation m* = 47rmoZ,,/¢*Z,2. We assume
that the explicit breaking is very small, m/M < 1. As the fermion mass and
0 meson mass are the order of M , the corrections resulted from m can be

omitted in the mass spectra of the fermion and ¢ meson. However, it is quite




different for 7r meson. In the low momentum limit, eq. (17) shoWs that m is
the 7 meson mass and the residue of D,,(p) isn’t 1, but 4mrM/N. When 7
field is taken as the same form in ref.[8], one can see that at the leading order
the 7 mass spectrum dérived from Ward-Takahashi identities is in agreement
with that in 1/N expansion. Here, we use the Feynman rules in ref.[7] to
discuss the vertex correction of fermions and o meson.

In terms of the relation bétween field theory and imagina.ry time tempera-
ture field theory[S], the Feynman rules at finite temperature in 1 /N expansion
can be easily obté.ined. According to the Feynman rules at finite tempera-

ture, in the non-relativistic limit the vertex function beyond the leading order

is
AT 5 (P B0l =~ AL (9, ~p;0) oo + iA2 (P, ~p; 0) o0,(20)
where
. 2 1 1
L. ﬂ me - 0 e .2 —— -
2A‘a’(l” p70) Ip’=0 - 2A‘U(‘p’ p’ O)lP2=0 zN [ 31113 eﬂM + 1
4(2ln3-1) 1
In(e™?™ +1 ] 21
o3 g U] ®1)
. . .2 4 _
iAZ(p, —P;.O) lpr=o = iAz(p, —P3 O)lp2zo + i3 [Wln(e M +1)
1 : 1 1 :
———In(1 — e F™" -———] 22
ﬂMn( ¢ )+ln3eﬂM+1 ’ (22)
where A2, A2 represent the vertex corrections caused by exchanging 7,0 at

zero temperature. As a 2+1 dimensional theory is infrared safety, the very
small 7 meson mass can be ignored at zero temperature.

Applying egs. (21) and (22), one finds that the effective coupling between
fermions and ¢ meson in the next leading order is
| 2 [ 1. 41

B = —1paey 2L ey, 4 T
9ers(B) TN TR ﬂMn( ¢ )+3ln3eﬁM+1)
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+8(21h.3—1) 1
,,._9111?3 - BM.

in -ﬂM+ ), e

where M is the function of temperature. :From:eq.:(23},-one can'see that the
vertex correction: a.t;ﬁmte te_mperature results from two part corntributions:
one is the correction at:zero temperature; which comes from:quantum fluc-
tuation in' the vacuum; the other:is: thermal fluctuation, 'Whichf:isg:cla.SSi'clal :
thermal effects. As ultraviolet divergences result from quantum fluctuation
and usually exist 1n the vertex correctlon at zero temperature, they can be
removed by the renormahzatlon procedure at zero temperature Note that
if m;+= 0, the thermal ﬂuctuatlon-«of% meson ‘will cause’an finfrared diver-
gence. The small explicit breaking gets fid of thie 'infrai"ed =dfiiferg"éri"ce5’iat firiite

temperature. oo

From eq. (19); it is-easy to get':::

M — M, + %ln(l +efMy=0. - (24)

where M, denotes the dynamical generamonmass at zero temperature, which
is related to the fermion pair condensate: © e EERS

From eq. (23), one can see that with increasing temperature,—-geff(ﬂ)
decreases gradually, thus the attractlve mteractlon between fermions will

- decrease as temperature increases. So there isa temperature Tp to make the

eﬁ'ectlve coupling vamsh, ie.”

Lenep s

gﬁ(ﬂu) 0. @

We call Tp decoupling transition temperatire. - When temperature exceeds
Ty, the attractive interaction between fermions will be completely screened

by thermal fluctuation and the interaction becomes replusive.
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At the next leading order, the fermion mass correction results from ﬁWo
- parts: i) vertex correction, which is inverse to My; ii) the melting effect (o)
a't‘ 1/N order, which is proportional to. Mjy. - As temperature increases, M, f;
decreases. Thus, the melting eﬁ'ect can’ be neglected. Using eq. (9) and in
above approximation, we can be expressed the next leading order fermion

mass M} as
M} (8) = g.ss(B)M; + (1 - Get1(B))mg™ | (26)
where M} is the leading order fermion mass. Eq. (26) shows that the fermion
mass M} decreases with tenipera.ture arising, which is shown. When it
reaches T, #(B) is equal to the current mass. If it continuously increases,
M (B) becomes less that the current mass. There is a temperature T, to
make
M}(T.) = 0. | (20

As the fermion pair condensate in the next leading order is proportional to ,

Mj}(p), so we have
(@) =0. e

When temperature exceeds T, the fermion mass M;(B) becomes negetive,
which indicates that the vacuum is unstable. So the bouhd states can’t be
formed and are dissociated as high temperature. These correspond to the -
picture of chiral phase transition. We call kT,, the critical température of
chiral phase transition, It should be émp,hasized that not only the melting
effect but also the screening effect play an important role in the mechanism

of chiral phase transition.
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As infrared pfopert‘ies will affect phase structure and phase transition,

whether above mechanism holds in 3+1 dimensions needs fiirther investiga-

tion.
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Abstract

Based on the Brown-Rho conjecture, the nuclear density effect of the
nucleon structure function is investigated. A explaina,tion for EMC effect

from Brown-Rho conjecture is given.
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The experiment of deep inelastic scattering of charged lepton with nu-

cleons of European Muon Collaboration (EMC) [1] have showed that, the B

difference between the structure function Fj of the bound nucleons and that
of free nucleons is significant. After then several precise experiments [2-4]

have been carried out to measure the ratio R = F#/FP and the results

confirm that R # 1.

. The structure function of a nucleon is related to the momentum distri-
bution of partons. In the quark-parton model, Fj depends on the Fermi

motion only. But the experiment data of EMC shows that the finite-density . . |

background of nucleon is important. A nucleon in a heavy nucleus is sur- .

founded by many other nucleons, the effect of the surrounding nucleons may

be explained as putting a nucleon in a finite-density medium.

Based on the scaling invariance of QCD, Brown and Rho argued that, the

masses of the nucleon, w-meson p-meson, and o-meson in a zero temperature

finite-density medium satisfy [5,6]

My(p) ., Mi(p)  Mp(0)  Me(o) L fa i _2e

My = M, © M, - M, %, 1)

where f, is the pion decay constant, the masses and fr with asterisks stand - g

for the finite-density values of the corresponding quantites, p is the density

of the nucleon background, and pg=0.17 fm™3 is the saturation density.

According to ref. 7], the result of f}/fr at saturation density is
fa(po)/ fx = 0.91 (2)
From Egs. (1) and (2), we obtain A=0.18, and

My P A
=1-0.09- 3
My . | (,.‘)
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Since the nucleon mass will shift with the density of the medium, the

.structure function of a nucleon in a heavy nucleus must be affected by this

shift. The EMC effect may be a result of this shift.

The cross sectlon of charged Ieptons deep inelastic scatterlng on nucleons

can be Wr1tten as

d?®c dma® Fy(z, Q?) CayM 214 4M?z%/Q?
- 1oy SR LIEOLY
dzd@Q? Q4 T ' 2E 2 1+ R(z,Q?%) -
where Q? = —¢?, ¢° is the squre of the four momentum transfer from the

lepton to the target nucleon, v = E — E' is the virtual photon energy, y =
v/E, M stands for nucleon mass and

x:2§51y o ' ' (8

is Bjorken scaling variable. -

To the first order approximation, it was shown that [2] F is independent
of Q?, we can consider F} as a function of z only. The nucleon in a deuterium
can be treated as a free nucleon apprdximately, but the nucleon in a heavy
nucleus as a nucleon in a finite-density medium. We see from Eq. (4) that
the reduction of nucleon mass implies a ehift of z. The structure function
will becomes

Fi(z) = FY(o!) | (6

where FA stands for the structure function of a nucleon bounded in a nucleus

with A nucleons F is that of free nucleons, and

Qz ' }
’ = ' 7 )
T T oMy (7)
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where M* is the effective mass of nucleon in A nucleons background. The

ratio of the structure fuhgtion of a bound nucleon Fj' to that of a free nucleon

FY reads

R =H@E©-ROEG ®

The numerical results of the ratio R(z) for four different nuclei are shown in

Fig. 1. We choose the function of a free nucleon as [8]:
 FN(z) = 0.59v/z(1 — )% +0.33v/z(1 — 2)°® + 0.49(1 - 2)*  (9)

In the large = region, the effect of Fermi—motion [9] is taken into account. We
see from Fig. 1 that our results are in good agreement with the experiment

data [3].

In summary, the correction of nucleon structure function by nuclear
medium can be calculated by Brown-Rho conjecture and the result of the

eﬁ'ectwe mass of nucleon given by Brown-Rho conjecture can successfully

explain EMC effect. The effect of z-rescaling may be come from the density - |

dependence of nucleon mass.
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Figure Caption
Fig. 1 The predictions of Brown-Rho Conjecture results compared with

data SLAC E139 [3]. The solid curves are the results calculated by Eq. (8).
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Abstract

An improved finite temperature QCD sum rules has been employed to cal-
culate the J/¥ suppression in hot hadronic matter and quark-gluon plasma
separately. We have found that the J/¥ suppression will occur in both
hadronic matter and quark-gluon plasma,rbut a mass shift about 0.49 GeV
of J/¥ will exist in QGP background only. In hadronic matter background,
no mass shift exists. The results obtained by QCD sum rules and by potential

model are compared.

PACS number(s): 12.38.M, 14.40.G
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I. INTRODUCTION

<

It is generally believed that the phase transition from hadronic matter
(HM) to quark-gluon plasma (QGP) will take place at high temperature
and/or high density, and the relativiétic heavy ion collision '(RHIC) [1] will
provide this extreme condition. The key for the QGP formation problem
is to find a clear signal which can give rise to a sharp distinction between
predictions from QGP and HM, and in particular, this signal can be measured

clearly [2]. J/¥ suppression may be one of such candidates.

A strong and systematié suppression of J/U in the dilepton sp_ectrum"
in QGP background was first suggested by Matsui and Satz [3]. By u._singA ’
the Debye screening potential fnodel, many workers .[3,4] haye ‘calculated the
mass of J/¥ in QGP Vbackground and found that the J/¥ formation will be
prevented by the plasfna Debye screening effect and theﬁ a strong suppression -
of J/¥ pedk in the dilepton spectrum will be occurred. This result seems
to be confirmed by the RHIC experiment of NA38 collaboration [5]. But
unfortunately, in a recent high energy proton-nucleus: coilision experiment |
under its condition that the QGP has no opportunity to be produced, the
J/ @ sﬁppreséion has also been found [6,7]. Therefore, can J/¥ suppression

be a signature of QGP formation? It is still an open question.

The objective of this paper is to study this question. The basical impor-
tance for answer this question is to employ an effective tool to calculate the
J/¥ suppression in QGP and in HM separately and find their distinctions.

The QCD sum rules at finite temperature is one of these effective tools.

The method of QCD sum rules was first introduced at zero temperature

to predict features of low-energy hadronic physics in the absence of an exact
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solution of QCD at large distance. This method. is built upon the working
hypothesis that there is a kinematic region, in which the correlation function
may be evaluated at the quark-gluon level by using perturbative QCD; but
augmented with non-perturbati've gluon and quark condensé,tes to replace -
the large distance confinement effect. Results given by QCD sum rules are
compared with those obtained from dispersion relations at the hadronic level.
" Some applications of QCD sum rules have been found to be pheﬁomenologi-

cally successful and can prov_idé an insight to the properties of hadrons [8-11].

In order to study the temperature and density dependences of hadron
properties and QGP, one must extend the QCD sum rules to finite tempera-
ture. Although much effort has been devoted for this extension [12-16], but as
was pointed out by Hatsuda et al. [17], none of them contains a satisfactory
and consistént formulation at finite temperature. The essential drawbacks of :

the previous works are [17,18]:

(1) The finite tempe_raﬁﬁ;e correlation function for massless quarks has
been used to calculate the short-distance properties of the correlations everi _i |
in the hadronic phase at low temperature. This procedure introduces aﬁ
| unnecessary and erroneous mixture of the short and long distance dynaﬁics,
and leads to temperature dependent Wilson coefficients. But in the hadronic B
phase, since the thermal average of the local operator O,, takes care of all
the temperature dependences of II(¢,T') in the operator product expansion
(OPE) II(q,T) = Znca(g) < On >r, the Wilson coefficients ¢,(g) should be

temperature independent.

(2) The OPE for the current product should contain all the possible non-
scalar operators as well as scalar operators, because Lorentz invariance is

broken at finite temperature.
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Because of these difﬁéulties, some results given in the previous papérs,

‘including the J/¥ discussion in ref. [14], are not reliable.

To overcome above difficulties, Hatsuda and his coworkers suggested an
improved QCD sum rules (IQSR) at finite temperature, in which the Wilson
coefficients are temperéture independent, and used them to study the light
meson [-17 18]. In this paper, we will employ IQSR to study the heavy quark
system. We will calculate the mass, the resonance strength and the contin-
uum threshold of J/ \If meson in hot HM and QGP background separately
and compare their results carefully, we will indicate that although the J/ v

“suppression will occur in both HM and QGP backgrounds, but there are
several distinctions between these two baékgrounds, we will prove that the
J/¥ suppression in HM with no inass shift, bu’r; in QGP, the J/¥ suppression
will be a,ccom‘panievd with a J/¥ mass shift 0.49 GeV. Besides, we will prove
the critical temperatures in HM and QGP at which the J /¥ bound state
dissolves are different. The former is 0.16 GeV but the later is 0.22 GeV.
Due to this difference, the variations of J / ¥ resonance strength of HM and

QGP with temperature are also different.

II. FORMALISM

We take the current of J /¥ meson as
Ju = Cyuc i (1)

where ¢ denotes the charm-quark field. Since the J/¥ meson is a heavy quark
system, the heavy quark condensates can be neglected [8-11,14], we consider

the gluon condensate < 0|G,,G*|0 > only [14]. In the hot medium, the
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thermal average of the time-order vector current-current correlation function

-caJ; be written as
T, @) =i [ d26** <O ()L O0> ()

where T is the temperature of the hot medium, and ¢, = (w,q") the transfer
fo_ur—momentum. One can prove that the correlation function of a conserved
vector current contains two independent invariants which correspond to the
transverse and longitudinal polarization It and Il in the medium respec-
“tively. Because no specific spatial direction can be existed in the rest frame

of the medium, therefore we have [12,17]

Iy = W, i(w,§=0) = Or(w?),
M) = KT, )/(<367)] ®

The longitudinal part IIF(w) of the retarded correlation function at g=0

satisfies the following standard dispersion relation in medium,

O _#s) @

S —w — 1€

where p(s) is the spectral density at finite temperature and can be treated
phenomenologically. Considering the OPE of the retarded correlation func-

tion and taking the thermal average, we .get [17]

Rellf(w) = ) ca(w?®, 1) < On(4?) >1 (8)
where p? is a renormalization point of the local operator O, c,(w?, u?) are
the temperature independent Wilson coefficients and can be calculated by

naive perturbative theory. The non-perturbative dyndniics and the tem-

- -perature effects are included in the thermal average of the local operator
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< On(p®) >r. It means that the condensates of quarks < gg > and glu-
ons will be temperature dependent in the hot medium. Applying the Borel

transformation

LMHR(Q2) = lim -
it

1),(622) ( 'szrn @  ©

to the dispersion relation Eq. (4), we obtain the Borel sum rules as
1 L
Lyl (Q?) = W/ds exp(—s/]V[z)p(s) : SN )

where M is the Borel mass parafnetex'.

~ Now we ar'el in a positioﬁ to use this sum rule tb sfudy'the behavionr
of J/¥ meson. Hereafter we will calculate the J/¥ suppression in HM and
QGP background separately.

1. Hot hadromc matter background

Since the temperature of hot HM is less than the deconﬁneme_nt tem-
perature, using the same arguments of [9,10], to a good approximation, the
theoretical side of the QCD sum rules for J/¥ meson can be obtained simi-

larly as that of zero temperature, we get
*LyTIH(Q?) = /M n A(M 2)[1 +osa(M?*) + $5(M?)] (8)

where.m, is the mass of charm quark, a, is the QCD coupling constant. In
Eq. (8), mA(M?) is the contribution of free quarks, a,a(M?) corresponds
to the first perturbative gluon correction and @¢b(M?) represents the non-
perturbative correction. The expressions of mA(M?), a(M?) and b(M?) are |

given in the Appendix. The gluon condensate parameter ¢ is defined as
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- A4r?
é,: 9(4m2)?
~ As was pointed by Hatsuda et al. [17], the temperature dependent part of
gluon condensate is quite small numerically: < (a,/ 7)G? > is at most 0.5%
of its corresponding value Qf zero temperature even through temperature
increases to 0.20 GeV. To a good accuracy, instead of < (as/7)G? >, we

can safely use the value of < (as/7)G? >¢ for our J /¥ spectrum calculation

in HM background. .
The spectral density in Eq. (4) for J / ¥ at hot HM has the structure
P(Wz) = fmJ/\I!(S(w - mJ/\I/) + Py 2(1 +2 )9(‘-0 - 50) + (pp + pp,)0(w?)

- (10)

where mjy is the mass of J / ¥ meson, f the resonance strength and /So |

the continuum threshold. In the rlght hand side of Eq (10), the first term is

the contribution of the resonance parti,‘the_ second the continuum term and

the third the Landau damping. The Landau damping term p, + p,, comes

from the scattering of J/¥ with thermal D mesons in the hot medium. The

contributions due to the thermal charm D mesons can be obtained as [14]

)= [ atn () S, 6-py o

where v = (1 — 4m?/w?)}/?, np(z) = (" — 1) is the boson distribution
function.

Substituting Egs. (8) and (10) into Eq. (7), we have

e +——(1+-—>/ dw’e™ M+ py + py,
= e M A(MP)[1 + a,a(M?) + $b(M?)] (12)
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A straightforward calculation of Eq. (12) shows the mass of J/U as

mie = | M r Al + o0 + $b) - i(l +IOMESM (5 4]
/ , 4 2

2 M4 A asa’ 4 ob’
4m? ~4m?2 /M? . b
{mce‘ 7rA(1+aa+¢)[ p A+%__1+aa+¢b)}
SQ _ 2
4 So /M _ -
(1 + 2 )M (1+ Yk } | (13)

and the resonance strength as

872 fm3 g = emare!/M? 8r2e™* ™Mt A(1 & a0 + Bb
7% :

O _ '
—(1+ MM g2 (p 4o, Y. (14)

where A’, @’ and ¥ denote the corresponding M ? derivatives, for example,

A’ = dA/dM?. By using Eqgs. (13) and (14), we can study the behav1our of
J/ \Il in the hot HM background

2. Quark-gluon plasma backgro_u‘nd

There are two major differences of QCD sum rules in HM background and
QGP background. Firstly, in QGP, instead of considering the contributions
of the scattering of J/¥ and thermal charm D mesons, we must take the
effects the charm quark with the thermal QGP bath into account, because
the temperature of QGP is higher than the deconfinement temperature. The

spectral function of ¢ quark in a thermal bath has been calculated in [12,14].

The result is

1 e 2 w 2/ .2v\1/2 2m?
ps= _f; dwhnp(or)(1 —dml/w®) 21+ ==2)  (15)

472 2

where np = (e* + 1)7! is the fermion distribution function. When we use
the QCD.sum rules formula Eq. (13) to calculate the mass of J /¥ meson in
QGP at first, we must replace p, + Pp, by ps of Eq.(15).
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Secondly,’ when temperature arrives at the decdnﬁnement temperature,
‘the gluoﬁ'condensate, as a parameter of confinement, will change with tem-
pexjature and vanish at the deconfinement "tempera,tu_ré. It means that in
QGP background, we cannot take the approximation ¢r = ¢o. By using the
thermo field dynamics method, the gluon. condensate at finite-temperature
and -density had been considered by Mishra et al. [19] in details. We will
use their results in our QCD sum rules calculations. Instead of ¢ = o of

HM brackground, we put the temperature dependent gluon condensate ¢ of

ref. [19] into Eq. (13).

After replacement p, + p,, by ps and ¢o by ¢r of [19], we can use Eq.
(13) to calculate J/¥ suppression in QGP numerically.

1II. RESULTS AND DISCUSSIONS

Iﬁ hot medium, the mass m 7/%, the continﬁum threshold v/So and the res-
onance strength 872 f of J/ ¥ are temperature depéndent. Using the formulae
of Sec. II,‘ we can calculate my/g, \/So and 872 f of J/¥ in HM and QGP
separately. The parameters for the charmonium system in our calculation are
chosen as [10): mc = 1.42 GeV, a, = 0.27, ¢o = 1.23 x 1073, mD>= 1.87 GeV, '
mp, = 1.97 GeV. At zero temperatufe, the continuum threshold \/ga = 3.59 |
GeV. In the hot medium, the Borel mass window and the continuum thresh-
old will become temperature dependent. Since the physical quantities would
not depend on the unphysical Borel mass window parameter M, we can use
the condition that making m j/\I,(M 2) least sensi’qive to M at each tempera-

ture for a given Borel mass window Mim < M < Mpq: to search So(T)
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in our calculations [17-18]. Once the threshold So(T) determined, we can

calculate the other physical quantities.such as m /¢ and resonance strength.

The temperature dependences of the mass of J/¥ and the continuum
threshold /5o in hot HM are shown in Fig. 1. We see from Fig. 1 that
" mj¢ almost unchanges with temperature but VS .decreases monotonously
as temperature.increases. When temperature increase to a critical temper-

ature T, = 0.16 GeV, at which mye equals to +/So, the bound state of

J/¥ meson will dissolve and the suppression of J/¥ peak in dilepton spec- -

trum will happen. This result is in agreement with the experiment that J/¥

suppression can be occurred in HM [6].

The curves of myjg vs. temperature and /Sy vs. temperature in QGP
background are shown in Fig. 2. We find that m j7e and /Sy all decrease |
as temperature increases. In the high temperature regions, myy and \/3_5
decrease with temperature ra‘pidly. The critical temperature at Whiéh my/e
e(juals to /So is T, = 0.22 GeV. Above critical temperature T, my/e > VSo,
the J/¥ bound state will dissolve and J/¥ suppression will also be occurred
in QGP. |

Comparing Fig. 1 and Fig. 2 we find a basical distinction of J/¥ suppres-
sion in HM and QGP. In HM, myy is almost independent with temperature
and no mass shift exists. But in QGP, a clear mass shift is exhibited. When
temperature increases to T, we find that the mass shift m/¢(Te) — m/¢(0)
of my/g be 0.49 GeV. It is a very large value and may be measured from ex-
periment. The mass shift of J/¥ had been found by Hashimoto et al. in [5].
They employed a potential model and supposed a temperature dependent

string tension to calculate my¢. It seems so artificial because the temper-
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ature dependence of the string tension is very arbitrary. In this paper, we
employ an improved finite temperature QCD sum rules and study the QGP
background carefully for m s/ calculation. In order to compare our result

with that given by potential model, we redraw the m J/¢ vs. temperature -

curve of ref. [4] in Fig. 2 by-dashed line. We find that the mass shift of

myse in QGP given by IQSR is in consistent with that by _potential model
qualitatively.

The resonance streﬁgth Vs. terﬁperature curves for HM (curve A) and
QGP (cufve B) are shown in Fig. 3. The curves of Fig. 3 indicate that
the resonance strength will decrease in both HM and QGP as temperature
’mcreases Near critical temperature T, the resonance strength decreases
suddenly. The difference of curve A and curve B is very natural because the
efitical temperature T, the mass of J/¥ and the continuum threshold /Sy

at 1. are very different for different background.

In summary, baeed on the ifaproved finite temperature QCD sum rules, we
have calculated the J/¥ suppression in hot HM and QGP background sepa— ,
rately. We have found that the J/'¥ suppression will exist in both HM and
QGP. This result is in agreement with, respectively, the RHIC experiment
[5] and high energy proton-nucleus collision experiment [6]. Even though the
J /¥ suppression will occur both in HM end QGP, but we have found that a
mass shift of 0.49 GeV will accompany with J/¥ suppression in QGP. This
result is in agreement with that given .by potential model qualitafively. In hot
HM, there is almost no mass shift when J/¥ bound state dissolves: As was
discussed in ref. [4], if one can measure this mass shift, the J/¥ suppression

may be a candidate of signatures for QGP formation.
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Figure Captions

Fig. 1. The J/¥ mass myg and the continuum threshold VSo vs. tem-

perature T in hot hadronic matter.

Fig. 2. Same as Fig. 1 but in quark-gluon plasma. The dashed line

denotes the result given by potential model (taken from ref, [4], « =0.2).

Fig. 3. The resonance strength vs. ‘temperature T. A:in hadronic matter; .

B: in quark-gluon plasma. -
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Appendix

The expressioh of mA(M?), a(M?). and b(M?) derived in ref. [10] are

2 34m _]:§
AOL) = G 5 6l ). (A1)

2y _ 1l 2 [ _ La
a(M?*) = \/_ (2,2,u)) T ch(1,2,w)+3ch(2,3,w)

4In2
—cs — ——Zh(w) (A2)
s
where
e —T_3
T2 4
= %'*‘5027 | ' (A3)
h(w) = wG(3,3,9) 6 (5, 2,0)
and
ne Ll et i, .
b(M?*) = 5% G( 2,2,w)G (2,2,w) (A4)
where w = 4m?2/M?, and G(b,c,w) is the Whittaker function,
G(b,c,w) = ﬁ /Ooo e "zt (w + z)7bde . | (A5)
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Abstract
Here we introduce some fundamental concepts and calculations concern-
ing neutrino physics of finite temperature and density. based on the works of
Pal and Nieves et al. We mainly stress on the difference between the physi-

cal consequences of the zero temperature and finite temperature, density at
neutrinos.
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Introduction to Neutrino.‘Physic_s of Finite Temperature and Density

1 INTRODUCTION

From the S—decay, people warned that there was a very light fermion which
was neutrino and partly participates in weak interaction, therefore a direct
measurement on it was extremely difficult. But due to conservation law of
angular momentun and energy-momentum one trillions that neutrino must
exist and very light. Later, it is found that a which energies to gather truth
a muon is different from the electron-neutrino, then the third generation 7—
also was discovered. Lee and Yang established the two- component neutrino
theory where the neutrino are assumed massless. If neutrino are indeed mass-
less, there must not be a Cabibbo-Kabayashi-Maskawa matrix like quarks,
because the thus neutrino we degenerate. | |

However, recently, people ask what happens if neutrinos are massive.
Thus, just as quarks, there is a mixing matrix between neutrinos. Exper-
imental data set upper bounds to neutrino masses. It is known, that the
electron neutrino must be very light and can only have a few eV, but u— or |
7— neutrino can be must heavier as v, has an upper bound of 31 MeV. If
there is mixing between the neutrinos, they can oscillates into each other as
they travel a fine distance. Of course, since they interact very weakly with
matter, say, a neutrino can penetrate whole earth easily, observation on their
reaction is difficult and misaccurate measurement of the oscillation is even
harder. So far there is as evidence such oscillation yet. One reason is the
mixing is small or the detecting technique are facilify are not sufficient for
measurements.

There are several anjectures concerning some phenomena observed in ex-
periments. The print is the solar neutrino. The measured neutrino flux is
less than estimated by the standard model about the Sy (see below). The

second is the dark matter. If the dark matter is nohadronic, a very possible
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‘candidate is neutrino (neutrinos), but there is a tringent restriction in the

neutrino mass as the dark matter, but on other side, it must be massive.
The third is the experiment about the double-3 decay, if such decay occurs,
there must be massive Majorana neutrinos.

As long as the neutrinos are massive, some such the stage of solar neu--
trino can be ensured somehow, but accompanying problems emerge. That is
mainly from the experiments on the earth. No neutrino oscillation has ever
been observed on the earth, as discussed above. Being dark matter, neutrino
should massive, but must be less than a few eV, the universe would blow up,
by the weight. If the neutrino, say, 7—neutrino is more massive, if should
be of a lifetime shorter than 108 years, otherwise it did have enough time
to decay out, since the birth of the universe to present time. However, as
M,r < 31MeV, the calculated lifetimes is greater than 10° years which is the
life of own universe. There must be a way out. The cosmological restriction
to the neutrino mass is a question which an answer for any available models.
Later we will introduce the solar neutrino and then the MSW mechamsm
for it.

2 The solar neutrino problem

Based on the Standard Solar model, the dominant chain of reactions taking

place in the sun can be summarized by the equation

4p —* He + zet + z nue + 25MeV

This reaction takes place in many steps. The energy released manifests
mainly as photons. Therefore, as every 25 MeV energy, we-is emitted,
neutrino are foregoned. The total luminosity of the sunis Ly = 4x 10%3erg / S.
Thus the number of neutrinos produced per second is 2L /25M eV . Dividing
by 4wd? where D is the distance from the Sun to the earth, we get the neutrino

flux of about 6 x 10*°%cm~2s~1. The reactions are listed in the following table.
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Reaction Nameof E ‘ Fluz
, reaction | inMeV. (10¥cm—2s7!
ptp—-?H+et+v. PP <042 | 6.0x(1+£0.02)"
pte +p—-2H+v. pep 1.44 0.014 x (1 4 0.05)
2+p—-"He+y - - -
SHe+*He »* He+p+p - - -
SHe +p —* He+et + v, Hep < 18.77 8 x 1077
3He+*He »" Be+~ - - -
TBe + ¢~ —" Li+ v, "Be 0.861 0.47 x (1 £0.15)
"Ii+p—*He+*He - - - .
"Be +p -8B + - - . -
83 8B +et+v. | °B <14.06 | 5.8 x 107%(1 % 0.37)
8p* »* He+* He . - -

Table I. Reactions in the pp chain.

Besides, there is CNO cycle. On the earth, the sector which can measure
the neutrino flux can be divided into there categories, the radio chemical
detectors, geochemical detector and electron scattering defectors. Mainly,
they are 37Cl and ™Ge experiments. The data show obvious shortage of
neutrino flux.

There dre two possible ways to solve the puzzle. the first, if the electron
neutrino oscillates to another type neutrino, such as p— or 7— neutrino, this
the detector which is made of electrons an protons cannot defect if, since
neutrinos only participate in weak interactions. The neutrino produced in
the Sun is the electron neutrino (almost), so the shortage requires a sufficient
oscillation from ve to v, or vr. However, on the earth, no oscillation has ever
been observed, so the oscillation effect in vacuum must be very small. In
contrary, in the sun, there is a high temperature and density environment,
the MSW mechanism confirms that at such a situation, oscillation can reach
a resonance, so in the sun, possibly large fraction of v, can turn to v, or v-.

Another mechanism was suggested by Okun et al. They assumed that ve
has a remarkable magnetic moment, so that in the magnetic field of the sun,
the helicity of the neutrino can be flipped. Since neutrinos are very light, its

is almost the chirality (if m=0, if holds exactly), the neutrinos are produced -
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through weak interaction, so that they are left-handed. If the helicity is
flipped, the chirality status would charge accordingly, namely, the left-handed

_neutrino would turn to right-handed. The EW bosns W, Z* are left-handed

(SUL(2) x Uy (1)), so the detector cannot detect right-handed neutrinos (in
the framework of the standard Model), thus this fraction of neutrinos would
"avoid” detecting at escaped out to make a shortage. However, neutrino is
structureless neutral fermion, so that does not directly interact with electro-
magnetic field, i.e. has no magnetic moment at the tree level. But looking
at the Feynman diagrams, it indeed interacts with photon via an EW loop.
Calculation shows that at the vacuum magnetic moment of neutrino is too
small to make the shortage. But in the medium, there is another strong, the
magnetic moment indeed b loops can be much larger. |

In the vacuum, the Hamiltonian for two generation neutrinos can be

written as

m=iegm (0 ) I

with- A = m} — m3. Along the way from the sun to the earth, the evolution

Schrodivger equation is

L G = HU+AD 9

Z—c—l;.

where. U is the Cabibbo-Kabayashi-Maskanwa matrix and the v ~ .

H' =UHU = |p| +

mi4+mZ A ( —cos26 sin20 ) (3)

45l T4l \ sin20  cos26
Thus solving the equation, one obtains
A

05
Bun(®) = 1= P (2) : (@

P, (z) = | <v,(0)ve(z) > |* = sin®20sin?(

When P, is the transition probability. The data obtained on the earth
indicate small angle 8, and |p] ~ E ug extreme relativistic neutrino. Therefor

the B,,,, is too small to explain the solar neutrino shortage.
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But in the solar matter, the effective Leff for i/e scatter’iﬁg is

Gr
Leff = = L o)1) () rwen(p)] (5)

Gr
-4 7 = [en(p1) 7™ en(pa)][Fer(p3)Vaver(p2)]

by the Fierz transformation, then by a thermal average, if can be written as
Leff = \/éGF'UeZ_/eL’YOVeL (6)

Where 7, is the electron density in the sun. A more elegant way to achieve
the same result is from the finite temperature field theory.

With the neutrino self-energy, the propagator can be written as
1 | ,
P—mT0) W
Where

, [ d*K ,
i p)—t(\[) ) pPLMz ' (8)

~ since W is very heavy so its live can be shrunk into a point. The electron

propagator is

iSu(k) = (k +m)[ s = 276(K — m2)fr(k,n)] (9)

and

6(z) . 6(z)

fre = eBlz—n) 41 e-Bl=—n) 41 (10)
the second term gives
V2Gr(n —nt)rg (11)
and it is the result given above.
'~ With this correction term, the hamiltonian would change was
. 5Gr(n, — o=
A=H+ (\[F(n » ) (12)
—EG Flin
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where H' is the vacuum part, n,, is the neutron densm) v&hlch takes part in

via the neutral current.

. 2 2 - ‘-'," :
5 mi+m; 1 1= :
H—E—'_T—EG]M‘-’-QE_AI : (13)
while the new oscillation angle
x Asin2 '
9 = =" 4
tan2 = Acos28 — 4 , (14)
when
A =226 E (15)
Acos26 = 4, tan26 — 0,0 — 2
and

, 1 1, o
ﬁzf,Z = ;[(mf +mi+A)F \/(ACOSZB — 4 + A%sin?20] — ;j-[mf + mg + A F Asin26](16)

Thus a transmutation from v, to v, occurs substantially.

For the Breit-Wigner resonance form with a width I'. it turns to be

con qtam‘

(4— 42+ (1)

where g = Acos20,T = Asin26. A peak for the transmutation appears.

3 - The Electronic Properties

In here. we mainly introduce J.Nieves and P.Pal’s works. For a massive

neutrino, the self energy has a form

RY'L ‘ (18)
In vacuum ¥ = ak where K is the neutrino momentum. but in medium -
Z = ak + bv (19)
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.. where u is the four velocity of the background, i.e., we have a new 4—Véctor

in the problem. Compelling to the electromagnetic field, then
< (R | (k) >= a(k)Ta(k, K, v)u(k) (20)

and the conservation of electromagnetic current demands

¢°Tu(k, k', v) =0. (21)

So in general, in vacuum, I’y can be written as
| To = (¢*ra — 9oq)(R + 775) + i6agq”’ (D + Dgrs). - (22)
For a Majorana neutrino 7 |
R=Dy=Ds=0 (23)

only r can be non-zero, it means that in the vacuum, a Majorana neutrino
can have an axial charge radio, but neither charge radio, and nor magnetic

and electric dipole moments. However in the background

I, (k, k', v) = idg(k, k', v)(ravs — rgva)d®rs + iDay(k, k', v)(capror® rs g v?(24)

D% and Dj, are new form factors. One has
Op = DzvoegvF™?, O = DyoesvF* (25)
and |
O = D'g50aptTarsvvgFP, Oy = DhyorarsvvgE™®  (26)

In the non-relativistic limit,

0y — dgd*odE, Oy —d ¢to¢B (27)

Tt is interesting to notice that for non-relativistic particles and antiparticles,

Og + Oy reduces

dg(3—3)-E +du(3—35)- B (28) -
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~ where § and 3 are spin of v and #. For Majorana neutrino vy = #a, so
dg = dy = 0, but for Of + O}, it is

' '(5—5)-E—d\(5—3) - B | ~(29)

It is not zero for Majorana neutrino, for Divac neutrinos; it is d + d’, but

for antineutrinos, becomes —d + d’, so that they are not exactly opposite of
- each other in a medium. |

One can calculate df and d}, in the medium by the Standard Model.

There are several Feynman diagrams which can contribute to the effective

compelling T',(k, k',v). Since W is very heavy, so to the leadmg order, only

two of need to be accounted.

‘They are
- 1 d*p L. . o ‘
_zl",(JW) = 5692./(27r)4r L;Sp(p—q)r#zSF(p)raLm
3 : -
~T® = __%9Z__af f TP rlise(o—a)r iSr(p)ra(az + bzrs(30)
z - ") G an |

After a long and difficult calculation, one obtains |
W,z) _ W,Z),.v -
("2 = (%o L | (31)

and

~deg? d3 |
(2) _ 9z /
Once one writes
I’:‘ = [F;guur” + F30, + iFg(r“v,( —130,)q" + 1 Fa€papr” ¢*vP| L (33)

where the prime means dropping out the zero-temperature part, and
2

Q
B = Jr+—=(JL—Jr)

QZ
F = %(JL—JT). —
iFg - gZ(JL_JT)
. Jp |
=5 | (34)
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Further, one has iDg(ruv, — 10,)q°rs + 1 D€uvapr Tsq™vP, so

Dy = —'Q—g(JL—JT)
, J
Dy = —2{3 -~ (35)

The P‘(‘W) evaluzation is similar, but only ag and bg are replaced by ap-
propriate setting Kgf-}g —,ag = 3,bp = —3.
For a Majorana neutrino

pMeirene( k', v) = Tu(k, k', v) + Tp (—F', =k, v) (36)

So the electric and magnetic dipole moments are not zero.

2. In the medium the decay rate would be co:ﬁpletely different from that
in vacuum. | »

As discussed above, the cosmological constraint to the neutrinos whose
mass may be larger than ten eV is that it lifeline must be shouter than
the lifetime of our universe, otherwise the dark matter constituted by such

150K eV, and M,, < 31MeV set upper bounds for v, and v,, if they are

neutrinos would be too heavy and blow up. Therefore as believed, M,, <

close to the bounds, they must decay fast enough.
~ In the framework of the Standard Model, heavy neutrinos only have two
important channels, namely 1; — v +v and v; — v3 + et + e”. There
have been some alternative models,'for example, v1 — v3 + z is an auxin.
Since auxin has never been observed, this channel is less reliable, even not
'complef,ely excluded. However, by the Standard Model, in the vacuum v,
of 31 MeV decays very slowly, so that recently Babu et al claimed that the
window for heavy neutrino is chased, because they could not have sufficient
time to decay before the universe reaches present stage.
But Nieve et al’s work gives another way out, that in the early universe,
temperature as matter density are very high, so neutrino decay occurred in
a background which is very different from the vacuum. D’Olivo, Nieves and

Pal calculated the radiative neutrino decay rate in the medium.
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- The formulae are similar to that given in (1). but there is a real photon
emitted, and the two fermion external legs represent different type neutrinos.

The Feynman diagram is the kenguin diagram.

iM' = —ia(K)TLu(k)e™*(q) (37)
where ¢ = k — k' is the momentum of the emitted photon, and M’ denotes
that only background-dependent part is considered.

T = Ul Jugr®L | (38)
where U, is the Cabibbo-Kobayashi-Maskawa matrix entries. similar to the
manipulation part (1), one has

kY o m?
T
where the background is supposed to attain electron and positronsonly.’
&Pk g
(27)2ko (27 )32¢2

: Mjllz = m2|( SV’, !Jler (39)

dr’ -

—(27) 64 (kk - )| AL (40)
2]170

Thus

D = i () (41)

where F(v) = (1 — v ) 2 In(3=2) — 3] and v in the magnitude of three-
velocity of the decayi g neutrino in the rest frame of the medium. Thus at

non- relanl'\ istic background

~(NR) _ , mn? - < 21 / Ne .
I QC FlUaUarP (e 777.: = (Ex10 ) " EV[ o)’ lI 61 [1024(,777‘3] (
and for the extra-relativistic background.
14 ,
(ER) _ = C ) 2 mT — (= 43 - T 43)
r rllale P F () 36 (5% 10%) (Vew Ve )* 13757 1\[d [1\IeY 143

In the vacuum

_Pm¥| 3 ’"ez e 2 (44)

l—epf

1

I'=—afF%
2
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If 7 is the dominate contribution,
['(VR)

lev

S~ 1 19, F(p) (e y2( 28V 4 s
R 3 X 107 Fo)({gza ) () | (45)
'(ER) o
7 ~ 15X 109rF(v)(%)4 |
where ,
r = U2, Ue */|U}, U (46)

If v = v, = ve, it is easy to see that both the C-K-M entries at the

denominator and numerator eve double Cabibbo suppressed, so it is believed
r'(BR)
iy

that v is not far from unity. F(v) is between 1 ~ 1.55. Therefore could
be very large. - '
If can be realized in the hot and dense background, such as the sun and
the early universe. ’
For — v' + et + e, since the imaginary part of the penguin diagram

exists, so that a more interesting situation stands. This is under work.

4 CONCLUSION

So far we have seen that the properties of neutrinos in medium can be quite
differerit from that in vacuum. This investigation is motivated by the phe-
nomena of solar neutrino flux shortage dark matter constraints and the ex-
periments on the earth (vacuum). To solve all the problems, one must con-
sider that most of the intriguing problems can find promisihg answers by
introducing the medium effects.

Therefore it is worth to study it in more detail. The futural relativistic
heavy ion collision RHIC can provide an ideal high temperature and density
region or even the quark-gluon-plasma (QGP) can be realized, so there the
neutrino (heavy) production can be a good spot for a direct observation of
neutrino in medium. But since the electrons and positrons in RHIC are not
very rich, one cannot be too optimistic unless there is something beyond the
Standard Model.
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Anyhow thisv study is valuable for understanding the early universe and

~ cosmology.
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