
I 

. ._r- 

s~~c-~~~~3-358 
October 1967 

A Picture Calculus* 

W. F. Miller and Alan C. Shaw 
Stanford University, Stanford, California 

I. Introduction 

II. Picture Description Language 

III. Operator Rules 

Iv. Picture Recognition 

v. Picture Generation 

VI. Conclusions 

(For presentation at the conference on "Emerging Concepts in Computer Graphics", 

University of Illinois, Urbana, Illinois, November 5-8, 1967.) 

* This work supported in part by the National Science Foundation (Grant 
No. GP-7615) and in part by the U. S. Atomic Energy Commission. 



I 

I. INTRODUCTION 

This work represents what we think are some substantial steps toward a 

picture calculus.' This picture calculus brings together under a common 

formalism the treatment of picture recognition and picture generation for a 

broad class of pictures. It is comprised of a picture description language 

(PDL),' rules for transforming and comparing structures represented in PDL, 

data structures and control for generation of pictures, and the parsing and 

primitive recognizers needed for picture recognition. The types of pictures 
that most obviously lend themselves to treatment with this calculus are what 

we call artificial pictures as opposed to natural pictures. Line drawings, 

flow charts, block letters, printed pages, particle physics pictures, and 

closed boundary curves can be meaningfully described in PDL. 3 

Two general programs have been developed to date that employ elements 
of this picture calculus. The first has been developed for the recognition 

of particle physics pictures and other pictures having a simple graph 

structure; the second has been developed to permit drawing and transformation 

of line drawings on a CRT. 

II. THE PICTURE DESCRIPTION LANGUAGE (PDL) 

A. The Primitives 

The picture description language PDL permits one to describe the 

concatenation of the primitive elements of a picture. The choice of primitives 

will depend on the particular application. A primitive may be defined as 

any two- (n-) d imensional object with two distinguished points, 'a tail and a 

head. In general, a primitive will be a picture that can be handled more 

conveniently as a unit than in terms of its subparts. Primitives are 

concatenated together only at their heads and/or tails. Abstractly, a picture 

described in PDL can be represented as a labeled, directed graph with the 

primitives as directed edges pointing from tail to head. We often refer to 

the graph of a picture. 

Picture primitives are specified in terms of primitive classes which 

in turn are specified by an attribute list. The attribute list contains the 

class name, a tail and head specification, and an arbitrary list of additional 



attributes. As an example we may define the primitive class of arcs of 

circles of any radius, negative curvature, and arc less than 180”. The 
attribute of the primitive class ARC has the form 

ARC E (ARC, Counterclockwise limit, Clockwise limit, Curvature < 0, cp < 180”) 

This is a specific instance of the general form 

PRIMITIVE CLASS s (U'JAME>, <tail specification>, <head specification>, 

<lst attribute>, <2nd attribute>, . . . (nth attribute>) 

A superscript label identifies a particular member of a primitive class. 

An element ARC* of the class ARC, for example, has a value list containing 

specific values for each attribute on the attribute list of the class. E.g., 

VALUE(ARC+) = (ARC+, gAIL, ?&AD, (CURVATURE =)-2, (q~ =)60") 

There may be redundant information on the attribute list. Some of the 

attributes may be irrelevant for some uses. However, for generality of form 

and application all information is retained. 

We allow blank (invisible) and don't care primitives. They may be used 

for connecting disjoint parts of a picture or to specify the geometrical 

relationship between parts of a picture. One special primitive, the null 

point primitive, A, plays a special role. It consists only of a tail and 

head with identical position and it is represented as a labeled node in a graph. 

B. The Syntax 

A sentence, S, in the language is defined by 

1. s -+pj(s 0 s> 1 (- s> 1 ( 's> ] T(& t sa 
2. e++IxI-I*I- 
3. p is a primitive class described in A above. 

4. 1 +, x, -, "1 are concatenation operators described in C below. 

5. (-9 -, T(a)} are unary operators described in D and E below. 

6. a is a label designator illustrated in G below. 

-2- 



I 

C. The Concatenation Operators 

The concatenation operators +, x, -, *, and N are binary operators 

defined below. In all cases 

I 

Tail ((Sl 8 S2)) = Tail (Sl) 

Head ((Sl 8 S2)) = Head (S2), & {+, X, -, *, -} . 

7. The + operator: head to tail: 

(sl + S2) concatenates the head of Sl to the tail of Se. 

Example: 

t ------d 
s1 

h 

/ t 

s2 

8. The x operator: tail to tail: 

(Six Se) concatenates the tail of Sl to the tail of S2. 
Example: 

t h 
Sl 

9* The - operator: head to head: 

(sl - S2) concatenates the head of Sl to the head of S2. 

Example: 

t- h / 

h 

t 

s1 s2 

10. The * operator: head to head and tail to tail: 
(Sl * Se) concatenates the tail of Sl to the tail of S2 and the 

head of Sl to the head of S2. 

t h 

s1 

t’ 

s2 (S1 * 9 

The * operation may be undefined for some combinations of structures, 
S, just as the arithmetic operation a/b is undefined for certain 

values of a or b. 

-3- 



I ---- 

Example: 

VECTl E (VECTl, tail at origin, head at upper right, unit vector 

in first quadrant) 

VECT2 E (VECT2, tail at origin, headat lower left, unit vector 

in third quadrant) 

(VECTl * VKT2) is undefined. 

11. The binary N operator: 

(sl N S2) E (Sl + (- S2)) where (- Se) is defined in D. 
That is, the binary * means simply + the unary N of S2, where 

the unary - is as defined in D. 

D. The Unary Operators 

The operators N and r-- are unary operators defined as follows: 

12. The unary N operator: switches head and tail. 

Tail ((- S))= Head (S) 
Head ((- S)>= Tail (S) 

The structure remains the same. 

Example: 

@ @ 

S t-s) 

1.3 * The r operator: blanks out all points. 

Head ('s) = Head (S) 

Tail (T) = Tail (S) 
All points in the structure are turned to null points. 

-4- 



E. The Transformation Operator T(m) is a unary operator which may operate 

on a particular primitive pi, or on a class of primitives p.. J 
T(m) represents 

the affine transformations. 

where X is any point in the structure, x"l is the corresponding 

point in the transformed structure, M is a matrix of constants, 

and ?is a constant vector. This includes stretching, rigid body 

rotations and translations, and shearing transformations. 

Although it may not be very useful, we define a transformation on 

a class. 

T(o) (P) = {T(w) P+ 1 P+ ~PI 
A common T(u)) will be isotropic stretching, i.e., scalar multiplication. 

We shall indicate that particular T(w) by: 

C-P . ; J 
C is a positive constant. 

We observe that 

15. T(o) (St (P;, P; . ..)) = St (T(cu)p;, T(m)p;, . ..> 

F. Uses and Illustrations 

Before proceeding with further description of the language, let us 

examine some uses and illustrations. 

We can describe a class of houses with any of two types of roofs 

permitted. We need the following primitive classes which have a single 

member as shown. 

Pl : 
/ 

P3 : - 

P5 : 
1 

P2 : 
\ 

P4 : 

??6 : 

In the generation of a display we may wish to show the house with the 

round roof. That is 

H2+( (p6 * P,) * ((~4 f P,) + P,)) 

-5- 



We would show t 

r' 

h 

A class of houses H is described by the following sentences in our language. 

16. H + (R * B) 

R -+Rl/R2 

R1 -+((P1 + P,) * P,) 
R2 + (P, * P,) 

B +((p4 + P,) + P,) 

A pattern recognizer driven by the above grammar will find either 
a house with a round roof or a house with a triangular roof according to 

whichever is present. Shad calls the process of searching a picture according 

to an explicit grammar "picture parsing". 

A practical picture parser consists of a library of primitive recognizer 

subroutines and a general PDL parser. Input to the program consists of 

digital data representing the picture, and a PDL grammar representing the. 

picture classes to be found. The output consists of the VALUE's of the 

primitives found, the string (PDL) description of the picture, and the 

parsing tree. 

We may observe that the picture description language is in a sense a 

metalanguage. A particular set of sentences in PDL constitutes a smaller language. 

In writing down a description of a class of pictures to be recognized, one 

is writing a grammar for this class of pictures. The picture parser must 

decide whether the object picture is in the class to be recognized. That is, 
it must recognize whether this picture has a structure in the grammar. If 

the answer to the picture parse is 'TRUE", the parser can exhibit the 

particular sentence found and its tree. 

Let us illustrate with a simple particle physics picture. We consider 

a class of interactions starting with a negative particle which may pass 

-6- 



through the picture or may scatter from a positive particle or may decay 

into a neutral and another negative particle. Thus 

17. T- + t- I<%, + (T- x T+))I(t- + (T- x T,)) 
where T is a negative track with all subsequent events, t- is a primitive 

negative track, T+ is a positive track with all subsequent interactions, 

and Tn is a neutral track (not seen) with all subsequent interactions. 

Let us consider only positive particles that continue through the 

chamber, that is, 

18. T+ -+t+ 

where t l- is a primitive positive track. 

Let us consider neutral particles that may decay into pairs, that is, 

19. Tn + tn I@, + (T+ x T-)). 
A picture that must start witha negative track would be represented by 

20. P+T 

T- + t- I<%, + (T- x T+))lft- + (T- x T,)) 

T+ + t+ 
Tn --) tn I@, + (T+ x T-)) 

Figure 1 shows a picture that would be generated by sentences in the 

grammar (20.). 

The picture description language set forth us to here is suitable for -- 
describing pictures with a simple connectivity. It can not yet describe all 

connected graphs. We introduce a labeling scheme which, with the unary 

operations N and r , permit the description of any connected graph. 

G. Labeling 

The labeling scheme presented here is edge-oriented and preserves the 

identity of the edge through the various transformations and manipulations 
which operators and operands may undergo. Consider the example in Ref. 2. 

-7- 



p” : 

a 

P- (((a+b) *(b+a))*c 

w w 
t 

7 ** 

t 
h I!- h 

v 
t 

h 

P’ : 

h 

h 

P' +(((yEy)+ P) +(bB))) 

where b cy. and b B refer to the left and right b's respectively in the 
picture above of P". We go back in P and Label the b's in order that 
the head and tail of P' will be where we want them. 

P +(((a + b') * (ba + a)) * c) 
P" +(P' * d) 

The labeling preserves the correct identification even though we may 

perform various allowable operations such as commutation. 

-8- 



Shaw' has defined equivalence of structures represented in PDL in 

terms of the graph of a picture. 

Weak Equivalence: 

Sl is weakly equivalent to S2 (Sl Ew 2 S ) if there exists an iscmorphism 

between the graphs of Sl and S2 such that the corresponding edges have 

identical names. 

Equivalence: 

Sl is equivalent to S2 (Sl E S2) if 
(a) Sl Ew S2 and 

(b) Tail(Sl) = Tail(S2) 
(c) Head(&) = Head 

III. OPERATOR RULES 

In carrying out 
in PDL the following 

A. Associativity 

substitutions and transformations of structures represented 

algebraic properties of the operators are useful. 

The binary operators are associative. 

(1) ((sl + s2) f s3) = (sl f (Se + s3)) 

(2) us1 x Se) x s3) = (sl x (s2 x s3H 

(3) ml - s2) - s3) = (sl - (s2 - s3)) 

(4) ((sl * s2) * s3) - (sl * (s2 * s3)) 

B. Commutativity 

(1) * is the only commutative operator 

(sl * s2) = (s2 * sl) 

(2) x and - are weakly commutative, that is, 

(sl x s2) Ew (Se x sl) 

(sl - s2) Ew (s 2 - sl) 

-9- 



C. The N Operator 

N acts like complementation in a Boolean Algebra: 

(1) (- (sl + s2H = w s2) + (- sp 
(- (sl * s2) > = ((- Se) * (- sl)) 

(2) N obeys a rtde Morgan's lawn with respect to x and - : 

(- (Sl x s2) > = ((- s2) - (- SJ) 
(- (sl - s2H = ((- Se) x (- sl)) 

D. The Blanking Operator 7 

(1) c-7-w = (5) 

(2) ( 5, e s2)) 2 u+ 6 G2H 

EJE (+, x, -7 *I 

(3) ( ’ (- s>> = (- c-3) 
E. The Null Point Primitive 

(1) (s 8 h) 2 (A 8 s) 

(2) (s cp A) - s 

(3) ( - N = A 

(4) (h 8 h) = A 

Iv. PICTUHE RECOGNITION 

Shad describes a general picture parsing algorithm for pictures 
described in PDL. He also describes the implementation of a parser for a 

subset of PDL called SPDL which was suitable for experimenting with particle 

physics pictures. 

One of the reasons for developing a formal grammar for pictures is that 

one can then utilize the powerful methods already developed for the analysis 

of string languages. The particular nature of picture processing suggests 

a goal-oriented or top-down analysis scheme is preferable to a bottom-up 

scheme. 3 

- 10 - 



In analogy to language parsing, the 'termina1" symbols of the grammar 

are the picture primitives. A picture parse is directed toward recognizing 

those primitives which are grouped together in allowable structures according 

to the grammar. A top-down parse of a picture will commence with a starting 

symbol P and generate from left to right sentences S of the language according 
to the grammar. When the goal is a primitive class name, a search routine 

is called which in turn calls a pattern recognizer to determine whether a 

primitive of the class sought is located at the specified location. If 

there is a primitive present its value is returned to the value list. 

For example, in parsing the grammar (16.) of a house one comes to the 

parsing of 

R1 -t((p, -I- P,) * P,) 

When the terminal symbol pl is the goal, the pl recognizer is called. When 

p2 is the goal, the search routine directs the p2 recognizer to determine 
whether there is a p2 primitive with a tail at the head of the pl already 
found, since p 2 is concatenated to pl by the + operator. Similarly, when 

p3 is the goal, the search routine directs the p recognizer to look for a 

p3 primitive with tail at the tail of (p, + p2) t3 and head at the head of 

(P, + P2)+ since p 3 is concatenated to (p, + p,) by the * operator. 

An extensive discussion of the advantages and disadvantages of a 

top-down parse is given in Reference 3. 

The picture parsing method has been applied to a small number of spark 

chamber photographs. Figure 2 shows a typical photograph from a 600 MeV 

electron-electron scattering experiment after digitization by the Hummingbird 

film digitizer.5 Electron beams were supplied by the Stanford Mark III 

accelerator. They were circulated in opposite directions in two storage 

rings and collided together in a common section. The scattering is observed 

via a set of spark chambers and counters. Each scattered electron traverses 

successively a 6-gap spark chamber, a b-gap spark chamber, and a shower 
chamber. The possible points of interaction lie along the horizontal line 

in the center of the figure. Figure 3 contains the result of the picture 

parse. The display shows an abstracted version of what has been recognized. 

- 11 - 



Each primitive (including blank ones) is represented by a straight line 

segment terminating on the tail and head coordinates of the primitive. 

The "T" and "H" indicate the tail and head of the last primitive found. 

V. PICTURE GENERATION 

The picture calculus rules have been utilized as the basis of two 

picture generation programs. 67 The first of these was done as an exercise 

to gain experience with an interactive program. The second one has the goal 
of providing a facility for making drawings interactively. The program 

permits one to write PDL expressions from the console and it will display 
the represented pictures. 

The picture description is stored as a string. One can then parse the 

string description according to the general PDL syntax each time one makes 

a change in the picture and generate a vector representation in the picture 

buffer. Concatenation of new structures to existing ones is done by adding 
to the string description. Replacement of single primitives can now be 

done by changing the primitive definition. Insertion and deletion of more 

complex structures has not yet been implemented. The data structure holds 

both a string description and an explicit vector description for substructures. 

As long as one continues to deal with this structure as a whole only the 

vector description is of interest. 

VI. CONCLUSIONS 

It would appear that a picture description language of the PDL type is 

capable of describing a large number of different classes of artificial 

pictures. The development of formal operator rules combined with the 

labeling scheme permits one to manipulate the string description into 

convenient forms and the T(U)) operator permits one to transform pictures. 

We intend to explore further the uses of PDL for picture recognition 

and to expand the calculating and transforming capability of our drawing 

programs. We have done very little with the T(a) operator except translation. 
We are developing more fully the T(w) rules. We are also trying to develop 
a more general description language that will permit (or require) conditional 

concatenations. 

- 12 - 



Implementation of the recognition programs has been in terms of FORTRAN 

subroutines. Implementation of the drawing programs has been in terms of 

PL/l procedures. We expect to unify these capabilities into a programming 
language for various aspects of picture processing. 

- 13 - 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

References 

W. F. Miller and Alan C. Shaw, "A Picture Calculus", GSG Memo No. 40, 

Computation Group, Stanford Linear Accelerator Center, Stanford University, 

June 1967. 
Alan C. Shaw, "A Proposed Language for the Formal Description of Pictures", 

GSG Memo No. 28, Computation Group, Stanford Linear Accelerator Center, 
Stanford University, February 1967. 

Alan C. Shaw, "The Formal Description and Parsing of Pictureslt, Ph.D. 

Thesis, Stanford University (in press). 

Alan C. Shaw, "A Picture Calculus - Further Definitions and Some Basic 

Theorems", GSG Memo No. 46, Computation Group, Stanford Linear Accelerator 

Center, Stanford University, June 1967. 
J. van der Lans, "Hummingbird, Automatic Film Digitizers at the Stanford 

Linear Accelerator Center", Proceedings of the 1967 International 

Conference on Programming for Flying Spot Devices, Powell, B. W. and 
Seyboth, P. (Ed.), January 1967, 51-61. Also published as SLAC-PUB-251, 

Stanford Linear Accelerator Center. 

Y. Noyelle, "Implementation on the PDP-1 of a Subset of the Picture 

Calculusll, Term Project CS25O, Computer Science Department, Stanford 

University, June 1967. 

J. George, "Picture Generation Based on the Picture Calculus', GSG 

Memo No. 50, Computation Group, Stanford Linear Accelerator Center, 

Stanford University, October 1967. 

Related Papers 

1. R. Narasimhan, "A Linguistic Approach to Pattern Recognition", Report 

No. l21, Digital Computer Laboratory, University of Illinois, Urbana, 
Illinois, JULY 1962. 

2. R. A. Narasimhan, "Syntax-Directed Interpretation of Classes of Pictures", 

Comm. ACM 2, p. 166-173, March 1966. 

3. R. S. Ledley, "Programming and Utilizing Digital Computers", McGraw-Hill, 

New York, 1963, Chapter 8. 



Related Papers (contd) 

4. 

5. 

6. 

7. 

8. 

9. 

R. S. Ledley, "High-Speed Automatic Analysis of Biomedical Pictures', 
Science @, p. 216-223, October 1964. 
R. A. Kirsch, "Computer Interpretation of English Text and Picture 

Patterns", IEEB Trans. Elec. Comp. EC-13, p. 363-376, August 1964. 

Jerome Feder, "Linguistic Specification and Analysis of Classes of 

Patterns", Technical Report 400-147, New York University School of 

Engineering and Science, October 1966. 

K .J. Breeding, 'Pattern Grammar for a Pattern Description Language", 

Report No. i77, Department of Computer Science, University of Illinois, 

Urbana, Illinois, May 1965. 

Robert H. Anderson, "Syntax-Directed Recognition of Hand-Printed Two- 

Dimensional Mathematics", Presented at ACM Symposium on Interactive 

Systems for Experimental Applied Mathematics, August 1967. 

M. B. Clowes, "A Generative Picture Grammar", Seminar Paper No. 6, 

Computing Research Section, Commonwealth Scientific and Industrial 

Research Organization, Canberra City, Australia, April 1966. 



-(t-+((f-+(t,xt-)j x (t,+(t+x(t-+(t+xt-))j))) 

867A4 

FIG. I -- PARTICLE PHYSICS PICTURE 



FIG. 2--Colliding beam experiment frame after digitization. 

i 

FIG. 3--Result of parsing picture in Fig. 2. 

,,,_ ‘ . .- -- 

-2, L 


