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The approximate analytical bound and scattering state of the Klein-Gordon equation in D-

dimensions for an arbitrary [-state for a seven-parameter exponential-type potential is presented.

We obtain the bound-state solutions by using the supersymmetry quantum mechanics method, and

the normalized wave function and the scattering phase-shift factors are determined by using the

properties of the partial-wave analysis technique. Special cases of the seven-parameter exponential-

type potential are discussed in detail.
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I. INTRODUCTION

The Klein-Gordon equation (KGE) is the well-known
relativistic wave equation that describes spin-zero parti-
cles. It is also known that the analytic solutions of the
KGE are possible only in a few cases such as harmonic
and Coulomb potentials [1,2]. However, for arbitrary
l-states (I # 0), the Klein-Gordon does not admit an
exact solution. Thus the KGE can be solved approxi-
mately using different approximation schemes [3-5]. Im-
proved Greene and Aldrich approximation has been used
by Chen et al. [6] to investigate the bound state solu-
tion of the Schrodinger equation with exponential-type
model potentials. Quantum mechanical methods such
as Nikiforov-Uvarov [7], exact quantization rule [8], Su-
persymmetric Quantum Mechanics (SUSYQM) [9] and
asymptotic iteration method (AIM) [10] have been em-
ployed by different authors to obtain the bound state

solutions and scattering state solutions of Schrodinger,
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Klein-Gordon and Dirac equations for different poten-
tials [11,12]. Interestingly, the study of the relativis-
tic wave equation in the recent years particularly the
Klein-Gordon and Dirac equation have attracted the at-
tention of many authors because of the solutions that
these equations play in getting the relativistic effect in
nuclear physics and other areas [13]. With the intro-
duction of the SUSYQM and the concept of shape in-
variance in physics [14], the study of the solvable poten-
tial models in both relativistic and non-relativistic quan-
tum mechanics have received a great interest [15]. The
concept of SUSYQM allows one to determine the eigen-
functions and eigenvalues analytically for solvable poten-
tial model using algebraic operator formulation without
solving the Schriodinger-like differential equation by stan-
dard series method [16]. Recently, KGE in generalized
D-dimensions for different potentials is getting the atten-
tion of researchers [17-20]. Liu et al. [21] investigated
the molecular KGE with improved Tietz potential in D-
dimensions. Zhang et al. [22] studied the KGE in D-

dimensions for sodium dimer. Liu et al. [23] analyzed the
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properties of diatomic molecules with improved Rosen-
Morse potential. Tang et al. studied the Schrodinger
equation with improved Tietz potential [24]. Cesium
and Sodium dimmers in D-dimension were investigated
by Hu et al. [25] using SUSYQM. Jia et al. [26] studied
the diatomic molecules with improved Manning-Rosen
potential via SUSYQM. The D-dimensional energies for
lithium dimer was analyzed by Hu et al. [27]. The im-

proved expression for Schioberg potential energy models
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for diatomic molecules were examined by Wang et al.
[28]. The equivalence of the Wei potential and Tietz
potential for diatomic molecules had been investigated
by Jia et al. [29]. Jia et al. [30] proposed five exponen-
tial type potential and Setare and Nazari [31] studied the
Dirac equation with five-parameter exponential potential
within the framework of spin and pseudospin symmetry.
Following the work of Jia et al. [30], we proposed a seven

parameter-type potential of the form,

Fbe2ar Gbe2ar

where A, B,C, F,G are the potential parameters, ¢ is
the deformation parameter , b = €2, r, is the distance
from equilibrium position and « is the screening param-
eter. Consequently, the choice A, B, C, F' and G param-
eters leads to well-known exponential-type potential as

a special case of Eq. (1).

+ +
(q+62ar) (q+ erzr)Q

II. BOUND STATE SOLUTION OF
KLEIN-GORDON EQUATION IN
D-DIMENSION

The KGE in higher dimension for spherically symmet-
ric potential reads as [17-20],

R AU (1, Q) = {([Bui — VIR — e + S(r) b 1 (1. ) (2)

where E,, ;,m,V(r) and S(r) are the relativistic energy,
rest mass, the repulsive vector potential and the attrac-

tive scalar potential, respectively and Ap is defined as

1 9 ( p 10\ Ah©
ADV%TD_W(TD ! )D( ) (3

or r2
The total wave function in D-dimension is written as,
Untm (1, Qp) = R 1 ()Y (Qp). (4)

2
The term % is the generalization of the centrifugal

term for the higher dimensional space. The eigenvalues

J

2 2i2 _ 2 2 2
{h AL (Bt — V()2 — (mc® + S(r))

dr?

(

of A% (Qp) are defined by the relation,

AL (Qp)Y"(Qp) =1+ D - 2)Y"(Qp)  (5)

where Y™ (Qp), Ry, and [ represent the hyper spherical
harmonics, the hyper radial wave function and the or-
bital angular momentum quantum number, respectively.

_(D-1)

Now substituting ansatz R,, ;(r) = r~ =z F, (r) for the

wave function into equation (2) yields,

D + 21— 1)(D + 21 — 3)h?c?
( )( )

47“2 } Fnﬁl(r) = 0 (6)
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Considering equal scalar and vector potential as the seven parameter, S(r) = V(r) we obtain the following second-order

Schrédinger-like equation
d B, —mi me® + Eny B C Fbe?er Gbe?er
— e 2 —— | A F,
a2 T e ( h2c? ) { * (q + e2o7) + (q + e2o7)2 + (q + e2om) + (q+ 62(17“)2}:| a(r)
_{(D+21—1)(D+21—3)

4r2

}Fn,lm —0 (1)

where we have adopted the non-relativistic limit pro- we apply the Pekeris approximation for the centrifugal
posed by Alhaidari et al. [32] that the potential is V (r)
not 2V (r).

It is well-known that Eq. (7) cannot be solved exactly

term [33]. This can be achieved by taking z = (r—r.)/r.
and expand the centrifugal term in power series around
except for | = 0. In order to find the solutions of Eq. (7), x = 0 as follows:

J

(D+20—1)(D+20-3) (D+2l—1)(D+20-3) 1
4r(2 ~ 4)r2 )(1+x)2 =n(l -2z +32% +---) (8)

(D+21—1)(D+21—3)

where 1 = 2 . where dg,d; and dy are constants coefficients obtained
Liu et al. [21] proposed a centrifugal term in the form,
this approximation is valid for ar < 1 by expanding Eq. (9) in series around z = 0,with the

n 1 1 :
—=nldy+d d 9 t i t =(r—
2 =1 < o+di T +do e 620”“)2> 9) ransformation z = (r — r.)/r as

J

n 1 1 2o 1 1
r2 Ui < o+ Vg + e2are +ds e egare)z) aree ( 1 (g + c2or)? +ds (g + 2o )3 x

1/2dy (€% —q)  da(2e2*7e —q)
— 2,.2 2ar. 2
- +477a Te€ o < <q+62ar6)3 (q+62are>4 7 A (10)
[
Comparing Egs. (8) and (10) up to second-order degrees the coefficients dg, d; and ds as follows:
in the series expansion, we obtain the following terms for
J
1
do = 1+ W(?) — 6are + 6ge 2% + 3¢%e 2T — dqar.e 29 + 2¢2 ar e 10T (11)
€
1
dy = a2 (—9q + 6qare — 3e2°™ + dar.e??"e — 9q2e™ 29T — 3g3e 1 — 23 ar e 1T (12)
€
1 .
dy = 1022 (18¢% + 12qe?™e + 3™ — dqar,e**™e — 2ar e + 12¢3e™20e 4 3gte107e
(&

= +4¢’ar.e 2" + 2t ar e, (13)
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Substituting Eq. (9) into Eq. (7), we get
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2 2 2 2
_d2Fn,l . Q(mch-gcﬁgn,L)B Y dy + zb(mch;-cfn.l)F€2ar po 2(mch-;CE2‘n,z)C +nds + 2b(mcﬁ2-‘rcfn,l)G62aT Foi)
dr? q + e2ar n,l (q + eZar) n,l

= ~n,lF‘n,l(T)v (14)
where with

- Er21l —m2ct 2(m62—|—Enl)A N d

ST paE e Mo (15) A=W, (19)

p d

In the SUSYQM formulation, the ground-state wave A* = o W(r), (20)
function Fy,(r) is given by [14,16,21] Va(r) = W2(r) F W'(r). (21)

Fou(r) = exp (—

/W(r)dr) ,

(16) The super potential obeys the associated Riccati equa-

tion:

where the integrand is called the super potential and

the Hamiltonian is composed of the raising and lowering W2(r) F W'(r) = Vers(r) = EO,l- (22)
operators .
Based on the SUSYQM, we choose the super potential
R d2 .
H = ATA= —3 +V_(r) (17) in the form,
it @ W (r) ver (23)
Hy = AA :—W‘FVNT% (18) r)=at (q + e2or)’
where
W Ly N 2Fb(mc® + Epy)  (2(me® + Ep))B  ndi | 2(me® + B, p)C N nd® (24)
T ooy h2c2 h2c2q q h2c2q2 q?
1 C G h2c2ndy
b/ = — :l: Oé\/l + W{Q(mCQ + Eml) ((]2 — q> -+ q2 } (25)
5o 2mE+ B )B | ndy | 2(me® + En)C | ondy (26)
0.l h2c2q q h2c2q2 ¢ :
We construct the pair of supersymmetric partner potentials V, (r) and V_(r) as follows,
aw
Vi) = W)+ T,
dr
*qb/(b/ o 2a)62ar , 9 62&7" N
= + (2ab" + b)) ————— +
(q + 62(17")2 ( a ) (q + e2ozr) a
=g’ (b — 2a0)e2o" n 2Fb(mc? + Ep ) 3 2(mc? + E,;)B 3 ndy B 2(mc* + E,)C - nds eaer o2
- (q + e2er)2 h2c2 h2c2q q h2c2q2 2 ) (q+ e2or)
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V() = W) - ),
dr
_ b/ b/ 2 2ar 2ar
Rl R
=g (V' + 20)e*T 2Fb(mc® + En ) B
- (q 4 eQar)Q h2c2 h202q q

It can be observed that the partner potential are shape
invariant via mapping of the form b — o' — 2a. Also, it

is easy to check the shape-invariance condition
Vi (r,po) = V_(r, pi) + R(pi) (29)

J

3

2(mc? + E,;)B nd

2(me® + Epi)B  ndi 2(me® + B )0 mdg) e2ar

which holds via the mapping ¥ — b’ — 2. In our study
po = b and p; is a function of pg, i.e., p1 = f(po) =
po — 2a. Thus, p, = po — 2an and from Eq. (29), we

write

2(me* + B, )C

- 1
B = R(pr) = [2[)0 (Pg +

h2c2

2Fb(me® + Eny) (

2
d

222 +?722)>}

h?c?q q

h2c2q q

205 h2¢?

k=1
1 5 2Fb(mc? + E, ) 2(me2 +En)B  ndi  2(mc® + E,;)C  nds 2
= - —pn + - ’
q h2c2q2 e

Using Egs. (15), (26) and (30), we obtained the energy

spectrum for the seven parameter potential model for the

J

h2c2q

2Fb(mc* + En )

(30)

KGE in D-dimension as follows,

2(TTLC2 + En,l)C’

- _ . 1 )

or in a more compact form we write Eq.(31a) as
EELJ - m2C4 2(m02 + En’l)A

B <2(mc2 +E,.)B  nd

fi2c2 - h2c2 —ndy =
[ (e, 2PYmE By (2mé + BB
2pn Pr FLQCQ hQCZq

Equation (31b) is the relativistic energy equation for
seven parameter exponential-type potential in the pres-
ence of equal scalar and vector potentials. This result
can be used to study the relativistic rovibrational energy
for a diatomic system in the presence of the Manning-
Rosen system and others known potential models as spe-

cial cases as discussed in section 4. In order to determine

2
d

222 +nf))]

h?c?q q

h2c%q q
(31a)
2
ndy  2(mc* + E,)C nds
—_——t—- . 1b
q + R2c2q2 + 2 (31b)

(

the corresponding wave function for the system, we make

a change of variable in Eq. (14) by writing z = ge=2"
to obtain
d*F,,; 1dF,, 1

: - : + )2 (X]Z2_XQZ+X3)F7-L’[(Z) - 0

dz?2  z dz  22(1—=z
(32)

where
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(mc? + E,.;)B
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(me? + E,,;)C

(me® + E,;)B

402q2h2c2

(mc® + E..)F

(me® + En ) F

_ En,l +
X1 = 102
_ En,l +
X2 = 102
_ En,l
X3 = To?

The solution of Eq. (32) becomes

Fo(r) = Npa(e720)V7X (1 — e720) v %W“XQ’XSP& “e/itese) (1 — 2¢%m)

where IV, ; is the normalization constant and p) (x) is the Jacobi polynomial.

ITI. SCATTERING STATE SOLUTIONS

With the change of variable y = 1 — ¢e?*" in Eq.(32),

we get

4ah?c?

M1—wF%m—yﬁw>(

where

(mc? + E, ;)

(

) P

nds
) pRTer

M o= = —bF -G
q
Eny  (mc®+ Eq )bF
Y2 = 1a2
0
_ [ Ena n (me*+ Eng)B | ndi | (mc® + E,)C
BT\ ga2 402q 402q2h2c2

and with transformation F,; =

form [34]

2(1=2)¢" (2)+ (1420 — (14+2n142n2) 2)p(2) —mn20(2) = 0,

where

A1

— y)*p(z) in
Eq. (37), we obtain the hypergeometric function in the

1

5 (1+ V1 —471),
ik ——

)\2 = ——;7 k = az'YQ.

(

The solutions of Eq.(39) is the hypergeometric func-

tion given by

where

m =

2 =

n3 =

(me? + En )G

o(y) =2 Fi(n1,m2,13,9),



Approximate Analytical Solutions of the Klein-Gordon Equation with --- — Akpan N. IKOT et al. 831

We can write the complete wave function as, In order to obtain the normalized wave function and

the phase shift of the scattering state, we apply the
Fa(r) = following properties of the hypergeometric functions
Noa(—ge™27) (1 = qe™2")% o Fy (, mamsi 1 — 4e™7).  [34-36)

(43)

J

2F1(a, bv (6N O) = ]-»
I(a)T'(c—a—10)
F b, c; = ————= S Fi(a;b; b— 1;1—
2 1((1, 7C7Z) F(C—G)F(C—b) 2 1(@, 5a+ c+ ’ Z)
c—a—br<c)r(a +b— C)

= +1-2) NOND

oFi(c—ajc—bjc—a—-b+1;1—2). (44)

2ar)

Thus, the term o Fy(n1,72,73; 1 — ge™ for r — oo in Eq. (41) becomes,

o Fr (1,12, m3; 1 — ge™2°7)

= F(n3 —'h = 772) F(?]g U 772) " (773*771*772)6*254773*771*772 r
N%ﬂﬂ%—mﬁwrwﬁ LW%—mDN%—qu W

— 1—‘(173)qi(773—711—712) F(n?’ — - nQ)q—i(Wa—m—??z) |:F(773 — T — nz)qi(ﬂs—m—ﬁ’z)] e—Zia(ns—m—m)r . (45)
L(n3 —m)T(ns — n2) L(ns —n)l(ns — m2)

b

Using the following relations in Eq. (43),

Ny —m —ne = 2ik=(-n3+m+n)",
n3—mn = 12 *
ny—m2 = m” (46)
we obtain
_ i | Ts—m—m)g™™ [Tz —m —m2)g™™ 1" o
2F1 77177727773;1 —qe 2ar =T 73 qzk: + e~ 2ikar| 47
( ) (m2) T'(n3 —n1)T(ns —n2) I'(ns —m)T(ns — n2) (47)
By defining
L(ns —m —n2) [(n3 —m —n2) is

- &) (18)

L(ns —m)T(ns —n2)  [T(ns —m)L(nz — n2)
q—ik _ |q—ik| eié’ (49)

and inserting it into Eq.(45), we have

) —iak

- i I(ng —m —
2ar iak

=T q
) rs) L(ns —m)T (n3 )

—iak

2F1 (7]1, N2, M3 1— qge |:6i(5+5’) + 672aikr€7i(5+61):|

e—iakr |:ei(6+6/+iozkr) + e—i(6+6’+iakr):|

—

n3 —m)L'(ns — n2)
r N3 — 1M — ) —iak

L(ng —mn)T (773 —12)

(
(
F(ng)qu FEW?, — M — 772)
(
(

eIk sin (akr +d+4 + g) . (50)
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Therefore, the asymptotic form of Eq. (41) for r — oo becomes

D(ns —m —n2)g~"o*
T'(nz —n)T(ns —n2)

F,.=2N,(n3) e~k gin (akr +d+0 + g) . (51)

Now comparing Eq. (48) with the boundary conditions [34,35],

1
lim F(co0) = 2sin (kr - §lD7r +5LD> ,

T—00

we get the phase shift and the normalization constant as follows:

o = g(lD+1)+5+5/

™ —ix
= 5(11:) + 1) +argD(ns — m — n2) — argD(ns — m1) — argT(ns — m2) + arg T'(q %) (52)

L |T(ns —n)T(n3 — m2)
N, = 12) | 53
LT T(n) L(ns —m — nz)giok (53)

(

IV. DISCUSSIONS AND SPECIAL CASES tensively in nuclear and plasma physics [38]. In this

special case, we choose A = C = G = F = 0,B =

—Ze*6,q=—1,a — g7 where § is the screening param-

eter and the seven parameter exponential-type potential

In this section we investigated the energy eigenval-
ues of Hulthen, Manning-Rosen, Eckart, Deng-Fan and
Woods-Saxon potentials as special cases of seven param- turns into the Hulthen potential as,
eter exponential-type potential.

—Ze%5e=0"
V(r)= oo (54)
1. Hulthen potential The energy spectra of the Hulthen potential is ob-

tained from the energy equation of the seven parameter

The Hulthen potential is very important in atomic and exponential-type potential Eq. (28) by substituting the

molecular fields [37]. This potential has been used ex- above parameters as,
J
K2c2 (ABHT 4 4HT  §(n + oHT) 2
Ei,l —m?c* = K2c®ndy — (mc® + Ep ) Ze?5 +nh?c?(dy — di) — 1 < 5(n T 0T 1 ) , (55)
[
where 2. Manning-Rosen potential

2 2

gHT — (me” + 129,1271)26 8 Manning-Rosen potential is one of the short range po-
T N tential and it has been used to describe the diatomic

Y = 77(d2 - dl)a

1 molecular vibration [39]. The Manning-Rosen potential
= = —ndy —n(dy —d (56) :
g 9 1+ \/1 a1 — a2 L) has been one of the most useful and elegant potential

model for studying the energy eigenvalues of diatomic

molecules [40]. As an empirical potential, the Manning-

Rosen potential
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gives an excellent description of the interaction between
two atoms in a diatomic molecule, and it is very good
for describing such interactions close to the surface [41].
The special case of Manning-Rosen potential is obtained
from the seven parameter exponential-type potential by
considering, A=G=F =0,B=—%,C = ﬁ/(f,lz_l),

qg=-lLa—

%. Thus, the Manning-Rosen potential

becomes,

(mc? + Eng) (Vo +8'(8' — 1))

E b/2

2 2 4 2 2
l—moct = h*c*ndy+

where

+77h262(d2 7d1) —

2r

' %6”>. (57)

(1—e) 1-e7

o

wm—;<ﬂw—we

The energy level of the Manning-Rosen is ob-
tained from the energy equation of the multiparameter
exponential-type potential by putting the values of A, B

and C given above as,

h2c2 (B BMR 4 AMR + gMR 2
4 (n+4 ocMR) b

gMR _ (me® + Ena) (Vo + 8'(8 — 1))

h202b/2
’YMR n(d2 - d1)7

)

2

h2c2p2

O'MR _ 1 <1 + \/1 _ndl _ (ch +En,l)ﬁ/(ﬂ/ — 1) _n(d2 _ d1)> . (59)

3. Eckart potential

The Eckart potential is one of the solvable exponential-
type potential in quantum mechanics since its introduc-
tion by Eckart [42] in 1930. Eckart potential is one of
most important potential model in physics and chem-
ical physics [43] and the bound state solution of the
Schrodinger equation [44] and the scattering states [45]
of this potential has been investigated. The Eckart po-

J

thl —m?t = h202nd0 — (mc2 +E,;)B+ nhQCQ(dg —dy) —

mc® + E,
ﬂEK _ _( h2c2 7l)[0z’+bﬂl],

rYEK n(dQ - dl):

tential is obtained from the seven parameter exponen-
tial type potential by the setting A = C = G = 0,q =

-1,B=-d,a— %,F:ﬂ’ and we get

(60)

The energy eigenvalues for the Eckart potential from

Eq.(28) becomes,

B2 [ aBFK 4 4BK
4 (n+o0) a

h2c2

1 2+ E,
UE‘K — 2<1+\/1+(7nc+*l)(a/+b/3/)77d1

4. Deng-Fan potential

(me2 + Eny)
h2c2

(me2+ Eny)
h2c?

bﬂ, - o — ’17(d2 - dl) . (62)

The Deng-Fan potential [46,47] discovered more than
50 years ago is the simplest modified form of Morse po-
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tential and is related to the Manning-Rosen and Eckart
potentials. This potential is used to describe diatomic
molecular energy spectra and electromagnetic transition
and is usually regarded as the true inter nuclear po-
tential in diatomic molecules. In this case, the choice
A=G=F=0,B=-2D,.,C = D.b*>,q = —1 and

a = 5, where D, is the dissociation energy. With these

J

E}, —mPc* = K¢ ndy + (mc? + Epg)Deb(b + 2) + nhc?(dy — di) —

where
YPE = n(dy — dy). (65)

1
oPF — §(1+\/l—77d1—77(d2+d1Q)~ (66)

5. Woods-Saxon potential

The Woods-Saxon is a short range and reasonable po-

tential for nuclear shell models and it attracts much at-

J

E,Ql,l —m2ct = B2Pndy + (mc® + E,.)Vo+ nh2c?(dy — dy) —

where

ws (me® + Ep )V
b h2c2
’VWS = 77(d2 - dl)a
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parameters, we obtained the Deng-Fan potential from
Eq. (6) as

20D "
T dl—eor

D6b2672ar

(1— 672047”)2

V(r) (63)

and from Eq. (28), the energy spectra for the Deng-Fan

potential becomes

h202 <26DF+,.YDF

a(n + oPF) ?
. ). o

a(n + oPF) 2

(

tention in nuclear physics and is used to represent the dis-
tribution of nuclear densities [48-50]. The Woods-Saxon
potential has been used extensively in numerous prob-
lems in nuclear and particles physics, atomic physics,
condensed matter and chemical physics. In this spe-
cial case, we choose A = C =G =F =0, B = -V,
g = 1 and the seven parameter exponential-type poten-

tial turns into the Woods-Saxon potential as,

Vo

Vi == 1+ e2ar

(67)

22 <2ﬂWS+,YWS
4

a(n + oW\ ?
aln + aWs) ( Jr2 )) ’ (68)

)

ows _ 1 (1 /T —ndy —nds — dl)) . (69)

2

V. CONCLUSIONS

In this paper, we have investigated the KGE with

seven parameter exponential-type potential and obtain

the bound state energy eigenvalues and the scattering
state phase factor. Special cases of the potential are

deduced in details.
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