DO note 2958
CMS TN/96-062

Finding Tracks

David Adams
Rice University

May 14, 1996

Abstract: A high level design for pattern recognition in the central tracking system.

1 Introduction

One of the most challenging problems in the reduction -

of data from modern hadron colliders is pattern recogni-
tion in the central tracking system. These colliders are
characterized by both high energy (multi-TeV) and high
luminosity (10°4-34 cm™%s™). Each event produces many
charged particles per unit of rapidity and many events
may occur in a single beam crossing. The central tracker
is subjected to a high density of tracks stressing the pat-
tern recognition whose performance is a rather sensitive
function of this track density.

Here we outline the major components of an algorithm
to find tracks under these circumstances. We demand
that this algorithm make efficient use of computing
resources and that it be tunable, i.e., there are parame-
ters which can be adjusted to trade off between track-
finding performance and computing resources. The lat-
ter is important because it appears likely there will not
be sufficient computing resources to carry out “com-
plete” reconstruction for all events.

The algorithm described here is road-following with a
Kalman filter update. It is iterative: a hit is added to an
existing track to create a new track. The new track is
rejected if it is not suitable (e.g. if its chi-square is too
large). The problem is then reduced to selecting candi-
date hits, adding them to the existing track and checking
the quality of the new track. While it is essential that the
last two steps be implemented in a computationally effi-
cient manner, the hit selection offers the greatest oppor-
tunity for improving performance by reducing the
number of candidate hits.

We begin by describing what is meant by track finding
and then proceed to define each of the elements of the
algorithm.

2 The Problem
As charged particles pass through the central tracker,
they deposit energy in various detector elements. The

resulting signals are recorded and later analyzed to infer

the positions of the particles. We call these measure-
ments hits. There are many tracks and each of these pass
through many such elements. The problem of track find-
ing is to assign hits to tracks, i.e. determine the ordered
list of hits associated with each charged particle. A
closely related but different problem is track fitting:
determining the kinematic track parameters based on the
hits.

3 Surfaces

We begin by defining the geometrical framework of the
problem. The detector is described as a series of non-
intersecting surfaces and all hits are assigned to one of
these surfaces. These surfaces are finite. Examples
include arectangle and part of a cylinder. We do not pre-
clude the possibility of associating a normal dimension
with a surface so that it actually corresponds to a thin
volume. '

Surfaces allows us to restrict the range of hits which
must be searched when looking for the next hit on a

- track. The hits are assumed to be distinct although they

may overlap. A track may pick up at most one hit when
it crosses a surface and two (or more) tracks may share a
hit. A track may cross a surface without picking up a hit
to allow for detector gaps and inefficiencies. We call
these missed surfaces. Shared hits and missed surfaces
provide powerful criteria for identifying false tracks.

These logical surfaces will naturally correspond closely
to actual detector elements. Note however that a surface
might include multiple elements or one detector element
might be divided into multiple surfaces.

4 Paths

Primarily a path is an ordered list of surfaces crossed by
a track. It might also explicitly indicate (in order) sur-
faces which are not crossed. In general a path may be
extended by adding another surface. Otherwise it is
called a complete path. Paths serve two purposes: to
group tracks and to provide instructions for track find-
ing.




The grouping of tracks by paths allows us to assign
path-specific track properties. Some of these will be
described in the following sections. Here we mention a
few examples. One example is starting kinematical val-
ues for the track fit. Perhaps most important are the
maximum allowed chi-square and maximum number of
missed surfaces used to reject bad tracks. Another
example might be the order in which surfaces are added
to a track. All of these can be tuned much more pre-
cisely if they are path-specific rather than global values.
It is also useful to monitor the track-finding by noting
the computing resources consumed by particular paths
or sets of paths.

~ A list of complete paths serves as a map for track ﬁnd-
ing. The use of computing resources is optimized by
searching only for tracks consistent with the specified
map. Paths which produce relatively few good tracks for
a given amount of computing resources or which cover
a less interesting region may be excluded. They may
then be added later without repeating the track ﬁndmg
for the paths in the initial map.

‘S Hits

Raw detector data (strips, wires, fibers, ADC and TDC
information,...) are reduced to form the hits which are
used as input for track-finding. Typically, these are
either one- or two-dimensional measurements indicating
where the track crossed the surface. However, there is
no reason these cannot be generalized to include the
direction or any combination. The only requirement is
that there must be a known procedure for predicting the
hit parameters from the track parameters at the surface.

The data associated with a hit include constant parame-
ters such as the surface normal coordinate and mixing
angles (e.g. a stereo angle) and the measured parameters
and their error matrix. Specifying the normal coordinate
allows the hit to displaced from its surface.

6 Tracks

The essence of a track is an ordered list of hits. We add
to this a path (or list of paths). The path (or paths) must
be consistent with the list of hits. A track may be fitted
to obtain the most likely set of kinematical track param-
eters, their error matrix and a fit chi-square. These are
used to discriminate real tracks from ghosts. We will not
discuss the many options for specifying the track param-
eters except to note that six parameters (three position,
two direction and a curvature) are necessary to specify a
position on a track and five to specify the track itself.

6.1 Propagation

In order to predict a hit from a track, it is first necessary
to propagate that track (more precisely its parameters
and error matrix) to the associated surface. This, of
course, requires knowledge of the magnetic field. If the

material distribution is also known, then it is also possi-
ble to account for multiple scattering, dE/dx losses and
fluctuations in the latter.

6.2 Hit Selection

One a track has been propagated to a surface, it is desir-
able to fit only those hits which are “nearby” rather than
trying all hits on the surface. It is strongly recommended
that a procedure to identify such hits be implemented.

6.3 Fitting

We assume fitting is done with a Kalman filter update.

Here we provide only a brief description of the input
and output without discussing any of the mathematics
behind this well-known technique. The Kalman filter
allows us to take the track parameters and their error
matrix and add the information from a hit to generate a
new set of track parameters and error matrix. It is neces-
sary to propagate the track to the surface associated with
the hit before fitting.

We have implicitly assumed the track finding proceeds
in one direction (e.g. inside to out or outside to in). It is
possible to add points in between but the procedure is
much more complicated and requires that additional
information be stored for each hit.

6.4 Starting Values

The propagation of tracks is nonlinear as may be the
prediction of hits from tracks. This makes the fitting
procedure nonlinear and can result in sensitivity to the
initial values for the track parameters and their errors.
There must be a procedure (possibly path-dependent) to
choose these parameters before the first hit is added. It
may be desirable to refit all points for the first few points
until the starting values have stabilized.

6.5 Discrimination

Once the paths have been selected, the procedure for
adding hits is straightforward. However, when the track
density is high, the number of tracks can increase very
rapidly and it is necessary to start identifying and reject-
ing ghost tracks early in the track finding. Tracks can be
rejected if there chi-square is too large, they have too
many missed surfaces, they fall outside the kinematical
range of interest, their fit is inconsistent with their paths,
etc.

It is also possible to reject tracks based on hits shared
with other tracks but this require that all tracks (or all
tracks with a particular path) be fit up to the same sur-
face. This has implications for memory usage, CPU
time and parallelism and is probably best left for the end
or used sparingly.

7 Conclusions
We have outlined an algorithm for finding tracks in a
high-energy, high-luminosity hadron collider. We advo-




cate the use of the Kalman filter as it largely decouples
the track propagation from the track fitting. This allows
a straightforward description of multiple scattering and
dE/dx losses. The Kalman filter is likely to be a central
part of any modern track fitting code.

‘We also emphasize the importance of making early deci-
sions to minimize computational requirements. Hits
should be checked for closeness before attempting to
add them to a track. Track discrimination should be car-
ried out from the very beginning. These are important
but can probably be added in later if they are not
included in the initial design.

The concept of paths and their usage to tailor various
parameters and provide a map for track finding is one
we wish to emphasize. It appears unlikely there will
ever be sufficient computing resources for “complete”
reconstruction. Paths provide the programmer with finer
tuning of discrimination and more options for resource
allocation. We recommend this feature appear explicitly
in the initial design to provide easy access to these
advantages.

This description is deliberately missing many details. It
is only intended to serve as a very high-level design.
The appendices provide a few comments about imple-
mentation.

Appendices
A1 Object Oriented Design

The above discussion remains valid with any program-
ming style but it is worthwhile connecting it to the
object oriented methodology because of its current pop-
ularity and its natural application here. Each of the
major sections (Surfaces, Paths, Hits and Tracks) can be
naturally associated with a class. The data associated
with each can be found in the associated text and the
methods associated with tracks correspond closely to
the sub-headings of that section.

Paths could be implemented as a linked list of surfaces
with a pointer up to the previous path surface and point-
ers down to all possible next surfaces. Data associated
with each path surface would include discrimination
parameters, consumed CPU resources, efc.

A2 Parallelism

With the above design, tracks are independent of one
another and self-propagating up to the point where dis-
crimination is based on shared hits. Thus it would be
natural to keep one or more a stacks of tracks and let
multiple processes add and remove tracks from the
stack(s).







