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Abstract

We show that linearizing Extended Theories of Gravity, further gravitational
modes emerge. Besides massless spin-2, also spin-0 and spin-2 massive and
ghost fields have to be considered as soon as one is considering the full curvature
budget of generic metric theories of gravity. Such additional modes give rise
to further polarizations that could be of interest for direct detection by the
forthcoming Advanced LIGO-VIRGO and other collaborations.

1 Introduction

The recent discovery of gravitational waves 1) pointed out several new per-

spectives for some key questions of fundamental physics, astrophysics and cos-

mology. They range from the validity of Equivalence Principle, to black hole

physics to the nature of dark energy and dark matter. Combined gravitational-

wave, neutrino and electromagnetic observations can be used to understand the
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main characteristics of several astrophysical systems and to map in detail the

observed Universe. Furthermore, observations indicate consistent upper bounds

on the graviton mass 1) allowing the possibility that further metric theories of

gravity can be investigated besides General Relativity (GR).

Given these facts and the lack of a final self-consistent theory of Quantum

Gravity, alternative theories of gravity can be pursued as part of a semi-classical

approach where GR and its positive results should be retained. The approach

of Extended Theories of Gravity (ETG), based on corrections and enlarge-

ments of the Einstein theory, has become a sort of paradigm in the study of

the gravitational interaction. These theories have received a lot of interest in

cosmology since they “naturally” exhibit inflationary and dark energy behav-

iors 2). At a fundamental level, detecting new gravitational modes could be a

sort of experimentum crucis in order to discriminate among competing mod-

els since this possible detection could be the “signature” that GR should be

enlarged, modified or retained as it is 3).

In this report, we discuss the problem of gravitational waves in ETG,

showing that new polarizations are derived besides the two standard ones of

GR. The theoretical set up of the approach is reported together with some

consideration on the actual detectability of such new modes.

2 Gravitational waves in Extended Gravity

Let us generalize the action of GR by adding curvature invariants other than

the standard Ricci scalar. Specifically, we are considering the action 1

S =

∫
d4x
√−gf(R,P,Q) (1)

where

P ≡ RabRab , Q ≡ RabcdRabcd (2)

In other words, we are taking into account the full curvature budget of generic

metric theories of gravity. Varying with respect to the metric, one gets the field

equations:

1Conventions: gab = (−1, 1, 1, 1), Rabcd = Γabd,c − Γabc,d + ... , Rab =
Rcacb, Gab = 8πGNTab and all indices run from 0 to 3.
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FGµν =
1

2
gµν (f −R F )− (gµν�−∇µ∇ν)F − 2

(
fPR

a
µRaν + fQ RabcµR

abc
ν

)

−gµν∇a∇b(fPRab)−�(fPRµν) + 2∇a∇b
(
fP Ra(µδ

b
ν) + 2fQ Ra b

(µν)

)

(3)

where we have defined

F ≡ ∂f

∂R
, fP ≡

∂f

∂P
, fQ ≡

∂f

∂Q
(4)

and � = gab∇a∇b is the d’Alembert operator. The notation T(ij) = 1
2 (Tij+Tji)

denotes symmetrization with respect to the indices (i, j). Considering the trace

of eq. (3), we find:

�
(
F +

2

3
(fP + fQ)R

)
= (5)

=
1

3
[2f −RF − 2Rab∇a∇b(fP + 2fQ)−R�(fP + 2fQ)− 2(fPP + fQQ)]

If we define

Φ ≡ F +
2

3
(fP + fQ)R and

dV

dΦ
≡ RHS of (6)

we get a Klein-Gordon equation for the scalar field Φ:

�Φ =
dV

dΦ
(6)

In order to find the gravitational modes as perturbations, we need to linearize

the field around the Minkowski background:

gµν = ηµν + hµν and Φ = Φ0 + δΦ (7)

From eq. (6), we get

δΦ = δF +
2

3
(δfP + δfQ)R0 +

2

3
(fP0 + fQ0)δR (8)

where R0 ≡ R(ηµν) = 0 and similarly fP0 = ∂f
∂P |ηµν (note that the 0 indicates

the value around the Minkowski metric) which is either constant or zero. The

first term of eq. (8) is

δF =
∂F

∂R
|0 δR+

∂F

∂P
|0 δP +

∂F

∂Q
|0 δQ (9)

13



However, since δP and δQ are second order, we get δF ' F,R0 δR and

δΦ =

(
F,R0 +

2

3
(fP0 + fQ0)

)
δR (10)

Finally, from eq. (6), we get the Klein-Gordon equation for the scalar pertur-

bation δΦ

�δΦ =
1

3

F0

F,R0 + 2
3 (fP0 + fQ0)

δΦ− 2

3
δRab∂a∂b(fP0 + 2fQ0)− 1

3
δR�(fP0 + 2fQ0)

= m2
sδΦ

(11)

The last two terms in the first line are actually zero since the terms fP0, fQ0

are constants and we have defined the scalar mass as m2
s ≡ 1

3
F0

F,R0+ 2
3 (fP0+fQ0)

.

Perturbing the field equations (3) and working in Fourier space 2, we can rewrite

the metric perturbation as

hµν = h̄µν −
h̄

2
ηµν + ηµνhf (12)

and use the gauge freedom to demand that the standard conditions ∂µh̄
µν = 0

and h̄ = 0 hold. The first of these conditions implies that kµh̄
µν = 0 while the

second that

hµν = h̄µν + ηµνhf and h = 4hf (13)

With these considerations in mind, after some algebra, we get:

1

2

(
k2 − k4 fP0 + 4fQ0

F0

)
h̄µν = (ηµνk

2 − kµkν)
δΦ

F0
+ (ηµνk

2 − kµkν)hf

(14)

Defining hf ≡ − δΦF0
, the equation for the perturbations is

(
k2 +

k4

m2
spin2

)
h̄µν = 0 (15)

2It is convenient to work in Fourier space so that, for example, ∂γhµν →
ikγhµν and �hµν → −k2hµν .
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where we have defined m2
spin2 ≡ − F0

fP0+4fQ0
, while from eq. (11), one obtains:

�hf = m2
shf (16)

From equation (15) it is easy to see that a modified dispersion relation is

achieved. It corresponds to a massless spin-2 field (k2 = 0) and a massive

spin-2 ghost mode k2 = F0
1
2 fP0+2fQ0

≡ −m2
spin2 with mass m2

spin2. To see this,

note that the propagator for h̄µν can be rewritten as

G(k) ∝ 1

k2
− 1

k2 +m2
spin2

(17)

Clearly the second term has the opposite sign, which indicates the presence of

a ghost mode. Also, as a sanity check, we can see that for the Gauss-Bonnet

term LGB = Q − 4P + R2 we have fP0 = −4 and fQ0 = 1. Then, eq. (15)

simplifies to k2h̄µν = 0 and, in this case, we have no ghosts as expected. The

solution to eqs. (15) and (16) can be written in terms of plane waves

h̄µν = Aµν(−→p ) · exp(ikαxα) + cc (18)

hf = a(−→p ) · exp(iqαxα) + cc (19)

where

kα ≡ (ωmspin2
,−→p ) , ωmspin2

=
√
m2
spin2 + p2

qα ≡ (ωms ,
−→p ) , ωms =

√
m2
s + p2.

(20)

and where mspin2 is zero (non-zero) in the case of massless (massive) spin-2

mode. The polarization tensors Aµν(−→p ) can be found in Ref. 4). Eqs. (15)

and (18) mean that the standard waves of GR 5) can be obtained, while eqs.

(16) and (19) represent further massive gravitational modes 6, 7).

3 Polarization states of gravitational waves

Considering the above equations, we can note that there are two conditions for

eq. (11) that depend on the value of k2. In fact, we have a k2 = 0 mode that

corresponds to a massless spin-2 field with two independent polarizations plus

a scalar mode, while if we have k2 6= 0 we have a massive spin-2 ghost mode
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and there are five independent polarization tensors plus a scalar mode. Taking
−→p in the z direction, a gauge where only A11, A22, and A12 = A21 are different

to zero can be chosen. The condition h̄ = 0 gives A11 = −A22. In this frame

we can take the bases of polarizations defined as3

e(+)
µν =

1√
2




1 0 0
0 −1 0
0 0 0


 , e(×)

µν =
1√
2




0 1 0
1 0 0
0 0 0




e(B)
µν =

1√
2




0 0 1
0 0 0
1 0 0


 , e(C)

µν =
1√
2




0 0 0
0 0 1
0 1 0




e(D)
µν =

√
2

3




1
2 0 0
0 1

2 0
0 0 −1


 , e(s)

µν =
1√
2




0 0 0
0 0 0
0 0 1




and the amplitude can be written in terms of the 6 polarization states as

hµν(t, z) = A+(t− vGs2z)e(+)
µν +A×(t− vGs2z)e(×)

µν

+BB(t− vGs2z)e(B)
µν + CC(t− vGs2z)e(C)

µν

+DD(t− vGs2z)e(D)
µν + hs(t− vGz)esµν .

(21)

where vGs2 is the group velocity of the massive spin-2 field. The terms A+(t−
z)e

(+)
µν +A×(t− z)e(×)

µν describe the two standard polarizations of gravitational

waves which arise from GR, while the other terms arise from the generic ex-

tended models, involving any curvature invariants, that we considered here.

The first two polarizations are the same as in the massless case, inducing

tidal deformations on the x-y plane. In Fig.1, we illustrate how each GW

polarization affects test masses arranged on a circle.

3The polarizations are defined in our 3-space, not in a spacetime with extra
dimensions. Each polarization mode is orthogonal to another one and it is nor-
malized as eµνe

µν = 2δ. Note that other modes are non-traceless, in contrast
to the ordinary plus and cross polarization modes of GR.
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Figure 1: The six polarization modes of gravitational waves. The picture shows
the displacement that each mode induces on a sphere of test particles at the
moments of different phases by π. The wave propagates out of the plane in
(a), (b), (c), and it propagates in the plane in (d), (e) and (f). Where in (a)
and (b) we have respectively the plus mode and cross mode, in (c) the scalar
mode, in (d), (e) and (f) the D, B and C mode.
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4 Conclusions

We considered a generic gravitational Lagrangian with any possible combina-

tion of curvature invariants. The only assumption is that the gravitational

Lagrangian is analytic. We have linearized the field equations around the

Minkowski background and found that, besides the massless spin-2 field, there

are also spin-0 and spin-2 massive modes with the latter being, in general,

ghosts. Then, we have classified the additional polarization modes. However, a

point has to be stressed. If the interferometer is directionally sensitive and we

also know the orientation of the source (and of course if the source is coherent)

the situation is straightforward. In this case, the massive modes would induce

longitudinal displacements along the direction of propagation which should be

detectable and the amplitude due to the scalar mode would be a possible ”new”

detectable signal 6). The other modes should be disentangled according to par-

ticular features of the sources 7). As a final remark, it is worth noticing that

detecting further gravitational modes, besides the two standard of GR, could

be a formidable challenge for gravitational physics in view to select the final

theory of gravity. In this perspective, Advanced Virgo-LIGO, and the other

running GW experiments should be correlated in a sort of global interferometer

to investigate polarizations other than the two standard of GR.
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