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Introduction

CERN and the accelerator complex

The European Organization for Nuclear Research (CERN) was founded in 1954 with the purpose of
bringing together European nations on the common ground of high energy physics research. Nowadays
CERN operates three LINACs and seven circular accelerators, whose circumference range from about
30m for ELENA to almost 27 km for the Large Hadron Collider (LHC). The proton beams energy
range goes from a few keV to 6.5TeV.

The LHC is the most powerful proton collider ever built, presently operating with two beam
of 6.5TeV energy. In order to reach this energy, the beam is pre-accelerated in other machines, as
showed in picture 1. The particles extracted from the protons source are accelerated from 100 keV to
50MeV in the LINAC 2. Then the Proton Synchrotron Booster (PSB), accelerates the beam from
50MeV to 1.4GeV. The Proton Synchrotron (PS) then accelerates the beam from 1.4GeV to 26GeV.
It is important to notice that several important parameters of the LHC’s beam such as the transverse
quality or the longitudinal structure are set during the acceleration in the PSB and the PS. Finally the
Super Proton Synchrotron (SPS) accelerates the beam from 26GeV to 450GeV, the LHC injection
energy. The LHC gives the last acceleration step itself, the beam energy going from 450GeV to
6.5TeV. The LHC can also operate with lead ions, coming from the LINAC 3 and accelerated by the
Low Energy Ion Ring (LEIR) before being injected in the PS then the SPS.

Being a collider, one of the LHC significant parameter is the luminosity L. This value is the
proportionality factor between the rate of events occuring during a collision dR

dt and the cross section
of the event σ: dR

dt = Lσ. In the case of two Gaussian beams, the luminosity can be written:

L = nbN
2γf0

4πσxσy
(1)

with:
• nb the number of bunches stored in the accelerator;
• N the number of particles per bunches;
• γ the Lorentz factor of the beam;
• f0 the beam revolution frequency.
• σx,y the transverse RMS beam size;

One can see, to increase the luminosity in order to detect rare events, different ways are possible:
increasing the intensity of the beam by increasing the number of bunches and the number of particles
per bunches, increasing the beam energy or reducing the beam dimensions at the collision point. But
for high intensity beams, the beam itself is a source of electromagnetic fields. The field created by a
bunch can perturb the following one or even perturb the same bunch after one complete revolution.
In the worst case, these perturbations can make the beam unstable. These collective instabilities have
been studied since the late 1950s as the energy of the accelerators increased. As of today accelerator
physicists have at their disposal analytic models, numerical and analytical codes to predict beam
instabilities in accelerators. These predictions can be compared with measurements performed on
past and current machines.
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Figure 1: The CERN accelerator complex in 2016

Parameter LHC FCC-hh

Beam energy at collision / TeV 7 50

Lorentz factor γ at collision 7461

Bunch intensity / protons 1.15× 1011 1× 1011

Number of bunches 2808 10 600

Peak luminosity at interaction point /
cm−2 · s−1 1× 1034 (5–20)× 1034

Synchrotron radiation / W ·m−1 0.17 28.4

Bunch spacing / ns 25 25 or 5

Dipole field / T 8.33 16

Table 1: LHC design parameters from [5] and FCC-hh baseline parameters from [6] and [17]
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The FCC project

In order to get most of the capacities of the LHC, the High Luminosty LHC (HL-LHC) upgrade of the
LHC aims at increasing the nominal beam current as well as other machine parameters. This upgrade
will take place during the LHC long shutdown 2 and 3 in 2019 and 2024 for a start in 2026. However
the centre of mass collision energy will remain the same at 14TeV.

As it is a way to investigate possible new physics, a circular collider with a higher centre of mass
collision energy is studied. The FCC-hh is part of the FCC study, which investigate three possible
designs: a proton-proton collider (FCC-hh), an electron-positron collider (FCC-ee) and a proton-
electron collider (FCC-he). These three projects base themselves on a 100 km long tunnel hosting the
accelerator (figure 2). A few parameters for the FCC-hh accelerator are given in table 1.

(a) FCC projected situation (b) FCC-hh projected layout

Figure 2: FCC project situation and accelerator layout, from [4]

3



Chapter 1

Elements of accelerator physics

This part will first introduce elements of accelerator physics needed to understand the concepts used in
beam stability studies. The first part will expose the simple accelerator model used and the second part
will explain the concepts of wakefields and impedances which allow to model the effects of self-induced
electromagnetic fields on the beam.

1.1 The accelerator model

The circular accelerator will be modelled as a circle of radius R representing the design orbit as in
figure 1.1. The synchronous particle is a fictitious particle which follows this design orbit at the design
energy. Its position along the accelerator is represented by the coordinate s = vt. When the velocity
of the synchronous particle is constant, it is possible to use this coordinate as a time variable.

Figure 1.1: The accelerator model: x, y and z are the coordinates of the particle with respect to the
synchronous particle

A given particle will be described by a set of six coordinates relative to the the synchronous
particle. These six coordinates are

(
x, x′, y, y′, z, ∆p

p

)
with x′ = dx

ds and y′ = dy
ds the slopes of the

horizontal and vertical trajectories and ∆p
p the relative momentum error of the particle.

The trajectory of an unperturbed, single particle can be described as harmonic oscillators on
the x and y planes [7, pp. 8–10],

x′′ +
ω2
x0

R2ω2
0
x = 0 (1.1)

y′′ +
ω2
y0

R2ω2
0
y = 0 , (1.2)

4



where ω0 = v
R is the particle angular revolution frequency around the machine, ωx0 and ωy0 are the

oscillations frequencies. The betatron tune Q can be introduced as the ratio of the oscillations angular
frequency and the revolution angular frequency Qx0,y0 = ωx0,y0

ω0
. The equations can be rewritten

x′′ +
Q2
x0

R2 x = 0 (1.3)

y′′ +
Q2
y0

R2 y = 0 . (1.4)

In the longitudinal plane, the particle trajectory can also be described as harmonic oscillators
of angular revolution frequency ωs0 . The sychrotron tune is defined as Qs0 = ωs0

ω0
. The trajectory

equations in the longitudinal plane are

z′ = −η∆p
p

(1.5)(∆p
p

)′
= 1
η

Q2
s0

R2 z (1.6)

z′′ +
Q2
s0

R2 z = 0 , (1.7)

where η is the slippage factor. η can be written as η = 1
γ2

t
− 1

γ2 with γ = 1√
1− v2

c2

the Lorentz factor of

the particle and γt the transition energy. If the particle energy is below the transition energy, γ < γt
then η < 0. Equation 1.5 shows that a particle having a higher momentum than the synchronous
particle (∆p

p > 0) will have its longitudinal coordinate z increasing with time as z′ > 0. On the other
hand, if the particle is above the transition energy then η > 0. A particle having a higher momentum
than the reference particle will slow down as z′ < 0. This counter-intuitive result is explained by the
fact that at high energy the particle velocity is almost equal to the speed of light: a small increase of
speed doesn’t compensate the increase in the trajectory length, so the particle revolution frequency
decrease.

The previous equations suggest that the longitudinal and transverse motions are independent.
Actually the motions are linked in multiple ways, one of those link being the chromaticity ξ defined
as the variation of the betatron tune with respect to the momentum spread[10, p. 107]

ξ =
∆Q/Q0

∆p/p0
. (1.8)

The chromatic frequency ωξ is defined as

ωξ = ω0Q0ξ

η
, (1.9)

and it can also be represented by

Q′ = ηωξ
ω0

= Q0ξ . (1.10)

This simple model considers that the beam is unperturbed. If a perturbation is affecting the
beam motion in the horizontal plane, equation 1.3 can be written [7, p. 12]

x′′ +
Q2
x0

R2 x = Kx , (1.11)

and the perturbed tune can be written Q2
x = Q2

x0 −KR
2. If the perturbation is small, the tune shift

can be expressed as

∆Qx = Qx −Qx0 = −KR
2

2Qx0
. (1.12)

5



In the field of collective effects, computing the tune shifts caused by electromagnetic fields is
crucial as it allows to analyse the beam stability. The electromagnetic fields causing these tune shifts
can be external (dipole and quadrupole magnets, RF cavities...) or can be produced by the beam itself.
These fields can be trapped in some equipment installed along the accelerator, creating resonances
and influencing the next beams. The formalism of wakefields and impedances is used to study the
effects of these electromagnetic fields on the beam dynamics. This formalism is briefly presented in
the next section.

1.2 Wakefields induced by the beam and impedances

Because the environment surrounding the beam is not perfect, the electromagnetic field created by a
first bunch can be trapped in the irregularities (see figure 1.2). Depending on their decay rate, these
trapped fields can perturb the bunch itself or the following bunches.

Figure 1.2: Example of wakefields induced by a beam, from [13]

With the wakefields, the goal is to study the force acting on a test particle (in red in figure 1.3)
following a reference particle (in blue in figure 1.3) which is the source of the perturbing electromagnetic
field. This force can be decomposed in two parts: a longitudinal force which changes the test particle
energy and a transverse force which changes its trajectory [13]:

~F = ~F‖ + ~F⊥ (1.13)

Figure 1.3: The tested device of length L, the reference particle is the source of the wakefield acting
on the test particle

When dealing with high energy beams, two approximations can be made:

• the beam is rigid: the perturbation will not affect the motion of the beam as it transits through
the structure. It means that the distance z between the two particles remains constant during
the transit;

• the charge is not affected by the electromagnetic field but by the impulse given by it: ∆~p =
∫
~Fdt.

In the device of length L pictured in figure 1.3, the integral giving the impulse can be performed over
the length L. Using equation 1.13 yields two expressions:

6



• an energy gain (in J) due to the longitudinal component: U(z) =
∫ L

0 F‖ds, function of the
distance z between the reference particle and the test particle;

• a transverse kick (in N ·m) due to the transverse components: r0 ~M(z) =
∫ L
0
~F⊥ds, function of

the distance z between the reference particle and the test particle and of the transverse position
of the reference particle r0.

These quantities, when normalized to the charges q2, are called wakefields:

w‖(z) = −U(z)
q2 (1.14)

~w⊥ =
~M(z)
q2 (1.15)

When using a distribution such as in figure 1.4, the effect of a slice of the bunch on the test
particle is evaluated as:

dU(z) = −ew‖(z − z′)λ(z′)dz′ (1.16)

the total energy lost or gained by the particle is obtained by summing the contributions of each
slice that precedes the test particle:

U(z) = −e
∫ +∞

z
w‖
(
z − z′

)
λ
(
z′
)

dz′ (1.17)

We see that knowing the wakefields allows to compute the energy gain (or loss) or in a similar
way the transverse kick given to a particle. These wakefields can also be applied to any distribution of
particle. Here they are written in the time domain: for circular machines, because of the periodicity,
it can be useful to do a Fourier transform and study the wakefields in the frequency domain. The
Fourier transforms of the wakefields are called coupling impedances:

• Z‖(ω) = 1
c

∫+∞
−∞ w‖(z)ej

ωz
c dz for the longitudinal impedance (in W);

• ~Z⊥(ω) = −j
c

∫+∞
−∞ ~w⊥(z)ej ωz

c dz for the transverse impedance (in W ·m−1).

Figure 1.4: Beam distribution and induced wakefield on the test particle, from [13]

In a circular machine, the impedance and wakefields allow to compute the effects of the sur-
rounding environment on the beam. Analytical models exist for simple geometries, allowing to estimate
the machine impedance, as presented in [15, chap. 1]. For complex elements of the accelerator nu-
merical models and simulations are often needed because some effects such as resonances can not be
predicted analytically.

We now dispose of a theory allowing to represent the effects of the self induced electromagnetic
forces acting on the beam. Using the impedance model within Vlasov equation formalism will allow
to compute beam stability limits.

7



Chapter 2

Beam instabilities studies with
DELPHI

DELPHI (Discrete Expansion over Laguerre Polynomials and HeadtaIl modes) is a semi-analytical
Vlasov solver developed to evaluate the beam transverse stability with respect to the machine’s
impedance. This part will first expose the Vlasov equation formalism used to get Sacherer inte-
gral equation. This equation is then treated to obtain an eigenvalues problem which is solved with
DELPHI. Finally the treatment of DELPHI output, a system of eigenvalues and eigenvectors is showed.

2.1 Vlasov’s formalism for instability prediction

Vlasov’s equation describes the evolution of a particle distribution in phase space. It states that the
local phase space distribution density Ψ doesn’t change when we follow the particles flow. It can be
written

dΨ
dt = 0 . (2.1)

The distribution Ψ is a function of the transverse coordinate and momentum y and py, as well
as the longitudinal coordinate and momentum z and δ. It is also a function of the longitudinal position
along the accelerator s, which encloses the time dependence as s = vt. Equation 2.1 can be rewritten
[7, p. 333]

∂Ψ
∂s

+ y′
∂Ψ
∂y

+ p′y
∂Ψ
∂py

+ z′
∂Ψ
∂z

+ δ′
∂Ψ
∂δ

= 0 , (2.2)

where the prime is the derivative with respect to s.

The transverse plane coordinates can be changed from position/momentum (y, py) to action/an-
gle (Jy, θy) [14, pp. 9-10]

y =
√

2Jy
R

Qy0
cos (θy) (2.3)

py =
√

2Jy
Qy0
R

sin (θy) , (2.4)

and Vlasov’s equation 2.1 becomes

∂Ψ
∂s

+ J ′y
∂Ψ
∂Jy

+ θ′y
∂Ψ
∂θy

+ z′
∂Ψ
∂z

+ δ′
∂Ψ
∂δ

= 0 . (2.5)

8



Writing the Hamiltonian H of a single particle will allow, through Hamilton’s equations, to
express J ′y, θ′y, z′ and δ′ [14, p. 10, p.15][7, pp. 333-334]

H = Qy
R
Jy −

1
2η

(
ωs
ν

)2
z2 − η

2δ
2 − y

E
Fy (z, s) , (2.6)

where Fy (z, s) is the transverse wake force resulting from a dipolar vertical impedance, and E is the
particle energy.

With Hamilton’s equations, the derivatives with respect to s can be expressed [14, p. 16]

J ′y = −∂H
∂θy

= ∂y

∂θy

Fy (z, s)
E

(2.7)

θ′y = ∂H

∂Jy
= Qy

R
− ∂y

∂Jy

Fy (z, s)
E

(2.8)

z′ = ∂H

∂δ
= −ηδ (2.9)

δ′ = −∂H
∂z

=
(
ωs
v

)2 z

η
, (2.10)

and Vlasov’s equation 2.5 now becomes

∂Ψ
∂s

+ Fy (z, s)
E

∂y

∂θy

∂Ψ
∂Jy

+
(
Qy
R
− Fy (z, s)

E

∂y

∂Jy

)
∂Ψ
∂θy

− ηδ∂Ψ
∂z

+
(
ωs
v

)2 z

η

∂Ψ
∂δ

= 0 . (2.11)

2.2 Perturbation formalism

To treat the stability problem, we assume that a small perturbation ψ1 of the phase space density
develops on top of the unperturbed distribution ψ0. This mode develops itself with each beam rev-
olution, at a complex frequency Ω = Qcω0. The total distribution can be written [14, p. 17] [7, p.
334]

ψ (s, Jy, θy, z, δ) = f0 (Jy) g0 (r)︸ ︷︷ ︸
unperturbed distribution

+ f1 (Jy, θy) g1 (z, δ) exp
(
jΩs
v

)
︸ ︷︷ ︸

perturbation to be found

. (2.12)

Using polar coordinates z = r cosφ and δ = ωs
ηv r sinφ, Vlasov’s equation 2.11 will simplify as

[14, p. 18](
f1g1

jΩs
v

+ Qy
R
g1
∂f1
∂θy

+ ωs
v
f1
∂g1
∂φ

)
exp

(
jΩs
v

)
= sin θy

E

√
2Jy

R

Qy0
Fy (z, s) g0 (r) f ′

0 (Jy) . (2.13)

f1 (Jy, θy) can be expressed as f (Jy) exp (−jθy) and g1 (r, φ) is Fourier expanded as [14, p. 22]
[7, p. 295]

g1 (r, φ) = exp
(
−
jQ

′
yz

ηR

)
l=+∞∑
l=−∞

Rl (r) exp (−jlφ) , (2.14)

leading to

l=+∞∑
l=−∞

Rl (r) exp (−jlφ)

f (Jy) (Qc −Qy0 − lQs)
f

′
0 (Jy)

√
2Jy R

Qy0

 = R

2EFy (z, s) exp
(
−jQcs

R

)
exp

(
−j

Q
′
yz

ηR

)
.

(2.15)
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where Rl (r) is the azimuthal mode l function.

The wake force Fy (z, s) for a general impedance Zy is proportional to [14, p. 33]

Fy (z, s) ∝ exp
(
j
Qcs

R

) +∞∑
l=−∞

j−l
+∞∑
p=−∞

exp
(
−j (Qc + p) z

R

)
Zy (−ω0 (Qc + p)) (2.16)

∫ ∞
0

rRl (r) Jl
(

(ωξ − ω0 (Qc + p)) r
v

)
dr , (2.17)

and for an ideal damper treated as a single turn wake [14, p. 33] it is proportional to

Fy (z, s) ∝ exp
(
j
Qcs

R

) +∞∑
l=−∞

j−l
∫ ∞

0
rRl (r) Jl

(
ωξr

v

)
dr . (2.18)

Combining equations 2.15, 2.17 and 2.18, integrating over φ and taking τ = r
v yields

(Ω−Qy0ω0 − lωs)Rl (τ) = −κg0 (τ)
∞∑

l′=−∞
jl

′−l
∫ ∞

0
dτ ′τ ′Rl′

(
τ ′
) ( damper term︷ ︸︸ ︷

µ

ω0
Jl (−ωξτ) Jl′

(
−ωξτ ′

)
(2.19)

+
∞∑

p=−∞
Zy (ωp) Jl ((ωξ − ωp) τ) Jl′

(
(ωξ − ωp) τ ′

)
︸ ︷︷ ︸

impedance term

)
. (2.20)

Equation 2.20 is called Sacherer integral equation[9, p. 284]. It is an eigensystem as the radial
function Rl (τ) taken for a certain azimuthal mode l is a function of all the radial functions.

2.3 Eigenvalues problem

In order to solve Sacherer integral equation 2.20, DELPHI performs a Discrete Expansion over Laguerre
Polynomials of the integral. In the end, Sacherer integral equation will become a classical eigenvalue
problem, which can be solved numerically.

The radial functions g0 (τ) and Rl (τ) are decomposed over Laguerre polynomials (the first
polynomials are shown in figure 2.1) [14, p. 39]

Rl (τ) =
(
τ

τb

)|l|
exp

(
−bτ2

) ∞∑
n=0

cn,lL|l|n
(
aτ2

)
(2.21)

g0 (τ) = exp
(
−bτ2

) n0∑
k=0

gkL0
k

(
aτ2

)
. (2.22)

After substituting equations 2.21 and 2.22 into 2.20 and integrating over τ , two integrals appear∫ ∞
0

τ |l|+1 exp
(
−aτ2

)
Jl ((ωξ − ωp) τ) L0

k

(
aτ2

)
L|l|n

(
aτ2

)
dτ (2.23)∫ ∞

0
τ |l|+1 exp

(
−aτ2

)
Jl (−ωξτ) L0

k

(
aτ2

)
L|l|n

(
aτ2

)
dτ . (2.24)

These two integrals can be computed analytically [1, p. 43]

∫ ∞
0

τ |l|+1 exp
(
−aτ2

)
Jl (−ωξτ) L0

k

(
aτ2

)
L|l|n

(
aτ2

)
dτ =

(−1)n+k+|l| ω
|l|
ξ

(2a)|l|+1 Lk−nk

(
ω2
ξ

4a

)
Lk−n+|l|
n

(
ω2
ξ

4a

)
.

(2.25)
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Figure 2.1: First Laguerre polynomials for l = 0 (left) and for n = 3 (right)

Sacherer integral equation 2.20 can then be written as an eigenvalue problem

(Ω−Qy0ω0) cn,l =
∞∑

l′=−∞

∞∑
n′=0

cn′ ,l′

(
δl,l′ δn,n′ lωs + Ml,n,l′ ,n′

)
, (2.26)

where M is the combined impedance and damper matrix. The eigenvalues problem presents a two
fold infinity with l the azimuthal mode number and n the radial mode number. When the problem is
numerically solved, the matrix is truncated and only some modes are taken into account. In DELPHI,
the maximum number of radial and azimuthal modes has been limited to 16 (from 0 to 15) and 33
(from -16 to 16) to limit computation time.

2.4 Signal created by the perturbation

The eigenvalues (Ω−Qy0) associated with each mode (n, l) are the frequency shift of this mode: the
real part will represent by how much the tune shifts from the unperturbed value Qx0 and the imaginary
part gives the growth rate of the perturbation associated with this mode. These two quantities can be
computed for various input parameters such as impedance models, chromaticities,or bunch intensities.
It is also a way to check and improve the impedance model of an accelerator as the tune shifts and
growth rates can be measured on the machine.

On the other hand the eigenvector associated with mode (n, l) gives this mode spectrum. Once
Fourier transformed, the spectrum gives the signal which can be observed with beam position monitors
installed in the machine. Some oscillation patterns are represented in figure 2.2 and examples of mode
spectra and signal are given in figure 2.3. In these plots, the horizontal axis of the plots on the first
are in the frequency domain whereas the horizontal axis of the plots on the second and third rows are
in the time domain and corresponds to the bunch longitudinal extension.

In DELPHI only the eigenvalues are currently used. The signal can be obtained from the
eigenvectors by reconstructing the transverse perturbation g1 (r, φ). From [7, p. 296] the distribution
spectrum λ̃ (ω′) can be written as

λ̃
(
ω′
)

= ωs0
ηc

∫ r=+∞

r=0

∫ φ=2π

φ=0
r exp

(
j
ω′r cosφ

c

)
g1 (r, φ) drdφ , (2.27)

where ω′ = pω0 + Ω and p ∈ Z. Inserting 2.21 in 2.27 yields

λ̃
(
ω′
)

= ωs0
ηc

+∞∑
l=−∞

∫ r=+∞

r=0
rRl (r) dr

∫ φ=2π

φ=0
exp

(
−jlφ+ j

(
ω′r

c
− Q′r

ηR

)
cosφ

)
. (2.28)
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Figure 2.2: Sketch of the longitudinal structure of the beam executing transverse oscillations.
Successive snapshots are represented for the first three azimuthal modes. Sketch from A. Chao [7]

Figure 2.3: Spectrum of some oscillation modes (first row), and the associated signal that could be
observed, with a positive chromaticity (second row) and without chromaticity (third row). Sketch

from E.Métral [11]
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With the relations from [7, p. 297]

1
2π

∫ 2π

0
exp (jlφ− jx cosφ) dφ = j−lJl (x) (2.29)

J−l (x) = Jl (−x) , (2.30)

we get

λ̃
(
ω′
)

= 2πωs0
ηc

+∞∑
l=−∞

jl
∫ +∞

0
rRl (r) Jl

(
ω′r

c
− Q′r

ηR

)
dr . (2.31)

From this formula the signal is reconstructed as follows:

1. an eigenvalue Ω is selected and its corresponding eigenvector is retrieved;

2. Rl
(
τ = r

c

)
from equation 2.21 is reconstructed for each value of l. The retrieved eigenvector

gives the coefficient cn,l of the decomposition;

3. equation 2.31 is computed for a range of ω′.

The signal plotting with DELPHI is currently under development. Sample results obtained with
a basic impedance model (resistive wall impedance described in section 3.1) are showed in figure 2.4.
The horizontal axis graduation is in the order of the longitudinal bunch length but it still needs to be
scaled properly.

The signal associated with the first eigenvalue given by DELPHI is showed. This eigenvalue
corresponds to the most unstable mode which can develop itself. Plot 2.4a shows the signal associated
with a mode 0 instability developing at negative chromaticity. Plot 2.4b shows the signal obtained for
a positive chromaticity Q′ = 1 where a mode -1 instability is developing.

4 3 2 1 0 1 2 3 4
Time / ns

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

(a) DELPHI signal, chromaticity Q′ = −5
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(b) DELPHI signal, chromaticity Q′ = 1

Figure 2.4: Example of signals obtained with DELPHI for a resistive wall impedance.

We saw that Vlasov equation formalism allows a fast determination of stability limits through
the solving of an eigenvalues problem. The code DELPHI bases itself on this formalism and the
treatment of its output, a system of eigenvalues and eigenvectors, enables us to determine the tune
shifts and growth rates of the modes developing in the beam. The treatment of the eigenvectors will
allow to obtain a measurement of the longitudinal beam profile as seen on beam positions monitors.
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Chapter 3

Beam stability studies with DELPHI

This part will expose beam stability studies performed with DELPHI. At first simple models where
used to apprehend the formalism used in the code and to compare the results with theoretical models.
The Transverse Mode Coupling Instability (TMCI) was also studied for a simple impedance model
and for the LHC as well. This instability was also studied for four FCC-hh impedance model which
are also exposed. New longitudinal distributions have also been implemented in DELPHI to better
match the real beam profile.

3.1 Basic studies with a resistive wall impedance

A simple case for the study of impedance effects on beam dynamics is the resistive wall. The beam is
surrounded by a thick pipe of radius b. The resistive wall impedance can be written [9, p. 310]:

Z⊥,RW (ω) = (1 + j) R
b3
Z0δ0

√
ω0
ω

where R is the machine radius, Z0 = 377 Ω the free space impedance and δ the skin depth taken at
the revolution frequency ω0. This model assumes that the skin depth δ is lower than the beam pipe
thickness. In an accelerator, the beam pipe is a main contributor to the resistive wall impedance as it
is the longest element seen by the beam.

3.1.1 Resistive wall model

The beam pipe model used in this section is pictured in figure 3.1 and both beam and beam pipe
parameters are given in table 3.1. The beam parameters are taken from the LHC at 450GeV, its
injection energy. The impedance model is computed with Impedance Wake 2D (IW2D), a code which
performs analytical computations of wakefields and impedance using a point charge beam. This allows
to perform fast impedance calculations, as opposed to numerical simulations which give a more precise
model at the cost of a longer computation time. The resulting impedance model is showed in figure 3.2.

Figure 3.1: Beam pipe model used in the resistive wall impedance simulations.
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Beam parameter Value

Beam energy / GeV 450

γ factor 479.6

Bunch intensity / protons 1× 1011

Number of bunches 1

RMS bunch length σz / m 0.1124

4 RMS bunch length / ns 1.5

Horizontal tune Qx 64.31

Vertical tune Qy 59.32

Synchrotron tune Qs 4.905× 10−3

Resistive wall parameter Value

Revolution frequency / Hz 11 245.5

Machine circumference / m 26 659

Pipe radius / mm 5

Material Copper at 300K

Skin depth at 11 kHz / µm 618.8

Table 3.1: Beam parameters and beam pipe model used for the resistive wall study.
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Figure 3.2: Horizontal dipolar impedance as a function of frequency for the resistive wall model
described in table 3.1.
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3.1.2 Chromaticity scan

In this first DELPHI study with the resistive wall impedance model the machine chromaticityQ′ = Q0ξ
(also denoted Qp in the plots) is scanned from −10 to 20 by steps of 1 unit. For each value of
chromaticity, DELPHI gives a set of eigenvalues Ω−Qy0ω0− lωs with l the mode number, as described
by equation 2.26. The real part of this complex number gives the tune shift and the imaginary part
gives the growth rate of the perturbation. A positive growth rate means that the perturbation will
increase, the mode is unstable. A negative growth rate means that the perturbation is damped, the
mode is stable.

In figure 3.3 the most unstable mode tune shift is plotted as a function of the chromaticity for
the horizontal plane. The tune shift

< (∆Qx)
Qs

= 1
Qs

( Ω
ω0
−Qy0 − l

)
(3.1)

normalized to the synchrotron tune Qs tells by how much the unperturbed tune Qy0 is shifted because
of the impedance effects. The most unstable mode is the one with the largest imaginary part.

For the resistive wall impedance case, the theory [7, pp. 349-352][9, p.317] indicates that above
transition (η ≥ 0), a negative chromaticity will drive a mode 0 instability. For positive chromaticity,
mode 0 is stable but higher order modes appear: mode 1 first then mode 2. However these higher
order modes are more difficult to drive and their growth rates are lower.

This simple result indicates that for a machine operating above transition such as the SPS or
the LHC, a positive chromaticity is needed. In fact the natural chromaticity of the machine is negative
thus sextupoles magnets are introduced in the machine lattice to correct it.
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Q
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Most unstable mode

Figure 3.3: Most unstable mode tuneshift for a resistive wall impedance, as a function of
chromaticity.

3.2 Effect of the longitudinal distribution

In DELPHI the longitudinal particle distribution is written as a finite sum of Laguerre polynomials
(equation 2.22). This allows to implement multiple distributions to better fit the actual beam profile
present in the machine or to compare simulations results with examples developed in the literature.
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3.2.1 Implementation of different longitudinal distributions in DELPHI

The longitudinal particle distribution g0 (τ) is decomposed over Laguerre polynomials as follows:

g0 (τ) = exp
(
−bτ2

) n0∑
k=0

gkL0
k

(
aτ2

)
(3.2)

where a and b are parameters chosen by the user and τb is the half bunch length.

Only the Gaussian distribution was implemented in DELPHI. In this case the decomposition
over Laguerre polynomials is reduced to one term, as L0

k

(
aτ2) = 1

g0 (τ) = exp
(
−bτ2

)
L0
k

(
aτ2

)
= exp

(
−bτ2

)
. (3.3)

In DELPHI the distribution is normalized with respect to the full bunch length τb, which is
taken equal to 4 standard deviations in the Gaussian case. Because of the symmetry, the distribution
is written for positive values of τ only. Taking a = b = 8, the Gaussian distribution can be written

g0 (τ) = 8
πτ2

b

exp
(
−8
(
τ

τb

)2
)
, τ ∈ [0; +∞[ . (3.4)

Three other distributions have been implemented in DELPHI: the parabolic amplitude, the
parabolic line and the uniform distribution. Their respective equations are

g0 (τ) = 8
πτ2

b

(
1−

(2τ
τb

)2
)
, τ ∈

[
0; τb2

]
(3.5)

g0 (τ) = 6
πτ2

b

√
1−

(2τ
τb

)2
, τ ∈

[
0; τb2

]
(3.6)

g0 (τ) = 4
πτ2

b

1
1 + exp

(
25
τb

(
τ − τb

2
)) , τ ∈ [0; +∞[ . (3.7)

The uniform distribution is approximated by a sigmoid function for convergence reasons: the
decomposition being done with continuous functions, a discontinuity in the longitudinal distribution
would require a higher number of terms in the Laguerre decomposition to reach the convergence
criterion, thus making DELPHI’s calculations longer.

The different distributions and the corresponding decompositions are shown in figure 3.4.

3.2.2 Comparison of DELPHI’s results with analytical predictions

In order to check that the new distributions are correctly implemented, a comparison of DELPHI’s
results is made with analytical formulas. The impedance model used in DELPHI is the one from the
SPS. The beam stability is computed in the horizontal x plane. A scan in intensity is performed for a
fixed chromaticity of Q′ = −3. The tuneshift of the most unstable mode is plotted in figure 3.5. For
each distribution a linear fit is performed, whose results are given in table 3.2.

These results are compared with analytical formulas from [3, p. 57], which states that the
tuneshift ∆Qx caused by a general impedance at zero chromaticity is proportional to

∆Qx ∝
∫+∞
−∞ g0 (τ)2 dτ(∫+∞
−∞ g0 (τ) dτ

)2 . (3.8)
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Figure 3.4: The different longitudinal distributions used in DELPHI and their expression in terms of
Laguerre polynomials.
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Figure 3.5: Most unstable mode tuneshift for different longitudinal distributions. Scan on bunch
intensity for chromaticity Q′ = −3. Results obtained with DELPHI and linear fitting.
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Case Linear fit equation

Gaussian y = −0.659x+ 0.004

Parabolic amplitude y = −0.772x+ 0.002

Parabolic line y = −0.640x+ 0.004

Uniform y = −0.537x+ 0.004

Table 3.2: Equations of the linear fit performed on mode 0 tuneshift for the different distributions.

Formula 3.8 yields for the various distributions:

∆Qx|gaussian ∝
4

π
1
2 τb

(3.9)

∆Qx|parabolic amplitude ∝
12
5τb

(3.10)

∆Qx|parabolic line ∝
64

3π2τb
(3.11)

∆Qx|uniform ∝
2
τb
. (3.12)

First, the ratio between the slopes from table 3.2 is performed. Then the corresponding tuneshift
ratio is performed from the analytical calculations above. The results are shown in table 3.3. A good
agreement is found between the theory and the simulations, considering that the distributions in
DELPHI are approximated with Laguerre polynomials. The simulations data are also retrieved for
a slightly negative chromaticity so that mode 0 is the most unstable mode: discrepancies from the
analytical model may also arise from this.

The implementation of these new longitudinal distributions in DELPHI will allow to better fit
other machines parameters and also simulations with theoretical models which often base themselves
on simple distributions such as the Gaussian one.

Ratio From linear fit From analytical
calculations

Uniform/Gaussian 0.816 0.886

Parabolic amplitude/Gaussian 1.17 1.06

Parabolic line/Gaussian 0.971 0.958

Table 3.3: Comparison of the ratio of the linear fits slopes versus analytical predictions.

3.3 TMCI studies

The Transverse Mode Coupling Instability (TMCI) is a coherent instability mechanism arising as the
beam intensity increases. First the instability mechanism is explained and then DELPHI simulations
are performed with a basic impedance model and with the LHC impedance model.

3.3.1 Transverse Mode Coupling Instability

This instability occurs when the beam intensity increases: as the tune shift of a mode increases with
the beam intensity, it can encounter and couple with a higher order mode. The top plot of figure 3.6
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depicts such a case: the mode l = 0 line shifts downward as the intensity increases. It encounters the
mode l = −1 line at a 1× 1012 protons per bunch intensity. The bottom plot of figure 3.6 shows that
once mode 0 reaches mode -1 a positive growth rate appears: the mode becomes unstable.
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Figure 3.6: Mode shifts (top) and growth rates (bottom) versus bunch intensity (in protons per
bunch) obtained with DELPHI simulations for an FCC-hh impedance model, described in

section 3.4.2. Red points indicate the most unstable mode (eigenvalue with the largest imaginary
part).

3.3.2 Purely inductive impedance

The TMCI mechanism can be explained in terms of forces acting on the beam [9, p. 296]. In our
model, these forces are driven by the machine’s impedance (see section 1.2). As in electrical theory,
the impedance has an imaginary part (inductive or capacitive impedance) and a real part (resistive
impedance).

If the impedance is purely inductive (positive imaginary part and no real resistive part), the
growth rates of the different modes are equal to zero. This result can be derived with Sacherer theory
from [16]: at low beam intensity, the complex tune shift of a mode is proportional to the transverse
effective impedance of the considered mode Z⊥n,l

∆Q ∝ jZ⊥n,l = j

∫−∞
−∞ hn,l (ω)Z⊥ (ω)∫−∞
−∞ hn,l (ω)

, (3.13)

where hn,l is the beam frequency spectrum (see figure 3.15). In the case of constant inductive
impedance, the effective impedance Z⊥n,l is a pure imaginary number thus the tune shift is a real
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number as equation 3.13 shows. The absence of an imaginary part means that the mode can not
become unstable.

The constant inductive impedance model given as a DELPHI input is in fact a broadband
resonator with a very high resonance frequency as showed in table 3.4. The real part of the impedance
is not strictly equal to zero but is much lower than the inductive part as plot 3.7 indicates.

Parameter Horizontal plane x

Resonance frequency / GHz 1× 106

Shunt impedance / MW ·m−1 10

Quality factor 1

Table 3.4: Broadband resonator parameters for the constant inductive impedance model.
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Figure 3.7: Broadband resonator impedance model used to simulate a constant inductive impedance.

The results obtained with DELPHI are compared to the one obtained by Elias Métral for a
constant inductive impedance using the model of a beam with a constant longitudinal distribution
of particles. In this case the eigenvalues problem derived from Vlasov equation is easier to solve
with computer algebra systems such as Mathematica. Figure 3.8 shows the results given by the two
methods. In this plot the horizontal axis is scaled to the tune shift of mode (0, 0) as

∆Qcoh
Qs

= Nb
e2Z⊥0,0

4πγmpcQxτbωs
, (3.14)

where e = 1.6× 10−19 C is the elementary charge, τb is the total bunch length, taken equal to 4
RMS bunch length σz for a Gaussian beam. This normalization allows to compare simulations using
different impedance models or machine parameters.

The agreement between the two simulations is excellent for the mode l = +1 having the
largest shift. It is good for modes l = 0, l = −1 and l = −2 until ∆Qcoh/Qs ≈ 1.5. Discrepancies
are observed for higher intensities and for modes l = −3. These discrepancies may come from the
different longitudinal distributions used in the two computations. New simulations with DELPHI will
be conducted with a uniform longitudinal distribution as to have more consistent results.
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Figure 3.8: Tune shifts obtained with an inductive impedance. In red DELPHI results with a
Gaussian beam. In black Elias Métral eigenvalues obtained for a uniform longitudinal

distribution [12].
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3.3.3 LHC at injection

In the LHC, the TMCI is more critical at injection energy (450GeV) since the tune shifts are higher:
the intensity threshold at which mode 0 and mode −1 will merge is lower than at top energy (6.5TeV).
This threshold has not been measured yet in the machine. DELPHI simulations were carried out to
evaluate it for different chromaticities and bunch intensities.

Figure 3.9 shows the most unstable mode growth rate as a function of bunch intensity and
chromaticity. We see that for negative chromaticity fast instabilities appear at an intensity threshold
of about 2× 1011 p.p.b. This corresponds to a mode 0 instability without mode coupling. At zero chro-
maticity a first instability appears at 8× 1011 ppb and disappears at 11× 1011 p.p.b: this corresponds
to mode 0 and -1 coupling and then decoupling as the intensity increases. A new instability appears
at 11× 1011 p.p.b corresponding to mode -1 getting unstable without mode coupling. For positive
chromaticities, the instability threshold is much higher (about 10× 1011 p.p.b) because higher order
modes are responsible for the instabilities and these modes are more difficult to drive.

These results show that with nominal machine parameters at injection the instability threshold
is too high to be measured at zero chromaticity, the single bunch intensity limit in the LHC being
around 2× 1011 protons. Increasing the impedance by closing the collimators (whose purpose is
described in section 3.4.2) might lower the intensity at which the TMCI appears, making it observable
in the machine.
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Figure 3.9: Growth rate of the most unstable mode as a function of the chromaticity and bunch
intensity for the LHC at injection energy.

3.4 FCC-hh impedance model and beam stability

As some initial parameters for the FCC-hh collider have been proposed, it is possible to estimate the
TMCI intensity threshold to assess the possible limitations of the machine with respect to collective
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effects. This part will first expose the impedance computations made and the stability thresholds
obtained with these models.

3.4.1 Accelerator parameters and main components

Some parameters were given in table 1 and are recalled in table 3.5, where material parameters for
the beam screen and the collimators are also indicated.

In the LHC and the FCC-hh project, the beam screen, pictured figure 3.10, is the copper coated
pipe in which the beam circulates. The contribution of the beam screen on the impedance is mainly
a resistive wall part as described in section 3.1.

The collimators are devices used to clean the particle halo surrounding the beam. If not
scraped by the collimators, the halo would be lost in the main magnets of the machine provoking
quenches. For the LHC, a quench of a superconducting magnet would happen for an energy deposition
of 30mJ · cm−3, corresponding to a local loss of 4× 107 protons. A single LHC bunch containing
1× 1011 protons, and the machine being filled with about 2000 bunches, the collimation system is
crucial for the machine operation.

In order to clean the beam halo, most of the collimators consists in a pair of movable jaws
made of materials such as graphite or tungsten. In order to fulfil their purpose, the jaws have to be
moved close to the beam. For some LHC collimators, the gap between two jaws can be as low as about
1mm. Because of their proximity with the beam and the materials they are made of, the collimators
contribution to the impedance is very high as we will see in section 3.4.2.

An other part of the accelerator taken into account are the interconnections between magnets.
Their model has been studied by D.Ferrazza in [8] and is pictured figure 3.12. About 4000 of them
would be present in the FCChh.

(a) LHC beam screen (b) FCC-hh prototype beam screen

Figure 3.10: Pictures of the LHC and FCC-hh beam screens.

3.4.2 Impedance model for FCC-hh

A first impedance model for the FCC-hh was done by Xavier Buffat [6]. This model takes into
account the beam pipe impedance as well as the collimators impedance. As showed in equation 3.1,
the impedance caused by a resistive wall Z⊥,RW is proportional to:

Z⊥,RW ∝
1
b3

(3.15)
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Accelerator parameter at injection energy Value

Beam energy / GeV 3000

γ factor 3197

Bunch intensity / protons 1× 1011

Number of bunches 10 600

RMS bunch length σz / m 0.08

4 RMS bunch length / ns 1.067

Horizontal tune Qx 120.31

Vertical tune Qy 120.32

Synchrotron tune Qs 2.750× 10−3

Revolution frequency / Hz 2942.1

Beam screen properties Value

Machine circumference / m 101 898.2

Beam screen radius / mm 13

Material Copper at 50K

Collimators properties Value

Total length / m 17.8

Half gap / mm (0.96–2.3)

Material C, MoGr, W

Interconnects properties Value

Length / m 1.36

Radius / mm (0.96–2.3)

Material Copper

Table 3.5: FCC-hh main parameters used in the studies.
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(a) View along beam path (b) Top view, only one jaw installed

Figure 3.11: Pictures of a LHC collimator.

Figure 3.12: Interconnections model for the FCChh, from [8].
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where b is the beam pipe radius. In the FCC study case, b is taken equal to 13mm for the beam
screen. For the collimators, b is the half gap between two jaws and is scaled from the LHC collimator
model.

Because of their proximity with the beam, the collimators are a major contributor to the total
impedance of the machine. The resulting impedance computed with Impedance Wake 2D for four
basic models of FCChh are showed in figures 3.13 and 3.14. The four cases are:

• The beam screen only, consisting of an round pipe of 13mm radius made of copper, labeled
Beam Screen only

• The beam screen and the collimators, scaled from the LHC collimator model. These collimators
are in graphite and tungsten. The simulation is labeled BS + C collimators

• The beam screen and the collimators, scaled from the HL-LHC collimator model. These collima-
tors are in Molybdenum-Graphite (MoGr) and tungsten. MoGr collimators will be implemented
to reduce the impedance among other [2]. The simulation is labeled BS + MoGr collimators

• The beam screen, the collimators scaled from the HL-LHC collimator model and the intercon-
nects.

The whole interconnects are modelled as single resonator whose characteristics are given in
table 3.6. Only the first resonance created by the interconnects at 3.05GHz is modelled in this first
approach.

Parameter Horizontal plane x Vertical plane y

Resonance frequency / GHz 3.05 3.05

Shunt impedance / GW ·m−1 173.60 277.77

Quality factor 86 801

Table 3.6: Resonator parameters for the FCC-hh interconnects model.

The resulting transverse impedances are shown in figure 3.13 for the horizontal plane and in
figure 3.14 for the vertical plane. We see the effect of the collimators on the impedance for frequencies
higher than 1 kHz. The effect of the Molybdenum Graphite collimators on the impedance is clearly
visible with a factor 3 gain. The impedance in the horizontal plane being slightly higher, the beam
instability studies will be performed for this plane.

Having these impedance models, we compute the effective impedance Zeff . This value is useful
to derive a first estimation of the tune shifts caused by the impedance. We have [6]

Zeff0,0 =
∫−∞
−∞ h0,0 (ω)Z⊥ (ω)∫−∞
−∞ h0,0 (ω)

, (3.16)

where h0,0 (ω) is the beam spectrum for the mode n = l = 0, represented in figure 3.15 and taken as
in [15]

h00 (ω) = 4
π2

1 + cos (ωτb)(
(ωτb/π)2 − 1

)2 . (3.17)

In fact the effective impedance computed above is the one corresponding to the mode n = l = 0.
For other modes the beam spectrum is different so the effective impedance is different. However mode
0 is often the most critical at negative chromaticity and computing the effective impedance for this
case is an interesting first step. The results for the four study cases are presented in table 3.7. As
expected the collimators have a significant contribution to the impedance budget of the machine.
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Figure 3.13: Transverse dipolar impedance in the horizontal plane as a function of frequency for four
study cases of FCC-hh.
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Figure 3.14: Transverse dipolar impedance in the vertical plane as a function of frequency for four
study cases of FCC-hh.
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Figure 3.15: Beam spectrum h (ω) as a function of frequency used for the computation of Zeff .
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Case Effective impedance
(imaginary part) / MW ·m−1

Beam screen only 3.15

Beam screen + graphite collimators 155.5

Beam screen + Molybdenum-Graphite
collimators 46.4

Beam screen + Molybdenum-Graphite
collimators + interconnects 48.4

Table 3.7: Imaginary part of the effective impedance for the four FCChh cases studied.

The effective impedance allows to approximate the coherent tune shift of mode 0 ∆Qc,x00 using
Sacherer formula [16]:

∆Qc,x00 = j
e2βNb

4πmpγQx0ω0Lb
Zeff (3.18)

where β = v
c ≈ 1, e = 1.6× 10−19 C is the elementary charge, Nb is the number of protons in bunch

and Lb is the total bunch length, taken equal to 4 RMS bunch length σz for a Gaussian beam.

In order to have a rough approximation of the TMCI threshold, one can compute the intensity
Nb needed for the mode 0 to reach −Qs = −2.750× 10−3 with Sacherer formula 3.18. The approximate
thresholds for the four study cases computes with this method are given in table 3.8. These results
will be compared to the one obtained with DELPHI simulations in the next section.

Case TMCI threshold /
protons per bunch

Beam screen only 1.6× 1012

Beam screen + graphite collimators 3.3× 1010

Beam screen + Molybdenum-Graphite
collimators 1.10× 1011

Beam screen + Molybdenum-Graphite
collimators + interconnects 1.06× 1011

Table 3.8: TMCI threshold estimated with Sacherer formula for the FCChh study cases.

3.4.3 Stability studies with DELPHI

Having the impedance models allows to perform DELPHI simulations for the four cases studied. These
simulations were performed for a chromaticity ranging from Qp = −20 to 20, with an intensity scan
depending on the studied case. The tune shifts and growth rates of the modes computed with DELPHI
for 0 chromaticity are showed in figure 3.16 and figure 3.17. These plots allow to see the shift of mode 0
and at which intensity it crosses mode -1. The resulting values are given in table 3.9 and are compared
with Sacherer formula predictions from equation 3.18 and table 3.8.

The results obtained with DELPHI are of the same order of magnitude as the one obtained
with Sacherer formula. The agreement is within 30% for the three cases with collimators. For the
beam screen only case, the agreement between DELPHI and Sacherer formula is poorer: this is due
to the fact that Sacherer formula does not take into account the influence of other modes on the shift
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(b) BS + C collimators

Figure 3.16: Tune shifts and growth rates versus bunch intensity obtained with DELPHI simulations
for the cases Beam screen only and Beam screen + graphite collimators. Red points signal the most

unstable mode (eigenvalue with the largest imaginary part).

Case
TMCI threshold / protons per bunch

DELPHI Sacherer

Beam screen only 1.0× 1012 1.6× 1012

Beam screen + graphite collimators 2.5× 1010 3.3× 1010

Beam screen + Molybdenum-Graphite
collimators 0.9× 1011 1.10× 1011

Beam screen + Molybdenum-Graphite
collimators + interconnects 0.9× 1011 1.06× 1011

Table 3.9: TMCI threshold estimated with Sacherer formula for the FCChh study cases.
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(a) BS + MoGr collimators
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Figure 3.17: Tune shifts and growth rates versus bunch intensity obtained with DELPHI simulations
for the cases Beam screen + Molybdenum-Graphite collimators and Beam screen +

Molybdenum-Graphite collimators + interconnects. Red points indicate the most unstable mode
(eigenvalue with the largest imaginary part).
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of mode 0. In figure 3.16a we see that for intensities higher than 8× 1011 protons per bunch mode
-1 starts to shift up. Moreover mode 0 tune shift is not linear on the whole intensity range, and the
tune shift slope is steeper for high intensities. This influence of modes 0 and -1 on one another tend to
lower the TMCI threshold. These remarks can also explain the discrepancies observed with the cases
including collimators.

These first impedance models show the strong impact of the collimation system on the beam
stability. With Molybdenum-Graphite collimators, the intensity threshold after which an instability
appears is of the same order as the intended single bunch intensity. Having a positive chromaticity
and adding dampers in the machine would improve the instability threshold, however the dynamic
aperture available for the beam would be reduced and non-linearities would arise. For these reasons
we seek to reduce the machine’s impedance.
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Conclusion

This report gave a first picture of bunched beam instabilities in circular accelerators. These pertur-
bations in the beam structure are caused by electromagnetic fields created by the interaction of the
beam with its surroundings. An unstable beam can see its properties deteriorate or even be lost in
the machine.

A first part exposed the simplified accelerator model used in this work and the concepts of
wakefields and impedances which allow to model the interactions of the beam induced electromagnetic
fields with the surrounding environment.

A second part exposed the Vlasov equation formalism used in DELPHI. With this equation,
derived from Boltzmann one, and with the perturbation formalism we obtain an eigenvalues system.
This system represents how the different instability modes develops themselves and interact for a
given impedance model. The eigenvalues and eigenvectors obtained when solving the eigensystem
provide informations on the tune shifts, the instability growth rate and the observable signal at a
beam position monitor.

A third part showed different studies conducted with DELPHI. Simple impedance models such
as the resistive wall or a pure inductive impedance were considered first in order to compare the
results with theoretical predictions. The Transverse Mode Coupling Instability which occurs when two
different modes couple as the beam intensity increases was studied and its thresholds were estimated
for the LHC and the FCC-hh at injection. Finally new longitudinal distributions were implemented
in DELPHI allowing to better fit the actual beam profile.
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Appendix A

Derivation of the eigenvalues problem
from Sacherer equation

This part shows the derivation of the eigenvalue problem, starting from the expression of Sacherer
integral equation from [14, p. 37]

(Ω−Qy0ω0 − lωs)Rl (τ) = −κg0 (τ)
∞∑

l′=−∞
jl

′−l
∫ ∞

0
dτ ′τ ′Rl′

(
τ ′
) ( damper term︷ ︸︸ ︷

µ

ω0
Jl (−ωξτ) Jl′

(
−ωξτ ′

)
+

∞∑
p=−∞

Zy (ωp) Jl ((ωξ − ωp) τ) Jl′
(
(ωξ − ωp) τ ′

)
︸ ︷︷ ︸

impedance term

)
,

(A.1)

and the decomposition over Laguerre polynomials of Rl (τ) and g0 (τ)

Rl (τ) =
(
τ

τb

)|l|
exp

(
−bτ2

) ∞∑
n=0

cn,lL|l|n
(
aτ2

)
(A.2)

g0 (τ) = exp
(
−bτ2

) n0∑
k=0

gkL0
k

(
aτ2

)
. (A.3)

We decompose the problem into several parts: the right hand side with the damper part and
the impedance part and the left hand side. For the right hand side only the damper part will be
presented, the derivation steps for the impedance part being identical.

A.1 Right hand side, damper part

This part corresponds to

−κg0 (τ)
∞∑

l′=−∞
jl

′−l
∫ ∞

0
dτ ′τ ′Rl′

(
τ ′
) µ
ω0

Jl (−ωξτ) Jl′
(
−ωξτ ′

)
. (A.4)

Substituting A.2 and A.3 in A.4 gives

−κµ
ω0
g0 (τ)

∞∑
l′=−∞

∞∑
n′=0

jl
′−lτ

−|l′|
b cn′,l′Jl (−ωξτ)

∫ ∞
0

dτ ′τ ′|l′|+1 exp
(
−bτ ′2

)
Jl′
(
−ωξτ ′

)
L|l

′|
n′

(
aτ ′2

)
.

(A.5)
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Using formula 3 from [7, p. 316]∫ ∞
0

xl
′+1 exp

(
−ηx2

)
Jl′ (xy) L|l

′|
n′

(
ατ ′2

)
dτ ′ = yl

′ (η − a)n
′

2l′+1ηn′+l′+1 exp
(
−y

2

4η

)
Ll′n′

(
αy2

4η (α− η)

)
, (A.6)

in the previous equation yields

−κµ
ω0
g0 (τ)

∞∑
l′=−∞

∞∑
n′=0

jl
′−lcn′,l′Jl (−ωξτ) (b− a)n

′
(−ωξ)|l

′|

2|l′|+1τ
|l′|
b bn′+|l′|+1

exp
(
−
ω2
ξ

4b

)
L|l

′|
n′

(
aω2

ξ

4b (a− b)

)
, (A.7)

and expanding g0 (τ) gives

−κµ
ω0

∞∑
l′=−∞

∞∑
n′=0

n0∑
k=0

jl
′−lcn′,l′Jl (−ωξτ) L0

k

(
aτ2

)
exp

(
−bτ2

)
gk (b− a)n
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(−ωξ)|l
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2|l′|+1τ
|l′|
b bn′+|l′|+1

exp
(
−
ω2
ξ

4b

)
L|l

′|
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(
aω2

ξ

4b (a− b)

)
.

(A.8)

This whole term is then multiplied by the weight function

2a|l|+1τ |l|+1L|l|n
(
aτ2

)
exp

(
(b− a) τ2

)
, (A.9)

giving us

−κµ
ω0
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l′=−∞

∞∑
n′=0

n0∑
k=0
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(A.10)

This expression is then integrated over τ and using formula 8 from [1, p. 43]∫ +∞

0
xν+1/2√xyJν (xy) Lν−σi

(
αx2

)
Lσj
(
αx2

)
exp

(
−αx2

)
dx =

(−1)i+j yν+1/2
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y2

4α

)
L−i+j+σj
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y2

4α
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exp
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− y

2

4α
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(A.11)

giving finally for the damper term

−κµ
ω0

∞∑
l′=−∞

∞∑
n′=0

n0∑
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jl
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(A.12)

A.2 Left hand side

The operations performed on the right hand side and described in the previous section are reproduced
on the left hand side. Starting from

(Ω−Qy0ω0 − lωs)Rl (τ) , (A.13)

expanding Rl (τ) yields

(Ω−Qy0ω0 − lωs)
(
τ

τb

)|l|
exp

(
−bτ2
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n′=0

cn′,lL|l|n′

(
aτ2

)
(A.14)
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This term has to be multiplied by the weight function

2a|l|+1τ |l|+1L|l|n
(
aτ2

)
exp

(
(b− a) τ2

)
, (A.15)

and integrated over τ . The left hand side is now written
∞∑
n′=0
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−|l|
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(A.16)

The generalized Laguerre polynomials are orthogonal on the interval [0; +∞[ for the weight
function exp (−x)xl: ∫ ∞

0
exp (−x)xlLln (x) Lln′ (x) = (n+ l)!

n! δn,n′ . (A.17)

Finally the left hand side of equation A.1 can be written
∞∑
n′=0

(Ω−Qy0ω0 − lωs) cn′,l
(n′ + |l|)!
τ
|l|
b n
′!

δn,n′ , (A.18)

and when selecting a value for n:

(Ω−Qy0ω0 − lωs) cn,l
(n′ + |l|)!
τ
|l|
b n!

(A.19)
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Résumé

Les faisceaux de fortes intensités circulant dans les accélérateurs peuvent être perturbés par les champs
électromagnétiques créés par le faisceau lui-même lors de l’interaction avec son environnement.Ces
perturbations peuvent potentiellement rendre le faisceau instable et conduire à des pertes de particules.

Les concepts de champ électromagnétique de sillage et d’impédance permettent d’étudier l’interaction
du faisceau avec son environnement et sont le point de départ des études numériques de stabilité du
faisceau. Une moyen d’évaluer celle-ci avec un modèle d’impédance est de résoudre l’équation de Vlasov
à l’aide d’une approche perturbative. Les modes d’instabilités se développant au sein du faisceau sont
associés aux solutions d’un problème aux valeurs propres.

Ce travail présentera le formalisme utilisé par le code DELPHI (Discrete Expansion over La-
guerre Polynomials and Headtail modes) qui permet d’extraire les modes propres instables et les
vecteur propres correspondant, directement comparable avec les signaux des BPM (Beam Position
Monitors) installés sur la machine. Nous présenterons les études menées avec DELPHI évaluant
l’impact de différentes distributions longitudinales sur le changement de tune et sur l’instabilité de
couplage de modes transversaux pour le LHC et FCC-hh. Des études de base avec des modèles
classiques d’impédance (large bande, mur résistif) seront aussi présentées.

Keywords : Accélérateur, Instabilités faisceau, Équation de Vlasov

Abstract

High intensity particle beams circulating in accelerators can be perturbed by the electromagnetic field
created by the beam itself and the interaction with the surrounding environment. This perturbation
can potentially drive the whole beam unstable and conduct to particle losses.

The concepts of wakefield and impedance allow to study the electromagnetic interaction of the
beam with its surroundings and are the starting point to perform numerical beam stability simulations.
A way to study beam stability using an impedance model is to solve the Vlasov equation with a
perturbative approach: the unstable modes developing in a beam are associated to the solution of an
eigenvalue problem.

In this work we will present the formalism used in the simulation code DELPHI (Discrete
Expansion over Laguerre Polynomials and Headtail modes) that allows to extract the most unstable
eigenmodes and the corresponding eigenvectors, directly comparable with the signal measurable with
beam position monitors in the machine. We will present studies performed with DELPHI on the effect
of different particle distributions on the tune of the machine, and on the Transverse Mode Coupling
Instability (TMCI) threshold for the LHC and FCC-hh. Basic studies with classical impedance models
(e.g. resistive wall, broad band impedance) will be presented as well.

Keywords : Accelerator, Beam instability, Vlasov equation
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