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Overview

The past decade and a half witnessed a major breakthrough in our under-

standing of gravitational physics. Previous studies of black holes as quantum

systems had suggested that gravity is fundamentally holographic. A semi-classical

treatment of black holes by Hawking [4] revealed that these solutions carry an

intrinsic notion of entropy and furthermore that this entropy is proportional to

the area of the horizon. Together with the second law of thermodynamics, these

results imply the Bekenstein bound Smax = A/4G0 relating the maximum entropy

in a region of space that contains gravity to the area of the boundary of this re-

gion. This property is in sharp contrast with entropy bounds in local quantum

field theories, where the number of degrees of freedom typically scales as the vol-

ume of the enclosing region, and shows that a quantum theory of gravity is not an

ordinary field theory of a massless spin-2 particle. An interpretation of this bound

naturally led to the holographic principle of ’t Hooft and Susskind [5, 6, 7] accord-

ing to which the states of any quantum gravity theory are in fact contained in a

theory-without-gravity defined at the boundary of the space. One could stress at

this point an apparent incompatibility of this principle with the Weinberg-Witten

theorem [8] in quantum field theory. Apart from a few subtleties, this mainly

states that a QFT with a conserved stress-energy tensor cannot have states for

massless interacting particles of spin j > 1. This implies in particular that such

QFTs cannot contain graviton states. The holographic principle evades the ax-

ioms of the theorem by placing the graviton in a space distinct from that of the

boundary theory, in particular in a space with more dimensions.

This principle is presented to us as a fundamental property of quantum gravity

but for several years it remained largely conceptual, mainly due to the lack of an

exact framework where these ideas could be implemented at a computational level.

The most promising candidate seemed to be string theory, where regions of space

that contain gravity are described as ensembles of quantum states. In fact, in the

late 90’s Strominger and Vafa [9] were able to reproduce the Bekenstein-Hawking

entropy of extremal black holes by engineering certain supersymmetric solutions

in string theory and performing a statistical counting of their microstates. This
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Overview

procedure was possible only after the discovery of D-branes and their significance

in string theory by Polchinski [10] and collaborators [11, 12]. This microscopic

counting is a computation in the lower dimensional worldvolume theory of the

black holes (or D-branes) and showed that string theory is capable of presenting

gravity as a holographic theory. Earlier ideas on a possible lower dimensional de-

scription of gravity in string theory had been discussed by Thorn and collaborators

[13].

A related but independent result by Brown and Henneaux [14] in the late 80’s

suggested that certain theories of gravity, more specifically those with Anti-de

Sitter (AdS) asymptotics, are intimately connected with lower dimensional con-

formal field theories in a holographic fashion. Their analysis of three-dimensional

Einstein gravity with AdS boundary conditions showed that the asymptotic sym-

metry group of AdS3 acts at the boundary of the space as the two-dimensional

conformal group. The algebra of the corresponding conserved charges is a centrally

extended Virasoro algebra, originally derived in the context of string theory. This

study recognised for the first time the importance of the asymptotic boundary

of AdS spaces in a possible implementation of the holographic principle in the

case of AdS gravity. In particular, it implied that any field theory defined at the

boundary of Anti-de Sitter would be a conformally invariant QFT, but it didn’t

point towards any concrete proposal relating the boundary theory to gravitational

physics in the interior and for several years it remained as an interesting curiosity.

Nevertheless, based on these results, Strominger showed that the microstates of

black holes with an AdS3 near-horizon geometry are contained in a conformal field

theory defined at the boundary of this geometry [15]. This was shown by using

Cardy’s formula [16] for the growth of states of the two-dimensional conformal

field theory to reproduce the entropy of these black holes.

The analysis of Brown and Henneaux and of Strominger was perform without

direct contact with string theory and therefore remained valid for any theory that

reduces to Einstein gravity at low energies. However, the discovery of D-branes

as solutions of supergravity suggested that string theory could finally realise the

holographic ideas raised by these and related works. Supergravity is the low-

energy limit of string theory and solutions of the former model the dynamics of

massless closed string states at low energies. D-branes, on the other hand, are

the surfaces where open strings end and their dynamics is described by lower di-

mensional worldvolume theories of Born-Infeld type. Closed string theories are

essentially gravitational, while open string theories are essentially gauge theories

that describe the dynamics of the D-branes. The discovery [10] that D-branes are

the sources of electric and magnetic (Ramond-Ramond) flux in supergravity – in

other words, that they are sources of closed strings – led to their identification

with supersymmetric solutions of supergravity known as extremal black branes.

These classical solutions therefore describe the backreaction of D-branes on the

2



Overview

embedding geometry in a low-energy approximation and are black because they

contain event horizons. The near-horizon geometries of these black D-branes con-

sist in several cases of a product of an Anti-de Sitter space with a compact space.

Simultaneously, the low-energy worldvolume theories on the branes are gauge the-

ories (which are quantum field theories without gravity) with conformal symmetry.

This raised the possibility that the lower-dimensional conformal field theories that

live on the D-branes could be the holographic image of the gravitational theo-

ries that live in the corresponding near-horizon geometries. Significant evidence

that this could the case followed from D-brane scattering calculations [17, 18, 19]

which showed that the absorption rate of closed strings by D-branes could equally

be computed using supergravity or the worldvolume theories.

The collection of these results pointed to the fact that the holographic aspects

of gravity could probably be realised in string theory as a type of duality between

open strings (or D-branes) and closed strings and it culminated in the late 90’s

with Maldacena’s proposal [20] of a concrete equivalence between certain theories

of closed strings in AdS spaces and conformally invariant gauge theories in less

dimensions. In subsequent work, Witten and collaborators [21, 22] argued that

these gauge theories (more exactly the fundamental theories, with no Wilsonian

degrees of freedom integrated out) live at the boundary of the AdS spaces and

further showed that string theory observables can be computed from the bound-

ary theory. For these reasons, the proposal by Maldacena, also known as the

AdS/CFT correspondence, is an exact realisation of the holographic principle in

string theory, where all the gravitational physics is conjectured to be encoded at

the boundary of the space. In fact, it was argued by Witten and Susskind [23]

that the AdS/CFT correspondence saturates the Bekenstein bound characteristic

of holographic theories by showing that the gravitational theory (which is equiv-

alent to the boundary theory by the AdS/CFT duality) has precisely one degree

of freedom per Planck boundary area.

The gauge theories involved in AdS/CFT are Yang-Mills or non-Abelian quan-

tum field theories. These are the type of theories that describe the interactions of

elementary particles in the standard model of particle physics (even though the

field theories involved in AdS/CFT are an idealisation of these). The electroweak

theory that describes weak interactions and quantum electrodynamics is a Yang-

Mills theory based on a SU(2)×U(1) gauge group, while quantum chromodynamics

(QCD) describes the strong interactions and is based on SU(3). QCD is a partic-

ularly special type of gauge theory. While the strength of the interactions in the

electroweak case weakens with decreasing energies involved in the processes, such

as the momenta of the particles, the strength of the strong interactions increases

at low energies where QCD becomes strongly coupled. Since most computations in

quantum field theory are based on perturbation theory, this property prevents us

3
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from studying the low-energy regime of QCD and characteristic phenomena such

as colour confinement with standard methods. It was the attempt to understand

the strongly coupled physics of QCD that led for the first time to the idea that

string theories could actually be gauge theories in disguise. In the decade of 1970

’t Hooft suggested [24] that QCD could be approximated by a gauge theory with

gauge group SU(N) : N >> 1. In this large N idealisation the theory simplifies

considerably and is amenable to perturbation theory in 1/N . It was then realised

that the perturbative expansion of the gauge theory in Feynman diagrams is in

fact an expansion in topologies of string theory worldsheets and therefore that this

expansion could provide a definition of a string theory. We now know that this

surprising relation between large N Yang-Mills theories and string theories is a

particular case of the AdS/CFT correspondence, where the 1/N expansion of the

gauge theory corresponds to string perturbation theory in the worlsheet coupling

constant gs.

A further property of the correspondence between gauge and string theories

as determined by the AdS/CFT duality concerns the relationship between the (’t

Hooft) coupling constant of the Yang-Mills theory – which determines the strength

of the gauge theory interactions – and the string length scale, or inverse string

tension, which determines in particular the strength of the gravitational field in

the dual string theory. It turns out that this relationship is a strong/weak duality.

This fact implies that when the gauge theory is in its strong coupling regime the

dual string theory can be well-approximated by classical gravity. As discussed in

the above example of QCD, strongly coupled field theories are very difficult to

study and for this reason the AdS/CFT correspondence is an extremely useful

tool to understand quantum field theories at strong coupling because it maps hard

problems in the field theories to simple problems in classical gravity.

Due to this strong/weak property of the duality, soon after the discovery of

AdS/CFT many authors proposed applications of the correspondence to condensed

matter theory. Most systems in condensed matter physics are difficult to study

using field theoretic methods alone. In particular, near quantum critical points –

where a transition between different quantum states of matter takes places – the

systems are typically strongly coupled, conformally invariant (or scale invariant)

and strongly correlated. Via the AdS/CFT duality, different sectors of string the-

ory have the potential to serve as holographic models of these systems at strong

coupling and can be used in particular to gain some insight into critical phenom-

ena in condensed matter theory.

This last aspect of the AdS/CFT correspondence is one of the main topics

of this thesis and in chapter 2 we will explore applications of the duality to the

holographic description of particular quantum field theories. The latter have the

4
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specific property of being non-relativistic and can be used to model physical sys-

tems in condensed matter theory with a certain type of anisotropy and scale-

invariance. We will understand how the symmetries of such systems are realised

in the field theory models and how to construct the gravitational duals. We will

discuss the form of the correlation functions of these field theories and compute

them holographically using specific gravity models.

In chapters 3 and 4 we will focus on a different aspect of the AdS/CFT cor-

respondence. Currently, a central problem in holography is to understand how to

formulate string theory in spacetimes with non-AdS asymptotics in terms of field

theories in less dimensions. This direction of research has seen some success for

the case of non-conformal brane backgrounds, and less successfully for spacetimes

with de Sitter boundary conditions. Asymptotically flat spaces, however, remain

the most important class of gravitational backgrounds in which string theory lacks

a holographic formulation. The last two chapters focus on gaining some insight

into this problem and consist of two approaches to flat space holography that

follow different perspectives, one based on the flat space limit of AdS/CFT and

another on the concept of holographic foliations. The first approach formulates

the problem as a limit of AdS/CFT where the AdS curvature Λ vanishes. We will

study the zero Λ limit of vacuum expectation values and correlation functions in

AdS/CFT and address several of the necessary conditions for the correspondence

between bulk and boundary physics to admit a well-behaved limit. We will find

evidence that putative field theories dual to string theory in AdS in the limit of

zero curvature Λ are essentially defined in two dimensions less, a property consis-

tent with the fact that the asymptotic boundary of the AdS spaces becomes null

in this limit.

The second approach is based on the observation that asymptotically Minkowski

spaces can always be foliated by Euclidean AdS (or hyperbolic) hypersurfaces

near null infinity. The foliation naturally converges asymptotically to a codimen-

sion two surface at the boundary of the space. Since each leaf of the foliation

is an AdS space, we will explore this feature and conjecture that asymptotically

Minkowski spaces admit a holographic description in terms of an infinite family of

(conformally invariant) field theories that live at the degenerate boundary of the

foliation. We will find that it is indeed possible to reconstruct the asymptotics

of such spacetimes from observables belonging to a one-parameter family of con-

formal field theories in two dimensions less. In the case of two-dimensional field

theories, this parameter is the central charge of the theories and it measures, on

the gravity side, the gauge-invariant distances between the different AdS surfaces.

In the next chapter we begin by reviewing the AdS/CFT correspondence from

first principles. We will start by discussing the large N limit of Yang-Mills theories

and their relation with string theories as introduced above. We will then make a

5
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brief overview of string theory aspects relevant to our work and discuss in detail the

original derivation of the correspondence from D-brane physics and supergravity.

We will then devote a significant part of this first chapter to the correspondence

between states and operators on each side of the duality. Finally, we will discuss

the computation of quantum field theory correlation functions in string theory.

6



Chapter 1

Introduction to the

AdS/CFT correspondence

1.1. Large N gauge theories

Consider the following Yang-Mills theory in four dimensional Minkowski space

with internal symmetry group a SU(N) gauge group:

L = −1

4
δABF

A
µνF

Bµν +

NF∑
n=1

Ψ̄(n)a (iγµDµ − 1mf )ab Ψb
(n) , (1.1)

where:

FAµν = ∂µA
A
ν − ∂νAAµ + igYMf

A
BCA

B
µA

C
ν , (1.2)

(Dµ)ab = δab∂µ + igYMA
A
µ (TA)ab , (1.3)

[TB , TC ] = fABC TA . (1.4)

The one-form gauge field (Aµ)ab = AAµ (TA)ab is an element of the Lie algebra

su(N).1 The generators of the group are the N2 − 1 traceless hermitian matrices

1 Note that, unlike the gauge curvature FAµνTA, the gauge field AAµ TA does not transform as an

element of the adjoint representation space under the action of the group (i.e. under a gauge trans-

formation), but rather inhomogeneously as a connection form: AAµ TA
g−→
(
Ad(g)ABA

B
µ

)
TA =

(gAµg−1)ATA + ig−1
YM (∂µg g−1)ATA, with g an element of the group and Ad the adjoint repre-

sentation. Strictly speaking, the gauge field Aµ is not Lie algebra valued in the same sense that

a connection in differential geometry is not a tensor. One still says, however, that Aµ ∈ su(N)

and that it transforms under the adjoint representation of the group.

7



1. Introduction to the AdS/CFT correspondence

{TA} that form a basis for su(N) with structure constants fABC . The theory con-

tains NF fermions Ψ(n) (also called quark flavours) with Ψa in the fundamental

representation and Ψ̄a in the anti-fundamental.2

The β-function for the dimensionless Yang-Mills coupling constant gYM at one-

loop order is given below. From this it follows that the theory is asymptotically

free if NF < 11N/2 and contains a Landau pole at some low energy. Standard

QCD corresponds to this case, with group rank N = 3 (also called the number

of colours) and NF = 6. In particular, the theory is strongly coupled (gYM > 1)

at energies below a characteristic scale Λ. For this reason, the low energy regime

of the theory and phenomena such as colour confinement cannot be studied using

perturbation theory with gYM the expansion parameter.

Since the rank N of the gauge group is a truly dimensionless parameter (i.e.

does not run) and 1/N < 1 for QCD, it was originally suggested by ’t Hooft [24]

that qualitative aspects of QCD at low energies could be derived be considering

SU(N) Yang-Mills theory at large N . The key observation is that the large N

theory can in principle be studied over a broad range of energies using perturbation

theory with 1/N the expansion parameter after an appropriate redefinition of the

coupling constant. Approximate results for QCD would then be obtained from the

large N theory by replacing 1/N by 1/3 in the perturbation expansions.

The regime of QCD that cannot be studied with standard perturbation the-

ory is the low energy, or confining, regime, so one may ask at this point whether

low energy scales (i.e. of order ∼ Λ) can be probed by approximating QCD by

a large N theory with perturbation parameter 1/N . We will see that such scales

can indeed be probed by considering the strongly coupled regime of the large N

theory in the new coupling constant. One may also ask whether QCD physics can

be modelled by a large N theory since 1/3 is not arbitrarily small. A positive

answer to this question is justified by qualitative and quantitative results which

show that large N gauge theories share many of the essential features expected

of strongly coupled QCD [25, 26] and hence that they may provide a window to

unknown aspects of its non-pertubative regime.

A fundamental feature that emerges from a detailed analysis of large N Yang-

Mills theories is that they simplify considerably in this limit. If we start by expand-

ing a given correlation function in Feynman diagrams with expansion parameter

1/N , we find that the propagators and vertices themselves in each diagram con-

tribute with powers of N . All diagrams that are not planar, as defined below, will

2Given a representation of a Lie group, it is common practice to refer to the representation

space on which the group/algebra acts as the representation and we will adopt this terminology.

This abuse of language is usually employed because a representation of a Lie group is essentially

defined by the vector space on which it acts.
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1.1. Large N gauge theories

be suppressed by powers of N−2 in relation to the planar ones and therefore the

correlation function will be dominated by the latter. For this reason, the large N

limit is also called the planar limit. Furthermore, the subleading orders are or-

ganised as an expansion in topologies of compact two-dimensional surfaces (closed

and orientable in the absence of matter in the fundamental), i.e. according to their

Euler characteristic. An immediate consequence of this feature is that the large N

theory can, in principle, be used to define a string theory if we identify 1/N with

the string coupling constant as discussed below. This apparent relationship be-

tween the large N expansion of Yang-Mills theories and perturbative string theory

is the strongest motivation for studying gauge theories at large N , even though

they were originally proposed as an approximate model to non-pertubative QCD.

This relationship suggests that gauge theories and string theories are in some way

dual, i.e. equivalent, and that this duality is more easily seen in the large N limit

[27].

We want to analyse the behaviour of the generating functional, or of correlation

functions, of Yang-Mills theory (1.1) at large N . There is no explicit dependence of

the Lagrangian on the group rank, but if we expand a given correlation function in

Feynman diagrams with perturbation parameter gYM , powers of N arise because

the computation requires that we sum over adjoint (A,B, ...) and fundamental

(a, b, ...) indices of SU(N). If we then take the limit N →∞ for generic gYM , we

do not obtain any sensible results. This fact is reflected on the β-function of the

theory. At one-loop order, this is given by:

µ
dgYM
dµ

= β(gYM ) = −kNg3
YM +O(g5

YM ) , k =
11

48π2

(
1− 2

11

NF
N

)
. (1.5)

From this expression it follows that the β-function is ill-defined in the limit N →∞
if gYM is kept fixed. A necessary condition for correlation functions of some

interacting QFT to be well-defined within a given range of energies is that the

β-function for the coupling constant also be so. This implies that we need at

least to redefine the coupling constant of the large N theory if we want to obtain

any sensible correlation functions. From the analysis below of vacuum diagrams

it follows that this is sufficient to guarantee that the generating functional of the

large N theory is well-defined.

In order to understand how to scale gYM with N as N → ∞, we begin by

solving the β-function equation (1.5) at one-loop:

g2
YM (µ) =

1

1 + 2kN log(µ/Λ)
, (1.6)

where the integration constant Λ represents the value of the renormalization scale

µ at which gYM = 1. Note that perturbation theory is valid only for gYM << 1,

9



1. Introduction to the AdS/CFT correspondence

which requires µ >> Λ. This gives the physical meaning to Λ as an IR cut-off in

the perturbative theory.3

If we require that Λ remains fixed as N → ∞,4 we find that g2
YM behaves

asymptotically as 1/N . This suggests that we introduce the ’t Hooft coupling

λ := g2
YMN . Equation (1.5) then becomes:

µ
dλ

dµ
= β(λ) = −2k λ2 +O(λ3) , (1.7)

with solution:

λ(µ) =
1

1 + 2k log(µ/Λ′)
. (1.8)

Comparing with (1.6) and using the definition λ = g2
YMN , we obtain:

Λ′ = Λ exp
(N − 1

2kN

)
. (1.9)

By construction, the solution λ(µ) is finite and the beta-function β(λ) is well-

defined (and independent of NF ) in the large N limit. If we take into account

higher order terms in the β-function, one can show that the solution for λ(µ) re-

mains well-behaved in the limit N → ∞ still without the need to take a limit on

the scale Λ [26]. These results suggest that we introduce the ’t Hooft coupling as

the coupling constant of the large N theory and study the limit N →∞ of Yang-

Mills with λ kept fixed, known as the ’t Hooft limit. Note that the limit theory

with coupling λ is also an asymptotically free theory. Furthermore, it contains a

Landau pole at µ = Λ, so we can probe energy scales of the order Λ by considering

the strongly coupled regime (λ >> 1) of the large N theory.

We then return to the Lagrangian (1.1), replace gYM by
√
λ/N , and expand

the generating functional, or a given correlation function, in Feynman diagrams

with expansion parameter 1/N .5 Each diagram will have a specific dependence on

N determined by the vertices and particularly by contractions of SU(N) indices.

3The QCD, or confinement, scale ΛQCD ∼ 200 MeV is usually defined in the high-energy

literature as the Landau pole µ = Λ exp(−1/(2kN)). Note, however, that this pole is not

physically meaningful, as suggested by lattice simulations, and it only signals the breakdown of

perturbation theory. On the other hand, the scale parameter Λ is meaningful and it represents

the value of the RG scale µ below which perturbation theory is no longer reliable.

4Note that the requirement that the scale parameter Λ of the interaction be independent of N

is equivalent to requiring that the masses of the particles of the theory remain fixed as N →∞.

5Here and in what follows we assume that a proper gauge-fixing condition has been imple-

mented and ignore contributions from ghost fields.
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1.1. Large N gauge theories

In order to simplify the counting of powers of N in each diagram, it is convenient

to rescale the fields as:

Aµ →
√
N

λ
Aµ , Ψ→

√
N Ψ , (1.10)

which results in the Lagrangian:

L = N

(
− 1

4λ
δABF

A
µνF

Bµν +

NF∑
n=1

Ψ̄(n)a (iγµDµ − 1mf )ab Ψb
(n)

)
, (1.11)

where now:

FAµν = ∂µA
A
ν − ∂νAAµ + ifABCA

B
µA

C
ν , (1.12)

(Dµ)ab = δab∂µ + iAAµ (TA)ab . (1.13)

Note that this redefinition is done for convenience only and physical results such

as scattering amplitudes are independent of this rescalling. Each vertex is then

proportional to N and each propagator to 1/N .6 A typical (internal) diagram of

the theory is of the form:

Figure 1.1: Internal diagram.

representing two gauge field (gluon) propagators, a quark momentum loop and

four vertices. This diagram is associated with the amplitude:[
iNγµ(TA)ab

]
〈AAµABν 〉

[
iN(TB)cd

]
tr
{
γν〈Ψ̄eΨ

d〉γα〈Ψf Ψ̄c〉
}[
iN(TC)ef

]
〈ACαADβ 〉

[
iNγβ(TD)gh

]
= N4 γµ 〈(Aµ)ab (Aν)cd〉 tr

{
γν〈Ψ̄eΨ

d〉γα〈Ψf Ψ̄c〉
}
〈(Aα)ef (Aβ)gh〉 γ

β , (1.14)

where the integral over the loop momentum is implicit in the trace over the Dirac

indices. The structure of the adjoint and fundamental group/colour indices in the

6Schematically, from the Lagrangian it follows that the equation for a Green’s function is of

the form N�G(x− y) = δ(x− y)⇒ G(x− y) ∝ 1
N

, with G(x− y) the Green’s function.

11



1. Introduction to the AdS/CFT correspondence

gluon and quark propagators is given by:

〈AAµ (x)ABν (y)〉 =
1

N
δAB Dµν(x− y) , (1.15)

〈Ψa(x)Ψ̄b(y)〉 =
1

N
δab S(x− y) , (1.16)

with Dµν(x) and S(x) the respective Green’s functions with the N dependence

factored out. If we use the identity:

δAB (TA)ab (TB)cd =
1

2

(
δcbδ

a
d −

1

N
δab δ

c
d

)
, (1.17)

then each gluon propagator behaves at large N as a product of a quark and an

antiquark propagators from a group theoretic point of view:

γµ 〈(Aµ)ab (Aν)cd〉 γν =
k

N
δcbδ

a
d +O(1/N2) ∼ 〈ΨcΨ̄b〉〈Ψ̄dΨ

a〉 , (1.18)

with k = 1/2 γµγνDµν . This reflects the fact that an adjoint field transforms just

as an element of the gauge group representation space given by the tensor product

of a fundamental with an anti-fundamental representation spaces:7

(Fµν)ab
g−→ (Ad(g)Fµν)ab = (gFµνg

−1)ab = (g)ac(Fµν)cd(g
−1)db , (1.19)

ΨaΨ̄b
g−→ (gΨ)a(Ψ̄g†)b = (gΨ)a(Ψ̄g−1)b = (g)ac ΨcΨ̄d (g−1)db . (1.20)

This relation between the colour structure of the gluon and fermion propagators

suggests that we represent the former as a double line of a quark and an antiquark

propagators for the purpose of the N -counting:

Figure 1.2: Internal diagram in double-line notation.

An amputated closed diagram (i.e. no external lines and all SU(N) indices con-

tracted) such as a gluon momentum loop with two three-point vertices is repre-

sented in the double line notation as three colour index loops:

7For a connection such as the gauge field, there is an extra inhomogeneous contribution as

emphasized in footnote 1.
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1.1. Large N gauge theories

Figure 1.3: Closed diagram in double-line notation.

and is associated with the amplitude:

N2〈AAµABν 〉 kν 〈ACαADβ 〉 kβ 〈AEαAFµ〉
(
δAA′f

A′

DF

)(
δCC′f

C′

BE

)
= 4N2〈AAµABν 〉 kν 〈ACαADβ 〉 kβ 〈AEαAFµ〉

(
(TA)ab (TA′)

b
a f

A′

DF

)(
(TC)cd(TC′)

d
c f

C′

BE

)
= 4N2〈AAµABν 〉 kν 〈ACαADβ 〉 kβ 〈AEαAFµ〉

(
(TA)ab [TD, TF ]ba

) (
(TC)cd [TB , TE ]dc

)
∼ N2〈(Aµ)ab (Aν)dc′〉 kν 〈(Aα)cd(Aβ)ba′〉 kβ 〈(Aα)c

′

c (Aµ)a
′

a 〉

∼ N2
(
N−1 δdb δ

a
c′ +O(N−2)

) (
N−1 δbd δ

c
a′ +O(N−2)

) (
N−1 δa

′

c δc
′

a +O(N−2)
)

= δbb δ
a
a δ

c
c′
(
N−1 +O(N−2)

)
= N2 +O(N) , (1.21)

where we used the identity: (TA)ab(TB)ba = 1
2δAB . All contractions of adjoint

indices can be rewritten in this way as traces over fundamental indices and the

representation of gluon propagators by double lines of (anti-)fundamental indices

expresses this property. The upshot of the double line notation is that the factors of

N that arise from traces over SU(N) indices are now easier to determine from the

diagrams. In this notation, each trace over a fundamental (or anti-fundamental)

colour index, say δaa , becomes depicted by a colour index loop, resulting in a factor

of N for each such loop in the diagram. Together with the fact that each vertex

contributes with a factor of N and each propagator with 1/N , this establishes the

N -counting rules for each diagram.

The simplest case that we can study at large N is the expansion of the gen-

erating functional of pure Yang-Mills, i.e. the vacuum diagrams with all fermions

switched off. The first few vacuum bubbles are given in Figure 1.4 and are repre-

sented in double line notation in Figure 1.5. From the above rules, each diagram

with V vertices, E propagators and F colour index loops is proportional to a fac-

tor of NV−E+F . It is then a simple matter to check that all diagrams that can

be drawn on a plane (i.e. embedded in R2), called planar diagrams, scale as N2,

13



1. Introduction to the AdS/CFT correspondence

Figure 1.4: Vacuum bubbles.

Figure 1.5: Vacuum bubbles in double-line notation.

whereas all diagrams that need to be embedded in R3 are suppressed by powers

of N−2 in relation to the planar ones.

In topology, any connected closed 2-surface is completely characterised by its

Euler characteristic χ = 2− 2g, with g its genus, and by whether it is orientable.

From the classification theorem of closed 2-surfaces it then follows that every

two-dimensional connected, closed and orientable surface is homeomorphic to a

connected sum of g tori (g = 0, 1, 2, ... respectively the 2-sphere, the torus, the

double torus, etc). If we perform a one-point compactification of the surfaces in

the above double line diagrams, then they will fall in this category since they

will be closed (and connected) and the particle/anti-particle propagators induce

an orientation on the surfaces, represented by the arrows.8 Each diagram will

in this way be homeomorphic to some n-fold torus and the different loops in the

interior of the diagram will result in a triangulation of the respective surface.

The planar diagrams will correspond to triangulations of a 2-sphere and, more

generally, diagrams that scale as N2−2g will correspond to triangulations of a g-

fold torus. The asymptotic expansion of the generating functional with expansion

parameter 1/N will in this way be a sum over different topologies:9

8Boundaries arise when we insert matter in the fundamental and the Euler characteristic is

generalised to χ = 2−2g− b, with b the number of boundaries. Also, orientability of the surfaces

can be lost for certain gauge groups such as SO(N) in which an adjoint field transforms as a

product of two fundamental fields rather than a fundamental, anti-fundamental product [27].
9In the case of the S2, for example, with the one-point compactification of the respective

double line diagrams we are adding the point at infinity to obtain the south pole, as in an

upside-down (triangulated) Riemann sphere. Note also that the surfaces are connected, we are

segmenting each just for the purpose of emphasizing the triangulation.
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1.1. Large N gauge theories

and which is expressed as:

Z = N2
∞∑
g=0

N−2gfg(λ) , (1.22)

with fg some polynomial in the t Hooft coupling. This expansion is precisely the

one that arises in string perturbation theory of closed oriented strings:

Zstring ∼ g−2
s

∞∑
g=0

g2g
s

∫
[dX] e−S , (1.23)

with gs the string coupling constant that determines the coupling to the differ-

ent worldsheet topologies, X collectively the string embeddings, worldsheet metric

and gravitino, and S the worldsheet action. If we identify 1/N with gs we can

see the expansion (1.22) as the definition of a string theory. The large N limit

would then correspond on the string theory side to the limit in which all loop

corrections are suppressed in relation to the tree-level diagrams, a classical limit.

This connection, though derived at large N , suggests that one may be able to

completely reformulate string theories in terms of Yang-Mills theories such that

the full non-perturbative formulation of the former would be given by the latter

for all N .

Even though non-Abelian gauge theories simplify considerably in the large N

limit, it is still impossible to compute and sum all planar diagrams ∀λ in a given

correlation function. In fact, the large N expansion is an asymptotic expansion

and may not be convergent. A further simplification would be to consider λ << 1

and do perturbation theory of the large N theory with expansion parameter λ.

However, this is the weakly coupled regime of the theory and it excludes strongly

coupled phenomena such as confinement and chiral symmetry breaking, which

originally motivated the large N approach. The strongly coupled regime λ >> 1,

on the other hand, cannot be studied using perturbation theory in λ.

The above apparent connection between gauge and string theories does not

specify the relationship between the two remaining free parameters of each the-

15



1. Introduction to the AdS/CFT correspondence

ory:10 the ’t Hooft coupling λ of the large N gauge theory and the string length

scale (inverse string tension) of the string theory that determines the coupling

to the target spacetime fields. If there is such a relationship, however, it must

necessarily be a strong/weak one because the two theories are clearly different at

the perturbative level and therefore, when one is weakly coupled, the other must

be strongly coupled, so that perturbation theory in λ and in the string scale does

not apply to both theories simultaneously. In the next section we will find that

certain gauge theories, specifically those with a renormalization UV fixed-point,

are in fact (in the strongest form of the correspondence) equivalent to string the-

ory formulated in specific backgrounds, and that this equivalence is a strong/weak

duality in the sense that λ is inversely proportional to the string scale. In this way,

the strongly coupled regime of the gauge theory (at large N) can be probed by

studying the dual string theory at lowest order approximation in the string scale,

which simply corresponds to classical supergravity.

1.2. The AdS5/CFT4 Correspondence

1.2.1. N = 4 super Yang-Mills

Let us start with the pure N = 1 supersymmetric Yang-Mills Lagrangian with

U(N) gauge group (or a subgroup such as SU(N)) in ten dimensional flat space

(ηmn = diag(−,+, ..,+)):

L = −1

2
(Fmn)ab(F

mn)ba + i(ψ̄)ab Γm(Dmψ)ba , (1.24)

where ψ is a Majorana-Weyl spinor (eight real degrees of freedom) and the Γm

matrices are the 32×32 Dirac matrices in ten dimensions: {Γm,Γn} = 2ηmn. Both

ψ and Fmn are in the adjoint representation, e.g. (Fmn)ab = FAmn(TA)ab with {TA}
a basis for u(N) normalized so that Tr(TATB) = 1

2δAB . The covariant derivative

Dm is the adjoint derivative:

(Dmψ)ba = ∂mψ
b
a + igYM [Am, ψ]ba =

(
∂mψ

A + igYM fABC A
B
mψ

C
)

(TA)ba .

(1.25)

We will omit the U(N) matrix indices (a, b, ... and A,B, ...) from now onwards.

Under the supersymmetry transformations:

δξAm = −iξ̄ Γmψ , δξψ =
1

2
FmnΓmΓn ξ , (1.26)

10In fact, λ is not really free, as determined by the β-function equation, and is dimensionally

transmuted to the characteristic scale Λ′ of the interaction, which represents the remaining

(dimensionful) free parameter of the large N theory. Note also that the string coupling gs is not

actually an independent parameter, but rather corresponds to the asymptotic expectation value

of the dilaton, which is a dynamical field.
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1.2. The AdS5/CFT4 Correspondence

with ξ(x) an infinitesimal spinor, the Lagrangian changes by a total derivative

and therefore the action remains invariant. In order to reduce the theory down

to four dimensions, we write the ten-dimensional coordinates as xm = (xµ, xa) :

µ = 0, .., 3, a = 4, .., 9 and require that the fields be independent of xa. We can

similarly compactify the theory on a flat six torus and truncate to the massless

sector (which is a consistent truncation). The Lagrangian then becomes:

L = Tr

{
− 1

2
FµνF

µν −DµAaD
µAa +

1

2
g2
YM [Aa, Ab][A

a, Ab]

+ iψ̄ΓµDµψ − gYM ψ̄Γa[Aa, ψ]

}
. (1.27)

The Majorana-Weyl spinor ψ can be represented as:

ψ =

4∑
i=1

{
vi ⊗

(
λiα
0

)
+ vi+4 ⊗

(
0

λ̄iα̇

)}
, (1.28)

where λi are four two-component Weyl spinors such that: λ̄iα̇ = (λiα)∗ , λ̄iα̇ =

(λiα)∗, with the spinor indices raised and lowered with the antisymmetric tensor

εαβ = −εα̇β̇ , and where vj is a 8× 1 column matrix such that:

(vj)k1 =

{
1 if k = j

0 otherwise
. (1.29)

The Dirac matrices can then be represented as:

Γµ = 18 ⊗ γµ , Γa = γ̂a ⊗ γ5 , (1.30)

γµ =

(
0 (σµ−)αβ̇

(σµ+)α̇β 0

)
, {γµ, γν} = 2ηµν14 , γ5 = iγ0γ1γ2γ3 =

(
12 0

0 −12

)
,

(1.31)

γ̂a =

(
0 (Σa)ij

(Σ̄a)ij 0

)
, {γ̂a, γ̂b} = 2δab18 , ΣaΣ̄b + ΣbΣ̄a = 2δab14 ,

(1.32)

where 1n is the n×n identity matrix, σµ± = (1,±~σ) are the Pauli matrices, and the

six complex and antisymmetric constant matrices Σa = (Σ̄a)∗ = (η1, η2, η3, iη̄1, iη̄2, iη̄3),

with ηa the ’t Hooft symbols [28] (see also [29]). The matrices γµ and γ̂a are the

Dirac matrices (i.e. satisfy the Clifford algebra) in four and six dimensions respec-

tively.
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1. Introduction to the AdS/CFT correspondence

With the six scalar fields Aa we then construct three complex scalars repre-

sented as φij and defined by:

φij =
1

2
Aa(Σa)ij , φ̄ij = (φij)∗ =

1

2
Aa(Σ̄a)ij =

1

2
εijklφ

kl , (1.33)

where i, j = 1, .., 4 are the matrix indices of Σa such that (Σa)ij = −(Σa)ji. These

are introduced so that the SU(4)R symmetry discussed below is manifest. We

then have the identities (ψ̄ = ψ†Γ0):

DµAaD
µAa = −Dµφ

ijDµφ̄ij , (1.34)

[Aa, Ab][A
a, Ab] = [φij , φkl][φ̄ij , φ̄kl] , (1.35)

iψ̄ΓµDµψ = 2i λ̄iα̇(σµ+)ȧβDµλ
i
β , (1.36)

ψ̄Γa[Aa, ψ] = 2λiα[φ̄ij , λ
j
α]− 2λ̄iα̇[φij , λ̄jα̇] . (1.37)

Note that:

Γ0Γµ = 18 ⊗

(
(σµ+)α̇β 0

0 (σµ−)αβ̇

)
, Γ0Γa =

(
0 (Σa)ij

(Σ̄a)ij 0

)
⊗

(
0 −δα̇

β̇

δβα 0

)
.

(1.38)

Finally, we replace these identities in (1.27), rescale Aµ → g−1
YMAµ and add the

topological invariant θI/8π
2
∫
F ∧ ∗F to obtain:

L = Tr

{
− 1

2g2
YM

FµνF
µν +

θI
8π2

Fµν F̃
µν +Dµφ

ijDµφ̄ij +
g2
YM

2
[φij , φkl][φ̄ij , φ̄kl]

+ 2i λ̄iσµ+Dµλ
i − 2gYM

(
λi[φ̄ij , λ

j ]− λ̄i[φij , λ̄j ]
)}

, (1.39)

where F̃ := ?F . Further details on the dimensional reduction can be found in [30]

(see also [31, 32]). All symmetries of the resulting theory in four dimensions follow

by construction from the original ten-dimensional symmetries. Our final theory is

invariant under N = 4 supersymmetry transformations acting on Aµ, φ
ij , λi and

λ̄i that follow from the transformations (1.26) (and are schematically given later

in (1.77)). The maximum extended supersymmetry in four dimensions is N = 8,

but since N > 4 necessarily requires fields of spin 3/2 and 2, it follows that the

super Yang-Mills theory (1.39) is the maximally supersymmetric gauge theory in

four dimensions. The theory has four supersymmetry generators (sixteen real su-

percharges) and the Lagrangian is invariant under a global SU(4)R ∼ SO(6)R
R-symmetry (acting on the indices i, j). This symmetry group follows from the

fact that the Lorentz group SO(1, 9) of the original ten-dimensional theory de-

composes as SO(1, 9)→ SO(1, 3)× SO(6). The Σa matrices then map tensors of
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1.2. The AdS5/CFT4 Correspondence

SO(6) to tensors of SU(4). The theory contains three complex (six real) scalar

fields transforming under the two-index antisymmetric representation of SU(4)R,

four Weyl fermions in the fundamental of SU(4)R, and the gauge field which is a

scalar under the R-symmetry. All fields transform according to the adjoint repre-

sentation of the U(N) gauge group.

An important property of N = 4 super Yang-Mills (SYM) is that the theory

is invariant under the conformal group Conf(R1,3) ∼ SO(2, 4) ∼ SU(2, 2) con-

sisting of the set of conformal transformations in flat space (see appendix A.3).11

Because of supersymmetry, the symmetry group is enhanced to the maximal su-

perconformal group SU(2, 2|4) in four dimensions consisting of the bosonic sub-

group SU(2, 2) × SU(4)R together with the supersymmetries generated by the

Poincaré and conformal supercharges.12 This symmetry group is preserved at the

quantum level at all orders in perturbation theory and also non-perturbatively

[33, 34, 35, 36, 37]: the theory exhibits no UV divergences and therefore does not

require renormalization. In this way, the β-functions are identically zero and the

theory remains exactly conformal. Together, these features imply that N = 4

SYM is the most symmetric gauge theory in four dimensions.

A further aspect of N = 4 SYM is its conjectured invariance under the

Montonen-Olive duality that acts on the coupling constants as the SL(2,Z) group:

τ → aτ + b

cτ + d
: ad− bc = 1 , a, b, c, d ∈ Z , (1.40)

where τ = 4πi/g2
YM + θI/2π. This is an example of a strong-weak S-duality.

The quantum theory is invariant under the transformation θI → θI + 2π and

it is conjectured that it is also invariant under the strong-weak transformation

τ → −1/τ (together with the substitution of the gauge group by its Langlands

dual). The combination of the two results in the above SL(2,Z) symmetry. The

existence of this symmetry group will be important for the consistency of the

AdS/CFT duality as we will discuss in the next sections.

11The fields have mass dimensions [Aµ] = 1 = [φij ] , [λi] = 3/2, and the coupling constants

are dimensionless.
12 The conformal supercharges Siα are defined as the operators given by the commutators of the

generators of special conformal transformations with the Poincaré supercharges Qiα. It should

be further remarked that the full symmetry group is in fact the subgroup PSU(2, 2|4). In the

algebra of su(2, 2|4), the anticommutator between the supercharges is given by: {Qiα, Sβj} =

Mαβδ
i
j + εαβR

i
j + εαβδ

i
j (D + C), where Mαβ = σµναβMµν is the SU(2) representation of the

Lorentz generators, Rij are the R-symmetry generators, D is the dilatation generator and C is

the central charge. In the case of N = 4 SYM the central charge vanishes and the resulting

algebra is the psu(2, 2|4) algebra.
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1.2.2. String theory, Supergravity and D-branes

In the previous subsection we have analysed a highly symmetric gauge theory

in four dimensions and discussed how its symmetries arise from the parent ten-

dimensional SYM theory. In view of the results of the first section, we would like

to explore how this gauge theory can be related to superstring theory.

Let us start with type IIB closed strings with supersymmetry implemented on

the worldsheet, known as the Ramond-Neveu-Schwarz (RNS) formulation. Recall

that the R/NS vacuum is the state annihilated by the positive modes of the bosonic

and fermionic string embeddings with periodic/antiperiodic fermionic boundary

conditions, also known as R/NS boundary conditions. The Hilbert space then

corresponds to the Fock space generated by acting with the respective negative

modes on the R and NS vacuum. Since the string embeddings decompose into left

(−) and right (+) moving modes (i.e. holomorphic and anti-holomorphic compo-

nents), the Hilbert space decomposes into four sectors. States in the X-Y sector

are obtained by acting on the vacuum (|0〉+X⊗|0〉
−
Y ) with the negative modes of the

left/right fermionic movers with X/Y boundary conditions and with the left/right

bosonic movers, where X,Y ∈ {R, NS}. The massless states of the closed string in

the NS-NS sector are the first excited states and correspond to the particle states

for the graviton Gµν , the 2-form B-field and the dilaton Φ (form a basis for the

Hilbert spaces). The massless state in the R-R sector is the ground state, a tensor

product of two spinor states, and decomposes into the particle states of the axion

C0, the 2-form C2 and the 4-form C4 with self-dual field strength. The remaining

NS-R and R-NS sectors contain fermionic gravitinos’ and dilatinos’ particle states.

All these states correspond to the lowest energy excitations of the target spacetime

fields, with different configurations of the fields corresponding to different states,

and couple to the IIB closed string worldsheet via specific vertex operators. From

the one-loop β-functions of the closed string (leading order in α′) it then follows

that the dynamics of the spacetime fields is given by the IIB supergravity action

[38, 39]:

S =
1

(2π)7`8s

∫
d10x
√
Ge−2Φ

(
R[G] + 4|∂Φ|2 − 1

2
|H3|2

)
(1.41)

− 1

2(2π)7`8s

∫
d10x

[√
G

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
+ C4 ∧H3 ∧ F3

]
+ fermions ,

where the field strengths are given by ( |Fn|2 = 1/n!Fµ...νF
µ...ν):

H3 = dB , F1 = dC0 , F3 = dC2 , F5 = dC4 ,

F̃3 = F3 − C0H3 , F̃5 = ∗F̃5 = F5 − 1
2 C2 ∧H3 + 1

2 B ∧ F3 , (1.42)

and where the string length scale `s :=
√
α′ and is related to the ten-dimensional
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1.2. The AdS5/CFT4 Correspondence

Planck length as: `8P = 8π6g2
s`

8
s (which is the Newton constant G10 in the Einstein

frame defined next) [40]. Note that IIB supergravity provides a good approxima-

tion to IIB closed strings only in the low-energy limit α′ → 0, where the massive

string states can be ignored (recall that the mass of the states M2 ∼ 1/α′). Fur-

thermore, the approximation can be trusted when the loop corrections in the string

perturbation theory are suppressed, i.e. for gs << 1.

IIB supergravity is invariant under N = 2 supersymmetry, with 32 real super-

charges (two generators in ten dimensions). The classical action is also invariant

under an SL(2,R) transformation. The latter symmetry is manifest if we rewrite

the action in the Einstein frame by defining:

GEµν := e(Φ0−Φ)/2Gµν , (1.43)

where eΦ0 = gs is the asymptotic expectation value of the dilaton, together with:

τ := C0 + i e−Φ and G3 := (F3 − τ H3)/
√

Im τ . The symmetry transformation

then acts as:

τ → aτ + b

cτ + d
, G3 →

cτ̄ + d

|cτ + d|
G3 : ad− bc = 1 , a, b, c, d ∈ R , (1.44)

with the remaining fields fixed. However, the full IIB string theory is invariant

only under the transformation τ → τ + 1 together with the strong-weak trans-

formation τ → −1/τ and therefore only the discrete subgroup SL(2,Z) survives

at the quantum level. This symmetry group is the S-duality of IIB closed strings

and is related by the AdS/CFT correspondence to the S-duality of N = 4 SYM

discussed in the preceding section.

Above we have briefly discussed closed strings, but a similar analysis can be

repeated for the open string. Recall that open strings end on Dp-branes with the

bosonic string embeddings satisfying Dirichlet/Neumann boundary conditions in

the directions transverse/parallel to the branes. In addition, appropriate Neveu-

Schwarz and Ramond fermionic boundary conditions imposed at the ends of the

string give rise to the NS and R sector of the open string Hilbert space corre-

sponding to bosonic and fermionic states respectively. The massless states in the

NS sector are the first excited states and decompose into the particle states of a

gauge field Aa on the D-brane and of the D-brane bosonic embedding XI in the

transverse directions. The massless state in the R sector is the ground state (a

spinor state) which decomposes into the particle states of the superpartners, viz.

a fermion on the D-brane and the D-brane fermionic embedding in superspace.

These states describe the lowest energy excitations of the D-brane; the massive

states describe excitations of higher energy. Furthermore, a collection of N D-

branes represents N ×N different combinations of hyperplanes on which the open
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1. Introduction to the AdS/CFT correspondence

string can end. If the branes are coincident, the above fields become non-abelian

and transform under the adjoint representation of a U(N) gauge group.

The action describing the dynamics of the low-energy excitations of the D-

branes can be derived (at leading order in α′) by coupling the string states to the

worldsheet via vertex operators and deducing the one-loop β-functions; further

methods involve T-duality and the BPS properties of D-branes. The dynamics of

the fields is then described by the generalised DBI, or worldvolume action of N

Dp-branes [41]:13

Sp =− Tp
∫
dp+1ξTr

{
e−Φdet1/2

[
Gab +Bab + 2πα′Fab + EaI

(
Q−1 − δ

)IJ
EJb

]
det1/2

[
QIJ

]}

+ Tp

∫
p+1

[ 2∑
n=0

C2n +

4∑
n=3

C2n

]
∧ Tr eBab+2πα′Fab + fermions . (1.45)

Here we have decomposed the brane embedding Xµ(ξ) in spacetime into the

directions parallel to the brane Xa : a = 0, ..., p and transverse to the brane

XI : I = p + 1, ..., 9. It is common practice to choose coordinates such that

Xa = ξa, with ξa the coordinates on the brane worldvolume. The equations of

motion are obtained by varying the action with respect to XI and the gauge field

Aa. The tension Tp of each brane (in the string frame) is given by [10, 42]:

Tp = (2π)−p `−(p+1)
s . (1.46)

The physical tension TEp = g−1
s Tp is obtained by moving to the Einstein frame

(recall equation (1.43)). Note that the perturbative regime of string theory requires

gs << 1, which implies TEp >> 1 (in string units). Since the brane tension

corresponds to its mass, the brane becomes infinitely heavy in string perturbation

theory and therefore it is not visible in this sector of the theory.

The two-form Fab(ξ) is the field strength of the open string gauge field Aa(ξ)

and the remaining fields are given by the pullback of the closed string fields onto

the brane worldvolume:

Φ = Φ(X) , Gab =
dXµ

dξa
dXν

dξb
Gµν(X) , Bab =

dXµ

dξa
dXν

dξb
Bµν(X) ,

Eµν = Gµν +Bµν , EaI =
dXµ

dξa
EµI(X) , (1.47)

and analogous for the closed string R-R gauge fields Cn. The C6 and C8 potentials

are the Hodge duals defined as dC6 = ?dC2 and dC8 = ?dC0. Note also that, in the

last integral, when we replace the exponential by its power series, with products

13If the curvature of the target spacetime is non-vanishing, the Chern-Simons term (the last

integral) also involves wedge-powers of the Riemann tensor pulledback to the worldvolume. Here

we will be ignoring these contributions.
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replaced by wedge products, only one term in the series is picked by each R-R

field due to the integral over the worldvolume such that the resulting form is a

(p+ 1)-form. The tensor QIJ is given by:

QIJ = δIJ + i2πα′[φI , φK ]EKJ(X) : φI =
1

2πα′
XI , (1.48)

with the I, J indices raised/lowered with the metric EIJ : EIKEKJ = δIJ . Finally,

the traces Tr are taken over the fundamental indices of the gauge group U(N).14

The worldvolume action contains interactions with the closed string modes.

These interactions can be switched off by decomposing the target spacetime fields

into their background configurations plus the α′ corrections that represent the

closed string excitations and taking the limit α′ → 0. This is called a decoupling

limit since the closed string modes decouple from the branes. In this limit, the

worldvolume theory reduces to a Yang-Mills gauge theory with U(N) gauge group.

In the particular case of D3-branes, if the target space metric Gµν = ηµν +O(α′2),

with ηµν the Minkowski metric, the dilaton eΦ = gs + O(α′), the axion C0 =

k+O(α′) (a constant), and the background configurations of the remaining target

space fields vanish, the worldvolume theory in the decoupling limit becomes N = 4

SYM in four dimensional flat space. In particular, the SYM field strength and the

six real scalar fields in (1.39) are given by the open string field strength and the

six transverse brane embeddings φI :15

Sp = −Tp(2πα
′)2

4gs

∫
d4ξTr

{
FabF

ab + 2Daφ
IDaφI − [φI , φJ ][φI , φJ ]

}
+
Tp(2πα

′)2k

2

∫
d4ξTr

{
FabF̃

ab
}

+ fermions . (1.49)

If we replace for Tp and compare the result with the Yang-Mills Lagrangian (1.39),

we find that the Yang-Mills coupling and the instanton angle θI are given by:

g2
YM =

( 2gs
Tp(2πα′)2

)
p=3

= 4πgs , θI = 8π2
(Tp(2πα′)2k

2

)
p=3

= 2πk .

(1.50)

A fundamental property of D-branes is the fact that they are the sources for

the R-R gauge fields. Recall from Maxwell’s theory that point charges couple to

a one-form gauge potential via an interaction term of the form:

Sint = e

∫
A = e

∫
dτ
dxµ

dτ
Aµ(x) , (1.51)

14For a discussion of how the traces should be implemented, see references [43, 44, 45].
15 Recall that the scalars φij in (1.39) are in the two-index antisymmetric representation of

SU(4)R, whereas the scalars φI are in the fundamental of SO(6)R. The isomorphism is given

by the Σa matrices as in (1.33).
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where A represents the pullback of the gauge field to the worldline of the particle

with proper time τ and electric charge e. In the case of higher-order gauge fields,

the sources for the (p + 1)-form potentials are (p + 1)-dimensional objects called

p-branes which couple to the potentials as:

Sint = µp

∫
p+1

Ap+1 = µp

∫
dp+1ξ

dXµ0

dξ0
...
dXµp

dξp
Aµ0...µp(X) , (1.52)

where µp is the charge of the p-brane, ξa are coordinates on the brane and Xµ(ξ)

is the brane embedding into spacetime. p-branes backreact on the embedding

spacetime just like point charges do, i.e. they are sources of closed strings, and in

the case of the IIB R-R potentials, the backreaction of the corresponding p-branes

is determined by the IIB supergravity action (1.41).

When we analyse the worldsheet of the closed and open strings with the vertex

operators for the string states inserted, we find that the strings couple to the two-

form B-field as above and therefore are the sources for the B-potential, but they

do not carry R-R charge since the R-R vertex operator for the two-form C2 field

involves directly the field strength. On the other hand, in the case of Dp-branes,

the interaction term with a R-R (p+1)-potential is of the form (1.52) (more clearly

seen if we switch off the background Bab and Aa fields) and therefore they are the

sources for the R-R gauge fields with charge Tp. This implies in particular that the

R-R p-branes that arise as solutions of IIB supergravity are the IIB Dp-branes with

p = ±1, 3. This statement is not entirely correct, though. Dp-branes with odd |p|
are supersymmetric 1/2 BPS objects, i.e. their states are in representations of the

superPoincaré group that saturate the BPS bound such that M = |Z| = Q, with

M,Z and Q the mass, central charge and electric charge, and preserve half of the

supersymmetry (the worldvolume theory is invariant under 16 supercharges).16

On the other hand, the only supersymmetric p-brane solutions of supergravity are

the extremal p-branes, which are also 1/2 BPS (admit 16 Killing spinors), so the

identification between p-branes and supersymmetric Dp-branes only holds for the

extremal case. D-branes at finite temperature are non-supersymmetric and in this

case are identified with p-brane solutions of supergravity near extremality.

The discovery that D-branes are the R-R charge carriers led to the conjecture

that their description as solutions of the worldvolume theory and as solutions of

the supergravity equations of motion could be two equivalent descriptions. More

generally, it led to the conjecture that the dynamics of open and closed string

states could be described by physically equivalent theories and therefore that the

open and closed string could be dual to each other. Note that the worldvolume

16Recall that IIB supergravity has N = 2 supersymmetry, so there is only N/2 = 1 central

charge. Also, Dp-branes in IIB string theory with even p are non-BPS. They break all of the

supersymmetry, do not carry conserved charges and are unstable.
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description of D-branes is a gauge theory without gravity, so this open/closed

string duality is in particular a gauge/gravity duality. Further, the theory on the

D-brane is defined in less dimensions than the gravitational theory, so the degrees

of freedom along the extra directions would have to be encoded (in a highly non-

trivial way) on the D-brane. We will see that these extra degrees of freedom are

encoded in the dynamics of the lower dimensional field theory description.

This conjectured relationship between the worldvolume theory on the D-brane

and the gravitational theory in the bulk, describing the backreaction of the brane

on the embedding spacetime, has its roots in the discovery of Hawking radia-

tion and in the fact that black hole entropy scales with the area of the horizon.

This fact led to the speculation that black holes (as bulk solutions) could equally

be described by a lower dimensional field theory on the horizon in such a way

that the Hilbert space of this theory would contain the black hole states. In the

case of D-branes, this idea extrapolates to the statement that the bulk theory in

the vicinity of the branes would admit an equivalent description in terms of the

gauge theory on the worldvolume of the branes. This conjecture was originally

supported by several results. The most important of these are the derivation of

the Bekenstein-Hawking (BH) entropy of black holes obtained from intersecting D-

branes by counting the degenerate states of the branes [9, 46] and the computation

of absorption cross-sections of parallel D-branes [17, 18, 19]. In the first case, the

calculation of the BH entropy is a bulk theory calculation, whereas the counting of

the degenerate states is performed using statistical mechanics in the worldvolume

theory, also known as the black hole microscopic theory. In the second case, the

cross-section for infalling massless closed strings to be absorbed by the D-branes

was computed using supergravity and the worldvolume theory (in which case the

process corresponds to a computation of the decay rate of the closed strings into

pairs of massless open strings on the branes [47]) and the results agree with one

another; see [27] for a review. Since absorption cross-sections can be expressed in

terms of correlation functions, this result suggested that worldvolume correlators

could be computed from supergravity.

A hint of how this gauge/gravity duality could possibly work arises from M-

theory. The different types of string theories are related by dualities and type IIA

and the E8 × E8 heterotic string, both formulated in ten dimensions, approach

eleven-dimensional M-theory as gs → ∞. The low-energy limit of M-theory is

supergravity in eleven dimensions, which reduces to 10D supergravity by Kaluza-

Klein compactification. In the case of type IIA (resp. E8×E8), the argument to go

up to eleven dimensions is that the higher-dimensional M-theory is compactified

on a circle (resp. S1/Z2 orbifold) of radius r11 = gs`s. Perturbative string theory

therefore corresponds to the limit r11 → 0, i.e. represents an expansion around

25



1. Introduction to the AdS/CFT correspondence

r11 ∼ 0, and hence this dimension is not be visible in the perturbative regime

of the string theory. However, as we go to the strong coupling regime, the extra

dimension opens up. This relationship between strong coupling regimes and extra

dimensions suggests that if the gauge theory on the brane admits an equivalent

description in terms of a higher-dimensional theory, say one dimension extra, then

maybe this equivalence could be more easily seen by going to the strong coupling

regime of the gauge theory, where the extra dimension would become more visible.

We will see that this is precisely how the duality is formulated.

1.2.3. AdS5 Supergravity and N = 4 SYM

The first proposal of a precise equivalence between the worldvolume and super-

gravity theories followed by studying a system of N parallel D3-branes in the

decoupling, low-energy limit α′ → 0, both from the point of view of the gauge

theory (1.49) on the branes and their backreaction on the embedding spacetime

[20], see also [27].

Suppose we have a set of N coincident D3-branes charged under the R-R C4

potential. We will be assuming that gs << 1 so that we can analyse this system

using string perturbation theory. Furthermore, we will work in the lowest order

approximation in α′ so that the massive states of the open and closed strings can be

ignored and the excitations of the D3-branes can be described by the worldvolume

theory (1.45). In this approximation, the backreaction of the D3-branes is derived

from the supergravity action (1.41). We want to look for solutions with constant

R-R scalar C0 and with vanishing B-field and R-R potential C2 (and without

fermionic degrees of freedom). If we further impose translational symmetry on

the branes and rotational symmetry in the transverse space, we find the unique

solution generated by the stack of D3-branes, also called the extremal black 3-

brane:

ds2
10 = H(r)−1/2

(
−dt2 + d~x 2

3

)
+H(r)1/2

(
dr2 + r2dΩ2

5

)
,

F5 = ?F5 = (1 + ?) dH(r)−1 ∧ dt ∧ dx1 ∧ dx2 ∧ dx3 ,

eΦ = gs , C0 = k , H(r) = 1 +
L4

r4
. (1.53)

In general, the solution for the dilaton is of the form e2Φ = g2
sH(r)(3−p)/2 for the

generic case of Dp-branes, but it must necessarily be a constant in the particular

case p = 3 [48, 49]. Note that, since eΦ = eΦ0 = gs, the metric in the Einstein

or in the string frame is the same (recall (1.43)). The coordinates (t, ~x) are the

coordinates ξa on the worldvolume of the D-branes and (r,Ωi) parametrise the

transverse space. The parameter L with dimensions of length is the characteristic

radius of the solution and is determined by a computation of the R-R flux over
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the S5, which should be equal to the total charge of the N D3-branes:17∫
S5

?F5 = 16πG10T
E
p N . (1.54)

Using the above formulas for TEp and for `8P = G10 , we find that 16πG10T
E
p N =

(2π`s)
7−pgsN . For p = 3 we then obtain (Vol(Sn−1) = 2πn/2/Γ[n/2]):

L4 = 4πgsN`
4
s . (1.55)

Note that the limit α′ → 0 (with gsN fixed) implies L → 0 and the spacetime

reduces to Minkowski space everywhere but at r = 0 in this limit.

The extremal black 3-brane solution is completely regular, geodesically com-

plete and free of essential singularities [53]. The region r = 0 where the D-branes

are localised is a horizon; it may seem that this region is a curvature singularity,

but in fact it is just a coordinate singularity. The easiest way to see this is to write

the metric near r = 0:

ds2
10 ∼

r2

L2

(
−dt2 + d~x 2

3

)
+
L2

r2
dr2 + L2dΩ2

5 (r ∼ 0) . (1.56)

The metric reduces to AdS5 × S5 in Poincaré coordinates near the centre of the

Poincaré patch. In this form we see explicitly that r = 0 is the usual coordinate sin-

gularity of the Poincaré patch of AdS and a regular solution near r = 0 can be ob-

tained by e.g. changing to global AdS coordinates.18 The above parametrisation of

the near-horizon geometry is incomplete because it is only valid for r/L << 1 and

17In the Einstein frame, the bulk plus Dp-brane action is given by:

S =
1

16πG10

∫
d10x

√
GEµν

(
RE −

1

2
e2(Φ−Φ0)

∣∣eΦ0F1

∣∣2
E
−

1

2
eΦ−Φ0

∣∣eΦ0 F̃3

∣∣2
E
−

1

4

∣∣eΦ0 F̃5

∣∣2
E

+ ...

)

− Tpe−Φ0

∫
p+1

dp+1ξTr

(
e(p−3)(Φ−Φ0)/4

√
GEab + ...

)
+ Tp

∫
p+1

Cp+1 .

Recall that p-branes can be surrounded by (d−p− 2)-spheres in d dimensions. For N Dp-branes

and a constant dilaton, the flux is then given by [50, 51]:

1

16πG10

∫
S8−p

?
(
eΦ0F(p+2)

)
= NTp ,

which is equation (1.54). The Dirac quantization condition then reads [52]: 16πG10NTEp T
E
6−p =

2πn ⇔ N = n, where TE6−p is the magnetic charge of the D(6 − p)-brane magnetic dual of the

Dp-brane and n ∈ N.

18 Since the D-branes are localised at r = 0, it may seem that the pullback of the metric and

C4 potential onto the worldvolume of the branes will be ill defined in these coordinates, but in

fact the divergences at r = 0 of the r-dependent pieces will cancel overall in the worldvolume

action. An example of this can be found e.g. in [54].
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a complete parametrisation can be obtained by starting from the original solution

(1.53), performing the transformation of coordinates r = λr̃ , t = t̃/λ , xi = x̃i/λ

and in the end taking the limit λ → 0. Note that we approach the near-horizon

region r = 0 in this limit. The resulting metric will be the AdS5 × S5 metric

(1.56), now for all values of the new coordinates. Since we have just performed a

reparametrisation and obtained a well-defined solution (both for the metric and

the F5 form), this result implies that AdS5 × S5 is an exact solution of the same

equations of motion satisfied by the black brane metric.

The duality originally proposed in [20] is a form of open/closed string duality

and is based on the premise that the worldvolume description of the D3-branes

and the supergravity description are equivalent. However, this equivalence is very

hard to see even at the lowest order approximation in α′, so it was suggested that

we restrict to the low-energy limit α′ → 0. Suppose we consider IIB string theory

in the background (1.53) generated by the D-branes. Closed string states then de-

scribe excitations of target spacetime fields with vacuum expectation values (vevs)

the background configurations (1.53). Open string states describe excitations of

the fields on the D-branes with vevs certain background configurations obtained

by explicitly finding a ground state solution of the worldvolume theory. We will

argue that, under certain conditions, these two types of excitations are described

by equivalent theories, i.e. that the dynamics of each type can be described both

in terms of the worldvolume action and in terms of a gravitational theory. We will

derive the regimes in which one description appears to be more natural than the

other.

From the perspective of an observer in the bulk and far away from the D-branes,

there are two kinds of low-energy closed string excitations: either the excitations

are away from the D-branes and have low proper energy, or they have any proper

energy but are located in the near-horizon region. This fact follows from a quick

analysis of the spacetime metric. As r →∞ the metric reduces to Minkowski and

therefore t is the time coordinate of inertial observers at infinity. The vector k = ∂t
is a timelike Killing and the energy (per unit mass) kµu

µ = Gttṫ is a constant of

motion along geodesics with tangent vector uµ∂µ. If we replace this constant of

motion in the equation −1 = u2, we find that static particles at position r satisfy:

ε = H(r)−1/4 εp , (1.57)

where ε is the energy of the particle in string units as seen at infinity and εp is

the proper energy of the particle (i.e. as measured at r).19 If r >> L we find

19String excitations have energies E = ε/
√
α′, where increasingly excited states have increas-

ingly higher values of ε. Low-energy excited states therefore satisfy
√
α′ E = ε << 1. The

dimensionless energy ε is the relevant quantity to characterise excitations if we want to work in

the limit α′ → 0.
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ε =
(
1 +O(α′2/r4)

)
εp and therefore small ε requires low proper energy. On the

other hand, if r << L we obtain:

ε ∼ r

(α′)1/2
εp . (1.58)

In this case, the proper energy can be arbitrary while ε remains small as long as

the particle is sufficiently close to the D-branes.

The first claim we make is that these two types of low-energy excitations in the

bulk stop interacting with each other if the limit α′ → 0 is taken. We will discuss

this below. Note that, for the excitations in the near-horizon region at position r,

the limit α′ → 0 with H(r)−1/4 << 1 (so that (1.58) holds) requires that r → 0

faster than (α′)1/2. Just how fast we choose this to be is specified next, so for the

moment we will simply write r = (α′)n r̃, with n > 1/2, and take α′ → 0 with

the position of these excitations in the new coordinate r̃ fixed. In this limit, the

closed string excitations that are away from the D-branes propagate in Minkowski

space and are free strings, i.e. are described by free supergravity: the interaction

terms in the action (1.41) are all switched off once we expand the fields into their

background configurations plus the excitations and take the limit α′ → 0 [55]. On

the other hand, the closed string excitations that are near the D-branes propagate

in the near-horizon geometry (parametrised by r̃) and are fully interacting even

though we have taken the limit α′ → 0. This feature will be shown more precisely

below.

The second claim is that, if we take the same limit in the worldvolume action

(1.45), the interaction of the D-branes with the closed strings is switched off and

the theory on the branes reduces to N = 4 SYM in four dimensions with a flat

metric. We have argued that this is the case when we derived equation (1.49).20

Therefore, in both cases we have excitations that decouple from the (free)

closed strings that are away from the D-branes in the limit α′ → 0.21 The con-

jecture is then that the dynamics of the open string excitations on the branes and

20We have derived this in the particular case of vanishing R-R potentials, but it also holds

in the limit α′ → 0 when we include the R-R fields. Furthermore, we have assumed that

Gµν = ηµν + O(α′2). For the background metric (1.53) this is true except at r = 0, where the

branes are localised. The fact that Gµν is not of this form at r = 0 is the reason behind the

fact that the closed strings near the D-branes are not described by free supergravity as α′ → 0.

If we pullback both C4 and Gµν in the coordinate system (1.53) onto the worldvolume of the

D-branes, the divergences at r = 0 cancel and in the limit α′ → 0 the theory still reduces to

N = 4 SYM. This can be seen more concretely by working directly with the metric (1.62) in the

limit α′ → 0. Divergences at r = 0 translate into divergences as α′ → 0. However, there will be

an overall factor of L4 ∼ α′2 in the worldvolume action that combines with the brane tension

Tp ∼ α′−2. See also footnote 18.

21Schematically, we write the target spacetime metric as Gµν =
(
ηµν + α′2h

(1)
µν

)
+ α′2h

(2)
µν .

The excitations hµν are closed strings generated by the D3-branes and the metric in parenthesis

is the black-brane background. The excitations h
(2)
µν are the closed string excitations in this

background and decompose into far-away and near-horizon excitations. In the limit α′ → 0, the
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of the closed string excitations in the near-horizon region are determined by two

equivalent theories. In the former case, the theory on the D3-branes in the limit

α′ → 0 is N = 4 SYM, but we haven’t seen yet how the theory for the closed

strings survives the limit. To complete this correspondence we need to specify the

parameter n that was introduced above.

The parameter n is chosen so that energies measured on the D-branes remain

fixed as α′ → 0. Recall from string theory that if we move a D-brane away from

the stack of branes at r = 0, the gauge group U(N) of the non-abelian gauge

theory (1.49) is broken to U(1)×U(N − 1) and the gauge field Aa decomposes as:

Aa =

(
A1
a Wa

W †a A2
a

)
, (1.59)

where A1
a and A2

a are the U(1) and U(N − 1) gauge fields transforming in the

adjoint representation and Wa the W-boson in the fundamental representation of

U(1)×U(N−1). From the relation (1.48) between the scalars φI and the position

of the branes in transverse space, we have that giving a position r = r1 to one

D-brane corresponds to giving a configuration to the φI of the form:

φI =

(
φI1 0

0 φI(N−1)×(N−1)

)
: φI1∂I =

r1

2πα′
∂r + ... , ~φ(N−1)×(N−1) = 0 ,

(1.60)

which minimizes the potential [φI , φJ ][φI , φJ ]. The Higgses φI therefore acquire a

vacuum expectation value proportional to r1/α
′ = (α′)n−1r̃1 and particles such as

the W-boson gain a mass given by the Higgs vev via the Higgs mechanism. If we

want to keep masses fixed as we bring the D-brane closer and closer to the stack of

D-branes, i.e. as α′ → 0, we need to require that n = 1. Another way to see this is

by recalling that the mass of the W-boson as measured by the field theory on the

D-branes is equal to the mass M of an open string stretching between the branes

at r = 0 and the D-brane at r = r1 as measured at infinity. Since the tension

T = 1/(2πα′) of the string represents its mass per proper length l as measured

locally, we obtain:

T =
dMp

dl
= H(r)1/4 dM

dl
=
dM

dr
, (1.61)

where dM = H(r)−1/4dMp is the mass of each point on the string with the red-

shift factor derived in (1.57) and where dl = H(r)1/4dr is the infinitesimal proper

former decouple both from the latter and from the h
(1)
µν excitations. However, the near-horizon

excitations do not decouple from the h
(1)
µν modes in this limit. Finally, the D3-branes decouple

both from the h
(2)
µν and from the h

(1)
µν closed strings.
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length of the string as deduced from the metric (1.53). Integrating the equation

results in: M = r1/(2πα
′) = (α′)n−1r̃1/(2π). The mass of the W-boson therefore

remains fixed as α′ → 0 if n = 1.

The near-horizon geometry in which the closed string excitations of arbitrary

proper energy live is derived by parametrising the transverse space with the new

coordinate r̃ : r = α′r̃ and taking the limit α′ → 0. Note that in this limit we

approach r = 0 ∀r̃. In this case it is more convenient to define z :=
√

4πgsN/r̃.

The spacetime metric (1.53) in the new coordinate z becomes:

ds2
10 = L2

[(
1 + L2/z2

)−1/2
(
−dt

2

z2
+
d~x 2

3

z2

)
+
(
1 + L2/z2

)1/2(dz2

z2
+ dΩ2

5

)]

∼ L2

[
1

z2

(
dz2 − dt2 + d~x 2

3

)
+ dΩ2

5

]
(α′ → 0) , (1.62)

which is AdS5 × S5 (in the limit α′ → 0) with radius L ∝
√
α′. Note that, in

the decoupling limit α′ → 0, the radial coordinate z no longer parametrises the

position of the D-branes in the transverse space, since these are localised at r/L = 0

and we have approached this region with this limit, so the closed strings do not

see the D-branes localised at any specific region in the near-horizon geometry. We

will discuss the role of this new radial coordinate in the next sections.

Due to the overall factor of L2, the near-horizon space seems to reduce to zero

size as α′ → 0. This is indeed correct from the point of view of an observer away

from the D-branes and explains the fact that the closed string excitations in the

far-away region stop interacting with the excitations in the near-horizon region

in the low-energy limit. The former excitations cannot probe this region in this

limit since it reduces to zero size, or equivalently since their wavelengths become

infinitely longer than the size of this region. As a consequence, the cross sections

for the D-branes to absorb infalling particles from infinity reduces to zero [55].

Reciprocally, the closed string excitations near the D-branes see the Minkowski

region infinitely far away. In other words, from the redshift equation (1.57) in the

new coordinate z and in the limit α′ → 0, we find that these excitations need

an infinitely large proper energy to escape the gravitational potential and reach

infinity with non-zero energy ε, so they do not propagate to this region.

From the point of view of the closed strings near the D-branes, the near-horizon

region is AdS5×S5 with arbitrary radius ` (but α′ independent!). If we write the

background metric (1.62) in the limit α′ → 0 as:

ds2
10 =

L2

`2

[
`2

z2

(
dz2 − dt2 + d~x 2

3

)
+ `2dΩ2

5

]

=
L2

`2
G̃µνdx

µdxν , (1.63)
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and replace this background in the worldsheet sigma model of the closed strings,

we obtain:

S =
1

4πα′

∫
d2σ
√
g
(
Gµν∂αX

µ∂βX
νgαβ + ...

)
=

1

4πα′′

∫
d2σ
√
g
(
G̃µν∂αX

µ∂βX
νgαβ + ...

)
(1.64)

where:

α′′ = `2
α′

L2
=

`2√
4πgsN

. (1.65)

Even though we introduced ` for dimensional reasons, it is common practice to

set ` = 1, so we will adopt this convention unless specified otherwise.22 From the

point of view of the strings in the near-horizon geometry, the inverse string tension

is effectively α′′ rather than α′ and the background metric is the AdS5×S5 metric

G̃µν with unit radius rather than radius L.23 We may then safely take the limit

α′ → 0 and have a well-defined theory of interacting closed strings in the near-

horizon region. In particular, at lowest order approximation in the new inverse

string tension α′′, the dynamics of the closed string excitations is described by the

IIB supergravity action (1.41) in the AdS5 × S5 background G̃µν with `s =
√
α′

replaced by
√
α′′ (note that there is also a non-trivial background configuration

for the R-R five form). The ten dimensional Newton constant G10 = `8P = 8π6g2
s`

8
s

is also replaced by π4/(2N2) (or by: `8π4/(2N2) if ` 6= 1). It is never too much

to emphasize that, in the case of strings propagating in the background (1.62),

the inverse string tension is not α′ because it cancels with the α′ in the radius L2

(and we have taken the limit α′ → 0); in addition, the radius of the background is

not L and it depends on how we define the inverse string tension α′′. These issues

reflect the fact that only the dimensionless ratio α′/L2 is relevant, as opposed to

α′ and L separately (see also footnote 26 and the discussion below).

Recall now the relation (1.50) between the Yang-Mills coupling of the N = 4

gauge theory on the D3-branes and the string coupling constant: g2
YM = 4πgs.

Furthermore, recall from the analysis in section 1.1 that the coupling constant of a

non-abelian Yang-Mills theory with gauge group rank N is effectively λ = g2
YMN

rather than gYM alone, where λ is the ’t Hooft coupling. The inverse string

tension and the ’t Hooft coupling are then related as α′′ = 1/
√
λ. This implies

22Another common choice is ` = (4πgsN)1/4 such that α′′ = 1. However, it doesn’t really

matter which convention one adopts because only the dimensionless ratio α′/L2 = 1/
√

4πgsN

will appear in any final physical computation [27]. We will say more about this shortly.

23If n 6= 1, the background metric G̃µν is ill defined in the limit α′ → 0. Requiring that the

background be well-defined is another approach to fixing the parameter n.
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that the conjectured equivalence between the gauge theory on the D3-branes with

coupling λ and IIB closed strings on AdS5×S5 with coupling α′′ is a strong/weak

duality: when one is weakly coupled the other is strongly coupled and vice-versa.24

Once the low-energy limit α′ → 0 is taken, it seems that we are free to adjust

λ. Note, however, that the backreaction of the D3-branes was determined using

supergravity. This approximation required both gs < 1, which we have assumed

throughout, and α′ ∼ 0. If the curvature radius L is smaller than the string length

scale, string corrections to supergravity become important. This can be seen by

writing the α′ corrections to the Einstein-Hilbert Lagrangian in the supergravity

action as:

S =
1

16πG10

∫
d10x
√
G
(
R[G] + α′R2 + ...

)
, (1.66)

where R denotes the Riemann, or contractions thereof. Since R ∼ 1/L2 ∼
(gsN)−1/2/α′, we find that the string corrections are of the same order of the

leading term unless gsN >> 1. Note that this implies N >> 1. To suppress

these corrections we then need to require that the ’t Hooft coupling λ = 4πgsN

be sufficiently large. This in turn implies that α′′ ∼ 0. The gauge theory on

the D-branes is therefore strongly coupled and cannot be studied by any known

method that relies on perturbation theory in λ. However, the dual string theory is

weakly coupled and therefore well-described by IIB supergravity on the AdS5×S5

background. We can then study the strong coupling regime of the gauge theory

using a classical theory of gravity.

In section 1.1 we discussed the ’t Hooft limit of the gauge theory: N → ∞
with λ fixed. This is the large N limit under which the expansion of correlation

functions in Feynman diagrams becomes an expansion in topologies of Riemann

surfaces and reduces to a sum of planar diagrams at leading order in N as derived

in equation (1.22). This expansion represented the first hint that gauge and string

theories, as quantum theories, could be equivalent to one another. On the dual

string theory side, the ’t Hooft limit alone is also well-defined and corresponds to

the limit gs → 0 with α′′ fixed, under which all loop corrections in string perturba-

tion theory are suppressed with respect to the tree level diagrams. Given this fact,

it seems natural to formulate a stronger form of the correspondence and extend

the conjecture to all orders in λ. This includes the weak coupling regime of the

gauge theory which is amenable to perturbation theory in λ; on the string theory

24Note that we have chosen the radius ` so that this duality is explicit. For different choices

of `, in particular those that depend on λ such as ` = λ1/4 : α′′ = 1, this duality can be seen by

writing the supergravity approximation to string theory plus corrections as in equation (1.66)

with α′ replaced by α′′. We then have that R ∼ 1/`2 ∼ 1/(α′′
√
λ). Higher order curvature

terms, or stringy corrections, are therefore increasingly subleading with respect to lower order

ones iff λ >> 1. This analysis shows that the ’t Hooft coupling is effectively the string tension

regardless of the choice of `.
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side, α′′ corrections to IIB supergravity then become successively more important

than the leading terms and therefore the theory does not admit a description in

terms of a classical theory of gravity.25 The strongest form of the correspondence

is obtained by extending the conjecture to all values of N , in addition to all λ.

On the string theory side, we are extending the correspondence to all values gs, in

addition to all α′′. We can then summarise the original AdS/CFT conjecture as

follows:

Four dimensional N = 4 SYM with gauge group U(N) and ’t Hooft coupling

λ is equivalent to type IIB string theory with string coupling gs = λ/(4πN) and

inverse string tension α′′ = 1/
√
λ on an AdS5 × S5 background, both spaces with

unit radius.

An arbitrary but common radius ` for the AdS5 and the compact S5 spaces

can be introduced as we did when we derived equation (1.65). We should further

take into account the relationship (1.50) between the Yang-Mills instanton angle

θI and the vacuum expectation value of the axion and supplement the conjecture

with the identification between the two: 〈C0〉 = θI/(2π).

As discussed above, the weakest form of the conjecture corresponds to a restric-

tion to the regime α′′ ∼ 0, gs ∼ 0. In this case the supergravity approximation

is valid and we can consider perturbation theory in α′′. We are then probing the

regime of the (planar) gauge theory away from large λ. The mild form of the

conjecture corresponds to a restriction to the regime gs ∼ 0 ∀α′′. In this case

we have to consider the full IIB string theory spectrum, but we still work in the

classical approximation of the theory where the generating functional of string

theory correlation functions is dominated by worldsheets with the topology of the

sphere. We can then probe the non-perturbative regime of the string theory (in

gs) with the 1/N expansion of the dual gauge theory. The conjecture in its mild

form is obtained by working first in the limit N → ∞ such that λ/N is always

25We have argued above that λ needs to be large so that α′ corrections to the equations of mo-

tion that govern the backreaction of the D3-branes are negligible and the black-brane background

(1.53) is reliable. To be completely consistent with our reasoning, if we extend the conjecture

away from λ >> 1, then not only we need to consider α′′ corrections to the supergravity de-

scription of the dual string theory, but also α′ corrections to the supergravity action (1.66) that

governs the backreaction of the D3-branes. However, note that the distinction between the closed

strings that generate the AdS background and the closed strings that propagate in this back-

ground is artificial and is helpful only conceptually. We can simply consider closed strings with

inverse string tension α′′ and with vacuum expectation values for the target spacetime fields

given by the background AdS configurations. In this way, the α′ corrections to the supergravity

description of the former background-generating closed strings are part of the α′′ corrections to

the supergravity description of the latter strings with AdS vevs. We can then forget altogether

about α′ corrections and work solely with α′′. Note that a double prime in α is simply indicating

the fact that we have an AdS background, rather than a Minkowski background.
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small. It then posits the existence of a single theory with a dimensionless coupling

constant λ. The regime λ << 1 is most naturally described by a weakly coupled

planar gauge theory. The opposite regime λ >> 1 admits a natural description

in terms of a classical theory of gravity. Note that the latter is explicitly higher

dimensional, effectively one dimension extra. Once we compactify the closed string

fields on the S5, as described in section 1.2.5, we are left with massive fields in

five-dimensional AdS space. Therefore, as we move to the strong coupling regime,

the extra dimension that is not apparent at weak coupling becomes more visible.

This mimics the previous discussion about M-theory and string theory.

Finally, the strongest form of the conjecture corresponds to the regime of all

gs and all α′′. In this case we have to consider the contribution of all worldsheet

topologies to the generating functional and work with the full quantum theory

of IIB string theory. On the gauge theory side, N is no longer necessarily large

and all diagrams in the 1/N expansion contribute equivalently to the field theory

generating functional.

It should be mentioned that an equivalent statement of the conjecture is com-

monly found in the literature that makes use of the auxiliary, but nevertheless

redundant parameters gYM , α
′ and L. These extra parameters are not visible to

each theory and drop out of any final physical computations,26 but are helpful

conceptually. In this case, the gauge theory parameters are the group rank N and

gYM , while the string theory coupling gs = g2
YM/(4π), the inverse string tension is

α′ and the radius of the background is L4 = 4πgsN̄α
′2, with N̄ = N the number

of D3-branes on the string theory side, or equivalently the flux of the self-dual R-R

five-form in appropriate units. Note that the decoupling limit α′ → 0 is implicit

and the strong/weak duality relation is not explicit in this version.

It should also be mentioned that the gauge group U(N) involved in the cor-

respondence should be restricted more precisely to the subgroup SU(N). The

group product SU(N) × U(1) is an N -fold cover of U(N) such that: U(N) ∼
(U(1) × SU(N))/ZN . If we perform this group decomposition, we find that the

U(1) fields are free and represent the degrees of freedom associated with the center

of mass motion of the D-branes. Since there are no free fields on the gravity side,

the dual string theory is rather describing the SU(N) sector of the gauge theory

[27, 56]. We will say more about this aspect in section 1.2.5.

A fundamental feature supporting the duality between the two theories is the

equivalence of their symmetry groups, which are independent of the regimes of the

26 One way to see this is by recalling that the gauge theory does not have any dimensionful

parameter, so the dual string theory does not have either. In this way, the string theory does not

see α′ and L separately, but only the dimensionless ratio α′/L2 = α′′. Note that to introduce

α′ and L separately is effectively the same as to introduce `.
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parameters. If we analyse the global symmetries of string theory on AdS5×S5 (as

opposed to local symmetries such as reparametrization or gauge invariance), we

find that these match precisely with the global symmetries of the dual gauge theory

discussed at the end of section 1.2.1. Note that we should restrict the discussion

to the superconformal phase of N = 4 SYM characterised by vanishing vacuum

expectation values of the six scalars φI that represent the transverse positions of

the D-branes. The moduli space of the gauge theory is the space of all commuting

φI because the potential energy term is of the form [φI , φJ ]2 and therefore is

minimized by commuting scalars. It is then possible to have ground states with

〈φI〉 6= 0 as long as the scalars commute. Such phase is called the Coloumb phase

and the superconformal symmetry of the theory is spontaneously broken in that

phase because the vevs introduce a scale.

The SU(4)R ∼ SO(6)R R-symmetry of the gauge theory matches precisely with

the SO(6) symmetry of the dual string theory corresponding to invariance under

rotations on the S5. Also, the conformal symmetry group SU(2, 2) ∼ SO(2, 4)

of the gauge theory is the isometry group of AdS5. However, as discussed at the

end of section 1.2.1, the bosonic group SU(2, 2) × SU(4)R of the gauge theory

is enhanced to the superconformal group SU(2, 2|4). On the gravity side, the

D3-branes are 1/2 BPS and therefore preserve half of the N = 2 supersymme-

try of supergravity, which leaves us with 16 Poincaré supercharges. These are not

enough to extend the symmetry group to SU(2, 2|4). However, in the near-horizon

region we have the conformal symmetry group of AdS5. The generators of the spe-

cial conformal transformations do not commute with the Poincaré supercharges

and these commutators represent 16 conformal supercharges. In this way, in the

near-horizon geometry we have in total 32 supercharges and the symmetry group

SO(2, 4) × SO(6) ∼ SU(2, 2) × SU(4) on the string theory side is lifted to the

full superconformal group SU(2, 2|4),27 such that all generators of the latter are

either Killing vectors or Killing spinors of the near-horizon geometry. Finally, the

Montonen-Olive S-duality of the Yang-Mills theory acts as in (1.40) where now

τ = i/gs + 〈C0〉. This is precisely the S-duality of IIB string theory discussed in

(1.44).

The matching of the symmetries on each side of the duality and the correspon-

dence between the coupling constants represent the first entries in a dictionary

that should describe how gauge theory quantities map to string theory ones and

vice-versa. This is what is meant by equivalence between the two theories and

a precise map should be established between the theories. In particular, there

must be a correspondence between states as well as correlation functions. Since

27Just as on the gauge theory side, the central charge in the anticommutator of the Poincaré and

conformal supercharges vanishes and therefore the full symmetry group is in fact the PSU(2, 2|4)

subgroup as described in footnote 12.
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the global symmetry group on each side of the duality is SU(2, 2|4), string theory

states are in irreducible representation spaces for the superconformal algebra and

the same for the gauge theory. One should then detail the mapping between the

states. Closed string states correspond to excitations of the target spacetime fields,

whereas gauge theory states are in one-to-one correspondence with local operators

via the state-operator map,28 so there should be a one-to-one correspondence be-

tween string theory fields and local operators on the dual gauge theory side, more

exactly gauge invariant primary operators as we will now discuss.

1.2.4. Representations of the superconformal algebra

In order to derive this map, we need to discuss irreducible representations of

su(2, 2|4). This algebra is derived in appendix A.3. Recall that the way we build

irreducible representation spaces for the conformal and superconformal group is

different from the way we do it for the Poincaré and superPoincaré group. In

the latter case, we work with eigenstates of the generators Pµ of translations and

start by restricting the representation space to the subspace of states with a given

momentum p̊µ. We then find the subgroup of the Poincaré group that leaves p̊µ
invariant, called the stability/little group and which in this case is the spatial ro-

tations group, find irreducible representations of this subgroup and then boost the

states in such a representation by acting on them with the generators of Lorentz

boosts. In this way we generate an (infinite dimensional) irreducible representa-

tion space for the whole Poincaré algebra and all states in such a space will be

eigenstates of Pµ. Finally, we identify each such space with the Hilbert space of

a fundamental particle. Since PµP
µ and the square of the Pauli-Lubanski vector

are Casimirs, we find that irreducible representations, or particles, are classified

by the mass and by the spin/helicity of the particle, the latter given by the specific

rotations representation that we have boosted.

If we include supersymmetry in the algebra, before boosting the states in a

28In a conformal field theory on the plane, each state is obtained by acting on the vacuum with

a unique local operator (operator defined at a point), so there is an isomorphism between states

and local operators, in particular between highest-weight states and primary operators (tensors

under conformal transformations), and one rather speaks about the spectrum of operators –

the primary and its descendants – associated with each representation space. Note that this

isomorphism does not hold for non-conformal QFTs. In general, a state is obtained by acting

on the vacuum with an operator at the infinite past to create an “in” state and then evolving it

unitarily in time. For CFTs on the cylinder, the infinite past can be mapped to a single point

on the plane by a conformal transformation and therefore each state is mapped to a unique local

operator acting at the origin. In this sense, states in a CFT live at a point on the plane. On the

other hand, states in non-conformal QFTs live over a whole spatial hypersurface at past infinity

in the sense that each state is mapped to an infinite set of local operators corresponding to the

infinite number of points on the hypersurface.

37



1. Introduction to the AdS/CFT correspondence

representation space for the rotations subgroup we act on such a space with the

Poincaré supercharges Qα. From the algebra of these charges with the genera-

tors of rotations we find that the Qα lower and raise the spin of the states by

1/2, so the action of the supercharges results in several different irreducible rep-

resentation spaces for rotations (the range of spins depends on the number N
of supersymmetry and on the BPS property of the supermultiplet). This set of

different irreducible spaces is called a pre-boosted supermultiplet. We then boost

each such space as before to generate an irreducible representation space for the

whole superPoincaré algebra. In this case, however, we don’t associate the latter

space with a single fundamental particle, but still classify particles according to

the Poincaré representation. In other words, we rather associate each different

Poincaré representation in the boosted supermultiplet with the Hilbert space of

a different particle. In conclusion, a single irreducible representation space for

the whole superPoincaré algebra consists of a multiplet of different particles, each

classified according to the spin. This set of particles, each with its Hilbert space,

is what we call a supermultiplet. The mass of the particles in a supermultiplet

will be the same because P 2 is still a Casimir, so irreducible representation spaces

for the whole superPoincaré algebra, or supermultiplets, are classified by the mass

and by the highest spin in the representation (vector multiplet, hypermultiplet,

etc.).

In the case of the conformal algebra, we start by noticing that each generator

in the algebra is an eigenfunction of the dilatation generator D (i.e. ad(D)X ∝ X
for each generator X), so we build irreducible representations by working with

eigenstates of D with eigenvalues ∆ called conformal/scaling dimensions. Notice

that [D,Pµ] 6= 0, so these will not be eigenstates of Pµ (this and the fact that

P 2 is not a Casimir are the main reasons one doesn’t speak about particle states

in a conformal field theory). On the other hand, D commutes with the Lorentz

generators Mµν , so the states will transform in irreducible representations of the

Lorentz group. In a fashion similar to the Poincaré group, we begin by restricting

the representation space for the conformal algebra to the subspace of states with

a given dilatation eigenvalue ∆0, which we will fix below, and look for the sub-

group that preserves ∆0. The generators Mµν form a subalgebra and are the only

generators that commute with D, so the Lorentz group is in this case the stability

subgroup and we start by finding irreducible representations of this group. Since

so(1, 3) ∼ su(2) ⊕ su(2), the Lorentz group is the tensor product of two spatial

rotations groups and a basis for an irreducible representation space can be written

as
{
|j1,m1〉 ⊗ |j2,m2〉 : j1 = s1, j2 = s2

}
, where

{
|j,m〉 : j = s

}
is a basis for

an irreducible representation of rotations. Each irreducible representation of the

Lorentz group is labelled as (s1, s2), where s1 and s2 label the representation of

the respective SU(2) group. As a side remark, notice that the previous Poincaré
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group contains the Lorentz group as a subgroup, but in that case we don’t work

with representations of the full Lorentz group (only with its rotations subgroup)

because the generators of boosts do not leave p̊µ invariant.

Once we have chosen an irreducible representation space for the Lorentz alge-

bra, say (m,n), we have that each state in the representation basis has the same

dimension ∆0. The generators we have left are Pµ and the generators Kµ of spe-

cial conformal transformations. From the algebra of Pµ and Kµ with D we have

that these raise and lower the dimension of the states by one unit, respectively.

In an unitary representation space for the conformal group it follows that there is

a lower bound on the possible values for the dimensions ∆ of the states [57], so

we fix the dimension ∆0 we have started with to be that lowest possible one such

that all the states in the basis of (m,n)∆0
are annihilated by Kµ. We then act on

these states with all possible products of Pµ to generate a (infinite dimensional)

set of states that form a basis for an irreducible representation space for the whole

conformal algebra. All states in such a space are eigenstates of D, each classified

by its dimension ∆. Irreducible representation spaces are labelled as (∆0;m,n)

according to the lowest dimension ∆0 in the representation and to the specific

Lorentz representation (m,n) that we have “conformally boosted”. Note that,

from the algebra of Pµ and Kµ with Mµν , we have that Pµ and Kµ do not change

the spin of the states and their action does not leave the representation (m,n)

that we have started with: all states will have spin m+ n.

Now, given an irreducible representation space (∆0;m,n) for the conformal

group, it is almost universal in the literature to speak about a basis for a Lorentz

representation space (m,n)∆ inside (∆0;m,n) as a single “state” of conformal

dimension ∆ and to say that this “state” has Lorentz multiplicity (2m+ 1)(2n+

1), which is the degree/dimension of the (m,n) representation (the number of

states in the basis). This terminology is employed for the sake of simplicity in

the arguments. We will call such “state” a tensorstate |∆;m ⊗ n〉 of dimension

∆ and spin m + n. The tensorstate |∆0;m ⊗ n〉 that we have started with and

which is annihilated by Kµ is called a primary state, or highest-weight state,29 and

all tensorstates obtained by acting with products of Pµ on |∆0;m⊗ n〉 are called

the descendants. The set of tensorstates given by a primary and its descendants

is called a Verma module, which in our case is another name for an irreducible

conformal representation space.

Given a conformal field theory, from the state-operator map we have that

each tensorstate |∆;m ⊗ n〉 corresponds to a unique field theory tensor operator

Oµ1...µ(m,n)

∆ (x) of conformal dimension ∆ in the (m,n) Lorentz representation and

vice-versa (unlike its spin, the rank of the operator is not necessarily m+n and it

29Note the misnomer: a highest-weight state is the tensorstate of lowest dimension in a repre-

sentation space for the conformal algebra.
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depends on the representation) and the isomorphism is given by:

|∆;m⊗ n〉 = lim
x→0

Oµ1...µ(m,n)

∆ (x)|0〉 , (1.67)

where the vacuum |0〉 is defined to be the state annihilated by all generators of the

algebra, so one uses the notion of tensorstates and operators interchangeably. The

field theory operator associated with a primary state is called a primary operator.

Primary operators Φ(x) are therefore eigenfunctions of the dilatation generator at

the origin such that [D,Φ(0)] ∝ Φ(0) and are annihilated by Kµ at the origin such

that [Kµ,Φ(0)] = 0 (these expressions are evaluated on states, but also hold as

operator identities). The action of the generators on a primary at a generic point

can be derived from their action on the primary at the origin using the identity

Φ(x) = eix·PΦ(0)e−ix·P and the result is given by:

[D,Φ(x)] = −i (∆ + x · ∂) Φ(x) , (1.68)

[Kµ,Φ(x)] =
[
i
(
2xµx · ∂ + 2xµ∆− x2∂µ

)
− 2xνΣµν

]
Φ(x) , (1.69)

[Pµ,Φ(x)] = i∂µΦ(x) , (1.70)

[Mµν ,Φ(x)] =
[
i (xµ∂ν − xν∂µ) + Σµν

]
Φ(x) , (1.71)

where the Σµν matrices are the spin matrices that form the representation of the

Lorentz algebra that acts on the Lorentz indices of Φ(x) (which we are omit-

ting). These commutation relations imply that primary operators are tensors

under conformal-Weyl transformations and therefore transform as:

Φµ1...µn(x) → Ω−∆(x)
∂ϕµ1

∂xα1
...
∂ϕµn

∂xαn
Φα1...αn(x) , (1.72)

under a conformal-Weyl transformation (A.10)–(A.11). Reciprocally, every opera-

tor that transforms as above creates at the origin a tensorstate which is annihilated

by Kµ and therefore is a primary state.

The field theory operator associated with a descendant state is called a de-

scendant or derivative.30 Descendant operators are therefore eigenfunctions of the

dilatation generator at the origin and hence obey (1.68) at a generic point and

transform as in (1.72) under scale transformations. However, by definition they

are not eigenfunctions of Kµ at the origin and therefore do not obey (1.69) and

thus do not transform as tensors under a general conformal transformation. Recip-

rocally, every operator which is an eigenfunction of D at the origin but not of Kµ

creates a descendant state. Any operator in a conformal field theory is an eigen-

function of D at the origin and therefore is either a primary or a descendant. The

30 Since descendant states are obtained by acting on a primary state with products of Pµ, from

the commutation relation (1.70) it follows that a descendant operator is some nth-order partial

derivative of a primary operator, hence the second terminology.
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conformal dimension of an operator in the free theory coincides, by definition, with

its physical dimension in units of mass, or inverse length. In the interacting theory,

the dimensions in general will receive quantum corrections and are called renor-

malized dimensions. There are special operators which we discuss below, called

BPS superprimary operators and their superdescendants, that are protected from

quantum corrections and their dimensions remain the unrenormalized ones.

An operator is said to be invariant under a scale-Weyl transformation xµ →
x̄µ = λxµ if it transforms as: Φµ1...µn(x) → Φ̄

µ1...µn
(x̄) = Φµ1...µn(x̄). Using the

transformation law (1.72), we find that scale invariant operators satisfy:

Φµ1...µn
ν1...νm(λx) = λ−∆+n−m Φµ1...µn

ν1...νm(x) . (1.73)

As an example of the relation between tensorstates and operators, consider

the stress-energy tensor. Every conformal field theory in d dimensions has a

stress-energy operator Tµν of dimension ∆ = d which is a tensor under general

conformal transformations and is an example of a primary operator (in the case

d = 2 it is a quasi-primary, a distinction relevant only in two dimensions). In the

four-dimensional case, Tµν is in the (1, 1) symmetric traceless representation of

SO(1, 3). The tensorstate |∆ = 4; 1⊗ 1〉 = limx→0 T
µν(x)|0〉 that it creates corre-

sponds to the basis
{
Tµν(0)|0〉

}
. The vector space spanned by this basis coincides

with the irreducible Lorentz representation space (1, 1)∆=4 spanned by the basis{
|j = 1,m1〉 ⊗ |j = 1,m2〉

}
.31

As a final remark, note that primary or descendant operators away from the

origin are not eigenfunctions of the dilatation generator as can be seen from (1.68)

and their action on the vacuum results in a linear superposition of tensor eigen-

states of D:

Oµ1...µ(m,n)

∆ (x)|0〉 =
(
eix

µPµ Oµ1...µ(m,n)

∆ (0)
)
|0〉 = eix

µPµ |∆;m⊗ n〉

=
∑
s

is

s!
(xµPµ)s |∆;m⊗ n〉 , (1.74)

where we have used the Taylor expansion of the operator. In a similar fashion,

the action of an operator on a generic tensorstate determines its operator product

31 The correct procedure is to express each operator in the set
{
Tµν

}
in terms of the ten-

sor product of the irreducible tensor operators
{
T̂1m

}
: m ∈ {−1, 0, 1} as the linear com-

bination: Tµν =
∑
m,n

(
am,nµν T̂1m ⊗ T̂1n

)
, where am,nµν are coefficients. The action of an

irreducible T̂jm on the vacuum is given by: T̂jm|0〉 =
∑
J,M |J,M〉〈j,m; 0, 0|J,M〉, where{

|J,M〉 : J = J0

}
is a basis for an irreducible SU(2) representation space and where the

Clebsch-Gordan 〈j,m; 0, 0|J,M〉 = cj,mδJ,jδM,m, with cj,m some constant. In this way:

Tµν |0〉 ⊗ |0〉 =
∑
m,n

(
cm,nµν |j = 1,m〉 ⊗ |j = 1, n〉

)
. Each state in

{
Tµν |0〉 ⊗ |0〉

}
is therefore

written in terms of the basis
{
|j = 1,m〉 ⊗ |j = 1, n〉

}
and by inverting the above identity we

have the reciprocal statement (recall that Tµν has nine independent components). In this way

we find that the representation space spanned by
{
Tµν |0〉 ⊗ |0〉

}
coincides with that spanned by{

|j = 1,m〉 ⊗ |j = 1, n〉
}

.
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expansion (OPE) with the corresponding tensor operator:

O∆1
(x)O∆2

(0)|0〉 = O∆1
(x)|∆2〉 =

(
eix

µPµ O∆1
(0)e−ix

µPµ
)
|∆2〉

=
∑
∆

c∆1,∆2

∆ (x)|∆〉 =
∑
∆

c∆1,∆2

∆ O∆(0)|0〉 , (1.75)

from which it follows the OPE:

O∆1
(x)O∆2

(0) =
∑
∆

c∆1,∆2

∆ (x)O∆(0) , (1.76)

and where we have omitted the Lorentz multiplicity of the operators and states for

simplicity. The coefficients c∆1,∆2

∆ (x) can be determined by expressing the opera-

tor
(
eixPOe−ixP

)
in terms of commutators using the standard Hausdorff formula

and then using the commutator (1.70) of O with Pµ (which also holds for descen-

dants). A recent review of these topics in conformal field theory can be found in

the lecture notes [58].

Let us then turn to the representations of the superconformal group and ex-

tend the conformal algebra by including the Poincaré supercharges Qiα and the

conformal supercharges Sjα. Note that, in the case of N = 4 SYM, the indices

i, j = 1, ..., 4 on the supercharges transform in the fundamental of SU(4)R, whereas

the indices I, J = 1, ..., 6 on the scalars φI transform in the fundamental of SO(6)R.

The latter are mapped to the SU(4)R indices via the Σa matrices discussed in

(1.33) (see also footnote 15). Due to the Lorentz multiplicity of tensorstates, it

is much easier to discuss irreducible representations in terms of tensor operators

rather than states. From the algebra of the supercharges with the Lorentz gen-

erators Mµν it follows that Qiα (and Sjα) changes the spin of a state by 1/2, so

by using tensor operators we avoid having to organize states in tensorstates, i.e.

in irreducible representations of the Lorentz group, after acting with the Poincaré

supercharges on the states in (m,n)∆0 . As discussed above, a tensor operator cre-

ates directly a complete tensorstate: the set of states it creates forms a complete

basis for a Lorentz representation space. So once we find the set of tensor opera-

tors that form an irreducible representation space for the superconformal group,

the corresponding states in the representation automatically come organized in

Lorentz representations. The same discussion applies to representations of the

R-symmetry group which, together with the Lorentz group, forms the stability

group SO(1, 3)× SU(4)R of the superconformal group since the R-symmetry and

Lorentz generators are the only generators of the algebra that commute with D

(and form a subalgebra). Besides carrying a Lorentz representation, or multiplic-

ity, each operator also carries a representation of SU(4)R ∼ SO(6)R, so the set of

states the operator creates forms a basis for a representation space of the stability
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group. The fermionic generators Qiα and Sjβ carry the fundamental representa-

tion of SU(4)R, so by acting with these generators on some initial operator to

generate a representation space as discussed below, we obtain new operators that

also carry some representation of the stability group. It should be emphasized

that the action of the generators of the superconformal algebra on operators is

via the adjoint representation of the generators, i.e. in terms of commutators (and

anticommutators) as in (1.68)–(1.69).

In order to generate an irreducible representation space for the whole super-

conformal group, we start by noticing that, while Pµ and Kµ raise and lower the

dimension of eigenfunctions of D by one unit, from the commutation relations

with D it follows that the supercharges Qiα and Sjα raise and lower the dimension

by half a unit, respectively. Furthermore, from the anticommutation relations of

the supercharges we have that {Qiα, Q̄
j

β̇
} ∼ Pµ and {Siα, S̄

j

β̇
} ∼ Kµ, so certain

products of Q’s (and S’s) correspond to products of P ’s (and K’s) acting on op-

erators. So we proceed as in the case of the conformal group and start with some

operator Oµ1...µ(m,n)

∆0
of dimension ∆0 in the (m,n) Lorentz representation and in

some representation of SU(4)R (representations of the latter are labelled according

to the same Dynkin notation for SO(6) that we will use in the next section; we

omit these labels here, and will suppress the Lorentz indices, to avoid an excess of

labels that are not necessary for the discussion). We choose the operator to be the

one with the lowest possible dimension in the representation space for the super-

conformal group such that O∆0 is annihilated by Siα and S̄iα̇ and therefore also by

Kµ.32 We then act on O∆0
with all possible products of Q’s and Q̄’s to generate

an (infinite dimensional) irreducible representation space for the whole supercon-

formal group. Since the conformal algebra is a subalgebra of the superconformal

one, this representation space contains several irreducible representation spaces for

the conformal algebra. The operator O∆0 that we have started with and which is

annihilated by the conformal supercharges Siα is called a superconformal primary

operator, or superprimary. Those operators that we have derived from it by acting

with the Poincaré supercharges can be divided into two sets. Those that are anni-

hilated by Kµ are called superconformal descendants, or superdescendants. These

superdescendants are the primary operators of the several irreducible conformal

representation spaces. The remaining operators, those that are not annihilated by

Kµ, can each be written as some product of P ’s acting on the superprimary or

on a primary and therefore will be a descendant in the corresponding conformal

representation space. The number of different primaries derived in this way from

a superprimary will be finite, in general 2N − 1 for N real Poincaré supercharges,

and each of the 2N conformal representation spaces is classified by the Lorentz

32For the lower bounds on the possible conformal dimensions of operators in unitary super-

conformal representations, see ref. [59].
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representation and conformal dimension of the corresponding primary as usual.

In conclusion, an irreducible representation space for the whole superconfor-

mal algebra consists of a superprimary and a finite set of primaries, each with its

own (infinite dimensional) Verma module. This whole set is called a conformal

supermultiplet and is classified by the dimension ∆0 of the superprimary, which is

the lowest one, by its SU(4)R representation and by the highest spin in the super-

multiplet. The su(2, 2|4) algebra involves 16 real Poincaré supercharges, half with

helicity +1/2 and half with −1/2, and each raises the dimension of an operator

by half a unit, so the helicities in a conformal supermultiplet in general will range

from λ− 4 to λ+ 4, where λ = m+ n (the spins will range from λ to λ+ 4), and

the dimensions in general will range from ∆0 to ∆0 + 8 (the dimensions in each

Verma module will, of course, range from some ∆ to ∞).

As in any algebra with supersymmetry generators, there will be special repre-

sentations of the superconformal group that are shorter than generic ones. These

are representations built from special superprimaries that are annihilated by some

of the Poincaré supercharges. The number of supercharges we can effectively act

with to obtain new operators is therefore reduced and for this reason the num-

ber of primaries in such special conformal supermultiplets is less than 2N and the

range of helicities will be shorter. If the superprimary is annihilated by N/n of the

N real Poincaré supercharges, the corresponding representation is said to be 1/n

BPS, or chiral.33 In such representations of SU(2, 2|4) the spins will then range

from λ to λ+a and the dimensions of the primaries in general will be between ∆0

and ∆0 + 2a, where a = 4(1 − 1/n) (as we will see in the next section, there are

specific 1/2 BPS representations where the range of the dimensions is narrower

than this). Furthermore, the conformal dimension ∆0 of a BPS superprimary op-

erator is protected from quantum corrections: its dimension is uniquely fixed by

the superconformal algebra, more precisely by the anticommutator of the Poincaré

supercharges with the conformal supercharges. This can be derived by acting with

the anticommutator on a BPS superprimary and using the fact that the latter is

annihilated by all of the conformal supercharges and by some of the Poincaré

33The terminology BPS is employed by analogy with the superPoincaré case, where 1/n BPS

representations are characterised by the fact that 1/n of the total number of anticommutators

between Q and Q† vanish on the representation space. In the superPoincaré case this happens

whenever the mass of the particle states that form the representation is equal to the value of N/n
central charges, i.e. when they saturate (part of) the BPS bound, and in that case only (1−1/n)

of the total number of Q† are effective in building the representation space. However, the concept

of BPS bound arises only when we consider representation spaces for the supersymmetry algebra

where the states are eigenstates of the momentum operator Pµ. In the superconformal case, the

states created by BPS operators are not eigenfunctions of Pµ and P 2 is not a Casimir, so there is

no notion of mass and particles states and therefore one should not think of BPS representations

in the conformal case in terms of mass/BPS bounds.
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supercharges in order to express the dimension of the superprimary in terms of

its Lorentz representation and R-symmetry representation [60] (the corresponding

superdescendants will have dimension ∆0 plus an integer or half-integer number

and therefore are protected as well). In this way, BPS conformal supermultiplets

can be uniquely classified by the R-symmetry and Lorentz representations of the

superprimary operators. Since the supercharges are also in a representation of

SU(4)R, the R-symmetry representation of a primary in a supermultiplet is fixed

by that of the superprimary and by the number of Poincaré supercharges we acted

on it with to derive the primary.

1.2.5. Matching gauge theory operators with string states

In order to obtain the map between operators of the N = 4 SYM theory and the

string theory states, we need to organize all possible operators on the gauge the-

ory side in irreducible representations of the superconformal group, i.e. to derive

the spectrum of superprimary and primary operators that form conformal super-

multiplets. Each (local) gauge invariant operator of the theory consists of some

product of the elementary fields and their derivatives. Since the product needs to

be gauge invariant, we need to trace over the gauge group indices. We can consider

operators obtained by taking a single trace over a product of fields, or operators

that are products of such single trace operators. The latter multi-trace operators

are dual to multi-particle states or to bound states of single-particle states on the

string theory side and we will not discuss them here. As discussed in the previous

section, primary operators are derived from superprimaries by acting on the latter

with the Poincaré supercharges. The action of the supercharges on the elementary

fields is given by the N = 4 supersymmetry transformations that leave the SYM

Lagrangian invariant and which are schematically of the form:

δφ = [Q,φ] ∼ λ ,
δλ = {Q,λ} ∼ F+ + [φI , φJ ] ,

δλ̄ = {Q, λ̄} ∼ Dφ ,
δA = [Q,A] ∼ λ̄ , (1.77)

where F+ is the self-dual gauge field strength and D the gauge covariant derivative.

From this algebra it follows that superprimary operators, those of lowest dimension

in their own supermultiplets, cannot contain products of fermions or gauge field

strengths: operators with such products can always be written as a supercharge

acting on some other operator and therefore the latter is of lower dimension. For

this reason, superprimary operators in N = 4 SYM always consist of products of
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scalars. Let us then consider a generic such product:

Ok := Tr
(
φI1 ... φIk

)
. (1.78)

Note that each scalar φI has unrenormalized conformal dimension [φI ] = 1, which

is the physical dimension of the field in the free theory, and therefore [Ok] = k.

From the algebra (1.77) we have that antisymmetric products of scalars can be

written as a supercharge acting on some operator, so if the SO(6)R indices in

(1.78) are not completely symmetrised the operator will not be a superprimary.

In this way, N = 4 SYM superprimary operators always consist of symmetric

products of Lorentz scalars φI . Then, the symmetric product of SO(6)R vectors

φI (i.e. in the fundamental of SO(6)) is not an irreducible SO(6)R ∼ SU(4)R
representation and therefore a representation space for the whole superconformal

group derived from such a superprimary contains invariant subspaces (other than

itself). To obtain irreducible representations, we perform a decomposition of the

symmetric product of the scalars into those symmetric products that are totally

traceless (the contraction of any two indices vanishes) and those that consist of the

traces. Note that this is the standard irreducible decomposition of SO(n) tensors

of rank k, in this case symmetric ones. Finally, if the superprimary contains traces,

the resulting supermultiplet will contain primary operators of spin higher than 2,

in the above language the representation will not be 1/2 BPS.34 Such operators

correspond to string theory states obtained from the dimensional reduction of

ten-dimensional massive string states, which are suppressed in the supergravity

approximation α′′ → 0, and for this reason we will not discuss them here. On the

other hand, it can be shown that the totally traceless symmetric products that

remain are annihilated by half of the Poincaré supercharges and therefore form 1/2

BPS representations [62]. From the above discussion, the corresponding conformal

supermultiplets will be shortened and the spins will range from 0 to 2, as required

for operators dual to supergravity multiplets. Furthermore, as discussed above,

the conformal dimension of a BPS superprimary remains the unrenormalized one:

∆(Ok) = [Ok] = k, and therefore the dimensions in a 1/2 BPS supermultiplet

in general will range between k and k + 4. Since all superprimaries are in the

(0, 0) Lorentz representation and their dimensions are uniquely fixed by their R-

symmetry representations, the symmetric traceless SO(6)R representations can be

used to classify the BPS representations of the superconformal group.

In conclusion, the superprimary operators that are dual to supergravity fields

are of the form:

Ok = Tr
(
φ{I1 ... φIk}

)
: 2 ≤ k ≤ N , (1.79)

34In fact the representation will not be BPS at all since 1/4 and 1/8 BPS representations are

derived from multitrace superprimary operators [61].
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where N is the rank of the gauge group and φ{IφJ} denotes the symmetric traceless

product. The lower bound on k arises from the fact that we have a SU(N) gauge

group and the elementary fields are traceless in the gauge group indices (which

would not be the case for U(N)), whereas the upper bound is due to the fact that

Ok>N can always be expressed as a product of single-trace operators Ok<N (up

to superdescendants) and therefore as a multi-trace operator. The primaries in

a conformal supermultiplet are obtained by acting with products of the Poincaré

supercharges on the respective superprimary Ok and their form follows from the

algebra (1.77). These operators are given below in Table 1.1 after we discuss the

string theory states as states in representations of the superconformal group. The

descendants that form the Verma modules associated with each primary follow by

acting with products of Pµ’s on the corresponding primaries as discussed in the

previous section (see also footnote 30).

On the string theory side, the right procedure to follow would be to determine

the string theory spectrum on the AdS5 × S5 background: to solve the worlsheet

sigma-model in this background, to find the ground and excited states of the

string, which are states obtained by acting on the vacuum state with products of

the Fourier modes of the string embedding tensor operators, and then to verify

that these operators (or the states) fit into conformal supermultiplets, i.e. that can

be organized in irreducible representations of SU(2, 2|4) as discussed in the pre-

ceding section. We would then match the string supermultiplets obtained in this

way with the gauge theory supermultiplets. Even though this programme can be

followed in a Minkowski background, in which case the symmetry group is rather

the superPoincaré group, it is not known how to find the string theory spectrum in

curved backgrounds such as anti-de Sitter, though much progress has been made

in this direction over the past years.35 The only known states in the AdS5 × S5

string spectrum are the massless string states we derived in flat space, the particle

states of the ten-dimensional supergravity fields (note that the restriction of the

full spectrum to this subspace of states is valid only for large values of the ’t Hooft

coupling λ). However, as such, the ten-dimensional supergravity fields, or the

particle states associated with them,36 are not explicitly organized in superconfor-

35For a review of integrability of string theory in AdS5 × S5 see [63]. A way to deal with

this question, though, is to trust the AdS/CFT correspondence from first principles. The string

theory spectrum in AdS5 × S5 would then correspond to the states obtained from the spectrum

of N = 4 SYM operators.

36For the sake of clarity, the string embedding tensor operators are the operator-version of

the supergravity fields (in the supergravity approximation) and the states associated with each

field are the states obtained by acting with the operators on the vacuum state. For example, in

the case of a Minkowski target spacetime background, a specific state of the graviton is given

by: hµν(p)ψ
{µ
−1/2

|0, p〉+NS ⊗ ψ̃
ν}
−1/2

|0, p〉−NS . Here, ψµr are the Fourier modes of the fermionic
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mal irreducible representations but rather in a massless Poincaré supermultiplet.

Since the global symmetry group on the string theory side is SU(2, 2|4), the su-

pergravity fields necessarily must fit into conformal supermultiplets. The helicities

of the fields range from −2 to 2, so from the discussion in the previous section it

follows that they must form 1/2 BPS representations built on superprimaries that

are Lorentz scalars.37 We have seen that BPS representations are uniquely clas-

sified by the R-symmetry representation of the superprimaries and their Lorentz

representations (which in this case is always the (0, 0)) and that each primary is

also in a specific R-symmetry representation. Since the R-symmetry group is the

isometry group SO(6) of the S5, if we want to organize the supergravity fields in

conformal supermultiplets we need to make explicit their SO(6) representations.

This means that we have to expand each supergravity field in spherical harmonics

on the S5, which is an expansion in elements of different irreducible representation

spaces for SO(6). For example, scalar spherical harmonics Yk are in one-to-one

correspondence with symmetric traceless SO(n) tensors of rank k, which transform

irreducibly under the action of SO(n):

Y
(m)
k (x̂) = T

(m)
I1... Ik

x̂I1 ... x̂Ik :

n∑
I=1

x̂I x̂I = 1 , (1.80)

where
{
T (m)

}
forms a basis for the SO(n) irreducible representation space Vk

of symmetric traceless tensors of rank k such that T (m) · T (m′) = δmm
′

and:

m = 1, 2, ...,dim(Vk), with dim(Vk) the dimension of the vector space given in

terms of gamma functions by:38

dim(Vk) =
(n+ 2k − 2) Γ(n+ k − 2)

Γ(n− 1)Γ(k + 1)
. (1.81)

string embedding acting on the NS left/right moving vacuum |0, p〉+/−NS , with ψ{µψ̃ ν} denoting

the symmetric traceless part. The coefficients hµν are what we call a classical solution of the

supergravity equations of motion around the flat background such that the metric Gµν = ηµν +

hµν . The tensor operator Ĝµν := ψ
{µ
−1/2

⊗ψ̃ ν}−1/2
is what we call the operator-version of the metric

Gµν . Supergravity fields are in this way in a one-to-one correspondence with tensor operators

and we will use the notion of fields, operators and the states they create interchangeably since

this is common practice in the literature.

37In the supergravity limit α′′ → 0 there are no other string states, so the supergravity fields

cannot be in other BPS or non-BPS representations because these would require additional states

of spin > 2.

38In the case n = 3, for example, we have the standard identification between Vk of dimension

dim(Vk) = 2k + 1 and the irreducible representation space for rotations spanned by the angular

momentum basis
{
|j,m〉 : j = k

}
. For n = 4, Vk coincides with the SO(4) irreducible represen-

tation spanned by
{
|j1,m1〉 ⊗ |j2,m2〉 : j1 = j2 = k/2

}
, just as for the ( k

2
, k

2
) representation of

the Lorentz group. Note also that the notation in this case is different than the one in footnote

31 since Tµν are operators, while each T
(m)
I...J (for each m) is a matrix of c-numbers. So, while Tµν

represents nine independent components, each T
(m)
I...J (for each m) represents one independent

component.
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The expansion of a Lorentz-scalar field in S5 spherical harmonics is therefore an

explicit expansion in symmetric traceless tensors of SO(6) such that each mode

corresponds to an element of a different symmetric traceless representation. More

generally, each spherical harmonic mode in the expansion of a supergravity field

will be in a specific SO(6) irreducible representation labelled according to the

Dynkin notation (a1, k, a2) for SO(6), where a1,2 depend in particular on the

Lorentz representation of the spherical harmonic (determined by the Lorentz rep-

resentation of the supergravity field) but are independent of the rank k of the

spherical harmonic. Each mode will fit in a conformal supermultiplet derived

from a superprimary which should be a spherical harmonic mode of a Lorentz

scalar. Since the supercharges carry a SU(4)R ∼ SO(6)R representation (besides

carrying a Lorentz representation) and each superdescendant in a supermultiplet

is obtained by acting with some product of Poincaré supercharges on a scalar su-

perprimary, the spherical harmonic modes that will be in a given supermultiplet

are uniquely determined by the SO(6)R representation of the superprimary.

Therefore, in order to organize the supergravity fields (or the corresponding

string states/operators) in conformal supermultiplets, we start by decomposing

the ten-dimensional fields into their background configurations plus perturbations

and then expanding the perturbations in S5 spherical harmonics:39

φ(x, θ) =

∞∑
k=0

φk(x)Yk(θ) , (1.82)

where xµ are coordinates on AdS5 and θa on S5. Note that this expansion depends

on the Lorentz representation of the ten-dimensional field φ(x). Explicit expres-

sions for the expansions of each field are given in the original work [64]. In the

case of the spacetime metric, we perform the decomposition into the AdS5 × S5

background configuration (the metric G̃ in (1.63) with ` = 1) plus perturbations

hMN as:

ds2
10 = GMNdx

MdxN

= GAdS5
µν dxµdxν +GS

5

ab dθ
adθb + hMNdx

MdxN , (1.83)

where:

GAdS5
µν dxµdxν =

1

z2

(
dz2 − dt2 + d~x 2

3

)
, (1.84)

and expand the different components of hMN (x, θ) in spherical harmonics. The

S5 components hab are Lorentz scalars on AdS5, whereas the components hµa are

39Here we are omitting the inner product of each mode φk with the corresponding basis Yk
because the expansion depends on the Lorentz representation of φ. In the case of scalar harmonics

(1.80), for example, we would have the usual sum over m.
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( 1
2 ,

1
2 ) Lorentz vectors. If we introduce the S5 expansions in the ten-dimensional

supergravity action and dimensionally reduce it by integrating on the S5, the

Newton constant of the resulting five-dimensional action is determined as:

1

16πG10

∫
d10x
√
G
(
....
)

=
1

16πG10

∫
d5θ
√
GS5

∫
d5x
√
GAdS

(
....
)

=
1

16πG5

∫
d5x
√
GAdS

(
....
)

: G5 = G10/π
3 = π/(2N2) , (1.85)

where π3 =Vol(S5) and we used the result of section 1.2.3 for G10 (if the AdS5×S5

radius ` 6= 1 we have G5/`
3 = π/(2N2)).

After expanding a given field φ as in equation (1.82), we have that each spher-

ical harmonic mode φk will be an eigenfunction of the dilatation generator in the

following sense. On the string theory side, the generators of the conformal al-

gebra are the Killing vectors of AdS5. The dilatation generator D in this case

corresponds to the derivative z∂z + xα∂α that generates scale transformations

z → λz, xα → λxα, with z the AdS radial direction transverse to the D3-branes

and xα = (t, ~x) the coordinates on the branes. A supergravity mode φk(z, x) will

be an eigenfunction of D if: (z∂z + x · ∂)φk = (∆ + x · ∂)φk (recall equation

(1.68)),40 which should be read asymptotically as z → 0. Once we introduce the

spherical harmonic expansions in the supergravity equations of motion (linearized

around AdS5×S5), the five-dimensional modes of each ten-dimensional (massless)

supergravity field will acquire a mass according to their SO(6) and Lorentz rep-

resentations. This mass in turn will determine the leading order asymptotics of

the modes in the radial direction: φk = z∆
(
φ(∆)k +O(z>0)

)
, where ∆ = ∆(m) is

a polynomial of the mass m associated with the mode, which in turn is uniquely

fixed by the SO(6) and Lorentz representation of φk. Since ∆(m) is the asymptotic

eigenvalue of the mode with respect to z∂z, we conclude that each mode will be an

eigenfunction of the dilatation generator with a specific dilatation eigenvalue ac-

cording to its SO(6) and Lorentz representation. We have restricted this analysis

to the asymptotic regime (and to the normalisable solutions of the supergravity

equations of motion) and the reason that this should be the case will be clear

after the discussion in section 1.3. The relation between the eigenvalues ∆ and

40In terms of states and operators as in section 1.2.4, this statement translates to: D|φk〉 =

−i∆|φk〉, where |φk〉 = limz,x→0 Oα1...αn
k (z, x)|0〉 is the tensorstate created by the xα compo-

nents of the string tensor operator Ok(z, x) associated with the five-dimensional supergravity

field φk(z, x) such that: [D,Ok(0, x)] = −i(∆ + x · ∂)Ok(0, x). The z-components can always be

gauge-fixed near z = 0 and do not represent real degrees of freedom.
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the masses of the modes is given by:

scalars : m2 = ∆(∆− 4) ,

spin 1/2, 3/2 : |m| = ∆− 2 ,

p-forms : m2 = (∆− p)(∆ + p− 4) ,

spin 2 : m2 = ∆(∆− 4) , (1.86)

where ∆ = k+a, with a ≥ 0 an integer or half-integer number that depends on the

Lorentz representation of the field [64] and is given below in Table 1.1 for each field.

1/2 BPS irreducible representations of the superconformal group built on Lorentz-

scalar superprimaries were determined in [65] using oscillator representation meth-

ods, whereas the spectrum of the S5 compactification of supergravity was deter-

mined in [64] (in the latter reference the procedure involves a diagonalisation of

the supergravity equations of motion for the spherical harmonic modes in order to

decouple all interactions and obtain equations for free fields with mass terms. In-

teractions can then be switched on after the spectrum has been determined). Given

that each supergravity mode is in a specific SO(6)R representation (a1, k, a2) and

Lorentz representation (s1, s2), we can organize the modes in conformal supermul-

tiplets using the group theoretic analysis of [65].41 The spectrum of superprimaries

and corresponding superdescendants that form the gauge theory and string theory

conformal supermultiplets is given below in Table 1.1, which was adapted from

reference [61]. Here we are omitting the complex conjugates of the operators and

fields. The fermionic supergravity fields ψM and χ correspond to the two gravitinos

(N = 2) and the two dilatinos, respectively. The metric G′µν = Gµν − 1
3G

AdS5
µν Gaa ,

41Note that this can be done particularly without knowing a priori the conformal dimension ∆

discussed above associated with each supergravity mode. For example, from Table 1 in ref. [65]

we have that the superprimary of lowest conformal dimension is a Lorentz scalar in the (0, 2, 0),

which corresponds to the 20 according to our formula (1.81) with n = 6, k = 2. Then, from the

supergravity spectrum in Table III in ref. [64] we have that the only scalar modes in the 20

are the k = 2 modes of the supergravity fluctuations H := hαα − aαβγδ and B. However, from

ref. [65] we see that the higher the dimension (or the rank k) of a SO(6)R representation in the

expansion of a supergravity field, the higher its conformal dimension. For this reason, the lowest

superprimary cannot be the 20 of the axion-dilaton field B because it has SO(6)R representations

of lower dimension (namely the 1 and the 6) and therefore of lower conformal dimension. On the

other hand, the 20 of the H is the lowest dimensional SO(6)R representation in the spherical

harmonic expansion of H, so the lowest superprimary will be the (0, 2, 0) spherical harmonic

mode of H. This reasoning can then be repeated in succession for all other supergravity modes

to derive the conformal supermultiplets. The conformal dimensions in [65] will then coincide with

the conformal dimensions ∆ discussed above and this is an alternative way to derive the latter

using group theory (note that in ref. [65] the conformal dimensions are given by E0/2 because

the dilatation generator D corresponds to the generator of U(1)E in L0 multiplied by a factor

of 1/2, which can be seen by comparing equation (2) in this reference with the commutation

relation between D and the Poincaré supercharges Qiα).
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SYM Operator superdesc SUGRA dim ∆ spin SO(6)R

Ok ∼ Trφk : k ≥ 2 – Gaa , C4abcd k (0, 0) (0, k, 0)

O(1)
1+k ∼ Trλφk : k ≥ 1 Q ψa k + 3

2 ( 1
2 , 0) (1, k, 0)

O(2)
2+k ∼ Trλλφk Q2 Bab + iC2ab k + 3 (0, 0) (2, k, 0)

O(3)
2+k ∼ Trλλ̄φk QQ̄ Gµa , C4µabc k + 3 ( 1

2 ,
1
2 ) (1, k, 1)

O(4)
1+k ∼ TrF+φ

k : k ≥ 1 Q2 Bµν + iC2µν k + 2 (1, 0) (0, k, 0)1

O(5)
2+k ∼ TrF+λ̄φ

k Q2Q̄ ψµ k + 7
2 (1, 1

2 ) (0, k, 1)

O(6)
2+k ∼ TrF+λφ

k Q3 χ k + 7
2 ( 1

2 , 0) (1, k, 0)

O(7)
3+k ∼ Trλλλ̄φk Q2Q̄ ψa k + 9

2 (0, 1
2 ) (2, k, 1)

O(8)
2+k ∼ TrF 2

+φ
k Q4 C0 + iΦ k + 4 (0, 0) (0, k, 0)

O(9)
2+k ∼ TrF+F−φ

k Q2Q̄2 G′µν k + 4 (1, 1) (0, k, 0)

O(10)
3+k ∼ TrF+λλ̄φ

k Q3Q̄ Bµa + iC2µa k + 5 ( 1
2 ,

1
2 ) (1, k, 1)

O(11)
3+k ∼ TrF+λ̄λ̄φ

k Q2Q̄2 C4µνab k + 5 (1, 0) (0, k, 2)

O(12)
4+k ∼ Trλλλ̄λ̄φk Q2Q̄2 G(ab) k + 6 (0, 0) (2, k, 2)

O(13)
4+k ∼ TrF 2

+λ̄φ
k Q4Q̄ χ k + 11

2 (0, 1
2 ) (0, k, 1)

O(14)
4+k ∼ TrF+λλ̄λ̄φ

k Q3Q̄2 ψa k + 13
2 ( 1

2 , 0) (1, k, 2)

O(15)
3+k ∼ TrF+F−λφ

k Q3Q̄2 ψµ k + 11
2 ( 1

2 , 1) (1, k, 0)

O(16)
3+k ∼ TrF+F

2
−φ

k Q4Q̄2 Bµν + iC2µν k + 6 (1, 0) (0, k, 0)2

O(17)
4+k ∼ TrF+F−λλ̄φ

k Q3Q̄3 Gµa , C4µabc k + 7 ( 1
2 ,

1
2 ) (1, k, 1)

O(18)
4+k ∼ TrF 2

+λ̄λ̄φ
k Q4Q̄2 Bab + C2ab k + 7 (0, 0) (0, k, 2)

O(19)
3+k ∼ TrF 2

+F−λ̄φ
k Q4Q̄3 ψa k + 15

2 (0, 1
2 ) (0, k, 1)

O(20)
4+k ∼ TrF 2

+F
2
−φ

k Q4Q̄4 Gaa , C4abcd k + 8 (0, 0) (0, k, 0)

Table 1.1: Super Yang-Mills operators and the corresponding supergravity fields.

The range of k is k ≥ 0 unless otherwise specified.

whereas F+/− are the self-dual/antiself-dual SYM field strength. Since the gauge

theory is defined in four dimensions, the Lorentz indices of the SYM operators are

omitted to avoid confusion with the supergravity indices.

The conformal supermultiplets built on the superprimaries On of dimension

∆ = n are given by the sets:{
O2;O(1)

2 , ...,O(6)
2 ,O(8)

2 ,O(9)
2

}
, (1.87){

O3;O(1)
3 , ...,O(11)

3 ,O(13)
3 ,O(15)

3 ,O(16)
3

}
, (1.88){

On;O(1)
n , ...,O(20)

n

}
: n ≥ 4 . (1.89)
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The string superprimaries and superdescendants are the SO(6)R modes of the

perturbations of the corresponding SUGRA fields. A string superprimary of di-

mension k is a linear combination of the (0, k, 0) mode of the trace of the S5

components of the metric perturbation with the (0, k, 0) mode of the S5 compo-

nents of the antisymmetric 4-form perturbation:

h a
(k)a − 10(k + 4)b(k) : k ≥ 2 , (1.90)

where a(k)4abcd ∼ b(k)εabcd are the modes of the perturbation of C4abcd. The string

superdescendant of highest dimension (in a supermultiplet built on a superprimary

of dimension 4 + k) corresponds to a different linear combination of these modes:

h a
(k)a+10k b(k). A similar thing happens in the other slots with two fields separated

by a comma.42 Note that a mode (0, k, 0) of the antisymmetric 2-form Bµν +

iC2µν seems to lie in two different supermultiplets, one built on a superprimary

of dimension ∆ = 1 + k and another on a superprimary of dimension ∆ = 3 + k.

What happens in this case is that the equation of motion for the antisymmetric

2-form factorizes into two field equations with different mass terms, so the 2-form

effectively admits two different spherical harmonic expansions with modes (0, k, 0)1

and (0, k, 0)2.43 Note also that there are supergravity modes with negative mass-

squared: the (0, 2, 0) and (0, 3, 0) scalar superprimaries and the (2, 0, 0) mode of

the scalars Bab + iC2ab. However, in AdS spaces a scalar field can have negative

mass-squared without being tachyonic: the AdS curvature provides a positive

contribution to the energy of the field such that the total energy is non-negative if

m2 ≥ −4 in five dimensions [66, 67]. This is the so-called BF bound, or stability

bound, and is saturated by the lowest string superprimary.

It should also be mentioned that unitarity of SU(2, 2|4) representation spaces

built on scalar superprimaries implies the unitarity bound ∆ ≥ 1, which is less

stringent than the bound in (1.79). For a SU(N) gauge group, the elementary

operators of the gauge theory are traceless as remarked above and the supermulti-

plet built on O1 is empty (for a U(N) gauge group there is the so-called doubleton

supermultiplet built on the superprimary O1). On the string theory side, the su-

permultiplet built on the (0, 1, 0) superprimary consists of modes that are pure

gauge and therefore it can be made empty by diffeomorphisms and gauge trans-

formations. This result is consistent with the fact that the string theory side is

describing the SU(N) sector of the gauge theory.

42These linear combinations are obtained by diagonalizing the corresponding equations of

motion. In the case of the ha
(k)a

with b(k) modes this is given by equation (2.33) in ref. [64]. In

the case of the Gµa and C4µabc modes, the linear combinations are explicitly given in equation

(2.28) in this reference.

43See equations (2.61)–(2.64) together with equation (2.48) in reference [64].
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The representations built on the superprimaries of dimension ∆ ≥ 4 have 20+1

primaries of dimension between ∆ and ∆ + 4, but those built on superprimaries

with ∆ = 2 and ∆ = 3 are even shorter and the dimensions have a range span of

2 and 3, respectively. The gauge theory supermultiplet built on the superprimary

O2 contains the conserved currents of the theory (the stress-energy tensor, the R-

symmetry currents and the supercharges) and for this reason this supermultiplet

is called the currents supermultiplet. The highest dimension primary operator in

this supermultiplet has conformal dimension 4 and is the Yang-Mills stress-energy

tensor. On the string theory side this corresponds to the (0, 0, 0) mode of the

metric G′µν , which is the only massless spin-2 mode as seen from equation (1.86)

and therefore corresponds to the graviton. The string theory supermultiplet that

contains this mode is therefore called the graviton supermultiplet and corresponds

to the currents supermultiplet on the gauge theory side (in fact the names are used

interchangeably).

The string theory field content of the graviton supermultiplet coincides with the

field content of N = 8 gauged supergravity in five dimensions. This theory can be

obtained from the Kaluza-Klein reduction of ten-dimensional N = 2 supergravity

by working in the limit where the Kaluza-Klein radius of the compact manifold is

small so that only the lightest mode of each field survives. All gauge fields in this

theory are massless and for this reason the graviton supermultiplet is said to be

massless (all scalars but one, all fermions and the 2-form in this supermultiplet

are massive as seen from (1.86)). Note, however, that in the case of AdS5 × S5

the radius of the S5 is the same as that of AdS, so we cannot remove from the

compactified theory all but the lightest modes by a similar argument. In this way,

in our case the S5 compactified theory does not correspond to an effective low-

energy theory but remains the full theory since we are keeping the infinite tower

of Kaluza-Klein modes from first principles. On the other hand, the truncation of

the S5 compactification of the ten-dimensional supergravity theory to the graviton

supermultiplet is believed to be a consistent truncation in the sense that solutions

of the resulting N = 8 supergravity theory in five dimensions are exact solutions of

ten-dimensional supergravity. So, by keeping only the field content of the graviton

supermultiplet we are not working with an effective theory but rather restricting

our analysis of the full ten-dimensional theory to a specific sector of the theory.

If we restrict the compactified theory to N = 8 gauged supergravity in AdS5,

we have that each of the fields is dual to a gauge theory operator that lies in

the supercurrent multiplet. To compute their correlation functions we deform the

gauge theory by introducing sources for these operators. With the exception of the

stress-energy tensor,44 each of these operators has conformal dimension ∆ < 4 and

44In the case of the stress-energy operator, we compute its correlation functions by promoting

the gauge theory flat metric to an arbitrary background metric g(0) and taking variations of

the generating functional with respect to this source before setting back g(0) to be flat. Since
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therefore is a relevant operator (see appendix A.4). While the undeformed gauge

theory does not require renormalization, relevant (and marginal) deformations in

general spoil the UV-finiteness of the theory such that the correlation functions of

relevant operators will be UV-divergent.45 Unlike the case of irrelevant operators,

however, these divergences are renormalisable by a finite number of counterterms.

These gauge theory UV-divergences have an exact analogue on the supergravity

side, where they are mapped to divergences of the supergravity action associated

with the infinite size of the AdS space. The latter arise from the behaviour of

AdS gravity at long distances and therefore are called IR-divergences. This type

of duality between the divergences of the two theories is called a UV/IR duality.

The subsequent renormalization procedure on the gauge theory side also has an

exact analogue on the string theory side. The systematic process of removing

the supergravity divergences is called holographic renormalization and will be the

subject of the next sections.

String supermultiplets other than the graviton one include fields dual to gauge

theory operators of dimension ∆ > 4. Those operators are therefore irrelevant and

their correlation functions contain UV divergences that are not renormalisable.

This non-renormalizability of the gauge theory deformed by irrelevant operators

is reflected on the string theory side, in which case the holographic renormaliza-

tion procedure breaks down in the presence of the dual string theory fields and

the corresponding effective action is non-renormalisable. Since the gauge theory

supercurrent multiplet is the only supermultiplet with non-irrelevant operators, it

follows that the string theory graviton supermultiplet is the only supermultiplet

dual to a UV-conformal field theory (c.f. appendix A.4).

The matching between the gauge theory and string theory supermultiplets dis-

cussed in this section is a consistency check, albeit a very helpful one, and does not

imply an equivalence between the two theories: this matching would necessarily

take place between any two theories with the same symmetry groups (although it

is hard to find inequivalent theories with the same symmetry groups). As men-

tioned at the end of section 1.2.2, the strongest suggestion that the two theories

are describing the same aspects of the same system, just from different perspec-

tives, follows from the fact that each theory seems to encode the observables of

the stress-energy tensor has conformal dimension 4, switching on an arbitrary metric can be

interpreted as a deformation of the original theory by a marginal source.

45It should be emphasized that, if the undeformed theory is UV-finite, then the divergences in

the correlators are always proportional to the sources and derivatives of it and therefore vanish

if the sources are set to zero (and the metric to be flat if the correlator involves the stress-energy

operator). This is just the statement that switching off the sources in a correlator should result

in the same expression as that obtained by computing the correlator of an operator of the UV-

finite theory. In this way, renormalization is only required if the sources are set to be coupling

constants, or left arbitrary but non-vanishing functions.
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the other. A given quantum field theory is completely characterised by the set

of all its correlation functions and therefore by its generating functional. Fol-

lowing the original conjecture [20], and motivated in particular by the results of

[17, 18, 19], it was proposed in [21, 22] how to use the string theory partition

function with AdS boundary conditions to define the generating functional of a

quantum field theory. The correlation functions computed via this prescription

reproduce all expected results of a UV-conformal field theory. In the particular

case of string theory approximated by N = 8 gauged supergravity in AdS5, these

are the correlators of the N = 4 SYM operators in the supercurrent multiplet

that we discussed above.46 Recall that this approximation is valid in the regime

α′′ ∼ 0, which corresponds to the strong coupling regime λ >> 1 of the gauge

theory where perturbation theory in λ is not reliable. The prescription therefore

allows us to study the non-perturbative sector of the gauge theory using the dual

supergravity theory as we discussed in the previous sections. Even though the

correlation functions at strong coupling cannot be computed perturbatively in the

gauge theory, the conformal symmetry of the theory completely fixes the form of

the (n ≤ 3)-point correlators up to proportionality constants [68] as we will see in

the next section, while (n > 3)-point functions are fixed up to a proportionality

function of anharmonic ratios [69, 70]. These constraints imposed by conformal

invariance are satisfied by the correlation functions derived from supergravity us-

ing the AdS/CFT prescription.

The computation of the gauge theory correlators from the dual string theory

partition function requires detailing the precise way the supergravity fields are

related to the super Yang-Mills operators. In this section we have shown how these

fields are organized in the same conformal supermultiplets as these operators, but

we have not discussed the identification between the Hilbert spaces of the two

theories. The particle states associated with each supergravity field should be

in one-to-one correspondence with the states created by the corresponding gauge

theory operators, but this identification is highly non-trivial. Note that the SYM

operators in Table 1.1 are defined in four dimensions, whereas the supergravity

modes live in one dimension higher, with the radial coordinate z in the AdS5

metric (1.84) parametrising the extra dimension. This implies in particular that

46Note that we compute correlation functions of the gauge theory operators that lie in the

conformal supermultiplets. Correlation functions of the elementary fields themselves are not

observables because the latter are not gauge invariant. To form gauge invariant quantities we need

to trace over the gauge group indices, but then the trace of the elementary SU(N) fields vanishes.

In the U(N) case the elementary fields correspond to the operator content of the doubleton

supermultiplet:
{
O1;O(1)

1 ,O(4)
1

}
and respective complex conjugates, and we can compute their

correlation functions in the gauge theory (though this would be done at weak coupling). Since

the dual string theory only describes the SU(N) sector of the gauge theory, these correlators

cannot be computed on the gravity side with the standard AdS/CFT correspondence.
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the states created by the SYM operators do not correspond directly to the states

created by the string operators associated with each five-dimensional supergravity

mode.

We have seen that a fundamental piece in the duality between the two theories

is the decomposition of each ten-dimensional supergravity field in S5 harmonics

so that the SO(6)R representations of the fields be explicit. The S5 components

and the Kaluza-Klein modes are then recovered on the gauge theory side from

the infinite set of operators of different spins that form the supermultiplets. The

precise correspondence between these operators and the modes requires in turn a

decomposition of each mode along the radial direction that solves the supergravity

equations of motion in the AdS5 background. These equations are second order

in the radial coordinate and therefore each mode admits two linearly independent

solutions called the non-normalisable and normalisable solutions. The leading or-

der coefficient in the radial expansion of each solution is then related to the dual

SYM operator in a precise way. In the case of the normalisable solution, this is the

coefficient φ(∆)k that we introduced when we discussed the dilatation eigenvalue

of each mode. The states created by the string operator associated with φ(∆)k are

then in one-to-one correspondence with the states created by the dual SYM oper-

ator (in fact, this is an equivalence between the operators). These results will be

the main subject of the next section where we will further show that the classical

coefficient φ(∆)k is directly related to the vacuum expectation value of the dual

operator.

1.2.6. The radius/energy-scale duality

The AdS radial direction plays a special role in the AdS/CFT correspondence

that we haven’t yet discussed. On string theory side, this direction is geometric

and the theory behaves locally in z. The dual gauge theory is defined explicitly

in one dimension less and for this reason this locality and the degrees of freedom

along the extra direction are not apparent. If the two theories are equivalent, these

degrees of freedom must be encoded in the observables of the gauge theory. The

specific way the radial dimension is seen from the gauge theory perspective was

originally discussed in [23] and is based on the observation that a scale transforma-

tion in the gauge theory, generated by the dilatation generator D of the su(2, 2|4)

algebra, corresponds to a specific isometry of the AdS metric that rescales the

radial coordinate z. Suppose we consider the gauge theory with a UV cut-off Λ

such that the generating functional of the theory is a sum over all field config-

urations with momenta |k| < Λ. If the gauge theory is pure N = 4 SYM no

cut-off is needed because the theory is UV-finite, but once we deform the theory
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with relevant (or marginal) operators the cut-off is necessary to regulate the di-

vergences.47 As discussed more carefully in appendix A.4, a scale transformation

xα → λxα in the gauge theory results in a rescaling Λ → Λ/λ of the cut-off. If

λ > 1, this in turn requires that we integrate over all field configurations with

momenta above Λ/λ in the generating functional to obtain the effective theory at

scales below Λ/λ. On the string theory side, such a transformation corresponds to

the isometry xα → λxα, z → λz of the AdS metric (1.84) generated by the Killing

vector D. Note that this isometry results in motion of points of the manifold

inwards (λ > 1) or outwards (λ < 1) from some region z = zΛ to some region

z = λzΛ. This correspondence implies that the radial coordinate z behaves as an

energy scale from the gauge theory perspective and it is natural to take zΛ ∝ 1/Λ

so that the UV limit Λ → ∞ in the gauge theory corresponds to the infinity, or

conformal boundary z = 0 of AdS space (see appendix B.4).

A similar way of seeing this result is to recall the above discussion about the

UV-divergences of the gauge theory and the divergences of supergravity associated

with the infinite size of AdS space. When using the string theory partition function

in the supergravity approximation to define the generating functional of quantum

field theory correlation functions, one faces divergences in the supergravity action

as z → 0 because supergravity solutions typically diverge as we approach infinity

of AdS space. In order to remove these divergences, one regulates the action (or

the area of the boundary) by replacing the true conformal boundary by a reg-

ulating boundary z = zΛ. One then derives the appropriate counterterms that

cancel the potentially divergent terms and in the end takes the limit zΛ → 0. This

process mimics precisely the standard renormalization of quantum field theories.

After computing the correlation functions, one finds that the regulator zΛ plays

exactly the role of a UV regulator Λ ∝ 1/zΛ in the quantum field theory that was

defined from the string theory.

An intuitive way of seeing this radius/energy-scale duality follows by consider-

ing lattice gauge theory, or statistical mechanics, in which case the UV regulator Λ

of the theory is the inverse of the lattice spacing such that all wavelengths shorter

than 1/Λ are suppressed. If the gauge theory is UV-regulated in this way, a scale

transformation xα → λxα rescales the lattice spacing as discussed in appendix A.4

and all wavelengths shorter than λ/Λ become suppressed. On the string theory

side, we can consider a lattice as a hypersurface z = zΛ. The scaling isometry

47In the Wilsonian sense, one can see pure N = 4 SYM as a fundamental theory where

no degrees of freedom have been integrated out. This is so because, as we start the process of

integration of high-momenta degrees of freedom down to some low momenta, the theory continues

to look the same and therefore is not associated with any particular energy scale. On the other

hand, deformed theories are effective: they differ from the fundamental theory one starts with

and are derived from it by integrating out degrees of freedom, hence are defined only below a

certain energy scale.
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xα → x̄a = λxα, z → z̄ = λz of the AdS metric (1.84) preserves the induced met-

ric on the hypersurfaces of constant z. The hypersurface z = zΛ is mapped by the

isometry to a surface z̄ = λzΛ farther (λ > 1) or closer (λ < 1) to the conformal

boundary z̄ = 0. In addition, the lattice spacing increases (λ > 1) or decreases

(λ < 1) because this isometry is a scale transformation that simultaneously leaves

the induced metric fixed (see Figure A.1 in appendix A.4). Therefore, from the

string theory point of view, successive changes in the lattice spacing – which is

another way of seeing the process of successively integrating out gauge theory de-

grees of freedom – correspond to successive changes of the position of the lattice

along the radial direction z such that approaching the boundary z = 0 corresponds

to taking the zero size limit of the lattice spacing. From this picture one says that

different hypersurfaces of constant z correspond to the gauge theory at different en-

ergy scales: the fundamental gauge theory where no degrees of freedom have been

integrated out, the UV theory, is said to live at the boundary of AdS, whereas the

gauge theory at different scales Λ describes supergravity in regions of AdS space

bounded by different regulating sufaces z ∼ 1/Λ and therefore is said to live on

such surfaces (see e.g. [71]). For these reasons, the AdS/CFT correspondence is

said to be a holographic duality: the field theory dual to string theory in AdS is

defined in one less geometric dimension and it encodes in its scaling behaviour the

degrees of freedom, or dynamics, along the extra radial direction. In particular,

the lower dimensional boundary theory contains all the gauge theory degrees of

freedom and therefore encodes information about the gravitational physics of the

entire bulk interior. It should be emphasized that the above discussion of scale

transformations can be generalized to include the special conformal transforma-

tions of appendix A.3 that, together with translations and rotations, form the

isometry group of AdS. These isometries result in conformal transformations at

the boundary and for this reason any field theory defined at the boundary of AdS

will enjoy the conformal group as its symmetry group.

The identification of the bulk radius as a gauge theory energy scale is at the

core of the holographic renormalization group [72, 73],48 where the renormalization

flow of the coupling constants of the gauge theory translates into a radial flow of

solutions of the gravity theory. The successive rescallings of the gauge theory cut-

off and the corresponding integrations over high-momenta degrees of freedom can

be transferred into the coupling constants, so that the resulting theory is defined

at the same cut-off but the couplings undergo renormalization group (RG) flow

according to the energy scales being observed (this is the flow in λ of the coupling

constant in the specific example of appendix A.4). On the gravity side, this process

results in changes of the regulating boundary and therefore in the radial position

of the boundary configuration of the supergravity solutions. In the Hamilton-

48See also the review [74] and more recently the discussion in [75].
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Jacobi formulation of the gravity theory, the Hamiltonian equations of motion

together with the Hamilton-Jacobi equation result in first order ‘flow’ equations

that determine the radial evolution of the fields and therefore the evolution of

the boundary configurations with the radial position of the boundary. As we

will discuss in the next section, these boundary configurations are mapped by

the AdS/CFT correspondence to the couplings of the gauge theory (which can be

constant or position dependent, in which case are called sources). The radial flow

equations therefore correspond via the radius/energy-scale duality to the beta-

function equations of the gauge theory couplings that dictate their RG flow.

1.3. AdS/CFT Correlators and Renormalization

As mentioned in the previous sections, the results on the computation of the

absorption cross-sections of D-branes were the main precursor of the AdS/CFT

correspondence and suggested that the observables of the worldvolume theory

could be computed from supergravity in the near-horizon AdS region. In this sec-

tion we are interested in following the proposal of [21, 22] to define the generating

functional of a quantum field theory from the string theory partition function in

order to compute these observables. This allows us in particular to compute the

correlation functions of the SYM operators in the supercurrent multiplet dual to

N = 8 supergravity in five dimensions that we have been analysing, but we will

not restrict our discussion to this specific case. The exact same analysis of the

previous sections can be repeated to other p-brane solutions of supergravity and

the respective worldvolume theories, such as the M-branes of eleven-dimensional

supergravity and systems of D-branes in supergravity in ten dimensions, see e.g.

[20, 27], all of these solutions free of essential singularities. The important point

to retain is that the worldvolume gauge theories are conformal field theories and

the near-horizon regions in which the dual closed strings live are products of AdS

spaces with compact spaces. In each case, the conformal group of the gauge the-

ory coincides with the symmetry group of the corresponding AdS space, and the

R-symmetry with the symmetry group of the compact space. For this reason, we

will keep the dimension of the AdS space arbitrary and we will assume that we

have reduced our theory along the compact space as we did in the case of the S5

to obtain the SO(6)R Kaluza-Klein modes and their masses.

As we briefly mentioned in the previous section, in the Wilsonian treatment

of renormalization theory, quantum field theories are understood by starting with

some field theory defined at a fundamental energy scale Λ and integrating out

high-momenta degrees of freedom down to some observable scale Λ/λ. The Λ-

theory we start from can in turn be understood as a deformation of a conformal
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field theory because CFTs are fixed points of the renormalization flow; in this

sense, quantum field theories differ from CFTs because we have moved along a

RG flow away from the fixed point. Following this viewpoint, we will use the

string theory partition function to define a quantum field theory as a deformation

of a CFT. If the deformation is irrelevant, such as deformations by those operators

in all but the supercurrent multiplet of N = 4 SYM, the quantum field theory

is non-renormalisable as already discussed and therefore we will restrict to rel-

evant (and marginally non-irrelevant) deformations. These deformations vanish

as we approach the UV and therefore the gauge theory is UV-conformal; in the

specific example of deformations by operators in the supercurrent multiplet, the

theory will approach N = 4 SYM at high-energies. On the string theory side,

the spacetime in general will not be AdS everywhere because the closed string

excitations dual to the deformations backreact on the geometry as in the case of

equation (1.83).49 On the other hand, since the gauge theory is UV-conformal,

from the discussion on the radius/scale duality it follows that the bulk geometry is

AdS asymptotically i.e. as we approach the conformal boundary. In fact, we can

be more general than this and require that a neighbourhood of the boundary be

AdS only locally in the sense of appendix B.1, such that the global properties of

the near-boundary region such as its topology be relaxed. The most general way

to describe deformations of CFTs is by starting from the UV theory and letting

it flow to some observable scale, so the quantum field theory we define from the

string partition function is the boundary theory perturbed by the deformation.50

Let us then start with the string theory partition function (1.23). The world-

sheet action S is schematically of the form (1.64) and contains the target spacetime

fields with AdS vevs (the string excitations in an AdS background) pulled-back to

the worldsheet. In the partition function we sum over all possible configurations

for the string embeddings. The target space fields, as functions of the embeddings

and at leading order in gs, satisfy the supergravity equations of motion with a

negative cosmological constant plus all α′′ corrections.51 Since we are considering

49In the probe approximation, we consider the supergravity fields as infinitesimal and neglect

their backreaction such that the geometry on which they propagate is exactly AdS. On the gauge

theory side, this is equivalent to working in the vicinity of a CFT, where the deformations are

infinitesimal.

50Note in particular that if we are interested in computing correlation functions of operators at

a point such as those in the supercurrent multiplet of N = 4 SYM, we must give a definition of

the field theory generating functional in the UV. These operators are all defined at xα = 0. We

localise gauge theory operators at a single point by performing a scale transformation xα → λxα

and taking λ → 0. Since the energy scale Λ → Λ/λ and the bulk radius z → λz, this implies

that correlation functions of these operators are computed at the boundary, i.e. in the UV.

51Note that the cosmological constant follows from the dimensional reduction of the ten-

dimensional supergravity theory along the compact space; it is given by the Ricci scalar of the
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closed strings propagating in AdS, the string states satisfy AdS boundary condi-

tions rather than the usual flat space ones. These boundary conditions are held

fixed in the string path integral and therefore the latter is a functional of the

boundary configurations of the fields. In this way, we write the string partition

function as:

Zstring = Zstring

[
φ|∂AdS = φ0

]
, (1.91)

where φ is a generic target space field with configuration φ0 at the conformal

boundary. With the string partition function we compute correlation functions of

string states (or their scattering amplitudes) by inserting the vertex operators of

these states and evaluating the string path integral. Equivalently, we can compute

such correlators by working with the partition function of supergravity with the

same boundary conditions plus the α′′ corrections that render the theory finite.

Working at leading order in gs in the string path integral is then equivalent to

approximating the supergravity partition function by a saddle point (note that gs
behaves as ~ in the supergravity partition function) such that:

Zstring

[
φ|∂AdS = φ0

]
∼ Zsugra(gs, α′′)

[
φ|∂AdS = φ0

]
= exp

(
iIsugra(α′′)

[
φ|∂AdS = φ0

])
+ ...

where Isugra(α′′) is the on-shell supergravity action with all α′′ corrections and

the ellipsis denote quantum corrections in gs. We can then suppress all stringy

correction in the saddle point approximation by working in the limit α′′ → 0 to

obtain our first result:

Zstring

[
φ|∂AdS = φ0

]
∼ exp

(
iIsugra

[
φ|∂AdS = φ0

])
. (1.92)

1.3.1. Scalar field in AdS

In order to understand how to use (1.92) to define the generating functional

of a field theory at the boundary, we particularise the formalism and evaluate

the right-hand side of the equation by considering a specific case. The simplest

example one can consider is a scalar field in AdS with a possible mass term while

simultaneously neglecting any backreaction on the geometry by working in the

probe approximation. In the case of N = 8 supergravity dual to the supercurrent

multiplet of N = 4 SYM, this scalar can be any of the scalar modes in Table

1.1 and respective mass term, with the remaining supergravity modes switched

off (i.e. with vanishing configurations). The (truncated) supergravity action in

(d+1)-dimensional AdS space is then given in our case by:

S =
1

2η

∫
dd+1x

√
G
(
Gµν∂µφ∂νφ+m2φ2

)
, (1.93)

compact space and generically by the background value of the field strength of the (p+ 1)-form

that sources the geometry.
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where η is a normalization constant that depends on the parent ten-dimensional

supergravity theory. In order to avoid many subtleties that arise in the case of a

Lorentzian signature, we will work with Euclidean AdS, also known as the hyper-

bolic space. We should note that, while the Poincaré coordinate system that we

have been using parametrises only half of AdS, the Wick rotation of this coordi-

nate system results in a parametrisation – the upper half plane parametrisation –

that covers the entire hyperbolic space. This can be seen by performing a Wick

rotation of AdS in global coordinates and verifying that the upper half plane

parametrisation covers the Wick rotated space. The main advantage of work-

ing with this parametrisation lies in the fact that the conformal transformations

that form the isometry group of AdS are manifest. In this coordinate system,

(Euclidean) AdSd+1 takes the form:

ds2
d+1 =

`2

z2

(
dz2 + d~x 2

d

)
. (1.94)

Here we have reinstated the AdS radius ` that was introduced in section 1.2.3 for

dimensional reasons. The equation of motion for the scalar field in this background

is given by:

∂2
zφ−

d− 1

z
∂zφ+ ~∇ 2φ =

`2m2

z2
φ , (1.95)

where ~∇ 2 = δij∂i∂j . The equation is second order in z and therefore admits two

linearly independent solutions. These can be obtained by working with the Fourier

transform φ̂(z, p) = (2π)−d/2
∫
ddx e−ip·xφ(z, x) and are given by:

φ̂(z, p) = zd/2
(
Â(p)Kk/2(z|p|) + B̂(p) Ik/2(z|p|)

)
, (1.96)

where Kα(x) and Iα(x) are the modified Bessel functions, |p| =
√
~p 2 , k = 2∆− d

and ∆ is the largest root of the polynomial:

∆(∆− d) = m2`2 , (1.97)

and which is equation (1.86) for scalars in the case ` = 1, d = 4. Also, Â(p)

and B̂(p) are arbitrary functions of the momenta. For generic values of these

coefficients, the solution is not well-behaved in the interior of AdS. If we analyse

the asymptotics of the Bessel functions as z →∞ we find that the solution diverges

unless B̂(p) = 0. In this way, the solution that is regular in the interior is given

by:

φ̂(z, p) = Â(p) zd/2Kk/2(z|p|) . (1.98)

We can Fourier transform this solution back to position space by using the identity:

2∆−1Γ(∆)

(2π)d/2

∫
ddy

ε∆(
ε2 + ~y 2

)∆ eip·y = εd/2|p|k/2Kk/2(ε|p|) : k = 2∆− d , ∀ε .

(1.99)
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We obtain:

φ(z, x) =
Γ(∆)

πd/2Γ(∆− d/2)

∫
ddy ϕ(0)(y)

z∆(
z2 + |~x− ~y|2

)∆ , (1.100)

where ϕ(0) is an arbitrary function of y given by the Fourier transform of a term

proportional to Â(p). If we now use the asymptotics of the integrand given by

[21, 76]:

lim
z→0

Γ(∆)

πd/2Γ(∆− d/2)

z∆(
z2 + |~x− ~y|2

)∆ = zd−∆
(
δd(~x− ~y) +O(z2)

)
, (1.101)

we obtain:

φ(z, x) = zd−∆
(
ϕ(0)(x) +O(z2)

)
= φ0 +O(zd−∆+2) , (1.102)

where φ0 = φ|∂AdS is the configuration of the field at the conformal boundary as

introduced in the previous section. For generic values of ∆, or m2, this bound-

ary configuration is singular at z = 0. We therefore introduce the renormalized

boundary value:

ϕ(0) = lim
z→0

z∆−dφ(z, x) . (1.103)

The integrand in (1.100) is called the bulk-to-boundary propagator, it is a Green’s

function in AdS and results in a regular bulk solution for each boundary configu-

ration ϕ(0).

We are now in position to evaluate the action (1.93) on-shell as required in

the approximation (1.92). In order to do so, we start by introducing a regulating

boundary z = ε in our space. If we then integrate the first term in the action by

parts and use the equation of motion �φ = m2φ, we obtain:52

I =
1

2η
(`/ε)

d−1
∫
z=ε

ddxφ∂zφ , (1.104)

where the integration by parts resulted in a surface term because our space is a

manifold-with-boundary. We can now use the solution (1.100) together with the

asymptotic behaviour (1.101) to find:

Isugra

[
φ
∣∣ren.
∂AdS

= ϕ(0)

]
=

`d−1

2η πd/2
Γ(∆ + 1)

Γ(∆− d/2)

∫
z=ε

ddxddy
ϕ(0)(x)ϕ(0)(y)(
ε2 + |~x− ~y|2

)∆ (1 +O(ε2)
)
.

(1.105)

52Our convention for the integral in z is as follows:

S = 1/(2η)

ε∫
∞

dz

∫
ddx
√
G (...) .
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With the limit ε → 0 the regulating boundary approaches the true conformal

boundary of the space. In this limit we see explicitly that the on-shell action is a

functional of the boundary configuration of the field. We also find that the parti-

tion function (1.92) in this limit behaves as a generating functional of conformal

field theory correlation functions, with the renormalized boundary configuration

ϕ(0) playing the role of a source for a conformal scalar operator O∆ of dimension

∆. Indeed, if we define [21, 22]:〈
e
∫
ddxϕ(0)O∆

〉
CFT

:= Zstring

[
φ
∣∣ren.
∂AdS

= ϕ(0)

]
, (1.106)

and use the approximation (1.92), we obtain:

〈O∆(x)O∆(y)〉 = −
δ2 log

〈
e
∫
ddxϕ(0)O∆

〉
δϕ(0)(x) δϕ(0)(y)

∣∣∣∣
ϕ(0)=0

= −δ
2 logZstring

δϕ(0) δϕ(0)

∣∣∣∣
ϕ(0)=0

∼ δ2Isugra

δϕ(0) δϕ(0)

∣∣∣∣
ϕ(0)=0

=
`d−1

2η πd/2
Γ(∆ + 1)

Γ(∆− d/2)

1

|~x− ~y|2∆
(ε→ 0) .

(1.107)

Note that we are taking variations with respect to the generator − logZ of con-

nected correlation functions. The result is exactly the 2-point correlator of a

conformal operator of dimension ∆ as dictated by conformal symmetry, as we

review next. In this specific model, higher-order correlators vanish. To compute

n-point correlation functions we need to consider n-point vertices and add to the

Lagrangian (1.93) an interaction term proportional to φn. If we repeat the com-

putation with such interactions, as well as for fields of different spin, we find that

all observables derived in this way satisfy the axioms of a conformal field theory.

Therefore, the definition (1.106) gives a prescription for computing conformal field

theory observables from string theory. At the lowest order approximation in gs and

α′′ it implies that the effective action of the conformal field theory that we define

from string theory in AdS is the on-shell action of the corresponding supergravity

theory. From the AdS/CFT conjecture [20] we then know that the latter approxi-

mation corresponds to the large N , large λ regime of the field theory. Note that, a

priori, the definition (1.106) does not say anything about the coupling constants on

each side of the duality. In fact, any quantum theory of gravity with AdS Einstein

gravity as a low energy limit defines in this way a CFT at the boundary of AdS.

However, in order to derive equivalences between specific theories such as the case

of N = 4 SYM and AdS5 × S5 supergravity one needs string theory. Ultimately,

the AdS/CFT prescription (1.106) is justified by the fact that the AdS boundary

configurations of the string states behave as sources for boundary correlators that

satisfy the right properties that define a conformal field theory.
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1.3.2. Conformal correlators and Ward identities

In this section we review very briefly the implications of conformal invariance to

the correlation functions of a conformal field theory in flat space. Reviews of this

topic can be found in [68, 27, 69] and references therein.

Correlators

Lorentz invariance implies that only scalar operators can have non-zero vevs.

Together with scale invariance (1.73), this fixes the one-point functions to be of

the form:

〈O∆〉 =
C∆

|~x|∆
, (1.108)

where ∆ is the conformal dimension and C∆ a constant. However, invariance un-

der special conformal transformations (1.69) fixes C∆ ∝ δ∆,0. If the field theory is

unitary, the unitarity bounds discussed in section 1.2.4 on the conformal dimen-

sions of the operators imply in particular that ∆ > 0 and therefore the one-point

function must vanish in unitary CFTs.

In the case of two-point functions, Poincaré and scale invariance implies that

〈O∆1
O∆2
〉 = C∆1,∆2

/|~x − ~y|∆1+∆2 . Invariance under special conformal transfor-

mations implies ∆1 = ∆2 and therefore fixes the correlator up to a ∆1-dependent

constant:

〈O∆1
(x1)O∆2

(x2)〉 =
C∆1

|~x1 − ~x2|2∆1
δ∆1,∆2

. (1.109)

Note that the correlation function (1.107) is exactly of this form. Finally, the form

of three-point functions is fixed in a similar fashion by conformal symmetry to be

of the form:

〈O∆1
(x1)O∆2

(x2)O∆3
(x3)〉 =

C∆1,∆2,∆3

|x1 − x2|∆−2∆3 |x3 − x1|∆−2∆2 |x2 − x3|∆−2∆1
,

(1.110)

where: ∆ = ∆1 + ∆2 + ∆3. Higher-point correlators are also fixed by conformal

symmetry, this time up to a proportionality function of anharmonic ratios [69].

Renormalized correlators

The correlation functions given above are singular at coincident points and

therefore do not admit Fourier transforms and are not well-defined as distribu-

tions. Well-behaved expressions can be obtained by regularizing the correlators
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in position space, transforming to momentum space and then introducing coun-

terterms that cancel the potential divergent terms before removing the regulator

[77, 68]. One can then transform the renormalized expressions back to position

space. This implies that the correlators given above are effective rather than exact:

they coincide with the renormalized correlators in position space asymptotically

away from coincident points, but are ill-defined at short distances. In the case of

the two-point function, the renormalized expression can be obtained as follows.

We start by ε-regularizing the short-distance divergences in the correlator and

Fourier transform it by recalling the identity (1.99):∫
ddy

eip·y(
ε2 + ~y 2

)∆ =

(
(2π)d/2

2∆−1Γ(∆)

)
ε−k/2|p|k/2Kk/2(ε|p|) , k = 2∆− d .

(1.111)

The Bessel function admits the following asymptotics as x→ 0:

Kk/2(x) = 2k/2−1 Γ(k/2)x−k/2
(

1 +
(ix)2

2(k − 2)
+

(ix)4

2(k − 2)4(k − 4)

+ ...+ ak x
k + ãk x

k log x2 +O(x>k)

)
, (1.112)

where the coefficient ãk of the inhomogeneous term is non-vanishing only if k/2 ∈ N
and in such case is given by:

ãk = − (−1)k/2 2−k

Γ(1 + k/2)Γ(k/2)
: k/2 ∈ N . (1.113)

The coefficient ak is in general non-vanishing, but its expression is only relevant

when k/2 6∈ N because otherwise it can be absorbed into the argument of the

logarithm of the inhomogeneous term. Therefore, in such case it is given by:

ak = 2−k
Γ(−k/2)

Γ(k/2)
: k/2 6∈ N . (1.114)

If we replace x by ε|p|, we find that all terms of order below ε0 in the expansion

of ε−k/2Kk/2(ε|p|) diverge as the regulator ε → 0. We then introduce the corre-

sponding counterterms that minimally subtract these divergences to obtain the

renormalized expression:53

[
ε−k/2|p|k/2Kk/2(ε|p|)

]
ren.

=

2k/2−1 Γ(k/2) ãk |p|k log(|p|2/µ2) +O(ε>0) , (k/2 ∈ N)

2k/2−1 Γ(k/2) ak |p|k +O(ε>0) , (k/2 6∈ N)

53For consistency, these counterterms should be added to the field theory Lagrangian in the

generating functional used to compute the correlators. From the expansion (3.182) with x re-

placed by ε|p| we find that the divergent terms in the correlator (1.111) are proportional to

powers of the momentum. In position space, these divergences are therefore derivatives of delta
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where the scale µ in the first case was introduced for dimensional reasons and the

coefficient ak was absorbed into µ. In this way, we find:

lim
ε→0

[ ∫
ddy

eip·y(
ε2 + ~y 2

)∆ ]
ren.

=

c̃k |p|
k log(|p|2/µ2) , (k/2 ∈ N)

ck |p|k , (k/2 6∈ N)
(1.115)

where: 
c̃k = (−1)1+ k

2
2−k πd/2

Γ(k+d
2 ) Γ(1 + k

2 )
,

ck =
πd/2

2k
Γ(−k2 )

Γ(k+d
2 )

.

(1.116)

Note in particular that, due to the singularities of the gamma function, the coef-

ficient ck cannot be extended to integer values of k/2 and which is the regime of

validity of the other branch. Finally, we can obtain the renormalized correlator in

position space:

[
1

|~x|2∆

]
ren.

=


c̃k

(2π)d

∫
ddp e−ip·x|p|k log(|p|2/µ2) , (k/2 ∈ N)

ck
(2π)d

∫
ddp e−ip·x|p|k , (k/2 6∈ N) .

(1.117)

Ward identities

Ward identities are the quantum version of Noether’s theorem and represent the

conservation laws associated with the invariance of the generating functional under

the classical symmetry group. This group is usually broken by quantum corrections

because renormalization in general does not preserve part of the symmetries, so the

renormalized generating functional should be invariant up to possible anomalies

such as trace/Weyl/conformal anomalies or diffeomorphism anomalies. Since one

is often interested in the expression of the correlators in the presence of the sources

for the operators, the Ward identities are usually given with non-vanishing sources,

functions. If we add to the field theory Lagrangian counterterms of the form:

L0 +

∫
ddxϕ(0)O −→ L0 +

∫
ddxϕ(0)O + cn

∫
ddxϕ(0)�

nϕ(0) ,

and take variations of the generating functional with respect to the source ϕ(0) to derive the

correlation functions, the counterterms will result in derivatives of delta functions that cancel

the divergences in the correlators. Note that in the case k/2 ∈ N the inhomogeneous term

proportional to the logarithm in the expansion (3.182) is non-vanishing and will result in a

divergence proportional to log ε. The corresponding counterterm is proportional to log(εµ), with

µ some energy scale, and therefore breaks scale invariance of the generating functional .
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but which may in turn be switched off. Let us write the generating functional of

the field theory as:

Z[g,A, ϕ(0)] =
〈

exp

(
−
∫
ddx
√
g
[
AµJ

µ + ϕ(0)O∆

])〉
CFT

, (1.118)

where the metric gµν(x), the gauge field Aµ(x) and the scalar ϕ(0)(x) are respec-

tively the sources for the stress-energy operator Tµν , a possible symmetry current

Jµ and the conformal scalar operator O∆ such that:

〈Tµν〉 := − 2
√
g

δW

δgµν
, (1.119)

〈Jµ〉 := − 1
√
g

δW

δAµ
, (1.120)

〈O∆〉 := − 1
√
g

δW

δϕ(0)
. (1.121)

where W = logZ. We will assume that the current has vanishing conformal

dimension, whereas O∆ has dimension ∆. Unlike the example in appendix A.4,

the source ϕ(0)(x) is now an arbitrary function, so it can transform as ϕ(0)(x) →
Ω−αϕ(0)(x) under a conformal-Weyl transformation (A.10)–(A.11) such that:∫
ddx
√
g ϕ(0)(x)O∆(x)

conf.−→
∫
ddx̄
√
ḡ ϕ̄(0)(x̄) Ō∆(x̄) =

∫
ddx
√
g ϕ(0)(x)O∆(x)

Weyl−→
∫
ddx
√
gΩd−∆−α ϕ(0)(x)O∆(x) , (1.122)

where the first identity holds because the integrand is a Lorentz-scalar. If the

unrenormalized generating functional is conformally invariant we find that α =

d−∆. If we then consider an infinitesimal Weyl transformation gµν → Ω2gµν such

that Ω2 = e2σ = 1 + 2σ +O(σ2), the generating functional transforms as:

W →W + δσW = W +

∫
ddx

(
δW

δgµν
δσgµν +

δW

δϕ(0)
δσϕ(0)

)

= W +

∫
ddxσ

(
δW

δgµν
2gµν −

δW

δϕ(0)
(d−∆)ϕ(0)

)

= W +

∫
ddx
√
g σ
(
〈Tµµ〉+ 〈O∆〉(d−∆)ϕ(0)

)
. (1.123)

Weyl invariance of the renormalized generating functional for arbitrary σ(x) can

then be expressed as:

〈Tµµ〉 = −(d−∆)ϕ(0)〈O∆〉+A , (1.124)
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and which is the trace Ward identity. The possible quantum anomaly A is called

the Weyl anomaly. The same procedure can be repeated for the case of general dif-

feomorphisms. As derived in appendix A.3, under an infinitesimal diffeomorphism

(A.13) generated by a vector field ξµ, the metric transforms at leading order as:

gµν(x)→ (ϕ?g)µν(x̄) = gµν(x̄)− (∇µξν +∇νξµ) = gµν(x̄) + δgµν(x̄) . (1.125)

In addition, the scalar source and the gauge field transform at leading order as

(see equation (A.4)):

ϕ(0)(x)→ (ϕ?ϕ(0))(x̄) = ϕ(0)(x̄)− ξ · ∇ϕ(0) = ϕ(0)(x̄) + δϕ(0)(x̄) , (1.126)

Aµ(x)→ (ϕ?A)µ(x̄) = Aµ(x̄)− (ξ · ∇Aµ +Aα∇µξα) = Aµ(x̄) + δAµ(x̄) .

(1.127)

The generating functional in this case transforms at leading order in ξ as:

W →W + δξW = W +

∫
ddx̄

(
δW

δgµν
δξg

µν +
δW

δAµ
δξAµ +

δW

δϕ(0)
δξϕ(0)

)

= W +

∫
ddx
√
g

(
〈Tµν〉∇µξν + 〈Jµ〉

(
ξ · ∇Aµ +Aα∇µξα

)
+ 〈O∆〉 ξ · ∇ϕ(0)

)

= W −
∫
ddx
√
g ξν

(
∇µ〈Tµν〉+ 〈Jµ〉Fµν +Aν∇µ〈Jµ〉 − 〈O∆〉∇νϕ(0)

)
.

(1.128)

Diffeomorphism invariance of the renormalized generating functional for arbitrary

ξ can then be expressed as:

∇µ〈Tµν〉+ 〈Jµ〉Fµν +Aν∇µ〈Jµ〉 − 〈O∆〉∇νϕ(0) = Aν , (1.129)

and which is the diffeomorphism Ward identity. The possible quantum anomaly

Aν is called the diffeomorphism anomaly. This identity can be simplified further

by using the Ward identity that arises in a similar fashion from invariance of the

generating functional under gauge transformations Aµ → Aµ +Dµφ :

∇µ〈Jµ〉 = 0 . (1.130)

1.3.3. AdS renormalization of the scalar field

In the previous section we showed that the form of the correlation functions

as directly fixed by conformal symmetry suffers from short-distance singularities

and therefore cannot possibly represent the correlators of operators at coincident

points, such as those SYM operators in Table 1.1 that we discussed before. We
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then showed that a derivation of the correlators with the required properties en-

tails a regularization and renormalization of the CFT generating functional. The

two-point function (1.107) that we derived by holographic methods matches the

effective correlator and suffers in a similar way from short-distance divergences.

Just as the left-hand side of the AdS/CFT prescription (1.106) should be improved

with counterterms that render the correlation functions well-behaved, the gravity

side of the correspondence should undergo a similar renormalization programme

called holographic renormalization. In this case, the short-distance divergences in

the holographic correlators are associated with (infra-red) divergences of the on-

shell action due to the infinite area of the conformal boundary of AdS. Note that,

even though we haven’t yet discussed them, these divergences are indeed there: in

the specific example of the previous section, if we use the asymptotics (1.101) in

the on-shell action (1.105) we find that the latter behaves asymptotically as:

I ∼
∫
z=ε

ε−k
(
1 +O(ε2)

)
, (1.131)

with ε the regulator that we introduced before. The correlation functions with

the required properties at short distances are obtained by ensuring that the grav-

ity action from which the correlators are extracted is free of these infra-red di-

vergences. The procedure entails improving the regulated action with boundary

terms called holographic counterterms that cancel the divergent terms. Since these

counterterms are surface terms, the bulk equations of motion are not affected by

the procedure. In this section we will exemplify the basics of the holographic

renormalization programme by deriving the renormalized correlator (1.117) that

we obtained from a quantum field theory computation. Further aspects on this

topic can be found in the lecture notes [78] and references therein.

Let us return to the action (1.93) of the scalar field in AdSd+1 and the resulting

equation of motion (1.95). Instead of finding an exact solution to the equation,

let us rather solve it asymptotically as z → 0. We start by defining:

ϕ(z, x) = z∆−dφ(z, x) , (1.132)

with ∆ the largest root of the polynomial (1.97) as before. In terms of ϕ, the

equation of motion becomes:

ϕ′′ − k − 1

z
ϕ′ + ~∇ 2ϕ = 0 , k = 2∆− d , ϕ′ = ∂zϕ . (1.133)

If we solve asymptotically this equation in powers of z we obtain the solution:

φ(z, x) = zd−∆ϕ(z, x)

= zd−∆
(
ϕ(0)(x) + z2ϕ(2)(x) + ...+ zkϕ(k)(x) + zk log z ϕ̃(k)(x) + ...

)
,

(1.134)
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where the coefficients ϕ(0) and ϕ(k), called respectively the non-normalisable and

the normalisable modes, are arbitrary functions of x. Note that ϕ(0) is the source

term, or renormalized boundary configuration, that we identified in (1.103). The

remaining coefficients ϕ(n<k) are local functionals of the source:

ϕ(n<k) =
1

n(k − n)
~∇ 2ϕ(n−2) , (1.135)

while the coefficient ϕ̃(k) of the inhomogeneous term is non-vanishing only if k/2 ∈
N and in that case is also a local functional of the source:

ϕ̃(k) = − 2−k+1

Γ(1 + k/2)Γ(k/2)
~∇ kϕ(0) : k/2 ∈ N . (1.136)

Given this solution, we start by inspecting the regulated on-shell action (1.104):

I =
1

2η
(`/ε)

d−1
∫
z=ε

ddx
[
φ∂zφ

]
on-shell

=
`d−1

2η

∫
z=ε

ddx ε−k
(

(d−∆)ϕ2 + εϕϕ′
)

=
`d−1

2η

∫
z=ε

ddx

[
(d−∆) ε−k

(
ϕ2

(0) + 2ε2ϕ(0)ϕ(2) + ...+ 2εk log εϕ(0)ϕ̃(k) +O(εk)
)

+ ε−k
(
εϕ2

(0) + 3ε3ϕ(0)ϕ(2) + ...+ kεk log εϕ(0)ϕ̃(k) +O(εk)
)]

. (1.137)

All terms proportional to ε<0 will be divergent as the regulator ε→ 0 and therefore

should be subtracted. Note that such terms do not involve coefficients ϕ(n≥k).

Since each coefficient (1.135) and (1.136) is a local functional of the source ϕ(0),

the divergences can be removed by covariant boundary counterterms (up to a

possible anomalous term):

Sct :=
`−1

2η

∫
z=ε

ddx
√
γ φ

(
−(d−∆)− `2 �γ

k − 2
−

(
`2 �γ

)2
(k − 2)2(k − 4)

+ ...+ αk
(
`2 �γ

)k/2
log ε

)
φ

(1.138)

where γij = (`/ε)2δij is the induced metric on the regulating boundary. The

coefficient αk is non-vanishing only if k/2 ∈ N and in such case is given by:

αk = 2−(k−2)Γ−2(k/2). It can be checked by explicitly expanding the counterterms

that these cancel exactly the divergences of the action. In this way, we define the

renormalized action:

Sren := S + Sct , (1.139)
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where S is the covariant action (1.93). Note that the renormalized action depends

explicitly on the regulator ε if k/2 ∈ N. This dependence partly breaks invari-

ance of the action under diffeomorphisms that involve the radial direction z, more

specifically those bulk isometries that result in a conformal transformation at the

boundary. This is the holographic counterpart of the breaking of symmetries by

the renormalization procedure on the quantum field theory side and will result in

quantum anomalies. As we will find in the late sections, if we take into account

the backreaction of the field on the geometry, the anomalous term in the gravity

action will be responsible for the Weyl anomaly A that we discussed in the previ-

ous section. Since the counterterms depend on the value of k, or the value of the

mass m2, in order to proceed and compute the renormalized correlators we will

focus on the specific case k = 2. The renormalized action in such case is given by:

Sren =
1

2η

∫
dd+1x

√
G
(
Gµν∂µφ∂νφ+m2φ2

)
+

`−1

2η

∫
z=ε

ddx
√
γ φ
(
− d/2 + 1 + `2 log ε�γ

)
φ . (1.140)

We will start by computing the one-point function of the operator dual to the

scalar field. We do this by following AdS/CFT prescription (1.106) and taking

the variation of the action with respect to the boundary configuration ϕ(0) before

evaluating the result on-shell:

δSren
∣∣∣
on−shell

=
1

η

∫
z=ε

ddx
√
γ

(
ε

`
φ′ − d/2− 1

`
φ+ ` log ε�γφ

)
δφ (1.141)

If we introduce the renormalized configuration of the boundary metric:

g(0)ij = lim
z→0

(
z2

`2
γij

)
, (1.142)

and which in our case is g(0)ij = δij , the vacuum expectation value (1.121) is then

given by:

〈O〉 = − 1
√
g(0)

δSren

δϕ(0)
= lim
ε→0

(
`d

ε∆

1
√
γ

δSren

δφ

)
= lim

ε→0

`d

η εk

(
ε

`
ϕ′ +

ε2

`
log ε ~∇ 2ϕ

)

=
`d−1

η

(
2ϕ(k) −

1

2
~∇2ϕ(0)

)
, (1.143)

where we used the solution (1.134). The last term is scheme dependent: it can

be subtracted by adding to the action (1.140) a finite boundary term proportional

to:
∫
ddx
√
γφ�γφ, and therefore can be ignored. This fact reflects the renor-

malization scheme dependence that is also presence on the quantum field theory
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side. In this way, the vacuum expectation value is proportional to the normalis-

able mode ϕ(k). The isometry z → λz, xi → λxi of the metric (1.94) induces a

scale-Weyl transformation at the boundary. From the solution (1.134) we find that

the source transforms as: ϕ(0) → λ−(d−∆)ϕ(0) under this transformation, whereas

the normalisable mode transforms as a field of conformal dimension ∆:

ϕ(k) → λ−∆ϕ(k) . (1.144)

This implies that the dual operator O has dimension ∆ as expected. In order to

compute the renormalized two-point correlator, we take a second variation with

respect to the source:

〈O(x)O(y)〉 = − 1
√
g(0)

δ2Sren

δϕ(0)δϕ(0)
= 2

`d−1

η

δϕ(k)

δϕ(0)
. (1.145)

In order to compute the response of the normalisable mode under a variation of the

source, we need to have an exact solution of the equations of motion, in particular

a physical solution that is regular in the interior of AdS. In section 1.3.1 we found

the regular solution (1.98) in momentum space. Using the asymptotics (3.182),

we find that the normalisable mode is related to the source as:

ϕ(k)(p) = ãk|p|k log
(
|p|2/µ2

)
ϕ(0)(p) , (1.146)

where the scale µ was introduced for dimensional reasons and we absorbed the

coefficient ak in the definition of µ. The two-point function is then given by:

〈O(x)O(y)〉 =
2 ãk `

d−1

η (2π)d/2

∫
ddx eip·(x−y)|p|k log

(
|p|2/µ2

)
, (1.147)

and which agrees with the renormalized correlator (1.117). The case k/2 6∈ N can

be dealt with in a similar fashion and the result will agree with the second branch

of (1.117).
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Chapter 2

Holographic chiral

scale-invariant models

2.1. Introduction

In the previous chapter we discussed how certain classical gravity theories

can be used to compute observables of quantum field theories that are both UV-

conformal and strongly coupled. The latter are difficult to study with standard

quantum field theory techniques because their strongly coupled nature prevents

calculations based on perturbation theory. The methods described thus far there-

fore represent an important tool to study the non-perturbative sector of these

theories.

The original AdS/CFT correspondence has been generalised over the years

to a broader class of field theories other than those worldvolume theories of the

brane solutions in string theory that we have been discussing. The proposed

dualities follow the same ingredients of AdS/CFT and map in a similar fashion

a classical theory of gravity – in manifolds that can have non-AdS asymptotics

– to a strongly coupled gauge theory at the boundary of the space.1 For this

reason they are generically called gauge/gravity or holographic dualities. The

field theories involved are typically of some phenomenological relevance and the

dualities usually have potential applications as holographic models of condensed

matter systems at strong coupling. In many-body physics, the state of a system

is captured in the expectation values of its operators and its correlations in its

1Recall that this is the UV theory. The interpretation of the coordinate transverse to the

boundary as an energy scale on the field theory is usually retained in those models built on

AdS/CFT ideas.
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Green’s functions. The main purpose of the dualities in these cases is to extract

some physics from the non-perturbative sector of the system using holographic

methods to compute these observables.

Condensed matter systems such as Fermi liquids, insulating quantum mag-

nets and high temperature superconductors typically undergo quantum phase

transitions and are completely characterized by their correlation functions. In

a neighbourhood of their quantum critical points (QCP), these systems are con-

formally invariant and therefore should admit a gauge/gravity description where

the observables of the systems are computed holographically.2 However, de-

spite the success of AdS/CFT technology applied to these and many other sys-

tems, several scale invariant condensed matter theories remain that cannot be

described by gauge/gravity dualities, in particular by relativistic ones. Generi-

cally, gauge/gravity dualities are developed to model relativistic systems only and

their further generalization to the non-relativistic case is desirable, not only from a

phenomenological viewpoint but also from a pure theoretical perspective. Strange

metal phases of high temperature superconductors have underlying non-relativistic

scale invariant QCPs. Systems of interacting fermions in three spatial dimensions

that saturate the unitarity bound have been realised using trapped cold atoms

and are non-relativistic in nature; these systems become scale invariant in the

limit when the range of the interacting potential is zero. Several heavy fermion

metals exhibit non-relativistic but scale invariant QCPs with an associated non-

Fermi liquid phase. Strongly coupled non-relativistic systems are common place

in condensed matter physics and as such there would be many interesting appli-

cations had one had under control holographic dualities involving non-relativistic

quantum field theories.

Motivated by such applications, references [79, 80] initiated a discussion of

holography for (d+ 1) dimensional spacetimes with metric3,

ds2 =
σ2du2

r2z
+

2dudv + dxidxi + dr2

r2
, (2.1)

2Zero-point fluctuations of a condensed matter system are quantum fluctuations at zero tem-

perature of its physical quantities (e.g. the energy at a point) around their expectation values,

allowing the existence of different states of matter at such temperature. Transitions between

such quantum states are driven by variations of physical parameters such as an external mag-

netic field or the system’s pressure. A quantum critical point is the locus in the phase diagram

of a material where a second order (i.e. continuous) phase transition occurs between two quan-

tum states of matter and is characterised by an infinite susceptibility of the material to transit

from its disordered phase to an ordered one. At such particular combination of temperature and

physical parameters, the fluctuations are scale invariant and extend over the entire system.
3An earlier approach to the geometric realization of non-relativistic symmetries can be found

in [81] and the connection between this approach and holographic realizations is discussed in

[82].
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with i ∈ {1, . . . , d− 2}. The isometries of this metric form include

H : u→ u+ a,

M : v → v + a, (2.2)

D : r → (1− a)r, u→ (1− a)zu, v → (1− a)2−zv, xi → (1− a)xi

along with rotations, translations and Galilean boosts in the xi directions. Here D
is the generator of non-relativistic scale transformations with dynamical exponent

z. In the case of z = 2 the isometry group becomes the Schrödinger group, which

includes the additional special conformal symmetry

C : r → (1−au)r, u→ (1−au)u, v → v+
a

2
(xixi+r2), xi → (1−au)xi

(2.3)

Much of the interest in such holographic models has centered around this case of

z = 2, following the initial suggestion that the metric (2.1) could play the role

of a background for the holographic study of critical non-relativistic systems with

z = 2 in (d − 1) spacetime dimensions, for example fermions at unitarity, which

have the same symmetry group.

The spacetime (2.1) solves the equations of motion for gravity coupled to a

massive vector field for all z > 0. Working in the limit where σ2 is small and

treated as a perturbation around AdS, the standard AdS/CFT dictionary shows

that the dual field theory is a deformation of the conformal field theory by a

vector operator. More specifically, the dual conformal field theory is deformed by

a constant null source for a vector operator Vv of scaling dimension (d+ z − 1)

Scft → Scft +

∫
dudvdd−2xbVv. (2.4)

With respect to the relativistic scaling dimension, this deformation is relevant for

z < 1, marginal for z = 1 and irrelevant for z > 1. However, the deformation is

exactly marginal with respect to the non-relativistic scaling symmetry for any z

and in this chapter we will explore holographic duality for these models. In the

context of two dimensional conformal field theories, such deformations have been

previously considered by Cardy [83] and the resulting models were called chiral

scale-invariant models, a terminology which we will adopt here4.

In the case of z = 2 the original goal was to model holographically a dual non-

relativistic (d − 1) dimensional theory, in a background with coordinates (u, xi)

where u plays the role of time. In this setup one considers operators O∆s,m(u, xi)

of definite scaling dimension ∆s and of charge m under the symmetry M. This

4Whilst such theories are often called non-relativistic, or Schr(z), this terminology is arguably

somewhat misleading; the theory only becomes non-relativistic after compactification on a null

direction.
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2. Holographic chiral scale-invariant models

charge m, which corresponds to momentum in the v direction, would then have to

be identified with a discrete quantum number such as particle number. In order to

discretize the possible values of m one therefore needs to compactify the v direction

in the holographic realization. This procedure is however very nontrivial as in

general quantum corrections become important and one cannot trust the metric

(2.1) with a compact null direction, see the discussions in [84]. (The problems in

compactifying any field theory along a null direction are discussed in, for example,

[85] and would in particular apply to the field theories considered here.) Recent

work aiming at obtaining Schrödinger solutions without such a compact direction

can be found in [86]. For general z and σ2 > 0 one can reduce along u (for z < 1)

and v (for z > 1) to obtain a (d−1)-dimensional theory with non-relativistic scale

invariance; in all cases the reduction is however null from the perspective of the

dual quantum field theory.

For every value of z compactification of a null direction will be associated with

problems at the quantum level and in this thesis we will consider (2.1) with both u

and v non-compact. The effects of such a compactification may be considered after-

wards but this issue will be for the most part suppressed. If the coordinates (u, v)

are non-compact, holography relates the bulk spacetime to a d-dimensional theory

which is not Lorentz invariant but which admits scaling symmetry. Theories of this

anisotropic scale-invariant type can certainly model interesting physical systems

and have appeared previously in the condensed matter literature. For example, the

ZN chiral Potts models were introduced to model systems with melting transitions

[87, 88]. The isotropic ZN models admit a continuum limit at criticality which

is described by two-dimensional ZN conformal field theories [89]. Since the chiral

ZN models are inherently anisotropic in their critical properties [90, 91, 92], they

cannot be described by a conformal field theory in the continuum limit. Instead, as

was shown in [83] for superintegrable chiral Potts models, their continuum limits

correspond to deformations of conformal field theories of the type (2.4), which are

anisotropic but respect scale invariance.

The case studied in [83] was the deformation of a specific two-dimensional

conformal field theory by a vector operator of dimension 9/5, which corresponds

to scale invariance with z = 4/5. As we show in section 2.3, anisotropic scale

invariance constrains two point functions of scalar operators at zero temperature

to be of the form

〈O∆D (ku, kv)O∆′D
(−ku,−kv)〉 = k

(∆D+∆′D)/z
u f(bkχ), (2.5)

where (ku, kv) are the lightcone momenta, ∆D is the anisotropic scaling dimension

and f(bkχ) is an arbitrary function of the quantity

kχ = 2z/2kz/2v kz/2−1
u , (2.6)
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which is invariant under anisotropic scale transformations. In [83] two point func-

tions in the deformed theory were computed to leading order in b using conformal

perturbation theory; this amounts to computing the function f(bkχ) to first order

in the expansion in powers of (bkχ).

Conformal perturbation theory is restricted to weak chirality, namely since b

must be small, the theory must be close to the isotropic point. Since the defor-

mation is exactly marginal with respect to anisotropic scaling, the chirality b can

be arbitrarily large, and the holographic realizations allow correlation functions

to be computed in a strongly coupled theory, at finite chirality. Quantities com-

puted from the holographic models have certain universal features, as is typical

for holography. For example, only certain functions f(bkχ) are realized in these

models and the ratio of η/s for black holes in these models is the expected 1/4π,

since the background solves relativistic two derivative equations of motion.

There are several other motivations for exploring these anisotropic backgrounds.

The case of z = 0, which cannot be realized with massive vectors but can be re-

alized by coupling gravity to a scalar field, is related to Lifshitz with dynamical

exponent ZL = 2 upon dimensional reduction. Embedding Lifshitz into string

compactifications had proved elusive, but this kind of realization can be obtained

in Sasaki-Einstein reductions [93]. Note that the z = 0 anisotropic geometry is

asymptotically AdS, but the dimensionally reduced theory has Lifshitz symmetry;

since holography for the former is well-understood, a holographic dictionary for

the latter can be obtained straightforwardly by dimensional reduction. However,

as we will discuss here, the dimensional reduction is on a null circle, and this

DLCQ reduction introduces subtleties.

Another reason for studying general z is the following. The case of Schrödinger

(z = 2) has been extensively studied in previous literature, but the encoding of

the dual stress energy tensor in the asymptotics of the bulk geometry remains

elusive. As shown in [94] there are several reasons for this subtlety. Firstly, the

natural operator in the anisotropic dual theory couples not to the metric, but to

the vielbein. Secondly, linearized sources for the dual stress energy tensor and

deforming vector operator blow up near the boundary of the spacetime faster than

the Schrödinger background. In [94] the general linearized solution of the metric

and vector equations of motion about the Schrödinger background was presented;

this solution consisted of certain independent ‘T’ and ‘X’ modes, which should

relate to the stress energy tensor and deforming vector operator respectively. In

this part of the thesis we will show how these ‘T’ and ‘X’ modes are related to

the dual operators for z < 1 (when the spacetime is asymptotically locally anti-de

Sitter) and explain what this implies for the holographic dictionary of Schrödinger.

More generally, for z > 2, we demonstrate that the irrelevant nature of the de-

forming operator in the original CFT is reflected in the counterterm structure of

the deformed theory: an infinite series of counterterms are required to compute
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2. Holographic chiral scale-invariant models

correlation functions in the deformed theory.

The plan of this chapter is as follows. In section 2.2 we introduce the massive

vector models used to engineer the anisotropic geometries, and discuss how they

may be embedded into string theory. We also consider the special case of z = 0

which can be realized using gravity coupled to a scalar field. In section 2.3 the

field theoretic description of these models is described, as well as the form of

the correlation functions in the anisotropic theory. In section 2.5 holographic

renormalization is carried out in the case of d = 2, resulting in a precise map

between the asymptotic geometry and boundary data. In section 2.6 two point

functions of the stress energy tensor and of the deforming vector operator in the

scale invariant background are computed. In section 2.7 black hole solutions which

are asymptotic to the anisotropic scale invariant background are explored.

2.2. Massive vector model

Consider the Lagrangian:

S =
1

2κ2
d+1

∫
dd+1x

√
−g
[
R+ Λ− 1

4
FmnF

mn − 1

2
m2BmB

m

]
, (2.7)

where Fmn = 2∂[mBn], Λ = d(d − 1) and m2 = z(z + d − 2). The field equations

are

Rmn = −dgmn −
1

4(d− 1)
F 2gmn +

1

2
FmpF

p
n +

1

2
m2BmBn;

DmF
mn = m2Bn, (2.8)

where in addition DmB
m = 0.

These equations of motion admit both an AdSd+1 solution,

ds2 =
dρ2

4ρ2
+

1

ρ
ηab(x)dxadxb, (2.9)

in which Bm = 0 and a solution with anisotropic scale invariance:

ds2 =
dρ2

4ρ2
+

1

ρ

(
σ2ρ1−z(du)2 + 2dudv + dxidxi

)
;

Bu = bρ−z/2, (2.10)

where

b2 =
2σ2(1− z)

z
. (2.11)

This solution is a special case of an AdS pp-wave solution and it becomes AdSd+1

when the parameter σ is zero whilst any finite σ can be rescaled to one via the
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2.2. Massive vector model

rescalings u → σ−1u, v → σv. In addition to the rotations, translations and

Galilean boosts in the (d − 2) spatial directions xi, the isometry group of this

background is:

M : v → v + a, H : u→ u+ a, (2.12)

D : ρ→ (1− a)2ρ, xi → (1− a)xi, v → (1− a)2−zv, u→ (1− a)zu.

Here D is the non-relativistic scaling (dilatation) symmetry. For general z these

are the only symmetries, but at z = 2 the metric admits the Schrödinger symmetry

group, which includes in addition a special conformal symmetry.

In the case of z = 1 the vector field vanishes. The metric

ds2 =
dρ2

4ρ2
+

1

ρ

(
σ2(du)2 + 2dudv + dxidxi

)
(2.13)

solves the Einstein equations with negative cosmological constant for any constant

value of σ2. Here σ2 acts as a constant source for the Tvv component of the stress

energy tensor. If this source is zero, the metric is pure AdSd+1 whilst if σ2 is

non-zero the metric admits only non-relativistic scale invariance, as the rotational

symmetry is broken.

The case of z = 0 is also special: the vector field is massless, dual to a conserved

current, and adding a source for this current given by

Bu = b, (2.14)

gives no contribution to the bulk stress energy tensor, so AdSd+1 with this vector

field solves the bulk field equations for any value of b. For z = 0 and d = 2 the

constant coefficient σ2 can however be switched on arbitrarily, independently of b,

and relates to the expectation value of the stress energy tensor. One can realize

z = 0 in general dimensions by coupling gravity to a scalar field, as we will discuss

below.

It is interesting to note that the solutions (2.10) also arise in topologically

massive gravity (TMG) in three dimensions. The action for TMG is

S =
1

16πGN

∫
d3x
√
−g
(
R− 2Λ +

1

2µ
εlmn

(
Γrls∂mΓsrn +

2

3
ΓrlsΓ

s
mtΓ

t
nr

))
(2.15)

where Γlmn are the connection coefficients associated to the metric gmn and where

we use the covariant ε-symbol such that
√
−gεmnr = 1, with r the radial direction

in (2.1). Variation of the action results in the equations of motion:

Rmn −
1

2
gmnR+ ΛGmn +

1

2µ

(
ε rs
m ∇rRsn + ε rs

n ∇rRsm
)

= 0. (2.16)

81



2. Holographic chiral scale-invariant models

Spacetimes (2.10) with generic z can be realized as solutions of TMG: the space-

time solves the TMG field equations when µ = (2z−1). These TMG solutions were

discussed in [95] and fit into the classification given in [96] as pp-waves. Solutions

of this type with u compactified were recently discussed in [97].

In [98, 99] details of the holographic dictionary for TMG were presented, and

this dictionary reflects the various problems of the theory: the theory is non-

unitary and contains negative norm states. The most important feature of the

dictionary for our purposes is that, since the equations of motion of TMG are

third order in derivatives, we need to specify not only the boundary metric but

also (a component of) the extrinsic curvature in order to find a unique bulk so-

lution. When we apply gauge/gravity duality to TMG with a negative cosmo-

logical constant, the extra boundary data corresponds to the source of an extra

operator. Therefore, besides the boundary energy-momentum tensor Tij , which

couples to the boundary metric g(0)ij , we also have a new operator Xvv which

couples to the leading coefficient of the radial expansion of the (uu) component of

the extrinsic curvature. It was shown in [98] that this operator Xvv has weights

(hL, hR) = 1
2 (µ+ 3, µ− 1).

In order to realize the scale invariant background with exponent z we need to

work at µ = (2z−1) and switch on a constant source for the operatorXvv. However

for z < 1, the case of primary interest in this thesis, the deforming operator Xvv

has negative scaling weights in the conformal field theory. This pathology is related

to the lack of unitarity of the dual theory, and in this thesis we work instead with

the massive vector models which do not exhibit such problems.

2.2.1. Linearized equations of motion about AdS background

Let us first linearize the equations of motion about the AdS background by letting

gab = ηab+hab; we fix radial axial gauge for the metric fluctuations. The linearized

Einstein equations decouple from the vector field equations, and the linearized

vector field equations are solved by

Ba = B(−z)a(xc)ρ−z/2 +B(2−z)a(xc)ρ1−z/2 + · · ·+B(z+d−2)a(xc)ρz/2+d/2−1 + · · ·
(2.17)

where (B(−z)a, B(z+d−2)a) are arbitrary d-dimensional 1-forms, and the other co-

efficients in the expansion are determined in terms of these functions. The radial

component of the vector field is completely determined in terms of these coeffi-

cients via the divergence equation (2.94) and the vector field equations. Note that

the relation between mass and CFT operator dimension ∆v for a vector is

m2 = (∆v − 1)(∆v + 1− d), (2.18)

which implies that

∆v = (z + d− 1) (2.19)
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2.2. Massive vector model

for the operator dual to the vector field. This relation means in particular that

the vector operator is irrelevant for z > 1 and relevant for z < 1. When z = 0, the

vector field becomes massless and is dual to a conserved current. When z = 1 the

vector operator is marginal with respect to the relativistic scaling symmetry.

Consider now the non-relativistic background (2.10). Suppose the parameter b

is small and one retains only terms linear in b, so the metric is purely AdSd+1. The

linearized AdS/CFT dictionary then implies that there is a constant null source for

the dual vector operator of dimension ∆v. When the latter is irrelevant, deforming

the theory in this way changes the UV structure. The corresponding holographic

statement is that at finite b the spacetime ceases to be asymptotically AdSd+1;

its asymptotic structure is modified and holography is extremely subtle. However,

when the deforming operator is relevant the spacetime remains asymptotically

AdSd+1 and the standard AdS/CFT dictionary can be developed. It is this latter

case that we will mostly focus on here, although we will extend our results to z > 1

wherever possible.

2.2.2. Global structure of the spacetime for z < 1

In this section we will briefly describe the global structure of the spacetime for

z < 1, which is analogous to that of the corresponding spacetimes with z > 1.

Since we are only interested in the case where b 6= 0, it is convenient to absorb

the parameter b in the rescaling u → σ−1u, v → σv, and also change the radial

coordinate to ρ = r2. The background metric and the vector field are then

ds2 = gmndx
mdxn =

1

r2

(
dr2 + 2dudv + r2(1−z)du2 + dxidxi

)
;

B =
b

σ
r−z du. (2.20)

In order to infer geodesic incompleteness, it is useful to consider the equation for

null geodesics, which satisfy the equation

ṙ2 + 2 v̇ u̇+ 2ẋiẋi + r2(1−z) v̇2 = 0. (2.21)

This equation can be written in terms of the constants of motion associated with

the Killing vectors ku = ∂u, kv = ∂v and ki = ∂ix:

Pu = kauẋa =
v̇

r2
; Pv = −kav ẋa =

u̇

r2
+

v̇

r2z
; Pi =

ẋi

r2
, (2.22)

resulting in ∫ r(λ)

r0

dr

r
√
P 2
u r

2(2−z) + 2 r2 PuPv + r2PiP i
= ±

∫ λ

λ0

dτ. (2.23)
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2. Holographic chiral scale-invariant models

Provided that 2PuPv + PiPi > 0, null geodesics reach r = ∞ in real, finite affine

parameter and hence the spacetime is geodesically incomplete. However, this

geodesic incompleteness will not prevent us from computing correlation functions

unambiguously in this background, as we will see later; the situation is analogous

to that found in Lifshitz spacetimes [100]. Moreover, in section 2.7 we will see that

the geometries can be blackened, with a horizon cloaking the geodesic incomplete-

ness. A singularity is considered acceptable according to the commonly applied

holographic criteria discussed in [101] if correlation functions can be computed

unambiguously and the singularity can be cloaked by a horizon. Precisely this

criterion was used in [100] to argue that holography for Lifshitz spacetimes made

sense, despite the geodesic incompleteness. Applying the same criteria here, one

can sensibly discuss holography for these spacetimes but it would of course still

be desirable to understand the resolution of this singularity at the quantum level,

for example, by embedding these geometries into string theory.

Next let us consider whether there is a well-defined time function in the space-

time. Reinstating the parameter b the metric is

ds2 =
dρ2

4ρ2
+

1

ρ

(
z

2(1− z)
b2ρ1−zdu2 + 2dudv + dxidxi

)
(2.24)

where b2 > 0 in the massive vector model. Thus guu > 0 (for finite ρ) for z < 1

and guu < 0 (for finite ρ) for z > 1, but note that for all z hypersurfaces of

constant u are null. In the case of z > 1, the u coordinate has been treated

as a time coordinate and real-time physics has been defined with respect to this

coordinate [102, 103]. However, the fact hypersurfaces of constant u are actually

null is symptomatic of a larger issue: there is no global time function in these

spacetimes and the spacetimes are said to be causally non-distinguishing, which

in turn implies subtleties in treating modes of zero lightcone momentum [104].

In the case where z < 1, one might similarly suppose that the u coordinate

should be treated as spacelike, but note that hypersurfaces of constant u are still

null and u is a null coordinate in the background for the dual quantum field

theory. Unlike the z > 1 case, there is a global time function: the spacetime is

asymptotically anti-de Sitter, and the coordinate defined as

t =
1√
2

(v − u) (2.25)

is everywhere timelike for b2 > 0 and z < 1, since hypersurfaces of constant t

are everywhere spacelike. Unlike the case of z > 1, there are no subtleties in

addressing real-time physics, and real-time issues will be suppressed here.
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2.2. Massive vector model

2.2.3. Embedding of massive vector models into string the-

ory

One may next wonder whether these massive vector models can be realized in

string theory compactifications. In the case of z > 1, various embeddings into

string theory have been found, with the massive vector actions arising as consis-

tent truncations of type II supergravities, see for example [84, 105, 106, 107, 108,

109, 110, 111, 112, 113]. Note that in these cases the truncation to a graviton and

massive vector suffices for the zero temperature background, but additional scalar

fields are switched on in the corresponding black hole solutions. From the con-

sistent truncation perspective, it is only consistent for the scalar fields to vanish

when the vector field is null.

A necessary condition for an embedding of 0 < z < 1 into string theory to exist

would be that there is a vector of mass squared 0 < m2 < (d− 1) (in AdS units)

in the spectrum around an AdSd+1 solution, corresponding to a vector operator

in the dual CFTd of dimension (d − 1) < ∆ < d. However, in spherical com-

pactifications, the dimensions of all vector operators dual to supergravity modes

are necessarily integral; this follows from the eigenvalue spectra of operators on

the sphere, see for example [64] for the S5 compactification of type IIB. Whilst

spherical compactifications includes vectors dual to symmetry currents of dimen-

sion (d− 1) and can include vectors of dimension d also, the chiral spectrum does

not include non-integral dimension vectors.

Irrational values for the conformal dimensions of operators dual to supergravity

modes in Sasaki-Einstein compactifications are however generic. As an example,

let us consider the T 1,1 compactification of type IIB supergravity, whose spectrum

was computed in [114, 115]. Since T 1,1 is a rank one SU(2)2/U(1) coset, all

differential operators can be expressed in terms of the Laplace-Beltrami operator,

which is the only functionally independent differential operator. This property

allows one to compute the complete KK spectrum in this case, whilst for generic

Sasaki-Einstein compactifications only a subset of the KK spectrum is known. All

masses are expressible in terms of the scalar Laplacian eigenvalue:

H0(j, l, r) = 6[j(j + 1) + l(l + 1)− 1

8
r2], (2.26)

where (j, l, r) refer to the SU(2)2 and R-symmetry quantum numbers. The super-

gravity compactification consists of graviton multiplet, four gravitino multiplets

and four vector multiplets, for which the conformal dimensions of the dual opera-

tors are expressible in terms of the function H0. These conformal dimensions are

generically irrational. In particular, considering one of the vector multiplets, the

corresponding dual operator to the vector is of dimension

∆ = −1 +
√

4 +H0(j, l, r). (2.27)
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In special cases where the square root assumes a rational value the dual opera-

tor will have a rational conformal dimension, and will form part of a shortened

multiplet. Generically, however, the dimension will be irrational and the operator

will be part of a massive long multiplet. For the chiral model to be realized, we

would need the spectrum to contain a vector operator of dimension 3 < ∆ < 4.

From [114, 115], one finds that vector operators with protected dimensions do

not realize any operators with dimension 3 < ∆ < 4, although both ∆ = 3 and

∆ = 4 do occur. This is in agreement with the fact that 0 < z < 1 solutions were

not found in the systematic explorations of [110, 111]. However, since for general

compactifications there is no supersymmetry or unitarity obstruction to such op-

erators being contained in the spectrum, it would be interesting to explore further

whether embeddings of these models into such string compactifications exist.

2.2.4. Realization of z = 0 with scalar fields

In general dimensions, the case of z = 0 realized with gravity coupled to a gauge

field is special, since the gauge field corresponding to a constant null source for the

dual current does not backreact on the metric. However, z = 0 can also be realized

by coupling gravity and a cosmological constant to a massless scalar field; as we

will now discuss, this case is related to the supergravity solutions found recently

in [93].

Consider first the Lagrangian:

S =
1

2κ2
d+1

∫
dd+1x

√
−g
[
R+ Λ− 1

2
(∂Φ)2

]
, (2.28)

where Λ = d(d− 1). The field equations are

Rmn = −dgmn + ∂mΦ∂nΦ; �Φ = 0. (2.29)

As well as the AdSd+1 solution with constant scalar field they also admit a solution

with non-relativistic scale invariance z = 0:

ds2 =
dρ2

4ρ2
+

1

ρ

(
σ2ρ(dF )2 + 2dudv + dxidxi

)
;

Φ =
√

(d− 2)σF (u), (2.30)

where F (u) is an arbitrary function of u. The scalar field vanishes in d = 2, where

an arbitrary value of σ2 satisfies the Einstein equations with negative cosmological

constant. In this case σ2 corresponds to a non-vanishing expectation value of Tvv,

and the geometry is dual to a specific state in the conformal field theory, rather

than to a non-relativistic deformation of the original conformal field theory.
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A massless field Φ is dual to a marginal scalar operator OΦ in the conformal

field theory. A non-vanishing σ implies that there is a u-dependent source for the

dual operator, so the deformed theory is:

SCFT → SCFT +
√

(d− 2)σ

∫
dudvdd−2xF (u)OΦ. (2.31)

A priori it is not obvious that such deformations are exactly marginal with re-

spect to the z = 0 scaling symmetry. When the function f(u) is constant, the

deformation does not break Lorentz symmetry, but the marginal scalar operator

is not generically exactly marginal with respect to the relativistic scaling sym-

metry. For general f(u) the deformation respects z = 0 symmetry under which

v → λ2v, u → u, xi → λxi, given that the scalar operator has non-relativistic

scaling dimension equal to the relativistic scaling dimension d. One would how-

ever still need to show that the scaling dimension remains exactly marginal under

the deformation and hence that the deformed theory remains scale invariant; this

proof will be discussed in the next section.

This system is particularly interesting for the following reason. If one considers

the case where dF = du, the metric can be written as

ds2 =
dρ2

4ρ2
+

1

ρ

(
dxidx

i − σ−2 dv
2

ρ

)
+ σ2(du+ ρ−1σ−2dv)2. (2.32)

Dimensionally reducing along the u direction results in a d-dimensional metric

with vector field A,

ds2
d =

dρ2

4ρ2
+

1

ρ

(
dxidx

i − σ−2 dv
2

ρ

)
; (2.33)

A =
dv

σ2ρ
, (2.34)

which exhibits Lifshitz symmetry with dynamical exponent ZL = 2 and corre-

sponds to the massive vector model used to obtain Lifshitz solutions in [116].

The Lifshitz symmetry group with dynamical exponent ZL includes a dilatation

symmetry

ρ→ λ2ρ; v → λZLv; xi → λxi, (2.35)

and v is a time coordinate. Note however that strictly speaking the scalar field

in (2.30) cannot be dimensionally reduced along the u direction, as F (u) = u.

Whilst the d-dimensional vector and metric, together with the constraint that

dΦ =
√
d− 2σ, are sufficient to solve the (d+ 1)-dimensional equations of motion,

it would be desirable to find an explicit realization of a z = 0 system in string

theory and, if possible, a consistent truncation to (d+ 1)-dimensional equations of

motion.
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Such families of solutions were found in Sasaki-Einstein compactifications in

[93]. In particular, compactifications of type IIB on Sasaki-Einstein manifolds E5

admit solutions in which the ten-dimensional metric is

ds2 =
dρ2

4ρ2
+

1

ρ

(
fρ(du)2 + 2dudv + dxidxi

)
+ ds2(E5) (2.36)

where f is in general a function of both Sasaki-Einstein coordinates and of u. The

corresponding five-form F5, the complex three-form G and the complex one-form

P are respectively

F5 = du ∧ dv ∧ d(ρ2) ∧ dx1 ∧ dx2 + 4VolE)5; (2.37)

G3 = du ∧W ; P = gdσ,

where W and g are a three-form and a function defined on E5 which may also

depend on u. The equations of motion imply that

du ∧ dW = d∗EW = 0; (2.38)

−�E5
f + 4f = 4|g|2 + |W |2.

In general the function f depends both on u and on the Sasaki-Einstein coordi-

nates. There is a simpler subclass of solutions in which f is constant and the

metric becomes the product of (2.32) with a Sasaki-Einstein space. We can fur-

thermore consider the case where the axion and dilaton is trivial, and so g = 0 In

this case the solutions require that

4f = |W |2, (2.39)

with W a harmonic form on the Sasaki-Einstein. To make contact with the dis-

cussion above it is useful to let f = σ2, so that

ds2 =
dρ2

4ρ2
+

1

ρ

(
σ2ρ(du)2 + 2dudv + dxidxi

)
+ ds2(E5); (2.40)

F5 = du ∧ dv ∧ d(ρ2) ∧ dx1 ∧ dx2 + 4VolE5;

G3 = 2σdu ∧ W̃ ,

where W = 2σW̃ and hence |W̃ |2 = 1. In the limit where σ is small, we may

analyze the interpretation of the solution using the standard AdS/CFT dictionary.

From the form of G3 one can see that at order σ it indeed corresponds to switching

on a u dependent source for a dimension four scalar operator in the dual four-

dimensional CFT. Moreover, suppose one considers the reduction

ds2 = ds2(M5) + ds2(E5); (2.41)

F5 = 4(Vol(M5) + Vol(E5));

H =
√

2dΦ ∧ W̃ .
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2.3. Field theory analysis

The equations of motion for the metric on the five-dimensional non-compact man-

ifold M5 and the scalar Φ are precisely those given in (2.29), but in order to satisfy

the ten-dimensional equations of motion, one needs to impose the additional con-

straint

∂mΦ∂mΦ = 0, (2.42)

and thus the reduction is not technically a consistent reduction. A similar issue

was found in [93] in reducing the system further to four dimensions, retaining only

the four-dimensional metric and massive vector. A consistent truncation to four

dimensions involving additional fields was presented in [93].

To summarize, for the cases described in [93] where the function f is inde-

pendent of the Sasaki-Einstein, the corresponding (d−1)-dimensional holographic

theory should be the dimensional reduction along the u direction of a d-dimensional

CFT deformed by an operator respecting z = 0 scale invariance. Note that the

dual d-dimensional field theory is in a flat Minkowski background, with coordi-

nates (u, v, xi) and the reduction is along a null direction, which would be expected

to produce the standard problems and subtleties of DLCQ. In the general case

in which f depends on the Sasaki-Einstein coordinates, a similar correspondence

should hold. Decomposing f into harmonics of the Sasaki-Einstein, one could infer

which chiral primary operators are sourced in the dual four-dimensional conformal

field theory.

From the bulk perspective, one can see immediately implications of reducing

the z = 0 geometry along a compact u direction. Any asymptotically locally anti-

de Sitter geometry reduced along a spacelike circle will result in a geometry which

is conformally asymptotically locally anti-de Sitter in lower dimensions. This fact

was used to analyze holography for non-conformal branes in [117, 118]. In the

present case, reduction along the circle does not produce a geometry which is

conformal to anti-de Sitter, and the reason is that the reduction being carried out

is not along a spacelike circle: the u circle becomes null at infinity, corresponding

to the fact that u is a null coordinate in the dual quantum field theory. Therefore

one needs to carry out a DLCQ of the deformed theory to obtain a Lifshitz theory

in one lower dimension.

2.3. Field theory analysis

The chiral backgrounds for general z originate from deforming the dual conformal

field theory by operators which respect a non-relativistic scaling invariance. In

this section we will discuss these deformations in more detail from the field theory

perspective.

Consider first a conformal field theory in d spacetime dimensions, with co-

ordinates (u, v, xi). The conformal group SO(2, d) contains the group of non-
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2. Holographic chiral scale-invariant models

relativistic conformal symmetries with arbitrary z, which we will denote Sz. The

embedding is the following. Choosing lightcone coordinates u, v, the relativistic

momentum generators Pu and Pv are identified with H and M, respectively, the

non-relativistic scaling generator D is a linear combination of the relativistic scal-

ing generator and a boost in the uv direction and C. Translations, rotations and

Galilean boosts and related to translations and rotations in the relativistic theory.

More details can be found, for example, in [79] or [84]. Note in particular that the

non-relativistic dilatation D is given in terms of the relativistic D and the boost

Muv (normalized so that the eigenvalues of (u, v) are (1, 1) respectively) as

D = D + (z − 1)Muv. (2.43)

Thus any conformal field theory also admits the non-relativistic symmetry Sz.

2.4. Marginal deformations respecting anisotropic

scaling symmetry

One can next pose the question as to what deformations preserve Sz but break

the relativistic conformal symmetry. Such deformations should be marginal with

respect to Sz, and thus the non-relativistic scaling dimension of the deforming

operator should be ∆D = d. The deforming operator should also break Lorentz

invariance, by breaking rotational symmetry in the (uv) plane. The simplest

possibility is a vector operator Vµ of relativistic scaling dimension ∆ = d+(z−1).

Using (2.43) we note that

∆D(Vv) = d; ∆D(Vu) = d+ 2(z − 1), (2.44)

and thus Vv is marginal with respect to the non-relativistic symmetry. It is this

case which is modeled holographically by gravity coupled to massive vector fields,

SCFT → SCFT + b

∫
ddxVv + · · · (2.45)

In the specific case of two dimensions, the dual two-dimensional CFT is deformed

by the right-moving component of a vector operator, namely V(1+z/2,z/2) with

holomorphic and anti-holomorphic dimensions (hv, hu) = (1 + z/2, z/2), so that

SCFT → SCFT + b

∫
dvduV(1+z/2,z/2) + · · · (2.46)

with b constant and where the ellipses denote terms higher order in b. This defor-

mation is manifestly consistent with the non-relativistic scaling symmetry

v → λ2−zv; u→ λzu, (2.47)
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2.4. Marginal deformations respecting anisotropic scaling symmetry

along with translational symmetries in the (u, v) direction. Note that the combi-

nation:

χ2 ≡ vzuz−2 (2.48)

is invariant under the non-relativistic scaling symmetry, whilst the (Lorentz-invariant)

combination (2uv) scales as λ2.

It is interesting to note that such deformations by vector operators are only one

special case of a more general situation in two dimensions, in which one deforms

a 2d CFT by a (p, q) operator Yp,q where (p, q) are the CFT scaling weights

corresponding to (v, u) respectively,

SCFT → SCFT + bp,q

∫
d2xYp,q. (2.49)

As discussed in [94] such a deformation respects anisotropic scale invariance with

exponent z under which u→ λzu and v → λ2−zv provided that

(p− 1)(z − 2) = (q − 1)z. (2.50)

Vector deformations in which p = q±1 are just one special case. Another interest-

ing case is that of strictly chiral deformations of conformal field theories, by which

we mean

SCFT → SCFT + bp,0

∫
d2xYp,0, (2.51)

where Yp,0 is a holomorphic field of arbitrary integral spin. The dynamical expo-

nent in this example is

z = 2

(
1− 1

p

)
. (2.52)

The case of p = 1 corresponds to deformation by a conserved current, which as

we saw earlier is trivial from the bulk perspective; that of p = 2 corresponds to

z = 1 anisotropic symmetry and could be realized by deforming with the holo-

morphic component of the stress energy tensor. Such chiral deformations of CFTs

have arisen previously in many contexts, from two-dimensional large N QCD to

Kodaira-Spencer theory, see for example [119], but the existence and implications

of the anisotropic scaling symmetry have not been discussed. From the form of

(2.50) one can see that a theory with exponent z can also be viewed as a theory

with exponent z′ = (2− z) upon exchanging the rôles of u and v.

Returning to the case of vector deformations, while such deformations are

manifestly marginal, one also needs to show that they are exactly marginal. A

priori, one might not have expected such deformations to be exactly marginal

with respect to the non-relativistic symmetry group. However, holographic duals

for such deformations (at strong coupling) exist generically, and this implies that

such operator deformations do indeed remain exactly marginal. Using conformal
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2. Holographic chiral scale-invariant models

perturbation theory, the correction to the two point function of the deforming op-

erator itself, in the deformed theory, is expressed in terms of higher point functions

in the conformal theory as

δ〈Vv(x)Vv(0)〉 =
∑
n≥1

1

n!
〈Vv(x)

n∏
a=1

∫
dxa(bVv(xa))Vv(0)〉. (2.53)

This expression can be rewritten in momentum space as

δ〈Vv(k)Vv(−k)〉 =
∑
n≥1

1

n!
〈Vv(k)(bVv(0))nVv(−k)〉. (2.54)

If the deformation is to be exactly marginal, at zero momentum, the anomalous

dimension of the operator must vanish at zero momentum. A simple argument

why this is true was given in [94] for the case of z = 2 and follows from (relativistic)

conformal invariance, which implies that

〈Vv(k)(bVv(0))nVv(−k)〉 = (bkv)
n〈Vv(k)Vv(−k)〉f (n)

(
ln(k2/µ2)

)
, (2.55)

where the function f (n) can depend at most logarithmically on the scale. The

right-hand side always vanishes for kv → 0, and therefore the deforming operator

itself cannot acquire an anomalous dimension.

For general values of z (excluding the cases where z/2 is an integer) the ar-

gument is even simpler because the integrals appearing in (2.53) are not scale

invariant. This implies, following section 4.4 of [94], that for generic values of z

no operators acquire anomalous scaling dimensions in the deformed theory (again,

except when z/2 is an integer). Instead the corrections to the two point function

of the deforming operator are simply of the form

〈Vv(k)(bVv(0))nVv(−k)〉 = (bkz/2v kz/2−1
u )n〈Vv(k)Vv(−k)〉, (2.56)

where no logarithmic term can appear on the right hand side. The quantity

(kzvk
z/2−1
u ) is, according to (2.48), invariant under the anisotropic scaling symme-

try and therefore the deformation corrects only the normalization of the operator

but not its non-relativistic scaling dimension. Thus the operator indeed remains

marginal in the deformed anisotropic theory.

Note that an analogous simple argument cannot be made for deformations by

marginal scalar operators. In such a case the deformation of the scalar two point

function is

δ〈O(x)O(0)〉 =
∑
n≥1

1

n!
〈O(x)

n∏
a=1

∫
dxa(αO(xa))O(0)〉, (2.57)

where α is a scalar parameter. Conformal invariance implies that

〈O(k)(αO(0))nO(−k)〉 = αn〈O(k)O(−k)〉f (n)
(
ln(k2/µ2)

)
, (2.58)
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2.4. Marginal deformations respecting anisotropic scaling symmetry

and if any of the f (n) are non-zero the operator acquires an anomalous dimension.

Generically the f (n) are indeed non-zero, and one needs to use additional structure

such as supersymmetry to determine when operators are exactly marginal.

2.4.1. Deformations with z = 0

Scaling symmetry with z = 0 cannot be realized non-trivially with by vector oper-

ator deformations. The vector operator which would respect z = 0 has relativistic

dimension (d − 1) and is a conserved current. The deformation by a constant

null source for this operator introduces chemical potentials in the dual theory and

breaks the relativistic invariance in a trivial way; correspondingly the bulk metric

remains AdSd+1 after the deformation. In section 2.2.4 we showed that z = 0 bulk

solutions could be obtained by coupling gravity to a massless scalar, and switching

on a profile for the scalar field which depends on the lightcone coordinate u. Let

us now discuss the corresponding field theory deformations.

Working to leading order around the AdSd+1 background, the solution (2.30)

corresponds to a deformation of the CFT,

SCFT → SCFT +

∫
duF (u)

∫
dvdd−2xOd, (2.59)

where the operator Od is a marginal scalar operator dual to the bulk field Φ.

Recalling that the scaling symmetry with z = 0 acts as

u→ λ0u; v → λ2v; x→ λx, (2.60)

and that the marginal scalar operator with scale as Od → λ−dOd, one notes that

the deformation indeed respects z = 0 symmetry for any choice of the function

F (u). The question next arises as to whether this deformation is exactly marginal,

since as we discussed above, marginal scalar operators are generically not exactly

marginal. However, in the bulk realization, the scalar operator is a chiral primary

which is exactly marginal. In the holographic realizations, therefore, the deforma-

tion is indeed exactly marginal for any choice of F (u), with the case of constant

F (u) being a special case in which relativistic symmetry remains unbroken.

2.4.2. Correlation functions in the deformed theory

Next let us consider the behavior of correlation functions under such deformations,

focusing on the case of two dimensions. Suppose that in the original CFT the

stress energy tensor is Tab, the vector operator of relativistic dimension (1 + z) is

Va and let Oh,h̄ be generic chiral operators of relativistic dimension (h, h̄). Here

v corresponds to the holomorphic coordinate, scaling weight h, and u corresponds
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2. Holographic chiral scale-invariant models

to the anti-holomorphic coordinate, scaling weight h̄. The corresponding non-

relativistic scaling dimension for the operator Oh,h̄ is

∆D = h(2− z) + h̄z. (2.61)

Non-relativistic scale invariance generically constrains the two point functions to

be of the form

〈O∆D (u, v)O∆′D
(0)〉 =

1

u(∆D+∆′D)/z
f(χ), (2.62)

where f(χ) is an arbitrary function of the scale invariant quantity χ defined in

(2.48). The relativistic two-point function is of the required form noting that

1

v2hu2h̄
≡ 1

u2∆nr/z
χ−2h/z ≡ 1

(uv)∆nr
χh̄−h. (2.63)

One should note that for generic z operators of different scaling dimension can have

non-vanishing two point functions. In the cases of z = 1 and z = 2 the additional

special conformal symmetry imposes the further restriction that ∆nr = ∆′nr.

Using conformal perturbation theory one can derive the corrections to the two

point function at non-zero b. To leading order this results in (see section 4.4 of

[94] for a detailed analysis),

〈O(u, v)O(0)〉 =
1

v2hu2h̄

(
c0 + c1b(χ)−1/2

)
, (2.64)

where c0 denotes the operator normalization in the CFT and c1 is a computable

numerical constant, proportional to the structure constant of the three point func-

tion between these operators and the deforming vector operator. When (z/2) is

an integer the corresponding expression involves logarithms and is instead of the

form,

〈O(u, v)O(0)〉 =
1

v2hu2h̄

(
c0 + c1bχ

−1/2 ln(m2(uv))
)
. (2.65)

The appearance of logarithms reflects the fact that operators acquire anomalous

scaling dimensions in the deformed theory; this is only possible when z/2 is an

integer.

Returning to the generic case where z/2 is not an integer, the corrections are

organized in powers of bχ−1/2 since the deformed action remains invariant under

the original dilatation symmetries provided that the coupling b is also transformed.

Working to higher orders in b in the case where z/2 is non-integral gives

〈O(u, v)O(0)〉 =
1

v2hu2h̄

∑
n

cnb
n(χ)−n/2 (2.66)

The corrections in b hence change the χ dependent normalization of the correlator,

but do not the scaling dimension of the operator. By contrast in the case where
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2.4. Marginal deformations respecting anisotropic scaling symmetry

z/2 is integral the logarithmic terms in the expansion in b indicate that the scaling

dimension is also modified at non-zero b; the case of Schrödinger symmetry, z = 2,

was the main focus of [94].

In the holographic realizations considered here, there are no three-point cou-

plings between the metric and the vector field in the bulk action. This implies

that the leading corrections to their two point functions occur at order b2, and

they are related to four point functions at the conformal point. More generally,

since all odd couplings vanish in the bulk, their corrected two point functions in-

volve functions of (b2/χ). For generic z the stress energy tensor and the vector

operator can have non-zero two point functions with each other, at non-zero b,

and indeed as we will show the Ward identities do force these two point functions

to be non-zero.

2.4.3. Counterterms and renormalizability

In this section we will consider what counterterms are needed in computing the

two point functions in conformal perturbation theory. Explicit expressions for

the corrections to correlation functions at leading order in b were obtained in [94]

using the method of differential regularization [77]. Counterterms in this method

are implicit, although they can be constructed explicitly as in [120]. In the case

at hand we would like to explore the structure of the required counterterms and

compare it with the counterterms obtained in holographic renormalization.

Following [94], the leading order correction (2.64) is determined by the three

point function between the deforming operator and the other two operators. An-

alytically continuing to Lorentzian signature via v → w and u→ w̄ the correction

behaves as

δ〈O(w, w̄)O(0)〉 ∼ b

w2h−1−z/2w̄2h̄−z/2

∫
d2y

(w − y)z/2+1yz/2+1(w̄ − ȳ)z/2ȳz/2

(2.67)

∼ b

w2h−1−z/2w̄2h̄−z/2 ∂
2
w

∫
d2y

|y − w|z|y|z
. (2.68)

When 2z is not an integer, then |y|−z is well-defined as a distribution, and its

Fourier transform is∫
dwdw̄e−ikw−ik̄w̄|w|−z = π22−z Γ(1− z/2)

Γ(z/2)
|k|z−2. (2.69)

Noticing that the integral (2.68) is a convolution, the integral may be computed

via the inverse Fourier transform of the products of the two Fourier transforms.

This results in a leading correction to the two point function of the form (2.64).

Whilst the correct finite contribution to the two point function is obtained

in this way, note that the integrals being computed are in general divergent and
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2. Holographic chiral scale-invariant models

additional counterterms are required relative to b = 0. One way to see this is

remove small circles of radius Λ−1 around points where the vertices coincide; with

this regulator the integral will have power divergences which can be cancelled

by adding contact terms. Let us consider the case where the operator is the

deforming operator itself. The new counterterms are then precisely the same

counterterms needed in computing the three point function of this (for z > 1,

irrelevant) operator in the CFT. The counterterms at order bn will similarly be

related to the counterterms that arise in computing (n + 2)-point functions, and

the latter must on general grounds be local, covariant functionals of the vector

operator sources.

Let us restrict to the case where the conformal field theory is treated within

the flat background. The leading order counterterms at 2n-th order in the vector

field sources diverge as

Sct ∼ Λ2n(z−1)+2

∫
d2x(baba)n + · · · , (2.70)

and we have used the fact that the counterterm is necessarily covariant. The

degree of divergence is computed using the known dimensionality of the operator

source, of the metric and of derivatives. Since counterterms must be scalars, any

additional derivatives acting on the sources will reduce the degree of divergence,

Sct ∼ Λ2n(z−1)+2−2m

∫
ta1···a2nc1···c2m

2m∏
i

Dci

2n∏
j

baj , (2.71)

where ta1···a2nc1···c2m is a tensor, which must include (m+n) inverse metrics, since

the counterterm is a scalar. Compared to (2.70), these terms are indeed more

divergent when m > 0. The actual tensors which arise need to be obtained by

explicit computation, but note that when m = 0 the tensor needs to be completely

symmetric and built out of the (flat) metric, with (2.70) being the only possibility.

Now let us suppose one has computed the counterterms to arbitrarily high

order in the vector field sources and then let

ba = bδau + aa, (2.72)

where b is constant and finite whilst aa is treated perturbatively. The 2n-point

correlation functions in the deformed theory may then be computed by working

to order 2n in the source aa. Consider which counterterms can contribute to

this calculation: when aa = 0, all of the counterterms vanish, since there are

no covariant scalar invariants which can be formed from a null vector field. The

absence of such scalar invariants is related to the exactly marginal nature of the

anisotropic deformation.

In computing the two point functions in the deformed theory, one needs to

retain only terms quadratic in the source aa. For z < 2 this implies that only
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2.4. Marginal deformations respecting anisotropic scaling symmetry

a finite number of counterterms are needed. This follows from (2.71): since the

background source is null, at order n we need to include at least m = (n − 2)

v derivatives to form a scalar invariant. The leading non-vanishing counterterms

have the structure

Sct ∼ Λ2n(z−2)+6−2m̃

∫
d2kk2m̃(bkv)

2n−4(bav)
2, (2.73)

where we work in momentum space, kv is the lightcone momentum and k schemat-

ically denotes all momenta. Clearly for z < 2 there are only a finite number of

divergent counterterms. However, for z > 2, counterterms of arbitrarily high order

in the finite source b can contribute. In the holographic computation we will find

the same analytic structure, and we will argue in addition that for non-rational

values of z the counterterms cannot give finite contributions to the renormalized

two point functions.

2.4.4. Stress energy tensor and deforming vector operator

Let us next consider the stress energy tensor and the deforming vector operator,

focusing on the case of z < 1 where the latter is a relevant operator. Our starting

point is a two-dimensional conformal field theory which is invariant under dif-

feomorphisms and Weyl rescalings (up to the usual conformal anomaly). If the

generating functional of the field theory is W the stress energy tensor Tab may be

defined as5:

Tab =
2i√
−g(0)

δW

δgab(0)

, (2.74)

where g(0)ab is the background metric for the field theory. The vector operator

Va of scaling dimension (1 + z) which couples to a source ba is correspondingly

defined as:

Va =
i√
−g(0)

δW

δba
. (2.75)

Diffeomorphisms act as

δgab(0) = −(Daζb +Dbζa); δba = ζcDcba +Daζ
cbc, (2.76)

with Da the covariant derivative. Weyl transformations act as

δgab(0) = −2λgab(0), δba = zλba. (2.77)

Imposing invariance of the generating functional under diffeomorphisms and Weyl

transformations gives the following Ward identities:

Db〈Tab〉J − baDb〈Vb〉J + Fba〈Vb〉J = 0; (2.78)

〈T aa 〉J − zba〈Va〉J = A[g(0), b]. (2.79)

5Note that we are working here in Lorentzian signature.
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where 〈O〉J denotes the expectation value of an operator O in the presence of

sources J , and A denotes the conformal anomaly. Here Fab is the curvature of

the vector field source ba, Fab = 2∂[abb]. The anomaly can in principle depend

covariantly both on the background metric g(0) and on the source b. Since the

anomaly must have dimension two, for generic values of z there is no covariant

quantity of the right weight that can be formed out of b and the anomaly will be

given entirely in terms of the Ricci scalar of the metric g(0) and the central charge

c of the CFT:

A(g(0)) =
c

24π
R[g(0)] (2.80)

(The additional factor of 2π on the righthand side relative to usual CFT conven-

tions follows from the absence of the 2π factor in our normalization of the stress

energy tensor.) For specific values of z where a quantity of the form ∂nbp can di-

mension two there are additional contributions to the conformal anomaly, as will

be discussed in section 2.5.

The Ward identities imply an infinite number of relations for correlation func-

tions in the deformed theory, which are obtained by differentiating with respect to

the sources and then setting g(0)ab and ba to their background values. In particu-

lar, the identities for two point functions can be completely solved, up to the two

point functions of the vector operators. For notational convenience let us denote

T ≡ Tvv, T̄ ≡ Tuu and θ ≡ Tuv. The dilatation Ward identity implies that

〈θ(u, v)Vv(0)〉 = 1
2zb〈Vv(u, v)Vv(0)〉; 〈θ(u, v)Vu(0)〉 = 1

2zb〈Vv(u, v)Vu(0)〉,
(2.81)

whilst

〈θ(u, v)θ(0)〉 =
1

4
z2b2〈Vv(u, v)Vv(0)〉+ · · · , (2.82)

where the ellipses denote local terms. Solving the v component of the diffeomor-

phism identity then results in

〈T (u, v)T (0)〉 =
c

8π2v4
+

1

4
z2b2

∂2
v

∂2
u

(〈Vv(u, v)Vv(0)〉) ;

〈T (u, v)θ(0)〉 = −1

4
z2b2

∂v
∂u

(〈Vv(u, v)Vv(0)〉) . (2.83)

〈T (u, v)T̄ (0)〉 =
b2z

4
(z − 2)〈Vv(u, v)Vv(0)〉 − b2z2

2

∂v
∂u

(〈Vu(u, v)Vv(0)〉) ;

〈T (u, v)Vv(0)〉 = − 1
2zb

∂v
∂u

(〈Vv(u, v)Vv(0)〉) ;

〈T (u, v)Vu(0)〉 = − 1
2zb

∂v
∂u

(〈Vu(u, v)Vv(0)〉) ,

where local terms have been suppressed. Real-time issues and contact terms in

the correlators have also been suppressed, since they do not play a rôle in the
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discussions here. Solving the u component of the diffeomorphism identity results

in

〈T̄ (u, v)T̄ (0)〉 =
c

8π2u4
+ b2(2− z)

(
∂2
u

2∂2
v

〈Vv(u, v)Vv(0)〉+
∂u
∂v
〈Vv(u, v)Vu(0)〉

)
+b2〈Vu(u, v)Vu(0)〉;

〈T̄ (u, v)θ(0)〉 =
1

4
zb2(2− z)∂u

∂v
(〈Vv(u, v)Vv(0)〉) +

b2z

2
〈Vu(u, v)Vv(0)〉; (2.84)

〈T̄ (u, v)Vv(0)〉 = b(1− 1
2z)

∂u
∂v

(〈Vv(u, v)Vv(0)〉) + b〈Vu(u, v)Vv(0)〉;

〈T̄ (u, v)Vu(0)〉 = b(1− 1
2z)

∂u
∂v

(〈Vu(u, v)Vv(0)〉) + b〈Vu(u, v)Vu(0)〉.

Thus in the deformed theory the relativistic stress energy tensor is no longer

conserved and has non-trivial two point functions, determined in terms of the

conformal anomaly of the original theory and the correlation functions of the

vector operator.

In the deformed theory the relativistic stress energy tensor is no longer con-

served. However, when b is covariantly constant and has zero curvature F ≡ 0,

there is a non-symmetric stress-energy tensor tab defined such that

tab = Tab − baVb, (2.85)

which is covariantly conserved. As discussed in [94], the components of tab are

related to the Noether charges, including those associated with the translational

symmetries u → u+ a, v → v + b, and the fact that tab is non-symmetric follows

from the general result that a conserved stress tensor in any field theory in a

Minkowski background which breaks Lorentz invariance cannot be symmetric.

The conserved stress energy tensor tab is obtained by coupling the CFT to a

vielbein eaâ, and then defining

tab = eb̂b
i

|e|
δWcft

δeab̂
, (2.86)

where â denotes tangent space indices. The vector operator deformation is then

given by

Scft → Scft + i

∫
d2x|e|baeâaVâ. (2.87)

If we now consider the behavior of the generating functional under Lorentz trans-

formations, diffeomorphisms and Weyl transformations, respectively, we can derive

the following Ward identities for tab:

〈t[ab]〉+ b[a〈Vb]〉 = 0; (2.88)

Dâ〈tb̂â〉+Dbbb̂〈Vb〉+ Fbb̂〈V
b〉 = 0;

〈taa〉+ (1− z)ba〈Va〉J = A(e),
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2. Holographic chiral scale-invariant models

where we again assume that the only anomaly is the conformal anomaly A(e),

which depends only on the scalar curvature. The operator tab is indeed conserved

when b is covariantly constant and has zero curvature.

For z < 1 deformations, which are relevant with respect to the conformal

symmetry group, both the relativistic stress energy tensor Tab and the (conserved)

anisotropic stress energy tensor tab are natural well-defined operators to consider.

The relativistic stress energy tensor Tab is natural when we are treating the theory

as a deformation of a CFT, whilst the tensor tab is natural if we view the theory

as an intrinsically anisotropic scale-invariant theory, which acquires additional

symmetries in the UV. Correlation functions of the tensors are non-locally related

to each other, but may be obtained straightforwardly by the defining relation

(2.85). For z > 1 deformations, however, which are irrelevant with respect to

the conformal symmetry, it is rather less natural to work with the operator Tab,
since it is neither conserved nor is the theory conformal in the UV. However, for

generic values of z such that z > 1, two point functions around the scale invariant

vacuum, including correlation functions of Tab, are reconstructable from those of

the deforming vector operator, using the Ward identities, and we thus evade having

to work in a vielbein formalism.

2.5. Holographic renormalization for d = 2

In this section we will derive general expressions for the renormalized holographic

one point functions of dual operators in terms of coefficients in the near boundary

expansions of bulk solutions. We will focus first on the case of z < 1 in two dimen-

sions, and then comment on the case of z > 1 which is no longer asymptotically

AdS. We discuss holographic renormalization using two methods. The first uses

the general asymptotic solution of the bulk field equations to regulate the volume

divergences of the on-shell action with covariant counterterms being obtained by

inverting these expansions. This method is the most familiar approach to holo-

graphic renormalization, see the review [78], but becomes increasingly cumbersome

as the number of counterterms required increases. Since this method works with

the asymptotic expansion of the bulk metric and vector, it allows us to appreciate

the roles of different terms in the asymptotic expansions, which we will exploit in

section 2.6.

The second method of holographic renormalization exploits the Hamiltonian

approach developed in [121, 122], which uses covariant expansions in terms of

eigenfunctions of a dilatation operator. This approach is much more efficient and

powerful; the main advantage here is that renormalized correlation functions can,

in favorable cases, be determined without explicit computation of the countert-

erms. In cases where many counterterms are needed, and the inversion of the
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2.5. Holographic renormalization for d = 2

asymptotic expansions of the bulk fields is cumbersome, this methodology is the

more appropriate one to use.

2.5.1. Asymptotic expansions and their inversion

We begin by analyzing the most generally asymptotically locally AdS solutions of

the bulk field equations. In the neighborhood of the conformal boundary at ρ→ 0,

the metric and vector field can be expressed as:

ds2 =
dρ2

4ρ2
+

1

ρ
gab(x, ρ)dxadxb; (2.89)

Ba = ρ−z/2ba(x, ρ);

Bρ = ρmbρ(x, ρ),

where the power m will be determined below. Given this coordinate choice, the

Einstein equations can be written as:

Rab[gcd] + (d− 2)g′ab + tr(g−1g′)gab − ρ(2g′′ − 2g′g−1g′ + tr(g−1g′)g′)ab

=
1

2
m2BaBb −

1

4(d− 1)
ρ(gcegdfFcdFef + 8ρgcdFcρFdρ)gab +

1

2
ρ(gcdFacFbd + 4ρFaρFbρ);

(2.90)

Da(tr(g−1g′))−Dbg′ab = −(m2BaBρ + ρgcdFacFρd); (2.91)

1

4
tr(g−1g′g−1g′)− 1

2
tr(g−1g′′) =

1

2
m2BρBρ −

1

16(d− 1)
gcegdfFcdFef

+
(d− 2)

2(d− 1)
ρgcdFcρFdρ. (2.92)

The vector field equations in this coordinate system become:

∂a
(√
−ggabFbρ

)
=

m2

ρ

√
−gBρ; (2.93)

∂a
(√
−ggabgcdFbd

)
+ 4ρd/2−1∂ρ

(√
−gρ2−d/2gcdFρd

)
=

m2

ρ

√
−ggcdBd.

The divergence equation for the vector field is:

∂a
(√
−ggabBb

)
+ 4ρd/2∂ρ

(√
−gρ1−d/2Bρ

)
= 0. (2.94)

Here for future convenience the equations are written for general d, although in

this section we will consider only d = 2. The leading order terms in these equations

as ρ→ 0 imply that:

gab(x, 0) = g(0)ab(x); ba(x, 0) = b(−z)a(x), (2.95)
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2. Holographic chiral scale-invariant models

for arbitrary (non-degenerate) metric and 1-form respectively. By the usual rules

of AdS/CFT, g(0) acts as a source for the stress energy tensor in the dual theory,

whilst b(−z)a acts a source for the dual vector operator of dimension (d+ z − 1).

The leading term in the expansion of Bρ (including the polynomial power

m) is determined by the divergence equation, and does not therefore represent

an additional independent source. Indeed, using the leading order terms in the

equations of motion one finds that the power of ρ in the leading order term of Bρ
is the same as in the leading term of Ba:

Bρ = ρ−z/2
[
b(−z)ρ + · · ·

]
; (2.96)

b(−z)ρ =
1

2z
Da

(0)b(−z)a,

where D(0) is the covariant derivative associated with the metric g(0)ab. Therefore

the value of m in (2.89) is −z/2.

The first step in holographic renormalization is to determine the general asymp-

totic expansion near the boundary, namely the radial expansion of the fields. We

thus expand the fields in Fefferman-Graham form as:

gab(x, ρ) = g(0)ab(x) + · · ·+ ρg(2)ab(x) + · · · ; (2.97)

ba(x, ρ) = b(−z)a(x) + · · ·+ ρzb(z)a(x) + · · · ;

bρ(x, ρ) = b(−z)ρ(x) + · · ·+ ρzb(z)ρ(x) + · · · .

The radial expansion only needs to be calculated to sufficient order to determine

the divergences in the on-shell action; in practice this means up to the order at

which coefficients are undetermined or only partially determined by the asymptotic

analysis.Since the coefficients in the field equations (2.90) are polynomials in ρ

this system of equations admits solutions with (gab(x, ρ), ba(x, ρ), bρ(x, ρ)) regular

functions of ρ. To solve these equations, one may successively differentiate the

equations w.r.t. ρ and set ρ = 0. In pure gravity, the metric is expanded in

integral powers of ρ, with additional logarithmic terms generically needed to solve

the equations of motion in odd dimensions. In the case of gravity coupled to the

massive vector, the powers of ρ that occur in the expansions need to be determined

from the equations of motion, and should not a priori be assumed to be integral.

Explicit solution of the equations of motion for 0 < z < 1/2 determines that

the first subleading term in the metric is actually of order ρ1−z. The form of

the asymptotic expansions for 0 < z < 1/2 can be summarized as follows. The

only terms required in determining the counterterms and renormalized one point

functions are

gab = g(0)ab + ρ1−zg(2−2z)ab + ρg(2)ab + h̃(2)abρ log ρ+ · · · ; (2.98)

ba = b(−z)a + ρzb(z)a + · · · ;

bρ = b(−z)ρ + ρzb(z)ρ + · · · ,
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2.5. Holographic renormalization for d = 2

where the ellipses denote subleading terms. The following coefficients are com-

pletely determined in terms of the non-normalizable modes:

g(2−2z)ab =
z

2(1− z)

[
b(−z)ab(−z)b − 1

2Tr(b(−z)g
−1
(0)b(−z))g(0)ab

]
, (2.99)

b(−z)ρ =
1

2z
Da

(0)b(−z)a,

h̃(2)ab = 1
2

(
R(0)ab − 1

2g(0)abR(0)

)
= 0.

In the latter expression the identity relating Ricci curvature and Ricci scalar in

two dimensions has been imposed.

In the vector field, the coefficient b(z)a is totally undetermined, whilst

b(z)ρ = − 1

2z
D(0)ab

a
(z). (2.100)

The metric coefficient g(2)ab is undetermined, but subject to the following con-

straints:

Trg(2) = − 1
2R(0) + z2Tr(b(−z)g

−1
(0)b(z)); (2.101)

Db
(0)g(2)ba = ∂a

(
Tr(g(2))

)
+
z

2

(
b(−z)ab(z)ρ + b(−z)ρb(z)a

)
+
z

2

(
F(−z)acb

c
(z) − F(z)acb

c
(−z)

)
,

where F(−z)ab is the curvature of the field b(−z)a.

For generic 0 < z < 1, the asymptotic expansion of the metric has the form

gab =
∑
m,n

g(2m+2n(1−z))ρ
m+n(1−z) + · · · (2.102)

with (m,n) integral and coefficients of terms with

m+ n(1− z) < 1 (2.103)

contribute to the on-shell divergences. For 1/2 < z < 1 this implies that an

increasing number of coefficients can contribute to the on-shell divergences, and

the Hamiltonian approach to renormalization is more efficient. Note also that the

coefficient g2n(1−z) is of order b2n−z, and whenever (1− z) = 1/p, with p an integer,

logarithmic terms will arise, corresponding to conformal anomalies.

Next one can proceed to renormalize the on-shell action for 0 < z < 1/2 as

follows. One substitutes these expansions into the regulated on-shell action:

S =
1

2κ2
d+1

∫
M
dd+1x

√
−g
[
R+ Λ− 1

4
FmnF

mn − 1

2
m2BmB

m

]
− 1

κ2
d+1

∫
∂M

ddx
√
−hK

(2.104)
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with the boundary regulated at ρ = ε and we now let κ2 ≡ κ2
3 in the case of

interest, d = 2. The Gibbons-Hawking boundary term is included to ensure that

the Dirichlet variational problem is well-defined on the surface of fixed radius; note

that K is the trace of the second fundamental form. This procedure results in a

regulated action of the form:

Sreg =
1

2κ2

∫
ρ=ε

d2x
√
−g(0)

[
ε−1a(0) + ε−za2(1−z) + ã2 log ε+O(ε0)

]
(2.105)

which involves a finite number of terms that diverge as ε→ 0. Here all coefficients

(a(k), ã) of divergent terms are local functions of the sources (g(0)ab(x), b(−z)a(x)):

a(0) = 2 a2(1−z) = −z
2
b(−z)g

−1
(0)b(−z), (2.106)

ã2 = Trg(2) − z2b(−z)g
−1
(0)b(z) = − 1

2R(0).

These divergences can be removed using the following covariant counterterm ac-

tion:

Sct =
1

2κ2

∫
d2x
√
−γ
(
−2 +

z

2
BaBa +

1

2
R[γ] log ε

)
, (2.107)

where γ is the induced metric. From the renormalized action, Sren = S + Sct, one

can define the following renormalized one point functions:

〈Va〉 = − 1√
−g(0)

δSren
δba(−z)

= lim
ε→0

[ε−z/2√
−γ

δSren
δBa

]
= − z

κ2
b(z)a, (2.108)

and for the stress energy tensor:

〈Tab〉 = − 2√
−g(0)

δSren

δgab(0)

= − lim
ε→0

[ 2√
−γ

δSren

δγab

]
(2.109)

=
1

κ2

[
g(2)ab +

1

2
R(g(0))g(0)ab −

z

2

(
b(−z)ab(z)b + b(z)ab(−z)b

)
−z(z − 1

2
)
(
b(−z)cb

c
(z)

)
g(0)ab

]
.

Note that the answer for pure Einstein gravity, i.e. when Bm = 0, agrees with

that given in [123]. Since the generating functional of the dual field theory W in

Lorentzian signature is related to the renormalized on-shell action as W = iSren,

these definitions for the operators agree with those given in section 2.4.4, as do

the dilatation and diffeomorphism Ward identities, which are respectively:

〈T aa 〉 = − 1

κ2
Tr(g(2)) =

1

κ2
R(0) + zba(−z)〈Va〉; (2.110)

Db〈Tab〉 =
(
b(−z)aD

b〈Vb〉+ F b(−z)a〈Vb〉
)
.
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The relation between the bulk Newton constant G3 and the central charge c of the

dual two-dimensional CFT is

1

κ2
=

1

8πG3
=

c

24π
, (2.111)

as derived in [124].

2.5.2. Hamiltonian analysis

In the previous section we showed that an increasing number of counterterms are

needed for z > 1/2. The renormalized one point functions and counterterms are

in such cases more conveniently computed using the Hamiltonian formulation of

holographic renormalization. In this section we will analyze holographic renormal-

ization using the methods developed in [121, 122]. These will allow us to compute

renormalized correlation functions for generic values of z > 1/2.

We begin by expressing the metric as

ds2 = gmndx
mdxn = (N2 +NaN

a)dr2 + 2Nadx
adr + γabdx

adxb, (2.112)

where N is the lapse and Na is the shift. The choices of N = 1 and Na = 0 make

r a Gaussian normal coordinate, related to the Fefferman-Graham coordinate ρ as

ρ = e−r. In order to provide a Hamiltonian description of the dynamics one first

expresses the curvature part of the action in terms of quantities on hypersurfaces

Σr, of constant r:

S =
1

2κ2

∫
d3x
√
γN

[
R̂+K2 −KabK

ab + Λ− 1

4
FmnF

mn − 1

2
m2BmB

m

]
,

(2.113)

where R̂ is the Ricci scalar of Σr and Kab is its second fundamental form. After

using the gauge freedom to fix N = 1 and Na = 0 the Einstein equations of motion

become

K2 −Kb
aK

a
b = R̂+ 2κ2Trr

DaK
a
b −DbK = κ2Tbr (2.114)

K̇b
a +KKb

a = R̂ba − κ2(T ba − δbaT )

where ȧ denotes ∂ra and

κ2Tmn = (1− 1

8
F 2 − 1

4
m2B2)gmn +

1

2
FmpFn

p +
1

2
z2BmBn, (2.115)

with T = Tmm . Note that the (ra) and (rr) Einstein equations are the momen-

tum and Hamilton constraints, which enforce that the momenta conjugate to the

lapse and shift functions vanish identically. The momentum conjugate to Br also
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vanishes (corresponding to the divergence equation for the vector field) and the

non-trivial canonical momenta are

πab = πab[γ,Bc] =
δL

δγ̇ab
=

δIr
δγab

= − 1

2κ2

√
γ(Kγab −Kab), (2.116)

πa = πa[γ,Bb] =
δL

δḂa
=

δIr
δBa

= − 1

2κ2

√
γFra = − 1

2κ2

√
γ(Ḃa − ∂aBr),

(2.117)

where Ir =
[ ∫

drL
]
on−shell

is the on-shell action. This implies that the extrinsic

curvature Kab and the momenta of the vector field Ba are themselves functionals

of the induced fields on Σr. Note that the extrinsic curvature is given by

Kab =
1

2
nm∂mγab =

1

2
γ̇ab, (2.118)

where n is the normal to Σr. In the Hamiltonian version of holographic renor-

malization one uses the equations of motion to determine the asymptotic form of

the momenta as functionals of the induced fields. This method has the key advan-

tage of maintaining covariance at all stages, thus ensuring that Ward identies are

manifest and it also shortens the computation of counterterms.

In the method of holographic renormalization used in the last section the

asymptotic analysis begins by expanding the bulk fields in the ρ coordinate. In the

Hamiltonian method one notes that the non-normalizable modes of the induced

fields behave asymptotically as

γab ∼ e2rg(0)ab, γ̇ab ∼ 2γab, (2.119)

Ba ∼ ezrb(−z)a, Ḃa ∼ zBa.

Note that the field Br is entirely determined by these fields, using the vector

divergence equation. The dilatation operator, identified with the functional form

of the asymptotic r-derivative in the solution space, is found to be:

∂r =

∫
d2x

(
γ̇ab

δ

δγab
+ Ḃa

δ

δBa

)
∼
∫
d2x

(
2γab

δ

δγab
+ zBa

δ

δBa

)
≡ δD.

(2.120)

Since Kab, Ḃa and Br are functionals of the induced fields, each can be writ-

ten asymptotically as an expansion in eigenfunctions of the dilatation operator,

(2.120). Furthermore, the leading terms in the asymptotic radial expansions co-

incide with those in the asymptotic expansions in eigenfunctions of the dilatation

operator. This allows one to write:

Ka
b = K(0)a

b +K(α1)a
b +K(α2)a

b + · · ·+K(2)a
b + K̃(2)a

b
log e−2r + · · · , K(0)a

b = δba

Ḃa = Ḃ(−z)a + Ḃ(β1)a + Ḃ(β2)a + · · · , Ḃ(−z)a = zBa (2.121)

Br = B(2−z)r +B(σ1)r + · · · ,
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where the dilatation weights are such that

δDK(n)a
b = −nK(n)a

b, n < 2 (2.122)

δDḂ(n)a = −nḂ(n)a, δDB(n)r = −nB(n)r.

with the logarithmic terms similarly transforming homogeneously. Note that

δDK(n)ab = −(n − 2)K(n)ab and [δD, ∂a] = 0 but [δD, ∂r] 6= 0. The term K(2)a
b

transforms as

δDK
b
(2)a = −2Kb

(2)a − 2K̃b
(2)a. (2.123)

This inhomogeneous transformation is obtained by requiring firstly that δD does

not act on coordinates (i.e, on the logarithm) and secondly that the action of

∂r on Kb
a provides asymptotically the same result as the action of δD, where

∂rK(d)a
b ∼ −dK(d)a

b. Using the vector field equations and divergence equation,

one can show that

DaB
a = − 1

√
γ
∂r(
√
γBr), Ḃr = zB(2−z)r −KBr, (2.124)

and hence the expansion for Ḃr can indeed be written in terms of the expansion

for K and Br.

The expansions of the momenta in eigenfunctions of the dilatation operator

can be determined iteratively by solving the field equations. One can now deduce

immediately the first subleading term K(α1)a
b of Kb

a by looking at the leading

order terms in the Einstein equations. The (ra) equation implies that

DbK
b
a −DaK = κ2Tar =

1

2
Fabγ

cb(Ḃc − ∂cBr) +
1

2
z2BaBr. (2.125)

Since DbK(0)a
b − ∂aK(0) = 0, the lowest order terms contributing are

DbK(α1)a
b − ∂aK(α1) =

z

2
Fabγ

cbBc +
z2

2
BaB(2−z)r. (2.126)

This implies that α1 = 2(1 − z). One can then use this fact in the (ab) Einstein

equations to find K(α1)a
b, resulting in

K(2−2z)a
b = −z

2

(
BaB

b − 1

2
(Bγ−1B)δba

)
. (2.127)

Note that K(2−2z) := K(2−2z)i
i = 0. One can derive similar equations for further

coefficients in (2.121) but the ordering of the weights (α(n), β(n)) depends on the

value of z. For example, when z < 1/2, the coefficient β1 = z is the first subleading

term in the vector field expansion, as we showed in the previous section, whilst

for z > 1/2, the first subleading term is instead B(2−3z)a since (2 − 3z) < z. At
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z = 1/2 one needs to include logarithmic terms, related to the conformal anomalies,

to satisfy the field equations.

Before solving for further coefficients, let us discuss how this information will

be used to determine the renormalized on-shell action and one point functions.

Starting from (2.113) one can differentiate the on-shell action with respect to r to

obtain

Ṡon−shell =
1

κ2

∫
Σr

d2x
√
γ

(
R̂+ 1− 1

4
FabF

ab − 1

2
z2BaB

a

)
. (2.128)

One can then write the regulated action as

Ir =
1

κ2

∫
§r
ddx
√
γ(K − λ), (2.129)

where λ satisfies

λ̇+Kλ− κ2(2 +
1

4
F 2 +

1

2
z2B2) = 0. (2.130)

The variable λ admits an expansion in dilatation eigenfunctions:

λ = λ(ε0) + λ(ε1) + ...+ λ(2) + λ̃(2) log e−2r + · · · (2.131)

where each term transforms homogeneously, namely δDλ(n) = −nλ(n) except for

λ(2). The transformation law for the latter is obtained in a similar fashion as that

for K(2)a
b. Terms in the on-shell action are divergent as r → ∞ only for n < 2,

along with the logarithmic term, and thus the counterterm action is formally given

by

Ict = − 1

κ2

∫
§r
d2x
√
γ

(∑
n<2

(K(n) − λ(n))− λ̃(2) log e−2r

)
. (2.132)

The terms in the dilatation expansion of λ can be obtained by iteratively solving

the above first order equation defining λ, but a more efficient procedure is the

following. Note first that

2γabπ
ab + zBaπ

a = 2γab
δIr
δγab

+ zBa
δIr
δBa

(2.133)

=
1

κ2

∫
§r
d2x
√
γ

[
2γab

δ

δγab
+ zBa

δ

δBa

]
(K − λ).

Hence,

2γabπ
ab+zBaπ

a =
1

κ2
δD(
√
γ(K−λ))⇔ (1+δD)K+

z

2
Baγ

ab(Ḃb−∂bBr) = (2+δD)λ

(2.134)
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where one has used (2.116) and (2.117), together with: δD
√
γ = 2

√
γ which follows

from the definition of δD. This last equation then allows the iterative determina-

tion of the expansion of λ. For example, looking at the leading order term one

finds that

K(0) = (2 + δD)λ(0) → λ(0) = 1. (2.135)

The first subleading term has weight 2(1− z) and is given by

z2

2
(Bγ−1B) = (2 + δD)λ(2−2z) ↔ λ(2−2z) =

z

4
(Bγ−1B). (2.136)

As mentioned already above, the question of which terms appear at subsequent

order depends on the value of z. For z < 1/2, the only other divergent term is

the logarithmic term, which follows from solving (2.134) at weight two. Using the

expression for K(2) given in (2.145) one finds that

(2 + δD)(λ(2) + λ̃(2)loge−2r) = −2λ̃(2) = −1

2
R. (2.137)

For z < 1/2 this suffices to determine explicitly the counterterm action

Ict =
1

2κ2

∫
§r
d2x
√
γ
(
− 2 +

z

2
(Bγ−1B) +

1

2
R log e−2r

)
, (2.138)

in agreement with that found in the previous section. Further counterterms are

needed for z ≥ 1/2 but, as we will see, the explicit form is not needed to compute

renormalized correlation functions for non-rational values of z.

In general, the renormalized on-shell action is given by

Iren = lim
r→∞

(Ir + Ict) =
1

κ2

∫
d2x
√
γ(K(2) − λ(2)) . (2.139)

The one-point functions can be determined by using the Hamilton-Jacobi relations,

which can be written as:

πabδγab + πaδBa =
1

κ2

∫
§r
d2xδ[

√
γ(K − λ)]. (2.140)

Taking r →∞, one expands the momenta and the integrand in eigenfunctions of

the dilatation operator and matches terms with the same weight. The procedure

implies in particular that:

δIren =
1

κ2

∫
d2xδ

[√
γ(K(2) − λ(2))

]
=
[
πabγ

acγbeδγce
]
(0)

+
[
πa γ

abδBb
]
(0)

,

(2.141)

where the subscript represents the overall terms with zero dilatation weight. Since,

by the definition of δD, the vector field has weight z, the induced metric weight 2
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2. Holographic chiral scale-invariant models

and its inverse weight -2, the renormalized one-point functions are then found to

be:

〈Tab〉 = − 2

−√g(0)

δIren
δgab(0)

= lim
r→∞

[ 2

−√γ
δIren

δγab

]
=

1

κ2

[
K(2)γab −K(2)a

cγcb

]
;

(2.142)

〈Va〉 = − 1√
−g(0)

δIren
δba(−z)

= lim
r→∞

[ ezr√
−γ

δIren
δBa

]
=

1

2κ2
lim
r→∞

[
ezrḂ(z)a

]
. (2.143)

It should be emphasized that these expressions for the renormalized one point

functions hold for general values of z < 1, as does the form (2.139) for the renor-

malized action. However, one still needs to determine the relation between the

momenta coefficients and coefficients in the asymptotic expansions of the fields,

which in general can involve both the normalizable modes and local functionals of

the sources.

When z 6= (1 − 1
n ), with n an integer, the map between momenta coefficients

and terms in the asymptotic expansions is particularly simple. Let us express the

asymptotic expansions as in the previous section as

γab = g(0)ab + · · ·+ e−2rg(2)ab + · · · (2.144)

Ba = ezr(b(−z)a + · · · ) + e−zr(b(z)a + · · · ),

where ρ = e−2r. Then,

K(2) =
1

2

(
R[g(0)]− 2z2ba(−z)b(z)a

)
; (2.145)

K(2)ab = −g(2)ab +
z

2
(b(−z)ab(z)b + b(z)ab(−z)b)−

z

2
b(−z)cb

c
(z)g(0)ab;[

ezrḂ(z)a

]
= −2zb(z).

and substituting into the renormalized one point functions (2.142) results in the

same expressions as (2.108) and (2.109).

When z = (1− 1
n ), with n an integer, functionals of the vector operator source

can have the required dilatation weight to contribute to the one point functions.

In such cases there are additional contributions to the map between momenta

coefficients and terms in the asymptotic expansions, and one has to compute the

one point functions on a case-by-case basis. For example, in the case of z = 1/2

K(2) =
1

2

(
R[g(0)]− 2z2ba(−z)b(z)a

)
+

1

2
K b

(2−2z)aK
a
(2−2z)b, (2.146)

where, using (2.127),

K b
(2−2z)a = −z

2

(
b(−z)ab

b
(−z) −

1

2
(b(−z)cb

c
(−z))δ

b
a

)
. (2.147)
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This implies that the conformal anomaly is given by

〈T aa 〉 =
1

κ2

(
R(0) − z2ba(−z)b(z)a +

z2

16
(ba(−z)b(−z)a)2

)
, (2.148)

and thus involves a local functional of the vector field source.

2.5.3. Analysis for z > 1

Let us now discuss the issues that arise when z > 1 and the vector field is dual

to an irrelevant operator in the conformal field theory. Since irrelevant oper-

ators modify the UV behavior of the quantum field theory, their sources can

only be treated perturbatively, which allows their correlation functions to be com-

puted. The holographic analogue can be seen in (2.98): even for z > 1 the data

(g(0)ab, g(2)ab, b(−z)a, b(z)a) supplies the independent integration constants for the

bulk equations, but when z > 1 the limit of gab(ρ→ 0) is no longer finite. In fact,

using (2.102), one sees that the metric

gab =
∑
m,n

g2m+2n(1−z)ρ
m+n(1−z) (2.149)

contains terms for m = 0 and n ≥ 0 which behave as

g−2n(z−1)ρ
−n(z−1) ∼ b2n(−z)ρ

−n(z−1), (2.150)

and thus terms which are higher order in the vector operator source diverge faster

as ρ→ 0, as expected. Working at finite b(−z) an infinite number of counterterms

would thus in general be needed. A well-defined problem is obtained by working

perturbatively with small b(−z)a such that

|b(−z)|2 � εz−1, (2.151)

where ρ = ε is the cutoff. To compute an n-point function of the dual vector

operator, one should only retain terms to order bn(−z) and thus only a finite number

of counterterms are needed. Logarithmic terms in the on-shell action related to

conformal anomalies can arise whenever

z = 1 +
p

q
, (2.152)

where (p, q) are integers. Except in such cases, where z is rational, the renormalized

one point functions are just as for z < 1, i.e.

〈Va〉 = − z

κ2
b(z)a; (2.153)

〈Tab〉 =
1

κ2

[
g(2)ab +

1

2
R(g(0))g(0)ab −

z

2

(
b(−z)ab(z)b + b(z)ab(−z)b

)
− z(z − 1

2
)
(
b(−z)cb

c
(z)

)
g(0)ab

]
. (2.154)
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To prove this, one can use the Hamiltonian method of the previous section: pro-

vided that the source is treated perturbatively, the dilatation operator is well-

defined and the momenta admit expansions in eigenfunctions of this dilatation op-

erator. The general expressions for the renormalized one-point functions in terms

of the momenta coefficients given in (2.142) can then immediately be rewritten

in terms of coefficients in the asymptotic expansion when z is not rational, as

terms involving only the vector field sources cannot have the correct dilatation

weight. For rational values of z the map between the momenta and asymptotic

coefficients can indeed involve polynomials in the vector field sources, and it needs

to be worked out iteratively on a case by case basis.

Note that in the Hamiltonian method one does not actually need to explicitly

compute the counterterms λ(n) to derive the correlation functions, although they

would be needed to compute the on-shell value of the action. Formally, at least,

one can work to arbitrarily high perturbative order in the operator source b(−z)a,

with corresponding counterterms of increasing order of divergence. If however

the source b(−z)a is treated as finite, then there is no well-defined asymptotic,

or equivalently dilatation, expansion and the counterterm action (2.132) is not

a priori valid. This corresponds to the fact that switching on a generic finite

deformation by the dual vector operator makes the dual quantum field theory

non-renormalizable.

In the case of interest here, however, the source b(−z)a is finite but null: just

as in the field theory discussion earlier, we can compute correlators of the vector

operator in the deformed theory by setting

g(0)ab = ηab; b(−z)a ≡ bδau + a(−z)a, (2.155)

where the source a(−z)a is treated perturbatively. The existence of a dilatation

symmetry is preserved at finite b and all bulk fields still admit an asymptotic

expansion in terms of eigenfunctions of the dilatation operator, even though the

metric gab does not have a finite limit as ρ→ 0.

Now consider the following: treating b(−z)a perturbatively first derive the coun-

terterm action (2.132), working recursively in powers of the source. Then

Ict = − 1

κ2

∫
§r
d2x
√
γ

(∑
n<2

(K(n) − λ(n))− λ̃(2) log e−2r

)
, (2.156)

where in addition to the counterterms λ(0), λ̃(2) and λ−2(z−1) computed explic-

itly earlier there are an infinite number of counterterms at z > 1. For example,

polynomials of the vector field occur,

λ−2n(z−1) = c2n(z−1)(B
aBa)n (2.157)

where the coefficients c2n(z−1) may be determined iteratively in n, working per-

turbatively in the source. This counterterm is the holographic analogue of (2.70)
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and counterterms involving further derivatives and curvatures will also occur. If

these counterterms are evaluated on the anisotropic background itself (2.155) in

which a(−z)a = 0, then, since the source is both null and constant, all counterterms

apart from λ(0) vanish. This is the holographic analogue of the deformation being

exactly marginal with respect to the anisotropic symmetry. To compute the two

point function of the vector operator in the deformed theory we will need to retain

terms in the action to order a2
(−z), and following the arguments of section (2.4.3)

there will be a finite number of terms for z < 2.

2.6. Linearized analysis around chiral background

In this section we will consider the linearized equations of motion around the chiral

background for generic values of z in two dimensions, and the corresponding two

point functions of the stress energy tensor and vector operator in the deformed

theory. We should note that the analysis excludes those values of z for which

the deforming operator itself acquires an anomalous dimension; the case of z = 2,

Schrödinger, is one such example, which was analyzed in detail in [94].

2.6.1. Linearized equations

Let us perturb the fields around the background as:

Bm = ρ−z/2bm(x, ρ) = b ρ−z/2δum + am(ρ, u, v), (2.158)

ds2 =
dρ2

4ρ2
+

1

ρ
gab(x, ρ)dxadxb, gab = h̄ab(ρ) + hab(ρ, u, v),

where

h̄abdx
adxb ≡ (2dudv + σ2ρ1−zdu2). (2.159)

The linearized Einstein equations can then be written as:

Rab[h] + tr(h̄−1h′)h̄ab − ρ
(

2h′′ab − 2 z b2δu(ah
′
b)v ρ

−z +
z

2
b2 tr(h̄−1h′)δuaδ

u
b ρ
−z
)

=
1

2
(1 + z)z b2hvvh̄ab ρ

−z +
(z

2
b2
)2
hvvδ

u
aδ
u
b ρ

1−2z + z2 b a(aδ
u
b) ρ
−z/2

+2 z b
(
δu(afb)ρ − fvρ h̄ab

)
ρ1−z/2; (2.160)

∂a
(
tr(h̄−1h′)

)
− h̄bc∂ch′ab −

1

4
z b2∂ahvv ρ

−z +
1

2
z b2δua ρ

−z ∂c

(
hcv −

1

2
tr(h)δcv

)
=

1

2
z b fav ρ

−z/2 − z2b aρ δ
u
a ρ
−z/2 ; (2.161)

1

4
z b2 ∂ρ

(
ρ−z hvv

)
=

1

2
tr(h̄−1h′′) (2.162)

Rab[h]− 1

2
h̄abR[h] = 0. (2.163)
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The last equation is the linearization of the two-dimensional identity Rab[g] −
1
2gabR[g] = 0. Note also that we define fab := ∂aab − ∂baa as the curvature of the

vector fluctuation ab.

The linearized vector field equations are

∂a
(
h̄abfbρ

)
− z

2
b ρ−1−z/2∂a

(
hav −

1

2
tr(h)δav

)
=

z2

ρ
aρ;

(2.164)

∂a
(
h̄abh̄cdfbd

)
+ 4∂ρ

(
ρh̄acfρa

)
+ 2 z b ρ−z/2∂ρ

(
hcv −

1

2
tr(h)δcv

)
=

z2

ρ
h̄caaa.

(2.165)

whilst the linearized divergence equation is:

∂a
(
h̄acac

)
+ 4ρ a′ρ − b ρ−z/2∂a

(
hav −

1

2
tr(h)δav

)
= 0. (2.166)

It is also useful to write:

tr(h) = −σ2hvvρ
1−z + 2huv; ∂a

(
hav −

1

2
tr(h)δav

)
= −1

2
σ2hvv,vρ

1−z + hvv,u.

(2.167)

One now begins with the identity (2.163), which implies that Rvv = 0 , Ruu =

σ2ρ1−zRuv , where the components of the Ricci tensor are:

Ruv[h] =
1

2
hvv,uu +

1

2
huu,vv − huv,uv; (2.168)

Ruu[h] = σ2ρ1−z
(

1

2
hvv,uu +

1

2
huu,vv − huv,uv

)
.

Using these identities, the (vv) component of the Einstein equations is solved by

h′′vv = 0 → hvv = h(0)vv + ρh(2)vv, (2.169)

where both h(0)vv and h(2)vv are arbitrary functions of (u, v). The (v) component

of (2.161) together with (2.162) lead to:

h′uv,v − h′vv,u −
1

4
z b2 hvv,v ρ

−z = 0; h′′uv =
1

4
z b2 ∂ρ

(
ρ−z hvv

)
. (2.170)

Integrating the second of these equations gives:

huv = h(0)uv + ρh(2)uv +
b2z

4

(
1

(1− z)
ρ1−zh(0)vv +

1

(2− z)
ρ2−zh(2)vv

)
, (2.171)

whilst the first equation implies that:

∂vh(2)uv = ∂uh(2)vv. (2.172)
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The other Einstein equations do not decouple from the vector field fluctuations.

One can however use equation (2.163) to express the remaining graviton fluctuation

as

huu = H̃(0)uu + ρH̃(2)uu −
z

4(1− 2z)
σ4h(0)vvρ

2−2z

− z

4(3− 2z)
σ4ρ3−2zh(2)vv +

σ2

(2− z)
ρ2−zh(2)uv + hVuu, (2.173)

where (H̃(0)uu, H̃(2)uu) are integration constants and hVuu is defined as the solution

to

∂2
ρh

V
uu = −1

2
zbσ2ρ1−z∂ρ(ρ

−z/2av) + zb∂ρ(ρ
−z/2au) + zbρ−z/2(

1

2
σ2ρ1−zaρ,v−aρ,u).

(2.174)

In order to solve the remaining Einstein equations, the graviton fluctuation must

in addition satisfy the u component of (2.161) and the (uv) component of (2.160),

which requires

h′uu,v =
1

2
zb2ρ−z(h(0)vv,u + ρh(2)vv,u) + ∂uh(2)uv +X; (2.175)

X =
1

2
zbρ−z/2 (au,v − av,u + 2zaρ) ;

huu,vv = 2huv,uv − hvv,uu − 4h(2)uv + 2zσ2ρ1−zh(2)vv + Y ; (2.176)

Y = 2zbρ1−z
(
∂ρ

(
ρz/2 av

)
− ρz/2 aρ,v

)
.

As we will show below, these constraints impose a restriction on the integration

constant h̃(2)uu, related to the diffeomorphism Ward identity. These equations

are automatically satisfied when the vector field equations are solved. We use the

notation (H̃(0)uu, H̃(2)uu) to denote the integration constants anticipating the fact

that hVuu could also contribute terms at order ρ0 and ρ in the asymptotic expansion

as ρ→ 0.

The linearized vector field equations can be written in terms of the metric

fluctuations as follows. The divergence equation (2.166) becomes

4ρa′ρ =− av,u − au,v + σ2av,vρ
1−z + bρ−z/2

(
− 1

2
σ2∂v(h(0)vv + ρh(2)vv)ρ

1−z

+ ∂u(h(0)vv + ρh(2)vv)

)
. (2.177)

Equation (2.164) becomes

z2ρ−1aρ = ∂v (aρ,u − a′u) + ∂u (aρ,v − a′v)− σ2ρ1−z∂v (aρ,v − a′v) (2.178)

− 1

2
zbρ−1−z/2

(
−1

2
σ2∂v(h(0)vv + ρh(2)vv)ρ

1−z + ∂u(h(0)vv + ρh(2)vv)

)
.
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Equations (2.165) become

ρz/2∂ρ

[
ρ1−z ∂ρ

(
ρz/2 av

)]
= ∂ρ (ρ aρ,v)−

1

4
∂v (av,u − au,v)−

1

2
zbρ−z/2h(2)vv;

(2.179)

ρz/2∂ρ

[
ρ1−z ∂ρ

(
ρz/2 au

)]
= −1

4
∂u (au,v − av,u) + σ2ρ1−zρz/2∂ρ

[
ρ1−z∂ρ

(
ρz/2av

)]
+ ∂ρ (ρaρ,u)− σ2∂ρ

(
ρ2−zaρ,v

)
+ (1− z)σ2ρ1−za′v

+
1

4
z(1− z)bσ2ρ−3z/2h(0)vv +

1

4
z(2− z)σ2ρ1−3z/2h(2)vv.

(2.180)

These field equations can be diagonalized to give fourth order differential equa-

tions. To show this, let us first define the differential operator

∆ := ρ∂2
ρ + ∂ρ −

z2

4
ρ−1 +

1

2
∂u∂v −

σ2

4
ρ1−z∂2

v . (2.181)

We then define

aVv ≡ av −
b

2
ρ−z/2(h(0)vv + ρh(2)vv), (2.182)

as well as

aVρ ≡ aρ −
1

2
b∂−1
u h(2)uvρ

−z/2, (2.183)

where the inverse derivative is abbreviated notation such that

A = ∂−1B → ∂A = B. (2.184)

(In practice the solutions are expressed in momentum space, where the inverse

derivative acts by division of momenta.) By differentiating (2.177) with respect to

v and inserting into (2.179) one obtains

∆aVv = ∂va
V
ρ . (2.185)

Differentiating (2.177) with respect to ρ and subtracting it from (2.178) one obtains

∆aVρ =
σ2

4
(1− z)ρ−z∂vaVv . (2.186)

Combing these equations, one finds that aVρ satisfies the fourth order equation

ρz∆(ρz∆aVρ ) =
σ2

4
(1− z)ρz∂2

va
V
ρ , (2.187)

whilst aVv also satisfies a fourth order equation

∆2aVv =
σ2

4
(1− z)ρ−z∂2

va
V
v . (2.188)
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Given the solutions for aVv and aVρ one can then determine au using the remaining

vector field equations; one first determines au using (2.177) and then checks that

the remaining equations are solved.

The general solution of the linearized equations of motion can hence be ex-

pressed in terms of solutions to coupled second order equations or, equivalently,

the fourth order equations as

av =
b

2
ρ−z/2(h(0)vv + ρh(2)vv) + aVv ; (2.189)

aρ =
1

2
b∂−1
u h(2)uvρ

−z/2 + aVρ .

Since (aVv , a
V
ρ ) satisfy coupled second order equations, the general solution involves

four independent integration constants. The other fluctuations can be formally

expressed in terms of (aVv , a
V
ρ ) as

∂va
V
u = −4ρ∂ρa

V
ρ − ∂uaVv + σ2ρ1−z∂va

V
v ; (2.190)

∂va
V
u ≡ ∂vau − bzρ−z/2∂−1

u h(2)uv −
1

2
bρ−z/2(∂uh(0)vv + ρ∂vh(2)uv)

∂2
ρh

V
uu = ∂2

ρ

(
ρ1−zσ2∂−2

v (zh(2)vv + ∂u∂vh(0)vv) (2.191)

+ρ2−z b2z

2(2− z)
h(2)uv

+2zbρ1−z∂−2
v (∂ρ(ρ

z/2aVv )− ρz/2aVρ,v)
)
.

Now let us consider the differential equations satisfied by the vector fluctuations

in more detail. If one Fourier transforms to momentum space so that for every

field φ(r, u, v)

φ̃(r, ku, kv) =

∫
dudveikuu+ikvvφ(r, u, v), (2.192)

then the operator ∆ acts on φ̃ as

∆φ̃ = (ρ∂2
ρ + ∂ρ −

z2

4ρ
− 1

2
kukv +

σ2

4
ρ1−zk2

v)φ̃. (2.193)

It is then natural to introduce a new dimensionless coordinate x

x = (2kukv)ρ ≡ k2ρ, (2.194)

such that

∆φ̃ = k2(x∂2
x + ∂x −

z2

4x
− 1

4
+ σ2x1−zkχ)φ̃ ≡ k2∆xφ̃, (2.195)

where

kχ ≡ 2z−4kzvk
z−2
u . (2.196)
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Then the fourth order equation for aVv is

∆2
xa
V
v = (z − 1)σ2kχx

−zaVv . (2.197)

Since this equation only depends on the dimensionless coordinate x and the quan-

tity σ2kχ, the exact solution for aVv can only depend on these quantities, as dis-

cussed earlier. Regularity throughout the spacetime will, as we show below, impose

two conditions on the four independent solutions of this equation. In what follows

we will solve the equations at weak chirality, namely perturbatively in σ2, in which

case it is more convenient to use the coupled second order equations rather than

the fourth order equation.

2.6.2. ‘T’ and ‘X’ modes of solution

One can summarize the general solution of the linearized equations of motion as

follows. The metric fluctuations are

hvv = h(0)vv + ρh(2)vv;

huv = h(0)uv + ρh(2)uv +
b2z

4

(
1

(1− z)
ρ1−zh(0)vv +

1

(2− z)
ρ2−zh(2)vv

)
;

(2.198)

huu = h̃(0)uu + ρh̃(2)uu + ρ1−zσ2∂−2
v (zh(2)vv + ∂u∂vh(0)vv)

+ ρ2−z b2z

2(2− z)
h(2)uv

+ 2zbρ1−z∂−2
v (∂ρ(ρ

z/2aVv )− ρz/2aVρ,v).

The vector fluctuations are

av =
b

2
ρ−z/2(h(0)vv + ρh(2)vv) + aVv ; (2.199)

aρ =
1

2
b∂−1
u h(2)uvρ

−z/2 + aVρ ;

∂va
V
u = ∂vau − bzρ−z/2∂−1

u h(2)uv −
1

2
bρ−z/2(∂uh(0)vv + ρ∂vh(2)uv);

∂va
V
u = −4ρ∂ρa

V
ρ − ∂uaVv + σ2ρ1−z∂va

V
v .

The propagating modes aVm solve the coupled differential equations:

∆aVv = ∂va
V
ρ ; ∆aVρ =

σ2

4
(1− z)ρ−z∂vaVv , (2.200)

where the second order differential operator ∆ is given in (2.181).

Let us express the source and normalizable modes in the asymptotic expansion

of huu as ρ→ 0 as

huu = h(0)uu + ρh(2)uu + · · · , (2.201)
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2.6. Linearized analysis around chiral background

respectively. These are given in terms of the integration constants (h̃(0)uu, h̃(2)uu)

as

h(0)uu = h̃(0)uu + 2z2b∂−2
v aV(z)v; (2.202)

h(2)uu = h̃(2)uu + 2zb(z + 1)∂−2
v aV(z+2)v − 2zb∂−1

v aV(z)ρ,

where aV(m)a is the coefficient of the term at order ρm/2 in the asymptotic expansion

of aVa as ρ → 0. Note that it is h(0)uu which is the source for dual operator, and

the (u), (v) and (uv) components of Einstein equations at order ρ0 enforce the

linearized Ward identities

∂vh(2)uv = ∂uh(2)vv; (2.203)

∂vh(2)uu = ∂uh(2)uv − zb∂uaV(z)v,

h(2)uv = −1

4
R[h(0)] +

z2

2
baV(z)v,

and

R[h(0)] = ∂2
uh(0)vv + ∂2

vh(0)uu − 2∂u∂vh(0)uv. (2.204)

We have used the fact that the coupled differential equations for aVm can be solved

asymptotically as ρ→ 0. The resulting solutions have the structure expected from

the previous (non-linear) analysis, namely

aVa = aV(−z)aρ
−z/2 + · · ·+ aV(z)aρ

z/2 + · · · , (2.205)

aVρ =
1

2z
(∂va

V
(−z)u + ∂ua

V
(−z)v)ρ

−z/2 + · · ·

− 1

2z
(∂va

V
(z)u + ∂ua

V
(z)v)ρ

z/2 + · · ·

where we have isolated the terms corresponding to the operator source (aV(−z)a)

and operator expectation value (aV(z)a) respectively. The analogous terms in the

radial component of the vector field are completely determined in terms of these

components. The case of z = 2 is special, as the radial powers in the independent

solutions depend explicitly on b2, see [94], because the dimension of the dual

operator is modified at non-zero b.

Recall that for z < 1 the holographic one point functions at the linearized level

are given in terms of coefficients in the asymptotic expansion as

〈Tvv〉 =
1

κ2
h(2)vv; 〈Tuv〉 = − 1

κ2
h(2)uv; (2.206)

〈Tuu〉 =
1

κ2

(
h(2)uu − bza(z)u

)
;

〈Va〉 = − z

κ2
a(z)a.
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2. Holographic chiral scale-invariant models

Combining the propagating solution for aV with the other modes results in the

following source and vev terms in the asymptotic expansions for the metric and

vector fluctuations

hvv = h(0)vv + ρh(2)vv;

huv = h(0)uv + ρh(2)uv + · · ·
huu = h(0)uu + ρh(2)uu + · · · (2.207)

av = ρ−z/2
(
aV(−z)v +

b

2
h(0)vv

)
+ · · ·+ aV(z)vρ

z/2 + · · ·

au = ρ−z/2
(
aV(−z)u +

b

2
∂−1
v ∂uh(0)vv + bz∂−1

v ∂−1
u h(2)uv

)
+aV(z)uρ

z/2 + · · ·

These expressions imply that the stress energy tensor sources are g(0)ab = η(0)ab +

h(0)ab and the vector operator sources are given by

b(−z)v = a(−z)v =

(
aV(−z)v +

b

2
h(0)vv

)
; (2.208)

b(−z)u = b+ a(−z)u = b+

(
aV(−z)u +

b

2
∂−1
v ∂uh(0)vv + bz∂−1

v ∂−1
u h(2)uv

)
.

Thus in particular the fluctuation h(0)ab sources not just the stress energy tensor

but also the vector operator. To compute two point functions of the stress energy

tensor one should set the vector source to zero, by switching on appropriate aV(−z)a,

whilst to compute the two point functions of the vector operator one should set to

zero h(0)ab. Note that switching off the sources for either set of operators does not

switch off their expectation values, since the two point functions in the deformed

theory are non-diagonal.

In [94] the general linearized solution for z = 2 was given in terms of indepen-

dent solutions of the equations of motion, the ‘T’ and ‘X’ modes. The ‘T’ mode

solution is the z → 2 limit of the solution given above with aV = 0, which involves

only the integration constants (h(0)ab, h(2)ab). The limit of z → 2 requires

1

(2− z)
ρ2−z → ln(ρ). (2.209)

This ‘T’ mode solution is non-dynamical, in that there is no bulk differential equa-

tion satisfied by these modes. From a field theoretic perspective, these correspond

to quantities which are completely determined by Ward identities. From the bulk

perspective the corresponding statement is that the ‘T’ mode solution is equiva-

lent to a bulk diffeomorphism. To show this, let us consider a bulk diffeomorphism

generated by a vector field ζm such that

δgmn = (Dmζn +Dnζm). (2.210)
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2.6. Linearized analysis around chiral background

Restricting to diffeomorphisms which respect the Fefferman-Graham form of the

metric requires δgrr = δra = 0 and hence

ζρ =
ζ

ρ
; ζv =

ζ(0)v

ρ
− ∂vζ; (2.211)

ζu =
ζ(0)u

ρ
− ∂vζ + σ2ρ−zζ(0)v

+
σ2(z − 1)

(2− z)
ρ1−z∂vζ,

where (ζ, ζ(0)a) are independent arbitrary functions of (u, v). The metric variations

are then

δgvv =
1

ρ

(
2∂vζ(0)v − 2∂2

vζρ
)

; (2.212)

δguu =
1

ρ

(
2∂uζ(0)u − 2∂2

uζρ
)

− 4σ2

(z − 1)
ρ−zζ +

2σ2

(2− z)
ρ1−z∂u∂vζ;

δguv =
1

ρ

(
(∂uζ(0)v + ∂vζ(0)u)− 4ζ − 2∂u∂vζρ

)
+σ2ρ−z∂vζ(0)v +

σ2(z − 1)

(2− z)
ρ1−z∂2

vζ,

and using the analog of (2.76) the vector field fluctuations are

δbρ = −b∂vζρ−z/2; (2.213)

δbv = bρ−z/2(∂vζ(0)v − ρ∂2
vζ);

δbu = −bρ−z/2(∂uζ(0)v − ρ∂v∂uζ)− 2bzρ−z/2ζ.

Noting that δgmn = hmn/ρ this agrees with the ‘T’ mode fluctuations, under the

identifications

h(0)vv = 2∂vζ(0)v; h(0)uu = 2∂uζ(0)u; h(0)uv = (∂uζ(0)v + ∂vζ(0)u)− 4ζ,

(2.214)

with all other modes determined in terms of these quantities. The ‘X’ mode

solution of [94] corresponds to our propagating solution aV . In the limit of z → 2

the coupled differential equations (2.200) remain well-defined, but the asymptotic

solutions of these equations depend explicitly on b2, since the corresponding vector

operator picks up an anomalous dimension at non-zero b [94].

One of the puzzling features in [94] was that in the ‘T’ mode solution the vector

field is expressed non-locally in terms of the “source” data h(0)ab. In the case of

z < 1, where the relationship between asymptotics of the fluctuations and operator
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2. Holographic chiral scale-invariant models

data is known, the reason for this feature is now clear: h(0)ab does not source just

Tab, but it also sources the vector operator Va. Moreover, from (2.208), one sees

that the source a(−z)u is non-locally expressed in terms of h(0)ab. Note however

that the ‘T’ mode solution is manifestly local when expressed in terms of the

vector ζm generating the bulk diffeomorphism. From the boundary perspective ζ

parameterizes a Weyl rescaling, whilst ζ(0)a generates a boundary diffeomorphism.

Since the asymptotic expansion is local in the ζm it would be natural to set up

a variational problem in terms of these quantities. Such a vector field formalism

for the case of z > 1 will be explored elsewhere. In the case of z < 1, it is not

necessary to use such a formalism as one can exploit the fact that the spacetime

is asymptotically locally anti-de Sitter to set up the variational problem and holo-

graphic renormalization in terms of the usual data (g(0)ab, b(−z)a). In this case one

can compute the two point functions as follows: using the Ward identities the only

undetermined information is the two point functions of the vector operator. These

can be computed by setting to zero the sources g(0)ab, and solving the differential

equations for the propagating modes aV . The sources for the vector operator will

induce expectation values for the stress energy tensor, corresponding to the cross

correlators between the stress energy tensor and the vector operators. These two

point functions are also completely determined by the Ward identities, and there-

fore do not give additional information. By the arguments given in the previous

section, the same procedure may be carried out for generic z > 1, when z is not

rational, and when the deforming vector operator does not acquire an anomalous

dimension. What remains to be done, therefore, is to find the regular solutions for

aV .

2.6.3. Solution around AdS3

Let us first solve the vector field equations for σ2 = 0. Using (2.185) and (2.185),

one can show that the regular solutions are:

av(ρ, k) = a(−z)v(k)K̃z(k
√
ρ) +

2ikv
k1−z a(−z)ρ

21−z√ρ
Γ(z)

K(z−1)(k
√
ρ);

aρ(ρ, k) = a(−z)ρK̃z(k
√
ρ), (2.215)

where K̃z(k
√
ρ) represents the modified Bessel function with a specific normaliza-

tion such that

K̃z(k
√
ρ) =

2(1−z)

Γ(z)
kzKz(k

√
ρ)

= ρ−z/2(1 +
k2ρ

4(1− z)
+ · · · ) +

Γ(−z)
22zΓ(z)

k2zρz/2(1 +
k2ρ

4(1 + z)
+ · · · ),
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2.6. Linearized analysis around chiral background

and the latter is the expansion as ρ → 0. In solving the equations recurrence

relations for modified Bessel functions are useful:

Kz+1(x) = Kz−1(x) +
2z

x
Kz(x); ∂xKz(x) = −Kz−1(x)− z

x
Kz(x). (2.216)

Using (2.177) one can then show that the solution

au(ρ, k) = a(−z)u(k)K̃z(k
√
ρ) +

2iku
k1−z a(−z)ρ

21−z√ρ
Γ(z)

K(z−1)(k
√
ρ)

a(−z)ρ =
1

2z
(∂va(−z)u + ∂ua(−z)v), (2.217)

satisfies all remaining equations. As a consistency check note that the asymptotic

expansions of all vector field components as ρ→ 0 agree with those given in section

2.5, with the normalizable modes determined in terms of the non-normalizable

modes as follows

av(ρ, k) = a(−z)v(k)ρ−z/2 + · · · kvk
2z

ku

Γ(−z)
22zΓ(z)

a(−z)uρ
z/2 + · · · (2.218)

au(ρ, k) = a(−z)u(k)ρ−z/2 + · · · kuk
2z

kv

Γ(−z)
22zΓ(z)

a(−z)vρ
z/2 + · · ·

The two point functions are computed using

〈Va(k)Vb(−k)〉 =
z

κ2

δb(z)a

δbb(−z)
=

z

κ2

δa(z)a

δab(−z)
+ · · · , (2.219)

where the ellipses denotes contact terms, and thus

〈Vv(k)Vv(−k)〉 = − 1

κ2

kvk
2z

ku

Γ(1− z)
22zΓ(z)

; 〈Vu(k)Vu(−k)〉 = − 1

κ2

kuk
2z

kv

Γ(1− z)
22zΓ(z)

,

with the cross correlation function vanishing, as it should, since the operators have

different scaling weights. These expressions can be written in position space as fol-

lows. Recall that the general expression for the Fourier transform of a polynomial

in d dimensions is

1

(2π)d

∫
ddke−i

~k·~x(k2)λ = π−d/222λΓ(d/2 + λ)

Γ(−λ)
(|x|2)−λ−d/2, (2.220)

which is valid when λ 6= −(d/2 + n), where n is zero or a positive integer. Using

this Fourier transform, and its derivatives with respect to x, one obtains

〈Vv(x)Vv(0)〉 =
z(z + 1)

4πκ2

1

|x|2zv2
; 〈Vu(x)Vu(0)〉 =

z(z + 1)

4πκ2

1

|x|2zu2
, (2.221)

which is of the expected form for operators of these scaling dimensions.
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2. Holographic chiral scale-invariant models

2.6.4. General solution

We now consider the case of σ 6= 0 with the sources for the dual stress-energy

tensor switched off. Let us first express the asymptotic expansions of the solutions

to the dynamical vector field equation as

aVa = ρ−z/2aV(−z)a + · · ·+X b
a (σ, k)aV(−z)bρ

z/2 + · · · , (2.222)

where the matrix X b
a (σ, k) is to be determined by solving the inhomogeneous

differential equations exactly and imposing regularity conditions. The asymptotic

expansion of the vector field is then written in terms of this data as

aa = ρ−z/2(aV(−z)a+b z δau∂
−1
v ∂−1

u h(2)uv)+· · ·+X b
a (σ, k)aV(−z)bρ

z/2+· · · , (2.223)

Note that the source for the vector operator includes another term involving h(2)uv,

as the latter is not automatically set to zero by setting h(0)ab = 0. Indeed from

the linearized Ward identity (2.203) one knows that

h(2)uv =
z2

2
baV(z)v ≡

z2

2
bX b

v (σ, k)aV(−z)b. (2.224)

The true vector operator sources are thus defined in terms of the asymptotic

solutions to the dynamical equations as

a(−z)a = aV(−z)a −
b2z3

k2
δauX

b
v (σ, k)aV(−z)b, (2.225)

and therefore

a(−z)v = aV(−z)v; (2.226)

a(−z)u = (1− b2z3

k2
Xvv)a

V
(−z)u −

b2z3

k2
X v
u a

V
(−z)v.

These relations allow one to rewrite the modes aV(−z)a in terms of the true sources,

and thence one can also obtain the relationship between the normalizable modes

aV(z)a and the sources. Functionally differentiating the linearized one point func-

tions with respect to the sources one then finds that

〈VvVv〉 =
z

κ2

(
1− b2z3

k2
Xvv

)−1

Xvv; (2.227)

〈VuVv〉 =
z

κ2
Xvu

(
1− b2z3

k2
Xvv

)−1

;

≡ z

κ2
Xuv

(
1− b2z3

k2
Xvv

)−1

;

〈VuVu〉 =
z

κ2

(
Xuu +

b2z3

k2
XuvXvu(1− b2z3

k2
Xvv)

−1

)
.
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2.6. Linearized analysis around chiral background

The fact that 〈VvVu〉 = 〈VuVv〉 must then follow from the symmetry of the matrix

Xab that arises in solving the differential equations.

Next let us consider the vector field equations at σ 6= 0. It is useful to write

the equations (2.185) and (2.186) in the form:

∆0a
V
v − ∂vaVρ =

1

4
σ2ρ1−z∂2

va
V
v ; (2.228)

∆0a
V
ρ =

1

4
σ2(1− z)ρ−z(ρ∂2

va
V
ρ + ∂va

V
v ),

where ∆0 is the restriction of the differential operator ∆ to σ2 = 0. It is interesting

to note that the corrections to the differential equation at σ2 6= 0 vanish when the

lightcone momentum kv = 0. Working in conformal perturbation theory we noted

that corrections were organized in powers of σ2k2
v, and the same behavior is found

holographically. Let us try to solve the equations perturbatively in σkv at kv 6= 0

by looking for solutions of the form

aVv =
∑
n>0

σ2n(aVv )n; (2.229)

aVρ =
∑
n>0

σ2n(aVρ )n,

where the n = 0 solutions are given by (2.215). The coupled differential equa-

tions then reduce to pairs of inhomogeneous differential equations generating a

recurrence relation

∆0(aVv )n+1 − ∂v(aVρ )n+1 =
1

4
ρ1−z∂2

v(aVv )n; (2.230)

∆0(aVρ )n+1 =
1

4
(1− z)ρ−z(ρ∂2

v(aVρ )n + ∂v(a
V
v )n).

For generic values of z the corrections (aVa )n are bounded as ρ → ∞, since the

differential operator ∆0 has an essential singularity as ρ → ∞ and so the regular

n = 0 solutions decay exponentially there:

aρ(ρ, k) = a(−z)ρe
−k√ρ

(
(k/2)z−1/2

√
π

Γ(z)ρ1/4
+O(ρ−3/4)

)
. (2.231)

Solving for the inhomogeneous contributions to the corrections as ρ→∞ one finds

that they also behave as

(aVa )n ∼ e−k
√
ρρ−1/4, (2.232)

and are hence exponentially small.

Once we have established that the inhomogeneous contributions to the cor-

rections are finite everywhere, we need to solve the inhomogeneous differential
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2. Holographic chiral scale-invariant models

equations to extract the asymptotic coefficients (aV(−z)a, a
V
(z)a). This could be car-

ried out numerically for finite chirality b2, and can be done perturbatively in b2 at

small chirality, using the Green function for the differential operator ∆0, which is

given in the appendix. This results in the following correlation functions

〈Vv(k)Vv(−k)〉 = − 1

κ2

kvk
2z

ku

Γ(1− z)
22zΓ(z)

(
1 + cvvk

2
χσ

2
)

;

〈Vv(k)Vu(−k)〉 = − 1

κ2
cvuk

2
χσ

2; (2.233)

〈Vu(k)Vu(−k)〉 = − 1

κ2

kuk
2z

kv

Γ(1− z)
22zΓ(z)

(
1 + cuuk

2
χσ

2
)
,

where the constant numerical coefficients cab are given in the appendix.

To summarize, these correlation functions are sufficient to reconstruct all two

point functions of the stress energy tensor and vector operator, to leading or-

der in b2. The functional form of the correlation functions is as anticipated from

anisotropic scale invariance and conformal perturbation theory. As we will empha-

size in the conclusions, the holographic models for scale invariance with exponent z

always include fields dual to the deforming, Lorentz symmetry breaking, operators.

These operators must therefore necessarily play an important rôle in the physics

of the condensed matter system being modeled. At small chirality, the correlation

functions of these operators are given by the above formulae and these should

match the features of the system under consideration. One would also like the

finite temperature holographic realization to match the behavior of the physical

system under consideration, and we will next turn to modeling finite temperature

physics with black holes.

2.7. Black holes

It would be interesting to find black hole solutions of the gravity-vector system,

in order to probe the phase structure of the anisotropic theory. Again there will

be a qualitative difference between the cases of z < 1 and z > 1. In the former

case, the deformation is relevant with respect to the conformal symmetry and one

would only expect to retain the effects of the deformation at temperatures which

are small compared to the deformation parameter:

T � b1/z. (2.234)

Let us start by considering the following black hole solution in three dimensions

ds2 =
dr2

r2(1− (r/r+)2(2−z))
+ (2.235)

1

r2

(
−
(

2− (r/r+)2(1−z) − (r/r+)2
)
dη2 + 2

(
1− (r/r+)2

)
dηdx+ (r/r+)2dx2

)
.
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2.7. Black holes

This geometry describes a black hole with Killing horizon r = r+ and generator

K = ∂η. The critical exponent is restricted to z < 2, otherwise grr 6→ 1/r2 as

r → 0. Under the coordinate transformation: x := ξ + η, the metric becomes:

ds2 =
1

r2

(
dr2

1− (r/r+)2(2−z) + (r/r+)2(1−z)dη2 + 2 dξ dη + (r/r+)2dξ2

)
.

(2.236)

In these coordinates, the black hole is manifestly asymptotic to the chiral scale-

invariant background as r → 0 for z < 2. Next one lets η = σr1−z
+ u and ξ =

rz−1
+ v/σ so that

ds2 =
dr2

r2(1− (r/r+)2(2−z))
+ σ2r−2zdu2 +

2

r2
dudv +

dv2

σ2r4−2z
+

. (2.237)

The anisotropic scale invariant background can be obtained as the zero tempera-

ture limit of the black hole, corresponding to r+ →∞ with σ finite.

Einstein equations admitting such solutions can be constructed as follows.

Writing the scale invariant geometry as

ds2 =
1

r2

(
dr2 + σ2r2(1−z)du2 + 2 dξ du

)
(2.238)

note that the Einstein tensor Gab satisfies

Gab = gab + z2BaBb, B = br−zdu b2 = 2
1− z
z

σ2. (2.239)

The contravariant components are correspondingly

Gab = gab + z2BaBb, B = −br2−z∂ξ. (2.240)

For the above black hole solution, the Einstein tensor satisfies

Gab = gab + z2BaBb, B = −br2−z∂ξ, b2 = 2
1− z
z

r
−2(1−z)
+ . (2.241)

This means that the contravariant energy tensor is actually exactly the same in

both cases. However, while for the scale invariant background one can write a pure

Proca action generating the required field equations, for the black hole solution one

cannot. Note that the case of z = 1 is exceptional: the above black hole reduces

to the BTZ black hole which satisfies the Einstein equations without matter. The

case of z = 0 in three dimensions is also special, as the spacetime is Einstein.

The fact that the black hole solution does not follow from a Proca action

suggests that a string theory embedding may give rise to consistent truncations

involving not just vectors, but vectors coupled to scalars. This is indeed known

to be the case for Schrödinger (z = 2) in five bulk dimensions, see the consistent
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2. Holographic chiral scale-invariant models

truncation found in [84]. It is interesting however to note that the black hole

solution can be supported by dust or by a perfect fluid; appropriate actions for

dust solutions can be found in [125] and for perfect fluids in [126].

Starting from (2.235), the normal to the hypersurfaces of constant r is null at

the horizon as well as the Killing vector ∂η: ||dr||2 = 0 = ||∂η|| at r+. To see that

the Killing is normal to r = r+, one rewrites (2.235) in the form:

ds2 =
1

r2

[
−
(

2− (r/r+)2(1−z) − (r/r+)2
) (
dη2 − dr∗2

)
+ 2

(
1− (r/r+)2

)
dηdx+ (r/r+)2dx2

]
,

(2.242)

where

dr∗ =
dr√

1− (r/r+)2(2−z)
√

2− (r/r+)2(1−z) − (r/r+)2
. (2.243)

Then define: η = U + r∗

ds2 =
1

r2

[
−
(

2− (r/r+)2(1−z) − (r/r+)2
)
dU2 − 2

√
2− (r/r+)2(1−z) − (r/r+)2

1− (r/r+)2(2−z) dUdr

+ 2
(
1− (r/r+)2

)
(dUdx+ dr∗dx) + (r/r+)2dx2

]
. (2.244)

In this coordinate system, the metric is well behaved at the horizon with the metric

close to the horizon being

ds2 =
1

r2

(
−2 dUdr +

1

2− z
dxdr + dx2

)
, (2.245)

which is well behaved everywhere near the horizon. One can further define U =
1
2y + x

2(2−z) with r = 1
R to obtain

ds2 = dydR+R2dx2, (r → r+). (2.246)

This is exactly the same metric as that of the non-rotating BTZ black hole near

the horizon in Eddington-Finkelstein coordinates as long as one compactifies the

coordinate x with period 2π. From (2.244), the Killing vector k = ∂η in this

coordinate system becomes ∂U . This means that

k̄ = gack
cdxa = gUUdU + grUdr + gxUdx. (2.247)

At the horizon: k̄ = 1
r2
+
dr, which implies that the horizon is indeed a Killing

horizon with respect to ∂η.

The temperature of the black hole (2.235) is

TL =
κ

2π
=

2− z
2πr+

, (2.248)
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where κ is the surface gravity, whilst the entropy is given by

S =
βx

4G3r+
, (2.249)

where βx is the periodicity of the x direction and G3 is the Newton constant. The

entropy density s = S/βx can be expressed as

s =
π

2G3(2− z)
TL, (2.250)

the form of which is determined on dimensional and scaling grounds.

In the absence of a complete solution involving appropriate fields, one cannot

directly interpret the black hole (2.235) in terms of finite temperature behavior

of the deformed chiral theory. However, one can make interesting preliminary

observations: the temperature is associated with the periodicity of the Euclidean

coordinate ū = iu. Note however that u is a null coordinate in the quantum field

theory, and therefore the temperature TL relates to that in the left moving sector of

the field theory, hence the notation used. It would be interesting to find an explicit

embedding of this black hole into string theory, and thence its interpretation as a

thermal state in the dual field theory.

2.8. Appendix: Solution of vector equations

The homogeneous equation(
ρ∂2
ρ + ∂ρ −

z2

4ρ
− k2

4

)
φ(ρ) = 0, (2.251)

admits modified Bessel functions as solutions

φ = αIz(k
√
ρ) + βKz(k

√
ρ). (2.252)

The solution which is regular as ρ→∞ is the second, so α = 0.

Let us next consider a generic inhomogeneous equation(
ρ∂2
ρ + ∂ρ −

z2

4ρ
− k2

4

)
φ(ρ) = g(ρ). (2.253)

By defining x = k
√
ρ, it becomes:

∆xφ(x) =

[
∂x (x ∂x)−

(
x+

z2

x

)]
φ(x) = x

(
2

k

)2

g([x/k]2) := h(x). (2.254)
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The general solution to this equation is

φ(x) = φ0(x) +

∫ ∞
0

dx′G(x, x′)h(x′), (2.255)

where φ0(x) satisfies the homogeneous equation (the regular solution throughout

the bulk being Kz(x)) and the Green’s function is defined by

∆xG(x, x′) = δ(x′ − x). (2.256)

Then, the solution for the Green’s function for x 6= x′ is:

G(x′, x) =

{
A(x′)Kz(x) : x > x′

B(x′)Iz(x) : x < x′
(2.257)

For x > x′, one chooses the Kz(x) so that the Green’s function is regular as

x→∞. For x < x′, one chooses the Iz(x) so that the results for the case σ2 = 0

are recovered. Note that Iz(x) does not contain the x−z power, only the xz one.

In order to find the coefficients, one imposes continuity in the Green’s function

and integrating the equation for G(x′, x) between x′ − ε and x′ + ε with ε → 0,

one obtains the second condition. Hence:

A(x′)Kz(x
′) = B(x′)Iz(x

′), (2.258)

A(x′)K ′z(x
′)−B(x′) I ′z(x

′) = 1/x′.

The two above conditions have a unique solution if the Wronskian is non-vanishing,

which is indeed the case as

KzI
′
z − IzK ′z = 1/x′. (2.259)

With A(x′) = −Iz(x′) and B(x′) = −Kz(x
′), all conditions on the Green’s function

are satisfied.

Using this Green’s function to solve the vector field equations iteratively gives

that the v-component of the normalizable mode is

a(z)v = a
(0)
(−z)u

kvk
2z

ku

Γ(−z)
22z Γ(z)

(
1 + σ2k2

χcvv
)

+ a
(0)
(−z)v σ

2k2
χcuv. (2.260)

The u component of the normalizable mode is then

a(z)u = a
(0)
(−z)v

ku k
2z

kv

Γ(−z)
22zΓ(z)

(
1− σ2k2

χcuu
)

+ a
(0)
(−z)u σ

2k2
χcuv. (2.261)
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In these expressions,

cvv =
1− z

2z2Γ(−z)Γ(z)

[(
(1− z)− 2(3− 2z)z2

) √π Γ(1− z) Γ(2− 2z)

4 Γ(5/2− z)
+ S1 + S4 − 2(S3 + S6)

]
;

cuv =
1− z

21+2zΓ(1 + z)2

[√
πΓ(1− z)Γ(2− 2z)

4Γ(5/2− z)
+ S1 + S4 − 2(S3 + S6)− 4z(S2 + S5)

]
;

cuu =
1− z

z2Γ(−z)Γ(z)

[
1− z(4 + z − 2z2)

22z(3 + 4z(−2 + z))
Γ(1− z)2 + S1 + S4 − 2(S3 + S6)− 4z(S2 + S5)

]
.

The constants cab relate to the numerical constants appearing in the two point

functions in (2.233). The constants Sa are given in terms of integral over Bessel

functions as,

S1 =

∫ ∞
0

dy yKz(y)Kz(y)

∫ y

0

dy′ (y′)3−2z Iz(y
′)Kz(y

′)

S2 =

∫ ∞
0

dy yKz(y)Kz(y)

∫ y

0

dy′ (y′)1−2z Iz(y
′)Kz(y

′)

S3 =

∫ ∞
0

dy y Kz(y)Kz(y)

∫ y

0

dy′ (y′)2−2z Iz(y
′)K(z−1)(y

′)

S4 =

∫ ∞
0

dy y Kz(y) Iz(y)

∫ ∞
y

dy′ (y′)3−2zKz(y
′)Kz(y

′)

S5 =

∫ ∞
0

dy y Kz(y) Iz(y)

∫ ∞
y

dy′ (y′)1−2zKz(y
′)Kz(y

′)

S6 =

∫ ∞
0

dy y Kz(y) Iz(y)

∫ ∞
y

dy′ (y′)2−2zKz(y
′)K(z−1)(y

′)
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Chapter 3

Aspects of Ricci-flat

Holography - I

3.1. Introduction

In the previous two chapters we have discussed gauge/gravity dualities and

explored possible applications to condensed matter theories realized in nature.

The geometries used to study holographically the quantum field theories were al-

ways asymptotically AdS, but we have also briefly mentioned the possibility that

geometries with non-AdS asymptotics have holographic duals. The Schrödinger

and Lifshitz spacetimes with dynamical exponent z > 1, for example, represent

two types of geometries that do not approach AdS at infinity but may admit dual

field theories that are typically non-relativistic. In the next two chapters we will

depart from geometries with AdS asymptotics and analyse possible holographic

descriptions of gravitational theories with asymptotically flat boundary conditions.

Soon after the discovery of the AdS/CFT correspondence, several gauge/gravity

proposals were constructed by analogy with AdS/CFT that relate string theory on

spacetimes with non-AdS asymptotics to field theories formulated at the bound-

ary. For the case of de Sitter gravity, and motivated by studies of the asymptotic

symmetry group of de Sitter in a fashion similar to that of AdS [14], it has been

conjectured that the bulk theory can be described by an Euclidean field theory

defined at the spacelike conformal boundary [127, 128, 129, 130, 131, 132, 133]. A

further motivation lies in the fact that every solution of AdS gravity is mapped to

a solution of de Sitter’s by an analytic continuation, leading to a possible dS/CFT

correspondence. In the context of AdS/CFT, quantum field theory correlation
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functions are determined by computing string theory correlators and vice-versa,

and the bulk/boundary dictionary is well established. Statements in dS/CFT can

then be worked out from the AdS counterpart by analytically continuing the so-

lutions with AdS boundary conditions to de Sitter signature.1 In particular, the

near-boundary asymptotics of AdS spaces admits an analytic continuation to dS

asymptotics (see e.g. [78]), leading to a well-defined mapping between asymptotic

data in the bulk and boundary data in the case of a positive cosmological constant

Λ.

Despite many interesting results, a holographic description of de Sitter space

remains unclear, mainly because string theory in dS is not well understood. Even

though de Sitter vacua exists in string theory [135], unlike the case of flat or AdS

vacua they are unstable and decay to vacua of different Λ signature. Another

problem in a dS/CFT formulation is the fact that the conformal weights of the

QFT operators are imaginary and the boundary theory is non-unitary. Neverthe-

less, one can still work out the details of such a correspondence and point to those

ingredients that do not work.

The case of Ricci-flat gravity is substantially different. At the classical level,

setting Λ to zero is just a fine-tuning problem and asymptotically flat spacetimes

are the best controlled backgrounds in string theory to compute correlation func-

tions. However, the mechanism in string theory by which the cosmological con-

stant vanishes is not clear (see e.g. the discussion in [136]). More particularly

in the context of AdS/CFT, the zero Λ limit of the correspondence in general

is not well-understood. The limit taken on correlators and vacuum expectation

values generically does not lead to any sensible results, mainly because most AdS

solutions do not map to asymptotically flat ones. The conformal weigths of the

QFT operators dual to massive bulk fields diverge in this limit, a problem as-

sociated with the fact that the conformal boundary is null in the zero Λ limit.

The limit taken on the near-boundary asymptotics of AdS spaces in general does

not result in Ricci-flat asymptotics, unless specific constraints are imposed, and a

bulk/boundary mapping has not been established. Furthermore, and unlike the

case of de Sitter gravity, holographic renormalization does not extend in a straigth-

forward manner to flat gravity, essentially because the asymptotics of bulk fields

are non-local in this case [137, 138, 78, 139]. Nevertheless, quantum gravity in

asymptotically flat spacetimes can be characterised by a unitary and analytic S-

matrix and it is believed that a holographic description of the flat space S-matrix

can be derived from the zero Λ limit of AdS/CFT. Indeed, explicit constructions

for extracting S-matrix elements from boundary correlators have been proposed

in [140, 141, 142, 143, 144, 145, 146] (see also the discussions in [147, 129]).

1Note, however, that to compute correlation functions in this way one has to take into account

the global properties of asymptotically de Sitter spaces [134, 131].
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A different approach to flat space holography formulated as a limit of AdS/CFT

is based on studies of the asymptotic symmetry group of asymptotically Minkowski

spacetimes, the BMS group. In four dimensions the symmetry algebra was origi-

nally derived in [148, 149, 150] and more recently investigated in [151] in general

dimensions (see also [152, 153]). In the three dimensional case, the bms3 algebra

consists of diffeomorphisms on the circle and supertranslations and is isomorphic to

the two-dimensional Galilean conformal algebra (GCA) consisting of a contraction

of two copies of the Virasoro algebra. The Poisson algebra of the surface charges

was found to admit a central extension with central charge c = 3 [151, 154],2 rep-

resenting a generalisation to the flat space case of those results originally obtained

by Brown and Henneaux [14] for AdS3 and which predated the AdS/CFT corre-

spondence. In the four dimensional case, the bms4 algebra is also isomorphic to a

class of GCAs [155]. Based on these results, a possible connection between string

theory on asymptotically flat spacetimes and non-relativistic conformal field theo-

ries defined at null infinity was proposed in [155, 156, 157, 158, 154]. In the same

spirit, the authors in [154, 158] were able to reproduce the Bekenstein-Hawking

entropy of three-dimensional flat cosmological horizons by counting states in a

two-dimensional Galilean conformal field theory defined at null infinity. However,

these studies leave open the question of how to compute string theory correlation

functions from the boundary theory, as well as the precise form of the correspon-

dence.

Returning to the context of AdS/CFT, and more specifically to the correspon-

dence analysed in section 1.2, the mapping between the free parameters on each

side of the duality was determined by Maldacena [20] as we reviewed in the first

chapter. Recalling the definition of the ’t Hooft coupling λ := g2
YMN of the gauge

theory, the relationship is given by:

gs = λ/(4πN) , (3.1)

`s = `/λ1/4 , (3.2)

where `2s := α′′ and we have reinstated the AdS radius ` introduced in equation

(1.65). We assume that the decoupling limit α′ → 0 has already been taken. As we

discussed in the first chapter, the ’t Hooft limit N →∞, λ = constant corresponds

on the gravity side to the classical limit gs → 0 under which the partition function

of string theory, or supergravity, is approximated by classical supergravity plus

all α′′ corrections. We can then work in the limit λ → ∞ ⇔ α′′ → 0 under

which all these stringy corrections are suppressed and the classical supergravity

approximation to string theory is valid. Once this is done, we are left with a free

2The central charge cLM in reference [154] is related to ours as: cLM = c/12 since we follow

the convention of formula (1) in this reference.
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parameter ` that is not fixed by the Maldacena correspondence. In order to take

the limit of a dimensionless quantity, we introduce some characteristic length scale

`o and rewrite the AdS radius as a multiple of `o with proportionality constant α:

` = α `o . (3.3)

Since the only length scale of the gravity theory is the Planck length `P ∼ `s, the

characteristic scale `o must be proportional to `P . The zero Λ limit in AdS/CFT

then corresponds to taking α → ∞ with `o fixed, but the nature of this limit on

each side of the duality and an understanding of α are not clear.3 We will not have

an answer to this question, but we will make use of the relation (3.3) throughout

this chapter to study the zero Λ limit of vacuum expectation values and specific

correlation functions in AdS/CFT. This will be done formally, and in a fashion

somewhat similar to the way vevs and boundary correlators in dS/CFT are derived

from corresponding AdS results. The main difference, however, is that not every

bulk solution with AdS boundary conditions is mapped to a solution in asymptoti-

cally flat space in the zero Λ limit. We will discuss this aspect in the next sections.

This implies that we need to restrict the space of solutions of AdS gravity to the

subspace of those that admit the limit, in the sense that they result in solutions

of the bulk equations of motion with Λ = 0 once the limit α→∞ is taken. Since

gravity solutions are dual to QFT states, this corresponds to restricting the Hilbert

space of the field theory to some subspace, say H̃. Furthermore, since the limit

α → ∞ is taken over solutions, on the QFT side this should correspond to some

limit taken over H̃. The objective is then to derive the correspondence between

the resulting states in H̃ and those bulk solutions of asymptotically flat gravity

that result from the limit α → ∞. This will be done mainly by working out the

mapping between QFT observables and the asymptotics of such solutions. We will

find that well-definedness of this limit seems to be a statement about states and

sources on the field theory side.

If the bulk field is in particular the spacetime metric, the choice of possible

coordinate systems is constrained by the requirement that the solution be smooth

in the zero Λ limit. Taking this limit on the metric must correspond to switch-

ing off the boundary lapse function so that the timelike conformal boundary of

the asymptotically AdS solution becomes null as α → ∞. To some extent, it is

a gauge-dependent condition the requirement that the solution be mapped to an

asymptotically flat one in this limit and this fact will have an interesting impli-

cation to the holographic renormalization of the bulk theory as discussed below.

This restriction to the subspace of solutions with a well-defined limit implies in

3Note that a different limit has been discussed in [140, 147]. Another perspective is that the

limit corresponds to taking `E →∞ for all bulk energies E [146].
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particular that the standard Fefferman-Graham coordinate system used in the

near-boundary analysis of asymptotically AdS and dS spaces cannot be extended

to derive the asymptotics of those solutions that are smooth in α.

The choice of coordinates we will then make near the asymptotic boundary are

the well-known Gaussian null coordinates. This gauge is closely related to Bondi

coordinates and was initially introduced by Isenberg and Moncrief [159] in order

to prove the existence of a Killing vector field in any spacetime that contains a

compact null surface with closed generators. It was further elaborated in [160] in

order to generalise Isenberg and Moncrief’s results, as well as Hawking’s rigidity

theorems, to non-analytic spacetimes (see also [161]) and it has been extensively

used in the literature in order to study the near horizon geometry of black holes

(see [162, 163] and references therein). This gauge choice is also motivated by

those investigations of the asymptotic symmetries of asymptotically flat gravity

discussed above.4 In this coordinate system, the Einstein field equations decom-

pose into a set of dynamical and constraint equations that are very tedious to solve

asymptotically and increase in complexity with the spacetime dimension. For this

reason we will focus specifically on the case of three and four bulk dimensions,

but it is straightforward to extend the procedure to any dimension. From this

analysis we will obtain in particular the unique asymptotics at null infinity of all

those Ricci-flat metrics that result from the zero Λ limit of Einstein metrics.

As a final remark, it should be emphasized that, unlike the case of dS/CFT,

holographic renormalization does not admit a straighforward extension to the

asymptotically flat case. In general, the holographic counterterms introduce diver-

gences in α that spoil the zero Λ limit of the renormalized on-shell gravity action.

If one insists that the action be finite in this limit, further counterterms are needed

to restore the well-definedness of the limit. The latter are finite in the holographic

regulator and therefore are associated with a choice of renormalization scheme

on the field theory side. These finite counterterms are covariant with respect to

diffeomorphisms that preserve the spacelike foliation induced at the boundary by

the bulk theory, but break invariance of the renormalized action with respect to

diffeomorphisms that are not foliation-preserving. This reflects the fact that the

well-definedness of the limit is a gauge-dependent requirement. We will analyse

the effect of these anomalous counterterms on the holographic Ward identities

of the field theory in the case of four bulk dimensions. A pathological aspect

of this type of counterterms is that they introduce divergent contact terms in the

two-point correlators of scalar operators. We will derive this result in section 3.6.3.

4See also [164] for a brief overview in three dimensions.
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In the next section we introduce our coordinate system and determine the

unique asymptotics of the bulk spacetime metric by solving the vacuum Einstein

equations with a negative cosmological constant in a neighbourhood of the asymp-

totic boundary. We will then discuss the zero Λ limit of the solution and briefly

compare the spacetime asymptotics in this limit with the standard definitions of

asymptotic flatness at null infinity.

Section 3.3 contains the main results of this chapter. We will holographi-

cally renormalize the bulk gravity action in three and four dimensions and use

the AdS/CFT prescription to compute the vacuum expectation value of the QFT

energy tensor. The objective will be to analyse the correspondence between the

metric asymptotics and the boundary data in the zero Λ limit and to address the

issues associated with this limit. The three dimensional case is the best controlled

setting and no major problems arise. The holographic Weyl anomaly in the zero

Λ limit will be of particular interest in this case. The integrated anomaly is still a

topological invariant and we will be able to obtain in this limit the Virasoro central

charge that arises in the central extension of bms3 as the proportionality constant

between the anomaly and a geometric invariant. Still in three dimensions, we will

find that it is possible to define an improved holographic energy tensor which is

always traceless if the QFT metric is static. We will then apply our results to

the zero Λ limit of the BTZ solution, which represents a three-dimensional flat

cosmological solution, and find a matching between the energy and momentum of

the QFT and those of the bulk theory.

In the case of four bulk dimensions we will find that the holographic renor-

malization spoils the zero Λ limit of the gravity action, as described above, by

terms that are finite in the regulator and which can only be subtracted by a finite

counterterm that partially breaks diffeomorphism invariance of the action. We will

then compute the holographic energy tensor and address the issues associated with

its zero Λ limit. Of particular interest will be the holographic Ward identities and

the way they are affected by the anomalous counterterm. In the absence of the

latter, the trace of the QFT energy tensor vanishes, but it is modified by a total

derivative in the presence of the anomalous counterterm. We will also find that it

is possible to introduce an improved energy tensor in which this total derivative

vanishes if the boundary metric is static. As an application of our results, we

will derive specifically the asymptotics of the Kerr solution and find a matching

between the energy and momentum of this solution and those of the dual state of

the field theory. At the end of this section we will address and solve the issues

associated with the presence of null boundaries in the spacetime in addition to the

asymptotic conformal boundary.
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Finally, in section 3.6 we analyse the case of a non-backreacting massive bulk

field propagating in AdS in a coordinate system appropriate to the zero Λ limit.

We renormalize holographically the bulk action for the field, address its zero Λ

limit and compute the vacuum expectation value and the renormalized two-point

correlator of the dual scalar operator. As in the case of the spacetime metric, the

objective will be to analyse the zero Λ limit taken on the vev and correlator. For

“large” values of the conformal weights, contact terms associated with the anoma-

lous counterterms arise in the two-point function, but vanish away from coincident

points in time. In general, the two-point functions will be consistent with that of

a conformal operator in two dimensions less in this limit.

3.2. Spacetime asymptotics

3.2.1. Choice of coordinates

We start with the action for the spacetime metric in d + 2 dimensions written in

the form:

16πG0 S =

∫
M
dd+2x

√
G

(
d(d+ 1)

α2`2o
+R[G]

)
+ 2

∫
∂M

dd+1x
√
q Q , (3.4)

where the cosmological constant 2Λ = −d(d + 1)/(α`o)2 and where qab and Qab
are the induced metric and extrinsic curvature of the boundary. As discussed in

the previous section, we have rewritten the AdS radius ` as in (3.3) so that Λ is

switched off by taking the limit α→∞ of the dimensionless parameter α.

In order to solve asymptotically the Einstein field equations we introduce Gaus-

sian null coordinates xµ = (r, xa) = (r, u, xi) near the boundary r = ∞ of the

manifold. In such gauge, the spacetime metric has the form [159, 160]:

ds2
d+2 = Gµνdx

µdxν

= −φdu2 + 2dudr + γij(dx
i + σidu)(dxj + σjdu) . (3.5)

where the metric components depend on all the coordinates, the spatial metric

γij is positive-definite and the function φ is positive by definition. The vector

φ−1/2(∂u − σi∂i) is future-directed timelike with unit norm. The manifold is de-

fined to be foliated by a family of timelike hypersurfaces labelled by the coordinate

r and by a family of null surfaces of constant u. Each submanifold {r = constant}
is foliated by spacelike surfaces of constant time coordinate u. All the above

statements hold asymptotically. In appendix 3.7 we briefly deduce this coordi-

nate system via an ADM analysis of the metric, but it all comes down to using
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diffeomorphisms in order to bring the metric to the desired form. In the case of

asymptotically flat metrics in Gaussian null coordinates, the metric components

behave asymptotically as [165, 166, 167, 168, 153]:

γij(r, u, x) = r2
(
γ(0)ij(u, x) +O(r<0)

)
, (3.6)

φ(r, u, x) = φ(0)(u, x) +O(r<0) , (3.7)

σi(r, u, x) = O(r<0) , (3.8)

with null infinity given by r = +∞, so we will be interested in solving the field

equations around 1/r = 0 with Λ switched on and in the end analyse the limit

α→∞.

Before doing so, we introduce a new coordinate z := `2o/r and also define

gij := (z/`o)2γij and ϕ := (z/`o)2φ such that:

ds2
d+2 =

`2o
z2

(
−ϕdu2 − 2dudz + gij(dx

i + σidu)(dxj + σjdu)
)
. (3.9)

The decomposition of the Ricci tensor Rµν [G] in terms of the metric components

ϕ, gij and σi is given in appendix 3.8. If we solve the field equations Rµν =

−(d+ 1)/(α`o)2Gµν around z = 0 at leading and first subleading order, we find:

ϕ(z, u, x) =
1

α2
+ z ϕ(1) +O(z2) , (3.10)

gij(z, u, x) = g(0)ij + z g(1)ij +O(z2) , (3.11)

σi(z, u, x) = σi(0) +O(z2) , (3.12)

where the coefficients ϕ(1)(u, x), g(0)ij(u, x) and σi(0)(u, x) are completely arbitrary

(i.e. integration constants) and where g(1)ij(u, x) obeys the equation:

1

α2
g(1)ij = (∂u −£σ(0)

)g(0)ij + ϕ(1)g(0)ij , (3.13)

with £ the Lie derivative. The asymptotic behaviour of the metric components

therefore implies that the metric (3.9) is (at least C2) conformally compact,5 with

defining function z/`o and conformal boundary z = 0. For α−2 > 0 the boundary

is timelike and it becomes null in the zero Λ limit. We also find from (3.13) that

the leading order term g(0)ij becomes constrained in the case α−1 = 0.

We will now use the freedom in the choice of defining function and introduce

a more judicious one. We define a new coordinate z̄ := zN(0), with N(0)(u, x)

5See appendix B.1.
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an arbitrary but positive smooth function of u and xi. Under this change of

coordinates the spacetime metric becomes:

ds2
d+2 =

`2o
z̄2

(
− ϕ̄N(0)du

2−2N(0)dudz̄+ ḡij
(
dxi + σ̄idu

) (
dxj + σ̄jdu

) )
, (3.14)

where:

ϕ̄N(0) = ϕN2
(0) − 2z̄ (∂u −£σ)N(0) + z̄2|∇g logN(0)|2 , (3.15)

σ̄i = σi + z̄ N−2
(0) g

ij∂jN(0) , (3.16)

ḡij = N2
(0)gij . (3.17)

The metric component ϕ̄ therefore has the asymptotics:

ϕ̄ = ϕ̄(0) + z̄ ϕ̄(1) +O(z̄2) : (3.18)

ϕ̄(0) =
1

α2
N(0) , (3.19)

ϕ̄(1) = ϕ(1) − 2(∂u −£σ(0)
) logN(0) . (3.20)

We then choose our function N(0)(u, x) such that:6

(∂u −£σ(0)
) logN2

(0) = ϕ(1) , (3.21)

which results in the asymptotics: ϕ̄ = ϕ̄(0) + O(z̄2). Recall that the coefficient

ϕ(1) was an integration constant and therefore N(0), or ϕ̄(0), remains arbitrary,

i.e. undetermined by the field equations.

From this choice of defining function z̄/`o and the requirement that the metric

components be well-defined in the limit α → ∞, it follows from equation (3.13)

that:

(∂u −£σ̄(0)
)ḡ(0)ij = 0 (α→∞) , (3.22)

and therefore the timelike vector ∂u − σ̄i∂i is an asymptotic Killing vector of

the spatial metric ḡij in this limit. Furthermore, with such defining function,

the normal to the boundary mµ = G̃µν∂ν z̄ in the conformal embedding G̃µν =

(z̄/`o)2Gµν is shear, expansion and vorticity free in the zero Λ limit, and therefore

totally geodesic:

lim
α→∞

∇̃νmµ = O(z̄). (3.23)

This is the standard gauge used in the study of asymptotically flat spacetimes (see

e.g. [169]). More importantly, with our choice of coordinates the boundary metric

6Note that if we write: N(0) := N(0)1N(0)2 such that (∂u −£σ(0)
) logN(0)2 = 0, we still have

the freedom of choosing N(0)2(u, x) in the space orthogonal to the vector ∂u − σi(0)
∂i.
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(with components N(0), ḡ(0)ij and σ̄i(0)) is completely unconstrained for finite α.

In the next sections this feature will allow us to take the variations of the on-shell

action with respect to all components of the boundary metric in order to derive the

holographic energy tensor. The metric in the originial Gaussian null coordinates

(3.9) therefore corresponds to the metric (3.14) with the lapse function 1
αN(0) of

the boundary fixed by diffeomorphisms to a constant.

We will drop the bar notation from now on and work with the spacetime metric

in the final form:

ds2
d+2 = Gµνdx

µdxν

=
`2o
z2

(
− ϕN(0)du

2 − 2N(0)dudz + gij
(
dxi + σidu

) (
dxj + σjdu

) )
,

(3.24)

where:

ϕ =
1

α2
N(0) +O(z2) , (3.25)

gij = g(0)ij +O(z) , (3.26)

σi = σi(0) +O(z) . (3.27)

The induced metric qab of the surfaces of constant z near the boundary z = 0 is

given by:

ds2
d+1 = qabdx

adxb =
`2o
z2

(
− 1

α2
N2

(0)du
2 + g(0)ij

(
dxi + σi(0)du

)(
dxj + σj(0)du

)
+O(z)

)
:=

`2o
z2

(
q(0)ab +O(z)

)
dxadxb , (3.28)

where q(0)ab represents the metric tensor of the conformal boundary and is the

source for the energy tensor of the dual quantum field theory. From the determi-

nant
√
q(0) = 1

αN(0)
√
g(0) we see clearly that the timelike boundary becomes null

in the zero Λ limit.

3.2.2. Asymptotic solution

The decomposition of the Ricci tensor Rµν [G] in our coordinate system (4.41) is

given in appendix 3.8. If we solve the Einstein field equations around z = 0 with

the cosmological constant switched on, we find that the asymptotics of the metric
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3.2. Spacetime asymptotics

is uniquely determined:

gij = g(0)ij + z g(1)ij + z2g(2)ij + ...+ zd+1g(d+1)ij + zd+1 log z g̃(d+1)ij + ... ,

(3.29)

ϕ = ϕ(0) + z2ϕ(2) + z3ϕ(3) + ...+ zd+1ϕ(d+1) + zd+1 log z ϕ̃(d+1) + ... , (3.30)

σi = σi(0) + z σi(1) + z2σi(2) + ...+ zd+1σi(d+1) + zd+1 log z σ̃i(d+1) + ... (3.31)

Note that the expansions in z are not predetermined but uniquely fixed by the

equations.7 The coefficients g(0)ij , ϕ(0) and σi(0), which we will denote collectively

by G(0)µν , are integration constants and therefore completely arbitrary functions

of u and xi. These are the standard non-normalizable modes, or sources, of asymp-

totically AdS metrics.8 The coefficients g(d+1)ij , ϕ(d+1) and σi(d+1), denoted col-

lectively by G(d+1)µν , are arbitrary up to specific constraints and are the standard

normalizable modes. These will be associated to the different components of the

holographic energy tensor and the constraints to its Ward identities. The coeffi-

cients of the logarithms, which we will denote by G̃(d+1)µν , are only non-vanishing

for odd values of d > 1, and in such case are local functionals of the sources G(0)µν .

The remaining coefficients G(n)µν , as well as the constraints on the G(d+1)µν , are

all local functionals of the sources.

The expressions for the coefficients at first and second subleading orders are

given by:

1

2α2
g(1)ij = k(0)ij , (3.32)

d− 1

α2
g(2)ij = (d− 2)

(
k(1)ij −

1

d
g(0)ijTr[g−1

(0)k(1)]

)
−
(
R(0)ij −

1

d
g(0)ijR(0)

)
+

1

4α2

(
−g(1)ijTr[g−1

(0)g(1)] +
1

d
g(0)ijTr2[g−1

(0)g(1)] + 2
(
g(1) · g(1)

)
ij

+
d− 3

d
g(0)ijTr[g(1) · g(1)]

)
,

(3.33)

ϕ(0) =
1

α2
N(0) , (3.34)

7An arbitrary term z ϕ(1) in the expansion of ϕ can always be cancelled by a choice of N(0)

as described above. See, however, the discussion in section 3.4.1. There is also the possibility of

including terms proportional to δΛ,0 that vanish for all finite values of α, but we discard such

terms since we are only interested in solutions for which the limit α→∞ exists.

8See [123, 78] for a review of the asymptotics of such metrics in Fefferman-Graham coordinates.
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d(d− 1)

N(0)
ϕ(2) = −2(d− 1)Tr[g−1

(0)k(1)] +R(0) +
1

4α2

(
Tr2[g−1

(0)g(1)] + (2d− 3)Tr[g(1) · g(1)]
)
,

(3.35)

σ(1)i = ∂iN(0) , (3.36)

2(d− 1)

N(0)
σ(2)i = − (0)∇j

(
g−1

(0)g(1)

)j
i

+ ∂iTr[g−1
(0)g(1)]− (d− 1)g(1)ij

(0)∇j logN(0) ,

(3.37)

where R(0)ij := Rij [g(0)] and (0)∇ig(0)jk := 0, and where the indices are raised

and lowered with g(0)ij and the inner product taken with respect to the latter. It

is also useful to emphasize that in three and four bulk dimensions the coefficient

g(2)ij simplifies as:9

g(2)ij =
1

4

(
g(1) · g(1)

)
ij

(d = 1, 2) . (3.38)

In appendix 3.8 where the decomposition of the Ricci tensor is given we intro-

duced the tensor kij defined as:

kij :=
1

2N(0)
(∂u −£σ) gij . (3.39)

This tensor is proportional to the extrinsic curvature of the surfaces of constant

time on each submanifold {z = constant}. From the metric asymptotics, kij
admits the expansion:

kij = k(0)ij + z k(1)ij + ...+ zd+1k(d+1)ij + zd+1 log z k̃(d+1)ij + ... (3.40)

Each coefficient k(n<d+1)ij can be written in terms of quantities defined at the

boundary. For the first and second subleading orders we find:10

k(0)ij =
1

2N(0)

(
∂u −£σ(0)

)
g(0)ij =

1

α
K(0)ij , (3.41)

k(1)ij =
1

2N(0)

[ (
∂u −£σ(0)

)
g(1)ij −£σ(1)

g(0)ij

]
= £n(0)

K(0)ij − (0)∇ia(0)j − a(0)ia(0)j

= Rij [q(0)]−Rij [g(0)] + 2
(
K(0) ·K(0)

)
ij
−K(0)K(0)ij , (3.42)

9For d = 1 the coefficient g(2)ij is totally determined by the trace constraint: Tr[g−1
(0)
g(2)] =

1
4

Tr[g−1
(0)
g(1)g

−1
(0)
g(1)] that follows from equations (3.253) and (3.256). For d = 2 we use the

matrix identity (3.259) to simplify equation (3.33).

10In the final expression for k(1) we made use of equations (3.32) and (3.36) and of the standard

Gauss-Codazzi identities.
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where K(0)ij is the extrinsic curvature of the surfaces of constant time at the

boundary, na(0)∂a = αN−1
(0)

(
∂u − σi(0)∂i

)
is the unit normal to these surfaces and

a(0)i = ∂i logN(0) the acceleration. Also, Rij [q(0)] are the spatial components of

the Ricci tensor Rab[q(0)] of the boundary metric and we will see in section 3.3.2

that its trace will represent the holographic Weyl anomaly in three bulk dimen-

sions in the zero Λ limit.

Let us start by discussing the solutions for the coefficients G(n)µν . If the cosmo-

logical constant is non-vanishing, from the expressions (3.32)–(3.37) it follows that

these coefficients are indeed local functionals of the sources G(0)µν . On the other

hand, in the case α−1 = 0 we find that the algebraic equation for a given coefficient

g(n)ij becomes a differential equation for the coefficient g(n−1)ij and therefore the

coefficients G(n)µν become non-local functionals of the sources. This feature is

responsible for the fact that holographic renormalization cannot be extended in a

straightforward way to Ricci-flat spacetimes (see e.g. [78, 138]) and we will discuss

this aspect in the next sections. The asymptotic expansions (3.29)–(3.31) together

with the equations for the coefficients with α−1 = 0 represent the unique asymp-

totics at null infinity of all Ricci-flat metrics that result from Einstein metrics in

the zero Λ limit.

In the case of α finite, the sources G(0)µν are arbitrary functions, so we may

have solutions of the equations of motion with Λ switched on that diverge as

α→∞. The same applies to the normalisable modes G(d+1)µν . We are interested

in those Ricci-flat metrics that result from the zero Λ limit, so we need to restrict

our space of solutions of Einstein metrics to the subspace of those that admit the

limit. For this purpose we require that the coefficients in the expansions (3.29)–

(3.31) be non-divergent as α → ∞. For the normalisable modes, it is sufficient

to restrict to those configurations that satisfy: G(d+1)µν = O(α0). On the other

hand, since the coefficients G(n)µν and G̃(d+1)µν are all functionals of the sources

up to order zd+1, this requirement imposes specific behaviours in α of the time

derivatives of g(0)ij . From equations (3.32) and (3.33) for example it follows that:

(∂u −£σ(0)
)g(0)ij = O(α−2) , (3.43)

(d− 2)

(
k(1)ij −

1

d
g(0)ijTr[g−1

(0)k(1)]

)
−
(
R(0)ij −

1

d
g(0)ijR(0)

)
= O(α−2) ,

(3.44)

with k(1)ij expressed in terms of (∂u − £σ(0)
)2g(0)ij by using equations (3.32),

(3.36) and the first identity in equation (3.42). From a holographic perspective,

well-definedness of the gravity solutions in the zero Λ limit then translates into

a statement about the sources and states on the QFT side. We will find another

example of such a correspondence between the existence of the zero Λ limit of bulk
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solutions and the time behaviour of the sources when we discuss non-backreacting

matter in AdS in section 3.6.1.

It is worth comparing the asymptotic behaviour (3.29)–(3.31) of the spacetime

metric in the limit α → ∞ with the standard definitions of asymptotic flatness

at null infinity. For vacuum spacetimes in odd bulk dimensions higher than four,

half integer powers in the asymptotics of the metric (starting at order zd/2 in the

conformal embedding G̃µν) are postulated in the definitions of asymptotic flat-

ness so that linearized pertubations of the metric preserve the definition when the

spacetime contains gravitational radiation [165, 166, 170] (see also [167, 168, 171]).

The absence of half integer powers in the asymptotics (3.29)–(3.31) seems to in-

dicate that vacuum, radiating spacetimes cannot be obtained from the zero Λ

limit of Einstein metrics in five or higher odd dimensions. This subject will be

analysed in more detail elsewhere. It is also worth emphasizing the presence of

the inhomogeneous logarithmic terms in the asymptotics of the metric,11 as well

as the fact that the first subleading terms in the asymptotic expansions start at

order z. The logarithmic terms are usually absent in the definitions of asymp-

totic flatness (see, however, the discussion in [172]) and the first subleading terms

are usually postulated to start at order zd/2 both in even and odd bulk dimensions.

As discussed above, the integration constants of the dynamical equations of

motion for the metric are the modes G(0)µν and G(d+1)µν for non-vanishing Λ. On

the other hand, we have also seen that the algebraic equation for a given g(n)ij is

of the form:

d+ 1− n
α2

g(n)ij = ω
(
∂u −£σ(0)

)
g(n−1)ij + ... (3.45)

where the ellipsis denote lower order terms and ω is some proportionality factor. In

the limit α→∞ the algebraic equation for g(n) therefore results in the differential

equation that defines the coefficient g(n−1). However, from the dynamical equation

(3.252) and (3.256) for the metric component gij we find that ω is always propor-

tional to 2(n−1)−d.12 This implies that the coefficient g(d/2)ij , or more precisely

k(d/2)ij , becomes the integration constant in the limit α→∞ instead of g(d+1)ij .

For odd values of d, d/2 is half-integer, so there is no coefficient g(d/2)ij in the

expansion (3.29). This would be the leading mode that spoils smoothness of the

metric in the definitions of asymptotic flatness at null infinity in odd dimensions

as discussed above. On the other hand, the coefficient g(d/2)ij is non-vanishing

11The fact that the logarithmic terms are non-vanishing in five or higher odd bulk dimensions

is associated to the fact that the conformal anomaly of the dual field theory is non-vanishing in

even (d+ 1) boundary dimensions.

12This fact follows from the two terms 4k′ij − 2d/z kij in the last line of (3.252).
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for even bulk dimensions. Just as the integration constants G(d+1)µν are associ-

ated to the different components of the holographic energy tensor for the case of

non-vanishing Λ, the coefficient g(d/2)ij , or k(d/2)ij , will be related to the spatial

components of the QFT energy tensor in even dimensions in the limit α→∞. We

will derive this result for the case d = 2 in section 3.4.2.

As a final remark, we will not discuss here the asymptotic symmetry group

BMSd+2 of the metric (4.41) in the limit α → ∞ and the associated asymptotic

charges, but we would still like to point out that our gauge-fixed metric is not

invariant under boundary diffeomorphisms (i.e. transformations of the form u →
ũ(u, x), xi → x̃i(u, x)) that do not preserve the foliation in surfaces of constant

u. In fact, there is no gauge one can choose – where the gauge freedom has

been completely fixed – that simultaneously admits a well-behaved zero Λ limit

and is invariant under general boundary diffeomorphisms. This is so because

the asymptotic boundary should approach a null manifold in the limit α → ∞
and therefore any gauge admitting a well-behaved zero Λ limit necessarily singles

out the timelike direction as a preferred direction over the remaining boundary

coordinates.

This observation implies in particular that the subgroup of the asymptotic

symmetry group of the metric consisting of boundary diffeomorphisms must be

foliation-preserving:13 {
u → ũ(u) ,

xi → x̃i(u, x) .
(3.46)

Furthermore, since full covariance, or gauge invariance, is weakened by the require-

ment that the limit α→∞ be well-defined, the spectrum of possible holographic

counterterms that we can have in the counterterm action is widened. We will

see in the next sections that the canonical, fully covariant counterterms [123] are

sufficient to render the on-shell gravity action finite once the regulator is removed,

but if we also require that the action be finite in the limit α → ∞, further coun-

terterms are needed. The latter preserve invariance of the action under all but

those diffeomorphisms that are not foliation-preserving.

Finally, it should be emphasized that the asymptotic symmetry group of the

metric contains a subgroup that generates conformal transformations at the bound-

ary. This consists of the transformation z → z̄ = zΩ(u, xi) together with xa →
x̄a = Xa(u, xi)+z Y a(u, xi)+O(z2), where the functions Xa are defined to satisfy:

q(0)abdX
adXb = Ω2q(0)abdx

adxb, and where the functions Y a(u, xi) can be chosen

so that the transformation is asymptotically a symmetry.14

13See [173] and references therein for a review of foliation preserving diffeomorphisms.
14See also [174] about the relation between bulk diffeomorphisms and conformal transforma-

tions at the boundary in the context of AdS/CFT.
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3.3. Holographic energy tensor

3.3.1. Preliminaries

In order to compute the vacuum expectation value of the dual QFT energy

tensor via the AdS/CFT prescription, we need to evaluate the gravitational ac-

tion (3.4) on-shell and subtract the divergences via holographic renormalization

[123, 78]. In the previous section we found that the coefficients in the asymptotic

solution for the metric become non-local functionals of the sources in the limit

α → ∞ and emphasized that this feature prevents the holographic renormaliza-

tion of the action in the case of a vanishing cosmological constant. Indeed, if we

attempt to renormalize the gravity action (3.4) with α−1 = 0, we find that the

divergent terms are functionals of the coefficients G(n)µν . In this way, the diver-

gences are not local functionals of the sources and therefore cannot be subtracted

by local, covariant counterterms. On the other hand, it is possible to renormalize

the action with the cosmological constant switched on and in the end analyse the

limit α→∞, so this is the procedure we will follow.

The induced metric and extrinsic curvature qab and Qab of the surfaces of

constant z are given by:

qabdx
adxb =

`2o
z2

(
− ϕN(0)du

2 + gij
(
dxi + σidu

) (
dxj + σjdu

) )
, (3.47)

Qab =
1

2β

(
∂z −£βn

)
qab

=
nanb
2βϕ

[
− ϕ′ + 2

z
ϕ+

1

N(0)

(
(σiσ

i)′ − 2

z
σiσ

i

)
− (∂u −£σ) log

ϕ

N(0)
− 2£σ logϕ− 2

ϕ
σiσjkij

]

− n(a∂b)x
i 1

N(0)

[
σ′i −

2

z
σi −N(0)∂i logϕ− 2

ϕ
N(0)σ

jkij

]

+ ∂ax
i∂bx

j βϕ

2N(0)

[
g′ij −

2

z
gij −

2

ϕ
N(0)kij

]
, (3.48)

where β := (`o/z)
√
N(0)/ϕ is the lapse function of the surfaces of constant z,

σi := gijσ
j , and the prime denotes differentiation with respect to z. Also: na =

−ϕβ∂au , na∂a = ϕ−1β−1(∂u − σi∂i) represents the future-directed unit normal

to the surfaces of constant time on each hypersurface of constant z. The on-shell
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action is then given by:

16πG0 S
on−shell =

∫
ddx du

ε∫
dz

`d+2
o

zd+2
N(0)
√
g

(
−2

d+ 1

α2`2o

)

+

∫
z=ε

ddx du
`do
εd
√
g

(
− 2(d+ 1) ε−1ϕ+ ∂εϕ+ ϕTr[g−1g′] + (∂u −£σ) log (ϕ/N(0))− 2N(0)k

)
,

(3.49)

where k = gijkij . In the above we have replaced the asymptotic boundary {z = 0}
by a regulating surface {z = ε} and once the vevs are computed we will remove

the regulator by taking the limit ε → 0. Note also that the last term in (3.49) is

a total derivative and therefore can be removed from the on-shell action:15

−2
`do
εd

∫
z=ε

ddx du
√
gN(0)k = −2

`do
εd

∫
z=ε

ddx du (∂u −£σ)
√
g . (3.50)

The next step in determining the divergences of the action is to use our asymptotic

solutions (3.29)–(3.31) for the fields ϕ, σi and gij and replace the expressions in

(3.49). We then look for all the terms that are proportional to negative powers of

ε, as well as to factors of log ε, and rewrite the respective coefficients in terms of

the sources G(0)µν using (3.32)–(3.37). These terms are those that diverge if the

limit ε → 0 is taken. Then, we invert the asymptotic expansions (3.29)–(3.31) in

order to express the sources G(0)µν order by order in ε in terms of the fields ϕ, σi

and gij , and then replace the inverted expansions G(0)µν = G(0)µν [ϕ, σi, gij ] in the

coefficients of the ε<0 divergent terms (as well as the log ε terms) in the on-shell

action. The process results in the set of terms that contribute to the divergences of

the on-shell action if the regulator ε is sent to zero. The divergent terms obtained

in this way are written in a covariant form (except possible anomalous terms de-

pending explicitly on the regulator via a factor of log ε) and can then be subtracted

from the action by a counterterm action Sct consisting of minus such terms. The

renormalized gravity action Sren will then consist of the original action (3.4) plus

the counterterm action Sct derived in this way.

As the spacetime dimension increases, the number of covariant boundary coun-

terterms increases, so we will focus separately on the cases of three and four bulk

dimensions. For each case, these counterterms must nevertheless coincide with the

canonical counterterms originally obtained in [175, 176, 177, 178, 123]. Although

15If we also consider null boundaries {u = u±} in the spacetime, such term results in a corner

integral −2
∫
ddx
√
γ at {z = ε, u = u±}, with γij the induced metric on these codimension two

surfaces. Corner terms will be analysed in section 3.5.
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the latter were derived in a different coordinate gauge near the asymptotic bound-

ary, these counterterms are covariant and therefore independent of the coordinate

system we use. The possible exception are the anomalous counterterms in [123]

that depend explicitly on the regulator and therefore that are not invariant under

the full diffeomorphism group.

Apart from the canonical counterterm action, we are always free to add finite

boundary terms to the renormalized gravity action Sren that do not contribute

with divergences in the limit ε→ 0 and that provide a non-vanishing contribution

to the finite piece once the regulator is removed. These terms are dual to a choice

of renormalization scheme in the quantum field theory. In our case, once Sren has

been determined by the above procedure, we will have to take care of the zero Λ

limit α→∞. This is done by evaluating Sren on-shell, taking the limit ε→ 0 and

looking for all those terms that diverge if the limit α → ∞ is taken. Such terms

will always be proportional to positive powers of αε0 and the respective coefficients

will always be local functionals of the sources G(0)µν . These α-divergent terms can

then be subtracted by adding a finite boundary action Sfinite to Sren (finite in ε)

consisting of minus such terms. The subtraction of divergences associated to the

zero Λ limit is therefore related in this way to a choice of scheme in the dual QFT.

As emphasized at the end of section 3.2, however, these finite boundary terms will

be invariant under spacetime diffeomorphisms that preserve our foliation, but will

break invariance of the gravity action Sren + Sfinite under those diffeomorphisms

that are not foliation-preserving. This fact implies that the renormalization of

quantum field theories with gravity duals that admit a well-defined zero Λ limit

must involve renormalization schemes that break invariance of the QFT under

transformations that do not preserve the spacelike foliation at the boundary.

3.3.2. Three bulk dimensions

3.3.3. Renormalization

If we follow the procedure described above for the case d+ 2 = 3, we find that the

counterterm action is the canonical one in standard AdS3 holographic renormal-

ization:

16πG0 Sren =

∫
d3x
√
G

(
d(d+ 1)

α2`2o
+R[G]

)
+ 2

∫
z=ε

d2x
√
q Q +

2 d

α `o

∫
z=ε

d2x
√
q ,

(3.51)

Note, however, the absence of the anomalous topological invariant:

α`o

∫
z=ε

d2x
√
q R[q] log ε , (3.52)
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that arises in the canonical holographic counterterm action. Although such term

does not contribute to the variations of the action, it plays an important role in

the holographic correspondence: it represents the fact that we cannot renormalize

the generating functional Z of the dual QFT and preserve all its symmetries. Such

term breaks invariance of the gravity action under bulk diffeomorphisms that result

in a conformal transformation at the boundary and it is dual to those counterterms

in the renormalization of Z that do not preserve the conformal symmetry.

This term is absent in the present case because we have been careless about

possible corner terms in the renormalized gravity action, i.e. about integrals on

the codimension two surfaces {z = ε, u = ±∞}. Note that in the case of a

two dimensional manifold, the Ricci-scalar R[q] can always be written as a total

derivative (though not necessarily as an exact form). This is so because we can

always imagine some hypersurface, say spacelike, in the two dimensional manifold

and use the Gauss-Codazzi identities to express R[q] as:

R[q] = R[γ]−K2 +K ·K + 2Da (naK − aa) , (3.53)

where γij is the metric on the hypersurface, Kij its extrinsic curvature, and na

and aa the unit normal and acceleration of the surface. Also, Dc qab := 0. Since

the hypersurface is one-dimensional, then R[γ] vanishes, and the terms K2 and

K · K cancel one another, leaving us with a total derivative. In our case, if we

choose such hypersurface to be a surface of constant time u, we find:

α`o

∫
z=ε

dx du
√
q R[q] log ε = −2α`o

(∫
z=ε

dx
√
γ K log ε

)u=+∞

u=−∞
, (3.54)

which is a corner term. Such type of terms do not contribute to the computations

of the vev of the QFT energy tensor and we will defer a detailed analysis of the

possible corner terms until section 3.5. There we will find that the holographic

renormalization of the gravity action indeed requires the term (3.54) as a coun-

terterm.

Given the renormalized action (3.51) we now proceed as discussed at the end of

section 3.3.1 and analyse whether the zero Λ limit of the on-shell action was spoiled

by the counterterm. We evaluate (3.51) on-shell, take the limit as the regulator

ε → 0 and, within the set of terms that survive the limit, we look for those

that are proportional to positive powers of α. In three dimensions no such terms

exist, which means that the canonical counterterm simultaneously renormalizes

the gravity action and preserves the well-definedness of the zero Λ limit.

3.3.4. Vacuum expectation values

Now that we have guaranteed that the on-shell gravity action is free of divergences,

we are in position to compute the holographic energy tensor. The variations of
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the renormalized on-shell action are given by:

16πG0 δS
on−shell
ren =

∫
z=ε

d2x
√
q (Qab − qabQ) δqab − d

α`o

∫
z=ε

d2x
√
q qabδq

ab .

(3.55)

The renormalized Brown-York tensor [179] is then given by:

Tab :=
2
√
q

δSon−shellren

δqab(z = ε)

=
1

8πG0

(
Qab − qabQ−

1

α`o
qab

)
. (3.56)

Using the expression (3.47) for the induced metric qab we now decompose the

variations δqab in terms of the variations of the lapse, shift and spatial metric:

δqab =
(
2nanb/N

)
δN +

(
2n(aγi

b)/N
)
δσi + γai γ

b
j δγ

ij , (3.57)

where: N = (`o/z)
√
ϕN(0) , γij = (`o/z)

2gij and: γab = qab + nanb. Following

[179] we then define the spatial stress tensor density sij , and the momentum and

energy densities ji and ε as:

sij := γai γ
b
j Tab =

2

N
√
γ

δSon−shellren

δγij
, (3.58)

ji := −naγbi Tab = − 1
√
γ

δSon−shellren

δσi
, (3.59)

ε := nanb Tab =
1
√
γ

δSon−shellren

δN
. (3.60)

We also define the trace density T as:

T := qab Tab =
(
γab − nanb

)
Tab = γijsij − ε . (3.61)

Using the AdS/CFT prescription and recalling the leading order behaviour (3.28),

the expectation value of the dual field theory energy tensor is given by:

〈Tab〉 =
2
√
q(0)

δSon−shellren

δqab(0)

= lim
ε→0

`d−1
o

εd−1
Tab . (3.62)
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In terms of the above decomposition of Tab, the spatial and time components of

the holographic energy tensor are then given by:

〈sij〉 := g a
(0)ig

b
(0)j 〈Tab〉 =

2
1
αN(0)

√
g(0)

δSon−shellren

δgij(0)

= lim
ε→0

(
`d−1
o

εd−1
sij

)
, (3.63)

〈ji〉 := −n a
(0)g

b
(0)i 〈Tab〉 = − 1

√
g(0)

δSon−shellren

δσi(0)

= lim
ε→0

(
`do
εd
ji

)
, (3.64)

〈ε〉 := n a
(0)n

b
(0) 〈Tab〉 =

1
√
g(0)

δSon−shellren

δ( 1
αN(0))

= lim
ε→0

(
`d+1
o

εd+1
ε

)
, (3.65)

where the induced metric gab(0) = qab(0) + na(0)n
b
(0). The vev of the trace of the QFT

energy tensor is also given by:

〈T 〉 := qab(0)〈Tab〉 = gij(0)〈sij〉 − 〈ε〉 = lim
ε→0

(
`d+1
o

εd+1
T

)
. (3.66)

Now, by construction, the above vacuum expectation values cannot admit a well-

behaved zero Λ limit because the lapse 1
αN(0) vanishes in this limit. For the vev

of the stress tensor we have:

〈sij〉 = α

(
2

N(0)
√
g(0)

δSon−shellren

δgij(0)

)
→∞ (α→∞) . (3.67)

Similarly, for the vev of the energy density:

〈ε〉 = α

(
1
√
g(0)

δSon−shellren

δN(0)

)
→∞ (α→∞) . (3.68)

What we need to do is to work with the quantities that are well-defined in both

cases Λ 6= 0 and Λ = 0 and these are represented by the tensor densities:

√
q(0) 〈sij〉 = 2

δSon−shellren

δgij(0)

, (3.69)

√
q(0) 〈ε〉 = N(0)

δSon−shellren

δN(0)
, (3.70)
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where:
√
q(0) = 1

αN(0)
√
g(0). A straightforward computation using (3.56) and

(3.48) then leads to the following one-point functions:

√
q(0) 〈sij〉 =

`o
8πG0

N(0)
√
g(0)

(
−

ϕ(2)

2N(0)
g(0)ij

)
, (3.71)

√
q(0) 〈ε〉 =

`o
8πG0

N(0)
√
g(0)

(
1

α2
Tr[g−1

(0)g(2)]−
ϕ(2)

2N(0)
− Tr[g−1

(0)k(1)]

)
, (3.72)

〈ji〉 = − `o
8πG0

N−1
(0)

(
σ(2)i +

1

2
(g−1

(0)g(1))
j
i∂jN(0)

)
. (3.73)

We therefore find as usual that the normalisable modes G(d+1)µν are directly asso-

ciated to the vacuum expectation values [123]. Note that these expressions admit

a well-behaved limit α→∞.

3.3.5. Weyl anomaly

For the vev of the trace we find:

√
q(0) 〈T 〉 =

`o
8πG0

N(0)
√
g(0)

(
− 1

α2
Tr[g−1

(0)g(2)] + Tr[g−1
(0)k(1)]

)
. (3.74)

Notice now that if we perform a decomposition of the Ricci scalar of the QFT

metric as in (3.53) we obtain:

R[q(0)] = R[g(0)]−K2
(0) +K(0) ·K(0) + 2(0)Da

(
na(0)K(0) − aa(0)

)
, (3.75)

where (0)Dcq(0)ab := 0. A quick computation using (3.41), (3.32) and (3.38) then

reveals that:

R[q(0)] = 2(0)Da
(
na(0)K(0) − aa(0)

)
(3.76)

= 2

(
− 1

α2
Tr[g−1

(0)g(2)] + Tr[g−1
(0)k(1)]

)
. (3.77)

Replacing in (3.74) results in the standard holographic Weyl anomaly:

√
q(0) 〈T 〉 =

`o
16πG0

N(0)
√
g(0)R[q(0)]

=
α`o

16πG0

√
q(0)R[q(0)]

=
c

24π

√
q(0)R[q(0)] , (3.78)
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where c = 3α`o/(2G0) is the standard central charge in the AdS3/CFT2 corre-

spondence. Note that the anomaly admits a well-behaved zero Λ limit. Using

equation (3.74) we find:

lim
α→∞

√
q(0) 〈T 〉 =

`o
8πG0

N(0)
√
g(0) Tr[g−1

(0)k(1)] (3.79)

=
`o

8πG0
∂a

[
N(0)
√
g(0)

(
na(0)K(0) − aa(0)

) ]
,

where:

∂a

[
N(0)
√
g(0)

(
na(0)K(0) − aa(0)

) ]
= ∂u

(
1

2

√
g(0) Tr[g−1

(0)g(1)]

)
− ∂i

(
√
g(0)

(
1

2
Tr[g−1

(0)g(1)]σ
i
(0) + gij(0)∂j logN(0)

))
.

(3.80)

The anomaly is still a total derivative and the integrated anomaly a topological

invariant. Using equation (3.42) we also find that Tr[g−1
(0)k(1)] = gij(0)Rij [q(0)] in

the zero Λ limit. Since the anomaly admits a well-defined zero Λ limit, a central

charge can be introduced in this limit by using the identity (3.77) to rewrite the

right-hand side of equation (3.79) as a geometric invariant and introducing the

limit:

lim
α→∞

(
G0

α`o

√
q(0) 〈T 〉

)
=

1

8π

√
q(0)

(0)Da
(
na(0)K(0) − aa(0)

)
. (3.81)

The proportionality constant between the trace and the total derivative is then:

1

8π
=

c

24π
, (3.82)

where c = 3 is the Virasoro central charge in the central extension of the asymptotic

symmetry group bms3 of three dimensional flat gravity [151, 154].16

3.3.6. Improved energy tensor

If we return to the full Weyl anomaly (3.74) or (3.78) for generic Λ and use

equations (3.38), (3.42) and (3.36), we can rewrite it in terms of the coefficient

g(1)ij as:

√
q(0) 〈T 〉 =

`o
8πG0

N(0)
√
g(0)

(
− 1

4α2
(g(1) · g(1)) +

1

2N(0)
gij(0)(∂u −£σ(0)

)g(1)ij

− 1

N(0)

(0)�N(0)

)
. (3.83)

16The central charge cLM in reference [154] is related to ours as: cLM = c/12 since we follow

the convention of formula (1) in this reference as can be seen by comparing the central charge in

this formula with that in the AdS case (3.78).
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Notice now from equation (3.32) that a non-vanishing coefficient g(1)ij represents

the fact that the QFT metric is time dependent. The boundary shift σi(0) can al-

ways be fixed to any configuration by boundary diffeomorphisms; in particular, we

can fix σi(0) to zero by the transformation xi → xi−
∫
duσi(0). In such coordinates,

equation (3.32) becomes: N(0)/α
2 g(1)ij = ∂ug(0)ij . Therefore, if the QFT metric

(3.28) is static the Weyl anomaly becomes:

√
q(0) 〈T 〉 = − `o

8πG0

√
g(0)

(0)�N(0)

= − α`o
8πG0

√
q(0)

(0)Db ab(0) , (3.84)

where the acceleration aa(0) = gab(0)∂b logN(0) as before. Using the definition of gab(0)

this can be rewritten as:

√
q(0) 〈T 〉 = − α`o

8πG0

√
q(0)

(
(0)Da(0)Da logN(0) + (0)Da

(
na(0)n

b
(0)∂b logN(0)

))
.

(3.85)

Since the boundary metric is static, the second total derivative vanishes:

nb(0)∂b logN(0) = α/N(0)(∂u − σi(0)∂i) logN(0) = 0 .

The first total derivative that remains is unphysical in the sense that it can be

absorbed in an improved energy tensor Θab defined in terms of the QFT energy

tensor T ab and covariant derivatives of the acceleration aa(0), or of the lapse logN(0)

(see e.g. [180]). The conformal Ward identity then becomes:

√
q(0) 〈Θa

a〉 = 0 , (3.86)

for a static metric q(0)ab. In section 3.4.2 we will find another example where an

improved energy tensor can be defined such that staticity of the boundary metric

restores conformal invariance of the field theory.

3.3.7. Diffeomorphism Ward identity

In order to verify that the holographic energy tensor is conserved we need to solve

the constraint equations (3.254)–(3.255) using (3.256) for the normalisable modes.
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At first subleading order with d = 1 these two equations result in the constraints:

1
√
g(0)

(
∂u −£σ(0)

)(√
g(0) N

−1
(0)

(
σ(2)i +

1

2
(g−1

(0)g(1))
j
i ∂jN(0)

))

= −1

2
∂iϕ(2) +

(
1

α2
Tr[g−1

(0)g(2)]−
ϕ(2)

2N(0)
− Tr[g−1

(0)k(1)]

)
∂iN(0) , (3.87)

1
√
g(0)

(
∂u −£σ(0)

)(√
g(0)

(
− 1

α2
Tr[g−1

(0)g(2)] +
ϕ(2)

2N(0)
+ Tr[g−1

(0)k(1)]

))

=
1

2
ϕ(2) k(0) −

1

α2N(0)

(0)∇i
(
N(0)

(
σi(2) +

1

2
gij(1)∂jN(0)

))
. (3.88)

These constraints result in the conservation equations for the QFT energy tensor:

0 = (0)Da
(√
q(0) 〈T ai〉

)
=
(
∂u −£σ(0)

) (√
g(0) 〈ji〉

)
+ (0)∇j

(√
q(0) 〈sji〉

)
+
√
q(0) 〈ε〉 ∂i logN(0) ,

(3.89)

0 =
1

α
nb(0)

(0)Da
(√
q(0) 〈T ab〉

)
= −

(
∂u −£σ(0)

) (
N−1

(0)

√
q(0) 〈ε〉

)
−N−1

(0)
(0)∇i

(
(N(0)/α)2√g(0) 〈ji〉

)
+
√
q(0) 〈sij〉 k(0)ij .

(3.90)

3.3.8. BTZ and 3-dimensional cosmology

In this section we would like to make a brief application of the results obtained so

far to a particular bulk metric and the spacetime we are interested in is the BTZ

black hole and its zero Λ limit, which represents a cosmological solution [181]. In

Eddington-Finkelstein coordinates the BTZ metric is given by:

ds2 = −

(
−8MG0 +

r2

`2
+

(
4aG0

r

)2
)
du2 + 2dudr + r2

(
dθ − 4aG0

r2
du

)2

,

(3.91)

where the cosmological constant Λ = −`−2, M is the mass of the spacetime and

a the angular momentum. Also, the angular coordinate θ ∈ [0, 2π[. In order to

bring the metric to the form (4.41) we introduce a coordinate z := `2o/r:

ds2 =
`2o
z2

(
−

(
1

α2
− 8MG0

`2o
z2 +

(
4aG0

`3o

)2

z4

)
du2 − 2dudz + `2o

(
dθ − 4aG0

`4o
z2du2

)2
)
.

(3.92)

157



3. Aspects of Ricci-flat Holography - I

Note that the metric is well-defined in the limit α → ∞. For this solution the

holographic energy tensor reads:

√
q(0) 〈sij〉 =

√
g(0)

(
M

2π`o
g(0)ij

)
, (3.93)

√
q(0) 〈ε〉 =

√
g(0)

(
M

2π`o

)
, (3.94)

〈ji〉 =
a

2π`o
, (3.95)

where the spatial metric g(0)ijdx
idxj = `2odθ

2. In this case, the characteristic

length `o represents the radius of the boundary cylinder. If we then introduce the

average energy 〈E〉 over a time interval 2T we obtain:

〈E〉 :=
1

2T

T∫
−T

du

∫
ddx
√
q(0) 〈ε〉 = M . (3.96)

Also, for the angular momentum we find:

〈Ji〉 :=

∫
ddx
√
g(0) 〈ji〉 = a . (3.97)

Note that these results can be extended to the zero Λ limit of the solution and

coincide with those obtained in [158, 154] via a thermodynamics analysis of the

respective three-dimensional cosmological solution.

3.4. Four bulk dimensions

3.4.1. Renormalization

In the case of d+ 2 = 4 dimensions the renormalized action is given by:

16πG0 Sren =

∫
d4x
√
G

(
d(d+ 1)

α2`2o
+R[G]

)
+ 2

∫
z=ε

d3x
√
q Q

+
2 d

α`o

∫
z=ε

d3x
√
q +

α`o
d− 1

∫
z=ε

d3x
√
q R[q] , (3.98)

where the counterterms again coincide with the canonical ones in four bulk di-

mensions. The next step is to determine whether the renormalization spoils the

zero Λ limit of the action. In the present case, if we evaluate Sren on-shell and

take the limit ε → 0 as described in section 3.3.1, we find again that no terms
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proportional to positive powers of α survive and therefore that the limit α→∞ is

still wel-defined in the presence of the counterterm action. However, this feature is

peculiar to our particular choice of boundary lapse function N(0). In section 3.2.1

and 3.2.2 we found that, in general, the metric component ϕ admits an arbitrary

term zϕ(1) in the asymptotic expansion. We then argued that it is always possible

to redefine the coordinate z and choose some new function N(0) as in (3.21) such

that the term ϕ(1) is removed from the asymptotics. On the other hand, if we

choose to decouple N(0) from ϕ(1) by requiring that equation (3.21) for N(0) does

not hold, then the asymptotic solution (3.30) for ϕ will admit a term zϕ(1), with

ϕ(1)(u, x) an arbitrary function. In such case, the solution (3.32) is modified to:

1

2α2
g(1)ij = k(0)ij +

ϕ(1)

2N(0)
g(0)ij . (3.99)

Although the renormalization in the three dimensional case analysed in the pre-

vious section remains unaffected, if we switch on the coefficient ϕ(1) by allowing

the lapse N(0) to be independent, the canonical counterterm action in the four

dimensional case will spoil the zero Λ limit via the term:

lim
ε→0

16πG0 S
on−shell
ren =

α2`2o
2

∫
z=0

d3x
√
g(0) ϕ(1)R[g(0)] +O(α≤0) , (3.100)

where O(α≤0) denotes terms proportional to non-positive powers of α. From equa-

tion (3.99) it follows that the (finite) counterterm that restores the well-definedness

of the limit is given by:

16πG0 Sren =

∫
d4x
√
G

(
d(d+ 1)

α2`2o
+R[G]

)
+ 2

∫
z=ε

d3x
√
q Q

+
2 d

α`o

∫
z=ε

d3x
√
q +

α`o
d− 1

∫
z=ε

d3x
√
q R[q]

+
α2`2o

2

∫
z=ε

d3x
√
q KR[γ] , (3.101)

with γij and Kij the induced metric and extrinsic curvature of the surfaces of

constant time at the boundary as defined in section 3.3.3. This last counterterm

is covariant with respect to diffeomorphisms that preserve our foliation of the

spacetime, but breaks invariance of the action under those transformations that

are not foliation-preserving, as discussed in section 3.3.1. The latter include those

bulk diffeomorphisms that result in a conformal transformation at the boundary

and therefore the trace Ward identity will be affected by such term as discussed

in the next section. This counterterm is also finite in the regulator ε and therefore
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must be related to a choice of renormalization scheme in the dual field theory.

In particular, it signals the fact that the scheme cannot preserve the invariance

of the QFT under those transformations that are not foliation-preserving at the

boundary if the gravity dual has a well-defined zero Λ limit. We will find more

examples of counterterms of this type in section 3.6. With our choice of N(0),

however, the canonical action (3.98) is well-defined, so we will ignore for now this

extra counterterm and discuss its necessity and implications in the next section.

3.4.2. Vacuum expectation values and the Ward identities

The variations of the renormalized on-shell action (3.98) are given by:

16πG0 δS
on−shell
ren =

∫
z=ε

d3x
√
q (Qab − qabQ) δqab

− d

α`o

∫
z=ε

d3x
√
q qabδq

ab +
α`o
d− 1

∫
z=ε

d3x
√
q

(
Rab[q]−

1

2
qabR[q]

)
δqab .

(3.102)

The spatial and time components of the Brown-York tensor as defined in section

3.3.4 are then given by:

sij = γai γ
b
j

(
2
√
q

δSon−shellren

δqab(z = ε)

)

=
1

8πG0

(
Qij − γijQ−

d

α`o
γij + α`o

(
Rij [q]−

1

2
γijR[q]

))
, (3.103)

ji = −naγbi
(

2
√
q

δSon−shellren

δqab(z = ε)

)
=

1

8πG0
(−naQai − α`o naRai[q]) , (3.104)

ε = nanb
(

2
√
q

δSon−shellren

δqab(z = ε)

)

=
1

8πG0

(
γijQij +

d

α`o
+
α`o
2

(
nanbRab[q] + γijRij [q]

))
. (3.105)

A lengthy computation using the prescriptions (3.69)–(3.70) and (3.64) for the

vacuum expectation values of the components of the dual QFT energy tensor in
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d+ 2 = 4 dimensions results in the following one-point functions:

√
q(0) 〈sij〉 =

`2o
8πG0

N(0)
√
g(0)

[
3

2α2
g(3)ij −

ϕ(3)

2N(0)
g(0)ij

+ α2

((
∂u −£σ(0)

)
k(1)ij −

1

2
g(0)ijTr

[
g−1

(0)

(
∂u −£σ(0)

)
k(1)

])
+ ∂(i logN(0)∂j)Tr[g−1

(0)g(1)]− (0)∇k(g−1
(0)g(1))

k
(i ∂j) logN(0)

+Xij −
1

2
g(0)ijTr[g−1

(0)X]

]
, (3.106)

√
q(0) 〈ε〉 =

`2o
8πG0

N(0)
√
g(0)

[
−
ϕ(3)

N(0)

+ ∂i logN(0)
(0)∇iTr[g−1

(0)g(1)]− (0)∇ig(1)ij
(0)∇j logN(0)

]
, (3.107)

〈ji〉 =
`2o

8πG0

[
− 3

2N(0)
σ(3)i

− α2 (0)∇j
(
k(1)ij −

1

2
g(0)ijTr[g−1

(0)k(1)]

)
+
α2

4
∂iR[g(0)] +Xi

]
.

(3.108)

From the trace constraint equation (3.253) using (3.256) it follows that the normal-

isable mode g(3)ij is traceless: Tr[g−1
(0)g(3)] = 0. The trace (3.66) of the holographic

energy tensor is then given by:

〈T 〉 = gij(0)〈sij〉 − 〈ε〉 = 0 . (3.109)

This is the expected result for a conformal field theory in three dimensions. From

the above one-point functions for finite α, we find that the normalisable modes

G(d+1)µν are again mapped to the vacuum expectation values. The expressions

for the terms Xij and Xi are given in appendix 3.9 and consist in a set of terms in

g(1)ij proportional to non-positive powers of α. These terms are scheme dependent

in the sense that they can be subtracted by a choice of finite counterterms of the

form:

α2`2o

∫
z=ε

d3x
√
q
(
a1K

3 + a2K(K ·K) + a3(K ·K ·K) + a4KR[γ] + a5�γK + ...
)
.

(3.110)
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As discussed in section 3.3.6, a non-vanishing coefficient g(1)ij represents the fact

that the QFT metric is time dependent. It follows that the terms Xij and Xi are

possibly non-vanishing only if the boundary metric is not static.

Let us then discuss the terms in the second line of (3.106) and (3.108) that

depend on α2. The last of these, (α2/4) ∂iR[g(0)], diverges in the limit α → ∞.

Note, however, that if we preserve the counterterm introduced in (3.101), it will

contribute to the variations of the on-shell action as:

δ

(
α2`2o

2

∫
z=ε

d3x
√
q KR[γ]

)
=

α2`2o
2

∫
z=ε

d3x
√
g ∂iR[g] δσi

+
α2`2o

2

∫
z=ε

d3x
√
g
(
gij∇k∇l

(
N(0)kkl

)
−∇i∇j

(
N(0)k

))
δgij ,

(3.111)

where ∇igjk := 0. This result implies that the one-point functions will be modified

to:17

〈ji〉 → 〈ji〉new = 〈ji〉 −
`2o

8πG0

(
α2

4
∂iR[g(0)]

)
, (3.112)

√
q(0) 〈ε〉 →

√
q(0) 〈ε〉new =

√
q(0) 〈ε〉 , (3.113)

√
q(0) 〈sij〉 →

√
q(0) 〈sij〉new =

√
q(0) 〈sij〉

+
`2o

32πG0

√
g(0)

(
g(0)ij

(0)∇k (0)∇l
(
N(0)g(1)kl

)
− (0)∇i (0)∇j

(
N(0)Tr[g−1

(0)g(1)]
))

.

(3.114)

The anomalous counterterm therefore provides a contribution to 〈ji〉 that cancels

the α-divergence proportional to the gradient of the Ricci scalar without introduc-

ing further divergences. This is done, however, at the expense of modifying the

conformal Ward identity (3.109) by a total derivative:

√
q(0) 〈T 〉 →

√
q(0) 〈T 〉new = 0 +

`2o
16πG0

√
g(0)

(0)∇i (0)∇j
[
N(0)

(
g(1)ij −

1

2
g(0)ijTr[g−1

(0)g(1)]

)]

=
`2o

8πG0

√
g(0)

(0)∇i (0)∇j
[
αN(0)

(
K(0)ij −

1

2
g(0)ijK(0)

)]
,

(3.115)

17As a technical point, if the coefficient ϕ(1) 6= 0 then the last integral in (3.111) will con-

tribute with terms α2ϕ(1) to 〈sij〉new. However, the previous spatial stress 〈sij〉 will contain the

symmetric of such terms if ϕ(1) 6= 0 such that they cancel overall.
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which is finite in the limit α→∞. Note that if we define:

vij := αN(0)

(
K(0)ij −

1

2
g(0)ijK(0)

)
, (3.116)

vab := gai(0)g
bj
(0)vij , (3.117)

and use the standard identities from the theory of embedded hypersurfaces, we

obtain that:

α
√
q(0)

(0)Da
(
N−1

(0)
(0)∇bvab

)
=
√
g(0)

(0)∇i (0)∇jvij ,

N−1
(0)

(0)∇bvab = (0)DbLab −
1

α
na(0)

(
LijL

ij
)
, (3.118)

with (0)∇a the covariant derivative induced on the surfaces of constant time at the

boundary manifold, associated to the induced metric g(0)ab = q(0)ab + n(0)an(0)b,

and where:

Lab := N−1
(0) v

ab = α gai(0)g
bj
(0)

(
K(0)ij −

1

2
g(0)ijK(0)

)
. (3.119)

The modified trace Ward identity can then be rewritten as:

√
q(0) 〈T 〉new =

`2o
8πG0

√
q(0)

[
α (0)Da(0)Db Lab −(0)Da

(
na(0)

(
L · L

)) ]
. (3.120)

The first total derivative is unphysical because it can be absorbed in an improved

energy tensor Θab defined in terms of the QFT energy tensor Tab and covariant

derivatives of Lab [180], but the second term remains. The Ward identity in such

case becomes:

√
q(0) 〈Θa

a〉 =
`2o

8πG0

√
q(0)

(0)Dava , (3.121)

where:

√
q(0)

(0)Dava = −√q(0)
(0)Da

(
na(0)

(
L · L

))
= −∂u

(
√
g(0)

1

4

(
g(1) · g(1) −

1

2
Tr[g−1

(0)g(1)]
2
))

+ ∂i

(
√
g(0) σ

i
(0)

1

4

(
g(1) · g(1) −

1

2
Tr[g−1

(0)g(1)]
2
))

, (3.122)

which is finite in the limit α→∞. This result is expected because the anomalous

counterterm in (3.101) breaks, in particular, invariance of the renormalized gravity

action under bulk diffeomorphisms that result in a conformal transformation at
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the boundary. The generating functional of the dual QFT therefore will not be

conformally invariant unless the QFT metric is static (which requires g(1)ij = 0).

As in section 3.3.6, we find here another relation between metric staticity and con-

formal invariance. Scale invariance of the dual field theory is, however, preserved

because the anomaly is a total derivative. Recall that the breaking of conformal

symmetry follows from the requirement that the renormalized gravity action be

finite in the zero Λ limit. The dimensionless and positive proportionality constant

between the trace and the total derivative is in this case given by: `2o/(8πG0).

Below we will still discuss the implications of the anomalous counterterm to the

diffeomorphism Ward identity.

With the divergent term (α2/4)∂iR[g(0)] subtracted in this way, the terms

proportional to α2 that remain in the expressions for the vacuum expectation

values represent derivatives of the traceless part of the coefficient k(1)ij :
18


α2
(
∂u −£σ(0)

) (
k(1)ij − 1

2 g(0)ijTr[g−1
(0)k(1)]

)
,

α2 (0)∇j
(
k(1)ij − 1

2 g(0)ijTr[g−1
(0)k(1)]

)
.

(3.123)

These terms cannot be subtracted by covariant counterterms, nor by counterterms

of the form (3.110). This fact implies that the traceless part of k(1)ij needs to admit

an expansion in α of the form:

k(1)ij −
1

2
g(0)ijTr[g−1

(0)k(1)] =
1

α2

(
κ[0]ij +O(α<0)

)
, (3.124)

with κ[0]ij independent of α. In other words, in three boundary dimensions, only

field theory states dual to bulk solutions that admit the behaviour (3.124) in α

result in finite vacuum expectation values in the limit α → ∞. The expression

for κ[0]ij is given by the vev of the QFT stress tensor in the zero Λ limit. As

discussed at the end of section 3.2.2, in this limit the coefficient k(1)ij replaces the

normalisable mode g(3)ij as the integration constant of the equations of motion

for the case d = 2. Notice then that the coefficient g(3)ij drops out of equation

(3.106) for the expectation value of the spatial stress sij in the limit α →∞ and

the latter is mapped to the Lie derivative of κ[0]ij along na(0) in this limit. In this

way, κ[0]ij is part of the asymptotic bulk data that is mapped to boundary data

in the zero Λ limit.

Finally, we will not compute here the diffeomorphism Ward identity for the

general case in d + 2 = 4 dimensions because the constraint equations for the

18Note that: α2g(0)ijTr
[
g−1
(0)

(
∂u−£σ(0)

)
k(1)

]
= α2

(
∂u−£σ(0)

) (
g(0)ijTr[g−1

(0)
k(1)]

)
+O(α0).
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metric are very tedious to solve at second subleading order, but we will verify it

explicitly for the Kerr solution discussed below. However, we would still like to

emphasize that the terms in the holographic energy tensor that arise from the

anomalous counterterm should not contribute to the spatial component of the

Ward identity. Indeed, if we use the second identity in equation (3.89) and the

expressions for the components of 〈Tab〉new given in equations (3.112)–(3.114), we

find:

(0)Da
(√
q(0) 〈T ai〉new

)
= (0)Da

(√
q(0) 〈T ai〉

)
. (3.125)

This is the statement that the anomalous counterterm does not break invariance

under boundary diffeomorphisms (3.46) that are foliation preserving.19 On the

other hand, if we compute the time component of the divergence of 〈Tab〉new us-

ing the second identity in (3.90), we find in general that it is not equal to that

of 〈Tab〉. This must necessarily be the case because the anomalous counterterm

is not invariant under those boundary diffeomorphisms in which the time coordi-

nate transforms as u → ũ(u, xi), and therefore break the spatial foliation of the

boundary.

3.4.3. Kerr solution

As an application of the results of the previous section, we would like to compute

the expectation value of the QFT energy tensor evaluated on those states dual

to the asymptotically flat Schwarzschild and Kerr spacetimes. For the case of

Schwarzschild-AdS4, the metric in the coordinate system (4.41) reads:

ds2 =
`2o
z2

(
−
(

1

α2
+
z2

`2o
− 2MG0

`4o
z3

)
du2 − 2dudz + `2o dΩ2

)
, (3.126)

with dΩ2 = dθ2 + sin2 θdφ2 the metric on the S2 and where the cosmological

constant Λ = −3/(α2`2o). In the limit α → ∞ the metric tends to four dimen-

sional Schwarzschild. The expectation values of the components of the holographic

energy tensor in this case become:

√
q(0) 〈sij〉 =

√
g(0)

(
M

8π`2o
g(0)ij

)
, (3.127)

√
q(0) 〈ε〉 =

√
g(0)

(
M

4π`2o

)
, (3.128)

〈ji〉 = 0 , (3.129)

19These are essentially spatial diffeomorphisms plus a possible redefinition of the time coordi-

nate.
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where the spatial metric g(0)ijdx
idxj = `2o dΩ2. These expressions still hold in the

zero Λ limit. The average energy 〈E〉 as defined in (3.96) is then equal to M .

In the case of Kerr spacetime, the metric in Gaussian null coordinates is very

complicated,20 but we can deduce its asymptotics up to the desired order from

the following considerations. The Kerr metric follows from the zero Λ limit of

Kerr-AdS4 and the latter is asymptotically exactly AdS4 – with the cross section

of the asymptotic boundary with a spacelike hypersurface topologically an S2. In

our coordinate system, Kerr-AdS4 must therefore be of the form:

ds2 =
`2o
z2

(
−
(

1

α2
+O(z2)

)
du2 − 2dudz +

(
g(0)ij +O(z)

) (
dxi +O(z)du

) (
dxj +O(z)du

))
,

(3.130)

where g(0)ijdx
idxj = `2o dΩ2. Since the lapse N(0) = 1, from equation (3.36)

we have that σi(1) = 0. Furthermore, since σi(0) = 0 = ∂ug(0)ij , we find from

equation (3.32) that g(1)ij = 0. From equations (3.38) and (3.37) we then find

that g(2)ij = 0 = σi(2). Also, the spatial Ricci scalar R[g(0)] = 2/`2o, so from (3.35)

we have ϕ(2) = `−2
o . In this way, Kerr-AdS4 must be asymptotically of the form:

ds2 =
`2o
z2

[
−
(

1

α2
+
z2

`2o
+ ϕ(3)z

3 +O(z>3)

)
du2 − 2dudz

+
(
g(0)ij + z3g(3)ij +O(z>3)

)(
dxi +

(
z3σi(3) +O(z>3)

)
du
)(

dxj +
(
z3σj(3) +O(z>3)

)
du
)]

.

(3.131)

The coefficients ϕ(3), g(3)ij and σi(3) are the normalisable modes G(d+1)µν and from

the constraint equations (3.253)–(3.255), supplemented by (3.256), it follows that

they satisfy:

Tr[g−1
(0)g(3)] = 0 , (3.132)

1

α2
(0)∇j(g−1

(0)g(3))
j
i = ∂uσ(3)i +

1

3
∂iϕ(3) , (3.133)

3

2α2
(0)∇iσi(3) = −∂uϕ(3) . (3.134)

20See [182, 183] for specific examples. Note that Bondi-Sachs coordinates are related to the

Gaussian null gauge by a simple redefinition of the radial coordinate.

166



3.4. Four bulk dimensions

The holographic energy tensor so far reads:

√
q(0) 〈sij〉 =

`2o
8πG0

√
g(0)

(
3

2α2
g(3)ij −

1

2
ϕ(3) g(0)ij

)
, (3.135)

√
q(0) 〈ε〉 =

`2o
8πG0

√
g(0)

(
−ϕ(3)

)
, (3.136)

〈ji〉 =
`2o

8πG0

(
−3

2
σ(3)i

)
. (3.137)

By using the second identity in equations (3.89) and (3.90) it then follows from

the above constraints that the energy tensor is covariantly conserved:

(0)Da
(√
q(0) 〈T ai〉

)
= 0 = nb(0)

(0)Da
(√
q(0) 〈T ab〉

)
. (3.138)

Note that, apart from the constraints, the normalisable modes are so far arbitrary.

We then require that the solution be stationary and axi-symmetric, which results

in the constraints:

Tr[g−1
(0)g(3)] = 0 , (3.139)

1

α2
(0)∇j(g−1

(0)g(3))
j
i =

1

3
∂iϕ(3) , (3.140)

1

α2
(0)∇iσi(3) = 0 , (3.141)

where the modes now depend only on the boundary coordinate θ. These are the

necessary conditions for Kerr-AdS4. In the zero Λ limit, however, there will be a

further constraint. Recall that the equation for a given coefficient g(n)ij is of the

form (3.45) and, therefore, that it becomes a differential equation for g(n−1)ij in

the limit α → ∞. For the particular case of n = 4 in d + 2 = 4 bulk dimensions,

the equation for g(4)ij turns into a differential equation for the normalisable mode

g(3)ij in the zero Λ limit. Therefore, if we solve the dynamical equation (3.29),

together with (3.256), at order z2 we find in the limit α→∞:

4 k(3)ij − g(0)ij Tr[g−1
(0)k(3)] + ϕ(4) g(0)ij + 3 (0)∇(iσ

(3)
j) = 0 , (3.142)

where we have used the fact that g(1)ij = g(2)ij = σ(1)i = σ(2)i = 0 in our case.

The equation for the coefficient ϕ(4) follows from the dynamical equation (3.251)

and (3.256) for ϕ:

ϕ(4) − 2Tr[g−1
(0)k(1)]−

3

2
(0)∇iσi(3) = 0 . (3.143)

Replacing in (3.142), we find:

4 k(3)ij + g(0)ij Tr[g−1
(0)k(3)] + 3

(
(0)∇(iσ

(3)
j) +

1

2
g(0)ij

(0)∇iσi(3)

)
= 0 . (3.144)
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Now, in our case we have:

k(3)ij =
1

2N(0)

(
(∂u −£σ(0)

)g(3)ij −£σ(1)
g(2)ij −£σ(2)

g(1)ij −£σ(3)
g(0)ij

)
= − (0)∇(iσ

(3)
j) . (3.145)

Replacing in equation (3.144) results in the following constraint for σ(3)i:

(0)∇(iσ
(3)
j) −

1

2
g(0)ij

(0)∇kσk(3) = 0 . (3.146)

Now, the constraint (3.141) for σi(3) holds for all values of α ∈ R, so we extend

this to the limit α → ∞ so that the metric is continuous in α. If this were not

the case, then σi(3) would contain terms proportional to δΛ,0 and therefore Kerr

would not follow from the zero Λ limit of Kerr-AdS4. The same argument applies

to the φ-component of the constraint (3.140). The constraint equations for the

normalisable modes in the limit α→∞ therefore become:

Tr[g−1
(0)g(3)] = 0 = (0)∇j(g−1

(0)g(3))
j
i=φ , (3.147)

∂iϕ(3) = 0 , (3.148)

(0)∇iσ(3)j + (0)∇jσ(3)i = 0 , (3.149)

where the modes depend only on θ. The coefficient σi(3) is therefore a Killing vector

of the spatial metric g(0)ij on the S2 and hence we choose: σi(3)∂i := a/`4o ∂φ,

with a some dimensionless constant. Furthermore, ϕ(3) is constant, so we define:

ϕ(3) := −2MG0/`
4
o. Note also that in the limit a → 0 we must recover the

Schwarzschild metric, so g(3)ij must be proportional to the parameter a. The

average energy and angular momentum of those states dual to asymptotically flat

Kerr are then given by:

〈E〉 =
1

2T

T∫
−T

du

∫
d2x
√
q(0) 〈ε〉 = M , (3.150)

〈J i〉∂i =

∫
d2x
√
g(0) 〈j i〉∂i = − 3

4G0
a ∂φ . (3.151)

More generally, for an asymptotically Minkowski spacetime we have that g(1)ij = 0,

so the energy density will be of the form (3.136). The average energy will then be
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given by:

〈E〉 = − 1

2T

`2o
8πG0

∫
d2x
√
g(0)

T∫
−T

duϕ(3)

=
1

2T

T∫
−T

duM(u) , (3.152)

where M(u) is the Bondi mass (see e.g. [168]).

3.5. Null boundaries and corner terms

So far we considered a single timelike boundary {z = ε} for the spacetime and

neglected all possible corner integrals evaluated on the codimension two surfaces

{z = ε, u = ±∞} that may arise in the gravitational action. If one also consid-

ers null boundaries {u = u±} in the spacetime, where these surfaces can be at

infinity, the original bare action (3.4) is not the appropriate one in the sense that

the variational problem is not well-defined, and a further surface term is needed.

Furthermore, the renormalized gravity action in each dimension will require cor-

ner counterterms at {z = ε, u = u±} that ensure that the action is finite once the

regulator ε is removed. In order to derive the correct bare action in general, we

start by performing an ADM decomposition of the spacetime metric with respect

to timelike hypersurfaces of constant z as:

ds2
d+2 = Gµνdx

µdxν

= β2dz2 + qab (dxa + βadz) (dxb + βbdz) . (3.153)

The inverse and determinant of the metric are given by:

Gµν =

(
1
β2 − 1

β2 β
a

− 1
β2 β

a qab + 1
β2 β

aβb

)
, (3.154)

√
G = β

√
q . (3.155)

The unit normal mµ to the surfaces of constant z is given by:

mµ = β∂µz , (3.156)

mµ∂µ =
1

β
(∂z − βa∂a) , (3.157)

mµmνGµν = 1 . (3.158)
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The metric qab represents the induced metric of the hypersurfaces of constant z

and we can extend it to a tensor in the whole spacetime by defining: qµν :=

Gµν − mµmν . Next we perform an ADM decomposition of qab with respect to

surfaces of constant u. In each submanifold {z = constant}, we define these

surfaces to be spacelike:

ds2
d+1 = qabdx

adxb

= −N2du2 + γij(dx
i + σidu)(dxj + σjdu) . (3.159)

The determinant of this metric is given by:
√
q = N

√
γ , so that:

√
G = βN

√
γ.

In each submanifold {z = constant}, the future-directed unit normal na to the

surfaces of constant u is given by:

na = −N∂au , (3.160)

na∂a =
1

N

(
∂u − σi∂i

)
, (3.161)

nanbqab = −1 . (3.162)

We can extend this unit normal to a vector in the whole spacetime by defining:

nµ := qµν (−N∂νu) . (3.163)

We then find: nµnνGµν = −1 and: mµnνGµν = 0. Finally, with the two unit

normals mµ and nµ we construct two null vectors nµ± defined as:

nµ± := nµ ±mµ . (3.164)

We find that: nµ±n
ν
±Gµν = 0 and: nµ±m

νGµν = ±1. Given this general construc-

tion, we will now show that, if the surfaces {u = u±} are null in the spacetime, the

bare gravitational action for which the variational problem is well-posed is given

by:

16πG0 S =

∫
dzduddx

√
G

(
d(d+ 1)

α2`2o
+R[G]

)

+ 2

∫
z=ε

duddx
√
q Q− 2

u=u+∫
u=u−

dzddxβ
√
γ ∇µnµ+ , (3.165)

with ∇µGνα := 0, and where Q is the extrinsic curvature of the hypersurfaces of

constant z as before, such that: Q = ∇µmµ. Also, the last integral represents the

difference:
u=u+∫
u=u−

:=
∫

u=u+

−
∫

u=u−

. In order to show that the variational problem is

well-defined, we perform a Gauss-Codazzi decomposition of the Ricci scalar R[G]:

R[G] = R[q] +Q2 −Q ·Q− 2∇µ (mµ∇ ·m−m · ∇mµ) . (3.166)
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Replacing in (3.165) and integrating the total derivatives results in the action:

16πG0 S =

∫
dzduddxβ

√
q

(
d(d+ 1)

α2`2o
+R[q] +Q2 −Q ·Q

)

− 2

u=u+∫
u=u−

dzddxβ
√
γ

(
K +

(
1 +Nmµ∂µu

)
∇ ·m

)
, (3.167)

where K = qabDanb = qµν∇µ (q αν nα) = qµν∇µnν is the extrinsic curvature of the

surfaces of constant u in each submanifold {z = constant}, with Daqbc := 0. Now,

from the decomposition (3.154) we find in particular that:

∂µu∂νuG
µν = quu + (βu/β)

2
= −N−2 + (βu/β)

2
. (3.168)

If the surfaces u = u± are null in the spacetime, the left-hand side vanishes at

u = u± and we find up to a sign: βu = β/N at u = u±. If we choose the opposite

sign, then we should replace the null vector n+ in (3.165) by its dual n−. Replacing

this condition for βu in equation (3.157) results in:

1 +N mµ∂µu = 0 (u = u±) . (3.169)

Note that this holds everywhere if the surfaces of constant u are everywhere null,

and in such case the null vector n+ is given by: n+µ = −N∂µu. Finally, using

equation (3.169) in the action (3.167) yields our final result:21

16πG0 S =

∫
dz

∫ duddxβ
√
q

(
d(d+ 1)

α2`2o
+R[q] +Q2 −Q ·Q

)
− 2

u=u+∫
u=u−

ddxβ
√
γ K

 .

(3.170)

This is the correct action for which the variational problem is well-posed [179].

Taking variations with respect to the lapse, shift, and induced metric β, βa and

qab, and requiring only that the boundary configurations of the fields are fixed,

results in the ADM equations of motion.

If the spacetime contains null boundaries, the holographic renormalization of

the gravitational action (3.165) will result in corner counterterms as emphasized

above. We will exemplify this for the particular case of d+ 2 = 3 dimensions and

derive the anomalous counterterm (3.54) discussed in section 3.3.3. Returning to

our gauge-fixed metric (4.41) for generic d, if we evaluate on-shell the last integral

21Note that the Gibbons-Hawking surface term takes a minus sign because we have defined

the unit normal na to be future-directed.
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in the action (3.165), we obtain:

−2

u=u+∫
u=u−

dzddxβ
√
γ ∇µnµ+ = −2

u=u+∫
u=u−
z=ε

ddx
√
g

(
`o
ε

)d

+ 2`do

u=u+∫
u=u−

dzddx
√
g

(
z−(d+1) − 1

2
z−d∂z logϕ

)
.

(3.171)

Using our asymptotic solutions (3.29)–(3.31) we find that, for d = 1, the diver-

gences of this term are given by:

−2

u=u+∫
u=u−

dzdx β
√
γ ∇µnµ+ = −4

u=u+∫
u=u−
z=ε

dx
√
g(0)

(
`o
ε

)
+ 2α2`o

u=u+∫
u=u−
z=ε

dx
√
g(0) k(0) log ε +O(ε0) .

(3.172)

The counterterm that subtracts these divergences is given by:

4

u=u+∫
u=u−
z=ε

dx
√
γ − 2α`o

u=u+∫
u=u−
z=ε

dx
√
γ K log ε . (3.173)

If we also take into account the surface term (3.50) that we discarded and use the

result we found in (3.51), we find that the renormalized gravitational action in

d+ 2 = 3 spacetime dimensions in the presence of null boundaries u = u± is given

by:

16πG0 Sren =

∫
dzdudx

√
G

(
d(d+ 1)

α2`2o
+R[G]

)
+ 2

∫
z=ε

dudx
√
q Q− 2

u=u+∫
u=u−

dzdx β
√
γ ∇µnµ+

+
2

α `o

∫
z=ε

dudx
√
q + 6

u=u+∫
u=u−
z=ε

dx
√
γ − 2α`o

u=u+∫
u=u−
z=ε

dx
√
γ K log ε .

(3.174)

The last corner integral is exactly the anomalous counterterm that we found in

(3.54).
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3.6. Non-backreacting matter

In the remainder of this chapter we will be interested in computing the zero Λ

limit of the vacuum expectation value and two-point correlator of a QFT operator

dual to a non-backreacting massive scalar field in AdSd+2. The background metric

we are interested in is pure AdS with the cross section of the asymptotic boundary

with a spacelike hypersurface topologically Rd. In our coordinate system the metric

reads:

ds2 = Gµνdx
µdxν

=
`2o
z2

(
− 1

α2
du2 − 2dudz + d~x 2

d

)
. (3.175)

In the limit α → ∞ the spacetime is a subset of Minkowski space, with z = 0

representing future null infinity. The bulk action for the scalar field φ in this

background is given by:

S =
1

2

∫
dd+2x

√
G

(
Gµν∂µφ∂νφ+

(m
α

)2

φ2

)
. (3.176)

The mass of the field is defined to be M = m/α so that it becomes massless in

the zero Λ limit. This is a necessary condition associated with the fact that the

asymptotic boundary is null in this limit and with the statement that only massless

particles reach null infinity in Minkowski space.22 For the moment we will keep

the mass parameter m arbitrary, but we will see below that the conformal weight

of the dual operator will be finite in the limit α→∞ only if m = O(α0).

3.6.1. Solution and asymptotics

The equations of motion for the scalar in our background are given by:(m
α

)2

φ = �G φ

=
z∆−k+2

`2o

[
1

α2

(
ϕ′′ − k − 1

z
ϕ′
)
− 2∂uϕ

′ +
k − 1

z
∂uϕ+ ~∇2ϕ+

∆(∆− (d+ 1))

α2z2
ϕ

]
,

(3.177)

where we defined ϕ := zk−∆φ for some constant ∆, and k := 2∆− (d+ 1). Also,

ϕ′ := ∂zϕ and ~∇2 = δij∂i∂j . We will be interested in computing the correlation

functions of the QFT operator in Euclidean signature, so we define the Euclidean

22Strictly speaking, massive scalar fields have an essential singularity at null infinity.
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boundary time ū := iu. The dynamical equation then becomes:

1

α2

(
ϕ′′ − k − 1

z
ϕ′
)
− 2iϕ̇′ + i

k − 1

z
ϕ̇+ ~∇2ϕ+

∆(∆− (d+ 1))− `2om2

α2z2
ϕ = 0 ,

(3.178)

where ϕ̇ := ∂ūϕ. We then define ∆ as the highest root of the equation:

∆(∆− (d+ 1)) = `2om
2 .

We also Fourier transform the dynamical equation in the coordinates ū and xi and

obtain:

1

α2

(
ϕ̂′′ − k − 1

z
ϕ̂′
)

+ 2ωϕ̂′ − ω k − 1

z
ϕ̂− ~p 2ϕ̂ = 0 , (3.179)

where:

ϕ̂(z, ω, pi) =

∫
dū ddx e−iωūe−i~p·~x ϕ(z, ū, xi) . (3.180)

The solution for ϕ̂ can be written in terms of Bessel functions as:

ϕ̂(z, ω, p) = e−α
2ωz zk/2

[
A(ω, p)Kk/2(z α

√
~p 2 + α2ω2) +B(ω, p) Ik/2(z α

√
~p 2 + α2ω2)

]
,

(3.181)

where the coefficients A(ω, p) and B(ω, p) are arbitrary, and where Kk/2(y) and

Ik/2(y) are the modified Bessel functions of the first and second kind. These admit

the following asymptotics as y → 0:

Kk/2(y) = 2k/2−1 Γ(k/2) y−k/2
(

1 +
(iy)2

2(k − 2)
+

(iy)4

2(k − 2)4(k − 4)

+ ...+ ak y
k + ãk y

k log y2 +O(y>k)

)
, (3.182)

Ik/2(y) =
2−k/2

Γ(k/2 + 1)
y−k/2

(
yk +O(y>k)

)
, (3.183)

with Γ(a) the gamma function and ak a k-dependent constant. The coefficient ãk
is non-vanishing only if k/2 is an integer and in such case is given by:

ãk = − (−1)k/2 2−k

Γ(1 + k/2)Γ(k/2)
: k/2 ∈ N . (3.184)
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The solution for ϕ̂ therefore admits the expansion:

ϕ̂(z, ω, p) = e−α
2ωz

[(
1− α2(~p 2 + α2ω2)

2(k − 2)
z2 +

α4(~p 2 + α2ω2)2

8(k − 2)(k − 4)
z4 + ...

)
ϕ̂(0)(ω, p)

+ b(ω, p) zk + ˜̂ϕ(k)(ω, p) z
k log z +O(z>k)

]
= ϕ̂(0) + z ϕ̂(1) + z2 ϕ̂(2) + z3 ϕ̂(3) + ...+ zk ϕ̂(k) + zk log z ˜̂ϕ(k) +O(z>k) ,

(3.185)

where we wrote the function A(ω, p) as:

A(ω, p) =
21−k/2

Γ(k/2)

(
α
√
~p 2 + α2ω2

)k/2
ϕ̂(0)(ω, p) . (3.186)

The coefficients ϕ̂(0)(ω, p) and ϕ̂(k)(ω, p) are arbitrary functions in ω and ~p 2 and

the coefficients ϕ̂(n<k) are given up to n = 3 by:

ϕ̂(1) = −α2ω ϕ̂(0) , (3.187)

ϕ̂(2) =

(
1

2
α4ω2 − α2(~p 2 + α2ω2)

2(k − 2)

)
ϕ̂(0) , (3.188)

ϕ̂(3) =

(
−1

6
α6ω3 +

α4ω(~p 2 + α2ω2)

2(k − 2)

)
ϕ̂(0) . (3.189)

The coefficient ˜̂ϕ(k) of the inhomogeneous term is given by:

˜̂ϕ(k) = 2 ãk

(
α
√
~p 2 + α2ω2

)k
ϕ̂(0) . (3.190)

The full solution φ(z, ū, xi) for the scalar field is then given by:

φ(z, ū, x) = z∆−k
∫
dωddp eiωū ei~p·~x ϕ̂(z, ω, p)

= z∆−k
(
ϕ(0) + z ϕ(1) + z2 ϕ(2) + z3 ϕ(3) + ...+ zk ϕ(k) + zk log(µz) ϕ̃(k) +O(z>k)

)
,

(3.191)

where we introduced a scale µ of dimension L−1 so that the argument of the loga-

rithm is dimensionless. The coefficients ϕ(0) = ϕ(0)(ū, x) and ϕ(k) = ϕ(k)(ū, x) are

arbitrary functions and represent the standard non-normalisable and normalisable

modes in the AdS/CFT correspondence. The boundary configuration ϕ(0) is the

source for the scalar operator O in the dual QFT and ϕ(k) will be mapped to the

vacuum expectation value of O. The coefficients ϕ(n<k) together with the inho-

mogeneous term ϕ̃(k) are local functionals of the source for the case of α finite.
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Their expressions are given by:

1

α2
ϕ(n) =

1

n(k − n)

(
i(k + 1− 2n) ϕ̇(n−1) + ~∇2ϕ(n−2)

)
: 0 < n < k , (3.192)

1

α2
ϕ̃(k) =


1
k

(
i(k − 1)ϕ̇(k−1) − ~∇2ϕ(k−2)

)
: k/2 ∈ N ,

0 otherwise ,
(3.193)

where ϕ(−1) := 0. The above is exactly the asymptotic solution one would obtain

by solving the dynamical equation (3.178) in powers of z in a neighbourhood of

z = 0. In the case α−1 = 0, the coefficients are non-local functionals of the sources

in the same fashion as the coefficients g(n)ij in the asymptotic expansion (3.29) of

the metric that we found in section 3.2.2. For the case of α finite, the source and

the mode ϕ(0) and ϕ(k) are arbitrary, so there will be solutions for the scalar field

in AdS that diverge in the limit α→∞. We are interested in those configurations

for the field that result in well-defined solutions of the equations of motion in

Minkowski space in this limit, so we henceforth restrict our space of solutions

in AdS to the subspace of those that admit the limit. This discussion mimics

that in section 3.2.2 for the spacetime metric. This is enforced by requiring that

the coefficients in the asymptotics (3.191) be non-divergent as α→∞. Since the

modes ϕ(n<k) and ϕ̃(k) are functionals of ϕ(0), this requirement imposes constraints

on the behaviour in α of the derivatives of the source. For k non-odd, these will

be constraints on the time derivatives. As an example, from n = 1, 2, 3 it follows

that:

ϕ̇(0) = O(α−2) , (3.194)

ϕ̈(0) =
1

α2

(
1

k − 3
~∇2ϕ(0)

)
+O(α−4) , (3.195)

...
ϕ(0) =

1

α4

(
3

k − 5
~∇2
(
α2ϕ̇(0)

))
+O(α−6) . (3.196)

On the other hand, for odd values of k there will be a further constraint, this time

on the spatial derivatives: ~∇k−1ϕ(0) = O(α−(k−1)). As in section 3.2.2, we find

again that the well-definedness of the bulk solutions in the zero Λ limit translates

into a statement about the sources and states on the dual QFT and, in particular,

that the existence of the limit is connected with the behaviour in α of the time

and spatial derivatives of the source.
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3.6.2. Renormalization and vacuum expectation values

In this section we will renormalize holographically the bulk action for the scalar

field in the AdS background (3.175), analyse the limit α → ∞ and compute the

vev of the dual operator. Under this limit the spacetime becomes Minkowski space

and the solution in AdS is mapped to a solution of the scalar field equations in

Minkowski. As in section 3.3.1, we proceed by replacing the asymptotic boundary

of the spacetime by a regulating surface z = ε and evaluate (3.176) on-shell:

iSon−shell =
`do

2α2

∫
z=ε

dūddx ε−k
(

(∆− k)ϕ2 + ε ϕϕ′
)
− `do

4

∫
z=ε

dūddx ε−k+1∂ūϕ
2.

(3.197)

The integrand in the last integral is a total derivative and therefore can be re-

moved from the on-shell action in the absence of null boundaries {u = constant}
for the spacetime. We then use the asymptotic solution (3.191) to replace for ϕ

and find those terms that diverge if we take the limit ε → 0. For finite α these

will be local functionals of the source ϕ(0) and therefore, up to anomalies, can be

rewritten covariantly as described in section 3.3.1. The resulting divergent terms

can then be subtracted by a covariant counterterm action Sct consisting of minus

such terms. The renormalized action Sren will then be given by Sren = S + Sct.

The number of counterterms increases with k, so we will focus separately on the

cases k = 2 and k = 4.

k=2

In this case the procedure described above results in the following renormalized

action:

iSren =
1

2

∫
dd+2x

√
G

(
Gµν∂µφ∂νφ+

(m
α

)2

φ2

)

+
1

2

∫
z=ε

dd+1x
√
q

(
−∆− k

α`o
φ2 + (α`o)φ�qφ log ε

)
, (3.198)

where qab is the induced metric on the regulating surface:

qabdx
adxb =

`2o
ε2

(
1

α2
dū2 + d~x2

d

)

=
`2o
ε2
q(0)abdx

adxb , (3.199)
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and where �q is the Laplacian with respect to qab and q(0)ab is the QFT metric. The

resulting couterterms are precisely the canonical ones from standard holographic

renormalization in the AdS/CFT correspondence (see e.g. [78]). This is expected

because the canonical counterterm action is covariant up to the anomaly in log ε.

The latter breaks invariance of the action under specific bulk diffeomorphisms

involving the radial coordinate z, but our background (3.175) is mapped to the

Poincaré patch of AdS by the boundary diffeomorphism u→ α2(u−z), xi → αxi.

The surfaces of constant z are therefore preserved by the diffeomorphism and hence

the canonical counterterm action is not affected by the transformation.

The next step is to determine whether the counterterms spoil the zero Λ limit

of the renormalized on-shell action. For that purpose we evaluate Sren on-shell,

take the limit ε→ 0 and look for those terms proportional to positive powers of α

as described in section 3.3.1. In the simple case of k = 2 no such terms survive once

the regulator is removed and therefore the couterterm action does not spoil the

zero Λ limit. As we increase the value of k we will see that further counterterms

are needed apart from the canonical ones in order to restore the well-behaved-ness

of the action in the limit α→∞.

Vacuum expectation value

The variation of the renormalized on-shell action is given by:

i δSon−shellren =

∫
z=ε

dd+1x
√
q

(
ε

α`o

(
φ′ − iα2φ̇

)
− ∆− k

α`o
φ+ (α`o)�qφ log ε

)
δφ .

(3.200)

Using the AdS/CFT prescription, the one-point function of the dual operator O
is then given by:23

√
q(0) 〈O〉 =

iδSon−shellren

δϕ(0)
= lim

ε→0

(
ε∆−k

iδSon−shellren

δφ

)

=
`do
α2

(
2ϕ(2) − ϕ̃(2)

)
− `do ~∇2ϕ(0) . (3.201)

We therefore find that the vev is mapped to the normalisable mode ϕ(2) for finite

α as expected. The term proportional to ϕ̃(2) is unphysical in the sense that it can

23Recall from section 3.3.4 that the well-defined observables are always the tensor densities,

in this case
√
q(0) 〈O〉. By construction, the n-point functions themselves are divergent in the

zero Λ limit because the boundary lapse vanishes in this limit. In particular for the 1-point

function: (1/
√
q(0)) iδS

on−shell
ren /δϕ(0) = α

(
1/(N(0)

√
g(0)) iδS

on−shell
ren /δϕ(0)

)
, which diverges

as α→∞, where in this case N(0) = 1 and g(0)ij = δij .
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be subtracted from the expectation value by adding to the renormalized action

the finite covariant counterterm (finite both in ε and α):

−α`o
4

∫
z=ε

dd+1x
√
q φ�qφ . (3.202)

The variation of this term is then proportional to ϕ̃(2):

iδ

δϕ(0)

−α`o
4

∫
z=ε

dd+1x
√
q φ�qφ

 = lim
ε→0

−α`o
4
ε∆−k

iδ

δφ

∫
z=ε

dd+1x
√
q φ�qφ


=

`do
α2

ϕ̃(2) . (3.203)

The term proportional to the spatial Laplacian of the source cannot be subtracted

without partially breaking diffeomorphism invariance of the bulk action. The finite

counterterm that subtracts this term is given by:

−α`o
4

∫
z=ε

dd+1x
√
q φ~∇2

γφ , (3.204)

where ~∇2
γ is the Laplacian with respect to the spatial metric γijdx

idxj = `2o/ε
2 d~x2

d

and, therefore, breaks invariance under diffeomorphisms that are not foliation pre-

serving. This is the same type of anomalous counterterm that we found in section

3.4. However, there is no need for a counterterm of this type in the present case.

It may seem that the spatial Laplacian of the source in the vev (3.201) will give

rise to contact terms proportional to the spatial Laplacian of delta functions and,

therefore, that partially break diffeomorphism invariance of the two-point correla-

tor computed by taking the variation of the vev. However, this will not be the case

because the variation of the normalisable mode ϕ(2) will provide a contribution

that precisely cancels these so that the two-point function is completely covariant

for finite α. We will see that this is indeed the case in section 3.6.3.

Finally, note that the vev admits a well-behaved zero Λ limit. If we switch

off the source and take the limit α → ∞, the expectation value of the operator

vanishes identically. In other words, any scalar operator of conformal dimension

∆ = 1 + (d + 1)/2 evaluated on QFT states dual to gravity solutions with Λ = 0

necessarily has a vanishing expectation value in the absence of the source.

179



3. Aspects of Ricci-flat Holography - I

k=4

In this case the renormalized action is given by:

iSren =
1

2

∫
dd+2x

√
G

(
Gµν∂µφ∂νφ+

(m
α

)2

φ2

)

+
1

2

∫
z=ε

dd+1x
√
q

(
−∆− k

α`o
φ2 − α`o

k − 2
φ�qφ+

(α`o)3

4
φ(�q)

2φ log ε

)
,

(3.205)

where the counterterm action again coincides with the canonical one. Let us now

verify whether the counterterms spoil the zero Λ limit of the action. If we evaluate

Sren on-shell, take the limit as the regulator ε → 0 and look for those terms

proportional to positive powers of α, we find:

lim
ε→0

iSon−shellren = −`
d
o

4

∫
z=0

dū ddx
(
α2ϕ(0) ϕ̈(2) + α2ϕ(1) ϕ̈(1) + α2ϕ(2) ϕ̈(0)

)
+O(α0) .

(3.206)

The second and third terms are of order O(α0). This is so because from equation

(3.192) for n = 1, 2 we have:

ϕ̇(0) = O(α−2) ⇒ ϕ(2) ϕ̈(0) = O(α−2) , (3.207)

ϕ̇(1) = −i
(

4

α2
ϕ(2) − ~∇2ϕ(0)

)
⇒ ϕ̈(1) = −i

(
4

α2
ϕ̇(2) +

i

α2
~∇2ϕ(1)

)
⇒ ϕ(1) ϕ̈(1) = O(α−2) .

(3.208)

On the other hand, the first term is of order α2. If we use again equation (3.192)

but for n = 3, we find:

ϕ̇(2) = i

(
3

α2
ϕ(3) − ~∇2ϕ(1)

)
⇒ ϕ̈(2) = i

(
3

α2
ϕ̇(3) + i

(
4

α2
~∇2ϕ(2) − ~∇4ϕ(0)

))
⇒ ϕ(0) ϕ̈(2) = ~∇4ϕ(0) +O(α−2) . (3.209)

In this way we find that the zero Λ limit of the action is spoiled by the counterterm

action:

lim
ε→0

iSon−shellren = −α2 `
d
o

4

∫
z=0

dū ddxϕ(0)(~∇2)2ϕ(0) +O(α0) . (3.210)

This divergence in α is subtracted by the finite counterterm (finite in ε):

(α`o)3

4

∫
z=ε

dūddx
√
q φ (~∇2

γ)2φ , (3.211)
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where ~∇2 is the Laplacian with respect to the spatial metric γijdx
idxj = `2o/ε

2d~x2
d

as before. Unlike the case of k = 2, this new counterterm is needed in order

to restore the well-behaved-ness of the action in the zero Λ limit. This is done,

however, at the expense of breaking invariance of the renormalized action under

diffeomorphisms that are not foliation preserving. Since this counterterm is finite

with respect to the regulator, it is associated to a choice of scheme on the QFT

side. This means that a renormalization scheme that breaks invariance of the QFT

under transformations that do not preserve the spacelike foliation of the boundary

is a necessary requirement, so that the QFT states result in finite expectation

values and correlators once the QFT limit associated to the zero Λ limit is taken.

The final renormalized action is then given by:

iSren =
1

2

∫
dd+2x

√
G

(
Gµν∂µφ∂νφ+

(m
α

)2

φ2

)

+
1

2

∫
z=ε

dd+1x
√
q

(
−∆− k

α`o
φ2 − α`o

k − 2
φ�qφ+

(α`o)3

4
φ (�q)

2φ log ε

)

+
1

2

∫
z=ε

dd+1x
√
q

(
(α`o)3

2
φ (~∇2

γ)2φ

)
. (3.212)

Vacuum expectation value

The variation of the on-shell action is given by:

i δSon−shellren =

∫
z=ε

dd+1x
√
q

(
ε

α`o

(
φ′ − iα2φ̇

)
− ∆− k

α`o
φ− α`o

k − 2
�qφ

+
(α`o)3

2
(~∇2

γ)2φ+
(α`o)3

4
(�q)

2φ log ε

)
δφ . (3.213)

The vacuum expectation value of the dual QFT operator is then given by:

√
q(0) 〈O〉 =

iδSon−shellren

δϕ(0)
= lim

ε→0

(
ε∆−k

iδSon−shellren

δφ

)

=
`do
α2

(
4ϕ(4) −

7

3
ϕ̃(4)

)
+

2`do
3

~∇2ϕ(2) . (3.214)

For finite α, the vev is again mapped to the normalisable mode ϕ(4). The term

proportional to ϕ̃(4) can be subtracted by adding the finite covariant counterterm
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to the action (finite both in ε and α):24

− 7

96
(α`o)3

∫
z=ε

dd+1x
√
q φ(�q)

2φ . (3.215)

The term proportional to the spatial Laplacian of ϕ(2), however, remains. Note

then that the expectation value admits a well-behaved zero Λ limit. For finite α,

the coefficient ϕ(2) is a functional of ϕ(0), so setting the source to zero and then

taking the limit α→∞ results in a vanishing vev for the operator. On the other

hand, in the case α−1 = 0 the coefficient ϕ(2) is a non-local functional of ϕ(0).

From equation (3.192) for n = 2, 3 with α−1 = 0 we find that ϕ(2) is defined by

the differential equation: ϕ̈(2) = (~∇2)2ϕ(0). In this way, setting first α−1 = 0 in

the vev and then switching off the source results in a non-trivial expectation value

for the operator:
√
q(0) 〈O〉 ∼ ~∇2ϕ(2), where ϕ̈(2) = 0. We expect this type of

behaviour to be reproduced for generic values of k ≥ 4.

3.6.3. Two-point correlator

In this last section we will compute the 2-point function for the scalar operator

with k = 2, 4 and analyse its zero Λ limit. This is done by choosing a full solution

of the equations of motion that is well-behaved in the bulk interior and then taking

a first-order variation of the vevs (3.201) and (3.234) in the presence of the source.

If we return to equation (3.181) for the Fourier transform ϕ̂ of the scalar field and

look at the behaviour of the Bessel functions as z → ∞, we find that ϕ̂ diverges

as z →∞ unless we set the coefficient B(ω, p) = 0. In this way, the solution that

is well-behaved in the interior is given by:

φ(z, ū, ~x) =
21−k/2

Γ(k/2)
z∆−k/2

∫
dωddp eiωū ei~p·~x e−α

2ωz ϕ̂(0)(ω, ~p) (α|p|)k/2 Kk/2(αz|p|) ,

(3.216)

where we used the expression (3.186) for the coefficient A(ω, p), and where |p| :=√
~p 2 + α2ω2. The solution can be rewritten as an integration in position space by

defining:

ϕ(0)(v̄, ~y) =

∫
dωddp eiωv̄ ei~p·~y ϕ̂(0)(ω, ~p) , (3.217)

24As a technical point, the fact that the integrand is finite in α follows from the discussion at the

end of section 3.6.1. From equation (3.193) with k = 4 it follows that: �2
q(0)

ϕ(0) = −(16/α4) ϕ̃(4).

The coefficient ϕ̃(4) is non-divergent in α by definition (recall that we resctricted the space of

solutions in AdS to the subspace where the coefficients are well-behaved as α→∞, i.e. we focus

only on those solutions in AdS that result in solutions in Minkowski space in this limit). This

implies that �2
q(0)

ϕ(0) = O(α−4).
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and using the identity (1.111):∫
dd+1X

e−ip·X

(ε2 + |X|2)
∆

= a(k) ε−k/2 |p|k/2Kk/2(ε|p|) , (3.218)

where k = 2∆ − (d + 1), |X|2 = X2
0 + XiXi, |p| =

√
~p 2 + α2ω2, and a(k) is a

proportionality constant that depends only on k. The solution (3.216) can then

be rewritten as:

φ(z, ū, ~x) =
21−k/2

Γ(k/2)

αk−∆−1

a(k)

∫
dv̄ddy ϕ(0)(v̄, ~y)

(αz)∆(
(αz)

2
+
(
ū−v̄
α + iαz

)2
+ |~x− ~y|2

)∆
.

(3.219)

This is precisely the expression one would obtain by solving the scalar field equa-

tion in Euclidean AdSd+2 in Poincaré coordinates as we did in section 1.3.2, requir-

ing that the solution be well-behaved in the bulk interior and finally transforming

the scalar field to the coordinate system (3.175). From this representation we can

immediately read the bulk-to-boundary propagator and obtain the expression for

the unrenormalized two-point function. If we use the identity (1.101):

lim
z→0

(αz)∆(
(αz)

2
+
(
ū−v̄
α + iαz

)2
+ |~x− ~y|2

)∆
∼ α b(k) (αz)∆−kδ(ū− v̄)δd(~x− ~y) ,

(3.220)

with b(k) a constant that depends only on k, then the on-shell bare action (3.176)

is given by:

Son−shell =
1

2

∫
z=ε

dd+1x
√
GφGzµ∂µφ

=
αk−3`do

b̃(k)

∫
z=ε

dūddx

∫
dv̄ddy

ϕ(0)(ū, ~x)ϕ(0)(v̄, ~y)((
ū−v̄
α

)2
+ |~x− ~y|2

)∆
(1 +O(z)) ,

(3.221)

with b̃(k) a dimensionless constant. Taking the variations of the on-shell action

with respect to the source and absorbing the overall proportionality constant in the

normalisation of the operator results in the unrenormalized two-point correlator:

√
q(0)

2〈O(v̄, ~y)O(ū, ~x)〉 =
iδ2Son−shell

δϕ(0)(v̄, ~y)δϕ(0)(ū, ~x)

=
1((

ū−v̄
α

)2
+ |~x− ~y|2

)∆
. (3.222)
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In the zero Λ limit and away from coincident points, this results in the correct

expression for the two-point function of a scalar operator of weight ∆ but in d

dimensions.

In order to compute the renormalized correlator, we return to our original

representation (3.216) for the physical solution and use the expansion (3.182)

around z = 0 for the Bessel function with k = 2, 4 to find:

φ(z, ū, ~x) = z∆−k (ϕ(0) + ...+ zkϕ(k) + zk log(µz) ϕ̃(k) + ...
)
, (3.223)

where the normalisable mode ϕ(k) for k = 2, 4 is given in terms of the source by:

ϕ(k=2) =
α2

4

(
~∇2 − α2∂2

ū −
(

2γE − 2 log 2 + log
(
− α2

µ2
�q(0)

))
�q(0)

)
ϕ(0) ,

(3.224)

ϕ(k=4) =
α4

24

(
−3α2∂2

ū
~∇2 − 2α4∂4

ū −
3

4

(
2γE −

3

2
− 2 log 2 + log

(
− α2

µ2
�q(0)

))
�2
q(0)

)
ϕ(0) ,

(3.225)

with γE the Euler constant and �q(0)
= α2∂ū + ~∇2 the Laplacian with respect to

the QFT metric. At the end of section 3.6.1 we found that the requirement that the

coefficients ϕ(n<k) and ϕ̃(k) in the asymptotics be well-defined in the limit α→∞
results in constraints on the behaviour in α of the time derivatives of the source.

Since the normalisable mode for each k is also well-defined in the limit α → ∞
by definition, and from the above expressions (3.224) for the physical solution we

have that ϕ(k) is now a functional of the source, we find that the requirement that

the solution be well-behaved in the interior results in a further constraint on the

source for each value of k. The constraint will be on the behaviour in α of the

spatial derivatives. From equations (3.193) and (3.192) for k = 2, 4 we have in

particular that:

�k/2q(0)
ϕ(0) = −k

k/2

αk
ϕ̃(k) = O(α−k) . (3.226)

It then follows from equation (3.224) that the non-normalisable mode of the phys-

ical solution for k = 2, 4 needs to satisfy:

~∇kϕ(0) = O(α−2) . (3.227)

For k = 2 this implies that the vev (3.201) evaluated on such a solution is iden-

tically zero in the zero Λ limit. For k = 4 it implies that the bulk action (3.205)

evaluated on such a solution is well-defined in the zero Λ limit, as well as the
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3.6. Non-backreacting matter

vev for the dual QFT operator, without the need for the anomalous counterterm.

Nonetheless, the renormalization should hold for any solution of the bulk equa-

tions of motion, so in general the anomalous conterterm is needed to restore the

well-behaved-ness of the zero Λ limit of the bulk action.

Case k=2

If we take the variation of the one-point function (3.201) (with ϕ̃(2) subtracted)

with respect to the source ϕ(0) and use the expression (3.224) for the coefficient

ϕ(2), we obtain:

√
q(0)

2〈O(v̄, ~y)O(ū, ~x)〉 =
δ

δϕ(0)(v̄, ~y)

(√
q(0) 〈O(ū, ~x)〉

)
= −`

d
o

2

(
1 + 2γE − 2 log 2 + 2 logα

)
�q(0)

δ(ū− v̄)δd(~x− ~y)

− `do
2

log
(
−µ−2 �q(0)

)
�q(0)

δ(ū− v̄)δd(~x− ~y) .

(3.228)

The first term proportional to the Laplacian on the delta functions is scheme

dependent and it can be removed by adding a finite and local counterterm to the

action proportional to (3.202). The scheme-independent piece is then:

√
q(0)

2〈O(v̄, ~y)O(ū, ~x)〉 = −`
d
o

2
log
(
−µ−2 �q(0)

)
�q(0)

δ(ū− v̄)δd(~x− ~y) . (3.229)

If we use the identity [77]:∫
dd+1X

eip·X

|X|d−1
log
(
µ̃2|X|2

)
= − c

|p|2
log
(
µ−2|p|2

)
, (3.230)

with µ̃ = γE µ/2 and c a proportionality constant that depends only on d, and

Fourier transform it, we find:

�n+1 log
(
µ̃2|X|2

)
|X|d−1

= c log
(
− µ−2�

)
�n δd+1(X) . (3.231)

If we apply this identity to the right-hand side of (3.229) we obtain:

√
q(0)

2〈O(v̄, ~y)O(ū, ~x)〉 = − `do
2αc

�2
q(0)

log
(
µ̃2
[ (

ū−v̄
α

)2
+ |~x− ~y|2

])
∣∣∣ ( ū−v̄α )2

+ |~x− ~y|2
∣∣∣(d−1)/2

= c̃R 1∣∣ ( ū−v̄
α

)2
+ |~x− ~y|2

∣∣∆ , (3.232)
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where ∆ = 1 + (d + 1)/2. The proportionality constant c̃ can be absorbed in a

normalisation of O. The term R
(
1/|X|2∆

)
on the right-hand side is the renormal-

ized version of the correlator 1/|X|2∆ and it coincides with the latter away from

coincident points [68]. In the zero Λ limit we find:

lim
α→∞

√
q(0)

2〈O(v̄, ~y)O(ū, ~x)〉 = R 1

|~x− ~y|2∆
, (3.233)

which is the renormalized version of the correlator that we found in (3.222) in the

zero Λ limit.

Case k=4

In this case the one-point function for the QFT operator receives a contribution

from the anomalous counterterm (3.211). This term renders the vacuum expec-

tation value finite in the zero Λ limit, but it introduces contact terms in the two

point function. In order to verify this more explicitly, we isolate the contribution

from this term in the vev:

√
q(0) 〈O〉 =

(
4`do
α2

ϕ(4) +
2`do
3

~∇2ϕ(2) −
α2`do

2
~∇4ϕ(0)

)
+
α2`do

2
~∇4ϕ(0) , (3.234)

where the last term represents the contribution from the anomalous counterterm.

We have also subtracted the term proportional to ϕ̃(4) which is scheme dependent.

If we use the expression (3.225) for the normalisable mode ϕ(4) and take the

variation of the one-point function with respect to the source, we obtain:

√
q(0)

2〈O(v̄, ~y)O(ū, ~x)〉 =
δ

δϕ(0)(v̄, ~y)

(√
q(0) 〈O(ū, ~x)〉

)
= −α

2`do
6

(
2 +

3

4

(
2γE − 2 log 2− 3

2
+ 2 logα

))
�2
q(0)

δ(ū− v̄)δd(~x− ~y)

− α2`do
8

log
(
−µ−2 �q(0)

)
�2
q(0)

δ(ū− v̄)δd(~x− ~y)

+
α2`do

2
δ(ū− v̄) ~∇4δd(~x− ~y) . (3.235)

The first term proportional to the square of the Laplacian can be removed by

adding a finite and local counterterm to the action proportional to (3.215). The

last term arising from the anomalous counterterm is a contact term that diverges

when the operators are defined at equal time ū = v̄. This piece cannot be removed

from the correlator by a counterterm without spoiling the zero Λ limit of the

bulk action. This type of contact terms spoils the behaviour of the correlator at
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coincident points in time and will always appear in the two-point functions for

values of k ≥ 4 if we simultaneously require that the bulk action be well-defined in

the zero Λ limit. At non-coincident points, if we subtract the scheme-dependent

term and use the identity (3.231), we find:

√
q(0)

2〈O(v̄, ~y)O(ū, ~x)〉 = −α`
d
o

8c
�3
q(0)

log
(
µ̃2
[ (

ū−v̄
α

)2
+ |~x− ~y|2

])
∣∣∣ ( ū−v̄α )2

+ |~x− ~y|2
∣∣∣(d−1)/2

= c̃R 1∣∣ ( ū−v̄
α

)2
+ |~x− ~y|2

∣∣∆ (ū 6= v̄) . (3.236)

where ∆ = 2 + (d+ 1)/2. If we absorb the constant c̃ in the normalisation of the

operator and take the limit α→∞, we again find the renormalized version of the

correlator that we obtained in (3.222) in this limit.

3.7. Appendix: Gaussian null coordiantes

In this section we will derive our coordinate system by performing a brief ADM

analysis of the spacetime metric Gµν . For a thorough treatment see the original

works in [159, 160, 162]. We introduce coordinates xµ = (u, xA) = (u, r, xi) =

(r, xa) and define the surfaces of constant u to be null. We then do an ADM

decomposition of Gµν with respect to these surfaces as:

ds2 = −α2du2 + hAB
(
dxA + αAdu

) (
dxB + αBdu

)
. (3.237)

We also decompose the induced metric hAB with respect to the surfaces of constant

r as:

hABdx
AdxB = β2dr2 + γij

(
dxi + βidr

) (
dxj + βjdr

)
, (3.238)

and define the spatial metric γij to be positive-definite. Since the surfaces of

constant u are null by definition, the induced metric hAB must be degenerate.

Since the determinant
√
h = β

√
γ and γij > 0, the degeneracy of hAB implies that

β = 0 everywhere. With this condition, we rewrite Gµν without loss of generality

as:

ds2 = −φdu2 + 2Mdudr + γij
(
dxi + σidu+ βidr

) (
dxj + σjdu+ βjdr

)
(3.239)

= N2dr2 + qab

(
dxa +Nadr

) (
dxb +N bdr

)
, (3.240)
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where (N,Na) are the lapse and shift of the radial foliation in r and where the

induced metric qab is given by:

qabdx
adxb = −φdu2 + γij

(
dxi + σidu

) (
dxj + σjdu

)
. (3.241)

Let us then perform an ADM decomposition of the Einstein-Hilbert Lagrangian

with respect to the radial foliation (3.240):

L =
√
GR[G] = N

√
q
(
R[q] +Q2 −Q ·Q− 2∇µvµ

)
, (3.242)

where Qab = 1/(2N) (∂r −£N ) qab is the extrinsic curvature of the surfaces of

constant r and: vµ = Qnµ − aµ, with nµ and aµ the unit normal and acceleration

of these surfaces, respectively. The last term in the Lagrangian is a total derivative

and thus will be discarded. The decomposed Lagrangian is now a functional of

the lapse, shift and induced metric N , Na and qab. A quick inspection of L then

reveals that only qab contains radial derivatives and therefore the equations of

motion for the metric will be second order differential equations in r for qab only.

This indicates as usual that N and Na do not represent true degrees of freedom

and therefore can be gauge-fixed, i.e. can be brought to any configuration by

diffeomorphisms near a surface of constant r. If we then return to (3.241) we find

that qab depends only on φ, σi and γij . This means that the Lagrangian does not

contain radial derivatives of the functions M and βi that appear in (3.239) and

therefore these can be gauge-fixed by diffeomorphisms. The simplest gauge we

can choose is the Gaussian gauge
(
M = 1, βi = 0

)
in which the spacetime metric

assumes the final form:

ds2 = −φdu2 + 2dudr + γij
(
dxi + σidu

) (
dxj + σjdu

)
, (3.243)

with determinant
√
G =

√
γ. In the particular case of black hole spacetimes in

gaussian null coordinates, the horizon is defined to consist of the surface r = 0.

Then note that it is still possible to use a further diffeomorphism of the form

xi → xi + f i(x, u) in (3.243) and choose the set of functions f i such that:

σi → rασ̃i(r, u, x) : α > 0 , σ̃i = O(r≥0) . (3.244)

Also, since the horizon is a null surface, we find that the function φ must behave

near r = 0 at least as:

φ = rβϕ(r, u, x) : β > 0 , ϕ = O(r≥0) . (3.245)

In most cases the equations of motion near the horizon then fix the exponents

α, β = 1 for a non-degenerate horizon, and α = 1, β = 2 for a degenerate one.
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3.8. Appendix: Ricci tensor

In this section we provide the decomposition of the Ricci tensor of our gauge-fixed

metric:

ds2
d+2 = Gµνdx

µdxν

=
`2o
z2

(
− ϕN(0)du

2 − 2N(0)dudz + gij
(
dxi + σidu

) (
dxj + σjdu

) )
,

(3.246)

where N(0) = N(0)(u, x
i) and the remaining components of the metric depend on

all coordinates. The inverse and determinant of the metric are given by:

Gµν =

(
z

`o

)2

N−1
(0)

 0 −1 0

−1 ϕ σi

0 σi N(0)g
ij

 , (3.247)

√
G = (`o/z)

d+2N(0)
√
g . (3.248)

Define:

kij :=
1

2N(0)
(∂u −£σ) gij . (3.249)

The decomposition of the Ricci tensor Rµν [G] is then given by [159, 168]:

2Rzi[G] =
1

N(0)

(
−(g · σ′)′i +

d

z

(
(g · σ′)i − ∂iN(0)

)
− 1

2
Tr[g−1g′]

(
(g · σ′)i − ∂iN(0)

))
+∇j(g−1g′)ji − ∂iTr[g−1g′] , (3.250)

2
(
Rzu[G]− σiRzi[G]

)
= ϕ′′ − d+ 2

z
ϕ′ +

2(d+ 1)

z2
ϕ+ Tr[g−1g′]

(
1

2
ϕ′ − 1

z
ϕ

)
−∇i

(
σ′ i − gij∂jN(0)

)
− 1

N(0)
σ′ i
(

(g · σ′)i − ∂iN(0)

)
−N(0)

(
2 Tr[g−1k]′ − 2

z
Tr[g−1k] + (k · g′)

)
, (3.251)
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2Rij [G] = 2Rij [g] +
1

N(0)

[
− (ϕg′ij)

′ +
d

z
ϕ g′ij +

2

z
ϕ′gij −

2(d+ 1)

z2
ϕgij

+ ϕ

(
1

z
gij −

1

2
g′ij

)
Tr[g−1g′] + ϕ (g′ · g′)ij

+ 2∇(i

(
(g · σ′)j) − ∂j)N(0)

)
−N−1

(0) (g · σ′)i (g · σ′)j

]
+ ∂i logN(0)∂j logN(0)

+ 4 k′ij −
2d

z
kij + Tr[g−1g′]kij +

(
g′ij −

2

z
gij

)
Tr[g−1k]− 4(k · g′)(ij) ,

(3.252)

2Rzz[G] = −Tr[g−1g′′] +
1

2
(g′ · g′) , (3.253)

2
(
Rui[G]− σjRij [G]− ϕRzi[G]

)
=

(∂u −£σ)
[ 1

N(0)

(
(g · σ′)i − ∂iN(0)

)]
+ Tr[g−1k]

(
(g · σ′)i − ∂iN(0)

)
+ 2 (g−1k)ji ∂jN(0) − (g−1g′)ji ∂jϕ+ ∂iϕ

′ +N(0)

(
−d
z

+
1

2
Tr[g−1g′]

)
∂i
(
ϕ/N(0)

)
+ 2N(0)

(
∇j(g−1k)ji − ∂iTr[g−1k]

)
− ϕ

(
∇j(g−1g′)ji − ∂iTr[g−1g′]

)
,

(3.254)

2

N(0)

[
Ruu[G]− 2σiRui[G] + σiσjRij [G]− ϕ

(
Rzu[G]− σiRzi[G]

) ]
=

(
−d
z

+
1

2
Tr[g−1g′]

)
(∂u −£σ) (ϕ/N(0))− 2 (∂u −£σ) Tr[g−1k]

+ ϕ
(

2 Tr[g−1k]′ + (k · g′)
)
− ϕ′ Tr[g−1k]− 2N(0)

(
k · k

)
+∇i∇iϕ

+ gij ∂iϕ∂j logN(0) +
1

N(0)

(
ϕ∇iσ′ i − σ′ i∂iϕ

)
, (3.255)

where the prime denotes differentiation with respect to z, the trace and inner

product are taken with respect to gij , and where ∇igjk := 0. When replaced by

the Einstein equations:

Rµν [G] = −d+ 1

α2`2o
Gµν , (3.256)
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we find that equations (3.250)–(3.252) represent the dynamical equations for the

metric components σi, ϕ and gij , respectively, whereas equations (3.254) and

(3.255) are constraint equations since they do not contain second order deriva-

tives in z. After (3.252) is solved, equation (3.253) can also be seen as a constraint

equation because it can be replaced by an equation without second order deriva-

tives in z if we use the trace of (3.252).

3.9. Appendix: Terms Xij and Xi

The algebraic expressions for the terms Xij and Xi that appear in equations

(3.106) and (3.108) depend on the coefficient g(1)ij and vanish if the boundary

metric is static. In general, the expressions are given by:

Xij =
1

4α2
g(1)ij

(
Tr2[g−1

(0)g(1)] +
(
g(1) · g(1)

))
− 3

4
Tr[g−1

(0)g(1)] k(1)ij −
5

4
Tr[g−1

(0)k(1)] g(1)ij

+
1

2
R(0) g(1)ij −

3

2
g k

(1)(i
(0)∇j)∂k logN(0) +

1

4

(
(0)∇i∂jTr[g−1

(0)g(1)]− (0)�g(1)ij

)
+

1

4N(0)

(
Tr[g−1

(0)g(1)]
(0)∇i∂jN(0) + g(1)ij

(0)�N(0) − g(0)ij Tr[g−1
(0)g(1)]

(0)�N(0)

)
,

(3.257)

Xi =
3

8

(
g(1) · g(1)

) j
i
∂j logN(0) +

1

2
g(1)ij

(0)∇kgkj(1) +
1

2
(0)∇k

(
g(1) · g(1)

)k
i

− 3

4
g j

(1)i∂jTr[g−1
(0)g(1)] +

1

16
∂iTr2[g−1

(0)g(1)]−
5

16
∂i
(
g(1) · g(1)

)
. (3.258)

To obtain these expressions we made use of the matrix identity:

(AB−1A)ij −
1

2
BijTr[B−1AB−1A] = Tr[B−1A]

(
Aij −

1

2
BijTr[B−1A]

)
,

(3.259)

for any 2x2 matrices A and B such that detB 6= 0.
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Chapter 4

Aspects of Ricci-flat

Holography - II

4.1. Introduction

In the previous chapter we discussed the zero Λ limit of vacuum expectation

values and correlation functions in AdS/CFT at a formal level, the associated is-

sues and attempted to address them. We found that the analysis requires a suitable

foliation of the spacetime and we derived the mapping between bulk and boundary

data in the associated coordinate system. We focused specifically on the case of

the bulk spacetime metric and a non-backreacting scalar field, determined their

unique asymptotics, computed correlators of the dual operators and discussed the

necessary conditions for the correspondence between the near-boundary asymp-

totics and the vevs to admit a well-behaved zero Λ limit. We found that the

existence of the limit essentially translates into a statement about the sources and

states of the boundary theory. The most important open problem, however, is to

understand more precisely the nature of the zero Λ limit from the point of view

of string theory, and also holographically from the dual field theory perspective.

In this final chapter we will follow a different viewpoint and attempt to gain some

insight on the nature of flat space holography by formulating the problem, not as

a limit of AdS/CFT, but as an extension of the AdS/CFT ingredients to gravi-

tational theories with exactly vanishing cosmological constants. More specifically,

we will construct a correspondence between certain Ricci-flat geometries that nat-

urally generalize Minkowski spacetime and families of conformal field theories at

the null boundary of the manifolds.
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From the results of the previous chapter we have learned that the zero Λ limit

of AdS/CFT implies in particular that putative field theories dual to Ricci-flat

spacetimes should be defined at the conformal boundary of the spaces. In the

case of a vanishing cosmological constant, this boundary is a null manifold and a

direct application of the AdS/CFT recipe therefore requires a dual quantum field

theory on a degenerate manifold.1 We found in section 3.6.3 that the holographic

2-point function in the zero Λ limit was consistent with this fact: the form of the

correlator was consistent with that of an operator defined in two dimensions less.

The main problem in establishing a duality between a gravitational theory and

a quantum field theory on a codimension two submanifold lies in the reconstruc-

tion of two bulk dimensions from quantum field theory data, which in addition

cannot be both simultaneously spacelike. In AdS/CFT, the conformal boundary

of the Einstein spaces is timelike and any quantum field theory at the boundary

need only to contain enough information to allow for the reconstruction of one

spatial (radial) direction. Such information is indeed captured in the dynamics

and kinematic constraints of the boundary theory from which the bulk fields can

be reconstructed. In our case, on the other hand, the null nature of the conformal

boundary requires the behaviour of bulk fields along the timelike direction to be

captured as well by the dual field theory. Time evolution in the bulk must therefore

be of central importance in such a holographic description of Ricci-flat spacetimes.2

In the work initially developed by de Boer and Solodukhin [188, 189] it was pro-

posed that fields on (d+2)–dimensional Minkowski space could be reconstructed

from conformal field theory data on a d–dimensional conformal manifold repre-

senting the boundary of the Minkowski lightcone. The key observations are a)

that the interior of the lightcone is naturally foliated by conformally compact, hy-

perbolic (or Euclidean AdS) hypersurfaces whose boundaries all degenerate to the

boundary of the lightcone and b) that the isometry group of (an asymptotically)

Minkowski spacetime contains a subgroup that acts on such boundary as the con-

formal group. Since each leaf of the foliation admits a holographic description in

terms of a conventional Euclidean d–dimensional CFT on its conformal boundary,

the authors asked whether the interior of the lightcone could be described holo-

graphically in terms of a family of CFTs on this codimension two submanifold

1See also the discussion in [184] and the preliminary works [185, 186, 187] on quantum field

theories defined on null manifolds.
2It should be stressed that Ricci-flat spaces with Euclidean signature cannot have a conformal

boundary. It is simple to show that the Ricci scalar of conformally compact Riemannian manifolds

cannot vanish asymptotically, hence conformal compactness necessarily requires the Ricci-flat

spaces to be Lorentzian, which also follows from the fact that the conformal boundary must be

null. This implies in particular that one cannot have simultaneously a static conformal embedding

and a time-independent defining function, otherwise a simple Wick rotation would violate the

above statement. See appendix B.1 for further details.
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to which all boundaries converge. The problem raised by this approach regards

to the reconstruction of the bulk timelike direction from field theory data. The

AdS/CFT dictionary allows one to reconstruct the radial direction on each slice

through the dynamics of the respective dual quantum field theory. The authors

then left open the non-trivial possibility that evolution along the extra timelike

direction defined by, and orthogonal to, the foliation could also be reconstructed

from the infinite set of CFTs that reside on the boundary of the lightcone. Al-

though the AdS/CFT duality guarantees that each CFT encodes radial evolution

along each slice, it does not necessarily imply the family of CFTs should encode

time evolution orthogonal to the slices.

The purpose of this chapter is to elaborate on such proposal and provide ev-

idence supporting the conjecture that bulk fields on a specific class of Ricci-flat

spacetimes can be reconstructed out of conformal field theory data on a codimen-

sion two conformal manifold representing the boundary of a null surface in the

bulk that extends to null infinity. We will do so in the case of pure gravity3 by

showing that the bulk spacetime metric can be reconstructed from the conformal

structure of null infinity and from the expectation values of a family of conformal

field theory stress tensors. Our results will be consistent with a dual description

of the time evolution of the Ricci-flat metric by a family of conformal field the-

ories. The procedure will follow the standard AdS/CFT programme at the full

non-linear level for our class of spacetimes by finding the most general spacetime

asymptotics towards the conformal boundary, holographically renormalizing the

gravitational action, computing the expectation values and Ward identities of the

stress tensors of the field theories and mapping these to the data necessary to the

reconstruction of the bulk metric. The results obtained for the holographic Weyl

anomalies in even dimensions then imply that, for each CFT, the bulk timelike

coordinate plays the role of the CFT central charge(s) in a gauge invariant way,

with the bulk Planck length as the characteristic length. We elaborate more on

this aspect in section 4.2.2 and then mainly in 4.4.3.

In the next section we review the foliation of Minkowski space that motivates

our framework and describe the generalisation to a specific class of asymptotically

Ricci-flat manifolds. We then outline the approach taken to deducing the most

general asymptotics of such spacetimes and which is based on the initial value for-

3Recall that in AdS/CFT, pure bulk gravity is describing a conformal field theory with van-

ishing vacuum expectation values and correlators of every gauge-invariant operator with the

exception of the CFT stress-energy tensor. This is indeed the picture that arises by working

with the full supergravity action, performing the holographic computations and in the end set-

ting the bulk matter configurations to zero. The field theory is therefore in a state in which no

operator has dynamics but the stress-energy tensor.
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mulation of general relativity. In section 4.3 we briefly review the latter formalism

and apply it to our class of manifolds. Solving the equations of motion within

such framework will allow us to obtain in a unique way the asymptotic behaviour

of the metric for such spacetimes and to find its relation to the ambient metric

of Fefferman and Graham [190]. In section 4.4 we renormalize holographically

the gravitational action and compute the vacuum expectation values and Ward

identities of the family of dual field theories. The last section represents a general-

isation of the previous formalism. Our class of asymptotically Ricci-flat manifolds

will be generalised further by including subleading corrections to the spacetime

asymptotics. This will allow us to obtain different expectation values for different

field theories in this family. In this chapter’s appendix we provide a few definitions

that are necessary to our formalism together with several technical results.

4.2. Preliminaries

4.2.1. Foliation of Minkowski space

Let (M, Gµν) be (d+2)–dimensional Minkowski space. In spherical coordinates:

ds2
d+2 = −dT 2 + dr2 + r2dΩ2

d . (4.1)

Let one introduce null coordinates (v := T + r , u := T − r):

ds2
d+2 = −dvdu+ v2

(
1− u/v

2

)2

dΩ2
d , (4.2)

such that infinity is represented by the union of the regions: =+ = {v = +∞ , |u| <∞} ,

=− = {u = −∞ , |v| < ∞} , i± = {v = u = ±∞ : |v − u| < ∞} and: i0 = {v =

−u = +∞ : |v+u| <∞}. To bring these regions to finite values of the coordinates,

one introduces Penrose-type null coordinates (v′ := arctan v , u′ := arctanu):

ds2
d+2 =

1

cos2 v′ cos2 u′

(
−dv′ du′ + 1

4
sin2(v′ − u′) dΩ2

d

)
:= ρ−2(x) ds̃2

d+2 , (4.3)

where infinity is represented by the region where the defining function ρ(x) :=

cos v′ cosu′ vanishes. Since r > 0 in (4.1), then v′ > u′ and the flattened Penrose

diagram for the conformal embedding (M̃, G̃µν = ρ2Gµν) is given in figure 4.1,

where each point represents a Sd (with the exception of the corners i±,0).4

4More precisely, the conformal embedding is obtained from M̃ by deleting the corners i±,0.

Notice that dρ = 0 and G̃ is degenerate in those regions, hence the triple (M̃, G̃, ρ) does not

represent an asymptote unless the corners are removed from the conformal embedding. See

appendix B.1 for further details.
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Figure 4.1: Penrose diagram for Minkowski space

Let one now return to the non-compact coordinate system (4.2). We are in-

terested in looking at the region near =+ in two particular charts. We introduce

Rindler-type coordinates (z, t) defined as:
(
z et := u , z−1et := v

)
such that:

ds2
II =

e2t

z2

(
dz2 − z2dt2 +

(
1− z2

2

)2

dΩ2
d

)
. (4.4)

This coordinate system covers only region II of Minkowski space, where v, u > 0.

Notice that, due to the coordinate singularities at z = ±1, 0, these coordinates

are only defined in the interval: z ∈ ]0, 1[. In order to cover region I (only) we

analytically continue t and z to complex values: (z → iz , t→ t− iπ/2), which is

equivalent to defining:
(
z et := u , z−1et := −v

)
in the original coordinate system

(4.2):

ds2
I =

e2t

z2

(
− dz2 + z2dt2 +

(
1 + z2

2

)2

dΩ2
d

)
. (4.5)

In this case, the coordinate z is defined in the interval z ∈ ]−∞, 0[. The Penrose

diagram in each region in the new coordinates is given in figure 4.2, with z0 and

z1 a positive and a negative constant, respectively. It is relevant to notice that

worldlines in region II orthogonal to the surfaces of constant t, i.e. with tangent
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Figure 4.2: Foliation of Minkowski space
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vector the unit normal n = e−t∂t to such surfaces (also called Eulerian worldlines),

define geodesic observers. In Minkowski coordinates (4.1):

n =
1√

1− V 2

(
∂T + V ∂r

)
: V = dr/dT , (4.6)

which is the standard velocity of inertial particles in radial motion, where the

constant relative velocity V is related to the (constant) coordinate z as: V = 1−z2

1+z2 .

This feature will be revisited later in section 4.4.

Future null infinity in each region is given by: =+ = {z = 0 : t 6= −∞} and

the defining function in the new coordinates becomes:

ρ(x)2 =
z2

e2t

(
1 + 2 z2 cosh(2t) + z4

)
. (4.7)

This implies in particular that the conformal embedding for region II approaches

Rindler space times Sd as z → 0:

ds̃2
II ∼ dz2 − z2dt2 +

1

4
dΩ2

d , (4.8)

with Rindler horizon {z = 0} represented by the union =+ ∪ H in region II

with bifurcation point ∂H ⊂ =+. The null surface H = {u = 0 , 0 < v <∞}
= {z = 0 , t = −∞ : 0 < ze−t < ∞} represents the boundary of the past do-

main of dependence of any partial Cauchy surface in region II and is therefore the

past Cauchy horizon of this region. This horizon defines the future lightcone of

Minkowski space with respect to an inertial observer at the origin {r = 0, T = 0}.

4.2.2. Holographic foliation and generalisation

As we move into region II from region I, the timelike surfaces of constant t

asymptote to H and become spacelike as we cross it. These surfaces are hyper-

bolic manifolds (Hd+1) in region II and de Sitter in region I, as well as conformally

compact. The (future) conformal boundary of each such surface converges to a

common region ∂H = {u = 0 , v = +∞} = {z = 0 : z et = 0 = z e−t} representing

the boundary of H. Notice that the coordinate t degenerates on ∂H where it can

assume any value. According to the AdS/CFT correspondence, each Hd+1 surface

admits a dual description in terms of a d–dimensional Euclidean conformal field

theory on its conformal boundary at ∂H and in particular, fields on each surface

(including the induced metric) can be reconstructed out of CFT data at ∂H. Given

a family of CFTs at this boundary, one is therefore able to reconstruct a collection

of hyperbolic hypersurfaces and their fields, but not necessarily able to reconstruct

fields in the flat spacetime foliated by such surfaces. The AdS/CFT dictionary
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allows one to reconstruct from CFT data the evolution along the z-direction of

the pullback of bulk fields to each slice, but it does not determine the evolution of

bulk fields along the time direction orthogonal to the slices. In order to obtain a

dual description of such behaviour, one needs to find asymptotically (near ∂H) the

most general time evolution of a given class of bulk fields and then to determine

how the bulk data necessary to the reconstruction of such evolution is mapped to

data in the family of CFTs.

Our main goal will be to obtain such asymptotics for the spacetime metric

and to show that it is possible to reconstruct its evolution near ∂H from data

belonging to a family of conformal field theories at this boundary, in particular

from the conformal structure at ∂H and from the expectation values of the stress

tensors of each field theory. We will also find in the case of even dimensions that

the bulk time coordinate t defining the leaves of the foliation essentially plays the

role of the central charges of the CFTs. This feature is not at all surprising: each

leaf of the foliation dually described by a unique CFT is uniquely defined by a

hypersurface condition {t = constant} and the time dependence of the metric (in

our gauge (4.4) the factor et) represents, on each slice, the AdS radius ` of the

hyperbolic hypersurface, which from AdS/CFT is mapped to the central charges

of the respective dual field theory [14, 124, 175].

In order to reconstruct holographically the spacetime metric, we need to gener-

alise the procedure developed in the previous section to a larger class of spacetimes.

We therefore generalise Minkowski space by any conformally compact, asymptoti-

cally Ricci-flat manifold that admits an asymptotically hyperbolic hypersurface of

constant mean curvature. In section 4.5 we will analyse how the mean curvature

condition may be relaxed. Since the conformal boundary of such manifolds is nec-

essarily null, the hypersurface must extend to null infinity (as opposed to a spatial

infinity). Such hypersurfaces are called hyperboloidal (see e.g. [191, 192, 193, 194])

and represent the natural generalisation of the hyperbolic leaves in the previous

foliation of Minkowski space. Our starting point will be such initial hypersurface

and we will then generate the Ricci-flat embedding near the hypersurface by time

evolving it as follows.

If a Ricci-flat space admits a spacelike hypersurface, then the Ricci-flat neigh-

bourhood of the surface can be identified with its “time evolution” in the ADM

sense [195], i.e. the vacuum Einstein equations in this region are completely equiv-

alent to the (gauge-fixed) Gauss-Codazzi equations for the surface, also called

ADM, or initial value equations. The solution to the latter equations represents

the time evolution of the induced metric of the hypersurface. Given such solution,

together with the lapse function and the shift vector, one can then construct the

most general metric for the Ricci-flat embedding near the surface as explained in
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the next section. The embedding will then be foliated by the different instances

of the time-evolved hypersurface.

If the initial surface Σ is in particular asymptotically hyperbolic of constant

mean curvature, then it is possible to solve asymptotically the Gauss-Codazzi

equations and therefore to obtain the most general asymptotics of such Ricci-flat

embeddings. Furthermore, since Σ extends to null infinity =+ by definition, the

region ∂H in our previous case of Minkowski space will now represent that where Σ

intersects =+ and we will then verify that the boundary of each time slice converges

to ∂H. Moreover, ∂H also represents the intersection of some null surface with null

infinity. Such null surface will then be the past Cauchy horizon of the (generated)

embedding and represents the generalisation of the null horizon H that we found

in the case of Minkowski space (see figure 4.3. Notice that the region to the right

of H contains future-inextendible causal curves that do not intersect Σ).

Figure 4.3: Ricci-flat embedding near the initial hypersurface Σ. The dashed lines rep-

resent the different time slices obtained by time evolving Σ and the generated embedding

represents the region between some initial and final slices (which can be taken to be

infinitesimally close to H and to =+, respectively).

4.2.3. Exterior of the future lightcone

So far we have restricted our attention to a generalisation of region II of

Minkowski space, the future domain of dependence of H. Region I represents

the exterior of the lightcone in which the leaves of the foliation are de Sitter

hypersurfaces with future conformal boundary converging to ∂H, whereas region

III is the interior of the past lightcone with a hyperbolic foliation as in region II. In
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the particular case of Minkowski space, all the results obtained for region II may

be extended to region I or III by analytic continuation: (z → iz , t→ t− iπ/2),

or radial and time reversal: (z → −z , t→ −t), respectively. In this chapter we

will mainly restrict our attention to a single Ricci-flat region generated by time

evolving an initial Cauchy surface as explained above and which will be realised

in the next section. The generalisation of regions I and III can then be obtained

from such solution by the above continuations.5

In the next section we briefly review the initial value formulation of relativity

which will allow us to generate the Ricci-flat embeddings of initial data hypersur-

faces. We will then use the existence and uniqueness properties of solutions to the

Cauchy problem in order to obtain the spacetime asymptotics.

4.3. Spacetime asymptotics

4.3.1. Initial value formulation

Since we are only interested in (asymptotically) Ricci-flat embeddings, for the

sake of simplicity we will focus on the vacuum version of the initial value formu-

lation. A recent review of the subject can be found in [196].

An initial data set is a triple
(
Σ, h[0],K[0]

)
consisting of a Riemannian man-

ifold Σ with a positive-definite metric h[0]ab and a symmetric tensor field K[0]ab

satisfying the constraint equations:

R[h[0]] + (Ka
[0]a)2 −K[0]abK

ab
[0] = 0 , (4.9)

[0]DbK
b
[0]a −

[0]DaK
b
[0]b = 0 , (4.10)

where Rab[h[0]] and [0]Da are the Ricci tensor and the covariant derivative asso-

ciated to h[0]. Given an initial data set, one introduces a flow parameter t called

the development time and evolves the initial data in time by specifying a scalar

5It should be emphasized, however, that the generalisation of region I would involve generating

a Ricci-flat region by evolving a timelike surface along a spatial direction. While the above

analytic continuation should result in the appropriate generalisation of region I, it must be

emphasized that the initial data surface is not Cauchy in such case. This implies that the

uniqueness property of solutions to the initial value problem in the case of Cauchy initial data

surfaces proved by Choquet-Bruhat and reviewed in the next section do not necessarily carry

over to this case, hence the unique spacetime asymptotics that we will later obtain may no longer

be unique when analytically continued. See also appendix A of [78] on the analytic continuation

of solutions in the context of AdS to dS/CFT.
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and vector fields N and Aa and solving the first order differential equations:

∂thab = £Ahab + 2NKab , (4.11)

∂tKab = £AKab +DaDbN −N
(
Rab[h]− 2Kc

aKcb +KKab

)
, (4.12)

subject to the initial value conditions:

hab
∣∣
t=0

= h[0]ab , Kab

∣∣
t=0

= K[0]ab , (4.13)

with Da the covariant derivative with respect to hab. After a solution is found,

one constructs the metric tensor Gµν of a Lorentzian manifoldM = I ×Σ, where

I ∈ R is the interval over which the time evolution is carried, according to the

formula:

ds2 = Gµνdx
µdxν

= −N2dt2 + hab (dxa +Aadt) (dxb +Abdt) . (4.14)

The manifold (M, G) is called the development of the Cauchy surface Σ and will

satisfy the vacuum Einstein equations. Notice that every Ricci-flat space can

be generated in this way because the equations (4.9)–(4.13) simply represent the

Gauss-Codazzi identities6 for a Ricci-flat space cast as a Cauchy problem. The

development represents an embedding of the initial Cauchy surface Σ = {t = 0}
and is foliated by a one-parameter family of spacelike surfaces Σt representing

the time evolution of Σ, each defined by the condition t = constant with future-

directed unit normal n = −Ndt. The induced metric and extrinsic curvature of

such surfaces are given by:

hµν = GµaGνbh
ab = Gµν + nµnν , Kµν = GµaGνbK

ab , (4.15)

where Kab = (h−1Kh−1)ab. Finally, a choice of lapse function N and shift vector

Aa as above is called a gauge choice and it represents how one chooses to foliate

M and how to propagate the coordinate system of Σ in M. In other words, it

represents a choice of coordinates for M near Σ and one is free to choose a lapse

and a shift without changing the physical spacetime in such neighbourhood.

Choquet-Bruhat showed [197] that there always exists a solution to the initial

value problem for smooth initial data and that such solution is unique in a neigh-

bourhood of the initial Cauchy surface. Choquet-Bruhat and Geroch [198] also

6By virtue of the Bianchi identities, the constraint equations have the fundamental property

that they hold for all t if they hold at a given t. In the conventional approach to relativity,

equation (4.11) represents the definition of extrinsic curvature Kµν = 1/2£nhµν projected onto

the surfaces of constant t.
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showed global existence and uniqueness of a maximal development, the element in

the set of solutions into which every other solution can be isometrically mapped.

See the review in [195]. These properties are the main reason behind our choice of

approach to finding the spacetime asymptotics. We will make use of the existence

and uniqueness of a solution to the Cauchy problem in order to deduce the most

general asymptotics of the developments of initial data sets that asymptote to

hyperboloidal sets. The latter are defined as follows.

An asymptotically hyperboloidal initial data set [191, 199, 200, 201] (see also

[202, 203]) is defined as any initial data set (Σ, h[0],K[0]) such that (Σ, h[0]) is

a conformally compact, asymptotically hyperbolic manifold7 and K[0] asymptoti-

cally covariantly conserved.

This last condition is equivalent to K[0] being asymptotically equal to h[0] up to

a proportionality constant. This can be proved as follows (we work in a sufficiently

small neighbourhood of the conformal boundary). If K[0] is equal to h[0], then it

is covariantly conserved. Reciprocally, if K[0] is covariantly conserved, then it

follows from the diffeomorphism constraint equation (4.10) that the trace of K[0]

is constant. Now, since Σ is Einstein with negative scalar curvature, its Ricci

tensor is proportional to the metric:

Rab[h[0]] = − d

`2
h[0]ab , (4.16)

with d + 1 the dimension of Σ and ` a real constant. If the trace of K[0] van-

ishes, then the Hamiltonian constraint equation (4.9) cannot be satisfied because

K[0]abK
ab
[0] ≥ 0 (h[0] is positive definite and K[0] is symmetric and real, see below).

Hence, the trace of K[0] must be a non-zero constant and it can then always be

normalised (e.g. by rescaling the metric) such that:

Tr[h−1
[0] K[0]] = ±d+ 1

`
. (4.17)

If we then decompose K[0] in terms of the shear tensor σab and the mean curvature:

K[0]ab = σab +
1

d+ 1
h[0]abTr[h−1

[0] K[0]] , (4.18)

it then follows from the Hamiltonian constraint equation (4.9) that: σabσ
ab =

0. Now, since h[0]ab is positive definite and σab Hermitian, then there exists an

invertible matrix Q such that (see e.g. [204]):

Q†h[0]Q = 1 , Q†σQ = D , (4.19)

7See appendix B.1 about the equivalence between such manifolds and conformally compact,

asymptotically Einstein Riemannian manifolds of negative scalar curvature.
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4.3. Spacetime asymptotics

with D = diag(λ1, .., λd+1) : λi ∈ R and where † denotes the Hermitian conjugate.

In this way:

0 = Tr[h−1
[0] σh

−1
[0] σ] = Tr[QQ† (Q†)−1DQ−1QQ† (Q†)−1DQ−1] = Tr[DD] =

∑
λ2
i .

(4.20)

Hence: D = 0, which implies that σab vanishes and therefore, by (4.18), that K[0]

is equal to h[0] up to a proportionality constant.8

Since K[0] represents the extrinsic curvature of the initial data surface (Σ, h[0])

in the embedding, and as remarked above the diffeomorphism constraint implies

that Σ is of constant mean curvature, then the developments of asymptotically

hyperboloidal sets are the asymptotically Ricci-flat spacetimes that we have intro-

duced in the previous section.9 In this way, by finding the unique solution to the

initial value problem with such initial data sets, we are able to find the asymptotics

of such embeddings. We will begin by developing exact hyperboloidal sets and in

section 4.5 allow deviations of K[0] away from its asymptotic value by considering

arbitrary subleading contributions.

4.3.2. Ricci-flat asymptotics

Let (Σ, h[0],K[0]) be an asymptotically hyperboloidal initial data set as intro-

duced in the previous section, with (Σ, h[0]) of dimension d + 1 and normalised

such that: Rab[h[0]] = −d h[0]ab and: K[0] = h[0] in a sufficiently small neighbour-

hood of the conformal boundary of Σ. It was found in [205, 190], see also [123],

that coordinates can be found in which the most general asymptotics of this initial

Cauchy surface takes the form:

ds2
d+1 = h[0]abdx

adxb ∼ 1

z2

(
dz2 + gijdx

idxj
)
, (4.21)

8The vanishing of the shear can also be seen by finding coordinates at a given point such

that h[0] is locally the Euclidean metric. Then, since σab is real and symmetric, it can be

diagonalised at each point by an orthogonal matrix. Replacing both conditions in the trace

equation σabσ
ab = 0 implies σab = 0 locally and hence everywhere since the equation is tensorial.

9There is a technical point regarding conformal compactness. If the embedding of some

Cauchy surface is conformally compact, then it is possible to show that the surface is also

conformally compact (see e.g. section 2 of [194]). The reciprocal, however, is not necessarily

true. In the above, we have only demanded that the initial data surface be conformally compact,

whereas in the previous section we required conformal compactness of the Ricci-flat embedding.

This means that, after finding the solution to our initial value problem, we will have to verify

that the embedding is indeed conformally compact.
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4. Aspects of Ricci-flat Holography - II

with the conformal boundary ∂Σ = {z = 0} and where gij(z, x) is given asymp-

totically by the power series:

gij(z, x) = g(0)ij(x) + z2g(2)ij(x) + ...+ zdg(d)ij(x) + zd log z g̃(d)ij(x) +O(z>d) ,

(4.22)

where only even powers of z arise below the order zd. The non-normalisable mode

g(0) is an arbitrary field and each coefficient g(n<d), as well as g̃(d), is a local func-

tional of g(0). For odd values of d, or for d = 2, the logarithmic term vanishes and

for even values it is traceless and divergenceless (with respect to g(0)). The nor-

malisable mode g(d) is undetermined up to its trace and divergence, which vanish

for odd values of d and are local functionals of g(0) for even values. See [123] for

the explicit expressions of these functionals.

In order to evolve this initial data in time and generate a Ricci-flat development

we need to prescribe a lapse function and a shift vector and we do so by choosing

the geodesic normal gauge: (N = 1, Aa = 0), also called synchronous gauge, or

Gaussian normal coordinates.10 In this gauge and sufficiently close to the Cauchy

surface Σ = {t̂ = 0}, the metric tensor (4.14) of the developmentM = I×Σ takes

the form:

ds2
d+2 = −dt̂ 2 + habdx

adxb . (4.23)

Since the constraint equations are trivially satisfied by the initial data, the only

equation left to solve is the dynamical equation obtained by replacing equation

(4.11) in (4.12):

2Rab[h] + ḧab +
1

2
ḣabTr[h−1ḣ]−

(
ḣh−1ḣ

)
ab

= 0 , (4.24)

subject to the initial value conditions (4.13) and where ḣ := ∂t̂ h. The unique

solution to this initial value problem is now very simple to find. One can easily

begin by verifying that the ansatz:

ds2
d+2 = −dt̂ 2 + hab(t̂, x)dxadxb = −dt̂ 2 +

(
1 + t̂

)2
h[0]ab(x)dxadxb , (4.25)

is a solution to the dynamical equation, which is simply the well-known result

that the Lorentzian cone of an Einstein space of negative curvature is Ricci-flat.

Furthermore, since the extrinsic curvature on the surfaces of constant t̂ is given

by: Kab = 1
2∂t̂ hab, one finds that:

hab
∣∣
t̂=0

= h[0]ab , Kab

∣∣
t̂=0

= h[0]ab . (4.26)

10Recall that any metric can be written in this gauge in a sufficiently small neighbourhood of

a (non-null) hypersurface. Regarding the notation from the previous section, we will relabel our

development time t→ t̂.
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4.3. Spacetime asymptotics

The metric (4.25) is therefore a solution to this initial value problem and hence

the unique solution. By performing the transformation of coordinates: et := 1 + t̂,

our solution becomes:

ds2
d+2 = e2t

(
−dt2 + h[0]abdx

adxb
)
, (4.27)

where the Cauchy surface Σ = {t = 0}. Let us now denote by ∂H the region in

the development11 described by the conformal boundary ∂Σ under time evolution

over the interval I ∈ R (i.e. the portion of null infinity foliated by the leaves

t = constant). Above we have found that, near ∂Σ = {z = 0}, h[0] takes the form

(4.21). In this way, the development (4.27) in a neighbourhood of ∂H takes the

asymptotic form:12

ds2
d+2 =

e2t

z2

(
dz2 − z2dt2 + gijdx

idxj

)
, (4.28)

with gij(z, x) given asymptotically by the expansion (4.22). In order to verify

that the slices of constant time converge to ∂Σ, and therefore that ∂H coincides

with ∂Σ, we bring in future null infinity to finite affine parameter distances by a

suitable conformal compactification. We define coordinates (u := z et , ρ := z e−t)

such that:

ds2
d+2 =

1

ρ2

(
dρdu+ gijdx

idxj
)
, (4.29)

where:13 gij = g(0)ij +ρ u g(2)ij +O(ρ2). Since G̃µν := ρ2Gµν is at least C2 (or C1

for d = 3) and non-degenerate, then (M̃, G̃) defines a conformal compactification

with conformal boundary {ρ = 0}. The Penrose diagram near the boundary with

the spatial coordinates xi suppressed (note that g(0) = g(0)(x
i) ) is then given by

figure 4.4.

Returning to our asymptotic solution (4.28), if the Ricci-flat development is in

particular Minkowski space as in (4.4), we have the expansion:

gij = g(0)ij + z2g(2)ij + z4g(4)ij :


g(0)ijdx

idxj = 1
4dΩ2

d ,

g(2)ij = −2g(0)ij ,

g(4)ij = g(0)ij .

(4.30)

11Not strictly in the development, but in some appropriate conformal embedding.

12In other words, this is the solution we would have found had we time evolved directly the

asymptotic metric (4.21).

13For d = 3, we have instead O(ρ3/2). Recall that the logarithmic term in (4.22) vanishes for

d = 2, 3.
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4. Aspects of Ricci-flat Holography - II

Figure 4.4: Conformal embedding near future null infinity. The dashed lines represent

different surfaces of constant t, while the solid lines are surfaces of constant z. The null

surface H = {z = 0, t = −∞} is the past Cauchy horizon of the development.

More generally, in Minkowski space gij can be expanded as:14

gij(z, x) = g(0)ij + z2g(2)ij + z4g(4)ij :


g(2)ij = − 1

d−2

(
Rij [g(0)]− 1

2(d−1)g(0)ijR[g(0)]
)
,

g(4)ij = 1
4

(
g(2)g

−1
(0)g(2)

)
ij
,

(4.31)

where g(0) is any conformally flat metric. This can be easily seen by recalling that

Minkowski space R1,d+1 is the Lorentzian cone of the hyperbolic space Hd+1. It

was found in [206] that Hd+1 in Poincaré coordinates is given by:

ds2
d+1 =

1

z2

(
dz2 + gijdx

idxj
)
, (4.32)

where gij is given by the expansion (4.31) with g(0) any conformally flat met-

ric. Hence, the respective cone is Minkowski. This implies in particular that the

solution gij = δij in (4.28) is also Minkowski and the direct transformation of

coordinates is given by:

X0 :=
et

2

(
z +

1 + ~x2

z

)
, Z :=

et

2

(
z +
−1 + ~x2

z

)
, Xi :=

xi

z
et , (4.33)

14For the special case d = 2 we have that g(2) − g(0)Tr[g−1
(0)
g(2)] is the stress tensor of the

Liouville field. See [206] for further details.
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4.3. Spacetime asymptotics

such that:

ds2
d+2 =

e2t

z2

(
dz2 − z2dt2 + dxidxi

)
(4.34)

= −dX2
0 + dZ2 + dXidXi .

It is not difficult to show that the Penrose diagram for (4.34) corresponds to that

of region II in figure 4.2 with the surfaces t = constant and z = constant still

as in this diagram. Although the spacetimes (4.4) and (4.34) are both Minkowski

and therefore diffeomorphic, we will find in the next section that they do not

yield the same expectation values for the holographic stress tensors. These are

computed from the (renormalized) gravitational action and vanish for the latter

solution with future null infinity R×Rd, whereas are non-vanishing for the former

with null infinity R × Sd in the same fashion as in AdS holography [123]. This

is associated to the fact that the holographic renormalization scheme that we will

employ later breaks invariance of the gravitational action with respect to bulk

diffeomorphisms15 that result in a conformal transformation at ∂H and therefore

spacetimes related by such transformations, such as (4.4) and (4.34), will not nec-

essarily result in the same renormalized expectation values as pointed out in [123].

The asymptotics (4.28) for our class of Ricci-flat spacetimes is the Lorentzian

cone of (Σ, h[0]) near ∂Σ and represents the desired generalisation of region II of

Minkowski space discussed in section 4.2.2 near null infinity. In section 4.2.3 we

have emphasized that region I of Minkowski can be obtained from region II by the

analytic continuation: (z → iz , t→ t− iπ/2). By applying the same continuation

to our solution (4.28), we obtain the Riemannian cone of an Einstein space of

positive curvature and which represents our generalisation of region I near null

infinity:

ds2
d+2 =

e2t

z2

(
− dz2 + z2dt2 + gijdx

idxj
)
, (4.35)

with gij(z, x) given asymptotically by the expansion (4.22) under the substitu-

tions:16

g(4n+2)ij → −g(4n+2)ij : n ∈ N0 . (4.36)

15The bulk diffeomorphisms that preserve the asymptotic functional form (4.28) of the metric

contain a subgroup that generates conformal transformations at ∂H. The proof of this fact is

sketched in section 6 of [188], where our solution represents a particular case of the asymptotic

metric analysed in this reference. A conformal transformation at ∂H is therefore realised in the

bulk as an asymptotic “isometry”. See [174] about the relation between bulk diffeomorphisms

and conformal transformations at the boundary in the context of AdS/CFT.

16Recall that the normalisable mode g(d) is undetermined up to its trace and divergence and

these vanish for odd values of d. In this way, g(d) does not suffer any transformation for d odd.
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An interesting example of such Ricci-flat spacetimes is the 5-dimensional Rieman-

nian cone of de Sitter-Schwarzschild:

ds2 = dt̂ 2 +
(
t̂/`
)2(−(1− r2

`2
− 2M

r

)
dτ2 +

dr2

1− r2

`2 −
2M
r

+ r2dΩ2

)
. (4.37)

This solution contains two curvature singularities: a spacelike singularity at r = 0

hidden behind a Killing horizon (for M ≤ `/3
√

3) of topology R3, and a null and

therefore trivially naked singularity at t̂ = 0. In the coordinate system (4.35), this

solution reads as:17

ds2 =
e2t

z2

−dz2 + z2dt2 +

(
1− 1

2

M

`

(
z

ρ

)3
)4/3


1 + 1

2
M
`

(
z
ρ

)3

1− 1
2
M
`

(
z
ρ

)3


2

dρ2 + ρ2dΩ2


 .

(4.38)

In this case, gij admits the expansion:

gij = g(0)ij − z2g(2)ij + z3g(3)ij +O(z6) :


g(0)ijdx

idxj = dρ2 + ρ2dΩ2
d ,

g(2)ij = 0 ,

g(3)ijdx
idxj = 4

3
M
` ρ
−3
(
dρ2 − 1

2 ρ
2dΩ2

)
.

(4.39)

In section 4.4.3 we will use the above expansions of gij for Minkowski and the cone

of dS4–Schwarzschild as an exercise to compute the holographic stress tensors of

the respective dual theories.

So far we have found a coordinate system in which the most general asymptotics

of our class of asymptotically Ricci-flat spacetimes assumes the form (4.28). It is

now simple to see that our solution is diffeomorphic to the ambient metric of

Fefferman and Graham [190] by recalling that the ambient construction represents

the Lorentzian cone of an Einstein Riemannian manifold in coordinates adapted

to the study of the past Cauchy horizon [203]. Indeed, by introducing coordinates(
r := z2, v := z−1et

)
, our solution assumes the form:

ds2
d+2 = −rdv2 − vdvdr + v2gijdx

idxj , (4.40)

which represents the ambient metric with gij(r, x) expanded as in (4.22) with

z =
√
r. For v finite, this represents an expansion away from the Cauchy horizon

17The transformation of coordinates is given by: et = t̂ , −` log(z/`) = τ −∫
dr

A(r)

A(r)2−1
, ` log(ρ/`) = −t− 2

3
` log 2 +

∫
dr

A(r)3

A(r)2−1
, where: A(r)−2 = r2/`2 + 2M/r. Notice

in particular that: r/` = B
2/3
− ρ/z and also that: r2/`2 + 2M/r = B

4/3
− (B+/B−)2ρ2/z2, where:

B± = 1± 1
2

(M/`) z3/ρ3. The curvature singularities are now given by: etB− = 0.
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4.3. Spacetime asymptotics

H = {z = 0, t = −∞} = {r = 0, v 6= ∞}, whereas for v = ∞ it is an expansion

away from ∂H = {z = 0, t 6= ∞} = {r = 0, v = +∞}. The coordinate system

(4.40) is therefore well-adapted to the study of the former region, but unsuited to

the study of the latter and the other way around with respect to (4.28). Since we

are rather interested in the spacetime asymptotics, a correct choice of coordinates

in our case is given by our original solution (4.28).18 As a matter of fact, rather

than relying on a particular time coordinate, any coordinate system of the form:

ds2
d+2 = −N(t)2dt2+

β(t)2

z2

(
dz2 + gijdx

idxj
)

: β(t) :=

∫
dtN(t) , ∀N(t) 6= 0 ,

(4.41)

with N(t) smooth, is suited to the study of the spacetime asymptotics and is

related to our previous coordinates by: et →
∫
dtN(t). We will find more useful to

keep in this way the lapse function N(t) arbitrary. In particular, we can now notice

that the scalar field β(t), which will play a central role in the remainder of this

chapter, is a gauge invariant quantity, the coordinate invariant part of the lapse,

and measures propertime distances along the so-called Eulerian worldlines, the

timelike curves with tangent vector the future-directed unit normal n = −Ndt =

N−1∂t to the constant time slices.19 Indeed, the line element for such curves

reduces to:

ds2
d+2

∣∣∣
z,xi= const.

= −dβ(t)2 +
β(t)2

z2

(
dz2 + gijdx

idxj
) ∣∣∣
z,xi= const.

= −dβ(t)2 .

(4.42)

For later use in the holographic renormalization of the action, it is also useful to

rewrite such relation in the form:

1 = β̇/N = nµ∂µβ = −∂µβ ∂µβ . (4.43)

These Eulerian observers can in turn be defined as those for whom our constant

time hypersurfaces represent locally the set of events that are simultaneous.20 In

our case, such Eulerian worldlines are in fact geodesics with affine parameter β.

Indeed, the acceleration of such worldlines is given by [196]:

aµ = n · ∇nµ = hµν∂ν logN(t) = 0 , (4.44)

18Furthermore, notice that the metric (4.28), or (4.40), represents the most general spacetime

asymptotics near the boundary ∂H of H, but not necessarily the most general Ricci-flat metric

near the entire H unless we restrict further our class of spacetimes to those in which the metric in

a neighbourhood of H is identically equal to its asymptotic form. Such spacetimes are defined by

the ambient metric defining conditions 1)–3) in section 2 of [190] (see also the conditions a)–d)

in Problem 5.1 of this reference).

19For the interpretation of β as a thermodynamic variable, see [207, 208] and references therein.

20See also section 3.3 of [196] for further details.
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where hµν = Gµν + nµnν is the induced metric of the surfaces of constant t and

hence its contraction with the gradient of the lapse vanishes since the latter is

a pure function of the time coordinate. In the case of Minkowski space, such

geodesics coincide with those found in (4.6) defining inertial particles in flat space.

The scalar β(t) therefore measures the invariant distance between points on dif-

ferent time slices connected by geodesics orthogonal to the slices.

4.4. Holographic reconstruction of spacetime

4.4.1. Outline

In the previous section we obtained our spacetime asymptotics in the form

(4.41) with the expansion (4.22). In other words, after fixing the gauge freedom as-

sociated to a choice of coordinates, we found asymptotically the time evolution of

our class of metrics. By construction, our bulk solution is foliated by conformally

compact, asymptotically Einstein hypersurfaces of negative scalar curvature with

a conformal boundary at ∂H. Each such surface admits a dual description in terms

of a d–dimensional Euclidean conformal field theory at ∂H and we would like to

identify in this family of field theories the data necessary to the reconstruction of

the bulk metric (4.41). In the previous section we found that, after choosing our

time coordinate represented by a choice of N(t), our spacetime asymptotics in the

neighbourhood of the initial Cauchy surface is determined by the conformal struc-

ture of ∂H (the conformal class [g(0)]) up to order zd, excluding. Moreover, we

found that it is possible to move past such order and reconstruct the bulk metric

near the surface up to very high order21 from the knowledge of the normalizable

mode g(d). On each time slice, this mode is associated to the holographic energy

tensor of the respective dual field theory on the conformal boundary [123]. As we

now briefly review for convenience, this result follows from the standard AdS/CFT

prescription (1.106), which identifies the supergravity partition function in asymp-

totically locally (Euclidean) AdS spaces with the generating functional of QFT

correlation functions. The former is a functional of the boundary configurations

φ(0) of bulk fields and these are identified as sources for gauge-invariant operators

O in the dual field theory. For a weakly coupled gravitational theory, one can

work in a saddle-point approximation and take the gravitational on-shell action as

21The obstacle to the reconstruction up to all orders is associated to the Fefferman-Graham

coordinates (4.21) on the surface. Once we have gauge-fixed our coordinate system on the surface,

the gauge-fixing condition is valid only in a thickening near the boundary of the surface. This

issue is analogous to the Gribov ambiguity in gauge theories and the absence of global gauge

conditions, where gauge choices only hold in a neighbourhood of a gauge orbit.
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the generating functional W of connected QFT correlation functions:

W [φ(0)] = log 〈exp

(
−
∫
∂H

φ(0)O
)
〉QFT = log ZSUGRA[φ(0)] ∼ −Sonshell[φ(0)] ,

(4.45)

where S is the gravitational action in an asymptotically (E)AdS space and ∂H
its conformal boundary. One can then obtain in particular the expectation value

and correlation functions of the QFT energy tensor by functionally differentiat-

ing Sonshell with respect to the induced metric at ∂H representing the boundary

configuration of the asymptotically AdS metric tensor. From the Hamilton-Jacobi

theory, it follows that the on-shell action is a Hamilton principal functional and

therefore that its first variation with respect to the induced metric results in the

canonical momentum of the boundary, also known as the Brown-York quasi-local

energy tensor [179]. This tensor, however, in its bare form is ill-defined since

both sides of (4.45) suffer from divergences. One then proceeds by introducing

a regulating boundary in the asymptotically AdS space and renormalizing the

gravitational action with a set of covariant counterterms [123]. Finally, since the

conformal boundary is a region of the conformal embedding, one computes the

Brown-York tensor of the regulating surface in the embedding from the renor-

malized action and in the end removes the regulator by taking the limit as the

surface tends to the boundary. The renormalized Brown-York tensor obtained in

this way corresponds by construction to the vacuum expectation value of the dual

field theory energy tensor as computed at strong coupling from the renormalized

generating functional W ren of the QFT. An explicit computation then shows that

such one-point function indeed coincides exactly with the normalizable mode g(d)

for odd d and is equal to g(d) plus local functionals of the source g(0) for even

values of d. See [123] for further details.

The data necessary to the reconstruction of the bulk metric therefore consists of

the modes g(0) (or any representative of the conformal structure [g(0)] at ∂H) and

g(d). While the former should be identified as the source for each conformal field

theory stress tensor, the latter should be mapped to the expectation values of the

stress tensors and in this section we will consider replacing the action on the right

hand side of (4.45) by the gravitational action for our class of Ricci-flat spacetimes

in an attempt to confirm these entries in the holographic dictionary. By following

the steps just outlined above, we will show that it is possible to reproduce the

expectation values and Ward identities of the stress tensors of the field theories that

reside at ∂H and to identify in this family the data necessary to the reconstruction

of our spacetime asymptotics. Such results seem to support a non-trivial extension

of the prescription (4.45) to Ricci-flat embeddings of asymptotically hyperbolic

manifolds. We will begin with the holographic renormalization of the gravitational

on-shell action and then deduce the renormalized Brown-York tensor at ∂H which

213



4. Aspects of Ricci-flat Holography - II

should correspond, for each fixed value of t, to the expectation value of the stress

tensor of each field theory.

4.4.2. Renormalization

In order to renormalize the gravitational action, we begin by considering our

spacetime as the region bounded by a (regulating) timelike hypersurface {z = ε}.
Such regulating boundary corresponds to one of the surfaces of constant z in figure

4.4 and in the end we will take the limit ε → 0. In our coordinate system (4.41),

we approach ∂H under such limit for finite, non-zero values of β(t) (recall that

(=+,H) = {z = (0, 0) , β(t) = (+∞, 0)} and β(t) ∈ ]0,+∞[ ). The gravitational

action is then given by:

2κ2
d+2 S =

∫
M
dd+2x

√
GR[G] + 2

∫
z=ε

dd+1x
√
q QAA , (4.46)

where: 2κ2
d+2 = 16πGN and where qAB and QAB are the induced metric and

the extrinsic curvature on the regulating boundary with coordinates xA = (t, xi).

Given a spacetime with a timelike boundary {z = ε}, the Brown-York tensor, or

the canonical momentum of the boundary, is obtained from the action as follows.

One begins with a canonical decomposition of the spacetime metric Gµν :

ds2
d+2 = Gµνdx

µdxν = M2dz2 + qAB
(
dxA + UAdz

) (
dxB + UBdz

)
. (4.47)

In our particular case we would have: M = β(t)/z and UA = 0. The extrinsic

curvature QAB = (2M)−1 (∂z −£U ) qAB and its extension to the spacetime is

given in the same fashion as in (4.15). One then proceeds by rewriting the action

in the canonical form using the Gauss-Codazzi identities (see e.g. [195]):

2κ2
d+2 S =

∫
M
dd+2xM

√
q

(
R[q] +Q2 −Q ·Q− 2∇µ (mµQ− aµ)

)
+ 2

∫
z=ε

dd+1x
√
q Q

=

∫
M
dd+2xM

√
q

(
R[q] +Q2 −Q ·Q

)
= 2κ2

d+2

∫
dz L[q, q′,M,U ] ,

(4.48)

where the acceleration vector aµ = m · ∇mµ and where m = Mdz is the unit

normal to the surfaces of constant z. Note that aµmµ = 0. Also, q′ := ∂zq and

L is the canonical Lagrangian. We emphasize that it is the on-shell action in the

canonical form that is a Hamilton principal functional and therefore a functional

of the boundary configuration of the spacetime metric. Furthermore:

δGµν =
(

2mµmν/M
)
δM +

(
2m(µqν)A/M

)
δUA +

(
qAµ q

B
ν

)
δqAB , (4.49)
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and hence the action S = S[G] is a functional of the canonical fields M,UA and

qAB . The variation of S is then given by:

δS =

∫
dz

∫
dd+1x

(
δL

δqAB
δqAB +

δL

δq′AB
δq′AB + ...

)

=

∫
dz

∫
dd+1x

(
δL

δqAB
− d

dz

δL

δq′AB

)
δqAB + ...+

∫
z=ε

dd+1x
δL

δq′AB
δqAB ,

(4.50)

where the ellipses denote the variation of the Lagrangian with respect to the lapse

and shift M and UA which are Lagrange multipliers in the canonical formalism.

Since δL/δq′AB(z = ε) is by definition the canonical momentum πAB of the regu-

lating boundary that is conjugate to qAB , and since the remaining terms in (4.50)

represent the equations of motion and the Hamiltonian and diffeomorphism con-

straints, we find:

δS
∣∣∣
on−shell

=

∫
z=ε

dd+1xπABδqAB . (4.51)

A quick computation using (4.48) shows that πAB = −√q
(
QAB − qABQ

)
/2κ2

d+2

and hence:
2κ2

d+2√
q

δSonshell

δqAB(z = ε)
= QAB − qABQ , (4.52)

which represents the Brown-York tensor of the regulating boundary. An explicit

computation of this tensor using our solution (4.41) reveals that it diverges under

the limit ε→ 0 and therefore we need to renormalize the action (4.48).22 In order

to do so, we use our solution (4.41) and the asymptotic series (4.22) and begin by

evaluating the integral on-shell23 and reading the terms that diverge as ε→ 0. We

find that the divergent terms are of the form:∫
z=ε

dd+1x

(
d∑

n>0

An ε
−n +A log ε

)
, (4.53)

22It should be emphasized that it is the canonical action (4.48), as opposed to (4.46), that is

renormalized, since it is the former that is the functional of the boundary configuration of the

metric. If the lapse M = M(z), then the acceleration aµ is identically zero and therefore both

forms of the action exhibit the same divergences as evaluated by an examination of the asymptotic

form of the integrands. In such case, it is irrelevant which of the two actions is renormalized.

Indeed, the gauge choice M = M(z) is the standard gauge in conventional AdS/CFT and hence

one can renormalize directly the gravitational action without any canonical decomposition. For a

different gauge choice, a canonical decomposition of the action is required (or then, the addition

of a total derivative −2∇µaµ to the undecomposed action). In the language of AdS/CFT, the

UV divergences of the QFT partition function are mapped to the IR divergences of the on-shell

gravitational action in the canonical form. In our case, from the spacetime asymptotics (4.41)

we find that M = M(z, t) and hence aµ = −qµν∂ν logM = nµ/β 6= 0. See also [121, 139].

23The integration limits in the z-integral are as follows:
∫ ε
z0
dz, for some constant z0 > ε.
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where the coefficients An and A are local functionals of g(0)ij and β. We then

invert the expansion (4.22) in order to express g(0)ij order by order in ε in terms

of gij and therefore covariantly in terms of γij := β(t)2/ε2gij , where γ is the

induced metric on the surfaces {z = ε , t = constant}, and replace the inverted

expansion g(0) = g(0)[γ, ε, β] in the functionals An and A. The next step is to

introduce the projector γAB := qAB + nAnB onto the surfaces of constant time

with unit normal nA and use the standard identities from the theory of embedded

hypersurfaces to extend the scalar functionals of γij to scalar functionals of γAB
on the submanifold {z = ε}. The divergent terms written in this way can then be

minimally subtracted from the action by introducing a preliminary counterterm

integral at z = ε consisting of minus such divergent terms. These counterterms

are given by:

2κ2
d+2 S

pre−CT =

∫
z=ε

dd+1x
√
q

(
2(d− 1)β−1 +

β

d− 2
RAA[γ]

+
β3

(d− 4)(d− 2)2

(
RAB [γ]RAB [γ]− d

4(d− 1)

(
RAA[γ]

)2)
+ ...+ βd−1A(d) log ε

)

=

∫
z=ε

dd+1x
√
q

( [d/2−1]∑
n=0

Cn β
2n−1 + βd−1A(d) log ε

)
, (4.54)

where we have written explicitly the counterterms Cn up to d = 6. The notation

[d/2− 1] represents the integer value of d/2− 1 rounded up. The coefficient A(d)

will be proportional to the conformal anomalies of the field theories, it vanishes

for odd d and for even d up to d = 4 is given by:

A(2) = −RAA[γ] , A(4) = −1

8

(
RAB [γ]RAB [γ]− 1

3

(
RAA[γ]

)2)
. (4.55)

Notice that, on the surfaces of constant t, these preliminary counterterms agree

with those found in [123] in the context of AdS/CFT. Furthermore, and as in

AdS holographic renormalization, these counterterms break invariance of the ac-

tion with respect to diffeomorphisms involving the radial coordinate z due to the

explicit dependence on the regulator ε and this will be associated as usual to the

conformal anomalies of the field theories.

Due to the dependence of Spre−CT on β(t), this counterterm action is not yet

fully covariant. We can then covariantise it by introducing a boundary Lagrange

multiplier λ for β. The simplest choice is to use the identity (4.43) and add to

(4.54) the Lagrange multiplier:24

2κ2
d+2 S

λ =

∫
z=ε

dd+1x
√
q λ
(
1 + qAB∂Aβ∂Bβ

)
. (4.56)

24The action (4.56) for β is identical to the action for a pressureless perfect fluid, or dust, at

the boundary, where λ is proportional to the fluid’s rest mass density and β plays the role of
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We then treat β as a dynamical field at the boundary with respect to which the

variation of the renormalized action Sren := S + Spre−CT + Sλ should vanish.

Such variation then results in the configuration for λ:

δSren

δλ
= 0 ⇔ qAB∂Aβ∂Bβ = −1 , (4.57)

δSren

δβ
= 0 ⇔ ∂A

(√
q λ ∂Aβ

)
=

1

2

√
q

[d/2−1]∑
n=0

(2n− 1)Cn β
2(n−1)

+ (d− 1)βd−2A(d) log ε

)
. (4.58)

By using our solution (4.41), now written as:

ds2
d+2 = −N(t)2dt2 +

β̄(t)2

z2

(
dz2 + gijdx

idxj
)

: β̄(t) :=

∫
dtN(t) , (4.59)

and looking for solutions β = β(t), we obtain:

β = β̄(t) , (4.60)

2λ = −
[d/2−1]∑
n=0

2n− 1

d− 1
Cn β̄(t)2n−1 − β̄(t)d−1A(d) log ε , (4.61)

where we have set the integration constants to zero. The final renormalized action

is therefore given by:

2κ2
d+2 S

ren =

∫
M

dd+2xM
√
q

(
R[q] +Q2 −Q ·Q

)

+

∫
z=ε

dd+1x
√
q

( [d/2−1]∑
n=0

Cn β
2n−1 + βd−1A(d) log ε

)

+

∫
z=ε

dd+1x
√
q λ
(
1 + |∂β|2

)
. (4.62)

the fluid’s propertime [125]. This feature simply follows from the fact that the set of Eulerian

worldlines described at the end of section 4.3.2 for which β is the propertime behaves as a

congruence of dust particles. Equation (4.58) is a continuity equation for the rest mass current

and, in the absence of the counterterm action (4.54), it expresses the conservation of the total

mass.
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The on-shell value of δSren is then given by:

2κ2
d+2 δS

ren
∣∣∣
on−shell

=

∫
z=ε

dd+1x
√
q
(
QAB − qABQ

)
δqAB

− 1

2

∫
z=ε

dd+1x
√
q

( [d/2−1]∑
n=0

Cn β̄
2n−1 + β̄d−1A(d) log ε

)
qAB δq

AB

+

∫
z=ε

dd+1x
√
q

( [d/2−1]∑
n=0

β̄2n−1 ∂Cn
∂qAB

+ β̄d−1 log ε
∂A(d)

∂qAB

)
δqAB

+

∫
z=ε

dd+1x
√
q λ
(
∂Aβ̄∂Bβ̄

)
δqAB . (4.63)

Using equation (4.61) for λ and the identity: ∂Aβ̄ = −nA , the last integral in

(4.63) is given by:

∫
z=ε

dd+1x
√
q λ
(
∂Aβ̄∂Bβ̄

)
δqAB = −1

2

∫
z=ε

dd+1x
√
q

(
[d/2−1]∑
n=0

2n− 1

d− 1
Cn β̄

2n−1

+ β̄d−1A(d) log ε

)
nAnB δq

AB .

(4.64)

In this way, the renormalized Brown-York tensor is given by (we drop the bar

notation over β from now on):

2κ2
d+2√
q

δSrenonshell

δqAB(z = ε)
= QAB − qABQ+

[d/2−1]∑
n=0

β2n−1

(
∂Cn
∂qAB

− 1

2
Cn

(
qAB +

2n− 1

d− 1
nAnB

))

+ βd−1

(
∂A(d)

∂qAB
− 1

2
A(d)γAB

)
log ε . (4.65)

As an exercise, for d+ 2 = 4 we obtain:

2κ2
4√
q

δSrenonshell

δqAB(z = ε)
= QAB − qABQ− 2β−1qAB + β−1γAB , (4.66)

where the term (RAB [γ]− 1
2γABR[γ]) log ε vanishes identically for d = 2.
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4.4.3. Holographic stress tensors

Following [179], we now decompose the Brown-York tensor into the spatial stress

tensor sij and the momentum and energy densities ji and ε:

sij :=
2

N
√
γ

δSrenonshell

δγij
= γAi γ

B
j

(
2
√
q

δSrenonshell

δqAB

)
, (4.67)

ji :=
1
√
γ

δSrenonshell

δV i
= γAi n

B

(
2
√
q

δSrenonshell

δqAB

)
, (4.68)

ε := − 1
√
γ

δSrenonshell

δN
= −nAnB

(
2
√
q

δSrenonshell

δqAB

)
, (4.69)

where: qABdx
AdxB = −N2dt2 + γij

(
dxi + V idt

) (
dxj + V jdt

)
and:

√
q = N

√
γ.

For our spacetime solution, the non-trivial components are the spatial stress and

energy density; the contraction of the Brown-York tensor (4.65) with γAi n
B van-

ishes identically, resulting in a vanishing momentum ji.

The expectation value of the stress tensor of each field theory is now obtained

by computing the spatial components sij of the renormalized Brown-York tensor

in the conformal embedding and taking the limit as the regulating surface {z = ε}
tends to the boundary {z = 0}. Recall from (4.29) that our defining function

ρ = z/β. By factorising the latter, our spacetime solution reads as:

ds2
d+2 =

β(t)2

z2

(
dz2 − z2N2

(0)dt
2 + (g(0)ij +O(z2) ) dxidxj

)
, (4.70)

with N(0) := N(t)/β(t). The metric G̃ of the conformal embedding is given by

G̃µν = (z/β)2Gµν and the expectation value of the operator dual to g(0) is therefore

obtained as:25

〈Tij〉 =
2

N(0)
√
g(0)

δSrenonshell

δgij(0)

= lim
ε→0

(
β (β/ε)

d−2
sij

)
. (4.71)

From the perspective of the standard AdS/CFT dictionary, we cannot interpret

N(0) in the usual sense as a source term for some dual operator in each field theory

(note that N(0) cannot be switched off). We cannot interpret it as a source for the

time-component of the energy tensor at z = 0 either, due to the different asymp-

totic behaviours of the spatial and time components of the metric. Nevertheless,

we can still define the renormalized quantity:

E := − 1
√
g(0)

δSrenonshell

δN(0)
= lim

ε→0

(
β (β/ε)

d
ε
)
. (4.72)

25Here and in equation (4.72) we have performed the intermedium step: δS/δq̃AB =

(z/β)2δS/δqAB , where: q̃AB := (z/β)2qAB , and performed the decomposition of δ/δq̃AB in

the same way as in (4.67)–(4.69).
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An explicit computation of 〈Tij〉 and E using our spacetime solution results in the

following expectation values:26

〈Tij〉 =
d β(t)d

2κ2
d+2

(
g(d)ij +Xij [g(0)]

)
, (4.73)

E =
1

d− 1
〈T ii 〉 , (4.74)

where Xij is a functional of g(0), it vanishes for odd values of d and its explicit

expression for even values depends on d. Also, the trace of 〈Tij〉 is taken with

respect to g(0). Equation (4.73) represents the expectation value of the spatial

stress tensor of each field theory described holographically by a hypersurface of

constant t and it coincides with the holographic stress tensor found in [123] in the

context of AdS/CFT. Equation (4.74) identifies E with the Weyl anomaly of each

field theory.27 The holographic Ward identities for the field theories are given by:

(0)∇j 〈T ji〉 = 0 ∀d, (4.76)

〈T ii 〉 = 0 : d = 2n+ 1 , n ∈ N , (4.77)

where (0)∇j is the covariant derivative associated to g(0). For even values of d, the

trace of the stress tensor depends on d. For d = 2, we find:28

〈Tij〉 =
β(t)2

κ2
4

(
g(2)ij − g(0)ijTr[g−1

(0)g(2)]
)
. (4.78)

The holographic Weyl anomaly in this case is given by:

〈T ii 〉 =
β(t)2

2κ2
4

R[g(0)] =
c

24π
R[g(0)] , (4.79)

26Notice that the term QAB as well as: ∂Cn/∂qAB and: (∂A(d)/∂q
AB − 1

2
A(d)γAB) log ε in

(4.65) are purely spatial and therefore vanish when contracted with nA. The expression for E
follows from an explicit computation of (4.72) for each value of d and has been verified up to

d = 6.

27As an observation, by using the definitions (4.71) and (4.72), equation (4.74) can be rewritten

as: −2 gij
(0)

δ

δgij
(0)

+ (1− d)N(0)
δ

δN(0)

Srenonshell = 0, (4.75)

and which represents the holographic Callan-Symanzik equation for a anomaly-free CFT de-

formed by a source N(0) for a relevant scalar operator of dimension one. The Weyl anomaly of

each field theory can therefore also be seen as that created by a non-vanishing vacuum expecta-

tion value of such an operator. Notice that, in such case and by using (4.76), the diffeomorphism

Ward identity would also be satisfied since ∂iN(0) = 0 when on-shell.

28If d+ 2 = 4, then our (asymptotic) solution (4.41) represents the Lorentzian cone of a three-

dimensional Einstein Riemannian manifold of negative scalar curvature. The latter is therefore

the hyperbolic 3-space, up to possible global identifications, and hence (4.41) is diffeomorphic to

Minkowski spacetime.
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where the central charge of each 2-dimensional CFT is related to β(t) as:

β(t) = `′P

√
c

6
: `′P := 2

√
~GN
c30

, (4.80)

where we have reinserted29 the factors of ~ and c0 and defined `′P as twice the

usual convention for the Planck length in four bulk dimensions. As an exercise,

for four dimensional Minkowski space (4.4) in the cone coordinate (also known as

Milne’s space):

ds2 = −dt2 + t2

(
dz2

z2
+

1

z2

(
1− z2

2

)2

dΩ2

)
, (4.81)

we obtain:

〈Tij〉 =
t2

2κ2
4

(
4g(0)ij

)
, (4.82)

c/6 = (t/`′P )
2
, (4.83)

with 4g(0)ijdx
idxj = dΩ2 the metric on the S2.

Equation (4.80) associates the spectrum of central charges to the bulk time co-

ordinate essentially in a gauge-invariant way, i.e. it does not depend on a particular

choice of time coordinate due to the invariant meaning of β(t), and it requires,

either a notion of locality in the spectrum, or a discretisation of time distances

in units of the Planck length. More generally, in even dimensions, the time coor-

dinate is mapped to the coefficients, or central charges, of the Euler density and

Weyl invariant in the conformal anomalies, also known as type A and B anomalies

[209].30 In AdS/CFT, the renormalization group equations are local in the energy

scale and this property is consistent with the notion of (coarse) locality in the bulk

radial direction, hence we obtain a precise matching on both sides of the duality.

In our case, on the other hand, the interrelationship between the different field

theories in the family, and in particular between their central charges, is not clear.

Consistency of our framework therefore requires a notion of locality in the spec-

trum so that locality in the time direction is recovered. In order to understand

more comprehensively the correlation between the field theories required by the

duality, as well as the role of the time coordinate in the family, it seems necessary

to study the full group of diffeomorphisms in the bulk that preserves the form of

the metric (4.41). Such diffeomorphisms contain a subgroup involving the time

29Recall that ~ arises from the partition function (4.45).
30Recall that, holographically and in the absence of higher curvature corrections, these coeffi-

cients are related, see e.g. [124, 175]
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coordinate [188] which should act at ∂H as a particular type of transformation be-

tween the different field theories. By construction, this family should be invariant

under such transformations and an identification of such symmetry group should

allow a better understanding of the way the field theories are connected.

In section 4.3.2 we performed the analytic continuation of our spacetime asymp-

totics to the Riemannian cone (4.35) representing (asymptotically) our generali-

sation of region I of Minkowski space. The regulating boundary {z = ε} for these

spacetimes is now spacelike and it can be verified that, under such continuation,

the renormalized action is given by (4.62) under the substitution Q → iQ and

with the counterterm action multiplied by −1.31 In this case, the renormalized

Brown-York tensor is then given by the right-hand side of (4.65) multiplied by

−1. This implies that the expectation value of the spatial stress tensors is still

given by formula (4.73) for d = 4n + 2 : n ∈ N0, and given by (4.73) multiplied

by minus one otherwise. As an exercise, for d = 3, we have:

〈Tij〉 = −3β(t)3

2κ2
5

g(3)ij : 〈T ii 〉 = 0 = (0)∇j 〈T ji〉 . (4.84)

For the cone (4.38) of dS4–Schwarzschild, we find:

〈Tij〉dxidxj =
M

`

(et/ρ)
3

κ2
5

(
−2dρ2 + ρ2dΩ2

)
. (4.85)

Before ending this section and as an exercise, we can consider a simple example

of a family of two-dimensional CFTs with a continuous parametrisation of the

central charge and which we will take to be a family of Liouville field theories.

Classical Liouville theory is the theory of two-dimensional conformal manifolds,

or Riemann surfaces. Suppose we have a two-dimensional Riemannian manifold

with metric:

ds2 = g̃ijdx
idxj := e2bφg(0)ijdx

idxj , (4.86)

where g̃ is a representative of the conformal structure [g̃] of some Riemann surface,

b is a dimensionless constant and g(0) is an arbitrary “background” metric. The

field φ(x) is known as the Liouville field. The scalar curvature of g̃ and g(0) are

then related as: R[g̃] = e−2bφ
(
R[g(0)]− 2b�φ

)
, where � is the Laplacian with

respect to g(0). Since the Riemann surface is endowed with a conformal structure,

we can take the representative g̃ to be a metric of constant curvature and write:

R[g̃] = −8πµb2 : µ > 0. In this way, we find: �φ = 4πµbe2bφ + (2b)−1R[g(0)].

31Recall also the transformation (4.36) for the coefficients in the expansion of gij .
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The action for this theory is the classical Liouville action [210, 211]:

S =
1

4π

∫
d2x
√
g(0)

(
gij(0)∂iφ∂jφ+ 4πµe2bφ +QR[g(0)]φ

)
, (4.87)

where the so-called background charge Q = b−1. The continuous parameter b is

either real of purely imaginary, corresponding respectively to a metric g̃ of negative

or positive curvature.32 Since we are only interested in the conformal structure

[g̃], we require that φ transforms as: φ → φ − (Q/2) log Ω under the conformal

transformation: g(0) → Ω g(0), such that g̃ → g̃. The equation of motion for

φ is therefore invariant under the combined transformations, which implies that

the action is also invariant up to boundary terms, as long as Q = b−1. Since

every two-dimensional metric is conformally flat, we can now set g(0) = 1 (which

just corresponds to a redefinition of φ in (4.86)) and then change to complex

coordinates:
(
z = x1 + ix2 , z̄ = x1 − ix2

)
such that:

ds2 = e2bφdzdz̄ . (4.88)

In the gauge (4.88), the non-vanishing components of the holomorphic Liouville

energy tensor (obtained from δS/δg(0)) are given by:

T (z) = − (∂φ)
2

+Q∂2φ , (4.89)

T̄ (z̄) = −
(
∂̄φ
)2

+Q∂̄2φ , (4.90)

where we have used the equation of motion for φ. Under the holomorphic trans-

formation: z → ω(z) , φ → φ − (Q/2) log |∂ω|2, the energy tensor transforms

as:

T (z)→ (∂ω)
−2

(
T (z)− Q2

2

(
∂3ω

∂ω
− 3

2

(
∂2ω

∂ω

)2
))

. (4.91)

A comparison with the standard transformation law for T (z) under a holomorphic

conformal transformation yields the “classical” central charge:

c = 6Q2 . (4.92)

This result can also be obtained by considering Liouville’s theory on a cylinder

and verifying that the Fourier components of the energy tensor satisfy the Vira-

soro Poisson bracket algebra with the above central charge (see e.g. [212] with a

slightly different notation). From the transformation law for the Liouville field, it

follows that the fields e2αφ are primary with “classical” dimension ∆ = αQ, for

some constant α. When the Liouville theory is quantised, the background charge

Q receives corrections, as well as the central charge and the dimensions ∆. After

32In the latter case, the Liouville field is redefined as φ→ −iφ, resulting in a negative sign in

the kinetic term in the action.
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normal ordering the (off-shell) energy tensor, its Fourier components only satisfy

the Virasoro commutator algebra (with the canonical commutation relations im-

posed on the Liouville field and momentum, see [213]) if Q = b−1+b. The Virasoro

algebra then yields the central charge:

c = 6Q2 + 1 . (4.93)

The classical limit corresponds to b → 0. Finally, by considering the OPE of the

operators e2αφ with the energy tensor, it follows that these are primary, now with

dimension:

∆ = αQ− α2 . (4.94)

In conventional AdS/CFT, a Liouville theory at the conformal boundary can be

realised holographically by an asymptotically hyperbolic 3-space with a scalar field

of mass m2 = α(Q − α) (α(Q− α)− 2) for each dynamical operator e2αφ. Moti-

vated by our results, we also expect that, by switching on some scalar field in our

spacetime in four dimensions, we are able to capture holographically the dynamics

of scalar operators in a family of two-dimensional CFTs at ∂H. In [188] it was

brought to the attention that, in general, each (non-backreacting) scalar field in

the bulk decomposes into an infinite set of massive scalars on each surface of con-

stant time. This feature poses several problems to the holographic computation of

correlators of scalar operators, in particular because we know that each massive

scalar on a constant time slice is dual to a single scalar operator of definite scaling

dimension in the dual field theory. Since we do not have a definite mass (or a

unique scalar field) on a slice of constant time associated to a scalar field on the

spacetime, we lose the correspondence between a bulk field and a single operator

per field theory just as we had between the spacetime metric and the stress tensors.

It seems possible, however, to bypass this issue and reproduce the correlators of

one operator per field theory by setting up an initial value problem for the bulk

scalar in a manner similar to the approach that we followed in the case of the

spacetime metric. In this way, we restrict the solutions of the bulk wave equation

to a subclass that suffices to capture the dynamics of the operators in the field

theories.33 Such particular solutions reduce on each slice to a single massive scalar

and in this case, the mass of the field on a slice, and therefore the dimension of

the dual operator, will be associated to the time-dependence of the bulk spacetime

33Of course that, in this way, we are not able to reconstruct holographically any solution of

the bulk wave equation, but rather a subclass of such solutions. In the same way, we are not able

to reconstruct holographically any asymptotically Ricci-flat metric, but rather the subclass of

such metrics that admit an asymptotically hyperbolic hypersurface of constant mean curvature.

It seems that such general classes of solutions contain more information than that that just a

family of field theories in two dimensions less can provide. On the other hand, if we are only

interested in reproducing the correlators of the operators of each field theory in the family, then

the above approach should be sufficient.
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field, i.e. to its derivatives with respect to β(t). With a correspondence between a

bulk solution and a single operator per field theory, we should be able to reproduce

holographically the correlators of operators in the family of field theories.

Returning to the case at hand, and in particular for a family of Liouville field

theories at ∂H, we have deduced that pure gravity in the bulk captures the dy-

namics of the stress tensors of each theory. By using equations (4.80) and (4.93),

it then follows that β(t) is associated to the continuous background charge of the

family as:

β(t) = `′P
√
Q2 + 1/6 ∼ `′P Q (b→ 0) . (4.95)

Equation (4.94) then implies that the scaling dimensions of the primary operators

of each field theory are also expressed in terms of β(t). If a scalar field in the bulk is

dual to a family of primary operators (each belonging to a different field theory) of

the same scaling dimension ∆, then different operators in this family must have dif-

ferent α’s. From equation (4.94) we find that: α(t) = Q/2±
√

(Q/2)2 −∆ , where

the time dependence of α is obtained from the relation (4.95). The bulk scalar

would therefore be dual to the family operator: exp
[ (
Q(t)±

√
Q(t)2 − 4∆

)
φt

]
,

where φt is the operator of the field theory with central charge c(t). In the limit as

b→ 0 (or at late times β(t)� 1), the family operator asymptotes to exp (2βφ/`′P )

or to the identity operator.

In the next section we will generalise our class of asymptotically Ricci-flat

spacetimes, deduce their asymptotics and compute the modifications to the ex-

pectation values of the stress tensors. This is done for the following reason. From

equation (4.73) it follows that, up to a constant factor, different CFTs have the

same expectation values of the stress tensors.34 This implies that the reconstruc-

tion of the spacetime asymptotics only requires the knowledge of the holographic

stress tensor of a single CFT, besides the conformal structure [g(0)]. In order

to obtain different vevs for different field theories, a relative time-dependence is

needed in the expressions (4.73) for the expectation values which would discrim-

inate between different CFTs. This could be achieved by requiring for example

that ∂tgij 6= 0 in the spacetime metric (4.41). Indeed, we can obtain different

expectation values of the stress tensors for different field theories by considering

subleading contributions to the asymptotic value of the initial data K[0]. The so-

lution to such Cauchy problem will be similar to our solution (4.41), but with a

particular time-dependent gij . The reconstruction of the spacetime asymptotics in

34The n-point correlators should also be the same. These are obtained by functionally dif-

ferentiating 〈Tij〉 with respect to g(0) for an exact bulk solution and, since both the source

and the normalisable mode g(d) are t-independent, such differentiation should not introduce any

additional time dependence which would discriminate between different CFTs.
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such case will then require the knowledge of a family of different holographic stress

tensors. In the next section we will therefore allow an arbitrary initial extrinsic

curvature K[0] away from the conformal boundary of the initial data surface such

that it approaches h[0] only asymptotically.

4.5. Corrections to the holographic stress tensors

4.5.1. Generalisation of the initial data

As in section 4.3.2, we start from an asymptotically hyperboloidal initial data

set (Σ, h[0],K[0]), with (Σ, h[0]) of dimension d+1, and consider the first subleading

orders of K[0] as we move away from the conformal boundary {z = 0} of the initial

Cauchy surface. The asymptotic form of our initial data is therefore:

Rab[h[0]] = − d

`2
h[0]ab , (4.96)

K[0]ab =
1

`
h[0]ab + z−2+α

(
d

2
` Tab

)
: Tab(z, x) = T(0)ab(x) +O(z>0) , (4.97)

where we have now kept for convenience the constant curvature radius ` of Σ

arbitrary as in equations (4.16) and (4.17). Also, α ∈ R and Tab is so far an

arbitrary symmetric tensor on Σ with the above asymptotic expansion representing

the first subleading corrections to the asymptotic value of K[0]. As before, we will

take the first condition (4.96) to be asymptotically equivalent to the solution (4.21):

h[0]abdx
adxb ∼ `2

z2

(
dz2 + gijdx

idxj
)
, (4.98)

with the Fefferman-Graham asymptotic expansion (4.22). Furthermore, since

h[0] = O(z−2) and we require the initial data set to be asymptotically hyper-

boloidal, we find that α > 0.

The next step is to analyse the constraints on Tab imposed asymptotically by

the initial data constraint equations (4.9) and (4.10). For our purposes, we will only

need the constraints imposed on the leading order T(0). By using the asymptotic

form (4.98) of h[0] we find that the constraint equations in a neighbourhood of the
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conformal boundary take the form:

Tzz + Tr[g−1T ] +
1

4
zα
(

2 Tzz Tr[g−1T ] + Tr2[g−1T ]− 2 Tzi gijTjz − Tr[g−1T g−1T ]
)

= 0 ,

(4.99)

∇i
(
gijTjz

)
=

d

z

(
Tzz +

α− 1

d
Tr[g−1T ]

)
+ Tr[g−1T ′]− 1

2
TzzTr[g−1g′]− 1

2
Tr[g−1g′g−1T ] ,

(4.100)

∇j
(
g−1T

)j
i
− ∂i Tr[g−1T ] =

d+ 1− α
z

Tzi − T ′zi −
1

2
Tzi Tr[g−1g′] + ∂iTzz ,

(4.101)

where ∇i is the covariant derivative associated to gij and T ′ := ∂zT . From the

leading order of the three constraint equations above we find the following three

conditions for α 6= d+ 1:

T(0)zz = 0 , Tr[g−1
(0)T(0)] = 0 , T(0)zi = 0 . (4.102)

We also find the following additional condition for α = d from the first subleading

order of the third constraint equation above:

(0)∇jT j(0)i = 0 , (4.103)

where (0)∇i is the covariant derivative associated to g(0) and where the indices are

raised with g(0). These four particular conditions will play an important role in

the analysis that follows next. With these constraints identified, the approach we

now take towards the initial value problem is to make a choice of lapse function

and shift vector and solve asymptotically the evolution equations (4.11) and (4.12)

in powers of z up to some desired order. If we find a solution to this problem up

to some order in z, then such solution is the unique solution up to that order. We

will analyse the three possible situations: when the power α is greater than, equal

to or less than d and we will find that the relevant case is when α = d.

As in the previous sections, we begin by choosing to evolve the initial data in

time in the gauge (N = 1, Aa = 0) in which the metric tensor (4.14) of the Ricci-

flat development in a neighbourhood of Σ = {t̂ = 0} assumes the form (4.23):

ds2
d+2 = −dt̂ 2 + habdx

adxb . (4.104)

The extrinsic curvature (4.11) on the surfaces of constant t̂ in this gauge is given

by Kab = 1
2∂t̂ hab. We then introduce a new coordinate t as: et := 1+ t̂/`, in which
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Σ = {t = 0}, and define h̃ab := `−2e−2thab. The development’s metric therefore

becomes:

ds2
d+2 = `2e2t

(
−dt 2 + h̃abdx

adxb
)
. (4.105)

The extrinsic curvature on Σ becomes:

K[0]ab = Kab(t = 0) =

[
` et
(
h̃ab +

1

2
∂th̃ab

)]
t=0

= ` h̃ab

∣∣∣
t=0

+
`

2
∂th̃ab

∣∣∣
t=0

.

(4.106)

In this way, the asymptotic initial conditions (4.96) and (4.97) in this coordinate

system read respectively as:

h̃abdx
adxb

∣∣∣
t=0

=
1

z2

(
dz2 + gijdx

idxj
)
, (4.107)

∂th̃ab

∣∣∣
t=0

= d z−2+α Tab , (4.108)

with gij given by equation (4.22). We then solve asymptotically the dynamical

equation obtained by replacing equation (4.11) in (4.12) subject to the above initial

value conditions. This equation reads as:

2
(
Rab[h̃] + d h̃ab

)
+

¨̃
hab+d

˙̃
hab+h̃ab Tr[h̃−1 ˙̃

h]+
1

2
˙̃
hab Tr[h̃−1 ˙̃

h]−
(

˙̃
hh̃−1 ˙̃

h
)
ab

= 0 ,

(4.109)

where
˙̃
h := ∂th̃.

4.5.2. Asymptotics and expectation values

We begin by analysing the simplest case α > d. Let one start with the following

ansatz:

h̃abdx
adxb =

1

z2

(
dz2 + g̃ijdx

idxj
)

+O(z>−2+d) , (4.110)

h̃zi = (1− e−dt)A[d]i(z, x) +O(z>−1+d) : A[d]i = O(z>−2+d) , (4.111)

g̃ij(z, x) := g(0)ij(x) + z2g(2)ij(x) + ...+ zdg(d)ij(x) + zd log z g̃(d)ij(x) ,

(4.112)

where only even powers in z arise below the order zd in the above finite series35

and where each coefficient g(n) is defined to be equal to the coefficient g(n) in the

Fefferman-Graham expansion (4.22). This ansatz satisfies the dynamical equation

(4.109) up to order z−2+d (see appendix 4.6.1 for the complete treatment), and

35It should be emphasized that, unlike the expansion (4.22), the above expansion (4.112) is

defined to be finite and to terminate at order zd.
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since α > d, it also satisfies the initial conditions (4.107) and (4.108) up to order

z−2+d. In this way, the unique solution to this initial value problem must coin-

cide with our ansatz up to order z−2+d. Such solution receives corrections in all

components at higher orders, but we will find that we do not need the asymptotic

form of h̃ab beyond the order z−2+d. Finally, we reinstate the lapse function N(t)

by redefining our time coordinate t→ log
∫
dtN(t)/` such that the development’s

metric becomes:

ds2
d+2 = −N(t)2dt2 + β(t)2h̃abdx

adxb , (4.113)

with β̇ := N(t) as before.

Given the above asymptotic solution for the Ricci-flat development (equation

(4.113) with (4.110)) we then proceed as previously by renormalizing the gravi-

tational action. If we regularize and evaluate the action (4.48) on-shell, we find

that the divergences arise only down to order ε−d as in (4.53) and that these only

involve the asymptotic form of h̃ab up to order z−2+d. Hence, the counterterm

action will be exactly the same as in (4.62) because our solution is the same as

in (4.41) up to that order. We also find that the expectation values of the holo-

graphic stress tensors are equal to those found in (4.73) because only the terms up

to z−2+d in the asymptotic expansion of h̃ab survive under the limit ε → 0 taken

in (4.71). In this way, the case α > d does not yield new results.

The next step is to analyse the power α = d. In this case, the four conditions

(4.102)–(4.103) on the leading term T(0)ab hold. Let one start with the following

ansatz:

h̃abdx
adxb =

1

z2

[
dz2 +

(
g̃ij+zd

(
∆ij −∆[0]ij

))
dxidxj

]
+O(z>−2+d) , (4.114)

with g̃ and h̃zi as defined in (4.111)–(4.112) and where:

∆ij := ∆ij(t, x) , ∆[0]ij := ∆ij(t = 0, x) . (4.115)

If we replace this ansatz in the dynamical equation (4.109), we find that this

equation is solved up to order z−2+d if ∆ij satisfies the second order differential

equation in t:

∆̈ij + d ∆̇ij = 0 ⇒ ∆ij(t, x) = ∆[0]ij(x) +
(
1− e−dt

)
∆[d]ij(x) , (4.116)

subject to the conditions that the integration constant ∆[d]ij be traceless and

covariantly conserved with respect to g(0) (see appendix 4.6.2). In this way, the
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ansatz:

h̃abdx
adxb =

1

z2

[
dz2 +

(
g̃ij + zd

(
1− e−dt

)
∆[d]ij(x)

)
dxidxj

]
+O(z>−2+d) ,

(4.117)

Tr[g−1
(0)∆[d]] = 0 , (0)∇j∆j

[d]i = 0 , (4.118)

solves the dynamical equation up to order z−2+d. If we then compute the initial

values h̃ab(t = 0) and ∂th̃ab(t = 0), we find that these coincide with the initial

conditions (4.107) and (4.108) up to order z−2+d (recall that T(0)za = 0) if we

identify ∆[d]ij with T(0)ij :

∆[d]ij = T(0)ij . (4.119)

Recall that the leading order T(0)ij is also traceless and covariantly conserved. In

this way, with the above identification, we find that our ansatz (4.117) solves the

initial value problem up to order z−2+d and therefore the unique solution to this

problem must coincide with our ansatz up to this order. Finally, we reinstate the

lapse function N(t) as in (4.113) to obtain:

ds2
d+2 = −N(t)2dt2+β(t)2

(
dz2

z2
+

1

z2

[
g̃ij + zd

(
1−

(
β(t)/`

)−d) T(0)ij

]
dxidxj +O(z>−2+d)

)
,

(4.120)

with β̇ = N(t). Given the above asymptotic solution we then proceed to compute

the holographic stress tensors. The counterterm action will again be the same as in

(4.62) because our asymptotic solution for the Ricci-flat development only differs

from the previous solution (4.41) at order z−2+d. The divergences of the on-shell

action involve the asymptotic form of the Ricci-flat metric below this order and the

trace of h̃ij with respect to g(0) at order z−2+d. However, since the trace of T(0)ij

vanishes, the trace of h̃ij is the same as that computed from (4.41) up to order

z−2+d and hence we find the same divergent terms as previously, as well as the

same counterterms. If we then compute the holographic stress tensors according to

formula (4.71), we find them to be of the same form as in (4.73) plus an additional

contribution:

〈Tij〉 =
d β(t)d

2κ2
d+2

(
g(d)ij + T(0)ij +Xij [g(0)]

)
− d `d

2κ2
d+2

T(0)ij . (4.121)

Notice that we recover the result (4.73) for the initial hypersurface Σ = {β(t) = `}.
The diffeomorphism Ward identities are still as in equation (4.76) and the trace

Ward identities are also as in (4.77) for odd values of d. For even values the trace
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depends on d. For d+ 2 = 4, we have:

〈Tij〉 =
β(t)2

κ2
4

(
g(2)ij + T(0)ij − g(0)ijTr[g−1

(0)g(2)]
)
− `2

κ2
4

T(0)ij , (4.122)

〈T ii 〉 =
β(t)2

2κ2
4

R[g(0)] =
c

24π
R[g(0)] . (4.123)

For small and large values of the central charge, we find the asymptotic behaviours:

〈Tij〉 =

−
`2

κ2
4
T(0)ij +O(β2) : β � 1 ,

β2

κ2
4

(
g(2)ij + T(0)ij − g(0)ijTr[g−1

(0)g(2)]
)

+O(β0) : β � 1 .
(4.124)

Different field theories in the family, identified by their central charges, have there-

fore different expectation values of the stress tensors and, in order to reconstruct

the bulk spacetime metric from CFT data in this case, we need such expectation

values in the regimes of large and small central charges.

The last case to be analysed is for α < d. In this case, only the three con-

ditions (4.102) on the leading term T(0)ab hold. The strategy is again to start

from an ansatz as in (4.114), where the power zd is now replaced by zα, and find

the differential equation and constraints that ∆ij needs to satisfy in order for the

dynamical equation to be solved up to order z−2+α. We then compute the initial

values h̃(t = 0) and ∂th̃(t = 0) and find the relations between the integration con-

stants in the solution for ∆ij and the leading order T(0)ij in order for the initial

conditions to be satisfied up to order z−2+α. The unique solution to this initial

value problem must then coincide with our refined ansatz up to order z−2+α. The

next step is to attempt to renormalize the gravitational action (4.48). If we regu-

larize it as previously and evaluate it on-shell, we find that the divergences involve

the asymptotic form of the Ricci-flat metric up to order z−2+d as before. How-

ever, we have just deduced that this asymptotic form involves terms already at

order z−2+α (and beyond) that are not pure functionals of g(0)ij . Such terms are

rather functionals of the unspecified leading and subleading orders T(n)ab in the

asymptotic expansion of Tab. In this way, the divergences will be functionals of the

undetermined terms g(0) and T(n). This implies that we cannot rewrite the diver-

gences covariantly in terms of the induced metric γij = hij (or γAB) as in equation

(4.54). We can invert the asymptotic series for h̃ij as before in order to rewrite

g(0)ij covariantly in terms of γij , but now only up to order z−2+α, which is below

z−2+d. Furthermore, the divergences involving the terms T(n) cannot be rewritten

in a covariant fashion because the asymptotic expansion for Tab is undetermined

and unrelated to γij and hence cannot be inverted in order to express the terms

T(n) as functionals of γij . In the language of holographic renormalization, this

type of divergent terms are said to be non-local in the sources. We therefore find
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that if the exponent α < d, the Ricci-flat development is non-renormalizable holo-

graphically in the sense that the gravitational action for the development cannot

be renormalized with local covariant counterterms and the only perturbations of

the initial data K[0] away from the hyperboloidal one that result in renormalizable

developments must occur at order equal to or greater than z−2+d.

4.6. Appendix: Asymptotic solutions of the dy-

namical equation

4.6.1. Solution for α > d

In this section we show that the ansatz (4.110)–(4.112) solves the dynamical equa-

tion (4.109) up to order z−2+d. Let us begin by performing an ADM decomposition

of h̃ab with respect to surfaces of constant z:

h̃abdx
adxb = M2dz2 + γij(dx

i +Aidz)(dxj +Ajdz) , (4.125)

with unit normal na = M∂az. The inverse of h̃ab is given by:

h̃ab =

(
M−2 −M−2Ai

−M−2Aj γij +M−2AiAj

)
. (4.126)

We then start from the following ansatz:
M = z−1 +O(z>−1+d) ,

Ai = (1− e−dt)A[d]i(z, x) +O(z>−1+d) : A[d]i = O(z>−2+d) ,

γij = z−2gij : gij(t, z, x) = g̃ij(z, x) +O(z>d) , g̃ij = O(z0) ,

(4.127)

such that:

h̃abdx
adxb =

1

z2

(
dz2 + g̃ijdx

idxj
)

+O(z>−2+d) . (4.128)

The reason for the above dependence of the shift Ai = γijA
j on t at orders between

O(z>−2+d) and O(z−1+d) will become clear later. If we replace this ansatz in the

dynamical equation:

2
(
Rab[h̃] + d h̃ab

)
+

¨̃
hab+d

˙̃
hab+h̃ab Tr[h̃−1 ˙̃

h]+
1

2
˙̃
hab Tr[h̃−1 ˙̃

h]−
(

˙̃
hh̃−1 ˙̃

h
)
ab

= 0 ,

(4.129)
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we find:

Rij [h̃] + d h̃ij +O(z>−2+d) = 0 , (4.130)

nanbRab[h̃] + d+O(z>d) = 0 , (4.131)

naRai[h̃] +
1

2
na
(

¨̃
hai + d

˙̃
hai

)
+O(z>−1+2d) = 0 . (4.132)

We begin by analysing the spatial components (i, j). In order to do so, we need

the Gauss-Codazzi identity:

K ′ij = £AKij −DiDjM +M

(
Rij [γ] + 2(Kγ−1K)ij −KijTr[γ−1K]−Rij [h̃]

)
,

(4.133)

Kij =
1

2M

(
γ′ij −£Aγij

)
, (4.134)

where prime denotes differentiation with respect to z and Diγjk := 0. If we use

our ansatz in (4.134), we find:

Kij = −z−2gij +
1

2
z−1g′ij +O(z>−2+d) . (4.135)

With this result, the Gauss-Codazzi identity becomes:

2

(
Rij [h̃] +

d

z2
gij

)
= 2Rij [g]− g′′ij +

d− 1

z
g′ij +

1

z
gijTr[g−1g′]− 1

2
g′ijTr[g−1g′]

+
(
g′g−1g′

)
ij

+O(z>−2+d) . (4.136)

If we then replace this identity in (4.130), we obtain:

2Rij [g]−g′′ij+
d− 1

z
g′ij+

1

z
gijTr[g−1g′]−1

2
g′ijTr[g−1g′]+

(
g′g−1g′

)
ij

+O(z>−2+d) = 0 .

(4.137)

The above is the Fefferman-Graham (FG) equation plus additional contributions

at order z>−2+d and therefore is solved by the FG solution up to order zd in gij :

gij = g(0)ij + z2g(2)ij + ...+ zd log z g̃(d)ij + zdg(d)ij︸ ︷︷ ︸
g̃

+O(z>d) , (4.138)

with g(n) the FG coefficients. In this way, our ansatz (4.110)–(4.112) solves the

spatial components of the dynamical equation up to order z−2+d. The same pro-

cedure can be applied to the remaining components (4.131) and (4.132). For the

former, we need the Gauss-Codazzi identity:

−R[γ] + Tr2[γ−1K]− Tr[γ−1Kγ−1K] = nanbRab[h̃]− γijRij [h̃] , (4.139)
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where R[γ] is the Ricci-scalar of γij and na = h̃abnb : nb = M∂bz. If we use our

ansatz (4.127) in this identity, together with the expression (4.135) for Kij and

the previous Gauss-Codazzi identity (4.136), we find:

nanbRab[h̃] = −d− z2

2

(
Tr[g−1g′′]− 1

z
Tr[g−1g′]− 1

2
Tr[g−1g′g−1g′]

)
+O(z>d) .

(4.140)

If we then replace this identity in the equation (4.131), we obtain:

Tr[g−1g′′]− 1

z
Tr[g−1g′]− 1

2
Tr[g−1g′g−1g′] +O(z>−2+d) = 0 . (4.141)

The above is the FG trace equation plus additional contributions at order z>−2+d

and is solved by the FG solution up to order zd in gij . Hence, the components

(4.131) of the dynamical equation are also solved by our ansatz (4.110)–(4.112) up

to order z−2+d in h̃ab. Finally, for the remaining components (4.132) we need the

last Gauss-Codazzi identity:

Dj

(
γ−1K

)j
i
−DiTr[γ−1K] = naRai[h̃] . (4.142)

If we use again the ansatz (4.127) in this identity, we find:

naRai[h̃] =
z

2

(
∇j
(
g−1g′

)j
i
−∇iTr[g−1g′]

)
+O(z>d) , (4.143)

where ∇igjk := 0. By replacing this identity in (4.132), we obtain:

∇j
(
g−1g′

)j
i
−∇iTr[g−1g′] + z−1na

(
¨̃
hai + d

˙̃
hai

)
+O(z>−1+d) = 0 . (4.144)

Now notice that n = z∂z +O(z>1+d) and hence that:

z−1na
(

¨̃
hai + d

˙̃
hai

)
=

¨̃
hzi + d

˙̃
hzi +O(z>−2+2d) . (4.145)

Since h̃zi = Ai, we obtain:36

z−1na
(

¨̃
hai + d

˙̃
hai

)
= O(z>−1+d) , (4.146)

and hence equation (4.144) becomes:

∇j
(
g−1g′

)j
i
−∇iTr[g−1g′] +O(z>−1+d) = 0 . (4.147)

This last equation is the FG divergence equation plus additional contributions at

order z>−1+d and is also solved by the FG solution up to order zd in gij . Hence,

we conclude that our ansatz (4.110)–(4.112) solves the dynamical equation (4.109)

up to order z−2+d in h̃ab.

36In general we can have Ai = A[0]i(z, x) − e−dtA[d]i(z, x) + O(z>−1+d) : A[0,d]i =

O(z>−2+d), but we set A[0] = A[d] so that our ansatz satisfies the initial condition (4.107).
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4.6.2. Solution for α = d

We now show that the ansatz (4.117)–(4.118) solves the dynamical equation (4.109)

up to order z−2+d. We perform again the ADM decomposition (4.125) of h̃ab and

start from the ansatz (4.127), but now do not impose the dependence of gij on t

to arise at order z>d:
M = z−1 +O(z>−1+d) ,

Ai = (1− e−dt)A[d]i(z, x) +O(z>−1+d) : A[d]i = O(z>−2+d) ,

γij = z−2gij(t, z, x) : gij = O(z0) .

(4.148)

If we replace such ansatz in the dynamical equation (4.129) and use again the

Gauss-Codazzi identities as in the previous section, we obtain:

− g̈ij − d ġij − gijTr[g−1ġ]− 1

2
ġijTr[g−1ġ] +

(
ġg−1ġ

)
ij

=

z2

(
2Rij [g]− g′′ij +

d− 1

z
g′ij +

1

z
gij Tr[g−1g′]− 1

2
g′ijTr[g−1g′] +

(
g′g−1g′

)
ij

)
+O(z>d) ,

(4.149)

Tr[g−1ġ] = z2

(
Tr[g−1g′′]− 1

z
Tr[g−1g′]− 1

2
Tr[g−1g′g−1g′]

)
+O(z>d) ,

(4.150)

∇j
(
g−1g′

)j
i
−∇iTr[g−1g′] + +O(z>−1+d) = 0 . (4.151)

These are the analogues of equations (4.137), (4.141) and (4.147). We then seek

for a solution of the form:

gij(t, z, x) = g(0)ij(x) + z2g(2)ij(x) + ...+ zd
(
g(d)ij(x) + ∆ij(t, x)−∆[0]ij(x)

)
+ zd log z g̃(d)ij(x) +O(z>d) , (4.152)

where only even powers in z arise below the order zd and where each coefficient g(n)

is defined to be the FG coefficient in the solution (4.138). Also, ∆[0] := ∆(t = 0).

If we replace for gij in (4.149)–(4.151), we find that the equations are satisfied up

to order zd in gij if ∆ij obeys the equations:

∆̈ij + d∆̇ij + g(0)ijTr[g−1
(0)∆̇] + d g(0)ijTr[g−1

(0)

(
∆−∆[0]

)
] = 0 , (4.153)

Tr[g−1
(0)∆̇]− d(d− 2)Tr[g−1

(0)

(
∆−∆[0]

)
] = 0 , (4.154)

(0)∇j
(
g−1

(0)

(
∆−∆[0]

))j
i
− ∂iTr[g−1

(0)

(
∆−∆[0]

)
] = 0 , (4.155)
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where (0)∇jg(0)ik := 0. Suppose that Tr[g−1
(0)∆̇] = 0. Then, equation (4.154) is

solved (recall that ġ(0) = 0) and equation (4.153) becomes:

∆̈ij + d ∆̇ij = 0 ⇒ ∆ij(t, x) = ∆[0]ij(x) +
(
1− e−dt

)
∆[d]ij(x) . (4.156)

If we insert this solution in the remaining equation (4.155), we obtain:

(0)∇j
(
g−1

(0)∆[d]

)j
i

= 0 . (4.157)

In this way, the ansatz:

gij(t, z, x) = g(0)ij(x) + z2g(2)ij(x) + ...+ zd
(
g(d)ij(x) +

(
1− e−dt

)
∆[d]ij(x)

)
+ zd log z g̃(d)ij(x) +O(z>d) :

Tr[g−1
(0)∆[d]] = 0 , (0)∇j∆j

[d]i = 0 , (4.158)

is a solution to the equations (4.149)–(4.151) up to order zd in gij and therefore our

ansatz (4.117)–(4.118), or (4.148) with gij as above, solves the dynamical equation

(4.109) up to order z−2+d in h̃ab.
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Appendix A

A.1. Diffeomorphisms

A homeomorphism is a map f between two topological spaces:

f : M → N , (A.1)

such that f and f−1 are continuous.

If such map exists, then M and N necessarily have the same dimension and are

said to be homeomorphic to each other. Homeomorphisms provide an equivalence

relation between topological spaces and therefore M and N are said to have the

same topology if they are homeomorphic. Heuristically, M and N are “equiva-

lent” as topological spaces, i.e. homeomorphic, if we can deform one into the other

continuously without tearing them.

A diffeomorphism is a map ϕ between two manifolds:

ϕ : M → N

p → q = ϕ(p) , (A.2)

such that ϕ and ϕ−1 are smooth.

If such map exists, then M and N are said to be diffeomorphic to each other.

Clearly, diffeomorphisms are homeomorphisms and provide a more stringent equiv-

alence relation between manifolds. Two manifolds are said to have the same man-

ifold structure if they are diffeomorphic to each other. Heuristically, M and N are

“equivalent” as manifolds, i.e. diffeomorphic, if we can deform one into the other

smoothly.1

1Caveat: In General Relativity, two manifolds diffeomorphic to each other are physically
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An automorphism in the category of differentiable manifolds is a diffeomor-

phism ϕ : M →M from a manifold M to itself. The set of automorphisms on M

is a group denoted as Diff(M) and called the diffeomorphism group of M .

If we are given a coordinate system xµ and x̄µ on (some open subset of) M

and N , respectively, we may express the diffeomorphism (A.2) as:

ϕ : M → N

xµ → x̄µ = ϕµ(x) . (A.3)

Diffeomorphisms are active transformations and map points between manifolds,

or move the points of a manifold in which case N = M . If ϕ is an automorphism,

however, one may adopt a passive viewpoint and rather see the action of ϕ as

resulting in an ordinary coordinate reparametrization on M from some coordinate

system xµ to a new coordinate system x̄µ := ϕµ(x). This is so because, under an

automorphism ϕ, a tensor T at x is mapped to the pushed-forward tensor ϕ?T at

x̄ = ϕ(x) and the components of ϕ?T are equal to the components of T in the new

coordinate system x̄µ.2 A simple example is that of T a vector field V (x) ∈ TxM .

Under the action of the automorphism it transforms as:

V µ(x)
ϕ−→ V̄ µ(x̄) = (ϕ?V )µ(x̄) =

dϕµ

dxα
V α(ϕ−1(x̄)) =

dϕµ

dxα
V α(x) . (A.4)

Automorphisms can therefore be seen as reparametrizations and, for this reason,

the diffeomorphism group Diff(M) is also called the group of reparametrizations

equivalent only if they are also (locally) isometric – i.e. if there exists a diffeomorphism between

the two that preserves distances, such that the pushed-forward metric of M is equal to the metric

of N c.f. section A.2 – . A simple example of two diffeomorphic manifolds that are not physically

equivalent is that of the Clifford torus (with a flat metric induced from the embedding in R4) and

the ring torus (with a curved metric induced from the embedding in R3). They are the “same”

manifold, i.e. diffeomorphic, but with two physically inequivalent metrics.

2 The same discussion applies to the case of T the metric tensor, but extra care needs to

be taken in this case. If we are given a metric gµνdxµdxν on M and perform an ordinary

transformation of coordinates by introducing x̄µ := ϕµ(x), we measure distances with the metric

components in the new coordinate system: ḡµνdx̄µdx̄ν , and the distance between two points p and

q remains the same. On the other hand, if we perform the diffeomorphism (A.3), the metric gµν is

mapped to a bilinear form with components (ϕ?g)µν = ḡµν in the target manifold. Unless ϕ is an

isometry, however, this bilinear form is different than the metric of the target manifold with which

we measure distances (and which is part of the initial data). The distance between two points

P = ϕ(p) and Q = ϕ(q) therefore will not be the same as the distance between p and q unless

ϕ is an isometry. So, even though gµν is indeed mapped to the pushed-forward form ϕ?g with

components equal to ḡµν , the metric used to measure distances in each scenario is different. To

avoid possible ambiguities, it is common practice in the high-energy literature to implicitly define

the metric of the target manifold to be equal to the pushed-forward metric, so that distances

after a transformation of coordinates or after a corresponding diffeomorphism are measured by

the same metrics. In conclusion, diffeomorphisms can be truly seen as reparametrizations only

if they are also isometries. See also section A.2.
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of M .

Finally, we define compact and closed manifolds as follows. A compact man-

ifold, in the sense of limit point compactness, is any manifold in which every

sequence of points in the manifold has a limit point in the manifold. Examples

are the sphere and the disk and counterexamples are the open disk and the plane.

A closed manifold is any compact manifold without boundary. An example is the

sphere and a counterexample is the disk.

A.2. Conformal and Weyl Transformations

Two metrics gµν and g̃µν on some manifold M are said to be conformally

equivalent, or to belong to the same conformal class, if they are equal up to a

positive local factor:

g̃µν(x) = e2φ(x)gµν(x) . (A.5)

Let (M, g) and (N,h) be two manifolds diffeomorphic to each other. A confor-

mal transformation (or conformal isometry) is a diffeomorphism ϕ : M → N such

that the pulled-back metric (ϕ?h)(x) is conformally equivalent to g(x):

ϕ?
(
h(ϕ(x))

)
= e2φ(x)g(x) . (A.6)

If the conformal factor e2φ(x) = 1 the conformal transformation is called in par-

ticular an isometry and if φ(x) is constant it is called a scale transformation.

Isometries are therefore diffeomorphisms that preserve distances, whereas confor-

mal transformations in general only preserve angles. It should be emphasized that

it is common practice to restrict conformal transformations to be automorphisms

such that (N,h) = (M, g). One also defines the conformal group (resp. isometry

group) of (M, g) as the set of all automorphisms ϕ : M →M that are also confor-

mal transformations such that ϕ?g ∝ g (resp. ϕ?g = g).

The simplest example of a conformal transformation is the map between the

cylinder M = R× S1 and the plane N = R2. If we parametrise (M, g) and (N,h)

as:

gµνdx
µdxν = dτ2 + dσ2 , (A.7)

hµνdx̄
µdx̄ν = dr2 + r2dθ2 , (A.8)

with σ, θ ∈ [0, 2π[, and define the diffeomorphism:

ϕ : M → N

(τ, σ) → (r, θ) = (eτ , σ) , (A.9)
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we find that: (ϕ?h)µν = e2τgµν , and therefore ϕ is a conformal transformation.

Since the metric hµν of the target manifold is not equal to the pushed-forward

metric (ϕ?g)µν , the distance between two points P = ϕ(p) and Q = ϕ(q) on N is

not the same as the distance between p and q, but the angles between vectors are

preserved. In contrast, if M = R2 parametrised as above with τ, σ ∈ R, an isom-

etry would be the diffeomorphism ϕ : (τ, σ) → (r, θ) = (
√
τ2 + σ2 , arctan(τ/σ)),

such that: (ϕ?h)µν = gµν . In this case, distances between points are preserved by

the diffeomorphism.

A Weyl transformation is closely related to a conformal transformation: given

a manifold (M, g), it is a local rescaling of the metric of the form: gµν(x) →
Ω2(x)gµν(x). Incidentally, this is called a conformal transformation in some of

the literature, but we will not use this terminology. Note that the conformal

factor Ω2(x) in a Weyl rescaling can be any positive analytic function, whereas

the set of conformal factors obtained by considering all conformal transformations

ϕ : M →M is much smaller than the set of all positive analytic functions.

Finally, an expression (e.g. an action) is said to be conformally invariant if it

is invariant under a two-step transformation:3

i) A conformal transformation: xµ → x̄µ = ϕµ(x) : (ϕ?g)µν = Ω2(x)gµν ,

(A.10)

ii) A Weyl transformation: gµν → Ω2(x)gµν . (A.11)

We will call the combined transformations a conformal-Weyl transformation. Un-

der such a transformation the metric components transform as:

gµν(x)
conf.−→ ḡµν(x̄) = (ϕ?g)µν(x̄) = Ω−2(ϕ−1(x̄)) gµν(ϕ−1(x̄)) = Ω−2(x) gµν(x)

Weyl−→ gµν(x) ,

and therefore the metric components remain invariant. On the other hand, the

line element ds2 is a scalar and therefore transforms as:

ds2 = gµνdx
µdxν

conf.−→ ḡµνdx̄
µdx̄ν = gµνdx

µdxν
Weyl−→ Ω2gµνdx

µdxν = Ω2ds2 .

(A.12)

Since conformal transformations are a subset of coordinate reparametrizations,

every expression invariant under general coordinate transformations is invariant

under conformal transformations and therefore will be conformally invariant iff

it is Weyl invariant. It can be shown that Weyl invariance of a theory and the

tracelessness of its stress-energy tensor are equivalent properties. See also section

A.4 on the relation between conformal invariance and conformal dimensions.
3Note the misnomer: invariance under conformal transformations alone (or Weyl transforma-

tions alone) does not necessarily imply conformal invariance.
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A.3. Conformal and Superconformal Group

Let us then study the set of conformal transformations in flat spacetime, i.e.

the conformal group Conf(R1,d−1). Suppose we perform an infinitesimal automor-

phism on a manifold (M, g) generated by a vector field ξ(x):

xµ → x̄µ = ϕµ(x) = xµ + εξµ(x) +O(ε2) . (A.13)

The pulled-back metric reads:

(ϕ?g)µν(x) =
dϕα

dxµ
dϕβ

dxν
gαβ(ϕ(x))

= gµν(ϕ(x)) + ε
(
gµβ(ϕ(x))∂νξ

β + gαν(ϕ(x))∂µξ
α
)

+O(ε2)

= gµν(x) + ε
(
ξα∂αgµν(x) + gµβ(x)∂νξ

β + gαν(x)∂µξ
α
)

+O(ε2)

= gµν(x) + ε£ξgµν(x) +O(ε2) . (A.14)

If this is a conformal transformation we find that the generator ξ satisfies:

∇µξν +∇νξµ = £ξgµν = 2φ(x)gµν , (A.15)

where: φ(x) = d−1∇µξµ. The generator ξ is called a Killing (resp. conformal

Killing) vector field of gµν if φ = 0 (resp. φ 6= 0). If the metric gµν is the

Minkowski metric ηµν , we can solve this equation explicitly for ξ and obtain:

iξµ∂µ = aµPµ + ωµνLµν + λD + bµKµ , (A.16)

where aµ, λ and bµ are constants, ω is an antisymmetric constant matrix, and the

operators P,L,D and K are defined as:

Pµ = i∂µ , Lµν = −i (xµ∂ν − xν∂µ) ,

D = ixµ∂µ , Kµ = i
(
2xµx

ν − (x · x)δνµ
)
∂ν . (A.17)

The conformal Killing ξ corresponds to a linear combination of two Killing vec-

tor fields and two conformal Killings, respectively, that generate the infinitesimal

transformations:

xµ → (1− iε a · P )xµ = xµ + ε aµ ,

xµ → (1− iε ω · L)xµ = xµ + ε ωµνx
ν ,

xµ → (1− iε λD)xµ = xµ + ε λ xµ ,

xµ → (1− iε b ·K)xµ = xµ + ε
(
2(b · x)xµ − (x · x)bµ

)
.

Each transformation can be exponentiated (i.e. consider an infinite sequence of

infinitesimal transformations) and results in the finite conformal transformations:
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Diffeomorphisms Generator Conf. Factor

translations xµ → xµ + aµ Pµ 1

rotations and boosts xµ → Λµνx
ν Lµν 1

dilatations xµ → eλ xµ D e2λ

special conformal xµ → xµ − bµ(x · x)

1− 2(x · b) + (b · b)(x · x)
Kµ

(x− bx2)4

x4

The first two transformations correspond to isometries of the Minkowski metric,

with SO(1, d−1) 3 Λ = exp(−iω ·L) in the fundamental representation, and form

the Poincaré isometry group, while the third corresponds to a scale transforma-

tion. The special conformal transformation corresponds to a sequence of diffeo-

morphisms given by an inversion xµ → xµ/(x · x), a translation xµ → xµ + bµ

and again another inversion and results in the pulled-back metric (ϕ?η)µν =(
1− 2(x · b) + (b · b)(x · x)

)2
ηµν .

The differential operators (A.17) form a representation of the generators of the

conformal algebra in the space of functions, an infinite-dimensional representation

space, and satisfy the Lie algebra:

i[Lµν , Lαβ ] = ηναLµβ + ηµβLνα − ηµαLνβ − ηνβLµα , i[D,Pµ] = Pµ ,

i[Lµν , Pα] = ηναPµ − ηµαPν , i[D,Kµ] = −Kµ ,

i[Lµν ,Kα] = ηναKµ − ηµαKν , i[Pµ,Kα] = −2Lµα − 2ηµαD ,

with all other commutators vanishing. This algebra is isomorphic to so(2, d). This

can be seen by introducing JMN : M,N = −1, 0, 1, ..., d defined as (recall that

µ, ν = 0, .., d− 1):

Jµν := Lµν , J−1µ :=
1

2
(Pµ −Kµ) , Jdµ :=

1

2
(Pµ +Kµ) , J−1d := D .

The above commutation relations can then be rewritten as the algebra of SO(2, d):

i[JMN , JAB ] = ηNAJMB + ηMBJNA − ηMAJNB − ηNBJMA . (A.18)

The conformal algebra can be extended to the superconformal case by adding the

corresponding fermionic generators. The above bosonic algebra is a subalgebra of

the latter and we have in addition the commutators and anticommutators with

the Poincaré supercharges Qiα and conformal supercharges Sjβ . These supercharges

generate translations and conformal transformations in superspace. The indices
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i, j = 1, ...,N transform in the fundamental of the SU(N )R R-symmetry group,

while α, β are the spinor indices. The exact form of the superconformal algebra

depends on the spacetime dimension and R-symmetry group and for this reason we

will give the commutation relations with the supercharges only schematically. To-

gether with the above bosonic subalgebra, the relevant part of the superconformal

algebra is given by :

i[D,Q] = 1
2Q , {Q,Q} ' P ,

i[D,S] = − 1
2S , {S, S} ' K ,

i[K,Q] ' S , {Q,S} ' L+D +R ,

i[P,Q] ' Q ,

where Rij are the generators of the R-symmetry group and we are omitting the

commutators involving these generators.

A.4. Deformations of CFTs

A way to discuss deformations of conformal field theories without going too

much through the systematics of the renormalization group is to work with the

notions of physical dimension and conformal dimension and to use the equivalence

between UV regulators Λ and lattice spacings a ∼ 1/Λ in quantum field theory.

The three principles we will need in this case are a) the action of a given theory

is the phase of the exponential in the theory’s generating functional, b) the action

is always physically dimensionless (in units ~ = 1), c) the coupling constants are

always conformally dimensionless (they are conformal tensors that transform as in

equation (1.72) with ∆ = 0 and n = 0).

Suppose we have a UV-finite conformal field theory in d dimensions (such as

pure N = 4, d = 4 SYM) with a conformally invariant action S0. Suppose we

deform the theory with some operator insertion and UV-regulate it by considering

the theory on a lattice such that the total action is given by:

S[ϕ0] = S0 +

∫
a

ddx
√
g ϕ0O∆(x) . (A.19)

The field O∆ is a conformal scalar of conformal dimension ∆ that transforms as in

equation (1.72) under a conformal-Weyl transformation, whereas ϕ0 is a coupling

constant. The paramenter a is the lattice spacing such that the generating func-

tional of the theory is a sum over field configurations with momenta |k| < Λ = 1/(2a):

Z =

∫
[dφ]Λ e

−S[ϕ0] , [dφ]Λ =
∏
|k|<Λ

dφ(k) . (A.20)
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Figure A.1: Scale transformation on a lattice: (x, y) → (x̄, ȳ) = λ(x, y) with gµν fixed

(λ = 3). The lattice spacing is increased from a = 1/3 to 1. Since wavelengths shorter

than twice the lattice spacing are suppressed, after the scale transformation we suppress

all wavelengths shorter than 2 (and therefore we lose resolution). The scale factor 9 in

the final line element is then transferred to the coupling constant so that the final theory

is on the original lattice, just with a different coupling.

By definition, the physical mass dimensions are given by:

[x] = M−1 , [O∆] = M∆ , [ϕ0] = Mε , (A.21)

where ε is some constant. Since [S] = M0, we find that: ∆ = d− ε.
Next, let us perform a rescaling of the coordinates: xµ → λxµ. Note that

this rescaling is a scale-Weyl transformation as discussed at the end of section

A.2: a scale transformation xµ → x̄µ = λxµ followed by a constant Weyl trans-

formation gµν → λ2gµν . Since gµν → gµν under the combined transformations, it

is common practise to express the transformation simply as xµ → λxµ with the

metric components gµν kept fixed. The regime λ >> 1 corresponds to the infra-

red, or low-energy regime: the lattice spacing increases to λa and we integrate

out all wavelengths shorter than 2λa, see Figure A.1. On the other hand, the

limit λ→ 0 corresponds to the ultra-violet, or high-energy limit where the lattice

spacing shrinks to zero size and therefore we have to consider arbitrarily high mo-

menta on the lattice. Since O∆ has conformal dimension ∆ and the coupling ϕ0
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is conformally dimensionless, the action transforms as:

S[ϕ0] → Seff
0 +

∫
λa

ddx̄
√
g (ϕ0 + δϕ0) Ō∆(x̄)

= S0 + λd−∆

∫
a

ddx
√
g (ϕ0 + δϕ0)O∆(x)

= S[ϕ̄0] , (A.22)

where ϕ̄0 = λd−∆ (ϕ0 + δϕ0) = λε (ϕ0 + δϕ0). The possible effective (or Wilso-

nian) correction δϕ0 to the coupling arises in the case λ > 1 after the rescaling

because we are simultaneously integrating out the degrees of freedom with mo-

menta |k| in the interval Λ/λ < |k| < Λ so that we don’t double count momenta in

the generating functional (wavelengths shorter than 2λa are equivalent to wave-

lengths longer than 2λa because of the periodicity of the new lattice):4

Z →
∫

[dφ]Λ/λ exp

(
−Seff

0 −
∫
λa

ddx̄
√
g (ϕ0 + δϕ0) Ō∆(x̄)

)
. (A.23)

On the other hand, the effective action Seff
0 = S0 because the undeformed theory is

conformally invariant and free of divergences, so it does not require renormalization

and therefore does not receive corrections. The final action is scale invariant iff

ε = 0 and therefore we find that scale invariant theories cannot have physically

dimensionful coupling constants. More importantly, we conclude that the effect of

the lattice rescaling has been transferred into the coupling constant.5 In this way,

there are three possible cases to consider according to the dimension ∆:

i) ∆ < d : ϕ̄0 → 0 in the UV, ϕ̄0 →∞ in the IR ⇒ IR-relevant ,

ii) ∆ > d : ϕ̄0 →∞ in the UV, ϕ̄0 → 0 in the IR ⇒ IR-irrelevant ,

iii) ∆ = d : ϕ̄0 = ϕ0 +O(δϕ0) ⇒ Marginal .

Marginal deformations result in another conformal field theory since the action

remains conformally invariant (c.f. section A.2), whereas relevant deformations of

a CFT result in a field theory which is conformally invariant only in the UV (the

deformation vanishes in the high-energy limit but not elsewhere). Irrelevant de-

formations become dominant in the UV and therefore spoil conformal invariance

4Note that δϕ0 typically depends on λ because the degrees of freedom over which we integrate

in the generating functional to obtain the effective theory are defined in the interval Λ/λ < |k| <
Λ, so the integration intervals will depend on λ. For this reason, the marginal case ∆ = d

discussed next can still result in a flow of the coupling with λ. However, in the vicinity of the

fixed point S0 of the transformation such that ϕ0 is infinitesimal we have that δϕ0 is second (or

higher) order in ϕ0 and therefore can be ignored, so that ϕ̄0 = λd−∆ϕ0.

5In terms of renormalization flows, in which case λ > 1, we find that the theory described by

(A.19) when the cut-off is Λ will effectively look like (A.22) at energy scales below Λ/λ.
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at high-energies, but lead to the original conformal field theory in the IR. In terms

of renormalization theory, while conformal field theories that remain conformal at

the quantum level (i.e. the beta-functions vanish) do not require renormalization,

it can be shown using a counting of the superficial degree of divergence that irrele-

vant deformations of such CFTs result in UV divergences in the Feynman diagrams

that cannot be renormalized (require infinitely many counterterms), whereas rele-

vant or marginal deformations in general introduce UV divergences but which are

renormalizable by a finite number of counterterms [214] .
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B.1. Conformal compactness and AdS asympto-

tia

In this appendix we deduce a few implications of conformal compactness that are

relevant to our work. We begin with the standard definition.

A manifold (M, G) is defined to be Cn≥0 conformally compact if there ex-

ists an asymptote (M̃, G̃, ρ) consisting of a defining function ρ(x) ∈ [0,+∞[ and a

manifold-with-boundary (M̃, G̃) with boundary ∂M̃ satisfying the following prop-

erties [215, 216, 217]:

1) M = int M̃ = {p ∈ M̃ : ∃ open set p 3 U ⊂ M̃} ,

2) G̃µν = ρ2(x)Gµν : M̃ = {ρ ≥ 0} , ∂M̃ = {ρ = 0} ,

3) dρ 6= 0 on ∂M̃ ,

with ρ(x) of class C∞ and G̃ non-degenerate and of class Cn≥0 in M̃. The region

{ρ = 0} of M̃ is referred to as the conformal boundary of M and M̃ as the con-

formal embedding.

We are now interested in showing that a conformally compact, asymptotically

Einstein manifold of negative scalar curvature is asymptotically locally AdS. In

order to do so, we need the following result.

Proposition Let (M, G) be a conformally compact manifold with an asymptote

(M̃, G̃, ρ). Then in the limit ρ → 0, the Riemann tensor behaves asymptotically

as:

Rabcd = −|∇̃ρ|2 (GacGbd −GadGbc) +O(ρ>−4) , (B.1)
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where: |∇̃ρ|2 := G̃ab∂aρ∂bρ and where O(ρ>−4) denotes terms that diverge slower

than ρ−4.

Proof By using the transformation law of the Riemann tensor under a Weyl

transformation, the Riemann of G and that of G̃ are related as:

Rabcd = ρ−2R̃abcd +

(
ρ−3G̃ ◦ ∇̃∇̃ρ− 1

2
ρ−4|∇̃ρ|2G̃ ◦ G̃

)
abcd

, (B.2)

where: (A ◦B)abcd := AacBbd −AadBbc +BacAbd −BadAbc, and where ∇̃a is the

covariant derivative with respect to G̃. From the third condition in the definition

of conformal compactness, we can introduce the defining function ρ as a coordinate

in the neighbourhood of ρ = 0. In this way, since G̃ is at least C0 in M̃ and the

Riemann tensor of G̃ contains at most second derivatives of G̃ with respect to ρ,

then if R̃abcd diverges as ρ → 0, it must do so slower than ρ−2. Also, the term

∇̃a∇̃bρ contains at most first derivatives of G̃ with respect to ρ and hence it must

diverge slower than ρ−1. Hence, the first two terms in (B.2) diverge slower than

ρ−4 and thus we find:

Rabcd = −ρ−4|∇̃ρ|2
(
G̃acG̃bd − G̃adG̃bc

)
+O(ρ>−4)

= −|∇̃ρ|2 (GacGbd −GadGbc) +O(ρ>−4) . (B.3)

q.e.d.

Now, from equation (B.1), the Ricci tensor of G behaves asymptotically as:

Rab = −d ρ−2|∇̃ρ|2G̃ab +O(ρ>−2) ∼ −d |∇̃ρ|2Gab , (B.4)

where d + 1 is the dimension of M. If (M, G) is in particular asymptotically

Einstein of negative scalar curvature, then from the above we find that |∇̃ρ|2 must

be a positive constant by definition. From equation (B.1) it then follows that the

Riemann tensor is asymptotically equal to that of AdS and therefore (M, G) is

asymptotically isometric to AdS space up to global properties such as the topology

of a neighbourhood of the boundary. On the other hand, if (M, G) is asymptot-

ically Ricci-flat, then from (B.4) we find that |∇̃ρ|2 must vanish asymptotically

as ρ → 0. Since dρ 6= 0 by definition, this implies that the conformal boundary

{ρ = 0} of M is null. We therefore define an asymptotically locally flat space

as any conformally compact, asymptotically Ricci-flat manifold. This definition

essentially coincides with that of asymptotic flatness at null infinity [195] if we

relax any conditions on the topology of the conformal boundary.

We also show that the Ricci scalar of a conformally compact Riemannian man-

ifold (M, G) of dimension d+ 1 > 1 cannot vanish asymptotically. From equation
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(B.1), the Ricci scalar of G behaves asymptotically as:

R = −d(d+ 1)|∇̃ρ|2 +O(ρ>0) . (B.5)

If (M, G) is Riemannian, one can write without loss of generality the positive-

definite metric tensor Gab near ρ = 0 as:

ds2 = Gabdx
adxb

= M2dρ2 + γij
(
dxi +Bidρ

) (
dxj +Bjdρ

)
= ρ−2

(
M̃2dρ2 + γ̃ij

(
dxi +Bidρ

) (
dxj +Bjdρ

))
= ρ−2G̃abdx

adxb . (B.6)

From this decomposition, we find:

|∇̃ρ|2 = G̃ρρ = M̃−2 . (B.7)

Since G̃ab is at least of class C0 and G̃ρρ = M̃2 + γ̃ijB
iBj , then M̃−2 must be

supported in M̃, otherwise G̃ρρ would not be C0. Notice that γ̃ij , being positive-

definite, prevents the term γ̃ijB
iBj from cancelling M̃2 in G̃ρρ. In this way, |∇̃ρ|2

is non-vanishing and thus the Ricci scalar cannot vanish asymptotically.

In this section we have shown in particular that conformal compactness to-

gether with Einstein’s equations with a negative cosmological constant implies that

a manifold is asymptotically locally AdS. Fefferman and Graham [190] proved in

particular a reciprocal statement: that Einstein’s equations with a negative cos-

mological constant imply that the manifold is conformally compact. We will do

so in section B.4.

B.2. Gauss-Codazzi decomposition

The Gauss-Codazzi relations are identities between geometric invariants of hyper-

surfaces and the respective embeddings and show that the Riemannian geometry

of a manifold is completely encoded in the intrinsic and extrinsic geometry of em-

bedded hypersurfaces. An introductory review of the subject in the context of the

3 + 1 formalism of general relativity can be found in the notes [196].

Let (M, Gµν) be a manifold of dimensional d+ 1 such thatM = I ×Σ : I ∈ R
and let (Σz) : z ∈ R be a foliation ofM by a family of hypersurfaces (Σz, γab(z, x)).
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The Gauss, Codazzi and Ricci identities are respectively:1

Rabcd[G] = Rabcd[γ]− ε (KacKbd −KadKbc) , (B.8)

Rabcµ[G]nµ = DaKbc −DbKac , (B.9)

Raµbν [G]nµnν = −£nKab + (K ·K)ab +D(aab) − ε aaab , (B.10)

where n is the (future-directed) unit normal to the leaves of the foliation such

that: n2 = ε = ±1, the acceleration aµ = n · ∇nµ and the extrinsic curvature

Kµν = 1
2£nγµν = γ σ

µ ∇σnν , where the induced metric γµν = Gµν−ε nµnν . Notice

that: γµν = γab∂ax
µ∂bx

ν , which follows from: γµνnν = 0. Also: Daγbc := 0. In

terms of an ADM decomposition of the metric:

ds2 = Gµνdx
µdxν = εN2dz2 + γab(dx

a +Nadz)(dxb +N bdz) , (B.11)

Gµν =

(
εN−2 −εN−2Na

−εN−2Na γab + εN−2NaN b

)
, (B.12)

we have: nµ = εN∂µz, n
µ∂µ = N−1 (∂z −Na∂a) and: aµ = −ε γµν∂ν logN . We

also have: Kab = 1
2N (∂z −£N ) γab.

From the above identities, we then find:2

nµnνRµν [G] = γab (Raµbν [G]nµnν)

= −nµ∂µK −K ·K +∇µaµ

= K2 −K ·K −∇µ(nµK − aµ) , (B.13)

nµRµb[G] = γac (Rabcµ[G]nµ)

= DcK
c
b − ∂bK , (B.14)

Rbd[G] = γacRabcd[G] + ε (Rcµdν [G]nµnν)

= Rbd[γ] + ε
(
−£nKbd −KKbd + 2(K ·K)bd +D(bad)

)
− abad .

(B.15)

From the trace of (B.15):

γabRab[G] = R[γ]− ε∇µ (nµK − aµ) . (B.16)

1Note that: £nKab = nµ∂µKab + 2Kµ(a∂b)n
µ = nµ∇µKab + 2(K ·K)ab.

2Notice that: Dbad = γµb γ
ν
d∇µaν and therefore: Dc ac − ε ac ac = ∇µaµ.

252



B.3. On ADM and the choice of Lapse and Shift

In this way, we find:

R[G] = (γµν + ε nµnν)Rµν [G] = R[γ] + ε
(
K2 −K ·K

)
− 2ε∇µ (nµK − aµ) ,

(B.17)

2nµnν
(
Rµν [G]− 1

2
GµνR[G]

)
= −εR[γ] +K2 −K ·K . (B.18)

When replaced by the Einstein’s equations: Rµν − 1
2GµνR + ΛGµν = Tµν , the

identities (B.14), (B.15) and (B.18) become the ADM equations that follow from

a Hamiltonian formulation of General Relativity [195]. The identities (B.18) and

(B.14) become respectively the Hamiltonian and Diffeomorphism constraints and

the identity (B.15) becomes the dynamical equation:

− εR[γ] +K2 −K ·K = 2 εΛ + 2Tµνn
µnν , (B.19)

DcK
c
a − ∂aK = Taµn

µ , (B.20)

ε
(
−£nKbd −KKbd + 2(K ·K)bd +D(bad)

)
− abad +Rbd[γ] =

1

d− 1

(
2Λγbd + Tbd − γbdT

)
.

(B.21)

B.3. On ADM and the choice of Lapse and Shift

Let (M, Gµν) be a generic spacetime with coordinates (z, xa) and a metric de-

composition of the form (B.11). For simplicity take ∂z to be spacelike. Let

Σ = {ρ(z, x) = 0} be any timelike hypersurface in M. Let α(z, x) be any smooth

function supported in M and βa(z, x) any smooth set of functions. Then, in a

sufficiently small neighbourhood of Σ it is always possible to introduce coordinates

r = r(z, xb), ya = ya(z, xb) in order to bring the metric (B.11) to the form:3

ds2 = α2dr2 + hab(dy
a + βadr)(dyb + βbdr) , (B.22)

with Σ = {r = 0}. Note that different choices of (α, βb) require different transfor-

mation of coordinates and hence will result in different coordinates (r, ya) (they

will be different functions of z and xa). Therefore, for each transformation of co-

ordinates there exists a (α, βa) and for each (α, βa) there exists a transformation

of coordinates such that the correspondence is surjective.

Since we can always bring (B.11) to the form (B.22) near Σ for any such α

and βa that we wish, we say that we can choose directly N = α and Na = βa

in (B.11). This is the same as to relabel r → z, ya → xa and hab → γab in

3Note that we have d+ 1 functions {z(r, yb), xa(r, yb)} to eliminate d+ 1 variables {N,Na},
with d+ 1 the spacetime dimension.
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(B.22). Note, however, that the new z, xa and γab in general are not the old ones

and therefore different choices of (N,Na) in (B.11) are associated with different

coordinates z, xa and induced metric γab, although this is usually left implicit.

Furthermore, by fixing (N,Na) in this way we are foliating the spacetime near Σ

by surfaces of constant r, i.e. by surfaces of constant znew (but not! by surfaces

of constant zold) and therefore different choices of (N,Na) correspond to different

foliations since znew varies with the choice of (N,Na).

Suppose now that we start from a generic metric (B.11), choose some α and

βa and bring the metric to the form (B.22) by a transformation of coordinates.

Then, we solve Einstein’s equations for hab subject to some initial conditions pre-

scribed on Σ and obtain a solution Gµν . Next, return to the generic metric (B.11),

choose another α and βa, say ᾱ and β̄a, bring it to the form (B.22) by another

transformation of coordinates and solve Einstein’s equations for h̄ab subject to

the same initial conditions prescribed on Σ to obtain a solution Ḡµν . Then Gµν
and Ḡµν will be locally isometric (i.e. related by a coordinate reparametrization).

Spacetimes that satisfy the same Einstein’s equations subject to the same initial

conditions but have different lapses N and shifts Na are related by a transforma-

tion of coordinates near Σ.4 This is the statement that general relativity has a

well-posed initial value formulation such that a solution to an initial-value prob-

lem is unique up to symmetries of the theory, which in this case are coordinate

reparametrizations. For this reason, and since the diffeomorphism group is the

gauge group of general relativity, we call a choice of lapse and shift a choice of

gauge. The synchronous gauge, or Gaussian normal coordinates, corresponds to

the choice (α = 1, βa = 0):

ds2 = dr2 + habdx
adxb . (B.23)

In general, we cannot bring the metric of a spacetime to the form (B.22) everywhere

in a single coordinate system. The fact that this procedure in general is only valid

near a given hypersurface Σ is associated with the tendency of geodesics to cross

and end in singularities. This issue is analogous to the Gribov problem in non-

abelian gauge theories and the absence of global gauge conditions, where a choice

of gauge is only valid near a gauge orbit. See e.g. [218] for an example of how

to construct normal coordinates and why such construction may eventually break

down sufficiently far away from Σ.

The fact that a choice of lapse and shift represents a choice of gauge can be

seen from a similar perspective – and more closely related to the Hamiltonian

4It should be clarified that, since hab and h̄ab are a priori arbitrary, then Gµν and Ḡµν are

not necessarily locally isometric before they are required to satisfy Einstein’s equations subject

to the same initial conditions. Without the latter requirement, Gµν and Ḡµν in general will not

be isometric and an example of that is Minkowski space and the Schwarzschild solution, both in

Gaussian normal coordinates.
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treatment of general relativity – by performing an ADM decomposition of the

Einstein-Hilbert Lagrangian:

L =
√
GR[G] = N

√
γ
(
R[γ] +K2 −K ·K − 2∇µ (Knµ − aµ)

)
, (B.24)

where we use the notation of the previous section. An inspection of the Lagrangian

shows that only the induced metric γab has derivatives in z and therefore the

equations of motion will be second order differential equations in z for γab only.

The lapse and shift do not have any z-derivatives in L and therefore their conjugate

momenta vanishes. This means that they are not dynamical variables and that

are part of the initial data in an initial value problem.

B.4. Einstein metrics and conformal compactness

Given the results of the previous sections it is now a simple matter to show that any

solution of Einstein’s equations with a negative cosmological constant is confor-

mally compact with a timelike conformal boundary. We will work with Gaussian

coordinates (B.23) in d+ 1 dimensions:

ds2
d+1 = Gµνdx

µdxν = dr2 + γabdx
adxb . (B.25)

The Einstein equations (B.19)–(B.21) in this coordinate system become:

R[γ]− 1

4
(γ−1γ′)2 +

1

4
(γ−1γ′γ−1γ′) =

d(d− 1)

`2
, (B.26)

Dc(γ
−1γ′)ca − ∂a(γ−1γ′) = 0 , (B.27)

Rab[γ]− 1

2
γ′′ab −

1

4
(γ−1γ′)γ′ab +

1

2
(γ′γ−1γ′)ab = − d

`2
γab , (B.28)

where the cosmological constant Λ = −d(d − 1)/(2`2) and γ′ = ∂rγ. If we solve

the equations asymptotically as r →∞ we obtain:

ds2
d+1 = dr2 + e2r/`

(
g(0)ab(x) +O(e−2r/`)

)
dxadxb , (B.29)

where g(0)ab is a non-degenerate but otherwise arbitrary function of the coordinates

xa.5 We can now define: z := ` e−r/` to obtain the metric in Poincaré coordinates:

ds2
d+1 =

`2

z2

(
dz2 +

(
g(0)ab +O(z2)

)
dxadxb

)
. (B.30)

The function ρ(x) = z/` and the metric G̃µν = (z/`)2Gµν satisfy the properties of

section B.1 and therefore the set (M̃, G̃, ρ) forms an asymptote. In this way, the

5Non-degeneracy follows from the fact that:
√
G ∼ edr/`√g(0) as r →∞ and the metric Gµν

is by definition non-degenerate.
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manifold (M, G) is conformally compact with defining function z/` and conformal

boundary {z = 0}.
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[201] L. Andersson and P. T. Chruściel, On hyperboloidal cauchy data for

vacuum einstein equations and obstructions to smoothness of scri, Comm.

Math. Phys. 161 (1994) 533–568.
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In de laatste vijftien jaren zijn er grote vooruitgangen geboekt in ons begrip

van gravitationele fysica. Voorbije studies van zwarte gaten als kwantumsystemen

suggereerden dat zwaartekracht fundamenteel holografisch is. Een semi-klassieke

analyse van zwarte gaten door Hawking onthulde dat deze oplossingen een intrin-

sieke notie van entropie met zich mee dragen en dat deze entropie proportioneel

is aan de oppervlakte van hun horizon. Samen met de tweede wet van de ther-

modynamica impliceren deze resultaten de Bekenstein grens Smax = A/4G0 die

de maximale entropie in een gebied van een ruimte die zwaartekracht bevat re-

lateert tot de oppervlakte van het gebied. Deze eigenschap is in scherp contrast

met de entropiegrenzen van locale kwantumveldentheorieën, waar het aantal vri-

jheidsgraden in een gebied typisch schaalt met de volume van het gebied, en dit

toont aan dat een kwantumtheorie van zwaartekracht geen gewone veldentheorie

van een massaloos spin-2 deeltje kan zijn. Een interpretatie van deze grens heeft

op natuurlijke wijze geleid tot het holografisch principe van ’t Hooft en Susskind

[5, 6, 7], die stelt dat de toestanden van eender welke kwantumgravitatie theo-

rie in feite bevat zijn in een theorie zonder zwaartekracht die op de rand van de

ruimte gedefinieerd is. Het is de moeite om op dit punt een schijnbare incompat-

ibiliteit te vermelden van dit principe met het Weinberg-Witten theorema [8] in

kwantumveldentheorie (KVT). Een paar subtiliteiten negerend, stelt deze dat een

KVT met een behouden energie-momentum tensor geen toestanden kan bevatten

voor massaloze interagerende deeltjes van spin j > 1. Dit impliceert in het bijzon-

der dat zulke KVTs geen graviton toestanden kunnen bevatten. Het holografisch

principe omzeilt de axioma’s van dit theorema door het graviton in een ruimte te

plaatsen die anders is dan die van de theorie op de rand, nl. in een ruimte met

extra dimensies.

Dit principe wordt ons gepresenteerd als een fundamentele eigenschap van

kwantumgravitatie, maar voor vele jaren is het vooral conceptueel gebleven, vooral

door gebrek aan een precies kader om het idee computationeel te implementeren.

De meest veelbelovende kandidaat leek snaartheorie, waar ruimtegebieden die

zwaartekracht bevatten, worden beschreven als ensembles van kwantumtoestanden.
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Bovendien konden Strominger en Vafa in de late jaren ’90 de Bekenstein-Hawking

entropie van extremale zwarte gaten reproduceren door bepaalde supersymmetrische

oplossingen van snaartheorie te beschouwen en een stochastische telling te doen

van hun microtoestanden [9]. Deze procedure was enkel mogelijk na de ontdeking

van D-branen en hun belang in snaartheorie door Polchinski [10] en medewerk-

ers [11, 12]. Deze microscopische telling is een berekening in de lager dimen-

sionale wereldvolume-theorie van de zwarte gaten (of D-branen) en toonde aan

dat snaartheorie in staat is om zwaartekracht als een holografische theorie voor

te stellen. Vroegere ideeën over mogelijke lager-dimensionale beschrijvingen van

zwaartekracht in snaartheorie waren besproken door Thorn en medewerkers [13].

Een gerelateerd maar onafhankelijk resultaat van Brown en Henneaux [14] in

de late jaren ’80 suggereerde dat bepaalde theorieën van zwaartekracht, met name

die met Anti-de Sitter (AdS) asymptotica, intiem verbonden zijn met lager di-

mensionale conforme velden theorieën op een holografische manier. Hun analyse

van drie-dimensionale Einstein zwaartekracht met AdS randvoorwaarden toonde

aan dat de asymptotische symmetriegroep van AdS3 op de rand van de ruimte

werkt als de twee-dimensionale conforme groep. De algebra van de overeenkom-

stige behouden ladingen is een centraal-uitgebreide Virasoro algebra, die voor het

eerst voorkwam in de context van snaartheorie. Dit werk erkende voor het eerst

het belang van asymptotische randvoorwaarden van AdS ruimtes in een mogelijke

implementatie van het holografische principe in het geval van AdS zwaartekracht.

In het bijzonder impliceerde het dat elke veldentheorie gedefinieerd op de rand

van Anti-de Sitter een conform invariante KVT zou zijn, maar het wees geen con-

creet voorstel aan die de randtheorie tot de gravitationele fysica vanbinnen zou

relateren en voor vele jaren bleef het slechts een interessante nieuwsgierigheid. De-

salniettemin heeft Strominger, gebaseerd op deze resultaten, aangetoond dat de

microtoestanden van zwarte gaten met een AdS3 nabij-horizon geometrie bevat

zijn in een conforme veldentheorie gedefinieerd op de rand van deze geometrie

[15]. Dit is aangetoond door gebruik van de formule van Cardy [16] die de groei

geeft van toestanden in twee-dimensionale conforme veldentheorieën, die de en-

tropie van deze zwarte gaten reproduceert.

De analyse van Brown en Henneaux en ook van Strominger is uitgevoerd zonder

direct contact met snaartheorie en is daarom ook geldig voor elke theorie die bij

lage energieën reduceert tot Einstein zwaartekracht. De ontdekking van D-branen

als oplossingen van supergravitatie suggereerde echter dat snaartheorie eindelijk

de holografische principes van deze en gerelateerde werken zou kunnen realiseren.

Supergravitatie is de lage-energie limiet van snaartheorie en oplossingen daarvan

beschrijven de dynamica van massaloze gesloten snaren bij lage energieën. Daar-

entegen zijn D-branen oppervlakten waar open snaren op eindigen en hun dynam-

ica is beschreven door wereldvolume theorieën van het Born-Infeld type. Gesloten

snaartheorieën zijn theorieën die zwaartekracht bevatten, terwijl open snaartheo-
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rieën essentieel ijktheorieën zijn die de dynamica van de D-branen beschrijven. De

ontdekking [10] dat D-branen de bronnen van elektrische en magnetische (Ramond-

Ramond) flux zijn in supergravitatie – m.a.w. dat ze bronnen zijn van gesloten

snaren – leidde tot hun identificatie met supersymmetrische oplossingen van super-

gravitatie die gekend waren als extremale zwarte branen. Deze klassieke oplossin-

gen beschrijven daarom de terugkoppeling van D-branen in de inbedding geometrie

in de benadering van lage energieën en zijn zwart omdat ze waarnemingshorizons

bevatten. De nabij-horizon geometrie van deze zwarte D-branen is in vele gevallen

een product van een Anti-de Sitter ruimte en een compacte ruimte. Tegelijkertijd

zijn de lage energie wereldvolume theorieën die leven op de branen ijktheorieën (die

kwantumveldentheorieën zijn zonder zwaartekracht) met conforme symmetrie. Dit

brengt de mogelijkheid naar boven dat de lager-dimensionale conforme veldenthe-

orieën op de D-branen het holografisch beeld kunnen zijn van de gravitationele

theorieën die leven in de overeenkomstige nabij-horizon geometrieën. Significant

bewijs dat dit het geval is volgde uit berekeningen van D-braan verstrooiingsam-

plitudes [17, 18, 19], die toonden dat de mate van absorptie door D-branen van

gesloten snaren even goed berekend kon worden door supergravitatie als door de

wereldvolume theorieën.

De verzameling van deze resultaten wees naar het feit dat de holografische as-

pecten van zwaartekracht waarschijnlijk in snaartheorie zou kunnen gerealiseerd

worden als een type van dualiteit tussen open snaren (of D-branen) en gesloten

snaren, en culmineerde in de late jaren ’90 met het voorstel van Maldacena [20] van

een concrete gelijkwaardigheid tussen bepaalde theorieën van gesloten snaren in

AdS ruimte en conform invariante ijktheorieën in mindere dimensies. In daaropvol-

gende werken hebben Witten en medewerkers [21, 22] beargumenteerd dat deze

ijktheorieën (de fundamentele theorieën, zonder Wilsoniaanse vrijheidsgraden uit

te integreren) op de rand van AdS ruimten leven en hebben verder ook aangetoond

dat observabelen in snaartheorie berekend kunnen worden vanuit de randtheorie.

Om deze redenen is het voorstel van Maldacena, ook bekend als de AdS/CFT

correspondentie, een exacte realisatie van het holografische principe in snaarthe-

orie, waarbij alle gravitationele fysica vermoedelijk gecodeerd is op de rand van

de ruimte. Witten en Susskind [23] beargumenteerden zelfs dat de AdS/CFT cor-

respondentie de Bekenstein grens satureert die karakteristiek is van holografische

theorieën, door aan te tonen dat de gravitationele theorie (die equivalent is aan

de grenstheorie door de AdS/CFT dualiteit) precies één vrijheidsgraad per Planck

grensoppervlakte heeft.

De ijktheorieën die voorkomen in AdS/CFT zijn Yang-Mills of niet-Abelse

kwantumveldentheorieën. Dit zijn de type theorieën die de interactie van elemen-

taire deeltjes in het standaardmodel van deeltjesfysica beschrijven (ook al zijn de

veldentheorieën die voorkomen in AdS/CFT een idealisering van deze theorieën).
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De electrozwakke theorie die zwakke kerninteracties en quantum electrodynamica

beschrijft is een Yang-Mills theorie gebaseerd op de ijkgroep SU(2)×U(1), terwijl

quantum chromodynamica (QCD) de sterke kernkracht beschrijft en gebaseerd

is op SU(3). QCD is een speciaal type ijktheorie. Terwijl bij de elektrozwakke

theorie de interactiesterkte verzwakt bij lagere energieën, neemt bij QCD de in-

teractiesterkte toe bij lage energieën, waardoor de theorie sterk gekoppeld wordt.

Omdat de meeste berekeningen in kwantumveldentheorie gebaseerd zijn op per-

turbatietheorie, belet deze eigenschap ons om het lage-energie regime van QCD

bijhorende karakteristieke fenomenen zoals kleuropsluiting te bestuderen met stan-

daardmethoden. Het was de poging om de sterk gekoppelde fysica van QCD te

begrijpen die voor de eerste keer leidde tot het idee dat snaartheorieën eigen-

lijk ijktheorieën in vermomming zouden kunnen zijn. In de jaren ’70 suggereerde

’t Hooft [24] dat QCD benaderd kan worden door een ijktheorie met ijkgroep

SU(N) : N � 1. In deze grote N idealisering versimpelt de theorie aanzienlijk en

is het vatbaar voor perturbatietheorie in 1/N . Het is toen dat er gerealiseerd werd

dat de perturbatieve expansie van de ijktheorie in Feynman diagrammen eigen-

lijk een expansie is van topologieën van snaartheorie wereldvellen en dat daardoor

deze expansie een definitie van snaartheorie zou kunnen geven. Wij weten nu dat

deze verrassende relatie tussen grote N Yang-Mills theorieën en snaartheorieën

een speciaal geval is van de AdS/CFT correspondentie, waar de 1/N expansie van

de ijktheorie overeenkomt met de snaartheorie perturbatietheorie in de wereldvel

koppelingsconstante gs.

Een verdere eigenschap van de correspondentie tussen ijk- en snaartheorieën als

gegeven door de AdS/CFT dualiteit betreft de relatie tussen de (’t Hooft) koppel-

ingsconstante van Yang-Mills theorie – die de sterkte van de ijktheorie interacties

determineert – en de lengteschaal van de snaar, oftewel de inverse snaarspanning,

die in het bijzonder de sterkte van het gravitationeel veld bepaalt in de duale

snaartheorie. Het blijkt dat deze relatie een sterk/zwakke dualiteit is. Dit im-

pliceert dat wanneer de ijktheorie in zijn sterk gekoppelde regime ligt, de snaarthe-

orie goed benaderd kan worden door klassieke zwaartekracht. Zoals hierboven in

het geval van QCD vermeld, zijn sterk gekoppelde veldentheorieën heel moeilijk

om te bestuderen en daarom is de AdS/CFT correspondentie een uiterst nuttig

werktuig om kwantumveldentheorieën bij sterke koppeling te begrijpen omdat het

moeilijke problemen in de veldentheorieën vertaalt in gemakkelijkere problemen in

klassieke zwaartekracht.

Door deze sterk/zwakke eigenschap van de dualiteit, hebben vele auteurs snel

na de ontdekking van AdS/CFT toepassingen van de correspondentie voorgesteld

in de theorie van gecondenseerde materie. Veel systemen in gecondenseerde ma-

terie fysica zijn moeilijk om te bestuderen met enkel veldentheoretische methoden.

In het bijzonder zijn deze systemen typisch sterk gekoppeld, conform (of schaal)
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invariant, en sterk gecorreleerd nabij kwantumkritische punten, waar een tran-

sitie tussen verschillende kwantumtoestanden van materie plaatsvindt. Via de

AdS/CFT dualiteit hebben verschillende sectoren van snaartheorie het potentieel

om te dienen als holografische modellen van deze sterk gekoppelde systemen en

kunnen in het bijzonder gebruikt worden om inzicht te verkrijgen in bepaalde

kritische fenomenen in de theorie van gecondenseerde materie.

Dit laatste aspect van de AdS/CFT correspondentie is een van de voornaam-

ste onderwerpen van deze thesis en in hoofdstuk 2 zullen we toepassingen van

de dualiteit onderzoeken in de holografische beschrijvingen van bepaalde kwan-

tumveldentheorieën. Deze laatsten hebben de specifieke eigenschap dat ze niet-

relativistisch zijn en gebruikt kunnen worden om in de theorie van gecondenseerde

materie systemen te beschrijven met een bepaalde type van anisotropie en schaal-

invariantie. We zullen begrijpen hoe de symmetrieën van zulke systemen gere-

aliseerd worden in de veldentheorie modellen en hoe we de gravitationele dualen

kunnen construeren. We zullen de vorm bespreken van de correlatiefuncties van

deze veldentheorieën en ze holografisch berekenen gebruik makend van specifieke

gravitationele modellen.

In hoofdstukken 3 en 4 zullen we ons richten op een ander aspect van de

AdS/CFT correspondentie. Momenteel is het een centraal probleem in holo-

grafie om te begrijpen hoe snaartheorie in ruimtetijden met asymptotica die niet

AdS zijn, geformuleerd kan worden in termen van veldentheorieën op mindere

dimensies. Deze onderzoeksrichting heeft wat succes gekend voor het geval van

niet-conforme braan-achtergronden, maar minder voor ruimtetijden met de Sit-

ter randvoorwaarden. Asymptotisch vlakke ruimten, daarentegen, blijft de meest

belangrijke klasse van gravitationele achtergronden waarin snaartheorie nog een

holografische formulering mist. De laatste twee hoofdstukken richten zich op het

inwinnen van enig inzicht in dit probleem en bevatten twee benaderingen tot

vlakke ruimte holografie die verschillende perspectieven volgen, één gebaseerd op

de vlakke ruimte limiet van AdS/CFT en een andere op het concept van holo-

grafische bedekkingen. De eerste benadering formuleert het probleem als een lim-

iet van AdS/CFT waar de AdS kromming Λ verdwijnt. We zullen de limiet van Λ

gaande naar nul bestuderen van vacuümsverwachtingswaarden en correlatiefunc-

ties in AdS/CFT en verschillende noodzakelijke voorwaarden bespreken die nodig

zijn zodat de correspondentie tussen de bulk en de randfysica een limiet heeft

die goed gedefinieerd is. We zullen bewijs vinden dat vermeende veldentheorieën

duaal aan snaartheorieën in AdS in de limiet van Λ gaande naar nul in essentie

gedefinieerd zijn in twee dimensies minder, een eigenschap consistent met het feit

dat de asymptotische rand van de AdS ruimten null worden in deze limiet.

De tweede benadering is gebaseerd op de observatie dat asymptotische Minkowski

ruimten altijd kunnen worden bedekt met Euclidsche AdS (of hyperbolische) hy-

pervlakken nabij de null-oneindigheid. Deze bedekking convergeert op natuurli-
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jke wijze asymptotisch naar een codimensie twee oppervlakte op de rand van de

ruimte. Omdat elk lid van de bedekking een AdS ruimte is, zullen we dit kenmerk

onderzoeken en postuleren dat een asymptotisch Minkowski ruimte een holografis-

che beschrijving toelaat in termen van een oneindige familie van (conform invari-

ante) veldentheorieën die leven op de gedegenereerde rand van de bedekking. We

zullen vinden dat het inderdaad mogelijk is om de asymptotica van zulke ruimteti-

jden te reconstrueren met observabelen die behoren tot een één-parameter familie

van conforme veldentheorieën in twee dimensies minder. In het geval van twee-

dimensionale veldentheorieën is deze parameter de centrale lading van deze theorie

en meet het in de zwaartekrachttheorie de ijkinvariante afstand tussen de verschil-

lende AdS oppervlakten.

In het volgende hoofdstuk beginnen we met de AdS/CFT correspondentie te

bespreken vanaf de eerste beginselen. We zullen beginnen met de grote N lim-

iet van Yang-Mills theorieën te bespreken en hun relatie met snaartheorieën zoals

hierboven vermeld. We zullen dan een beknopt overzicht geven van de aspecten

van snaartheorie die relevant zijn voor ons werk en in detail de originele aflei-

ding bespreken van de correspondentie van D-braan fysica en supergravitatie.

We zullen dan een significant deel van dit eerste hoofdstuk wijden aan de cor-

respondentie tussen toestanden en operatoren aan beide kanten van de dualiteit.

Tenslotte zullen we de berekening van correlatiefuncties in kwantumveldentheo-

rieën in snaartheorie bespreken.

278



Acknowledgements

I would like to thank the Portuguese Foundation for Science and Technology

as well as the University of Amsterdam for funding my PhD research. Without

this funding this work would not have been possible.

I would like to thank my advisor Marika Taylor for her guidance, for the physics

she taught me and for the freedom I was given to carry my own research. I would

like to thank Kostas Skenderis for all that I’ve learned with his teachings and for

having been a great promoter. I would also like to thank Jan de Boer for providing

such a stimulating environment in Amsterdam and to Simon Ross for the time I

spent at Durham University. I would like to thank Adam Bzowski and Ioannis Pa-

padimitriou for all the discussions we’ve had and for what I’ve learned with them

and also to Yegor Korovin, Joao Aparicio and Carlos Guedes for having been very

good colleagues and friends. I would like to thank my colleagues Daniel Mayerson

and Natascia Fokeeva for the time we spent together and for acting as paranymphs

during my PhD defense and to Daniel for translating the summary of this thesis

to Dutch. I am also grateful to Anders Sandberg for the illustration on the front

cover of this thesis. Outside my academic environment, I would like to thank my

mother for having been a Mother and to my family for their support, specially in

the last stage of my PhD during which I fell ill with a serious vestibulopathy after

a trip to South Korea.

Finally and most importantly, I would like to thank all physicists that have

educated me with their work and sacrifice without which I would not be the person

I am today.

279




