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Abstract. Dark matter remains one of the most puzzling mysteries in Fundamental Physics
of our times. Experiments at high-energy physics colliders are expected to shed light to its
nature and determine its properties. This review talk focuses on recent searches for dark-
matter signatures at the Large Hadron Collider, either within specific theoretical scenarios,
such as supersymmetry, or in a model-independent scheme looking for mono-X events arising
in WIMP-pair production.

1. Introduction
Both Astroparticle and Particle Physics pursue the exploration of the nature of dark matter
(DM) [1]. Among the long list of well-motivated candidates, the most popular particles are
cold and weakly interacting, typically predicting missing-energy signals at particle colliders.
Supersymmetry [2] and models with extra dimensions [3] are theoretical ideas that inherently
provide such a dark matter candidate. High-energy colliders, such as the Large Hadron
Collider [4] at CERN, are ideal machines for producing and eventually detecting DM [5].

The structure of this paper is as follows. Section 1 provides a brief introduction to the
relevance of colliders, and in particular the LHC experiments ATLAS and CMS, for the
production of dark matter. In Section 2, the strategy, methods, and results of the LHC
experiments as far as model-independent DM-production is concerned are discussed. In
Section 3, the latest results in searches for supersymmetry at the LHC are presented. The
paper concludes with a summary and an outlook in Section 4.

1.1. Dark matter and colliders
The nature of the dark sector of the Universe constitutes one of the major mysteries in
fundamental physics. According to recent observations from anisotropies of the cosmic
microwave background made by the Planck mission team [6], most of our Universe energy
budget consists of unknown entities: ∼26.8% is dark matter and ∼68.3% is dark energy, a form
of ground-state energy. Dark energy is believed to be responsible for the current-era acceleration
of the Universe. Dark matter, on the other hand, is matter inferred to exist from gravitational
effects on visible matter, being undetectable by emitted or scattered electromagnetic radiation.

Evidence from the formation of large-scale structure (galaxies and their clusters) strongly
favour cosmologies where non-baryonic DM is entirely composed of cold dark matter (CDM), i.e.
non-relativistic particles. CDM particles, in turn, may be weakly interacting massive particles
(WIMPs), a class of DM candidates that arise naturally in models which attempt to explain the

XIV Mexican Workshop on Particles and Fields IOP Publishing
Journal of Physics: Conference Series 651 (2015) 012023 doi:10.1088/1742-6596/651/1/012023

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



origin of electroweak symmetry breaking. Furthermore, the typical (weak-scale) cross sections
characterising these models are of the same order of magnitude as the WIMP annihilation cross
section, thus establishing the so-called WIMP miracle; this is precisely where the connection
between Cosmology and Particle Physics lies [7].

WIMP dark matter candidates include the lightest neutralino in models with weak-scale
supersymmetry [2], Kaluza-Klein photons arise in scenarios with universal extra dimensions
(UED) [3], while lightest T -odd particles are predicted in Little Higgs models [8] with a conserved
T -parity. The common denominator in these theories is that they all predict the existence of an
electrically neutral, colorless and stable particle, whose decay is prevented by a kind of symmetry:
R-parity, connected to baryon and lepton number conservation in SUSY models; KK-parity, the
four-dimensional remnant of momentum conservation in extra dimension scenarios; and a Z2

discrete symmetry called T -parity in Little Higgs models.
Weakly interacting massive particles do not interact neither electromagnetically nor strongly

with matter and thus, once produced, they traverse the various detectors layers without leaving
a trace, just like neutrinos. However by exploiting the hermeticity of the experiments, we can
get a hint of the WIMP presence through the balance of the energy/momentum measured in the
various detector components, the so-called missing energy. In hadron colliders, in particular,
since the longitudinal momenta of the colliding partons are unknown, only the transverse missing
energy, Emiss

T , can be reliably used to ‘detect’ DM particles.

1.2. The ATLAS and CMS experiments at the LHC
The Large Hadron Collider (LHC) [4], situated at CERN, the European Laboratory for Particle
Physics, outside Geneva, Switzerland, started its physics program in 2010 colliding two counter-
rotating beams of protons or heavy ions. Before the scheduled 2013–2014 long shutdown, the
LHC succeeded in delivering ∼ 5 fb−1 of integrated luminosity at centre-of-mass energy of 7 TeV
during 2010–2011 and another ∼ 23 fb−1 at

√
s = 8 TeV in 2012. The LHC has already extended

considerably the reach of its predecessor hadron machine, the Fermilab Tevatron, both in terms
of instantaneous luminosity and energy, despite the fact that it has not arrived yet to its design
capabilities.

The two general-purpose experiments, ATLAS (A Toroidal LHC ApparatuS) [9] and CMS
(Compact Muon Solenoid) [10], have been constructed and operate with the aim of exploring a
wide range of possible signals of New Physics that LHC renders accessible, on one hand, and
performing precision measurements of Standard Model (SM) parameters, on the other. It is
worth mentioning that the MoEDAL [11] experiment is specifically designed to explore high-
ionisation signatures that may also arise in some theoretical scenarios of dark matter [12].

The ATLAS [9] and CMS [10] detectors are designed to overcome difficult experimental
challenges: high radiation levels, large interaction rate and extremely small production cross
sections of New Physics signals with respect to known SM processes. To this end, both
experiments feature separate subsystems to measure charged particle momentum, energy
deposited by electromagnetic showers from photons and electrons, energy from hadronic showers
of strongly-interacting particles and muon-track momentum.

The most remarkable highlight of ATLAS and CMS operation so far is undoubtedly the
discovery of a new particle [13] that so far seems to have all the features pinpointing to a SM(-
like) Higgs boson [14]. The observation of this new boson has strong impact not only on our
understanding of the fundamental interactions of Nature, as encoded in the SM, but on the
proposed theoretical scenarios of Physics beyond the SM (BSM).

2. Model-independent DM production at the LHC
Collider searches for dark matter are highly complementary to direct [15,16] and indirect [16,17]
DM detection methods. The main advantage of collider searches is that they do not suffer from
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astrophysical uncertainties and that there is no lower limit to their sensitivity on DM masses.
The leading generic diagrams responsible for DM production [18,19] at hadron colliders involve
the pair-production of WIMPs plus the initial- or final-state radiation (ISR/FSR) of a gluon,
photon or a weak gauge boson Z, W . The ISR/FSR particle is necessary to balance the two
WIMPs’ momentum, so that they are not produced back-to-back resulting in negligible Emiss

T .
Therefore the search is based on selecting events high-Emiss

T events, due to the WIMPs, and a
single jet, photon or boson candidate.

The search results are interpreted in terms of a largely model-independent effective-field-
theory framework, in which the interactions between a DM Dirac fermion χ and SM fermions
f are described by contact operators. Some of the possible operators are listed in Table 1.
In this framework, the interaction between SM and DM particles is determined by only two
parameters, namely the DM-particle mass, mχ, and the suppression scale, M∗, which is related
to the mediator mass and to its coupling to SM and DM particles. The derived limits are
independent of the theory behind the WIMP (SUSY, extra dimensions, etc), yet it has been
assumed that other hypothetical particles are too heavy to be produced directly in pp collisions.
Henceforth, Dirac DM fermions are considered, however conclusions for Majorana fermions can
also be drawn, since their production cross section only differs by a factor of two.

Table 1. Effective interaction operators of WIMP pair production considered in the mono-X
analyses, following the formalism of Ref. [18].

Name Initial state Type Operator

D1 qq scalar
mq

M3
∗
χ̄χq̄q

D5 qq vector 1
M2

∗
χ̄γµχq̄γµq

D8 qq axial-vector 1
M2

∗
χ̄γµγ5χq̄γµγ

µq

D9 qq tensor 1
M2

∗
χ̄σµνχq̄σµνq

D11 gg scalar 1
4M3

∗
χ̄χαs(G

s
µν)2

2.1. Monojet searches
Event topologies with a single high-ET jet and large Emiss

T , hereafter referred to as monojets,
constitute valuable probes of physics beyond the SM at the LHC. Both ATLAS [20] and CMS [21]
experiments have performed searches for an excess of monojet events over SM expectations in
a wide range of signatures. The analyses outlined here use the full 2011 pp LHC dataset at a
centre-of-mass energy of

√
s = 7 TeV. The primary SM process yielding a true monojet final

state is Z-boson production in association with a jet, where the Z decays to two neutrinos.
Other known processes acting as background in this search are Z(→ ``)+jets —with ` = e, µ—,
W+jets, tt̄ as well as single-top events. All electroweak backgrounds and multijet events passing
the selections criteria, as well as non-collision backgrounds, are in most cases determined by
data-driven methods. Top and diboson backgrounds are estimated solely from Monte Carlo
(MC) simulation.

The monojet analyses for ATLAS and CMS are based on some general requirements: large
Emiss

T , with thresholds typically ranging from 120 GeV to 500 GeV and a energetic jet with a
variable pT threshold higher than 110 GeV that fulfils high jet-reconstruction quality criteria.
Moreover, events with at least one electron or muon or a third jet are vetoed. Back-to-back
dijet events are suppressed by requiring the subleading jet not to be collinear with pmiss

T . The
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selected data are required to pass a trigger based on high Emiss
T (ATLAS) or large Emiss

T plus
one high-ET jet (CMS).

The data, amounting to ∼ 5 fb−1, are found to be in agreement with the SM expectations.
The results are interpreted in a framework of WIMP production with the simulated WIMP-
signal MC samples corresponding to various assumptions of the effective field theory, as discussed
previously. In this framework, the interaction between SM and DM particles are defined by only
two parameters, namely the DM-particle mass, mχ, and the suppression scale, M∗, which is
related to the mediator mass and to its coupling to SM and DM particles.

Experimental and theoretical systematic uncertainties are considered when setting limits on
the model parameters M∗ and mχ. The experimental uncertainties on jet energy scale and
resolution and on Emiss

T range from 1− 20% of the WIMP event yield, depending on the Emiss
T

and pT thresholds and the considered interaction operator. Other experimental uncertainties
include the ones associated with the trigger efficiency and the luminosity measurement. On the
other hand, the parton-distribution-function set, the amount of ISR/FSR, and the factorisation
and renormalisation scales assumed lead to theoretical uncertainties on the simulated WIMP
signal.
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Figure 1. ATLAS lower limits at 90% CL on the suppression scale, M∗, for different masses
of χ obtained with the monojet analysis for the operators D1 (top left), D5 (top right) and D8
(bottom). The region below the limit lines is excluded. All shown curves and areas are explained
in the text. From Ref. [20].
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From the limit on the visible cross section of new BSM physics processes, lower limits
on the suppression scale as a function of the WIMP mass have been derived by the ATLAS
Collaboration [20]. The 90% confidence level (CL) lower limits for the D1, D5 and D8 operators
are shown in Fig. 1. The observed limit on M∗ includes experimental uncertainties; the effect
of theoretical uncertainties is indicated by dotted ±1σ lines above and below it. Around the
expected limit, ±1σ variations due to statistical and systematic uncertainties are shown as
a grey band. The lower limits are flat up to mχ . 100 GeV and become weaker at higher
mass due to the collision energy. In the bottom-right corner of the (mχ, M∗) plane (light-grey
shaded area), the effective field theory approach is no longer valid. The rising lines correspond
to couplings consistent with the measured thermal relic density [18], assuming annihilation in
the early universe proceeded exclusively via the given operator. Similar exclusion limits for all
operators listed in Table 1 are given in Ref. [20]. For the operator D1, the limits are much
weaker (∼ 30 GeV) than for other operators. Nevertheless, if heavy-quark loops are included in
the analysis, much stronger bounds on M∗ can be obtained [22].

The observed limit on the dark matter-nucleon scattering cross section depends on the mass
of the dark matter particle and the nature of its interaction with the SM particles. The limits
on the suppression scale as a function of mχ can be translated into a limit on the cross section
using the reduced mass of χ-nucleon system [19], which can be compared with the constraints
from direct and indirect detection experiments, as we shall see at the end of this Section in
conjunction with bounds acquired with other mono-X analyses.
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Figure 2. ATLAS 95% CL limits on
WIMP annihilation rates 〈σv〉 versus
mass mχ, inferred from the monojet
analysis. Explanation of the shown
curves is given in the text. From
Ref. [20].

The ATLAS collider limits on vector (D5) and axial-vector (D8) interactions are also
interpreted in terms of the relic abundance of WIMPs, using the same effective theory
approach [18]. The upper limits on the annihilation rate of WIMPs into light quarks, defined as
the product of the annihilation cross section σ and the relative WIMP velocity v averaged over
the WIMP velocity distribution 〈σv〉, are shown in Fig. 2. The results are compared to limits on
WIMP annihilation to bb̄, obtained from galactic high-energy gamma-ray observations, measured
by the Fermi-LAT telescope [23]. Gamma-ray spectra and yields from WIMPs annihilating to bb̄,
where photons are produced in the hadronisation of the quarks, are expected to be very similar
to those from WIMPs annihilating to light quarks [24]. Under this assumption, the ATLAS
and Fermi-LAT limits can be compared, after scaling up the Fermi-LAT values by a factor
of two to account for the Majorana-to-Dirac fermion adaptation. Again, the ATLAS bounds
are especially important for small WIMP masses: below 10 GeV for vector couplings and below
about 100 GeV for axial-vector ones. In this region, the ATLAS limits are below the annihilation
cross section needed to be consistent with the thermic relic value, keeping the assumption that
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WIMPs have annihilated to SM quarks only via the particular operator in question. For masses
of mχ & 200 GeV the ATLAS sensitivity becomes worse than the Fermi-LAT one. In this region,
improvements can be expected when going to larger centre-of-mass energies at the LHC.

The case in which the mediator is light enough to be accessible to the LHC has been considered
too by the CMS experiment in a monojet search performed with ∼ 20 fb−1 at 8 TeV [25].
Figure 3 shows the observed limits on the contact interaction scale Λ as a function of the
mass of the mediator M , assuming vector interactions and a dark matter mass of 50 GeV
and 500 GeV. The width Γ of the mediator is varied between M/3 and M/8π [26]. It shows
the resonant enhancement in the production cross section once the mass of the mediator is
within the kinematic range and can be produced on-shell. For mχ & 100 GeV, this approach is
adequate and quite conservative in the bounds on Λ. For mχ . 100 GeV, the collider bounds are
considerably weaker. At large mediator masses, i.e. M & 5 TeV, the limits on Λ approximate
to those obtained in the effective theory framework.
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Figure 3. Observed limits on the
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M , assuming vector interactions and
a dark matter mass of 50 GeV (blue)
and 500 GeV (red) in a CMS monojet
analysis. The width of the mediator
was varied between M/3, M/10 and
M/8π. From Ref. [25].

2.2. Monophoton-based probes
In the same fashion as in the monojet searches, the monophoton analyses aim at probing dark
matter requiring large Emiss

T —from the χ-pair production— and at least one ISR/FSR photon.
Searches in monophoton events by ATLAS [27] and CMS [28] also show an agreement with the
SM expectations. The limits are derived in a similar fashion as for the monojet search, however
the monophoton search is found to be somewhat less sensitive with respect to the monojet
topology.

The primary (irreducible) background for a γ+Emiss
T signal comes from Zγ → νν̄γ production.

This together with other SM backgrounds, including Wγ, W → eν, γ + jet multijet, diphoton
and diboson events, as well as backgrounds from beam halo and cosmic-ray muons, are taken into
account in the analyses. The CMS analysis is based on singe-photon triggers, whilst ATLAS
relies on high-Emiss

T triggered events. The photon candidate is required to pass tight quality
and isolation criteria, in particular in order to reject events with electrons faking photons. The
missing transverse momentum of the selected events should be as high as 150 GeV (130 GeV)
in the ATLAS (CMS) search. In CMS, events with a reconstructed jet are vetoed, while the
ATLAS analysis rejects events with an electron, a muon or a second jet.
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Both analyses, observe no significant excess of events over the expected background when
applied on ∼ 5 fb−1 of pp collision data at

√
s = 7 TeV. Hence they set lower limits on the

suppression scale, M∗ versus the DM fermion mass, mχ, which in turn they are translated
into upper limits on the nucleon-WIMP interaction cross section applying the prescription in
Ref. [18]. Figure 4 shows the 90% CL upper limits on the nucleon-WIMP cross section as a
function of mχ derived from the ATLAS search [27]. The results are compared with previous
CDF [29], CMS [21,28] and direct WIMP detection experiments [30–34] results. The CMS limit
curve generally overlaps the ATLAS curve.

 [GeV]m
1 10 210 310

] 2
-N

uc
le

on
 c

ro
ss

 s
ec

tio
n 

[c
m

 

-4510

-4410

-4310

-4210

-4110

-4010

-3910

-3810

-3710

-3610

-3510

-3410

-3310 90% CL, Spin Dependent
SIMPLE Picasso

Dirac
) j(qCDF, D8, q  

Dirac
)( q), D8, q-1CMS (5 fb

Dirac
)( qATLAS, D8, q

Dirac
)( qATLAS, D9, q

ATLAS -1 Ldt = 4.6 fb =7 TeV, s  

 [GeV]m
1 10 210 310

90% CL, Spin Independent
XENON100 CDMS
CoGeNT Dirac

) j(qCDF, D5, q

Dirac
)( q), D5, q-1CMS (5 fb  

Dirac
)( qATLAS, D5, q  

Dirac
)( qATLAS, D1, q
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mχ for spin-dependent (left) and spin-independent (right) interactions, corresponding to D8,
D9, D1, and D5 operators, derived from the monophoton analysis. Explanation of the shown
curves is given in the text. From Ref. [27].

The observed limits on M∗ typically decrease by 2% to 10% if the −1σ theoretical uncertainty,
resulting from the same sources as the one cited in the monojet analysis, is considered. This
translates into a 10% to 50% increase of the quoted nucleon-WIMP cross section limits. To
recapitulate, the exclusion in the region 1 GeV < mχ < 1 TeV (1 GeV < mχ < 3.5 GeV)
for spin-dependent (spin-independent) nucleon-WIMP interactions is driven by the results from
collider experiments, always under the assumption of the validity of the effective theory, and is
still dominated by the monojet results.

2.3. Mono-W and mono-Z final states
As demonstrated in the previous sections, searches for monojet or monophoton signatures have
yielded powerful constraints on dark matter interactions with SM particles. Other studies
propose probing DM at LHC through a pp→ χχ̄+W/Z, with a leptonically decaying W [35] or
Z [36]. The final state in this case would be large Emiss

T and a single charged lepton (electron or
muon) for the mono-W signature (monolepton) or a pair of charged leptons that reconstruct to
the Z mass for the mono-Z signature. In either case, the gauge boson radiations off a qq̄ initial
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state and an effective field theory is deployed to describe the contact interactions that couple
the SM particle with the WIMP.

In Ref. [37], the existing W ′ searches from CMS [38] —which share a similar final state with
mono-W searches— are used to place a bound on mono-W production at LHC, which for some
choices of couplings are better than monojet bounds. This is illustrated in the left (right) panel
of Fig. 5, where the spin-dependent (spin-independent) WIMP-proton cross section limits are
drawn. The parameter ξ parametrises the relative strength of the coupling to down-quarks with
respect to up-quarks: ξ = +1 for equal couplings; ξ = −1 for opposite-sign ones; and ξ = 0
when there is no coupling to down-quarks. Even in cases where the monoleptons do not provide
the most stringent constraints, they provide an interesting mechanism to disentangle WIMP
couplings to up-type versus down-type quarks. Such an interpretation has also been performed
in Ref. [35] yielding similar limits.
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Figure 5. CMS monolepton search with 20 fb−1 at 8 TeV. Excluded proton-dark matter cross
section for axial-vector-like, i.e. spin dependent (left), and vector-like, i.e. spin independent
(right), for the combination of electron and muon channels. The CMS monojet result is for
20 fb−1 of 2012 data [25]. From Ref. [37].

The ATLAS Collaboration has extended the range of possible mono-X probes by looking for
pp → χχ̄ + W/Z, when the gauge boson decays to two quarks [39], as opposed to the leptonic
signatures discussed so far. The analysis searches for the production of W or Z bosons decaying
hadronically and reconstructed as a single massive jet in association with large Emiss

T from the
undetected χχ̄ particles. For this analysis, the jet candidates are reconstructed using a filtering
procedure referred to as large-radius jets [40]. This search, the first of its kind, is sensitive to
WIMP pair production, as well as to other DM-related models, such as invisible Higgs boson
decays (WH or ZH production with H → χχ̄).

Figure 6 shows the 90% CL upper limits on the dark matter-nucleon scattering cross section as
a function of the mass of DM particle for the spin-independent (left) and spin-dependent (right)
models obtained by the ATLAS mono-W/Z analysis [39]. The new limits are also compared to
the limits set by ATLAS in the 7 TeV monojet analysis [20]. Limits from XENON100 [41],
CoGent [31], CDMS II [32], SIMPLE [33], COUPP [42], Picasso [34], IceCube [43] are
superimposed for comparison. For the spin-independent case with the opposite-sign up-type and

XIV Mexican Workshop on Particles and Fields IOP Publishing
Journal of Physics: Conference Series 651 (2015) 012023 doi:10.1088/1742-6596/651/1/012023

8



 [GeV]χm
1 10

210
3

10

4610

4410

4210

4010

3810

3610

SIMPLE 2011


W+IceCube W

bIceCube b

COUPP 2012

PICASSO 2012

D9:obs

)χχD9: ATLAS 7TeV j(

 = 8 TeVs  
1

        20.3 fb

spindependent

ATLAS

 [GeV]χm
1 10

210
3

10

]
2

N
 c

ro
s
s
s

e
c
ti
o
n
 [
c
m

χ

4610

4410

4210

4010

3810

3610
D5(u=d):obs

D5(u=d):obs

)χχD5:ATLAS 7TeV j(

COUPP 2012

CoGeNT 2010

XENON100 2012

CDMS lowenergy

spinindependent

90% CL

Figure 6. ATLAS-derived limits on χ-nucleon cross sections as a function of mχ at 90% CL for
spin-independent (left) and spin-dependent (right) cases, obtained with the mono-W/Z analysis
and compared to previous limits. From Ref. [39].

down-type couplings, the limits are improved by about three orders of magnitude. For other
cases, the bounds are similar. Comparable limits have been obtained by the CMS experiment.

It is worth noting that the spin-dependent limits derived from the operator D9, give a smaller,
hence better, bound on the WIMP-nucleon cross section throughout the range of mχ, compared
to direct DM experiments. In the spin-independent case the bounds from direct detection
experiments are stronger for mχ & 10 GeV, whereas the collider bounds, acquired with the
operator D5, get important for the region of low DM masses.

3. Searches for supersymmetry
Supersymmetry (SUSY) [44] is an extension of the Standard Model which assigns to each SM
field a superpartner field with a spin differing by a half unit. SUSY provides elegant solutions
to several open issues in the SM, such as the hierarchy problem and the grand unification. In
particular, SUSY predicts the existence of a stable weakly interacting particle —the lightest
supersymmetric particle (LSP)— that has the pertinent properties to be a dark matter particle,
thus providing a very compelling argument in favour of SUSY [45].

SUSY searches in the ATLAS [9] and CMS [10] experiments typically focus on events with
high transverse missing energy, which can arise from (weakly interacting) LSPs, in the case of
R-parity conserving SUSY, or from neutrinos produced in LSP decays, if R-parity is broken
(c.f. Section 3.4). Hence, the event selection criteria of inclusive channels are based on large
Emiss

T , no or few leptons (e, µ), many jets and/or b-jets, τ -leptons and photons. In addition,
kinematical variables such as the transverse mass, MT, and the effective mass, Meff , assist in
distinguishing further SUSY from SM events, whilst the effective transverse energy [46] can be
useful to cross-check results, allowing a better and more robust identification of the SUSY mass
scale, should a positive signal is found. Although the majority of the analysis simply look for
an excess of events over the SM background, there is an increasing application of distribution
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shape fitting techniques [47].
Typical SM backgrounds are top-quark production —including single-top—, W/Z in

association with jets, dibosons and QCD multijet events. These are estimated using semi- or
fully data-driven techniques. Although the various analyses are optimised for a specific SUSY
scenario, the interpretation of the results are extended to various SUSY models or topologies.

Analyses exploring R-parity conserving SUSY models at LHC are roughly divided into
inclusive searches for squarks and gluinos, for third-generation fermions, and for electroweak
production (pairs of χ̃0, χ̃±, ˜̀). Although these searches are designed and optimised to look
for R-parity conserving SUSY, interpretation in terms of R-parity violating (RPV) models is
also possible. Other analyses are purely motivated by oriented by RPV scenarios and/or by the
expectation of long-lived sparticles. Recent summary results from each category of ATLAS and
CMS searches are presented in this section.

3.1. Gluinos and first two generations of quarks
At the LHC, supersymmetric particles are expected to be predominantly produced hadronically,
i.e. through gluino-pair, squark-pair and squark-gluino production. Each of these (heavy)
sparticles is going to decay into lighter ones in a cascade decay that finally leads to an LSP,
which in most of the scenarios considered is the lightest neutralino χ̃0

1. The two LSPs would
escape detection giving rise to high transverse missing energy, hence the search strategy followed
is based on the detection of high Emiss

T , many jets and possibly energetic leptons. The analyses
make extensive use of data-driven Standard Model background measurements.

The most powerful of the existing searches are based on all-hadronic final states with large
missing transverse momentum [48, 49]. In the 0-lepton search, events are selected based on
a jet+Emiss

T trigger, applying a lepton veto, requiring a minimum number of jets, high Emiss
T ,

and large azimuthal separation between the Emiss
T and reconstructed jets, in order to reject

multijet background. In addition, searches for squark and gluino production in a final state
with one or two leptons have been performed [50,51]. The events are categorised by whether the
leptons have higher or lower momentum and are referred to as the hard and soft lepton channels
respectively. The soft-lepton analysis which enhances the sensitivity of the search in the difficult
kinematic region where the neutralino and gluino masses are close to each other forming the so-
called compressed spectrum. [52] Leptons in the soft category are characterised by low lepton-pT

thresholds (6− 10 GeV) and such events are triggered by sufficient Emiss
T . Hard leptons pass a

threshold of ∼ 25 GeV and are seeded with both lepton and Emiss
T triggers. Analyses based on

the razor [53] variable have also been carried out by both experiments [54,55].
The major backgrounds (tt̄, W+jets, Z+jets) are estimated by isolating each of them in a

dedicated control region, normalising the simulation to data in that control region, and then
using the simulation to extrapolate the background expectations into the signal region. The
multijet background is determined from the data by a matrix method. All other (smaller)
backgrounds are estimated entirely from the simulation, using the most accurate theoretical
cross sections available. To account for the cross-contamination of physics processes across
control regions, the final estimate of the background is obtained with a simultaneous, combined
fit to all control regions.

In the absence of deviations from SM predictions, limits for squark and gluino production are
set. Figure 7 illustrates the 95% CL limits set by ATLAS under the minimal Supergravity
(mSUGRA) model in the (m0, m1/2) plane [48, 56]. The remaining parameters are set to
tanβ = 30, A0 = −2m0, µ > 0, so as to acquire parameter-space points where the predicted
mass of the lightest Higgs boson, h0, is near 125 GeV, i.e. compatible with the recently observed
Higgs-like boson [13,14]. Exclusion limits are obtained by using the signal region with the best
expected sensitivity at each point. By assumption, the mSUGRA model avoids both flavour-
changing neutral currents and extra sources of CP violation. For masses in the TeV range, it

XIV Mexican Workshop on Particles and Fields IOP Publishing
Journal of Physics: Conference Series 651 (2015) 012023 doi:10.1088/1742-6596/651/1/012023

10



 [GeV]0m
0 1000 2000 3000 4000 5000 6000

 [G
eV

]
1/

2
m

300

400

500

600

700

800

900

1000

 (2000 G
eV)

q ~

 (1600 G
eV)

q ~

 (1000 GeV)g~

 (1400 GeV)g~

h (122 G
eV)

h (124 G
eV)

h (126 G
eV)

Expected
Observed
Expected
Observed
Expected
Observed
Expected
Observed
Expected
Observed
Expected
Observed

 > 0µ, 0 = -2m
0

) = 30, A`MSUGRA/CMSSM: tan( Status: SUSY 2013

ATLAS Preliminary
 = 8 TeVs, -1 L dt = 20.1 - 20.7 fb0

o¾

LSP
 not included.theory

SUSYm95% CL limits. 

0-lepton, 2-6 jets

0-lepton, 7-10 jets

0-1 lepton, 3 b-jets

1-lepton + jets + MET

1-2 taus + jets + MET

 3 b-jets*2-SS-leptons, 0 - 

ATLAS-CONF-2013-047

arXiv: 1308.1841

ATLAS-CONF-2013-061

ATLAS-CONF-2013-062

ATLAS-CONF-2013-026

ATLAS-CONF-2013-007
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plane for the mSUGRA model. From Ref. [57].

typically predicts too much cold dark matter, however these predictions depend of the presence
of stringy effects that may dilute [58] or enhance [59] the predicted relic dark matter density. In
the mSUGRA case, the limit on squark mass reaches 1750 GeV and on gluino mass is 1400 GeV.

3.2. Third-generation squarks
The previously presented limits from inclusive channels indicate that the masses of gluinos and
first/second generation squarks are expected to be above 1 TeV. Nevertheless, in order to solve
the hierarchy problem in a natural way, the masses of the stops, sbottoms, higgsinos and gluinos
have to be below the TeV-scale to properly cancel the divergences in the Higgs mass radiative
corrections. Despite their production cross sections being smaller than for the first and second
generation squarks, stop and sbottom may well be directly produced at the LHC and could
provide the only direct observation of SUSY at the LHC in case the other sparticles are outside
of the LHC energy reach. The lightest mass eigenstates of the sbottom and stop particles, b̃1
and t̃1, could hence be produced either directly in pairs or through g̃ pair production followed
by g̃ → b̃1b or g̃ → t̃1t decays. Both cases will be discussed in the following.

For the aforementioned reasons, direct searches for third generation squarks have become a
priority in both ATLAS and CMS. Such events are characterised by several energetic jets (some
of them b-jets), possibly accompanied by light leptons, as well as high Emiss

T . A suite of channels
have been considered, depending on the topologies allowed and the exclusions generally come
with some assumptions driven by the shortcomings of the techniques and variables used, such
as the requirement of 100% branching ratios into particular decay modes.

In the case of the gluino-mediated production of stops, a simplified scenario (“Gtt model”),
where t̃1 is the lightest squark but mg̃ < mt̃1

, has been considered. Pair production of gluinos is

the only process taken into account since the mass of all other sparticles apart from the χ̃0
1 are

above the TeV scale. A three-body decay via off-shell stop is assumed for the gluino, yielding a
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100% branching ratio for the decay g̃ → tt̄χ̃0
1. The stop mass has no impact on the kinematics

of the decay and the exclusion limits [54,60,61] set by the CMS experiment are presented in the
(mg̃,mχ̃0

1
) plane in Fig. 8. For a massless LSP, gluinos with masses from 560 GeV to 1320 GeV

are excluded. Similar results are obtained if the decay g̃ → bb̄χ̃0
1 is considered instead, as shown

in Fig. 9.
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If the gluino is too heavy to be produced at the LHC, the only remaining possibility is
the direct t̃1t̃1 and b̃1b̃1 production. If stop pairs are considered, two decay channels can be
distinguished depending on the mass of the stop: t̃1 → bχ̃±1 and t̃1 → tχ̃0

1. CMS and ATLAS
carried out a wide range of different analyses in each of these modes at both 7 TeV and 8 TeV
centre-of-mass energy. In all these searches, the number of observed events has been found to be
consistent with the SM expectation. Limits have been set by ATLAS on the mass of the scalar
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top for different assumptions on the mass hierarchy scalar top-chargino-lightest neutralino [63],
as shown in the left panel of Fig. 10. A scalar top quark of mass of up to 480 GeV is excluded
at 95% CL for a massless neutralino and a 150 GeV chargino. For a 300 GeV scalar top quark
and a 290 GeV chargino, models with a neutralino with mass lower than 175 GeV are excluded
at 95% CL.
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Figure 10. Summary of the dedicated ATLAS searches [63] for stop pair production based on
20 − 21 fb−1 of pp collision data taken at

√
s = 8 TeV, and 4.7 fb−1 of pp collision data taken
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√
s = 7 TeV. Exclusion limits at 95% CL are shown in the (t̃1, χ̃

0
1) mass plane for channels

targeting t̃1 → bχ̃±1 , χ̃
±
1 → W±χ̃0

1 decays (left) and t̃1 decays to tχ̃0
1 or Wbχ̃0

1 or cχ̃0
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The dashed and solid lines show the expected and observed limits, respectively, including all
uncertainties except the theoretical signal cross section uncertainty. From Ref. [57].

For the case of a high-mass stop decaying to a top and neutralino (t̃1 → tχ̃0
1), analyses

requiring one, two or three isolated leptons, jets and large Emiss
T have been carried out. No

significant excess of events above the rate predicted by the SM is observed and 95% CL upper
limits are set on the stop mass in the stop-neutralino mass plane. The region of excluded stop
and neutralino masses is shown on the right panel of Fig. 10 for the ATLAS analyses. Stop
masses are excluded between 200 GeV and 680 GeV for massless neutralinos, and stop masses
around 500 GeV are excluded along a line which approximately corresponds to neutralino masses
up to 250 GeV. It is worth noting that a monojet analysis with c-tagging is deployed to cover
part of the low-mt̃1

, low-mχ̃0
1

region through the t̃1 → cχ̃0
1 channel.

3.3. Electroweak gaugino production
If all squarks and gluinos are above the TeV scale, weak gauginos with masses of few hundred
gigaelectronvolts may be the only sparticles accessible at the LHC. As an example, at

√
s =

7 TeV, the cross-section of the associated production χ̃±1 χ̃
0
2 with degenerate masses of 200 GeV

is above the 1-TeV gluino-gluino production cross section by one order of magnitude. Chargino
pair production is searched for in events with two opposite-sign leptons and Emiss

T using a jet
veto, through the decay χ̃±1 → `±νχ̃0

1. A summary of related analyses [64] performed by CMS is
shown in Fig. 11. Charginos with masses between 140 and 560 GeV are excluded for a massless
LSP in the chargino-pair production with an intermediate slepton/sneutrino between the χ̃±1
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and the χ̃0
1. If χ̃±1 χ̃

0
2 production is assumed instead, the limits range from 11 to 760 GeV. The

corresponding limits involving intermediate W , Z and/or H are significantly weaker.
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3.4. R-parity violating SUSY and meta-stable sparticles
R-parity is defined as: R = (−1)3(B−L)+2S , where B, L and S are the baryon number,
lepton number and spin, respectively. Hence R = +1 for all Standard Model particles and
R = −1 for all SUSY particles. It is stressed that the conservation of R-parity is an ad-hoc
assumption. The only firm restriction comes from the proton lifetime: non-conservation of both
B and L leads to rapid proton decay. R-parity conservation has serious consequences in SUSY
phenomenology in colliders: the SUSY particles are produced in pairs and the lightest SUSY
particle is absolutely stable, thus providing a WIMP candidate. Here we highlight the status of
RPV supersymmetry [65] searches at the LHC.

Both ATLAS and CMS experiments have probed RPV SUSY through various channels, either
by exclusively searching for specific decay chains, or by inclusively searching for multilepton
events. ATLAS has looked for resonant production of eµ, eτ and µτ [66], for multijets [67], for
events with at least four leptons [68] and for excesses in the eµ continuum [69]. Null inclusive
searches in the one-lepton channel [70] have also been interpreted in the context of a model
where RPV is induced through bilinear terms [71].

Recent CMS analyses are focused on studying the lepton number violating terms λijkLiLj ēk
and λ′ijkLiQj d̄k, which result in specific signatures involving leptons in events produced in pp
collisions at LHC. A search for resonant production and the following decay of µ̃ which is caused
by λ′211 6= 0 has been conducted [72]. Multilepton signatures caused by LSP decays due to
various λ and λ′ terms in stop production have been probed [73]. Reference [74] discusses
the possibility of the generic model independent search for RPV SUSY in 4-lepton events. A
summary of the limits set by several CMS analyses [61,73,75] are listed in Fig. 12.

In view of the null results in other SUSY searches, it became mandatory to fully explore
the SUSY scenario predicting meta-stable or long-lived particles. These particles, not present
in the Standard Model, would provide striking signatures in the detector and rely heavily on a
detailed understanding of its performance. In SUSY, non-prompt particle decay can be caused
by (i) very weak RPV [76], (ii) low mass difference between a SUSY particle and the LSP [77],
or (iii) very weak coupling to the gravitino in GMSB models [78, 79]. A small part of these
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bounds on the mass limits. From Ref. [62].

possibilities have been explored by the ATLAS [57] and CMS [62] experiments covering specific
cases, difficult to summarise here. There is still a wide panorama of signatures to be explored,
in view of various proposed SUSY scenarios pointing towards this direction.

As a last remark, we address the issue of (not necessarily cold) dark matter in RPV
SUSY models. These seemingly incompatible concepts can be reconciled in models with a
gravitino [80, 81] or an axino [82, 83] LSP with a lifetime exceeding the age of the Universe. In
both cases, RPV is induced by bilinear terms in the superpotential that can also explain current
data on neutrino masses and mixings without invoking any GUT-scale physics [71]. Decays
of the next-to-lightest superparticle occur rapidly via RPV interaction, and thus they do not
upset the Big-Bang nucleosynthesis, unlike the R-parity conserving case. Such gravitino DM is
proposed in the context of µνSSM [84] with profound prospects for detecting γ rays from their
decay [85].

Recent evidence on the four-year Fermi data that have found excess of a 130 GeV gamma-ray
line from the Galactic Center [86] have been studied in the framework ofR-parity breaking SUSY.
A decaying axino DM scenario based on the SUSY KSVZ axion model with the bilinear R-parity
violation explains the Fermi 130 GeV gamma-ray line excess from the GC while satisfying other
cosmological constraints [83]. On the other hand, gravitino dark matter with trilinear RPV —in
particular models with the LLE RPV coupling— can account for the gamma-ray line, since there
is no overproduction of anti-proton flux, while being consistent with big-bang nucleosynthesis
and thermal leptogenesis [81].
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4. Summary and outlook
The nature of dark matter remains one of the mysteries of Particle Physics and Cosmology.
Mono-X searches at the LHC provide strong constraints on dark matter properties in an effective
field theory formalism. Colliders are superior to direct searches if dark matter is very light
(< 10 GeV) or if interactions are spin-dependent. Extensive efforts are currently in progress on
the validity of the effective field-theory approach, the proper comparison with the results from
direct detection experiments and the use of simplified models with light mediators. Analyses
looking for specific models providing DM candidates, such as Supersymmetry, are ongoing.
Searches continue with the full 2012 dataset but a new discovery might eventually require more
energy and more data coming up in 2015.
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