
ARC SDK: A toolbox for distributed computing and

data applications

M Skou Andersen1, D Cameron2 and J Lindemann3

1 University of Copenhagen, NBI, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
2 Department of Physics, University of Oslo, P.b. 1048 Blindern, N-0316 Oslo, Norway
3 Lunarc, Lund University, Box 118, 221 00 Lund, Sweden

Abstract.
Grid middleware suites provide tools to perform the basic tasks of job submission and

retrieval and data access, however these tools tend to be low-level, operating on individual
jobs or files and lacking in higher-level concepts. User communities therefore generally develop
their own application-layer software catering to their specific communities’ needs on top of the
Grid middleware. It is thus important for the Grid middleware to provide a friendly, well
documented and simple to use interface for the applications to build upon. The Advanced
Resource Connector (ARC), developed by NorduGrid, provides a Software Development Kit
(SDK) which enables applications to use the middleware for job and data management. This
paper presents the architecture and functionality of the ARC SDK along with an example
graphical application developed with the SDK. The SDK consists of a set of libraries accessible
through Application Programming Interfaces (API) in several languages. It contains extensive
documentation and example code and is available on multiple platforms. The libraries provide
generic interfaces and rely on plugins to support a given technology or protocol and this modular
design makes it easy to add a new plugin if the application requires supporting additional
technologies.The ARC Graphical Clients package is a graphical user interface built on top of
the ARC SDK and the Qt toolkit and it is presented here as a fully functional example of an
application. It provides a graphical interface to enable job submission and management at the
click of a button, and allows data on any Grid storage system to be manipulated using a visual
file system hierarchy, as if it were a regular file system.

1. Introduction
In the classical Grid architecture [1], Grid middleware sits between applications and the
distributed resources that application users wish to exploit. Middleware itself typically follows
a client-server model, where applications interact with local client software through an API,
and these clients communicate with middleware services located at the Grid resources. The
ARC middleware [2], developed by NorduGrid, contains both these components: a Computing
Element, a service to connect computing resources to the Grid, and a client-side SDK, to allow
application developers to interface to the Grid. This focus of this paper is the SDK. The SDK
architecture is explained along with some examples of how to use it and then the ARC Graphical
Clients, a graphical application built on the SDK, is presented.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032015 doi:10.1088/1742-6596/513/3/032015

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

2. SDK Architecture
The ARC SDK is essentially a set of libraries accessible through an API to develop various
utilities and tools. The SDK consists of credential, compute, data, data staging and common
libraries, whose API are mostly high-level interfaces. The libraries rely on various plugins
dynamically loaded at runtime, making the libraries modular and easily extensible. In order to
extend the SDK to support any additional technology (within the modular scope of the SDK),
a new plugin can be created to provide a specialised implementation of a given generic interface
in a simple manner, without recompilation of the SDK libraries. The functionalities of the
various interfaces are: querying of registries and local information systems, matchmaking and
ranking, task description handling, task submission, task management, and working with various
transfer protocols and meta-protocols. An overview of the ARC SDK architecture showing such
interfaces can be seen in Figure 1.

Figure 1. Components of the SDK, applications and plugins.

The credential library is able to handle X.509 certificates and associated keys [3], which is
vital for Grid authentication and authorisation. The library supports X.509 mainly through
the OpenSSL toolkit, and is able to list certificate information, create proxy certificates,
create and sign certificate requests, add extensions to certificates, and verify certificate validity.
Furthermore, VOMS [4] attribute certificate extensions are supported, and it is possible to create
and parse such extensions.

The task of the compute library is to submit and manage Grid jobs, for which a wide range of
interfaces exist, with ARC supporting some of the major ones, such as EMI ES [5], GridFTP [6],
CREAM [7] and OGSA-BES [8] with or without ARC proprietary extension. When it comes
to describing computational tasks, they are formalised in standard terms, i.e. a specialised
language, with the ARC libraries currently supporting xRSL [9], JDL [10], EMI ADL [5], JSDL-
POSIX [11] and JSDL-HPC [12] languages.

Several different Grid information systems exist, with ARC supporting ARIS [13], EMI ES
resource information port-type [5] and Resource BDII [14] local information systems. EGIIS [13]
and EMIR [15] information registries are also supported. Using obtained information, resources

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032015 doi:10.1088/1742-6596/513/3/032015

2

are matched against the computational task description, and the matching resources are then
ranked according to user requirement, e.g. highest clock frequency, or shortest batch queue.
Several broker algorithms are included with ARC and it is possible to supply custom user-
defined brokers written in Python at runtime.

Data is a vital element in scientific computing in general and Grid in particular. An
abundance of data access protocols exist in Grid, and in addition there are catalogs mapping
logical data identifiers to (possibly several) physical replicas. ARC supports many Grid access
protocols and catalogs (e.g. GridFTP, SRM [50], HTTP(s) and LHC File Catalog). The data
library is capable of carrying out basic file and directory management tasks, such as copying,
removing, renaming and listing.

The datastaging library is designed for scheduling of large-scale data transfer to and from the
Grid [16]. For low-level data handling it uses the data library and datastaging is used in the ARC
Computing Element job execution service to manage data input and output for computational
tasks.

3. Using the SDK
In order to exploit the functionalities provided by the SDK, either the native C++ API, or
the SWIG [17] wrapped Python or Java APIs can be used. Furthermore, the libraries are
available and supported on major operating systems and platforms, such as Linux, Mac OS X
and Microsoft Windows.

import arc

import sys

UserConfig contains information on credentials and default services to use.

usercfg = arc.UserConfig("", "")

Simple job description which outputs hostname to stdout

jobdescstring = "&(executable=/bin/hostname)(stdout=stdout)"

Parse job description

jobdescs = arc.JobDescriptionList()

if not arc.JobDescription_Parse(jobdescstring, jobdescs):

print "Invalid job description"

sys.exit(1);

Use top-level NorduGrid information index to find resources

index = arc.Endpoint("ldap://index1.nordugrid.org:2135/Mds-Vo-name=NorduGrid,o=grid",

arc.Endpoint.REGISTRY,

"org.nordugrid.ldapegiis")

services = arc.EndpointList(1, index)

Do the submission

jobs = arc.JobList()

submitter = arc.Submitter(usercfg)

if submitter.BrokeredSubmit(services, jobdescs, jobs) != arc.SubmissionStatus.NONE:

print "Failed to submit job"

sys.exit(1)

Write information on submitted job to local job list (~/.arc/jobs.xml)

jobList = arc.JobInformationStorageXML(usercfg.JobListFile())

if not jobList.Write(jobs):

print "Failed to write to local job list %s" % usercfg.JobListFile()

Job submitted ok

print "Job submitted with job id %s" % jobs.front().JobID

Figure 2. Grid task submission using the ARC Python API.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032015 doi:10.1088/1742-6596/513/3/032015

3

An example of how to submit a job to the Grid is shown in Figure 21. In this code the top
level NorduGrid registry of Grid resources is first queried to obtain possible targets for the job.
The default (random) broker is used to choose a suitable resource and then the job is submitted.
Information on the job is then added to a local job list, so that the job can be tracked during
execution and eventually the result downloaded once execution completes.

4. ARC Graphical Clients
The ARC Graphical Clients [18] is an attempt at providing graphical clients for the ARC
middleware. To enable a native experience on all platforms, the C++ toolkit Qt [19] was used.
C++ is also the native language of the ARC middleware, enabling a well-integrated solution.

The ARC Graphical Clients consist of the following applications:

• Proxy generation: Standalone application for generating a proxy from different sources
(arcproxy-ui)

• Job management: Application for managing grid jobs using the ARC job list functionality
(arcstat-ui)

• Job submission: Application to handle the submission of parameter sweeps (arcsub-ui)

• Storage Explorer: Application for accessing grid storage (arcstorge-ui)

Figure 3. Main window of the ARC Storage Explorer.

The ARC Storage Explorer was built to simplify access to the national storage infrastructure
in Sweden. By using the ARC SDK, all the details of accessing different storage protocols is
hidden and effort can be directed on designing the user interface. An example screenshot of the
ARC Storage Explorer browsing data through the SRM protocol is shown in Figure 3. The right
pane has the list of files in the current directory along with some attributes of each file and the
left pane has an expandable tree-like structure of the directory hierarchy. A selection of buttons
at the top allow traversing the hierarchy, uploading, downloading, renaming and deleting files
as well as other operations.

The ARC Storage Explorer currently supports the FTP, GridFTP and SRM protocols. It
can also support more protocols as these are implemented in the ARC middleware without any
changes to the code, due to the ARC SDK’s modular nature. The ARC Graphical clients are
currently available for Mac OS X and Linux.

1 This example uses version 3.0.0 of the ARC API and is not guaranteed to be compatible with other versions.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032015 doi:10.1088/1742-6596/513/3/032015

4

5. Conclusion
This paper has presented a brief overview of the ARC SDK, explained its modular structure and
available plugins. An application built on the SDK, the ARC Storage Explorer, has been shown
as an example of the way that tools can be developed against an implementation-independent
interface which allows the freedom to choose between pluggable underlying technologies. The
SDK is a mature and well-supported product which is well suited for any application wishing to
exploit Grid resources.

References
[1] Foster I and Kesselman C 1999 The Grid: Blueprint for a New Computing Infrastructure (Morgan Kaufmann)
[2] Ellert M et al. 2007 Future Gener. Comput. Syst. 23 219–240 ISSN 0167-739X
[3] Public-Key Infrastructure (X.509) (PKI), Proxy Certificate Profile URL http://rfc.net/rfc3820.html

[4] Alfieri R et al. 2005 Future Gener. Comput. Syst. 21 549–558 ISSN 0167-739X
[5] 2011 European Middleware Initiative (EMI) Execution Service (ES) web site URL https://twiki.cern.ch/

twiki/bin/view/EMI/EmiExecutionService

[6] Allcock W et al. 2002 Parallel Comput. 28 749–771 ISSN 0167-8191
[7] Aiftimiei C et al. 2008 Job Submission and Management Through Web Services: the Experience with the

CREAM Service Proc. of CHEP 2007, J. Phys.: Conf. Ser. 119 062004 ed R Sobie R T and Thomson J
(IOP) URL http://dx.doi.org/10.1088/1742-6596/119/6/062004

[8] Foster I et al. 2007 OGSATM Basic Execution Service Version 1.0 gFD-R-P.108 URL http://www.ogf.org/

documents/GFD.108.pdf

[9] The Globus Resource Specification Language RSL v1.0. URL http://www.globus.org/toolkit/docs/2.4/

gram/rsl_spec1.html

[10] Pacini F and Maraschini A 2007 Job Description Language attributes specification EGEE-JRA1-TEC-590869-
JDL-Attributes-v0-8 URL https://edms.cern.ch/document/590869/1

[11] Anjomshoaa A et al. 2008 Job Submission Description Language (JSDL) Specification, Version 1.0 (first
errata update) gFD-R.136 URL http://www.ogf.org/documents/GFD.136.pdf

[12] Humphrey M et al. 2007 JSDL HPC Profile Application Extension, Version 1.0 gFD-R.111 URL http:

//www.ogf.org/documents/GFD.111.pdf

[13] Kónya B and Johansson D The NorduGrid/ARC Information System The NorduGrid Collaboration
NORDUGRID-TECH-4 URL http://www.nordugrid.org/documents/arc_infosys.pdf

[14] Field L and Schulz M W 2004 Grid deployment experiences: The path to a production quality ldap based
grid information system. Proceedings of the Conference for Computing in High-Energy and Nuclear Physics
pp 723–726

[15] Field L, Memon S, Marton I and Szigeti G 2013 Journal of Grid Computing 1–12
[16] Cameron D, Gholami A, Karpenko D and Konstantinov A 2010 Adaptive data management in the arc grid

middleware J. Phys.: Conf. Ser.
[17] Swig, simplified wrapper and interface generator URL http://www.swig.org

[18] Arc graphical clients URL http://arc-gui-clients.sourceforge.net/

[19] Qt URL https://qt-project.org

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032015 doi:10.1088/1742-6596/513/3/032015

5

http://rfc.net/rfc3820.html
https://twiki.cern.ch/twiki/bin/view/EMI/EmiExecutionService
https://twiki.cern.ch/twiki/bin/view/EMI/EmiExecutionService
http://dx.doi.org/10.1088/1742-6596/119/6/062004
http://www.ogf.org/documents/GFD.108.pdf
http://www.ogf.org/documents/GFD.108.pdf
http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html
http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html
https://edms.cern.ch/document/590869/1
http://www.ogf.org/documents/GFD.136.pdf
http://www.ogf.org/documents/GFD.111.pdf
http://www.ogf.org/documents/GFD.111.pdf
http://www.nordugrid.org/documents/arc_infosys.pdf
http://www.swig.org
http://arc-gui-clients.sourceforge.net/
https://qt-project.org

