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We apply the non-relativistic effective Lagrangian approach to the description of thēKd atom,

which is presently studied by the SIDDHARTA experiment at LNF-INFN. In particular, we

demonstrate that a systematic calculation of the retardation effect in theK̄d scattering length

is possible within this framework. It is argued that a relatively small size of the net correction

for the double scattering diagrams, despite the large valueof the ratioMK/mN, is related to the

cancellations occuring at the leading order [1].

6th International Workshop on Chiral Dynamics, CD09
July 6-10, 2009
Bern, Switzerland

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
C
D
0
9
)
0
6
5

Hadronic atoms Akaki Rusetsky

1. Introduction

Hadronic atoms are loosely bound states of hadrons and nuclei, which are created predomi-
nately by a static Coulomb force. For the states which are composed only of elementary hadrons
or of an elementary hadron and the deuteron, one observes a clear hierarchy of various physical
scales: the range of strong interactions (typically, of theorder of fm) is much smaller than av-
erage separation of the hadronic atom constituents, which is given by the Bohr radius and which
amounts up to a few hundreds of fm for various bound states. This hierarchy of scales ensures that
the observable characteristics of hadronic atoms – the energy levels and the decay width – can be
described in terms of a few parameters characterizing (arbitrarily complicated) strong interactions
of the constituent hadrons: the scattering length, the effective radius and so on. The situation with
the hadronic atoms involving heavy nuclei is conceptually different. In this case, the hadron, which
is bound in the atom, penetrates into the nucleus and feels strong interactions at a shorter distance.
For this reason, the exact position of the energy levels depend on the details of strong interactions
and can not be described merely in terms of the effective-range expansion parameters. This case is
not considered here.

Deser, Goldberger, Baumann and Thirring (DGBT) were first toderive [2] the expression for
the (complex) displacement of the ground state energy levelof a hadronic atom, which emerges due
to strong interactions. The real and imaginary parts of thisdisplacement, which define the energy
shift ∆Estr and the line widthΓ for the ground state, are given by

∆Estr−
i
2

Γ = −2α3µ2
c T + · · · , (1.1)

whereα stands for the fine structure constant,µc is the reduced mass of the hadronic atom con-
stituents,T denotes the elastic threshold scattering amplitude of the constituents, and the ellipses
stand for the higher-order terms inα . At this order,T can be regarded as a purely hadronic
quantity, being proportional to the scattering length in the elastic channel, evaluated in pure QCD.
Further, if there are open channels below threshold, the threshold scattering amplitude is complex
and the hadronic atom decays through strong interactions. Note also that the spacing between
the pure Coulomb levels in the hydrogen-like systems is a quantity of the orderα2 and, conse-
quently, the energy level displacement due to strong interactions represents a small perturbation to
the Coulomb levels.

The equation (1.1) suggests that measuring the hadronic atom energy shift and width, one
may directly extract the (complex) scattering length of thehadronic constituents. This simple
observation provides rationale behind the experiments on various hadronic bound systems, which
are performed in different high-energy laboratories. In turn, the hadronic scattering lengths are
important characteristics of strong interactions and the precise measurement of these quantities
allows one to gain deeper insight in the fundamental properties of hadron dynamics at low energy.
A detailed review on the physics case for DIRAC, Pionic Hydrogen, SIDDHARTA experiments
can be found, e.g., in Refs. [3, 4] (see further references therein).

It turns out that at present experimental precision the accuracy of Eq. (1.1) does not suffice.
Isospin-breaking corrections at leading order inα and light quark mass differencemd −mu are
not negligible. The evaluation of these corrections can be systematically carried out within the
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framework of the non-relativistic effective field theory. The resulting expression at the first non-
leading order in isospin breaking is given by

∆Estr−
i
2

Γ = −2α3µ2
c T

(

1−2αµc(lnα −1)T

)

+ · · · , (1.2)

where now the quantityT denotes the threshold amplitude calculated at the next-to-leading order
in isospin breaking parametersα andmd −mu (see, e.g., Ref. [3] for an exact definition), and the
ellipses stand for the next-to-next-to-leading order corrections.

Since 1998, the non-relativistic effective Lagrangian approach has been applied to study var-
ious hadronic atoms, and, in particular, to evaluate the leading-order isospin-breaking corrections.
Details can be found in the recent papers [3–19]. In particular, Refs. [3, 4] provide a review on the
subject. Here, we do not intend to review the subject again. In the following, we rather focus our
attention on (perhaps theoretically the most challenging and still unsolved) case ofK−p (kaonic
hydrogen) andK−d (kaonic deuterium) atoms, which are measured by SIDDHARTA collaboration
at LNF-INFN [20]. Applying Eq. (1.2) to the measured ground-state spectrum of these atoms1, one
may extract the complex threshold amplitudesTK̄p andTK̄d. The final aim of the experiment is to
determine the exact values of the S-waveK̄N scattering lengths in the isospin symmetry limita0,a1,
which correspond to the total isospinI = 0,1. Eventually, comparing these scattering lengths with
the prediction obtained within the unitarized ChPT, one maytest the present theoretical knowledge
of theK̄N dynamics at low energy. Below we discuss how the above goal can be achieved.

2. Essentials

As discussed above, our final goal is to go one step further from Eq. (1.2), expressing the
measured quantitiesTK̄p andTK̄d in terms ofa0,a1 and then to invert these expressions extracting
the values ofa0,a1 from the data. Below, we present only a brief summary of our approach. More
details can be found in Ref. [1]. In the beginning, the following remarks are in order.

i) The quantitiesa0,a1 are strongly absorptive, because inelastic channels are present below
threshold. This means that measuringbothkaonic hydrogen and kaonic deuterium is neces-
sary in order to determinea0 anda1 independently. Note that in case of the pionic hydrogen
and pionic deuterium the situation is different: theπN scattering lengths are real, so the
deuterium data plays an auxiliary role only.

ii) Relation ofTK̄p to a0,a1 can be easily worked out. On the contrary, relatingTK̄d to a0,a1

to a sufficient precision represents a serious theoretical challenge. Note that Faddeev studies
alone do not suffice for our purpose: what is needed is anexplicit relation (of a type of the
multiple-scattering series), which can be inverted to eventually determinea0 anda1.

iii) In order to study theK̄d scattering near threshold, we propose to apply the non-relativistic
effective Lagrangian approach, which has been successfully used to describe hadronic atoms

1It turns out that in case of kaonic atoms the higher-order corrections in Eq. (1.2) are not totally negligible (see,
e.g., [21]). The bulk of this correction comes, however, from the Coulomb photon exchanges in the loops and can be
easily taken into account to all orders.
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Figure 1: Double scattering diagrams contributing to thēKd scattering amplitude. The dashed and solid
lines denote the kaons and nucleons, respectively. The shaded blob in the diagram c) stands for theNN
scattering amplitude which emerges after iteration of theNN potential to all orders.

in the past. Our theory is based on the assumption that the range of theK̄N interactions
is smaller than that of theNN and K̄NN interactions. Consequently, in our approachK̄N
interactions are described by the local vertices, whereas two-nucleon and 3-body forces are
assumed to be described by non-local potentials. Eventually, these potentials, which can be
considered as an input in this approach, are calculated in ChPT with non-perturbative pions
[22]. The advantage of the present approach is that, since the K̄N interactions are local, the
usual perturbation theory directly produces multiple-scattering series.

iv) The effect of the 3-body force can be estimated and is found to be small. We believe that
it can be safely neglected. In addition, we expect that thereis no need to explicitly include
hyperonic channels in the non-relativistic approach.

v) Due to the large values of the scattering length the multiple-scattering series in thēKd scat-
tering are divergent and should be summed up to all orders. This is possible only in the static
limit mN → ∞. However, in reality the ratioξ = MK/mN ≃ 0.5 is not small and this may
potentially lead to sizable retardation corrections, which represent the largest source of the
uncertainty in the presently available theoretical results onK̄d scattering. On the other hand,
Faddeev calculations usually find a moderate effect, typically of the order of 20%. Thus the
challenge consists in understanding the size of the effect.

We emphasize that the sole method known to us, which enables one to systematically handle
the retardation corrections, is the use of the non-relativistic effective field theory. Applying the
perturbative uniform expansion [23] to an arbitrary Feynman integral appearing in the theory we
obtain the expansion of these integrals in powers of a variable

√

ξ .

3. Double scattering

As mentioned already, the multiple-scattering series for the quantityTK̄d are divergent in the
static approximation and should be summed up to all orders. To understand the formalism which
will be used to treat retardation corrections we, however, start from the double scattering diagrams
shown in Fig. 1. The sum of the three diagrams shown in Fig. 1 can be expanded in powers of

√

ξ

M
[2] = Ma +Mb+Mc = M

stat + ξ 1/2
M1 + ξM2+ ξ 3/2

M3 + · · · , (3.1)
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with only the diagram b) contributing in the static limit.
A detailed treatment of the diagrams depicted in Fig. 1 is given in Ref. [1]. Below, we shall

give a brief summary of the calculation. It should be understood that the expansion in Eq. (3.1) can
be obtained without calculating the Feynman integrals explicitly. In each of the diagrams the loop
integrations are performed over the kaon (l) and nucleon (p,q) momenta. The latter are always
of the order of the average nucleon momenta in the deuteronp,q ∼ 〈1/r〉wf , where the subscript
“wf” denotes the averaging in the deuteron ground state. As for the kaon momentum, the following
regimes should be distinguished:

1. The low-l regime:l ∼
√

ξ p ≪ p

2. The high-l regime:l ∼ p

3. Intermediate regime:
√

ξ p ≪ l ≪ p

Taylor-expanding the integrand in the Feynman integrals for each momentum regime sep-
arately, and summing everything up (with appropriate signs, see Refs. [1, 23]), we recover the
original Feynman integral expanded in powers of

√

ξ . Note that the low-l regime produces only
non-integer powers ofξ , i.e. ξ 1/2,ξ 3/2, · · ·, whereas the integer powers ofξ stem from the high-l
regime. The contribution coming from the intermediate regime cancels the divergences which arise
after the Taylor expansion in the first two regimes. If the dimensional regularization is used, the
perturbative uniform expansion described here coincides with the threshold expansion introduced
in Ref. [24]. The advantage of the former method is, however,that it is not tied to any particular
form of the regularization of the Feynman integrals. It is also clear that the method can be applied
to study the higher-order diagrams without any modification.

The straightforward calculations yield the following results [1]:

i) The leading-order correction to the static limit, which is proportional toξ 1/2, cancels in
channels both with isospin 0 and 1 if the contributions from all three diagrams shown in
Fig. 1 are taken into account. Although similar findings havebeen reported earlier [25], the
method described here enables one to systematically address such cancellations at higher
orders in the parameterξ as well.

ii) The expansion in powers of
√

ξ is convergent, albeit rather slowly. The net correction is not
very large (less than 20%) even atξ ≃ 0.5. We believe that this fact is largely explained by
the cancellation of the leading-order corrections although we also observe some cancellations
among higher-order terms.

4. Summing up multiple-scattering series

As seen, the retardation correction in double scattering diagrams is relatively small. This
brings us to the following conjecture. We assume that the retardation corrections in thēKd scatter-
ing can be treated perturbatively, whereas the series in thestatic limit should be summed up to all
orders. This means that, e.g., in order to obtain a correction atO(ξ 1/2) in the multiple-scattering
series, one has to sandwich the piece of the amplitudeξ 1/2M1 (see (Eq. 3.1)) with infinite number
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i i i

static static static static static static

Figure 2: One insertion of the retarded piece of the double scatteringK̄NN→ K̄NN transition amplitude in
the static series for̄Kd scattering (cf with Fig. 1).

of the static kaon exchanges from the right and from the left.To obtain the correction atO(ξ ), we
have to consider one insertion ofξM2 or two insertions ofξ 1/2M1 in the static series, and so on
(see Fig. 2).

The investigation of the recoil correction in multiple-scattering series is in progress and the
results will be reported elsewhere. Note that there is no complete cancellation of the leading-order
corrections which are proportional toξ 1/2 in the multiple-scattering series. It remains to be seen,
whether there are mechanisms of suppression of the retardation correction in this case.

5. Conclusions

Using the non-relativistic effective field theory, we investigate the retardation effect in the
low-energyK̄d scattering. In particular, we obtain the systematic expansion of theK̄d scattering
amplitude in the half-integer powers ofξ = MK/mN. Such an expansion can be carried out even if
the multiple-scattering series diverge and should be summed up to all orders. It is conceivable that
a relatively moderate size of the retardation correction even atξ ≃ 0.5 might originate from some
kind of cancellations, such as an exact cancellation of the leading-order retardation corrections in
the double scattering diagrams.
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