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The duality between gauge theory and string theory allows us new methods for understand-
ing the Pomeron. String theory on a curved space gives a unified description of the single-
Pomeron-exchange amplitude in gauge theories, interpolating between the Regge trajectories
at timelike momentum transfer and the BFKL region at large spacelike momentum transfer.

There is a long history, dating back to the 1970s, of attempts to show a connection between
string theory and QCD, led by ’t Hooft, Polyakov, and many others. In 1997 a precise conjeg-
ture was formulated by Maldacena !, who claimed that string theory in ten dimensions (on an
appropriate background space) and four-dimensional gauge theories are quantum-mechanically
equivalent. Maldacena’s conjecture is an example of a “duality”, a nonperturbative quantum
equivalence of classically different theories. (Note this is not related to twistors or any other
issue in perturbative calculations.) Here a single physical theory has multiple descriptions: the
first is gauge theory in 3+1 dimensions, while the second is string theory on a 3+1+1+5 dimen-
sional space. I have divided the 10 dimensions up in this strange way for the following reason:
the first 3+1 are the familiar ones; the last 5 will play no role here; but the 5th coordinate, “r”,
is important. Under duality, the fifth coordinate of the string theory corresponds roughly to
the energy scale u in the gauge theory. Both r and p take values between 0 and oo, with small
(large) r encoding the infrared (ultraviolet) of the gauge theory.

As with any duality, the magical relation comes with a catch. In any particular physical
regime, at most one of the multiple descriptions is simple. This catch is illustrated in Fig. 1,
where it can be seen that the conjecture is most useful in the upper right, but unfortunately QCD
lies in the lower left. So the stringy description of real QCD involves a string for which quantum
effects are large, and whose precise form is in any case unknown. This sounds disastrous; why
should we care about Maldacena duality if it is so completely useless for describing QCD?

There are two main reasons for maintaining interest in this subject. First, the 1 <« g2N « N
theories are the best toy models for QCD that we have ever had. Like QCD, they are Lorentz
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Figure 1: The Maldacena conjecture as a function of N (the number of colors) and the gauge coupling g.

invariant: they exist in 3+1 continuous Minkowski dimensions. They can exhibit infrared con-
finement and ultraviolet scaling, like QCD. Interesting non-perturbative dynamics inaccessible
both to Feynman diagrams and to lattice gauge theory can be computed. They can help iden-
tify universal or nonuniversal aspects of confining theories, can be useful for supporting or
disproving folk theorems and speculations that cannot otherwise be tested, and may someday
be useful for developing new methodologies in QCD. Second, though they are not familiar,
these 1 <« g2N <« N theories are interesting and natural gauge theories in their own right. For
instance, such a theory might be responsible for electroweak symmetry breaking, via technicolor-
like or other compositeness dynamics. This is off our main topic, however, so let us simply note
that study of these theories is well-justified on many counts.

String theory has gravity as its low-momentum limit, and there have already been a number
of surprisingly successful applications of the gravity limit of these toy models to QCD and to pure
Yang-Mills theory. But in this talk I will present an application that uses the stringy physics
of these toy models. The topic in question 2 is the Pomeron, a phenomenon which involves the
properties of fast hadrons, and the famous but little-understood work of BFKL 3 et al. The
question to which the Pomeron is the answer is the following: when objects are boosted to
very high energy, how do they change? We will address 2 — 2 elastic scattering, with fixed
momentum-transfer ¢, and with [t| < s — oo. Our precise questions are the following: How do
amplitudes grow with energy v/s? and how do they fall with angle (¢ < 0)?

Let us first address this in a simple context: flat-space string theory itself. What happens
to strings at large s and fixed t? The answer is well-known; strings in flat space become dense
and grow! We can see this from the behavior of the 2-to-2 scattering amplitudes in closed
string theory, which show Regge behavior A ~ 3, s7i(), Here the sum is over different “Regge
trajectories,” each of the form J;(t) = a.(t) = a((,l) + a't, sharing the same “slope” o’ but with
different “intercepts” ag). The “leading trajectory”, i = 1, has the largest intercept, which we
will simply call a, dropping the superscript.

For positive t (the timelike region, unphysical for scattering) massive states with m? =t
and spin j are present wherever J;(t) is an integer j. Thus the Regge trajectories determine the
spectrum. To interpret the amplitude at negative t, consider the Fourier transform from the
momentum space variable ¢ to the transverse position space variable =2 .

exp [—|Z1?/a’ In 5] )
Vins

This shows that as s increases, the effective size of the string grows, (|Z|?) ~ Ins. Thisis a
formula for random-walk diffusion, with a diffusion “time” proportional to the rapidity of the

J@t) ~ ap+ 't = A~ 50
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Figure 2: The Regge trajectories of string theory.

boost, 7 ~ In s. Exactly at t = 0 (forward scattering) one finds in string theory that the physics
at large s is dominated by the largest intercept, which in flat-space string theory is precisely at
J1(0) = ag = 2. The corresponding massless resonance of spin two is, of course, the graviton.
The corresponding cross-section then grows with s. (Note it must inevitably violate unitarity;
the tree-level string theory formula must at some point be strongly corrected by loops.) These
effects stem from a simple fact. A fixed observer will observe an increasingly boosted string for
a shorter and shorter proper time, due to Lorentz time dilation. This allows the observer to
resolve increasingly high-frequency fluctuations of the string, and these fluctuations make the
string appear both larger in size and more dense in its core.

Now, what about hadrons in QCD; what happens to them at large s, fixed t? For ¢t not too
negative, what’s true for strings is true for hadrons. Hadrons lie on Regge trajectories (as we
know both from data and from lattice results.) Scattering amplitudes show the same Gaussian
falloff with angle, do/dt ~ s~ indicating that hadrons grow at large s. This is due to the
huge number of “wee partons” — soft gluons — at small z. And the growing cross-sections,
which threaten to violate unitarity, indicate that hadrons become dense when boosted. The
dominant contribution to the scattering amplitude comes from the exchange not of a single
hadronic resonance but of a coherent combination of colorless excitations called the “Pomeron”,
and in these regimes it resembles the leading trajectory of string theory.

Unfortunately, since it is both nonperturbative and highly Lorentzian in character, neither
Feynman diagrams nor lattice methods can allow us to compute Pomeron exchange in the small
|t| region. Nor can we compute the very interesting transition from stringy behavior to the
region t € —1 GeV?2, where (flat-space) strings and hadrons strongly differ. But at very large
negative t, the Pomeron propagator can be computed. BFKL 3 calculate the relevant scattering
amplitudes at large s by resumming perturbation theory in analogy with the renormalization
group. In particular, they fix t, then sum all (as Ins)™ terms at leading order in os.

If turns out to be simplest to compare BFKL results and string theory at N > 1, constant—
as, t = 0. Of course this is quite far from QCD, where N = 3, the coupling runs, and the BFKL
computation is most reliable at ¢t « —A2. But we will work our way toward QCD from this
simpler beginning.

The BFKL computation involves summing all graphs that schematically look like Fig. 3.
The BFKL kernel at t = 0, K(s,k,,k".) is a function of the momenta k_, k' flowing through
the top and bottom gluon lines. The problem of including all leading Ins terms becomes a
resummation of not merely ladder diagrams but diagrams with ladders of ladders of ladders of
ladders of... After much effort one obtains a power of s times —- again — a diffusion kernel.
Again the diffusion time is proportional to rapidity In s, but strangely the “space” coordinate
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Figure 3: A graph contributing to the BFKL computation.

in which the diffusion occurs is In k;, — compare with Eq. 1 —

Agz = / dk. / KL (kL) K (5 ks K ) ®a(KL) @)

—[(m[k /k1])?/4DIn s

VirDlIns ' @)

4In2 7¢(3) aN
——aN .

K(s,ky k)=

where

jo=1+——aN, D= (4)

are the leading intercept and diffusion constant, respectively.

At very small constant ag, the BFKL calculation is universal: independent of N, matter
content, etc. This gives us confidence that we can recalculate it in a theory with a string
description, large N, and adjustable g2 N. In such a theory, we can compare two computations.
First, at small g2V, we can compute the amplitude using BFKL resummation — the infinite
set of Feynman diagrams just discussed. Second, at large g2 N, we can compute the amplitude
using string theory, deriving the answer from a single tree-level 2 — 2 string diagram, calculated
on curved 3 + 1 + 1+ 5 dimensional space.

To carry out the second computation, we need to know the curved space on which the strings
propagate. Maldacena’s conjecture requires that at large 7, corresponding to the (almost) scaling
ultraviolet region of the gauge theory, the curved space must be (almost) an AdSs x X. The five-
dimensional compact space X is of no consequence here, while AdS; includes the four ordinary
Minkowski coordinates and the coordinate r. The metric in this region is

ds? = redz, dz* + ﬁ +ds% (5)
- 13 2 X

This captures the approximate ultraviolet conformal invariance of a QCD-like gauge theory. A
rescaling in the gauge theory, * — (z, is an isometry of the metric if » — r/¢. But recall r ~ u
in the string/gauge duality; thus we correctly learn that the energies in the gauge theory are
rescaled by 1/¢ when lengths are rescaled by (. Meanwhile, in the infrared we would like to
have a confining theory. Experience with exact and approximate solutions for metrics related to
confining gauge theory has shown that for many purposes (including ours) it suffices to model
confinement in a simple way, as a lower cutoff on the coordinate r. Thus by placing a wall at
Tmin, such that 7 ~ u > 7min ~ A, A the confinement scale, we will obtain a universal behavior
which we claim will be true of any confining gauge theory with a dual string-theory description
(at large g2N). Thus our model metric is AdSs x X with r restricted to be greater than r,,,.



Our computation begins by reconsidering the flat space scattering amplitude in the light of
curved space. We note that t, which appears in the formula, is an eigenvalue of a Laplacian
acting on one of the scattering strings.

A~ gt = g2re't/2 s2+a'v2/2 (6)

Our claim (justified in our paper) is that the essential change from flat space is that the curved-
space V2 must be used. Thus in any weakly-curved space,

A~ Sze(a’ Ing)V2/2 = g2 HT (7)

where we recognize the second factor as a diffusion kernel, where 7 o Iln s is again a diffusion
time, with a diffusion operator

1 —&u
Hox —-V2= —Van - V2 4 V% = & + (4 — e 2t /to) (8)

where V% = 0 here and v = Inr. In order to gain intuition, it is also useful to view H as a
Schrodinger operator in u with potential V(u;t) = 4 — e~2%t/to. We are currently interested in
t =0, that is V(u; 0) = 4, a constant potential, giving a trivially-solved Schrédinger problem.
2 1

jo =2 — , D= 9
h=2-gan Pgn @
(This value of jo was later obtained by a different method*) Sandwiching this differential oper-
ator between the two scattering hadrons, and writing the kernel explicitly,

dr fdr' ) e—[(ln[r’/r‘])2/4Dlns]
A~/—/—d> I — DY (4 10
T d 1) s Vv4rtDln s 2(r) (10)

Hx -82+4= A~sPe H soe=Drl~81)

Compare this to Eq. 3. The amplitude is exactly of BFKL form, with k; — 7. How and why
did we get such similar answers?

The agreement of the form of the answer could have been predicted in advance, as some
of its aspects follow from conformal invariance, once r and k; are identified. In the string
calculation, the exchanged Pomeron — the graviton trajectory — is propagating in the curved
5th dimension, v = Inr. Indeed, this is the string’s ordinary Regge behavior; BFKL is Regge
diffusion, Eq. 1, with time Ins, and the space coordinate is In7 because of the metric, Eq. 5.
The coefficients jo and D differ in the two calculations, but these quantities should depend on
92N, so this is not surprising. Indeed jo — 1 as g2N — 0, and jo — 2 as g2N — oo.

Now, let’s move toward more realistic contexts. First, what about ¢t < 0? It took 8 years
to extend BFKL to t < 0, but in string theory it is very easy. The Schrodinger problem is only
slightly more challenging; the diffusion kernel for the differential operator Eq. 8 can be easily
analyzed. Next, how can we include confinement, and see the hadrons that should be present for
integer J and t > 07 Again, this simply requires studying ‘the spectrum of the same differential
operator H = —82% 4 V(u;t), now with ¢t > 0, and with appropriate boundary conditions at Tmsn
(or a more realistic metric.) Thus we can obtain the single-Pomeron exchange amplitude at all
t — the BFKL behavior, the hadronic resonances, and the transition between them — from the
analysis of the spectrum of a simple quantum mechanics Hamiltonian.

The logarithmically-running coupling can also be accommodated. In QCD, the order-a;
correction to BFKL, which includes the effect of the running, is large and negative. Thus BFKL
is only reliable at large negative t, where as < 1. There it is seen that the BFKL “cut” present
for a constant coupling turns into a dense set of BFKL “poles”. In string theory the running
coupling simply alters the effective potential V'(u;t). However, here we are not restricted to
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Figure 4: The positions of poles, as a function of ¢, in the Mellin transform from s to J of the Pomeron propagator,
according to a string theory dual description of a confining gauge theory with a logarithmically running coupling.

large negative t. Instead, we can see from our Schrédinger problem that the Regge trajectories
at positive ¢ evolve smoothly in t to become the BFKL-like “poles” at negative t. This is shown
in Fig. 4, which shows the position of the poles of the Mellin transform of the single-Pomeron-
exchange contribution to 2-to-2 hadron elastic scattering.

It is natural to conjecture that the analylic structure seen in the figure is preserved for
smaller g2 N, and applies even in QCD. But note the leading singularity is a pole that varies
monotonically with t, which might seem to contradict data. However, data and theory are both
ambiguous here; see our paper’s final chapter 2 for further discussion of these subtle issues.

I hope that my audience is now persuaded that using gauge/string duality to learn about
gauge theory is a worthwhile effort. The first applications of this formalism to issues of general
theoretical importance in QCD are currently appearing. Here we found that the form of the
BFKL result is reproduced in string theory, from Regge behavior in curved ten-dimensional
space. Our (large-N) results extend to both positive and negative ¢, and show how the single
Pomeron exchange amplitude incorporates both the BFKL-type kernel and the Regge trajec-
tories in a single analytic structure. Much more remains to do, especially regarding the t = 0
region at ultra-high s.
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