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Abstract
We consider some aspects of the linear theory of coupled

particle beams with equal eigenemittances and compare
them with the one dimensional Courant-Snyder theory.

INTRODUCTION AND PRELIMINARIES
The property of the beam matrix to be proportional to the

matrix which is simultaneously symmetric positive definite
and symplectic is the characteristic property of the particle
beams with equal eigenemittances, and the multidimensional
theory of such particle beams can be developed in almost
complete analogy with the famous one dimensional Courant-
Snyder approach [1]. The purpose of this paper is to present
some additional aspects of the linear theory of coupled par-
ticle beams with equal eigenemittances, which, due to space
limitation, were not mentioned in [2].

Beam Matrix and Its Transport
Let us consider a collection of points in 2𝑛-dimensional

phase space (a particle beam) and let, for each particle,

𝑧 = (𝑞, 𝑝)⊤ = (𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑛)⊤ (1)

be a vector of canonical coordinates 𝑞 and momenta 𝑝. Then,
as usual, the beam (covariance) matrix is defined as

Σ = Σ⊤ = ⟨(𝑧 − ⟨𝑧⟩) ⋅ (𝑧 − ⟨𝑧⟩)⊤⟩ def= ( Σ𝑞𝑞 Σ𝑞𝑝
Σ𝑝𝑞 Σ𝑝𝑝

) , (2)

where the brackets ⟨ ⋅ ⟩ denote an average over a distribution
of the particles in the beam. By definition, the matrix Σ is
symmetric positive semidefinite and in the following we will
restrict our considerations to the situation when this matrix
is nondegenerated and therefore positive definite.

Let 𝑠 be the independent variable (time or path length
along the design orbit), and let us assume that the particle
dynamics is governed by the linear system of Hamiltonian
equations

𝑑𝑧 / 𝑑𝑠 = 𝐽𝐻(𝑠) 𝑧, (3)

where

𝐽 = ( 0 𝐼
−𝐼 0 ) , 𝐻 = 𝐻⊤ = ( 𝐻11 𝐻12

𝐻21 𝐻22
) , (4)

and 𝐼 is the 𝑛 × 𝑛 identity matrix. Then the beam matrix Σ
satisfies the linear differential equations

𝑑Σ / 𝑑𝑠 = 𝐽𝐻Σ − Σ𝐻𝐽 (5)
∗ vladimir.balandin@desy.de

and evolves according to the congruence

Σ(𝑠) = 𝐴(𝑠) Σ(0) 𝐴⊤(𝑠), (6)
where the symplectic matrix

𝐴 = ( 𝐴11 𝐴12
𝐴21 𝐴22

) , 𝐴(0) = 𝐼 (7)

is the fundamental matrix solution of the Eq. (3).

Projected Emittances and Eigenemittances
Projected emittances 𝜀𝑚 are the rms phase space areas

covered by projections of the particle beam onto each coor-
dinate plane (𝑞𝑚, 𝑝𝑚). They can be calculated as follows

𝜀2
𝑚 = Σ𝑞𝑞(𝑚, 𝑚) ⋅ Σ𝑝𝑝(𝑚, 𝑚) − Σ2

𝑞𝑝(𝑚, 𝑚) (8)
and are used to characterize transverse and longitudinal beam
dimensions in the laboratory coordinate system (i.e. in the
variables 𝑧). Note that the projected emittances are invari-
ants under linear uncoupled (with respect to the laboratory
coordinate system) symplectic transport.

In order to define concept of eigenemittances, let us con-
sider the matrix Σ𝐽. This matrix is nondegenerated and is
similar to the skew symmetric matrix Σ1/2𝐽 Σ1/2, which
means that its spectrum is of the form

±𝑖𝜖1, … , ±𝑖𝜖𝑛, (9)
where all 𝜖𝑚 > 0 and 𝑖 is the imaginary unit. The quantities
𝜖𝑚 are called eigenemittances and are generalizations of the
projected emittances to the fully coupled case [3].

Eigenemittances are quantities which give beam dimen-
sions in the coordinate frame in which the beam matrix is
uncoupled between degrees of freedom and are invariants
under arbitrary (possibly coupled) linear symplectic trans-
formations.

If the beam matrix is uncoupled already in the laboratory
frame, then the set of projected emittances coincides with
the set of eigenemittances, and if the beam matrix has cor-
relations between different degrees of freedom, then these
two sets are different.

Note that the problem, which conditions two sets of pos-
itive real numbers must satisfy in order to be realizable as
eigenemittances and projected emittances of a beam matrix,
was solved for the most practically important two and three
degrees of freedom cases in the paper [4].

BEAM MATRIX WITH EQUAL
EIGENEMITTANCES

Let us assume that the matrix Σ has all eigenemittances
equal to each other and equal to the value 𝜖 > 0. Then the
matrix
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𝑊 def= Σ / 𝜖 (10)

is simultaneously symmetric positive definite and symplectic.
We call it the Twiss matrix and parametrize it as follows

𝑊 = ( 𝛽 −𝛼
−𝛼⊤ 𝛾 ) , (11)

where the 𝑛 × 𝑛 submatrices 𝛽 = 𝛽⊤, 𝛼 and 𝛾 = 𝛾⊤ are
the natural matrix generalizations of the corresponding 1D
scalar Twiss parameters [1, 2]. Due to symplecticity of the
matrix 𝑊 the matrix Twiss parameters satisfy the relations

𝛽 𝛾 = 𝐼 + 𝛼2, (12a)

𝛼 𝛽 = 𝛽 𝛼⊤, (12b)

𝛾 𝛼 = 𝛼⊤ 𝛾. (12c)

NORMALIZED VARIABLES
As it was earlier shown in [2], there exists a lower block

triangular symplectic matrix 𝑇 satisfying the relation

𝑊 = 𝑇−1 𝑇−⊤, (13)

and any such matrix can be represented in the form

𝑇 = ( 𝑟⊤𝛽−1/2 0
𝑟⊤𝛽−1/2 𝛼 𝑟⊤𝛽1/2 ) . (14)

where 𝛽1/2 denotes an unique positive definite symmetric
square root of the matrix 𝛽, and 𝑟 is an arbitrary 𝑛 × 𝑛 or-
thogonal matrix.

Substituting (13) into (6) one obtains

(𝑇(𝑠)𝐴(𝑠)𝑇−1(0)) ⋅ (𝑇(𝑠)𝐴(𝑠)𝑇−1(0))⊤ = 𝐼, (15)

which means that the 2𝑛 × 2𝑛 matrix

𝑅(𝑠) = 𝑇(𝑠) 𝐴(𝑠) 𝑇−1(0) (16)

is orthosymplectic (i.e. orthogonal and symplectic simulta-
neously) and therefore can be partitioned into the form

𝑅 = ( 𝐶 𝑆
−𝑆 𝐶 ) , 𝐶𝑆⊤ = 𝑆𝐶⊤, 𝐶𝐶⊤ + 𝑆𝑆⊤ = 𝐼. (17)

The equality (16), when written in the form

𝐴(𝑠) = 𝑇−1(𝑠) 𝑅(𝑠) 𝑇(0), (18)

gives us a (familiar in 1D) parametrization of the beam
transfer matrix 𝐴(𝑠), and if we will introduce normalized
variables 𝑧𝑛 by means of the equation

𝑧(𝑠) = 𝑇−1(𝑠) 𝑧𝑛(𝑠), (19)

then the dynamics in the variables 𝑧𝑛 is simply a rotation

𝑧𝑛(𝑠) = 𝑅(𝑠) 𝑧𝑛(0) (20)

and is governed by the system

𝑑𝑧𝑛 / 𝑑𝑠 = 𝐽𝐻𝑛(𝑠) 𝑧. (21)

In this system

𝐻𝑛 = ( 𝐴𝑛 𝐵𝑛
−𝐵𝑛 𝐴𝑛

) , 𝐴𝑛 = 𝐴⊤
𝑛 , 𝐵𝑛 = −𝐵⊤

𝑛 , (22)

and the 𝑛×𝑛 matrices 𝐴𝑛 and 𝐵𝑛 can be calculated as follows

𝐴𝑛 = 𝑟⊤𝛽−1/2𝐻22𝛽−1/2𝑟, (23)

𝐵𝑛 = 𝑟⊤ ⋅ 𝑑𝑟/𝑑𝑠 + 1
2 𝑟⊤𝛽−1/2[𝛽𝐻12 − 𝐻21𝛽 + 𝐻22𝛼⊤

−𝛼𝐻22 +𝑑𝛽1/2/𝑑𝑠 ⋅𝛽1/2 −𝛽1/2 ⋅𝑑𝛽1/2/𝑑𝑠]𝛽−1/2𝑟. (24)

One sees that by utilizing the arbitrariness of the matrix 𝑟
it is possible to make the matrix 𝐵𝑛 equal to zero, but it does
not seems to be a good choice because it makes the decom-
position (13) non-local and, in general, non-symmetric with
respect to the spacial variables 𝑞. So, our preferred choice
is to take 𝑟 = 𝐼, unless other, more important reasons will
appear.

BETATRON MISMATCH
Let us consider two Twiss matrices 𝑊1 and 𝑊2 propagat-

ing along the same beamline. If one expresses the matrix 𝐴
in (18) using 𝑇1 and 𝑅1 associated with the matrix 𝑊1 and
substitute this representation into the transport equation for
the matrix 𝑊2, then one obtains

(𝑇1𝑊2𝑇⊤
1 )(𝑠) = 𝑅1(𝑠) ⋅ (𝑇1𝑊2𝑇⊤

1 )(0) ⋅ 𝑅⊤
1(𝑠). (25)

Because 𝑅⊤
1 ≡ 𝑅−1

1 , the eigenvalues of the matrix 𝑇1𝑊2𝑇⊤
1

are invariants. This matrix is symplectic and symmetric
positive definite. Thus its eigenvalues (i.e. mismatch ampli-
tudes) can be arranged in the sequence

𝜆1, … , 𝜆𝑛, 𝜆−1
1 , … , 𝜆−1

𝑛 , (𝜆1 ≥ … ≥ 𝜆𝑛 ≥ 1) . (26)

Moreover, there exists orthosymplectic matrix 𝑄𝜆 such that

(𝑇1𝑊2𝑇⊤
1 )(0) = 𝑄𝜆 Δ𝜆 𝑄⊤

𝜆, (27)

where

Δ𝜆 = diag(Δ, Δ−1), Δ = diag(𝜆1, … , 𝜆𝑛). (28)

From (25) and (27) it follows that

(𝑇1𝑊2𝑇⊤
1 )(𝑠) = (𝑅1(𝑠) 𝑄𝜆) ⋅ Δ𝜆 ⋅ (𝑅1(𝑠) 𝑄𝜆)⊤, (29)

which expresses the dynamics of one Twiss matrix through
the known dynamics of the other Twiss matrix plus knowl-
edge of the mismatch amplitudes and phases, Δ𝜆 and 𝑄𝜆.
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PROPAGATION OF TWISS PARAMETER
It is clear that the matrix 𝑊 satisfies the same differential

equations as the matrix Σ, i.e. the equations

𝑑𝑊 / 𝑑𝑠 = 𝐽𝐻𝑊 − 𝑊𝐻𝐽, (30)

but now they has to be treated as differential equations with
constraints or differential equations on the manifolds defined
by the relations (12).

The purpose of this section is to show how one can obtain
the differential equation involving only the matrix 𝛽. We will
see that it is possible under assumption that the sub-matrix
𝐻22 in (4) is positive definite.

First, one can exclude easily from (30) equation for the
matrix 𝛾 using (12a) and obtain

𝑑𝛽/𝑑𝑠 = 𝐻21 𝛽 + 𝛽 𝐻12 − 𝛼 𝐻22 − 𝐻22 𝛼⊤, (31a)

𝑑𝛼/𝑑𝑠 = 𝛽𝐻11 − 𝛼𝐻21 + 𝐻21𝛼 − 𝐻22𝛽−1(𝐼 + 𝛼2). (31b)

As the next step one needs to express the matrix 𝛼 as a
single-valued function of the matrix 𝛽 and its derivative
using Equations (31a) and (12b). Under assumption that
𝐻22 > 0 it becomes possible and the unique solution for the
matrix 𝛼 can be expressed as follows

𝛼 = 1
2𝐶𝐻−1

22

+1
2𝐻22

∞
∫
0

𝐷(𝜉)(𝛽𝐻−1
22 𝐶 − 𝐶𝐻−1

22 𝛽)𝐷(𝜉)𝑑𝜉, (32)

where

𝐶 = 𝐻21 𝛽 + 𝛽 𝐻12 − 𝑑𝛽/𝑑𝜏, (33)

𝐷(𝜉) = 𝐻−1/2
22 exp (−𝐻−1/2

22 𝛽𝐻−1/2
22 𝜉) 𝐻−1/2

22 . (34)

Finally, the desired differential equation involving only
the matrix 𝛽 can be obtained by substituting (32) into the
Eq. (31b).

The given expression (32) for the matrix 𝛼 requires compu-
tations of the matrix exponential and evaluation of a matrix
integral, which looks rather inconvenient. But for particular
values of 𝑛 one can do that and, for example, for 𝑛 = 2 the
result is as follows

𝛼 = 1
2 [𝐶 + (𝛽𝐻−1

22 𝐶 − 𝐶𝐻−1
22 𝛽) /tr (𝛽𝐻−1

22 )] 𝐻−1
22 . (35)

SIEGEL UPPER HALF SPACE AND
GENERALIZED MOBIUS MAP

In the paper [5] it was shown that with an appropriate
parametrization the linear transport of the Twiss parameters
in 1D can be viewed as a bilinear (or Mobius) map of the
upper complex half-plane (which is the Poincare upper half

plane) into itself. In this section we show that for an arbitrary
𝑛 the linear dynamics of the Twiss parameters of the particle
beams with equal eigenemittances can be represented as
a generalized Mobius map acting on the so-called Siegel
upper half space, which is the natural generalization of the
Poincare upper half plane for the higher dimensions.

The Siegel upper half space ℍ𝑛 of order 𝑛 is the set of all
𝑛 × 𝑛 complex symmetric matrices 𝑍 with positive definite
imaginary part

ℍ𝑛 = {𝑍 = 𝑋 + 𝑖𝑌 ∈ ℂ(𝑛,𝑛) | 𝑍⊤ = 𝑍, 𝑌 > 0} . (36)

So, if one defines the one to one correspondence

𝑋 = 𝛽−1𝛼, 𝑌 = 𝛽−1 (37)

between the matrix Twiss parameters 𝛽 and 𝛼, and the ele-
ments of the Siegel upper half space 𝑍, then the transport of
the Twiss parameters in the variables 𝑍 takes on the form of
a generalized Mobius transformation

𝑍(𝑠) = − [𝐴22(𝑠)𝑍(0) − 𝐴21(𝑠)]

⋅ [𝐴12(𝑠)𝑍(0) − 𝐴11(𝑠)]−1 , (38)

and, therefore, the dynamics of the Twiss parameters can be
considered from the point of view of the symplectic geome-
try on ℍ𝑛 [6].

Note that the variables 𝑍 also satisfy the matrix differential
Riccati equation

𝑑𝑍/𝑑𝑠 = 𝐻11 − 𝐻12 𝑍 − 𝑍 𝐻21 + 𝑍 𝐻22 𝑍. (39)
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