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1. NLO calculations and subtraction schemes

The analysis of experimental signatures at the LHC regbeeretical predictions for differ-
ential distributions and cross sections. Since correstionLHC processes are in general large,
higher-order contributions are necessary to match exjeertimhaccuracies and reduce the theoreti-
cal uncertainty. Furthermore, they decrease renormiizaind factorization scale dependence of
the cross section. The general structure of any NLO caloulatonsists of two parts, the virtual
corrections and real radiation. In this context, the viresechange and real emission of partons
lead to divergences. After UV-renormalization, the vittaad real emission cross sections each
contain infrared and collinear singularities, which amgularized, usually, using dimensional reg-
ularization. In order to allow Monte Carlo simulations,feient approaches have been devised for
the treatment of the divergent parts originating from défeé phase space contributions, namely
phase space slicing and subtraction. In our case, we follewstibtraction approach, which has
proven its superiority in many analyses. Generally, sehita schemes introduce local counter-
terms a”, which match the behavior of the real-emission matrix eld@m# .. 1 in each soft and
collinear region. Subtracting these counter-terms froat-eeission matrix elements and adding
back the corresponding one-particle integrated countisrpathe virtual contribution d¥ results
in finite integrands for both the virtual correctiofip}m phase space) and the real contribution

({P}m-1 phase space):
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The form of the subtraction terms in the singular limits istdied by the well known factorization
properties of QCD amplitudes

M1 ({PYmi1) — ZVl ({P}mi1) © Am({P}m) (1.2)

Herev, denotes the splitting function involved in the scatteringogss and#, the corresponding
Born matrix element. Additionally, a proper mapping betwéee{ p}n.1 and{p}mn phase spaces
is required, which satisfies momentum conservation anchetiress.

2. Setup and implementation

Several different subtraction schemes exist at NLO, whifferdn the phase space mapping
relating real-emission and leading-order kinematics. unapproach, we use a new subtraction
scheme proposed by Nagy and Soper (NS) in the context of arpsainower with quantum inter-
ference [1, 2, 3]. In this scheme, for a given numb)y ¢f particles in the final state, the number
of mappings (relating real-emission and leading-ordeetiatics), as well as the number of sub-
traction terms (local counter terms) scale With This is already an improvement over the other
well-established scheme, namely the Catani-Seymour (@8jaction scheme [4], in which the
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scaling is withN®3. Even a constant scaling behavior could be achieved fod-giuon final state
within the Madgraph framework [5]. Moreover, the appliocatiof the shower splitting functions as
subtraction terms in the NS-scheme facilitates the contibimaf shower and NLO calculations.
The small number of counterterms is obtained by treatinfjradl state partons, which do not par-
ticipate in the splitting as a collective spectator. Hehe, $pectator momenta are reshuffled via a
unique Lorentz-transformation

5 2(K+KH(K+K)y 2KHK,
A, (K K) =gH, — -
V( ’ ) g v (K+K)2 K2 ’

(2.1)

whereK = Q— (P + pj) andK = Q — p; denote the momentum of the collective spectator in the
{p}m+1 @and{p}m parton phase space. Throughout our subtraction schemglitthg functions

are derived from usual QCD vertices, spinors and poladratiectors for on-shell partons. In
the case of virtual contributions, a fully analytical intagion of the splitting functions over the
unresolved parton (splitting variable) has to be performdence, for the final state splitting, the
full singularity structure can be extracted in form of theperator

A_ B (= B ) .
mllda Izm/da ®1/d"f/ m/[da o] 2.2)

In this connection, the splitting variable is parametatiby an azimuthal, a collinear and a soft
variable. We follow here a semi-numerical approach, whieeeazimuthal variable is integrated
analytically and collinear and soft variables are integglatumerically via Monte Carlo. The briefly
introduced alternative subtraction method is implemeritgedooth massless and massive cases
into the HELAC-DIPOLES framework [6], which provides additally helicity/color description,
calculation of color correlated amplitudes and the intégnasetup in a fully automated way.

3. Results

To check our implementation, we performed several numlegind analytical tests partly with
already existing analytic results [7]. As an example of th& fiumerical results of our implemen-
tation, we show in Fig. [1-3] comparisons of some basic deiféial distributions evaluated with the
Catani-Seymour and the new Nagy-Soper subtraction schantteefprocesete™ — utg+ X. The
comparison was done witfis= 1 TeV using the&T-algorithm, and the scale for both factorization
and renormalization was set at 1 TeV. The cross sectionsiae o femto-barns and correspond
to inclusive cuts Br(j) > 20 GeV,AR;j > 0.8 and|y(j)| > 2.5). Notice that the details of the
setup are not particularly important for the comparisone Pplots demonstrate a strong scheme
dependence of the subtracted-real and the I-operatorilmatitns taken separately. Independence
on the subtraction scheme is obviously achieved, when alriboitions to the real cross section
are summed up. We have checked the scheme-independendewf edsults within a permille
accuracy.
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Figurel: CS vs NS schemes for invariant mass of the two hardest jets.
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Figure2: CS vs NS schemes f@r of the hardest jet.
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Figure 3: CS vs NS schemes for rapidity of the most forward/backwérd je



