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The simplicity of maximally supersyrnmetric Yang-Mills theory makes it an ideal theoretical 
laboratory for developing computational tools, which eventually find their way to QCD ap­
plications. In this contribution, we continue the investigation of a recent proposal by Basso, 
Sever and Vieira, for the nonperturbative description of its planar scattering amplitudes, as 
an expansion around collinear kinematics. The method of arXiv : 1310 . 5735, for computing 
the integrals the latter proposal predicts for the leading term in the expansion of the 6-point 
remainder function, is extended to one the subleading terms. In particular 1 we focus on the 
contribution of the 2-gluon bound state in the dual flux tube picture, proving its general form 
at any order in the coupling, and providing explicit expressions up to 6 loops. These arc 
included in the ancillary file accompanying the version of this article on the arXi v. 

1 Introduction and Summary 

Maximally supersymmetric Yang-Mills theory (MSYM) offers a unique possibility for the non­
perturbative investigation of gauge theories. In its strongly coupled regime it can be mapped to 
weakly coupled strings of type IIB on AdSs x 85 , which are amenable to perturbative computa­
tions. Furthermore, in the planar limit, where the number of colors N goes to infinity with the 
't Hooft coupling ,\ = g�MN fixed, integrable structures emerge, which allow the determina­
tion of certain quantities to all loops 1 . More importantly, by being the simplest 4-dimensional 
interacting gauge theory, it serves as an excellent theoretical laboratory for developing computa­
tional tools, before applying them to QCD. Celebrated examples of this strategy are generalized 
unitarity for scattering amplitudes and more recently the method of symbols, for an overview 
see2 and references therein. The symbol has been used in calculations of several QCD processes, 
such as gluon fusion to heavy quark-antiquark pair 3 , relevant to experiments at the LHC. 

In this contribution, we will focus on the near-collinear kinematics of the planar, Maximally 
Helicity Violating (MHV) 6-point amplitude of MSYM. Planarity has the benefit that the only 
surviving color structure is a single trace of generators in the adjoint representation of the gauge 
group, which we can strip off in order to study its coefficient, the color-ordered amplitude. 
Among all different helicity configurations for the external gluons of such amplitudes, it turns 
out that the MHV ones A(+ · · · + --) , corresponding to all but two helicities being the same, 
are the simplest. Remarkably, these amplitudes have been also observed to be dual to Wilson 
loops made of straight lightlike segments, as shown in figure 1 .  And the fact that for n = 4, 5 
legs the dimensionally regulated amplitude is accurately described to all loops by the ansatz 
of Anastasiou-Bern-Dixon-Kosower/Bern-Dixon-Smirnov, implies that the 6-point amplitude is 
indeed the next interesting case to consider. The remainder Junction is precisely the part of the 
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Fiirure 1 - Left.: The n-noint MHV amplitude A� ma.v he identified with a. Wilson loon W� after defininir dual 
sp�ce variables ki :::::: Ii+: - Xi :::::: Xi+l,i·  Since kl = 0, �11 distances between the cusps x: will be lightlike. Right: 
To take the collinear limit of W6, we first connect two non-adjacent edges and form a square (OPSF). It is 
invariant under three symmetries, and we act with one of them on A and B, to flatten them on (OF). We can 
then think of (PO), (SF) as a color-electric flux tube sourced by qij, and decompose Ws w.r.t. its excitations 1/J,. 

amplitude not captured by the aforementioned ansatz. An account of these developments may 
be found in 2 as well. 

Last but not least, there is growing evidence that each term in the expansion of the re­
mainder function around the limit where consecutive external momenta become collinear, can 
be computed to all loops with the help of integrability, see 4•5•6 and references therein. For the 
l-loop 6-point remainder function R�l) ,  symmetry implies that this expansion has the form 

oo [m/2] l-1 
R�l) = L e-mT L cos[(m - 2p)¢] LTnffl-,�p,n(a) 

m=l p=O n=O (1) 

where [x] denotes the integer part of x, and { T, ¢, a} a convenient choice of kinematical variables, 
in which the collinear limit is described by T --+ oo. As we illustrate in figure 1, each term in 
the sum in m receives contributions from all m-particle excitations of a color-electric flux tube, 
created by the two segments adjacent to the ones becoming collinear, whose dynamics are 
encoded in an integrable spin chain. 

These excitations may also be thought of as insertions the fields of the theory on the side 
(OF) of the middle square in figure 1. The leading m = 1 term in (1) comes from a single 
gluon insertion, and integral expressions for it were found 4,5 by exploiting the aforementioned 
integrable structures. In 7 , we analyzed these integrals, and proved that at any loop order, 

(2) 

where c± are numeric coefficients, and Hm,. .. mn transcendental functions known as harmonic 
polylogarithms (HPLs). Our proof constituted an algorithm for the direct evaluation of the 
integrals for arbitrary l, which we employed in order to obtain t26 n for any n up to l = 6 loops, 
and for n = l - 1 up to l = 12 loops. 

' ' 

More recently, the m = 2 particle excitations were analyzed, and all-loop integral expres­
sions were also presented for the corresponding term in (1) 6 • A variety of different flux tube 
excitations contributes in this case, and here we will focus on the 2-gluon bound state DF, 
whose contribution WvF is part of f�'.6,n· Extending the method of7, we similarly prove that 

l-1 wg� = LTnh,�l (a) , h,�l(a) = L c��mi, ... ,mreko-a• Hm,, .. . ,mr (-C2(}") , k = ±2, 0 ' (3) n=O 
and provide explicit expressions for h�) up to l = 6 loops. These are included in the computer­
readable file WDF1-6 . m accompanying the version of this article on the arXi v. 



2 The 2-gluon Bound State Contribution 

Let us start by reviewing what is known about � up to second order in the expansion around 
collinear kinematics 6 . The kinematical dependence enters through the conformal cross ratios ui 
of the cusp positions Xj shown in figure 1, which we parametrize as (x0 = x5) 

XI,i+2 xL1,i+3 1 e-7 
Ui = 2 2 , U3 = 2 2 , u2 = -sechT , v.1 = e20+27 u2 u3 . xi,i+3 xi-l,i+Z 1 + e 0 + 2 e0-7 cos </> + e- 7 2 

Around the collinear limit T -+ oo, the remainder function has an expansion of the form 

where WEDS is a function known explicitly to all loops 5 , and 

are the contributions of the flux tube excitations of the dual 'Wilson loop, consisting of gluons 
F, P, fermions 'If;, 1f; and scalars </> of helicity ±1 ,  ±1/2 and 0 respectively. In what follows we 
will restrict our attention to the contribution of the 2-gluon bound state DF, 

WDF = 1+00 du µ(u)e-"f(u)T+ip(u)o. 
-00 27r 

In the last formula, the quantities 1(u) , p(u) , µ(u) are given to all loops in g2 = ,\/(47r)2 by 

1(u) = E(u) - 2 = 4g Ql · M · K,(u) , p(u) = 2u - 4g Ql · M · i;,(n) , 
µ(u) = . 

7rg2n (n2 + 1) 
. x smh (7rn)(x++x-- - g2) J((x++)2 - g2) ( (x--)2 - 92) 

exp [ l � (Jo (2gt) - 1)  2e-t cos(u:� = �o (2gt) - 1 ] e2i<(u)·Q·M·i<(u)-2K(u) ·Q·M·K(u) , 
0 

where Ql is a matrix with elements Qlij = 8;1 ( -1  ) i+li , M is related to another matrix K, 
00 

M = (1 + K)-1 = 2:)-K)n , 
n�o 

K = 2 · (-l)j(i+l) Joo d,t,_ Ji(2gt)Jj (2gt) 
'1 J t et - 1 ' 

0 

Ji is the i-th Bessel function of the first kind, and K,, Fi, are vectors with elements 

/(, (n) = Joo d,/,_ Jj (2gt) (Jo (2gt) - cos(ut) [et/2] (-l)'-1) 
1 t et - 1 

0 

i;, (u) = Joo d,/,_ (-l)j+l Jj (2gt) sin(nt) [et/2] (-1)U+1 )_1  
1 t et - 1 

0 

Finally, x±± = x(u ± i) with x(u) = (n + Jn2 - (2g)2)/2. 

3 Method and Results 

(6) 

(7) 

(8) 

(9) 

Our main result is the proof that the integral (6) evaluates to the basis (3) at any order l in 
g2 « 1 , and the derivation of explicit expressions for h�) ( C5) up to l = 6. To this end, we employ 



the method developed in 7 , which consists of reducing the integral into a sum over residues, and 
using the technology of Z-sums 8 in order to absorb the summation into the definition of HPLs, 

(10) 

We have checked that our results for h�) (a-) agree with the expansion of the full � to 4 
loops 9 , and also with the a --+ -oo limit given by B in p.26 of6 . For this we also need to compute 
WFF to lowest order, which can be done along similar lines, see also 10 . We close by writing a new 
prediction for part of R�5) (all HPLs have argument -e-2" , and Hi,(j,k) = (H;,j,k + Hi,k,j )/2) ,  

-;- (t;\ 0- r 1 DA -- - - - - -- - - -- - - -· -- - -- , _ _  . , ,  _ _  tir' =e"" l '3" H1 , (1 ,3) + 1t5H1,2,2 + '1:lH2,(1,2) + '1:lH3,1,1 - Ul:SH1,1,1,u - U15 + \ii:la - l:S)H2,1,l 

+ ¥H1 ,4 + 3j (H2,3 + lI3,2) + 64aH1 ,(1,2) + (-32a2 + 64a - 8�2 - 48) H1 ,1,1 
+ (6f -

3�" ) lI3,1 + ('!j - 1�" ) H1,3 + (11" + 8) H2,2 + (128a - 64)H1,1,1,1 
+ (�  - 2a) H4 + (- 32;2 + 16a - 8�2 ) H1,2 + (- 32;2 + 24a + � - 8�2 ) H2,1  

+ ( 2"2 _ 2ou + "3._ + Q) H + (4"" _ 22"2 + "2" + 28" + 16((3) _ lh2 + 131 ) JI. 3 3 18 4 3 3 3 3 3 3 18 24 2 

+ (- 2,,.·• + 16"3 _ ,,2"2 _ 12a2 + 4"2" + 92" _ 16<7((3) + 81.(3) _ 7r2 _ Q _ 7tt4 ) H.i. 9 9 g 9 3 3 ., 3 1080 

+ ( 32.f' - 16a2 + 8�;" + 48a + 16((3) - 4�2 - 9f) H1,1} + '!j (H1,3 + H3,1 ) + �H4 

+ (- 16a2 + 48a - 4�2 9f) H1 ,1 + l6a(H1,2 + H2, 1) + (64a - 48)H1,1,1 + 8H2,2 

+ ( 16"3 - 12a2 + 4r.2a- + 92" + 81'(3) - 7r2 - '!I) H - 64H + (� - fui:) II 9 9 3 ., 3 1 1,1,1,1 3 3 3 

+ (- l&<:C + 12a - 4"2 ) H2 - (Y" + Ho-:i + (- � - "3._) a2 + a  (- 8((3) + 7"2 + '!I) 3 9 g g 3 18 3 18 3 
+ 20((3) _ 7"'2 _ � _ 77'4 + (a --+ -a) 3 9 48 2160 . 

All h�) (a) up to l = 6 may be found in the ancillary file accompanying this article on the arXiv. 
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