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String Phenomenology Steven Abel

Figure 1: Vacuum polarization in field theory.

1. Introduction: what is string phenomenology anyway?

In this brief set of lectures | give an overview of String theory and itshpiheenology. The
lectures will be aimed at the newcomer familiar with field theory and my aim is to baegogjical
rather than comprehensive. My goal is to introduce the basic physinaépts, in enough depth
that the interested reader will be able to progress to the many textbooks subjeet, but not in
so much depth that | simply end up repeating these already excellent teXtS8]1The concepts |
develop will be sufficient to then go on to sketch the more recent develdprimgohenomenology.

To start, | would like to discuss what strippenomenologgictually means, or at least what it
means to me, because | believe the emphasis has changed in recenfeagsis no doubt that
in the early days of string theory (during the first string revolution if you wil§ expectation was
that string theory would yield a unique or at most small number of possible Isnode of which
would closely resemble the Minimal Supersymmetric Standard Model (MSSNhwias been
eloquently outlined to you by Hitoshi Murayama in these lectures. Indeeddfiet&g x Eg (I
will summarize the properties of the 5 supersymmetric theories shortly butdfondiment you just
need to know that this is one of them) seemed to give tantilising support to thisyidéding as
it does GUT models as well as MSSM-like models. In recent years howaverespecially since
the second string revolution, a large number of new model building techsitawe evolved based
on so called D-branes in type 1l models. These can also yield MSSM-like lsiadd there is little
indication in string theory as to which is the correct route. The searchefompre MSSM-like
models then seems a less productive enterprise than it once did.

Because of this | think it important to lay out what | believe to be the two impovtayt that
string phenomenology influences our thinking in less specific ways. T$tarfiportant property
of string theory is that it remains our only candidate for a theory of quamavity. Thus even
though the final theory may or may not resemble string theory, there is i that string theory
has shown us how theories of quantum gravity deal with various probleahsahnot be addressed
in field theory. The most obvious example is of course the taming of Ultra-\(jdM} divergences.
Consider the vacuum polarization diagram and its string equivalent (ipemsiring theory) which
includes the annulus, as shown in figures (1) and (2) respectively.

The UV divergence corresponds to the “loop becoming small”. At engergigch higher than
the string scale the loop is much smaller than the typical string length and therdiagrss into a
tiny cylinder. However, the conformal properties of string theory — whiitiyet to later — ensure
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Figure 2: Vacuum polarization in an open string theory

that the overall size of the cylinder is meaningless: only the ratio of stringawadannulus-radius
is physically meaningful. The diagram can then be seen as a tree levafatam of a closed string
formed by the combination of two open ones. UV in the “open string chanoelésponds to long
range Infra-Red (IR) propagation in the “closed string channel”. ilRrdences are much easier
to understand (and cancel) since they depend on the global propériestbeory. The general
lesson here is that in a theory of quantum gravity, one expects pathotddhesfield theory, such
as UV divergences, to be cured by new physical degrees of fnedihothis case closed strings)
which pop-up in the theory at Planckian (or more precisely stringy) é&serg

1.1 On large extra dimensions

The second important area where string theory has influenced ourisdaats interplay with
field theory. A case in point is again extra dimensional field theory. Theqsal by Arkani-Hamed
et al in ref.[4] that large extra dimensions can be an explanation for tharamptly large Planck
scale, was supported by the fact the such a construction, in which maltisrdre confined to a
subspace of a higher dimensional model, have a natural realization in #teéogy. Many ideas
that are now common, such as large extra dimensions, have arisen fiogntk&ory or at least
been inspired by it. Conversely ideas couched purely in terms of for deagmfra dimensional
field theory have often guided subsequent string theory developments.

Consider how we used to estimate the fundamental scale of quantum-grakigyfamiliar
estimate is a dimensional one, based on measured constants of nature

G =6.673x 10 'mPkg 1s?
h=1.055x 1034Js — Lpj=1/Gh/c®=1.61x 10 *3cm
c=2997x 1®ms?!

The resulting Planck length5(Mp) = 1.22 x 10°GeV) is the scale at which we used to think
guantum-gravity effects would first make themselves felt.

What can go wrong with this estimate? The crucial point, emphasized in Re$.[diat the
energy scale at which we meas@g is vastly different fromMp; itself. (This is possible because,
alone among the forces, the effect on gravity of adding extra massewadgsapositive.) The
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implicit assumption is that in between the two scales there are no abnormally E@®eters
entering into the physics. In particular for this discussion, in theories wWiagk extra dimensions
that are much larger than the fundamental scale, the measured Newtostardocan be much
weaker than expected because the gravitational force is diluted by tlrevextime. Indeed the
naive relation is

Gy~ V5 HGp (1.1)

whereVp_4 is the volume of whatever extra dimensions our theory happens to have. tfidd we

will for simplicity only consider flat extra dimensions.) If for example we hateralamental scale

of Ms ~ 1 TeV thenVp_4 ~ 10°? (in fundamental lengths) gives the required enhancement factor
of 10'6 to the Planck mass. D = 10 then we would require the extra dimensions to be of order
fewx10°Tev 1.

On the other hand gauge forces cannot consistently be allowed to fesrieextra dimen-
sional volumes. This is because gauge couplings are dimensionless tetbgtra volume would
just lead to either nonperturbatively large or immeasurably small couplifigsy(could feesome
large volumes however, in which case there is some rescaling requirddearadiationships become
a little more complicated but similar.)

Figure 3: Brane world picture with 4 large flat dimensions represeated plane and extra small dimensions
determining the different scales of nature.

The generic picture for significantly changing the scale of quantum gravitlyerefore as
shown in Figure 3. The large flat 4 dimensional space in which we appalies is shown as the
flat plane. Blowing up any portion of it reveals an internal space thatmetes all of the physics
(supersymmetry, particle content and so on). The fundamental scaleeganch lower than the
Planck scale if gravity feels a large internal volume (denoted by greers}lalth the Standard
Model (SM) fields being confined to some restricted subvolume.

This type of set up is a natural possibility in string theory with its 6 extra dimessiout
large extra dimensions are a reasonable thing to consider only because tfre fafestring theory
that we used to regard as a problem, namelyviheuum degeneracy problenTo summarize,
the problem is that string theory gives no hints as to the shape or size dntgactified vacua,
or even the number of compactified dimensions. So for example we haveptamation as to
why there are 4 large flat dimensions. More specifically this can be statiedlags. The size
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and shape of a particular compactification manifold can be specified byusgoarameters (for
example the various radii), known collectively as moduli. Choosing a particolapactification
radius corresponds to fixing these parameters. Since they determine timedsinal physics
they should of course be the same (i.e. Figure 3 should look the same)ratpainat in M.
However these parameters correspond to the VEVs of fields in the speitiatiare left over from
the higher dimensional metric. These fields turn out to be massless, and theg&epotential is
completely flat to all orders in perturbation theory. (In terms of Figure $riekample we perturb
the compactification manifold at a particular pointNty then all the neighbouring manifolds are
perturbed and so on, and a signal radiates out at the speed of lilyht ithese are the massless
particles.) In addition we are at liberty to set the compactification to be as large bke, with the
hope that our preferred choice will at some stage be explained by perturbative contribution to
the moduli potential. So when it comes to lowering the fundamental scale, themategeneracy
problem is seen as a virtue.

2. On energy scales and model building

We now turn to how this idea has been realized in stringy set-ups. For thissv@died a
“road-map" of string theory in order to orient ourselves; we begin withcdreonical layout of 10
dimensional string theory plus supergravity shown in Figure 4.

Five of the labelled points represent the various perturbative regimed({fferent kinds of
string theory) that can be written down in 10 dimensions. These are Hefaantictype IIA/B,
all of which are theories of closed strings, and type | which is aii3@Ptheory of open strings.
In addition the diagram includes a sixth point representing 11D supérgrdhe triumph of the
2nd string revolution was to demonstrate that by applying successive dinafigformations it is
possible to get from any of the 6 perturbative points on this diagram tothey. @ he conjecture is
therefore that the perturbative theories are simply limits of some nonperterbaderlying theory
which encompasses the whole of this diagram, for which the search cantinibe meantime one
can consider the phenomenological possibilities for the 6 theories whecanwdo perturbation
theory.

Later in this review | will discuss how phenomenology has taken us to all thexelift corners
of this road map. The itinerary is determined by the value of the string scale idiffeeent
models, starting with the most conservative case of a string scale of theabritie Planck mass
in weakly coupled heterotic models down to GUT string scale (strongly coupdéstotic), so-
called intermediate scale models (type | and Il models) and finally discussimgdival idea of a
TeV string scale (in non-supersymmetric models with D-branes intersectimandrivial angles).
Before doing so however, | will review the construction of the 5 fundaalestring theories. The
properties of these models are summarized in the following table
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pe IlA

TypellB
Bosonic

Figure 4: Le pays mystérieux. The 5 well-behaved incarnations ofgttheory, plus 11D supergravity

are well connected by easy-to-follow routes. The centrgioreis highly nonperturbative and mysterious
(to outsiders). There is also a badly behaved (but very weileg) 26 dimensional bosonic theory, whose
connections with the rest of the theory are tenuous.

| Type | Open/Closed | Dp-branes?
A Closed p=0,2,46,8 allowed
1B Closed p=1,3,57,9 allowed
I Open and Closed p=1,5,9 allowed
HeteroticSQ(32) Closed
HeteroticEg x Eg Closed

3. The classical point particle and geodesic motion

Many of the concepts that will be important can be understood intuitivelyeatlissical level
and indeed many of the most important model building issues are geometricealessical. For
example the number of generations is given by the number of fixed pointdéndtie closed string
models, or the number of intersections in intersecting brane models, botltalgssperties. For
this reason | shall spend longer than usual, in this and the following sectiordeveloping the
classical behaviour of strings, and then move on to consider how ongecae the spectrum of
the 5 classical string theories. | should state before beginning this expadsigibmy approach will
be pragmatic and brief.
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Let us begin by going back to the classical point particle in general rityat®y now | hope
you all have a good idea of what the ideas are. We wish to describe agéatimg under the
influence of a background gravitational meigjg, (X).

I will using the labelsu,v = 0...D — 1 for the spacetime degrees of freedom. The metric
itself is generally a function of the spacetime coordinates which I'll ¥&4ll The particle follows
geodesic motiorthe explicit definitions can vary (you may have seen it defined in terms afielar
transport of the velocity 4-vector for example) but for us the conveiefinition is that it is motion
that minimizes the length of the world line.

We should sort out what this means in terms of invariant physical oldsles:aAll observers
will agree for example that a clock falling from point A to point B will have gleal the same time
when it passed B. This is thength of the world-lingjiven by

/ds (3.1)

where in special relativity
ds? = dXxZ —dX?—..dx3 (3.2)

and in GR we have

gpv - (_+++)
ds® = —gyydXHdx” (3.3)

Geodesic motion is motion that minimizes the proper time,
5 / ds=0, (3.4)

and thepostulateof GR is that particles follow this motion. Unfortunatedis a rather inconvenient
parameter, and instead we can defineaald-line parameterr (a set of arbitrary “notches” on the

world-line) and use
5/\/—>'<.>'< dr =0 (3.5)

instead, which is obviously equivalent by eq.3.3. In the above | am usingtrthandX.X =
dXH dx
Ouvar “dr -

3.1 The action for geodesic motion

What should we take for the action? Hamilton’s principle suggesfs,/—X.X dr with 1
playing the role of time as the action, since it is already something that is minimizéaortirately
this does not have the right units: in units where h = 1 then[g] = [X°] = [X']* and we need
to make the action dimensionless by multiplying with something that has dimensidsis'jof
[mass. The only other invariant parameter available to us is the rest mass of thet, obgo our
guess for the action takes the form

——m / VX X dr (3.6)

INote that greek indices = 0...D — 1 refer to spacetime whereas latin ones1...D — 1 refer to space only.
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This is remarkably simple but not quite yet in the usual form sinégjust a parameter, whereas
we are used to using the actual titx®, = t, in whatever coordinate system | feel like using.
Reparameterization invariance

This is easily achieved because the Lagrangiandsifestly reparameterization invaria(ds
it should be since the physics should not depend on the parameterizdtian)s | can redefine a
new parameterization of the world-line by

T=1(1) (3.7)
and the action should look the same: by the chain rule

dXaX! - dxedXY dT
Owv=gr ar 9 gE af \dr

(3.8)

and sincedT = (g—i)dr we can indeed just replaae— T everywhere in the action. In thgauge
wheret =t, (which for some not very obvious reason is calledjthgsical gauggthe action now
takes the more comforting form

1
S=— / ® mvI—vvdt (3.9)
t

A

Note that one of th&’s (i.e. X°) has been removed; the Lagrangian is a function of the “fields”
X1=1D-1 andt is the time parameter.
3.2 Equations of motion

It is worth deriving the equations of motion because it will be good practiceshat we have
to do later on with strings: the Euler-Lagrange equations are

0%
Pu— IXE = (3.10)
where p

and dots imply differentiation w.r.tt. Note that theX look a bit like a set oD fields in a one
dimensional t) field theory. This is more than a pedantic observation; when we come later to
identify string theory as a CFT it will be “field” theory in this sense, andXHewill be the fields in
guestion. | want you to keep this correspondence in mind (whenevertlondields this is what |
mean).

Consider special relativity: here we have

L =—my/(X0)2— Z(Xi)z (3.12)
This gives us
_ 1 _ %0 yi
VGO o
= my(—-1,V) (3.13)
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wherev' = % andy=1/,/(1—v.v) and we have used the chain rule. The EL equations give us

PH = 0. (3.14)

Note that this is not quite the statement of constant momentum because weifferemtihtion
w.r.t. T not the physical timé&?; to get the latter we just have to multiply beO. We can apply
the above to get the geodesic equations of motion in a general setting, Wbidd e familiar to
you. Recall that they are

S+ ThexPx? =0 (3.15)
where
P gPIJ
Mo = 7(guv,a+guo,v_gov,u) (3.16)

is the Christoffel symbol. Getting this result is good practice for manipulatingicrdifferentia-
tion.

Exercises A:
1. Derive the general geodesic equation of motion

3.3 Symmetries and conserved currents
T reparameterization invariance

As an exercise now read appendices A and B in order to recap howrgedscurrents arise.
Following the notes there, (dropping tReoordinate, and replacing— X*) we can work out the
Hamiltonian associated with the reparameterization invariance;

H =RV -%
= my.v+m/y
=my (3.17)

which is the usual expression for the relativistic energy.

Lorentz invariance
Consider a flat metrig,,. This has a full Poinc&ymmetry. The Lorentz symmetry is gener-
ated by rotations on just the# coordinates of the form

XH — AEXY (3.18)

that leavesX.X, X.X invariant and hence the Lagrangian is invariant even if the metric remains the
same (it's arisometry. Consider an infinitessimal transformatiol = 8} + €!'; then invariance
of the dot product requires

= 2X, X,eMP =0 (3.19)
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which is satisfied iEHP + ePH = 0; that is rotations generated by antisymmetric matrices generate
the Lorentz symmetry group. Now consult the appendices; convertingtfre general formalism,
the equivalence is= 1, u= X¥, anddu = &/'X". The boundary term that should vanish is

d (0%
— pr— —_— “
Ja(Guoe)a= [ (o) e

= /d— (PuX,e"V)dT
eHv

= 5 [PXo —PX] (3.20)

so that
Muv = PuXv - PvXu (3.21)

are a set of conserved currents. (Strictly speaking only the angular maMg are conserved.)

Space-shift invariance

This is an additional symmetry of constant shifts of Ktecoordinates, and together with the
Lorentz rotations the whole forms the Poincaré group. The shift is

XH — XH 4 gH (3.22)

The Lagrangian is trivially invariant under this shift sinre¥eis constant. The action is invariant as
well if the boundary term vanishes;

t
/dr (axuax”> dr = e [R]° (3.23)

identifying the momentur®, as the conserved current associated with shift symmetry.

3.4 Including gauge fields

When we reach D-branes much later, it will also be useful to know how todegauge fields
in this formalism. In classical electrodynmics the rate of change of momentuichairged particle
in an em field is given by the Lorentz force law which in 4 dimensions can bewy

dR
dt

wheregioz = 1 andg;jk is antisymmetric under exchange of any two indices (the Levi-Cevita sym-
bol), so thaisijkvj BX = v x B. We wish to write this in a covariant formalism, so we need

0 E
Hv _
F _<—Ej Bii> (3.25)

whereB') = 9'Al — dJA is the generalization of the 4D magnetic field which Bass B'2, B, =
—B!3 andB, = B?% or more succinctlyB; = &jBX. The Lorentz force law is then

=q(E +£,kaJB ) (3.24)

dR

5 —AE+FRV) (3.26)

10
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Now take the physical gauge, wheXé = (1,V'). The above is clearly the space parts of

Since the derivatives are the same on both sides it is now trivial to get tothaygauge. It can be
shown (see exercise 3 below) that this equation results from the action

Sm= —q/AHX”dr
S / Adl (3.28)

wheredl indicates the line-integral along the particle’s path. You may have seen tlue acevi-
ously in the Aharonov-Bohm effect.

3.5 The einbein formalism

String theory has an intimate connection with conformal field theory. In dadttke advan-
tage of this it is helpful to use the so-called einbein formalism. In this formalisintweduce a
new non-propagating worldsheet fiedtr). The action becomes

1 X2
szé/drz—err?. (3.29)
Applying the equations of motion fag,
‘;—Sg =X24+em? =0 (3.30)

we recover the previous action. The (classical) physics is entirely @eguivif we use th& equa-
tions of motion with the einbein equation of motion imposed as a constraint. The tmalfsms
are useful in different situations. The advantage of the einbein form#distine particle case is that
we avoid rather tricky square roots, and that we can treat masslessgsaftic= 0). For strings,
the equivalent formalism proves vital when it comes to quantization.

Exercises B:

1. Check that Maxwell’s equations correspond to the equatidyF-H+Y = jH
2. What does the “zero” component of the force law equation correspood

3. Check that the action in eq.3.28 yields the force law eq.3.27

11
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4. The classical string and Nambu-Goto action

We now want to adapt the previous discussion to the string. We are efigaytiag to follow
the steps of the point particle generalizing to a one dimensional object fatider gravity. First
I'll describe the generalization. We have seen that point particles folewdgsics that minimize
the world-line. A string is an extended object that must also have an actibis ingariant. The
generalization of the world-line for the particle is therld-sheetthe two dimensional area that is
swept out in space-time by the string as it moves along. The action is theepaistulated as

S= —T/dA (4.2)

whereA is the proper world-sheet area (as determined by a collection of fallingclmad rods
attached to the strind) has dimensionmass to counter the dimensions of area. In order to render
this action in a usable form, we need to parameterize the world-sheet as e didrld line. In
order to do this we introduce another parameter as walhasich I'll call o € [0, 2. The strings
can either belosed(i.e. a closed loop with with no endpoints) gpen(with two endpoints); the

o parameter, if you imagine a static string, takes us all the way from one ef@jittathe other (at
2mn) or if the string is a closed loop takes us all the way around it. I'll now malenedefinitions:

e T: string tension That this constant really plays the roll of the tension of the string will be
shown explicitly later

e XH: Thetarget spaceoordinate, the position in space time of the string

e 0901 = (1,0): world-sheet coordinates

Next we need to find an expression for fiveper area.First consider the world-sheet coordinates.
T is a time-like parameter whereasis something that measures the distance around the string so
it is space-like. In order to get a better picture it helps to go to a Euclideaatsig by defining

a

x? = (it,0)
YH = (iX% X" (4.2)

Now consider an area elemeth that is mapped from a small rectangle of parameters with lengths
dx° anddx?. The actual elememtA is a parallelogram with sides given by vectors

3x°a,YH
SxloYH (4.3)

The area of a parallelogram with two sideswith angle6 between them iabsin6 = \/a?b? — (a.b)2.
We can insert the above into this expression

dA = |/|5XC00YH 25X 01YH[2 — (8XO06YH SX1OrY, )2

= 5X°5X*\/ (0Y.00Y) (01Y.01Y) — (doY.01Y )2 (4.4)

12
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Where the inner product is the Euclidean one defimensions off#. Now we can easily return
to the Minkowski variables;

dA= —idA= 5150/ (X.X')2 - (XX)(X'.X) (4.5)

where | have had to absorb an overall factor of the area in going to the Minkowski signature
and where for short hand | have defined

XH = g, XH; XM = gyXH (4.6)

The nett effect of having a Minkowski signature is just the minus sign indidesquare-root.
Finally the action is given by the integration over all the elements;

Swe=-T / V(XX1)2 = (X X)(X".X") drdo (4.7)

4.1 Symmetries and conserved currents
Reparameterization (Diffeomorphism or Diff) invariance

Before getting the equations of motion we should check that this action alsepesmeter-
ization invariance. In order to do this we first need to defineitideiced metric.Consider a line
elemenibon the world sheeatf lengthdsgiven by

ds’ = —gdXHdX". (4.8)
We can rewrite this in world sheet elements as
ds? = —(0:X.0,X) do?da® (4.9)
wherea,b € {0,1} are indices for the world sheet. This defines what is called the induced metric
hap = 9aX.0pX (4.10)

which is the metric required for line elements that are constrained to lie in the sloelet. It is
also known as the pullback of the space-time metric onto the world-sheet. Wbiitazxplicitly

we have
XX XX
e = (X.X/ x’.x’> (4.11)

and now we see that the action is actually remarkably simple;
Swe=-T / V_hdrdo (4.12)

whereh = deth,,. This action is quite easily seen to be reparameterization invariant; indeed if |
redefine the coordinates g1, 0), 5 (1, 0) then invariance of the line element means that

do? dgP

dé = —habﬁ@ d&°dg? (4.13)

13
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so we have
9@ dgP
fed = b 552 554
h hdet<ggc> (4.14)

and the action can be written

SvG = —T/ﬂ det<05a> drdo

dao¢

— T / V—h did& (4.15)

where in the last line | used the Jacobian for the integration

o 202
dtdo = det(dac

> drdo (4.16)

Poincaré invariance

In a Minkowski background the theory has Poincaré invariance jufsirdke classical point
particle. Under infinitessimal transformations of the form

XH — AEXY 4 gt (4.17)
one finds the following conserved currents;
Pu = /daP,j
My = /da(X“P\f—X,JPJ) (4.18)

where the canonical momentum is defined as

0.7
a
Pe 50X (4.19)

Note thatP; plays the role of momentum density on the string. The conserved currentsear
corresponding point particle quantities, integrated over the length of thg.str

4.2 Equations of motion

We now impose the equations of motion and | will be a little more careful than in tim po
particle case, because of the boundary terms;

5S\|6:T/dadr(daPﬁ)5X“ —T/dr[Pgax“]gzg. (4.20)
The Euler-Lagrange equations are given by the local contribution ondhd-sheet

0:P2 = 0. (4.21)

14
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X;

),

Figure 5: Open string. The lower end has ND boundary conditions, tipeuend NN.

In addition we must impose a boundary condition at the enpoints of the string
[P7oXH]g=5 = 0. (4.22)

This can be satisfied by imposing either Neumman boundary condffos; 0, or Dirichlet ones,
XH = constalong each dimension. Note that there is of course nothing particular tidgoctoice
of coordinate system. The statement is simply that the momentum vg€t®y) is orthogonal to
the "velocity" (i.e.d;X*) of the string at its endpoints.

4.3 Some examples of classical physics

Using the equations of motion and boundary conditions above, it is fun to tfislome
examples of classical physics to convince oneself that the classicallsétiayes pretty much like
a piece of elastic (with zero mass when the string is stationary). One can @asity prove the
following results:

e Strings with only Neumann ends move at the speed of light.

e Spinning open strings have an angular momentumNze.if the string is spinning in the 12
plane) that is proportional to the mass-squared (ipgg)?). The constant of proportionality
is known as the Regge-slope.

e A static open string stretched to lendtthas an energyg = LT, so theT plays the role of
tension.

e The following set-ups tell us a little more about the physics of strings anchbelst: Consider
a circular open string of radiugy released from rest at tinte= 0. The radius of the string
has a time dependence given by

R(t) = Rocogt/Ry), (4.23)

and the corresponding world sheet is shown below. It executes osciflatith period 21Ry.
Note that this period is also the time taken for a light signal to go round the ciecande of
the string, so it is consistent with causality. The momentum is found to be

2nRT
2

M= R

15

(1,0,0,...), (4.24)
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whereR; = %. Note that initially, the zeroth component is simply the stretching energy

2mRy T, so thafT is indeed playing the role of tension. As the string accelerates to the centre,
R — 1, and its energy diverges with a relativisfiactor. The worldsheet is shown below:

e Consider now the situation shown in figure.(6). A circular arc of string inlfAelane is
again released from rest with radiBg, but this time given Dirichlet boundary conditions on
two branes intersecting at andgleas shown. Using the formulae above it is not hard to show
that the motion is as for the closed strifft) = Rycogt/Rp). Now however the momentum
is found to be

Pu = zf:;z (;,;‘Tsinﬁ,;(l—cosﬁ),..) .
For 3 = 2 we of course recover the previous closed loop result. For genegédsarthe
momentum in the 12 plane is no longer zero and is time dependent. Momentum in these
directions is now transferred to the D-branes as the string oscillates.oMarthe string is
not free to leave the intersection; the string "lives at the intersection" asatiisnon to say.
The classical stretching energy provides a potential keeping the stitimg iatersection, and
when the strings are quantized we will find a sector of intersection statesab@&ne would
intuitively expect, in addition to whatever states exist in the "bulk".

(4.25)

4.4 The Polyakov action

The square root in the Nambu-Goto action makes it difficult to work with. Aioaavhich
does not contain the square root may be obtained by analogy with the irticodoicthe einbein for
the particle. For the string we introduce an independent world-sheet mgtfic o) and writing

S X,y = —;/drda Ve, (4.26)
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Figure 6: Arc of open string on D-branes. Momentum is not conservederl® plane.

wherey = detys,. This is known as the Polyakov action. Usidy = —yyandy?°, the Euler-
Lagrange equation far?® reads

1
Tab = Nap— éyabVthcd =0 (4.27)
which may be recast as
hab Yab
— : 4.28
= (4.28)

allowing the Nambu-Goto action to be recovered from the Polyakov. Agaidlaissical physics is
identical if we use the Polyakov action and imposejtleguation of motion as a constraint.

The Polyakov formalism allows us to make an important link with conformal fieldrthas
follows. Note that (4.28) is unchanged by a Weyl transformation,

Vab(T,0) — €909 v (1,0), (4.29)

and so Weyl-equivalent metrics correspond to the same embedding irtisgacéhe diff invari-
ance allows the three degrees of freedongjto be replaced with just one;

Vab = €777 a, (4.30)
wherena, = diag(—1,+1). The Weyl invariance allows this to be further reduced to
Yab = Nab- (4.31)
In this gauge, the action reads
ScX] = —g [dodr na.xt 9. (4.32)
Varying thex* yields
SSpc(X] =T [dodr (9%02%,) 3 ~T [ dr (96%) 8X*[7=5 =0, (4.33)

The first term constrains th¢ fields to obey the one-dimensional wave equation,
039, XH =0, (4.34)

whereas vanishing of the second term sets the boundary conditions sinitige We may choose
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e Periodic boundary conditionX* (7,0) = X¥ (1, 1) .

This choice leads to closed strings. Definiog = 1+ o, general solutions to the wave
equation may be written as a superposition of right- and left-moving fields,

XH(t,0) =X (07)+ Xl (7). (4.35)
The solution may be written in terms of a Fourier series,
XM (o7) =i +a'plo +iy/ L Snsotake@no
XM (o%) = +a'plot +iy /G Snso b e 2o (4.36)

with x# and p# being the centre of mass and momentum of the stringahdd)’ being
right- and left-moving Fourier coefficients, where we have defined

T S 4.37
ap = ag > p-. (4.37)

The reality conditiorX* = (XH)* implies
(@ =a¥, and (@) =ak,,. (4.38)

e Neumann boundary condition8gX|,_q = doX|,_,=0.

This choice of boundary conditions describes open strings, whereftharid right-movers
combine to give a standing wave:

. 1 i
XH(1,0) =x*+2a'p* T +iv2a’ ; ﬁa#e"mcos(na) . (4.39)
n#0
This time,
al =v2a'pH. (4.40)

Again, XH = (XH)" implies (ak')" = a*,,.

e Branes intersecting at an angté [5].

As discussed above (note tHahas been replaced byd for convenience). Consider branes
intersecting in the 12 plane, which we can complexify;

Z=Xr+ix2. (4.41)

In addition without loss of generality, lie the= 0 end of the open string alorXf = 0. The
boundary conditions are

0=0;0;(R€Z)=Im(Z)=0
0=T1; d;(Re€™Z) =Im(€™Z) =0. (4.42)
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The mode expansion satisfying these boundary conditions is

Z(T,a)_i\/fz

nel

On-6 j(n-6)c* LA i(n+6)
- n-0)o n n+0)o— 4.4
n-0° The6° (4.43)

wherea, a are now a suitable independent combinatiomdfanda?. Again, the string is
localized at the intersection point, and there is no zero mode. The casejafited in the
pedagogical literature is open strings on parallel branes, corresgptudd = 1 when the
exponentials combine int " sin(no).

4.5 The RNS superstring

We now consider classical supersymmetric string theory. There are tproaghes avail-
able; the Ramond-Neveu-Schwarz formalism, which introduces supergyynmnehe worldsheet
directly and then extends to spacetime, and the Green-Schwarz formalisminthoduces space-
time supersymmetry explicitly. We work in the RNS formalism. Our starting point istigauged
Polyakov action, which we supplement withmassless Majorana spinors on the worldsheet:

The p? are two-dimensional gamma-matrices satisfying the usual Clifford alg{ap‘?‘apb} =

Zl’lab,
0 —i Oi
poz(i 0>, ”1:<i 0>, (4.45)

and we have defined = WT pO. This action is invariant under the global supersymmetry transfor-
mation

SXH = EWH, SWH — _ipAg,XHE (4.46)

for an arbitrary Majorana spindr. Promotingé — & (1, 0) requires the addition of a gravitirng,.
Then,

S = —;/drdo «—y(yabaax“abxu + @“p""o"akp,J
B 1
+2X 0" PP WH X, + 5¥u w“xapbpaxb) . (4.47)

which is invariant under the local supersymmetry transformation

SXH = EWH
SWH — _ip3g (aax” _pH xa)

O0Xa = 0aé

S = —21Epxo, (4.48)

whereef satisfiesya, = egegncd. Also present is a superconformal symmetry,

OXa=1paE (4.49)
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for an arbitrary Majorana spinear(t, o).

Just as for the bosonic string, (4.47) hadiféx Weylinvariance which may be used to select
Yab = Nap. Furthermore, the local super- and superconformal symmetries avgleno select a
gauge withx, = 0. Finding Euler-Lagrange equations #¥ andW before selecting thisovari-
ant gaugerecovers the one-dimensional wave equation (4.34), plus the Dirati@gua

ip2d,WH = 0. (4.50)

The Euler-Lagrange equations f@° and x, read, in covariant gauge,
i 1 i
1
= prpa‘P“ﬁqu =0. (4.51)

These are known as super-Virasoro constraints. Notedl#dt= 0; the supercurreni? is the
conserved quantity associated with the local symmetry (4.48).

As in the previous section, we have the proviso that the surface terms iratia¢ion of S
must vanish. For thXH, the requirements are identical to those of the previous section. To find
boundary conditions on the fermionic fields, st into right- and left-moving fields,

WH
WH — <w£> . (4.52)

With 94 = %(dr + dy), the Dirac equation fowH reads
W =0 and 9 WH=0, (4.53)

so thatW" and WX describe right- and left-moving fermionic worldsheet fields respectivehe
condition for surface terms to vanish is

W_-oW_—-Y¥.. 5w+]gjg =0. (4.54)
Then,

e For closed strings, Periodic (Ramond, or just R) and anti-periodic (N&ahwarz, or NS)
boundary conditions may be chosen independently for right- and left#sove

WH (1,1m) = +W* (1,0)
WE (1,m) = +WX (1,0) (4.55)

giving four sectors in total. The mode expansions are

W= gle o WE =3 gle (4.56)
T r

with r being integer moded in an R sector, and half-integer moded in an NS sedter. T
Majorana conditiot?”! = (WH)" constrains the Fourier coefficieryg' and @i

(P =y and  (PF) =0 . (4.57)
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e For open strings, left- and right-movers are related. Possible boundadjtions are

WH (1, m) = WH(1,0)
WH (1, m) = +WH(1,0). (4.58)

There are now only two sectors; Ramond and Neveu-Schwarz, with rxpdesions
WH :izq]ue—ira* WH — izl‘upe—ir(ﬁ (4.59)
— V24 V24T

Again,r € Z in the R sector, and e (Z + %) in the NS sector.

5. Canonical quantization

In the canonical quantization procedure, one imposes equal-time commugdditbons on the
XH and their canonical momenk = TXH,

[PH(1,0),X"(1,0")] =id (o —0")n*, (5.1)

with other commutators zero. One also imposes equal-time anticommutation relatié{sand
their canonical momentgiT W,

%iT {W (1,0), WL (1,0)} =id (0 — ') n*Y (5.2)

with other anticommutators zero.

In all that follows, subscript§n,m} should be implicitly understood to be integer valued,
whilst {r,s} should be understood to take integer values in the R sector and half-intdges in
the NS sector. Inserting the mode expansions (4.39) into our relationstteads

D, Y] =it
[Oh, Om] = [an, am] = m5m+nnuv (5.3)
with other commutators zero. Hence,

1 1
akt = %a’fn all = %a# (n> 0) (5.4)

are a set oD creation/annhiliation operators for right-moving modes. Similarly, inserting§4.5
gives

{wf, s} ={0F, I} = drysn™ (5.5)

with other anticommutators zero.
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5.1 The super-Virasoro algebra

Now, let us begin to examine the physical spectrum of the theory. One nitgythve classical
constraint equations (4.51) as
T++ :Tff :J+ :J, :O (56)

with
1 i
j —— E(TooiTm) = 0:XH0. X, + éllfiailﬂiu

1
b= St d) = WHOLX, . (5.7)
It is useful to define Fourier componentsTof_ andJ_:
1 T
Lo= doT__+a
°= ana’ /o *
1w I u
= éao Ooy + %a,naurﬁ' Z}rw,rw“r +a
n> r>

L= 1/‘ndaez"“aT
™= 4ma’ Jo -
1 1 /1 ,1
:ézamfnaun“‘éz ém_r wmfrw;lr (m;«éO)
n r
G :1/ndae2""J
"T ama’ Jo B

1
-1y e ©9)

Notice that we have treatdg separately, as we have a problem in this case; the raising and low-
ering operators do not commute, so in which order should we write them? ofiverttion is that
the lowering operators go to the right, and the (infinite) zero-point ereergyeft to be dealt with
later.

Our operators obey the super-Virasoro algebra,

[Lm, Ln] = (M—n)Lmin+AmOmin
1
[l_m7 Gr] = <2m— I’> Gm+r
{Gr, Gs} =215+ Br s (5.9)

with sector-dependent anomaly terms

10 3 _ 1.2
An = 8Dm B = 8Dr (R)
Am:}Dm(mz—l) B :}D <r2—1> (NS) (5.10)
8 T8 4)" '

In terms of these super-Virasoro operators, the Virasoro constrdibts) @pplied to physical states

|¢) are

(Lo—a)[¢)=0
Lm|¢p) =0 (m>0)
Gil¢)=0 (r>0). (5.11)
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Because of the anomaly terms (5.10), it is inconsistent to impose these cosffitidioth positive
and negativen, r; in other words, it is not possible to implement the Virasoro contraints fullyeat th
guantum level.

For open strings, only the above algebra is present; for closed stitiregSourier components
of T, give operators.,, G;. These are exactly similar to equations (5.8), but written in terms of
the left-moving operator&, and ;. Hence these operators obey a copy of the algebra (5.9).

5.2 The light-cone gauge

For convenience, in order to examine the physical degrees of freegaran use the so-called
light-cone gauge. This removes an infinite over counting (which manifests aseinphysical
negative norm states in the spectrum called ghosts). Consider firstrislg pasonic string. First
we define light cone coordinates

X+ — (X0+XD71)

X~ = —(X°—xP1). (5.12)

S

It is not hard to see that a pair of vectors are contracted as
VAW, = VW —VIW~ —v-wt. (5.13)

TheX™ coordinate corresponds to the time coordinate seen in a frame in which thigistrioving
with infinite momentum. The light cone gauge is usually expressed by saying

XH(o,1)=x"+2da'p'T. (5.14)

There is no oscillator dependence, and it is the frame in which every poithteostring is at the
same value of “time”X™). It is now possible to use the string equation of motion to eliminate the
X~ coordinate as well; i.e. we use the mode expansion

X a’ 1 N
X_="+a'p o +iy/ = Z’_ —q e 2o (5.15)
2 2 Lon "

and its equivalent fox . Inserting these into the equations of motion we find a linear equation for
eacha,, anda,, , which are completely determined.

Exercise: Use the string equations of motion to determine X
This removes all degrees of freedom that are “longitudinal” to the statdeaweds only the
D — 2 oscillator modes'=1-P~1. The nett effect when evaluating physical operators such as the

Hamiltonian,is to leave only the contributions of the- 2 physical transverse degrees of freedom.
And the spectrum is generated by th&se 2 oscillators on the vacuum.
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5.3 The open string spectrum

For open strings, after settirigy = a in (5.8) and applying (4.40), the mass-shell condition
reads

1
mZ:—p“p“:E(N—i—a), (5.16)
where
N=7Y a am+ S rg* g (5.17)

counts the number of states present at each level. We still have the issfieitef zero-point energy
a, which we must regularize. A convenient approach is so-called Riemetanregularization.
Equivalently one can use the result

- _ ; d —&(n—0)
200 img |3
. 1 1 1
ZL'E‘o[gz‘u‘ze(e‘”*m)]
1 1
= -5+ 50(1-6), (5.18)

where in the intervening steps | have summed the geometric series, expghadedult ine and
thrown away the leading infinity. The normal-ordering constants are themfoy multiplying the
usual contribution o% for the harmonic oscillator by the number of states at each level and the
number of contributing dimensions,

D-22 D-2
2 nzl 24
D2y gor=-B2yr r=b2 R) 5.19
W= D2cow F=_D-2y® (_1y_ D=2 (NS) 619
5 Zr:% = 5 Dr=1 2) — 7 748
Therefore, we have
0 R
a:ax+aw={ - (R) (5.20)
D2 (NS)

The factor ofD — 2 (rather tharD) comes in because only transverse excitations of the string con-
tribute — this may be seen explicitly by going to the light-cone gauge as deseatdo®d, in which
thediff xWeylredundancy of the action is elimated. A suitable valuefanay be found by exam-
ining the two sectors of the open-string spectrum. Of particular interestting phenomenologist

are the states which are massless at the string level.

NS sector
Here, the ground stat@;k) has
D-2
! g
a’'m? = 16 (5.21)

which is tachyonic for alD > 2 — we will deal with this problem shortly. The first excited state
YH, |0;k) transforms as a vector under the Lorentz group, andChas? transverse degrees of
2
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freedom. It is therefore a candidate for a spacetime bégorransforming undesO(D — 2). If
this is so, then it ought to be a massless state. Since

el D=2
an12_2 5 (5.22)

this constrains us to the vallle= 10, in whichg*, |0;k) is an8, of SO(8). In fact, states in the
2
NS sector are spacetime bosons at each mass level.

R sector

In the R sector, th(—;Ué‘ are massless. Furthermore, they obey a Clifford algebra
{Vayl, vayg ) = 2nt, (5.23)

implying thatr ¥ = /2y are ten-dimensional gamma matrices. Let us define a set of raising and
lowering operators by

1
0+ _ — 0 1
b+ = 5 (£r°+14)
bt = % (r2aLiratty a=1,....4 (5.24)
which obey
{ba+, bb—} — 5% (5.25)

with other anticommutators zero. Beginning from a lowest weight state sagdf§fin{) = 0, a
representation of dimensiorRt 2 32 may be created by acting &) in all possible ways with the
bt. These 32 states may be denoted as

(5.26)

1 1 1 1 1
272 2 2 2

’S> = 'iu :t*v :tf) if: -

where|{) is the state with-3 in each position.
The utility of this definition may be seen by noting that the generators 3@®@®, 1) Lorentz

algebra are
[

MHY = 3 [ rY] (5.27)
which may be written in terms of the raising and lowering operators as
S = iéaMZa,Za+l — pAtpd — } (528)
2

where|s) is an eigenvector 08, with eigenvalues, = i%. Therefore, the spinors) form the
so-called Dirac representation of the Lorentz algebra, and the grmalmmé‘ are seen to forma
ten-dimensional spacetime fermion. Definining a ten-dimensional chiralityatger

rt=rort...re, (5.29)
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the Dirac representation may be reduced into two inequivalent Weylseptations 050(9,1)
depending upon the value btt|s) = +1;

32=16+16. (5.30)
Not all possibilities foris) survive the physical state conditions (5.11). In particular,
Gols) =0 = k-T'|s)=0 (5.31)

which is the Dirac equation. Choosing the (massless) flamdg —ki, k3,0, ...,0), we see that

1
k-T|s) = 2k;I® <50—2> |s)=0 (5.32)
so that only states witly = +% survive. Now, the two Weyl representations decompose under
SO(9,1) — SO(1,1) x SO(8) as

1 1
16— <+2,83> + <_2,8C)

1 1
16 — <+2,8c> + <2,83> . (5.33)

Therefore, surviving physical ground states in the R sector fall int@e&h8s or 8¢ of SO(8).

The GSO projection

As we saw, the lowest-lying state in the NS sector is tachyonic. A prescriptiichwemoves
the tachyon is the Gliozzi-Scherk-Olive (GSO) projection, in which physitates|¢) have a
projection operator applied,

|¢) — Posol®) - (5.34)

The prescription seems at first sight a little ad-hoc. However there aperdasons why the projec-
tion is necessary. At the level of the spectrum, it can be seen to imbue auy thizh space-time
supersymmetry, which of course is not guaranteed by the presencwldfsheet supersymmetry.
On a deeper level it can be seen to arise as a result of the requirensentalled modular invari-
ance. In the following section we shall see this in detail, but for the momenslebosider the
prescription for applying the GSO projection.
In the NS sector the operatBgspis given by,
1

Peso=5 [1- (~1)'*] (5.35)

whilst thefermion number operator Nis defined as
Ne=S ¢ . (5.36)

The GSO projection in the NS sector then acts to remove states with an evenrmiinghascillator
excitations, deleting the tachyon from the spectrum.
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Sector Type SO(8) rep. Corresponding massless fields

NS-NS bosonic 8y ®8y =35®28®1 gravitongy,y, B-field By, ,dilaton ®

NS-R fermionic 8y ®8g= 85® 565 gravitinoW,, dilatino A
R-NS fermionic 85®8y = 8s® 56g gravitino lJJ’N,diIatino Al
R-R bosonic 8s® 8s = p-forms Ramond-Ramond fields

Table 1: Massless states of the closed type 1IB string.

In the R sector, the definition is modified to include the chirality opena’cé:r
Peso= % [13Fr11(—1)NF} : (5.37)
The projectiorPgg, now acts to delete states with an odd numbep @fscillator excitations in the
8s of SO(8), and an even number gf oscillator excitations in th&c. Pggq acts in the opposite
fashion, but as there is no absolute definition of chirality the choid&gf is irrelevant for open
strings.

The true importance of the GSO projection lies in its ability to create a string speethich
has spacetime supersymmetry. After applying the projection, there areialhnemnber of degrees
of freedom in both the NS and R sector ground states: these f&a&a8s vector supermultiplet
of the D = 10, .4 = 1 supersymmetry algebra. In fact, the GSO projection ensures spacetime
supersymmetry between NS sector bosons and R sector fermions at ezcleveh

5.4 The closed string spectrum of type Il models

The closed-string spectrum is obtained by taking tensor products of teftright-moving
states, each of which is very similar in form to the states found in the previotisrseThe physical
state conditiongLo—a)|¢) = (I:o —a) |¢) = 0 lead to the level-matching requirement that there
be an equal number of excitations of left- and right-movers, so that weoarsrained to glueing
together only those states with the property

m = ma. (5.38)

At each mass level, there are four possible sectors, summarized in table 1.
When we perform the GSO projection, the relative choid@%for the left- and right-movers
is now important.

e Taking the opposite projection on both sides leads to a spectrum
(8v ®8s) @ (8v ®8c) , (5.39)

in which the spinors have opposite chiralities on either side. This is knowntygzedlA
theory. The spectrum of states is the same as thatafnachiral ten-dimensionaly” = 2
supergravity theory.

27



String Phenomenology Steven Abel

e Taking the same projection on both sides leads to a spectrum
(8y ®8s) ® (8y & 8s) (5.40)

(or equivalently,(8y & 8¢) ® (8y ©8¢)), in which the spinors have the same chirality on
either side. This is &pe lIBtheory, and the resulting spectrum of states is that afieal
ten-dimensional/” = 2 supergravity theory.

Exercises D:

1. A p-brane theory is based on p-dimensional fundamental objects. DetiiMeexpression
for the Nambu-Goto action using a “world-volume” parameterizatian o P.

6. The heterotic string and modular invariance

So far we have seen how the spectrum of the simplest supersymmetric mddetinmensions
can be derived. However these models are unrealistic. Most obvioweshyauld like to have
4-dimensions, and also chiral models, which requirés= 1 supersymmetry. The first step in
this direction was the construction of so-called heterotic models, which werfirsh models that
were seriously considered for phenomenology [6]. They pertuddgtinclude large GUT groups
(Es, Es, SQ(32)) and gravity. In this section we shall develop these models, in a way whichsallo
us to return to the question of consistency of closed string models.

The heterotic string is a curious combination of supersymmetric left-movensaswhic right-
movers as follows:

| Left Movers | Right Movers|
X{™%(0,) [ X %(0.)

Wiy | X0 )

In 2 dimensions bosons and complex fermions can be inter-convertedd(éalfeionization or
bosonization — of which more in section 12). The relation is given by,

LR = YLy (6.1)
It proves useful to combine thg’s into complex fermions

A= \2(w33—1+iw%’). (6.2)
Using the appropriate operator product expansions, one can shmitbatisfies the correct com-
mutation relations for fermions given above. The right-movers have sixéa¢fosons, or equiv-
alently sixteen complex fermions, that do not correspond to space timeedegiréeedom. (For
example, in the spectrum we will only find a metgi¢” with indices for the first 0..9 indices. These
extra bosons can be regarded as an extra contribution to the theory et in@onsistent, i.e. free
of conformal anomalies. One example of many consistency checks is thautwittem there is
no Lorentz invariance in space-time signalled by the lack of massless gmavittime spectrum.)

28



String Phenomenology Steven Abel

The full action therefore combines the bosonic and supersymmetric achiotie conformal and
light-cone gauges

Sc— _g / @0 (1200:X10pX) + WL p20,W), +iX” p20:AY ) 6.3)

whereJ =1...16 counts the complex right-moving fermions, gnd 1. ..8 counts the left-moving
transverse degrees of freedom. It is not hard to see that the ajgpeognstraint equationg, =
Ga = 0 must be the sum of the bosonic contribution from the right movers and pleessummetric
contribution from the left movers.

The technique of constructing the string models with all the additional degiffeiesedom
expressed as world-sheet fermions is known as the fermionic formulatiomasl developed in
refs.[7, 8, 9]. In this discussion | shall use the notation of ref.[8]. itriportant to realize that the
consistent models in 10-D are of course independent of the formalisnidiiraionic or bosonic)
used to derive them. The fermionic formulation can also be used to devdlomdelels and this
in fact was the point of the original papers. There it gives a slightly ualugewpoint for model
building; it disgards the geometrical interpretation of the 4-D models as cdifipad 0-D models,
and regards the world-sheet fermions simply as extra degrees obfnetaown in to cancel the
conformal anomaly. Later | shall return to the 4-D models in this formalism, douthie moment
let us concentrate on our task of finding the consistent models in 10 dimension

6.1 Modular Invariance - the tool to tell us which models are consistet

We now turn to the question that | alluded to at the end of the previous secéiorgly how
to determine the consistent models. The trick is to start doing some perturbaary. thf we go
to complicated enough diagrams, some putative model will give inconsistem¢en@or example
more than one answer for the same physical amplitude) whereupon it adisdaeded. In fact
we only need to go as far as vacudraacuum amplitudes (one loop partition functions) with no
vertex operators to determine all the consistent 10 dimensional modelsel€kant diagram are
shown below.

Zo= trivial Z 1 Constrains model Z Minor additional constraints

The reason that the one loop diagram is so constraining is that it must bdamothariant.
Consider the one loop diagram for a particular shape (i.e. given by tlgghleh the two cycles)
of torus. First recall that going to the conformal gaug® & e?n2®) leaves a Weyl invariance in
the metric (since there is npdependence). This allows one by a suitable rescaling to go to a flat
metric. Now consider the integration region itself: this is now planar, so thielsbeet integral is
over the region shown in the diagram
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The torus is defined by two complex parameters
Z=2z+ TN+ Tom (6.4)

wheren,mare integers. Lines with strokes are identified. But we can still use the Weyiance
to get rid of one of the parameters. i.2— Azis still a symmetry of the 2D theory and we can
reduce it to

Z=z+2rm+ 2rmmrt (6.5)

so that any point is defined by the coordinatgso, € (0,2m] wherez= 01 + 102. The param-
etert defining the torus is called the Teichmdller parameter: it should not be aahfuigh the
world-sheet coordinate. There is an additional invariance under large reparameterizations. Any
reparameterization that describes the same torus has to be moded out tovavaidunting.

. 1

T—T+1 redefinestorus: = 1
T— —1/T swopso; ando, and just reorients torus
These two transformation generate the modular group, PSL(2,2)

ar+b
cT+d

T—

abcdezZ; ad—bc=1 (6.6)

For a particular value of we get a corresponding, (7). The total one loop partition function
then requires us to integrate over all independent values of this parameter

¢z Im

d’t
Zi= | —=2Zi(1 6.7
1= [, i 20 6.7)
where% is the fundamental region (i.e. the regiontdift after moding out the modular transfor-
mations). The measure of the integration renders the integration moduldairiyand so in order

to make sense our integrand should itself be modular invariant.

Exercise: using the transformations above show thafw{Im(1)? is modular invariant.
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The fundamental region is shown below. The Dehn twist maps all valuesirtb the region
—1/2 < R€T) <1/2. The second transformation mgps< 1 values into ther| > 1 region. Any
point outside the fundamental region shown below can therefore be chagpét. Allindependent
tori are therefore included by integrating over this region.

—1/2 1/2

Modular invariance is then the condition that this region is equivalent to atlyewmther regions
we could have chosen;
Z)(1) =Z1(=1/1) = Z1(T+ 1) (6.8)

It constrains the possible 10-D theories - (e.g. gauge groups) as weowilkhow. The calculation
is rather intricate, so at the end of 1.3.1 (where we talk about how we defiieesdt models) we
summarize how this happens and then give a set of rules for model busdinigat eventually one
can short-circuit most of the interim calculation which is included in Appendix C

6.2 World sheet boundary conditions, and hamiltonians
6.2.1 What do we mean by 'different models’?

The world-sheet fermions do not need to be single valued for consystatitchat we require
is that the actior§ ¢ be single valued and this leaves some freedom in the phases that the fields
can acquire as they are transported around the world-sheet. Anyuparticodel is defined by
the boundary conditions (phases) of the world sheet bosons and feriasothey are transported
around the world sheet.
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For the world-sheet to be embedded sensibly in target space-time we melsti;iagle-valuecki.
We can define the other boundary conditions for the fermions with veefargv; u; (j = 1..8,
J =1..16) and for the moment these define arbitrary phases. Defining the torusobgirtates
012 € (0,21 then the boundary conditions can be written

(
X (01,00 +2m) = X) (01, 0%)
Wl (014 2m02) = e Wil (01, 07)
Wl (01,00 +2m) = e MWl (01, 07)
A (o1 +2m,0) = 2™ (01,07)
A (01,00 +2m) = e 2MW)Y (g1, 0y) (6.9)

It is trivial to see that the action is invariant for arbitravy,u;. The left-handed world-sheet
fermions which have space-time indices have to have the same phase aavitircgwhich can
be+1 orvj,uj=0or % We can pair the left-moving Majorana fermions into complex fermions,
which I'll denoteA ., and we can then club the left and right-mover phases into vectors with

V = [V1,V2,V3,V4 Vs,..V20]
U = [Ul,UQ,Ug,U4 U5,..U20]7 (6.10)

wherev; = Vo> = vz = V4 = 0, mand similar foru;. For later use I'll define the inner product as

16 4
VU =% vju;— ) vjuj. (6.11)
PR
So for example we might have
1 1
V=15 0°%)°) (6.12)

In general the phases on the complex fermions can be arbitrary, hoivewss out that all cases
for the 10 dimensional models are equivalent to taking entries §MIy (i.e. phases of,01).
When the boundary conditions are%(]t sometimes proves convenient to treat a complex fermion
as two real ones in which case we just double the entries (and multiply theleeants in the dot
product by%). Hopefully it should be clear when this is the case.

6.2.2 Mode expansions for arbitrary boundary condition phases

The partition function is an amplitude for propagation through timand for that we need
the hamiltonian for the world sheet fields. The bosonic contribution is simply ahiodepen-
dent product of modular (Dedekingl} functions that is included in Appendix C. For the complex
fermions which are of interest here, we have the normal mode expamsiarsingle left-moving
particle on the world sheet labelled canonicallydy (we will for convenience drop the index
for the moment)

00

Ai(0,t) =S buyyqe 2V DT 4 gl e (6.13)
n=1
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I will henceforth (for the rest of the heterotic discussion) drop the tildehenleft-moving )
excitations as it should be obvious from the context and the indexi(oel) whether the mode
is left or right moving. We will takeo € [0, 1] (in contrast with ref.[7]). As long as the phases
vi € {0, %} we may always translate the notation to real fermions. To be explicit, it is mdttba
see that

L

2j-1
Wl = ﬁ(br—l-dr)
2] 1
Wilo = NG (br —dy). (6.14)

Also note for later use that there is g, so in the Ramond sectdy, is precisely the raising
operator for space-time fermions defined in eq.(5.25).
The quantization condition for the 2D fermions is given by

{bl, by} = {d,dv} = Gap. (6.15)

The hamiltonian at some tintas needed for the partition function (see Appendix C). It is given by
integrating the world sheet hamiltonian over that timet,

Ho(t) = / do%XﬂM +he.

= /da S (b;r]+vflbm+\,,1(n+v— 1)e(m-nos —dn,VdQ_v(n—v)e‘(m‘”)‘”) (6.16)
nm

Doing the integration, rearranging th& for normal ordering, and regularizing the infinite contri-
bution gives
H(t)=Y <(n+v— Dbl by 1+ (n—v)d;_vdn_v) +ay (6.17)

n

where the properly regularized vacuum energy is given by

1

o) (6.18)

avznzl(n—v) = %(VZ—V—I—

Exercise: Prove this expression using the procedure described indheofe.

The particle spectrum is given by exciting theacuum (with energg,) with one or none fermion
operators of each kind (i.e. index and excitation number),

@) =di™dl™  pim. |0) (6.19)

wherem,,n; = 0,1 are the individual excitation numbers. The fermion number operator which
counts the total nett number of excitations is then (by definition and the quigmtizales) given
by

() = 3 (Bl aBniv 1=l ydny ). (6.20)

n=1

2Again, as a short cut to this result, one can express the sum Q&biﬁ(nfv)efe(“*v), and perform the sum.
Throwing away the leading/E? divergence (corresponding to the infinite contribution from all the antiges) leaves
thev dependena, as the leading constant term.
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Finally we can find the charge which is the fermion density integrated @myver

Q= [doAA
= Ny+ Zn(n_v)o
= Nv-f—v—%. (6.21)

The extra piece is known as the vacuum charge. The charges her@m@spond to the actual
charges of the space time gauge groups.

We can already see the types of massless states that will occur. The N&:tdEis when the
boundary conditions are alf = v; = % Each complex fermion above contribute4/24 to the
vacuum energy. The 8 transverse real bosons each contrifiy#4, so that in total we have

1
éa
where the two entries are left and right energies respectively. Masstle®s in this sector can be
built from excitations such as

a =[-5,~1 (6.22)

(b ©dy)|0) x (b @) (by @ ") |0)w
(b ©d)[0)c x af'|O)e. (6.23)

The former is a gauge boson the latter is a transverse field that include8-ihghviton. Note
that we could equally have used the real fermion notation. For example ¢psgpns would look
like

w30 ) [o)e. (6.24)

where herd’,.J’ = 1...32. By the commutation relation of the real fermions, these are seen to
form the (3231/2 = 496) adjoint of SO(32) (with the left-moving factor providing the transverse
Lorentz index for the gauge boson). The complex notation gives its dexsitigm under the
SU(16) subgroup; i.eLp'%”r ? = (b'gbj%T + d';dgr + b?d?) corresponds to

496=16.15/2+16.15/2+ 16.16. (6.25)

At this point we can see that getting massless gravitons and gauge baadrsgnce preserved

Lorentz invariance, is a good check of D=10 or 26 dimensions. In D diimessthe vacuum

energy is

3(b—-2) D-2
8 24

ay = |- (6.26)

so the graviton mass is

Myray = [5, U +av = | ———,—5,— (6.27)

2 16 ° 24

Of course here 16 of the bosonic dimensions are regarded as ‘intasrthky have no left moving
counterpatrt.

1 [10—D 26— D}

Exercise: Using the expression foy @erify this result - i.e. that the graviton is massless in
D=10 with 16 internal boson.
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The partition function is given by analogy witlet'!). For a single fermion with boundary
conditionu, v the fermion acquires the phase fac&f when propagated through the complex
time 21T =t. Propagation in the direction gives the phase facte¥™. The contribution to the
partition function is then

ZY(1)=Tr (que2m<%*U>Nv) (6.28)

whereq = €T, We leave the detailed discussion of the partition function and modular ingarian
calculation to Appendix C. Here I'll just describe how it works to determire ahowed 10D
models. A particular set of boundary conditions is called a sector. A modehaee different
sectors and in each sector we find a particular partition funtZ&’pn\Ne must have a sum over all
possible sectors in the partition function (by definition, since the PF sumabyerssibilities), so
that it should look like

Zy() = bosoniccontributionc 5 CYZj(1) (6.29)
{allU\V}

TheQ) are coefficients that have to be chosen to give the desired modular irseriany model
is defined by the complete set of possible boundary conditions, i.e. theadktveed {U,V }.

One finds (in Appendix C) that modular invariance constrains the posdibiges and hence
the allowed models. The end result is a set of rules for model building.iéf dme first chooses
a set of basis vectors to generate all the allowed sectors. The modulaamoeaconstraint then
projects out states so that not all the states that we can write down assalveive in the end. For
example it will project out tachyons and result in a (10D space time) sypenstric model. This
is precisely the GSO projection which we earlier put in by hand! (Again, trieworld-sheet
supersymmetry does not automatically mean a space time supersymmetric thedsyhow go
straight to the rules and then do some example models.

Exercise: Read Appendix C, and verify the following rules for model building

6.3 Rules for model building

Defining the modelChoose a set of basis vectors/gfto generate the different sectors (the
boundary conditions). The sectors are given by linear combinations

where these phases are mod(1) and we sumawAfe must consider each sector in turn given by
integersa, = 1..m, wheremyW, = 0 mod(1) . For example the two basis vectors

1,.,1

Wo = [(5)4 (5)8(5)8},
W = [0 (5)°3)% (631)

define a model withny = my = 2. We then have to consider the sectofd Wy, Wp +W; where

Wo- W = [(5)* (0)°(0)%) 632)
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Structure constantsChoose a set of ‘structure’ constattg that obey the following conditions
mod(1);

MpKap = 0
Kab+ Koa = Wa.Wp
1
Kaa+ kaO"‘W;_ sWaW,; =0 (6.33)

2

Spectrum: In every sectoV = a W, find the spectrum of states at a given level. The states
must satisfy the level matching condition, that the left- and right-moving Hamiltsnmaatch,
Hy =L0—a\7 = Hy :Lo—a\j.

Projections:In every sectoW = a;W, apply the modular invariance projection on the states
Wa. Ny = KabQp + W + Koa —Wa.V (6.34)

where we sum ovds. (It is the sum over th&) = B,W, boundary condition that has resulted in this
projection as in Appendix C.)

6.4 Examples

All models can be constructed by applying the rules above in the order.give

1) Define the model (i.e. choose the set of basis vectors)

2) Choose the structure constants

3) In each sector find the vacuum energy

4) Then find the massless states that satisfy the modular invariance projection

The end result is a massless spectrum which can be examined for snp@sy, gauge group,
particle content and so on.

6.4.1 A tachyonic SO(32) model with\g

Lets use these rules to look at some possible models. All models need thethiSgsesn by
V =Wp so the simplest case is to choose a model with just this vector in the basis.

Structure constantddavenmy = 2 andWy.Wp = 3, so thatkgg = 0 or %

Vacuum energies:

3Using our previous expression fay, the total vacuum energy including the bosonic contribution is given by

1 1242/, 1\2 116/ 1\?
—2+2§(VJ—2) ,—1+22(vl-2” (6.35)

ay =
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| sectolV = | a |
0=[(0)% (0)%(0)®] 0,1]
Wo=[(3)% 3)°3)% | [-3,—1

The Osector gives only massless states and will not be considered further.

States allowed by projections in the)\8ector: We have already seen that that massless states are
of the form

W10 x !y g 00k L Yl [0 x aly|O)R (6.36)
where again since we only have phases Orol have written each complex fermion as two real

ones: in the above we therefore have the transverse space time ingices..8 andl,J = 1..32.
The projection is given by

=

Wo.N = wg = 5 mod(1) (6.37)

1 32 ; 8 j
Wo.N = 2 (JZIN - ,ZlN > (6.38)

which just means that the difference in oscillator numbers between leftigindnnovers is odd.
All the states above satisfy this so none are projected out. This completesdhiessaspectrum.
However note that there is also a tachyon state with negative mass squared

But

O)L x ¢ 1|0} (6.39)

The first massless states above are gauge bosons. Massless pdtgsésabppear in repre-
sentations of SO(D-2) as required. Restoring the longitudinal degfdesedom they would be
written asAff] in an effective action. The fermionic excitatiop$ anticommute, so that£ J. There
are therefore 3% 32/2 = 496 antisymmetric bosons as above. The indices act on fundamentals of
32's so that this is the 496 of SO(32). The remaining massless states watatgnaal. They can
be writteng'!. This can be decomposed into irreducible representations (antisymmetaess
symmetric and trace) of the transverse rotation group SO(8) as follows;

g = ol 4 <q){i,j} B Dl_25ij(pkk> +$5ij¢kk
=B/+Gl+o. (6.40)

Hence we find spin-2 particle”’ (graviton) an antisymmetric tensB¥Y and a scalar which is the
dilaton.
At the first excited level we find massive excitations such as

l/»’i_%Ll’i%’())L X WL%Wi%WE%@R
al4|0) x ‘/JI_%l/Ji%(/—’f%m)R (6.41)

Together these form a physical staﬁé‘&. Counting the space time excitations above we find
28+8=36, so the physical state is the antisymmetric representation of S@(8)0¢8), as is ap-
propriate for a massive state. The world-sheet bosonic excitation pothe required extra longi-
tudonal degrees of freedom.
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6.4.2 A supersymmetric SO(32) model wittWp,Wy
Consider adding an additional basis vector

Wi =[(0)%, (3)%(3)" (6.42)

34 N
Structure constantsHavemg = my = 2 andW, W, = (4 4) , So that we have four possibilities;

ki1 =kio = ko1 = 0,3 andkgo=10,3

Vacuum energies:

| sectolV = | a |
Wo=[(3)*% (3)%(3)% | [-3.—1
Wi =[(0)%,(5)%(3)% | [0,—1]

The OandWp +W,; sectors are massive.

States allowed by projections in¥ Wy sector: Initially the spectrum is as before. However now
we have two projections

Wo Ny = W= mod(1)

Wi.Nup = kio+Wj + ko1 — WiV = 0 mod(1) (6.43)
But

\NON—1<32NJ— 8Nj)
AP

1 32
WiN =23 N, (6.44)

245
The tachyon state does not satisfy the second condition since it has anmdeér of right moving
excitations so is projected out. Note that this is the equivalent of the GSC:poojebut we have
derived it from the requirement of modular invariance!

Exercise: Using the projection rules verify that the tachyon is projected out.

States allowed by projections in¥ W sector: These will turn out to be the fermionic superpart-
ners of the states in thé sector. The right moving excitation can be as before, i.e. space time, or
antisymmetric internal. However now the left moving side can have any nunhtb%raxcitations

and still be massless. Recall that in the complex fermion notation, there asgompdes for the

d’s, so we have to be careful here to use the indices of complex fermionshgifromi = 1..4.

That is the massless excitations are

(1+ b+ by + bybl b7 + ...bbab36g) [0).
% (@440 +al4|0)R) (6.45)
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In this sector there is no possibility of tachyons. The projections turn owé tslbefore

1
Wo.No, = ko1 +Wg+kip — VoMo = 3 mod(1)
Wi.Nw, = K1 +Wj + Ko —WiWp =0 mod(1) (6.46)

We see that the\y constraint acts only on the right-movers so projects out exactly the states with
odd numbers of right-moving excitations (there are no massless onesa@hmuese). Again the
Wp constraint requires only odd numbers of left movers so we are left witktéies

(by+ bk b)) jo) x (93 w? 4[0)r +a’ 1 0)g) (6.47)

Counting the space time excitations, we initially h&t=216 (i.e. there can only be one or no
by oscillator for every index because they anticommute) states, which areectdo 8 by this
projection. Adding back the longitudinal degrees of freedbfpekcitations) gives 16 degrees of
freedom in each state. These are chiral 10 dimensional fermions whictemae|a). (c.f. 4
dimensional fermions which would have just 0,1 (complex) excitations and hence 4 degrees of
freedom — each chirality then has two elements.)

So, the state

(|a>|_ x a11|o>R) (6.48)
is a single 10D gravitino. We can count the number of gravitinos to see how supersymmetry
we have. Here the single gravitino implies that we have just one supersymmetsy1.

6.4.3 Digression on fermions and chirality

As we have seen, space-time fermions appear in Ramond sectors (@htrere are zeroes
in the boundary condition), and these are of the form

(1+ b+ bl + bbbl + ...bbab36g) [0).
xright —moving stuf f (6.49)

The by excitations can be written to make the fermionic properties clearer in terii's e de-
scribed in section 5.3. Now consider the modular invariance projectiongaliosequired

4 ) 4
SN = Zbé*bg + irrelevant stuf f= odd (6.50)
=1 =
But we can show A
3 by =2+ s (6.51)
j=1 ]
where i
S si= —ZZ[FZJ,FZJ“] =y MAEH (6.52)
J J J

is the spin-matrix of the state, so the modular invariance condition is actuallyditioonon the
spin of the transverse modes, and hence a chirality projection. To makexylatt, write the
condition on the space-time fermions (which here I'll denote by the gengribal x) as follows;

(_1)2i4:1bioTbi)X =X (6.53)
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Using the above relation and the Clifford algebra this becomes
exqu r2r2itt y — —x. (6.54)
2 4
Taylor expanding the exponential, and using the Clifford algebra termrbyde&es

M (cosg— r2irai+i sing)x =[Irorax = —x (6.55)
j j
or

(1+rhx =0 (6.56)

giving the 10 dimensional chirality projection. As above, we usually den@deitmionic repre-
sentation as

(bh+bbh”"bg™)[0)L = |50, 51, 52,58, 9)1 = |l (6.57)

where the sping in the representation arﬁ% and their sum satisfies the chirality projection
above. It is not hard to see that the projection at general levels porids precisely t#sso=
(14T 1(—1)N).

Exercise: Using the Clifford algebra of the gamma matrices, verify the eleapansion of

exfZy;rara+

6.4.4 A supersymmetricEg x Eg model with Wp, Wi, Wo

Consider adding an additional basis vector to the previous model

W =[(0)%, (5)%(0) (6.58)
342
Structure constantdVe havemg =m =nmp =2 andWa.W, = | 4 4 2 |, so that there are sixteen
2272

possibilities;klz = k21 = 0, % andk22 = k20 = k02 = 0, % andk11 = klO = k01 = 0, % andkoo = O, %

Vacuum energies:

(72}
2
o
<
Il
2

Wo=[(3)% (3)8(2)F -3,
Wo+We = [(5)% 0°%3)% | [-3.0]
Wo +Wi +Wb = [(3)%, (3)8(0)8] | [-3,0]
W= [(0)% (2)3(2)9 0,1
W +We = [(0)%, (0)8(3)8] 0,0
We =[(0)%, (2)%(0)%] [0,0]

The 0andWy +W; sectors are massive.
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States allowed by projections in¥ W sector: Initially the spectrum is as before. However now
we have three projections

Wo.Nwy, = W5 = % mod(1)
Wi Nw, = kio+ Wi + ko1 — Wi Wp = 0 mod(1)
Wo.Npy = Koo+ W3 + ko2 —Wo.Wp = 0 mod(1) (6.59)

But

1 32 ; 8 j
Wo.N = = N~ SN
(Zw-5v)

1 32
WiN =S5 N’
2 =1
1 8
WiN = = § N’ (6.60)
2 =1

Again the tachyon is projected out. However now we also require an evaber of excitations
in the 1st or 2nd 8. (Again | am discussing real world sheet fermionssangdly doubling the
indices.) We therefore have gauge boson states

Yo x 'y g7 [0)R (6.61)

wherel # J come from both from the first 16 real fermions or both from the second thét gives
us a 1615/2 = 120 possibilities in each half givingE20gauge bosons &0(16) and al120 of a
secondSQ(16). (See Appendix E.)

States allowed by projections in¥ Wy +W, and V =Wy +W; +W, sectors: There are two other
sectors that give gauge bosafs+Wo andWp +Wy +Ws and from our discussion above we see
that these will be in the fermionic representationsS@{16) and SQ(16) respectively. Consider
for example th&\p +W, sector. The would-be gauge boson states are

W50 x |a) (6.62)

It is worth looking at the projections briefly to make an observation abouttiralities. The
projections are

1
Wo.Nug 1w, = Koo+ Koz + W5 + koo — Wo.Wo — Wo.Wa = > mod(1)
Wi.Nwpw, = Ko+ K12+ Wi + Ko — W W — W4 Wb = 0 mod(1)
Wo.Nppewp, = Koo+ Koz -+ W3 + Koz — Wo. W —Wo. Wb = 0 mod(1) (6.63)

The chirality projection should be the same for these states to survive tjeztpyn. Since the
LHS of the first projection has an extrgdZ contribution from the right movey_, , excitation,
this requires thakg, = k1o = koo, One of these conditions is already given by the preliminary
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modular invariance constraints on tkg above so that the new condition for these excitations to
survive is
koz = ki2 (6.64)

For the equivalent states in thle= W, + W + W sector to survive the projection, we have the
same condition (from looking at just th projection). If this is not satisfied then we have just
the SQ(16) x SQ(16') model. If it is, then we have additionaf 2 =128 bosons in the fermion
representations #Q(16) andSQ(16'). This gives arEg x Eg model (the gauge bosons B§ can
be decomposed d20+ 128underSQ(16)).

States allowed by projections in®¥W, + ... sectors:Again these are the fermionic superpartners of
the states in all the sectors above with a single chirality projection, since th@migting excitation
can be as before, i.e. space-time, or antisymmetric internal. Considéf thector which again
gives rise to the 10D gravitino and gauginos. The projections are now

Wo.Nw, = ko1 + W5+ koo—Wo-leé mod(1)
Wi.Nw, = ki1 +Wi +Kog —Wi.Wg =0 mod(1)
Wo. Ny, = Ka14 W5 + Koz — W Wy = 0 mod(1) (6.65)
The would-be gravitino state is as before
la) x al;|0). (6.66)

Now we require the same chirality projection on the left movers for this stateisg eg we must
have

ko1 + koo = k11 + ko1 = ko1 + ko2 (6.67)

From our preliminary constraints dg, above, we have that the middle expression is equal to zero,
and hence the new conditions &g = ko> andkg1 = kgo. The first of these is the same as the above
condition to haveeg gauge groups rather th&0(16).

6.4.5 Summary of heterotic models

| gauge group | SUSY
SQ32) No, tachyonic
SQ32) N =1
SQ(16) x SO(16) | No, no tachyons
Es x Ej N =1

7. Type Il and 0 models, and the link with D-branes

Having developed the formalism for writing down general modular invamaodels, | will
briefly now revisit the type Il models to show firstly how the GSO projectionsrgeai@om modular
invariance and also the existence of another class of related nongupggtric models known as
type 0 models.
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7.1 Reinstating supersymmetry on both sides

It is straightforward to adapt the fermionic formalism to incorporate sypamsetry in both
the left- and right-movers on the world-sheet, indeed the construction efltypodels is much
easier than the heterotic case. The action in the light cone gauge is

Sc= _;/dza ((0axj)2+iwj+p+ﬁ+wj++i‘4Jj,p‘c9JPj,> (7.1)

where | = 1..8 labels the transverse degrees of freedom on each side. Againnvifeweawish
complexify the real (Majorana) fermions inda.. Now our entire discussion of modular invariance
goes through unaltered, apart from the fact that we now have seefimed by boundary condition
phases for just 4 transverse complex fermions on each side;

V = [V1,V2,V3,V4 Vs,..Vg]
U = [ug, Uz, U3, Ug Us, ..Ug], (7.2)
In addition, as for the left movers in the heterotic case, the phases ofrtheifes must be degen-

erate on each side since (as before) they should have the same hyoeomddition as the 2D world
sheet gravitino. This leaves only 4 possible sectors

V=34 G
V= (04 5
V= ((3)% 0
V= (04 5 (73)

which correspond to the labels NS-NS, R-NS, NS-R and R-R resplciivaus the only two basis
vectors required are

Wo = [(2)47 (5)4]
Wi = [0, ()" (7.)

and there are only two independent models, one givéggnly, and one with botl\p andWj.

The modular invariance constraints work as before, but with the addguaréethat both left-
and right-movers determine the space-time statistics (since they both caentt.ordices), so that
now the projection becomes

Wa Ny = Kablp + (W5 — W2) + Koa — Wa.V (7.5)
with an additionalv dependence.

7.2 The type OA and 0B models with\g

In the former model, there are only two sectors, and both can give mastléss
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Structure constantsiVe havemy = 2 andWy.Wp = 0, so thakgg = O or %

Vacuum energies:

| sectov= | a |
0=[(0)*, (0)*] (0,0
Wo=[(3)% ()% | [-3:—3]

States allowed by projections in the {INS-NS) sectorThis sector allows a tachyon state;
0)L x |[0)r- (7.6)
There are also massless states of the form
¥ 40 <y’ [O)r (7.7)

where again writing the complex fermion as real ones we hagve- 1..8. These contribute the
same gravitational states to the spectrum as the heterotic string case, incledgrguiton. The
projection is given by

Wo.N = w§ —wg = 0 mod(1) (7.8)

which is trivially satisfied in both cases since there are the same numbersitattiexs from the
left and right movers;

1/8 . 8
. == N/ —S$ N | =0 7.9
Wo-Nwg 2(}; 121 > (7.9)

States allowed by projections in th€R-R) sectorThe massless states are fermionic on both sides,
of the form

@)L < |[@)r. (7.10)

Note that, these states are space-thmgongthey are like a mesonic bound-state of two fermions
and have bosonic statistics). The rules are then as beforewvitplaced by — w3 everywhere.
For example projection is given by

VVO.NOZW%—WS-H(OO:O,% mod(1) (7.11)

which produces a chiral projection on each side, which is the same osit@for koo = O,% re-
spectively. The model where the left-mover and right-mover chiralities arsame is customarily
called type 0B, and when they are both different it is a type OA model (goakly to type IIB and

I1A). Both models have a tachyon and no space-time fermions.
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7.2.1 The type IIA/B models withWp and Wy

The type Il models have four possible sectors, all of which can give lesssstates. The
modular invariance can be verified relatively easily.

Exercise: Work through Appendix D which specializes the modular irvegi@o the simple
type Il case. It will help you understand the more general rules.

Structure constantsWe havemy = my = 2 andW,. W, = < 8 i) The structure constant con-

straints leave us with two possibilitiely = kig = ky1 = 0,3 andkgo = 0, 3.

Vacuum energies:

| sectolV = | a |
0=[(0)% (0)*] 0,0
Wo=[(3)% (3)°] [-3,—3]
Wo+Wi=[(3)* (0)] | [-3.0
Wi = [(0)%, (3)*] [0, —3]

States allowed by projections in the \(INS-NS) sectorAgain this sector has a would-be tachyon
state;
0)L x [O)r. (7.12)

and massless states of the form ‘ _
ll",%‘oﬁ X WJ,%‘O>R (7.13)
however now the projections are
Wb-Ny, = Wg—wg = 0 mod(1)
W N = wi— v = 5

That is only the states with an odd number of excitations on each side sthweiygojection, and
the tachyon is projected out.

States allowed by projections in tB€R-R) sectorAgain the massless states are fermionic on both
sides, of the form
@)L x [E)r. (7.15)

Note that, these states are space-tmsongthey are like a bound states of two fermions so have
bosonic statistics). The projection is given by

[EEN

Wo.No = koo+Wg—Wg = koo =0,> mod(1)

N

WiNo = kor-+wh —w§ = ks + 5 = 0, = mod(1) (7.16)

which produces a chiral projection on each side, which is the same osibgfmrkyg = 0, % respec-
tively. (The value ofko; then selects the chirality on each side.) The model where the left-mover

45



String Phenomenology Steven Abel

and right-mover chiralities are the same is our type 11B model, and when tledyadin different
it is the type IIA model. As for the heterotic string, it is simple to show that thesggtions
correspond t®55,depending on the choice of structure constants.

States allowed by projections in the \&hd W +W; (R-NS) and (NS-R) sectorés both sectors
are similar consider the former. The lowest lying states are massless spadertimas with a
lorentz index (i.e. gravitinos);

@) x w0 (7.17)

The projection is given by

1
Wo.Nw, = k01+Wé—W8+k00=k01+k00:0,E mod(1)
1 1
Wi N, = kig 4+ W — w3 + Koy = k11—|-k01+5 =3 mod(1) (7.18)

TheW, projection is automatically satisfied for this state since there is one right-mowvintgtsn.
The chirality projection ofa), for this state is given bk + koo + % and subtracting thég and
W, projections on the R-R states shows that the chirality projection on the left-mpuir is also
given bykgo+ ko1 + % i.e. the gravitinos have the same chirality as the left-moving half of the R-R
states.

A second gravitino

4100 x |&)r (7.19)

arises from th&\p +W sector. Here the RHS of th&p, Wy projections aregg + ko1 + Koo = ko1
andkio+ ki1 + ko1 + % =ky1+ %mod(l) respectively. The latter can be compared with the chirality
projection on the right-moving half of the R-R states which is giverkfy % again giving the
same chirality.

7.2.2 Summary of type 0 and Il models

| model | susy
OA (same chirality) | No, tachyonic
[IA (same chirality) N =2

OB (different chirality) | No, tachyonic
[IB (different chirality) N =2

7.3 Inferring the existence of D-branes from R-R fields

There is an important connection between the fields in the R-R sector andistenee of
D-branes (for a review see for example [10]). A Dp-brane has aaatoupling top+ 1 forms
(i.e. tensor fields wittp + 1 lorentz indicesCy, . ,,.,). The coupling in question is

lwz = Pp / dPtlgCrtl (7.20)

where
CPT = Cpyy py,, OXHL.OX P, (7.21)
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Cpi..ip,4 1S the pullback of2P+1 onto the world volume.

In this equation, the integral is over tipespace coordinates of the brane plus time, hence the
integral over the world-volume is p+ 1 dimensional integral. The world-volume fiekt (o)
defines the position of the brane volume in space-time exactly as it did for thgsstiNow if in
the volume there exists sonpet 1 form field such as a field strength, it can couple to the world
volume in an invariant way as above, with the consytbeing a ‘charge density’.

The simplest example is the 0 brane (particle). It can couple to the one targedieldA, as
in eg.(3.28). This is a well known type of coupling that leads to the phenowfe@héson lines in
QCD or the Aharonov-Bohm phases in QED. A one dimensional examplesiooma fundamental
strings. Here the coupling is of the form

/dadr Byl XH X", (7.22)

whereBy,, is the same antisymmetric tensor that we derived in the gravitational spectexfith
string models. The point is now that, if we find a new two form fi€]d, in the R-R sector, then
we can expect it to couple to a 1 dimensional object, and for R-R fields tfgstdlirns out to be
D1 brane (a so-called D-string as opposed to fundamental string). iCheeis as below, with
Dp-branes existing in a 10D bulk, having an R-R charge and produaifzR flux.

10D ‘bulk’
0] o) 0]
0 0 0
RR flux
o

\DZ\b\rane

In the case at hand the new bulk R-R fields arose in the R-R sector abe gaiiten as tensors
as follows. The fields we found were bispinors so we need to do a little wedfdedwe can see the
connection directly. First write the bispinors directly as

Hap (7.23)

wherea, B8 are spinor indices going from 1..32 so we initially hav@ @egrees of freedom. As we
saw there were two projections on chirality (from ihg andW; conditions) so we ended up with
24 x 2% = 256 states.

Now recast these states as tensors keeping track of the numbers eéslefjfreedom. The
relative chirality projection removed half of the degrees of freedom, aasl tat for type IIB
strings the left and right moving chiralities is the same and for type llA it is sjp@oFor type 11B
for example we therefore have

(T11)yaHyg = Hay(M11)pr (7.24)
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orusingr{; = -1
MiH =—Hl 3. (7.25)

Likewise for type IIA we have
MaH =HM;. (7.26)

In order to extract the equivalent tensors we can first decomposésthiadrs as follows

10 ;n
|

Hop =y Hyy. y, FOT He T Hol (7.27)
n= )

where the[u;..1»] means antisymmetrized in all the indiéesThis has the full 2 degrees of
freedom (i.egC10+2Ci0+ ... +10C10), but the chirality condition above will remove half of these.
An additional duality constraint we have is thé, ,,, = QTln)!eﬂl--ﬂloHHM,_um. We verify this by
inserting it into the sum above and using the 10D identitiessforHo in terms of antisymmetric
gamma products, yielding

10 0

|
H = 7H ror[“””,_rﬂlo}' 728
ap n; (10— n)l Unt1.--H10 ( )

This is equivalent to thép projection. ScH, g defined this way has only 512 degrees of freedom
(i.e. 0C10+1C10+2C10+3C10+4C10+ %Sclo) which are reduced to 256 by the chirality projection.
The tensors that survive this projection in the type IIA and type |IB caseglifferent. We can
work them out using the usual anticommutation ruld ¢f (c.f. I's for 4D Dirac fermions) which

is {11,y } = 0. Applyingl'11H = —HT 11 to the above decomposition, we find that only the odd
n terms survive the projection in type IIB and applyinggH = HI" 11 leaves only the eventerms

in type lIA. So our 256 fields are

’ type 1B ‘ HIJ’ Hﬂluzll3’ Hlll--lls ‘
| type 1A | H, Hyp Hpppe |

Exercise: Derive the rulé¢l"11,*} = O using the Clifford algebra{("*,I'V} = 2nH"). Use it
to show that the chirality projection leaves only odd tensors in type |IB aad gvtype IIA.

Bearing in mind that the indices are antisymmetric, the counting of states forl§® 1C1o+3
Cio+ % sC10 =256 where the factcxir is because the duality above relates the componeiiig, of,,
to themselves. For type IIB we hay€i10+2Ci10+4Cio = 256.

So we have identified the tensorial equivalent of the bispinors appeiarithg R-R sector.
However these are not yet the physical propagating fields. This isibethe massless bispinors
satisfy the Dirac equation (in both the left and right moving sectors);

MpH=HIr.p=0 (7.29)

430 that for examplg k. .[Hel = L(THMHerHs 4 [H2[ K[ HL - [Hs[ MKz — [Hz[ K Hs — [H[HS[He — [Hs[He[ Ko )
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or equivalently in terms of the tensor fields

p[val..vn] _ p“HlJV2-~Vn =0 (7.30)

Exercise: Show that these two equations are equivalent
The first of these relations implies that tHefield can be written locally as a derivative - i.e. like
the field strength in QED it is the covariant derivative of a pote{jalIn this case we can write

1
Hygopn = ﬁa[ﬂlcﬂznﬂn] (7.31)

So a rankp + 2 tensor gives rise to a set pf+ 1 form electric potentials which naturally couples
to ap-brane;

| type IIB | C, Cuiyyi»:Cuty..piar Cuty..pier Crty | D-branesp=-1,1,3,5,7,(9) |
| type 1A | HO,C_4, Cyy Cuipopior Cuipisr Clipiy Gy | Dbranesp=0,2,46,8 |

The additional potentials correspond to magnetic potentials which have lbégned from the
Hodge dual oH™ (i.e. Hy, ., 1) - It turns out that (almost) all of these branes can be built as
‘lumps of field’, monopole-like solutions of the field equations. These solstieere Note that in
addition to the above, as well as the fundamental string which couples B thigeld, we should
find an object that couples to its duBy,. . This is a 5 brane soliton of the NS-NS sector. For a
review of the constructions of these classical solutions the reader isaette ref.[11].

8. Compactification: obtaining D=4

8.1 Background: Kaluza-Klein models

The 10D models are not much use for describing the everyday worlch®@e turn to how to
get 4 dimensions and” = 1 supersymmetry. The most geometric formulation is compactification.
It relies on the fact that a higher dimensional space can be rolled uprgkt distances or, equiva-
lently, as we reduce the compactification radius, the object appears téelmaredimensions as in
the figure.
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The idea of extra dimensions was first suggested by Kaluza and Klein irf#t8slas a way of
unifying gravity and electromagnetism. The idea works as follows. Conaii@imensional space
time, with metricgyn with M, N = 0..4. If we compactify on a “small” circle of radiuR then the
massless states decompos@ws = duv + Ays + @ so that the off-diagonal element plays the role
of the electromagnetic field, and indeed couples to the charged fields in tliemag. This is
shown in the figure asld (1) rotation symmetry (arrow) of the compactified space that remains in
the massless theory even when we take the limit of sRallhe total space is then a product of
an internal space which I'll caK and the usual 4 dimensional non-compact space. The direct way
to tell if physics is like this is to probe down to scalRgby for example using colliders that can
access equivalent energiedRl)

At these scales one would see a typical spectrum of “Kaluza-Klein” stafbsse are the
residue of the continuous 5D spectrum of momenta. Before compactificdt®momentum in
the 5th dimension is continuous. After compactification, the momentum value®aseained
because the fields must be single valued. So for example a generic field gamnde written as
o(x*,x°) must obey

P(xH,x° 4+ 21R) = p(xH,x°). (8.1)

We can expand this field in modes in the 5th dimension

P(xH x°) = h(xH)ée (8.2)
-3
The continuous 5D spectrum becomes an infinite but discrete tower of 4 gtawhich only
becomes continuous in thie— o limit. Now consider the Klein-Gordon equation for the 5D state;

(840" + 050°) p(x* ,x°) = 0
2 in
- Z(M“—%)% Ry 8.3)

Then-modes have an effective masgR and from the 4D point of view we find a Kaluza-Klein
spectrum, an infinite tower of states whose quantum numbers are the samighlagually spaced
masses.

Broadly speaking the same situation obtains in string theory. We begin with &h&@idy but
reduce it to 4D by compactifying on an internal small 6 dimensional manifoli;whcalledKg
in the Introduction. The situation is as in figure.3 with the 10D space beingwjeused as

M1p = My X K. (8.4)

Every point in the 4D space has its own internal 6D space that whosentiexpgive rise to the
observed properties of the low energy theory, such as remainingsyoapeietry, gauge groups
etc. These have to be derived from the 10D string theory which is asstov@dst before the
compactification.

So, the properties of the compactified space determine the low energypthaieve see. In
addition one expects a Kaluza-Klein-ish spectrum to appear at the congaitifiscale, with an
infinite spectrum of particles appearing above it as we “open” the higheergional space. In a
sense we have already seen this in the spectrum derived in the hetemotjasth its 16 internal
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right-moving bosonic degrees of freedom. For example the massless graviocompanied by
an infinite tower of states such as

Lllii%in\0>|_><ainail\0>|q n=12. (8.5)

The extra massive states have masses of order the PlanckstetéGeV, so are not of relevance
to phenomenology, so for the most part we will be concerned only with thelesssspectrum.

8.2 Toroidal heterotic compactifications:./” = 4 SUSY

Compactification tends to leave internal gauged symmetries in the effectispasgb(indeed
this was the original point of Kaluza and Klein). The simplest compactificatiasan imagine, a
torus, is a flat compactifields with coordinated identified under translations. For convenience let’s
collect the compact coordinates together into 3 complex ones which I'll call

ZV =X 4ix3+l j=2.4 (8.6)

so thatj is the same index we were using before to label the complex space-time @iesdjn= 1
labels the two transverse components of the non-compact space in theohghgauge.
Now the 6 dimensional toru3g, is identified by

Zl=7 44l (8.7)

wherea; is a complex constant. The metric of the compact space is Euclidean eveeywsbe
we don’t expect to lose any states in this compactification. This is also r@alsosince the main
constraints on the model come from the one-loop partition function which is @sklfus. The
diagram has a one-to-one mapping to the compact space so the projectistases will remain
the same.

The low energy theory relevant for phenomenology (i.e. the spectrumastless states in
the string spectrum), are unnaffected, and it is easy to see that this leddstd supersymmetry
simply by counting the number of 4D gravitinos that are contained in the 10Ltigawe derived
earlier. Recall that the single chiral 10D state was of the form

(b + bbbl b ) o)L x a’,|0)r (8.8)

giving 1C4 +3C4 = 8 transverse degrees of freedom. However in 4D only the first excitatio
bé is related to the 4D space-time fermion, and the rest are just internal exdtafionsee this
decompose the left-moving part into pieces that halv@ea(citation and pieces that do not;

1x (bt + biflb(jfl"i b'g%“vf )[0)L
+bg x (1+b7 b0 (8.9)

From the 4D point of view we have the two transverse fermionic degreesaxdom (i.e. the 1 or
the b(l)) each with 4 internal degrees of freedom in the spinor representati®a(6f.

Exercise: count the internal excitations above and confirm that thexedanf each chiral-
ity. SQ6) is isomorphic to SWy4). Show that the fermionic representations above are a funda-
mental and anti-fundamentadt ¢+ 4) of SU(4). Hint; use the same identification as earlier, i.e.
by = 3 (2 +ir2i+1), The indices of 4 then label the elements of $Y.
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8.3 Getting.# =1 SUSY inD = 4: Orbifolds

A4 =4 models are not good candidates for low energy physics as they daveiahchiral
spectrum (for one thing): the 4D gravitinos above had both chiralities (ioth &ven and odd
numbers ob} excitations), and this will be true for all 4D fermions that come out of this heor
But the Standard Model is chiral, the left-handed particles couplirBIX®), interact differently
from right-handed ones: we need a theory that is chiral.

8.3.1 Origami with 2 dimensional orbifolds - the cone

One way to do this is to hav€g that is an “orbifold” of T®. An orbifold is the quotient of
a manifold by a subgrou of its isometrie® In the case off® the groupG consists of point
groups (rotations in 6 dimensions) and space groups (shifts) that leatertts invariant. In the
phenomenological context they were first developed in refs.[12,Ff]a review see ref.[14].

To begin with a more simple example consider a cone which is an orbifé. consider for
exampleR?/Z, shown in the figure

We describé?? by with the single complex coordinafe The orbifold is defined by th&, equiva-
lence relation
Z=-Z, (8.10)

leavingthe fundamental domain on the diagram shown in green. The linesnwibsare identified
since they are mapped into each other uriflesr —Z and also the origin is a fixed point since it is
mapped into itself - marked with a red circle below. We can fold the sheet aadigaxis to itself
to form a cone. The curvature is everywhere zero except at the evigoh forms a point (where
the curvature is ill-defined).

FOLD

5This is the “physicist’s definition”. More correctly an orbifold generaliftes notion of manifold, to allow for the
presence of points whose neighbourhood is diffeomoerphic to the qtiofiR" by a finite group.
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The effect of the “infinite curvature” at the origin is to cause a rotation ttos that are parallel
transported around it. We show this in the next figure. The red vectorrisgoated around the
origin. When we fold the sheet up, it reverses direction at the join.

FOLD

We can make different cones by instead identifyihg €¥/"Z wheren is an integer. This divides

the complex plane inta identical segments. A single segment has the edges identified as above,
except the deficit angle is now natbut 27— 11/n. (The deficit angle is the angle of the wedge that

is cut outof the plane.) The parallel transported vector is now rotated by the defgli.a

Exercise: convince yourself that parallel transported vectors atateal by the deficit angle.

8.3.2T2/Z; : the pillowcase

A slightly less trivial example is provided B /Z,. We can define a simple 2D torus by identifying

Z=274+i
Z=27+1, (8.11)

and theZ, projection is again the identificatich= —Z. The torus is shown in the first figure below
where lines with equal numbers of strokes are identified. Zxhequivalence maps half the torus
(the B region) into the A region, so the area of the fundamental region iseedoy half (this is
generally true, i.e. &, moding reduces the fundemantal region by a factan)of
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Next we can show that a combination 8§ operations and translations in the torus (i2.—
Z+n+im, wheren,mare integers) identifies the lines as shown, leaving 4 fixed points shown as a
red dot. Joining the identified lines leaves a ‘pillowcase’ with 4 corners.
8.3.3 T2/Z5: the three point cushion
For the final example in 2D we show the torus defined by

Z=2+¢€"3

Z=27+1, (8.12)
divided by theZ; projectionZ = €#/3Z. We show this in the figure below. The torus is a paral-
lelogram with angles oft/3 and 21/3. As we have seen, tt# moding reduces the fundamental

region by a factor of three. The remaining region is shown in the next figewling as shown
leaves a three pointed cushion.

fold along dotted lines and glue remaining li
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8.4 T6/Z5: a “realistic’ .#" = 1 heterotic model

The Z3 case is interesting for phenomenology because one can directly caresiruc = 1
model as we will shortly see. First complexify the six internal coordinatesreethomplexz’
defining T® as described earlier. The simplest example is to keep the comglerifections
determining the torus orthogonal so that we just repeat the 2D example 3 times;

Z' =7 4¢3
Z =7 +1 (8.13)

Then project it out with the singl&; identification

zZt ., g2m/371
72 _, g2mi/372
Z8 — g 41i/378 (8.14)

(all at the same time) which is usually written more succinctly as

11

Zi :eZTIiVizi . — (= =
Y (3737

2
=) (8.15)

The Z3 acts slightly differently on one of the internal degrees freedom in ordsatiefy modular
invariance constraints (i.e. for consistency of one-loop amplitudes a@ming shall see shortly.

Now let’s impose this compact structure on 6 space dimensions &xtké-g heterotic model
of section 6.4.4. Note that (from the invariance of the supercurrent itertime action) on the
supersymmetric side the fermions have to transform in the same way as tms boso

11

In this model, for each of the sectors labelled NS or R generatétbhy, we can add additional
sectors with twists o8, e*™i (which adds additional phases to the boundary conditions of the
3 complex internal space-time fermions). These sectors give “twistedsstéiese endpoints are
related by &3 transformation. The states in the spectrum can then be divided into “untivisted
“twisted” as in the next figure for th&, orbifold (which is simpler to draw).
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The orbifold in the figure hag, twists for some of the compact dimensions, so we show it exactly
like the 2D example. Twisted states will have boundary condifiom+ 1) = —Z(0) so the ends
do not meet before the orbifolding, and these states do not exist on tise Adter the orbifolding,
however, we cut away half the torus and fold it up. The figure showssdedvstate at the origin
(which is a fixed point of th&y), with the string endpoints separated b¥.atransformation. The
black, red and blue regions show portions of the string that are mappediffei@nt bits of the
fundamental region upon orbifolding (i.e. use a combinatiod,cdnd translations to map the red
and blue parts into the region remaining in the second figure). When tharherdal region is
folded up, the all string endpoints rejoin forming a closed string around xkd fioint. This is
shown in the third figure, where the black region is on the bottom surfagdehenred and blue
regions are on the top. Also shown is an untwisted state which is unnaftgctdbour folding and
gluing. Thus the twisted states live at fixed points, whereas untwisted anemave throughout
the compactified space.

As we have seen untwisted states are the original states before the anigifdldaddition to
the introduction of new twisted sectors, the effect of orbifolding is to ptgeme of these states
out. As we shall now see, this can break the supersymmetry te 1 as desired. We return to the
Z3 model and consider the gravitinos. Begin with thé = 4 gravitino multiplet we found on the
torus coming from the states in the R-NS sector. To recap and simplify a little #melgecwritten

(D) (b§)™ (63)"(B3)" |0)= x @ |0} = [a) x a”,]0), (8.17)

where the excitation numbers can Be= 0,1 andb is the transverse zeroth mode of the 4-D
space time degrees of freedob};** correspond to the 3 complex internal dimensions (6-real),
and[1 here is the 4D space-time index since we are interested in the number of vifngsa(it
corresponds to just the = 0,1,2, 3 indices of the 10D gravitino). (Note for this discussion, the
labelling on theb's has changed from= 1..4 toi = 0..3) Initially we had 2 = 16 gravitino
degrees of freedom which gave us 4 gravitinos in 4 dimensions, butlé& SO Y\b) projection
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we had to impose a chirality projection,
N1+ Nz + N3+ Nz = odd (8.18)

leaving only an odd number bfs so this became 8. We then interpreted this as four 4-D gravitinos
in the spinor representation 8(0(6)k,. However let's now apply the condition that the states are
also invariant under th&; orbifold action. Thex"; does not transform under g, but theb} are

all rotated by the phase facte?™i, so that the only3 invariant states that remain that in addition
satisfy the GSO projection have

Np =N3=Ng=0,1
No=1,0 (8.19)

This leaves only the 2 degrees of freedom
(b§+ bjb3bd) [0} x a0} (8.20)

of 4" =1 supersymmetry.

When we add an orbifolding, modular invariance provides an additiomestaint on how the
right-handed (gauge side) behaves (to ensure the torus diagramrianwader the orbifold ac-
tion). In fact the constraints can be satisfied by again embeddirig; thejection in the gauge side
(there are other possibilities). That is we separate out 3 bosonic catedifrom the gauge side
and fermionize them into complex fermions withi=1-3 = €X. We then apply th&s projection
simultaneously on both sides. That is the total action oZhis

(Z,A_,Ay) — W9z A AL). (8.21)

This projects out some of the gauge bosons and results in the bré&king; — SU(3) x Eg x Ej.
Indeed this is evident from the fact that therotation

10 0
01 0 (8.22)
00-2

is one of the Cartan generatorsSif(3) and hence commutes with it. To see it explicitly, consider
the gauge boson degrees of freedom ofEpewhich came from two sectoisp andWp +Ws (the
former gave adjoints c8Q(16), the latter a spinot28of SQ(16) altogether givin®248 of Eg). In

the NS-NS sector, the states are of the form

vl < ! |0)r (8.23)

wherel = 1..16. Now theZ; operation means that we must leave the first 6 rightmoving fermions as
three complex ones, so only the ten remaining ones can be written this wiag tjie 109/2 = 45
adjoint of SO(10). The 3 complex right-moving fermions we have singled out must be written as
complex fermions. They can appear in excitations as

Yl 10 x (byBy T+ dy'dy T + Bl d)|0)w (8.24)
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wherel,J = 1..3. Note that without the orbifolding this gives 3+3+9=15 states which is jst th
adjoint of SO(6) and so far we haven't done anything except separate out this faliarwe must
apply the invariance und@g however. The fermions all have a phase faefd’® (since the phases
on the physical states [0, 271 so that—4mi /3 = 2mi /3 when constructing the states). Noting that
(by the definition of the mode expansion of the) the d’s transform with the opposite phases to
theb's under the orbifold action, we find that &b anddd states are projected out, but fod any

I,J gives aZz invariant state, and we have 9 states in all. 8 of these form the adjoBit(H).
The trace combination (i.e. the sum of Hi€1)’s) must be orthogonal t8U(3) sinceSU(3) gen-
erators are traceless, hence it is an ekkfa), often calledU (1)x. From theW, +W, sectorZs
invariance leaves onlfl + bbgb3) (b*™...68%)|0)& on the gauge side where agig, ..Ng = 0,1
corresponding to &g excitation or not. There are then<2® possibilities, but the GSON) pro-
jection removes half of these, leaving two chiralities (i.el6a- 16) of spinor representations of
SQ(10). The 1+16+ 16+ 45gauge bosons d&f (1)x x SQ(10) together form th&8 gauge bosons
of Es. The charges of the states can be calculated using the expre¥isioN’ +v/ — 1 derived
earlier, wherg = 1,2, 3 labels the three complex world sheet fermions. The states have thetcorrec
charges.

Exercise: calculate the charges @ NI +vi — % under the three W1)'s corresponding to the first
three complex fermions. Defing@ $(Q*+ Q?+ Q®) to be the charges under(@)x. Verify that
they areQ, 1, —% for the gauge bosons ofE

8.4.1 Further gauge breaking Wilson lines

Once we have achieved a” = 1 theory with chiral fermions, the next task is to break the
gauge group down to the Standard Model one. A particularly usefultinetkone can use on non-
simply connected manifolds is Wilson line breaking. Since it will crop up from timtene | will
give a brief outline.

Consider the gauge grolgg. In general, when we construct the path-ordered product of gauge
elements around a loof3, we have a gauge rotation

U ~ PelcAud¥ (8.25)

whereU is matrix valued. This quantity is gauge invariant and consquently shouldibpemdent
of the pathC. However, on a small path the Wilson loop becomes (by Stokes’ law)

U — et (8.26)

whereAHV is the area tensor of the closed path. Thus, on simply connected manifdies,tie
curvature vanishes, we expect Wilson lines to be unity since we can aleatract the path to
a point. This is not the case on non-simply connected manifolds, where wkava vanishing
curvature tensors, but Wilson loops that are not equal to unity for gh#isare homotopically
equivalent to non-trivial cycles. The remaining gauge group is thersubghat commutes with
u.

The situation is precisely the same as when a cosmic string is formed. Farraweathé string
the gauge field strength vanishes. However the gauge fields themselVerigh a gauge rotation
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if we take a test particle on a path around the cosmic string. The vacuum ildasif@nsequently
not simply connected, the obstruction being the cosmic string itself (i.e. wetaantinuously
contract the path to zero through the cosmic string).

Since the Wilson lines are in the intern#lzj space, we can identify the higgs fields that are
responsible for the breaking from the 4-D point of view. Schematically #nisg as follows. The
Yang-Mills terms are functions of the covariant derivatives

(850H — TSAHAD, (8.27)

where the indices run over all ten space time indices. Let there be a Wilsoalding internal
directiony such thatA? (y) = &*"5YAS (0) (i.e. A2 =iAP). ThusdVA3 DiAPFRAS # O for the
6-internal dimensions. The 4-D Lagrangian now gets a mass-squaned ter

(iAbfgcAg)z (8.28)

which is non-zero for the gauge fields that do not commute WithThe masses of the broken
gauge bosons are proportional to the VEV of the component of the deald&long the Wilson
line (in this caseAe) which is playing the role of the higgs field.

As an example, let us see how Wilson lines can brealEghgauge group down t8U(3). x
SU(3)L x SU(3)r and its subgroups. We can specify the Wilson line element in terms &UH@)*
subgroup;

BO 0 yo 0
U=(a)x| 0B 0 |x|0d O : (8.29)
0032 00yt

We choose them to be of this form because at the very least we needptthkeStandard Model
gauge groupSU(3): x SU(2). x U(1)y. Whena, S, vy,  are all cube roots of unity, the three fac-
tors clearly all commute with the thr&bJ(3) subgroups and we ha®J(3). x SU(3). x SU(3)r=
Es/Zs. If we instead choose only to be a cube root of unity (which is an element3j(3)) but
y, B 0 to be n'th roots of unity we find the gauge gro8p)(3). x SU(2). x U(1) x U(1) x U(1).
Note that the Wilson lines have not reduced tidwek of the group which contains superfludugl)
factors. This is a common feature of heterotic theories. They must be elimiwdtesome other
mechanism. If for example they are anomalous then they get Stiickelberganfiasa the Green-
Schwarz anomaly cancellation mechanism. Of course one might also try toametdhone’s
advantage by for example trying to implement some kind of Froggatt-Nielsenamisoh for the
Yukawa couplings.

9. Phenomenology of heterotic models

9.1 Weakly coupled models

At first sight (i.e. perturbatively) only the Heterotic models seemed to be ahnuse for
model building so let us first discuss those models from a more phenomerblpgint of view.
These models seem to be singled out for phenomenology becauses (thefqrossibility of using
D-branes was appreciated), they alone seemed to contain both quantity gnd gauge fields.
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Gravity, being a spin 2 field, requires closed strings which rules out typtowever the type
Il models are also ruled out because th@yty contain gravity multiplets and no gauge fields.
Heterotic theories are also closed strings, but as they are a curious edioiof supersymmetric
and bosonic string theories they contain fermions and both gauge anty giegrees of freedom.

Let us summarize and generalize the phenomenological properties thatveeléduced for
our quasi-realistiZz example. As we have seen the 16 additional internal degrees of freiedom
the bosonic half become gauge degrees of freedom in the effectivy theoce the gauge groups
in 10 dimensions end up being rank 16. (Indeed anomaly cancellation aleneugh to restrict
them still further to be eithelEg x Eg or SQ(32) as derived above — the latter turns out to be dual
to the SO(32) of the type | models).

Model building in heterotic strings concentrated on Hae< E5 gauge group. In order to get
A =1 supersymmetry in 4 dimensions, the the most general requirement on thaatditgtion
manifoldKg is that it has to be of a certain type (namely Calabi-Yau) [15]. The orbifoidpgacti-
fications of the previous section are singular limits of Calabi-Yau manifolds. idlaigification is
useful because it means that many properties of the effective theengdthnumber of generations
for example) can be derived from the topological properties of the C&kah In addition the great
advantage of orbifold models is that because they are essentially fl&sspéb some singulari-
ties, one is still able to use conformal field theory techniques to calculatersugiienplitudes. As
well as theZs orbifold of the previous section, the possible orbifoldings areZs, Zg, Z7, Zs, Zg,
Z12, Z1,. The prime indicates the same point group but a different compactificatiorelft6¢. In
addition product orbifold groupsy x Zy, are possible.

The modular invariance conditions then require a breaking of the gaoge by the compact-
ification. One attractive route of gauge breaking is to adopt the apprssazhfor theZs orbifold
example discussed above, namely to embed the geometrical orbifold actios gpeite-time into
the gauge degrees of freedom. This leads to a gauge breaking such as

Eg x E; — G x Eg x Eg — MSSMx hidden

The precise gauge symmetry breaking pattern (i.e. the subg@dulepends on the orbifold in
question. This route became known as the “standard embedding” andssibifities are relatively
restricted. Standard embedding generates the so-called (2,2) modete {wan@umbers indicate
the supersymmetry of the world-sheet CFT on the left and right sidesctggly). In addition far
less restricted asymmetric embeddings which still halie= 1 space-time supersymmetry ((2,0)
models) can be constructed. The further symmetry breaking by Wilson lines silosomething
resembling the Standard Model is extremely unconstrained. Phenomeiadliggic the simpler
embeddings the firdkg factor is already a potential Grand Unified group whereas the segpnd
factor forms a hidden sector group. The latter is a potential source efsupmetry breaking by
for example the condensing of the gaugino of some hidden sector graupgit mass scale (much
like the condensation that takes place in QCD leading/t@&p breaking) [17]. Early applications
to string motivated scenarios were discussed in ref.[18]. The remaritabteabout this part of
the story is that the effect of gaugino condensation is a non-pertuebainduced contribution to
the superpotential that can be determined to all orders (thanks to holoyhamhe effective firld
theory [19]. (For a review of supersymmetry breaking see ref.[20].)
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Let us now turn to the question of the fundamental scale. In heterotic madiaiegrees of
freedom in the perturbative model are the result of excitations of claseds All closed strings
can travel everywhere in the compact space and so both gauge aitg degyrees of freedom
necessarily feel the same compact voluMgesay. The Planck scale and the gauge couplings can
then be simply computed from the dimensional reduction of the 10-dimensi@wlyth In terms
of the string scaleMs, and the heterotic string couplingy,, they read

M8 ~ )TgMga (9.1)
H
and 22
H
~ —, .2
aywm V6M56 (9.2)

These expressions, together with the experimental factapgat< 1, imply, in the case that the
heterotic string remains weakly coupleéde( Ay < 1), the following relations between the com-
pactification, string and Planck scales [21];

Ms ~ Mpy ~ V,/°. (9.3)

The models that arise from the weakly coupled heterotic string with simple enmgsdtere-
fore suffer from the problem that the natural unification scale for theimei$lanck scale, but that
the unification scale as derived from the RG running of the gauge cospérgf order (assuming
the MSSM with a desert between the weak and GUT scaleg)r ~ 3 x 10'%GeV).

9.2 Strongly coupled models

One way to address this problem is to go to the strongly coupled limit of hetetatig s
theory. The strongly coupleHg x Eg heterotic theory is only tractable thanks to the fact that,
as Horava and Witten showed [22], it is described by 11-dimensiona&rgigvity compactified
on anS'/Z, orbifold. Based on anomaly cancellation arguments they argued thg gauge
group lives on each of the two 10-dimensional orbifold fixed planes @dsegravity lives in the
11-dimensional bulk as sketched in Fig. 7. In the case of strong coutlimgadius of the orbifold
R11 is larger than the compactification scale of the 6 extra dimensions. It is theggdssible to
consider the compactification of this theory down to 4 dimensions in two stepsamititermediate
5-dimensional model compactified on an orbifold.

The 11-dimensional action takes the form

1 31/3
S=_—_ [qgt R— 7/d10 F24... 94
2K121/ xV9 IZ47T(27TK121)2/3 XVOTrR™+ .., (9.4)

whereki1 is the 11-dimensional gravitational constant andins over the two 10-dimensional
fixed planes where the twigg groups live. Compactifying down to five dimensions (with a com-
pact voluméeVg) and then to four dimensions we can write the fundamental 11-dimensiomal co
stant,M1 = 2m(4rk%;)~/° and the radius of the 11-th dimensidhy, in terms of 4-dimensional

guantities,
a
M1 = (2acuTVe) V5, RE = (ﬂ

3
. ) VAVEN (9.5)
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Figure 7: Horava-Witten construction for the strong coupling limftthe Eg x Eg heterotic string. The
green planes represent the 10-dimensional boundariessdrtifold St/Z, where eactEg factor lives,
11-dimensional supergravity propagates in the bulk.

It is now possible to have
Myq ~ V6_1/6 ~ MguT ~ 1016 GeV, (96)

and therefordR;; ~ 10'* — 10'° GeV.

Thus the heterotic string can accommodate both a fundamental scale oféhefdite Planck
mass in the weak coupling limit, and of the GUT scale in the strong coupling limit.

At first sight this seems to offer an easy way of uniting the string scale (ieefutidamental
scale of gravity) with the apparently successful unification predictiorwa¥er such a low unifi-
cation scale appears to be too low to be consistent with proton decay limits tafoletise rather
minimal models that would be consistent with the HW set-up (see ref.[23]).

9.3 New orbifold GUT models

There has in the past couple of years been renewed interest in thbilgess for orbifold
model building, mainly focussing on attempts to solve the problems presentectoy plecay
(or the lack thereof) by using non-standard embeddings. Let us sunentlaeiproblems we have
encountered with the simplest attempts to incorporate GUT model building intotéretiestring.

First | should re-emphasize the apparent success of the minimal MS3h\\nthe apparent
unification of the string, weak and hypercharge forces at adautr ~ 3 x 10'® GeV. This accurate
unification looks too precise to be just be coincidence. In addition the multipletee @tandard
Model fall promisingly into16's of SQ(10) which also looks too good to be a coincidence. The
identification of the SM patrticles is

16: Q,U¢,DC,L,E°, N¢
10: Hy,Hp, T,T¢ (9.7)

whereT, T¢ are undesirable Higgs triplet superfields. On the other hand any kind aringgful
complete and reasonably minimal unification at that scale results in too rapahgtecay. There
is an additional serious problem for unification, the doublet-triplet mass sgljttioblem; namely
how to drive the mass scale of the triplet higgs fields to be of order the Ghl& adile keeping
the doublet components light, another form of hierarchy problem. Solvisgetitails extremely
complicated higgs sectors.
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These apparent contradictions have been addressed in a variety @bnstructions based
on orbifold models [24, 25, 26]. The central observation is that in oidbifieodels, the spectrum
retains a “memory” of the underlyinBg x Eg structure after orbifolding. Thus one naturally finds
a theory that contains “bulk” sectors with larger symmetry together with vari@UT” sectors
located at the orbifold fixed points which fall into representations of theetafgnified groups),
but which are missing troublesome states such as higgs triplets. This streatuegplain why an
apparently unified theory may lack the GUT mass states that mediate proton aedds directly
analogous to (and was inspired by) the extra-dimensional orbifold cmtistns in field theory.

SU(3

& ) SO(4)
+/ @ ®
@
W g—a—W2

Figure 8: Compactification lattice for the model of ref.[26]. The fitato torus factors are compactified at
the string scale. The third torus is compactified at ordeGbd scale.

As an example consider the model of ref.[26]. The compactification latticehi®model is
the T®/Zs_), orbifold of ref.[24]. TheT® compactification lattice is the product 6%, SU(3) and
SQ(4) root lattices as shown in figure (8) Specifically, the orbifold action is given by the vector

1 11
V= <_67_372> ) (98)

which generates both; andZ, twists;
V3 =2V, Vo, = 3V. (9.9)

The Z3 twist leaves thesQ(4) plane invariant and thg; twist leaves theSU(3) plane invariant.
The orbifolding is embedded into the gauge degrees of freedom with a simoltsuphase shift
(using the fermionic formulation for the internal gauge degrees of fre@dim order to do this we
bosonize the 16 internal right-moving degrees of freedom. The orbifodd isvembedded into the
gauge side by the vector

(AEEY

The Wilson lines are given by a set of 16-vect@Vs such thalJ, = diag{exp2mW,)}. In the
model of ref.[26] there are two Wilson lina®% andWs (the suffix indicating the order of the
Wilson line) in theSQ(4) andSU(3) planes respectively, given by

Woo (Lo t1llg)(23 25 21 19 25 21 177
“\2h 22w 474 4T a0 as

11/ 1\° 214 5
VV3 - (6727 <6> ) (Oa373a3a170> . (911)

6taken from ref.[26] with kind permission of the authors
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Note that these models are non-standard embeddings in the sense thattthartdishifts act on
both Eg factors. In order to accommodate the successful prediction of gaufieation, the third
torus is compactified at a scalkgj;. The first two tori are compactified at the fundamental scale.
Thus above the GUT scale and below the string scale the theory can bdeésath an effective
6-dimensionall,/Z, theory. This effective orbifold GUT theory is shown in figure 9.

SU(5) SU(2) x SU(4)
54 I
SU(6)
+9x (6 +86)
+20
5410

®
SuU(5) SU(2) x SU(4)

Figure 9: The effective 6-dimensional field theory approximationhe model of ref.[26] above the GUT
scale.

The bulk contains an enhanc8td)(6) symmetry. The fixed points have the symmetry further
projected by the twisting of the third torus. The intersection of all the diftgpesserved symme-
tries is the SM gauge group with some exttél) factors that are anomalous and hence heavy by
the Green-Schwarz mechanism. Some additional SM gauge singlets aetf@ed get VEVs to
generate the required Yukawa couplings of the SM via the Froggat-Niglsehanism.

9.4 The fermionic construction in 4D

Before closing this introduction to closed string phenomenology, | would likgv® an hon-
orable mention to the so-called fermionic formulation of the heterotic string. Irotiesextends
the fermionic formalism which | used to derive the 5 perturbative models inrh@rtsions. Com-
pactification to 4 dimensions leaves 6 superfluous bosonic degreesdbifneon both left- and
right-moving sides. These can be fermionized into 12 real (or 6 complexjdas. Including the
degrees of freedom that were already there in 10 dimensions, theediff@odels are defined by
boundary vectors (for complex fermions) of the form

V = [Vq,..Vi0; Vi1,..V32]
U = [Ul,..ulo; U11,..U32]. (9.12)

Again there is a Lorentzian convention for dot-products. Apart fromctienge in numbers, the
rules for model building are essentially unchanged from the 10D onesgihdince those rules
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were derived from the requirement of modular invariance of proddatsmformal field theories,
they could hardly be anything else). There is one additional requirementadels should corre-
spond to compactified 10D supersymmetric models. In order to ensure thisdugte to specify
that the choice of boundary condition leaves the supercurrent invaran this it is more con-
venient to express the theory in terms of real fermions. The boundaditam vectors are then
expressed rather laboriously as

V= [(v1,V2),(V3,V4,Vs), (Ve,V7,V8), (Vo, V10, V11), (V12, V13, V14), (V15,V16,V17), (V18, V19, V20) ;
Va1, ..Ved]

U = [(ug,Up), (Us,Us,Us), (Us, Uz, Ug), (Ug, Uso, U11), (U12, U13, U14), (Uzs, U1e, U17), (U1s, U1g, Upo) ;
Uz1, ..Us4] - (9.13)

The two first entries on the left-moving side are the two transverse degfrsesdom of spacetime.
The remaining fermions on the left-moving side are grouped into threes. (Denbrld-sheet
supercurrent ig, = X' and transforms into plus or minus itself on parallel transport around the
world-sheet in the R or NS sectors respectively. When a single b¥sgsriermionized into two

real fermiongp; andy, say, we have an SCFT identificatiogn (>, ~ X, so that the supercurrent
is

_ 6
=S woX' +i 'y Ynidniisiio.
2y
The model building rules are therefore augmented with the “triplet constithiat”

V1 = V2 = V3i +V3j+1+ V312 mod(l) Vi=1.6. (9.14)

A particularly fruitful choice of boundary vectors is the set of ref.[2¥hich consists of five
vectors usually denotefll, S by, by, bs} in the language of ref.[9]; in order to be consistent with
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our earlier introduction, | will continue with the notation of ref.[7];

2
N PR P S S P )
22272722022 5222 D"
W = [02, (0,0,0)(0,0,0)(0,0,0)(0,0,0)(0,0,0)(0,0,0);
202222 "
W = [02.(0.5.5)05.5)(3:0.5)(3:0.5)(3:03)(3.0.3);
0.5:510533(30.(5:0.5G:03)(;:05) 073"
W = |0%.(3.0.5)5.0.5)(05.5)0.5.5)(5.3.0(5 3.0
(3033050550555 3050, 07"
Wi = (%,5,5.005. 5052055005503, 5);
339G 3030530055055, 02 @19

The theory with just » is a supersymmetri€Q44) model. The three additional projection
vectors cut down the gauge group (without cutting the rank) into the thiewdgubgroups. Note
that the space-time side is embedded in the gauge side in the sense that tleenpactified”
degrees of freedom are simply copied over to the right-movers. This isggnss to the standard
embedding of the orbifold models. In addition 10 of the world-sheet fernmonhe gauge side
play the same role as the transverse fermions on the left-movers; thelegtiofa)” = 1 spacetime
supersymmetry on the gauge side iskgnhgauge group factor. This is broken by the projections
to SO(10). Finally the last 16 fermions generate Bgb group factor. The gauge group is then
SQ(10) x SO6)2 x Eg. The untwisted sector gives rise to vector-like pair¢@f of SO(10) which
can play the role of Higgses in the Standard Model. The 3 sets of twistedséetal to 48
multiplets in16s of SQ10) (16 from each sector) — these will eventually lead to matter.

The second stage of the model adds at least 3 more vectors to proj&X(t®@ down to one
of its subgroups, a particularly interesting possibility being tB&Ki3) x SU(2) x U (1)? [28]. |
will not show the vectors explicitly, but suffice to say that the 10 fermionigreles of freedom
are complexified (into 5 complex fermions) and given boundary conditibresgo (%)5 in the
final boundary vector. The final models can be very close to the S@uMeadel with 3 matter
generations remaining from the original 48, naturally heavy (i.e. string)stfggs triplets and
suitable Yukawa couplings. For more details and a complete discussion diehempenology see
ref.[29].
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Figure 10: D-brane realization of a U(2) gauge group.

10. Open string models: string at singularities

The arrival of the large extra dimension idea stimulated interest in the othanisof string
theory as model building tools. In particular attention turned to the type | ard kyipeories which
have in their nonperturbative spectrum objects known as Dirichlet bri@@e 31]. These can be
built like monopoles from the effective field theory, and are membrane-tikiefally dynamical,
with a typical surface tension and a width of order the fundamental sciziddd by the string
coupling). As we argued earlier based on the types of R-R fields in thigydar models, they
havep dimensions on their world volume whepe=1,3,5,7,9 for type 1IB, 15,9 for type | and
0,2,4,6,8 for type lIA. The interesting feature of D-branes from a model buédeoint of view
is that open strings can end on them and this can generate gauge grabhpsfafiowing way.
Associated with an open string end point is an index, the Chan-Paton infdthere are a few
branes together, the index simply labels the branes to which the open stritigcisea. If we
consider two branes for example, the endpoints can be attached in omeagé4s in Figure 10.

What do we see when we observe this from 4 dimensions? Remember thathieod di-
mensional point of view we need to arrange things such that the compastiféee is the same
everywhere. In particular the brane must be lying in the ldfigespace that we observe in order
for the open string to be able to travel along it (otherwise it would be stualsitgle point inMg.

So the branes must haye> 3. (If p = 3 the branes appear as points in the compactified space.)
Given this, the open strings may freely propagatéinbut have 4 internal degrees of freedom
corresponding to the adjoint of U(2). As we shall see later, these elegfdreedom are included

in the perturbation theory by adding “Chan-Paton indices” on the vertesatqr which represents
the emission of such a state.

It also turns out that the strings have to have an excitation from the bodmee giving them
a Lorentz (gauge boson) or internal (matter field) index. Finally a rerbéKaature of D-branes
is that they break only half the supersymmetry (i.e. they are BPS). The alribi@ory which as
we saw had\ = 8 supersymmetry in 4 dimensions (if the compactified space is toroidal) ends up
beingN = 4. We thus end up with aN = 4 theory withU (2) gauge group. In order to reach a
more phenomenogically interestibhg= 1 configuration, the compactified spacgcan be chosen
in such a way that the supersymmetry is already partially broken before-tiraries are added.
The simplest (i.e. most calculable) way to achieve this is to use orbifolds aat¢kground.

Before we start throwing branes together at random, we need to takefcamme consistency
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conditions. The most important of these for D-branes are the famous RlaRemond tadpole
conditions. As we saw every D-brane has a “Ramond-Ramond” (RRyehand couples to the
Ramond-Ramond fields of the closed string spectrum. Since these are stosgdstates they
do not care about the presence or otherwise of the D-branes. Ioidabcompactification they
propagate throughout the entire compactified volume. Curvature singafdreexample when
the compactified space is an orbifold, introduce a second type of “twist&lfiétds that are
confined to the fixed point. The RR fields behave like gravitons and dilatatigcam part of
the gravitational spectrum. However they differ in the respect that flux bh&amond-Ramond
fields must be absorbed in a compact space otherwise the theory is inenns®ne has to be
careful therefore to choose the arrangements of D-branes sudhéhaix lines are all absorbed.
Once this requirement is satisfied, other requirements such as anomagjiai@ot are usually
satisfied as well.

These requirements led to an approach to model building which became ksdtottom-up”
[32]. Consider what are the important features of any model from th pbview of phenomenol-
ogy. The leading factors are those things that have to do with the gaugesgiarticle content,
number of generations and so on. Secondary factors are things Weabldo with supersymmetry
breaking, the cosmological constant etc. The latter are things whoseialproperties are inter-
twined with gravity. As such their influence on phenomenology is less impottaatlarge extra
dimension set-up, the correspondence with the configuration in the comgrhsptice is rather di-
rect. The primary factors have to do with the local arrangements of Debraround, for example,
some orbifold fixed point, whereas the secondary factors are alliagsbevith objects far away in
the bulk of the compactified space. For example a “hidden” sector can loeléacconsisting of a
collection of branes at sonogherfixed point far away in the compactified space. The communica-
tion to the visible sector then has to be through the bulk, and will get the sammaecluppression
as that felt by gravity. This is shown schematically in Figure 11. The poiptesent for example
D3 branes localized at some point in the compactified space with twisted RRafterlted locally.
These are chosen in such a way that the visible sector is the MSSM. Gradittha untwisted
RR fields live in the bulk of the compactified space. These details and in garttbe details of
untwisted RR flux cancellation are less well determined.

The bottom-up approach begins therefore by focussing on the locaMw®8figuration. We
assume an intermediate fundamental scale of

M ~ v/ MwMp| ~ 10*1GeV. (10.1)

This scale is familiar from the hidden sector supersymmetry breaking comnteshilog gravity

and had been suggested earlier on more general grounds to do witkysupeetry breaking and
mediation by gravity [33]. First a set of D-branes is included at some fioéat of Kg with all the

necessary elements to make up the standard model gauge group and ledveupersymmetry
in the visible sector. This can for example be a set of D3-branes lying oaftepch other at a
single point inKg, but with their world volumes filling the whole dfl, (as of course we require if
the open strings on their world volumes are able to travel anywhevig)inWe then need to satisfy
the requirements of local RR-tadpole cancellation. That is we need to adititioaal branes
(D7 branes for example) such that the “twisted” RR-tadpoles cancébtaity supersymmetry is
preserved. This puts a constraint on the angles at which the branésteaasect (for example
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gravity
lives here

Figure 11: Schematic picture of the bottom-up approach. The small pbilets represent the local config-
uration of D-branes leading to the MSSM whereas the largergbtob represent the global structure, less
important from a phenomenological viewpoint.

that the D7 branes intersect at right angles). This arrangement takesfche local consistency
conditions, however one should also take care of the global RR-tadpudenake sure those fluxes
cancel as well. This can be done by adding other D-branes and anéiHes$elsewhere in the bulk
or may be done in some other way. From the point of view of 4D phenomendohegefore,
the particular way in which the global tadpoles are cancelled affects onlyidaden sector, and
consequently the soft supersymmetry breaking and cosmological conAtannsistent set-up is
shown schematically in Figure 12. This figure shows the global RR flux kedsgrbed by anti-
branes, but the set-up can be entirely different away from the visibtersithout affecting the
MSSM set-up directly.

The reason for the particular choice of the intermediate scale can now leealead The ad-
ditional ingredients required to ensure global tadpole cancellation dgnemreak supersymmetry.
Since it is only the global configuration that breaks supersymmetry, theffieet is the same as
hidden sector supersymmetry breaking communicated by gravity and we hogstecthe funda-
mental scale accordingly. In other words, the volume of the bulk can lpemsible for the large
Planck scale and the dilution of supersymmetry breaking effects o & M,. The precise
dependences on volumes can be derived from the reduction of tlegeff20 dimensional type |
action to 4 dimensions [34]. We begin with the Planck mass relation to the total corghame

2
2Mp

— 10.2
1 (10.2)

VK6 — A|
where), is the string coupling. To get an idea of what this has to be, we can look effdutive
gauge couplingrp on ap-dimensional brane. The gauge interactions are proportional to the string
coupling but are diluted by the volume of the branes in the compactified sggcg,since the
gauge bosons are free to roam anywhere in this volume. Hence

Al

Qp~ —. 10.3
v (10.3)
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S

Figure 12: Set-up for the bottom up approach. The visible sector ctssfs3-branes at a fixed point K.
D7 branes have to be included passing through this fixed pmizdncel local RR-tadpoles. Global absence
of tadpoles requires additional branes and/or anti-braméne bulk, or possibly something else entirely.

Substituting Eq. (10.3) into Eq. (10.2) gives us
apM3 = M2>P (10.4)

whereVg_, is the co-volume (i.e. the volume orthogonal to fhbrane). Any process we care to
calculate that breaks supersymmetry, such as a contribution to the scasasquaseds communi-
cated via closed string modes from an anti-brane, feels the same volunmeldape
Meusy™ Ms??' (10.5)
9-p

The dilution due to the co-volumé,_, is obvious. Thev,_3 enhancement factor arises from the
sum over Kaluza-Klein (momentum) modes in the brane volume and is essentiadgnitesfactor
as that arising in Aap. Essentially this is like a phase space factor. (As a rule-of-thumb, onesean
the fact that if we invert a radiu® — 1/R;, we also turn that dimension from a brane dimension
into a dimension orthogonal to the brane or vice-versa, and also chamgderbnsionality of the
brane,p — p+1. Hence the volumes must appear as the ratio of brane volume to co-volume,
Vp—3/Vo_p.) There is no 1A, contribution as there is in the tree level Yang-Mills terms (hence the
equation forap) because the diagrams that contribut®kg, syare one-loop and, acts like a loop
expansion parameter.

Now, for reasonable phenomenology we would Mg, sy~ My so that from the above, and
assuming that we hawg, ~ 1 we need

M2 ~ MwMp
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u(1)

Figure 13: Local arrangement of states on D3-branes leading to the MSSM

as expected, and consequently a volume ratio

fo3 MW

Vo, ™ M (10.6)
The beauty of the bottom-up approach is that is allows us to disregard thdseopthe construc-
tion that are not vital to phenomenology. For example there is a questiontz glalidity of these
models due to the fact that there are uncancelled tadpoles of anothen&mely NS-NS tadpoles.
These however can be absorbed dynamically by adjusting the backiyficelrKs) and their pres-
ence does not automatically render the theory inconsistent [35]. Althtugleffect may make
the theory intractible on a global scale, it may still be a reasonable approxmtat&ssume a nice
(tractable) flat or orbifold background near the visible sector bramesre we can still calculate,
for example, interactions.

Let us turn briefly to the local arrangement of branes that yields the vis#oer particle con-
tent and gauge group. This is often represented as in Figure 13. Tinre Bigows the arrangement
of D3 branes at a particular fixed pointka. The branes are extended\h and fixed inKg so that
two of the dimensions shown are My and the dimension orthogonal to the branes should be in
Ke. In addition the branes are on top of each other. (Any separationnébteanslates into a mass
for the relevant states due to the stretching energy.) There are thrke stdécanes corresponding
to a gauge group (3) x U(2) x U(1). The gauge states are those strings with ends attached on a
single stack of branes. The matter states correspond to strings stretthveeib different stacks of
branes and consequently appear (in this simple example) in the bifundanidntalwe can iden-
tify strings stretched between thK3) andU (2) stacks with left handed quark®,, between the
U (2) andU (1) branes with left handed leptons and higgses, and betweé&h8)eandU (1) branes
with right handed quarks. The gauge groups contain too rdgay factors, and the final reduction
down to a singléJ (1)y of hypercharge comes about because there is only one linear combination
of U(1)'sthat is anomaly free. Of course string theory is a consistent theory, angl $hould be
no anomalies at all. But the way in which string theory cancels the anomaliestram@aively
anomaloudJ (1)’'s massive, and one expects that the anomalous combinations will be bra&ken. R
markably the states turn out to have the hypercharge assignments of thehiS\rucial stringy
anomaly cancellation (the Green-Schwarz mechanism) is representedasicladly in figure

The bottom up approach has a number of advantages, many of whicbutined in Refs.[32,
36]. For example the prediction of an intermediate fundamental scale is tmgriEs a number of
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Figure 14: Schematic representation of the Green-Schwarz anomabetation mechanism which is re-
quired to understand the cancellationfl) anomalies. The upper diagram is the usual field theoretic
diagram. In the string theory the anomaly contributionskaré out of the left lower diagram (which has

a field theory limit equivalent to the upper diagram), andrilgat lower diagram which is “stringy”. The
latter corresponds to the coupling of an open sttiHg) photon, to closed string modes which then emit
two open string gauge bosons. Note that this procestréedevelpropagation of a closed string.

reasons. Itis a natural realization of hidden sector supersymmetikitgeammunicated by grav-
ity. The model provides axions with just the right Peccei-Quinn scale to allosxepn solution to
the string CP problem. In addition the see-saw mechanism for neutrino massessistent with
a fundamental intermediate scale, and so on. One of the disadvantagedofttm-up approach
is that, by its very nature it is difficult to make concrete predictions of phenotogical impli-
cations. This is because the approach begins with a visible sector thatbtesehe MSSM and,
by construction, aspects such as supersymmetry breaking have to doengfloltal configuration
over which we assume very little control.

11. Intersecting branes

As we saw earlier, classical strings can be trapped at the intersectioro dframes. If one
imagines D-branes of some dimensonality wrapping a compact space, ttieseeivre the possi-
bility that upon quantization these intersection states could lead to interestingégyespectra.

In particular, D-branes are (BPS) and so preserve half the supsrsiries, however D-branes in-
tersecting at different angles will presemiferentsupersymmetries, and so one may hope to get
chiral 4" = 1 spectra, and even break all the supersymmetry this way.

72



String Phenomenology Steven Abel

1554

Figure 15: A ‘twisted’ open string state - the anglens?.

11.1 Quantizing the intersection

In order to carry out this program it is first necessary to understdrad hhappens at the inter-
section of two branes a little better. It turns out that the states here arsimglgr to twisted states
on orbifolds.

Let us recap and extend what we saw in section 4.4. This will give me aeharintroduce
a more convenient complex worldsheet coordinate to repdaeed r. An open string stretched
between two D-branes intersecting at an armmgde as depicted in figure 15, has the boundary
conditions,

0:X?(0) = d,X*(0) =0,
OrXL(1) + 9 X?(mm) cot(1t8 ) = 0, (11.1)
05 X?(11) — X1 (m) cot(rtd ) = 0.

Thus the correct holomorphic solutions to the string equation of motion are,

0X(2) = Shak_pz ML,

— _ 11.2
OX(2) = $an 07 01, (11.2)

where | have intriduced= —e’ /% as the worldsheet coordinate with domain the upper-half com-
plex plane. (Note | am using to stand for the complex coordinaXg + iX, rather than th& of
section 4.4, to avoid confusion.)

This domain is often extended to the entire complex plane using the ‘doubling trickwe

define,
_J 9X(2) Im(z) >0
0X(z) = { 0X(7) Im(z) <0’ (11.3)

and similarly fordX(z).
Now the mode expansion of a closed string state in the presencénpbebifold twist field, is
identical to (11.2) with the replacemeht= % Hence, we see that there is a natural correspondence
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Figure 16: A set of D-branes which can lead to a nonperturbative 4 potetaction. This configuration has
two independent angles (i.e. two parallel branes). In fladhere could be three independent angles.

between open strings stretched between intersecting branes and a thaseztistring state on an
orbifold. (To take account of this correspondence, we must introddnzg’s called a twist field
o3 (W, w) into the vertex operator which represents the emission of the open stranta(gg. This
field’s job is to change the boundary conditions<atfo be those of eq.(11.1), where the intersection
point of the two D-branes is &(w,w).) The mode expansion fot in these coordinates is then,

X(z.2) = z < N8 e gi‘;z_”’9> | (11.4)
with the right and left moving modes being mapped into upper and lower haléglaA simi-
lar mode expansion is obtained for the fermions with the obvious additic%ﬁofthe boundary
conditions for NS sectors.

Quantization then proceeds in the usual manner. In particular the specamioe written
as follows. Introduce a twist vectdt; with 4 entries representing 4 complex coordinates (three
internal and one transverse space time). Introduce a lattice of excitatier, Z +% for NS or
R sectors respectively. Then the GSO projected spectrum of open strtiched between two
branes is given by

L2 r+9)2 1
a'M? = a2q’ + Nposonict (2) 5 +ag (11.5)
where 1
ag = Zéwi‘(l_ai)y (11.6)

and whereNpsonic represents the obvious contribution from bosonic oscillators. Heigethe
displacements between the branes (of course in more than two dimensignsaithiee separated
but at angles). This is the classical stretching energy; i.e. the grotmdstéhe stretched string
which already has classical eneigy = L/2ma’.

The correspondence with the spectrum of twisted states on orbifoldsecanderstood geo-
metrically as in figure 17. This figure shows two identical three point diagreiish are sewn
together at their edges. An open string living at the intersection is doulpled form a twisted
closed string. As a result we expect to find a open stringclosed string relation. However, we
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Figure 17: Identifying open strings to form closed strings

also note that the intersection angles in this case are more general thathénaestrictive ones
found in supersymmetric orbifolds of closed strings.

11.2 Mg ~TeV: Branes at angles

Having understood the open string spectrum, at least a little, we will disagsanclass
of models that represent, within a bottom-up approach, realistic string modelsnaiils of the
features of the SM, allowing in principle for a very low string scale. Our maimia this review
is to account for their phenomenological features, their realistic struetude especially, their
flavour structure, which, as it turns out, provides the deepest pifalbésdind of models and the
most stringent constraints on the string scale as well.

Models with D-branes intersecting at non-trivial angles [5] (see [87&h earlier application
of the same idea, in the dual version of branes with fluxes, to supersymbretiking), have a
number of very appealing phenomenological features such as for ¢estanr-dimensional chi-
rality or a reduced amount of symmetries (both gauge and supersymmetni@sg anany others.
One particularly important feature that these models have is an attractilanatipn for family
replication. Specifically the matter fields correspond to the string states attéhnseictions that
are stretched between two branes. There are then three generatiolysbainguse the branes are
wrapped so that each type of intersection appears three times, with aecged of multiplets
stretched between the branes at the intersections.

In particular, configurations with branes at angles typically break allupersymmetries (su-
persymmetric configurations have been constructed [38] but they gremestrained and minimal
models are very difficult to obtain) and therefore a very low string sealkeV is required. The
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first semi-realistic models were constructed in [39] and soon after in [A®]41] (see [42] for

some related technical developments). These initial models presented addigoige symme-
tries or matter content beyond the ones in the SM. The first models contaisindnguSM were

presented in [43]. Since then, a great deal of effort has gone intadhetstudy of the consis-
tency and stability [44] and phenomenological implications of intersectingehrardels, from the
construction of supersymmetric models [38], gauge symmetry breaking G45[ or realistic SM

constructions [46] to cosmological implications [47]. In the following we willissv some of these
developments paying particular attention to their flavour structure [48,0 @l its profound ex-
perimental implications.

For the sake of clarity we will concentrate here on one very particular hjd8gthat ex-
emplifies most of the interesting properties as well as some of the possiblerpsobfenodels
with branes intersecting at angles. It is an orientifold compactification of ltygheory with four
stacks of D6-branes wrapping factorizable 3-cycles on the compachdioms. This mouthfull
is displayed in Fig. 18 which shows just the compactified spdge The compactified space is a
compact factorizable 6-Torus

T?xT?xT?,

and the orientifold projection is given 8y% whereQ is the world-sheet parity an# is a reflection
about the horizontal axis of each of the three 2-tori,

RZ, =127,.

We have denoted the coordinates of the tori by complex coordidatesy 2 +iXp 13,1 =1,2,3,
so the three boxes in the figure represent each 2 torus, with the edggsdamntified. Recall that
the 6 branes must lie iM, so that there are only three dimensions of eBéibrane that will
appear irkg. The branes therefore appear as just lines in daclhe nett effect of the orientifold
projection is to introduce mirror images of the branes in éladin the plane running horizontally).
The images do not add any new states so we have not included them in ttendiag

This particular model contains at low energies just the particle contentyamuatries of the
MSSM. In order to get that we include four stacks of D6-branes, calgonic(a), left (b), right
(c), andleptonic(d). Three of the dimensions of each D6-brane wrap a 1-cycle onaédloh three
2-tori, with wrapping numbers denoted by, m), i.e. the stackk wrapsni, times the horizontal
dimension of thé —th torus andn times the vertical direction. We have to include for consistency
their orientifold images witi{n},, —mj;) wrapping numbers. The number of branes in each stack,
their wrapping numbers and the gauge groups they give rise to are shdable 3 and a subset
of them, together with some of the relevant moduli, are displayed in Fig. 18.

The open string light spectrum in these models consists of the following fields:

¢ (p+1)-dimensional gauge bosons (for the case of a statkDp-branes) corresponding in
general to the group W) ~ SU(N) x U(1) live in the world volume of the corresponding
branes. In our particular configuration, we have seven-dimensi@ajegbosons corre-
sponding to the gauge group 83) x SU(2) x U(1)a x U(1)¢ x U(1)4 (see Table 3Y. Of

"Note that the left stack of branes consists of just one brane that gieesirectly to a US(R2) ~ SU(2) gauge
group instead of the usual(l) due to the orientifold projection [31].
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Stack| Nx | Gauge group | wrapping numbers
a 3 | SUB)xU(1)a | (1,0);(1,3);(1,-3)
b 1 SU(2) (0,1);(1,0);(0,-2)
c |1 U(1)c (0,1);(0,-1);(1,0)
d |1 U(1) (1,0);(1,3);(1,-3)

Table 3: Number of branes, gauge groups and wrapping numbers foriffieeett stacks in the models
discussed in the text.

T'be 6(2) 6(3)

om—"1/3 2/3
1/6
g<3)1""\t"'\""
=1 =1 ]

Figure 18: Brane configuration in the model discussed in the text. Thtoléc sector is not represented
while the baryonic, left, right and orientifold image of thght are respectively the dark solid, faint solid,
dashed and dotted. The intersections corresponding touéek gloubletsi(= —1,0,1), up type singlets

(j = —1,0,1) and down type singlet§{= —1,0,1) are denoted by an empty circle, full circle and a cross,
respectively. All distance parameters are measured is 0h2rR with R the corresponding radius (except
£ which is measured in units offR).

O
i=0 i=1 i=1 =0

the several abelian groups, every anomalous linear combination reeeiwass through the
Green-Schwartz mechanism, whereas anomaly-free combinations cain reassless or
not, depending on the particular brane configuration. This is indeed atsiglégure of this
class of models that allow non-anomalous gauge bosons to couple to the R&tvields
acquiring a mass of the order of the string scale in this form [43]. Thegrhenology of
these extra massive(ll)’s has been studied in [51] finding a bound on the string ddale 1
TeV. Interestingly enough, these gauge symmetries remain at the pesteiesél as unbro-
ken global symmetries [43]. Quite generally these new global symmetriesspomd to
baryon, lepton, or Peccei-Quinn like symmetries, preventing proton daeayin low scale
models. In our particular example, the anomaly free massless combinatiesmamding to
the hypercharge is

Q= £Qu (@t Qu).

e Four-dimensional chiral massless fermions living on the intersections obtemes and
transforming as bi-fundamentals of the corresponding gauge grotnes: Aumber depend
on a topological invariant, the intersection number, which in the case ofrizaitde cycles
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on a factorizable torus is simply

3
Tab= ﬂ(n'am'o —myny),

with different signs corresponding to different chiralities. The fact thase branes wrap

compact dimensions naturally provide intersection numbers greater thaandriberefore

replication of fermions with the same quantum numbers. It should be mentienedHat in

the case of lower-dimensional branes, like D5 or D4-branes, chiralitgtijutomatic and

locating the whole configuration at orbifold singularities is required in otalget it [41].

e Four-dimensional scalars, also localized at the intersections, with maaséegiend on the
particular configurations of the branes. They can be seen as thadtigmeassive when
SUSY is broken by the intersection) superpartners of the fermions attéreétions. In re-
alistic models, scalars with the quantum numbers of the (MS)SM Higgs bosomasd. In
the example we are considering the configuration is such that the samsysupeatry is pre-
served at each of the intersections and massless scalars, supespairthe corresponding
fermions completing the matter spectrum of the MSSM live at the intersections.

The massive spectrum comprises, apart from the usual winding and kKd€smand string
excitations not related to the intersections normally present in string models$,cd s@ssive
vector-like fermions, the so-callegbnions[41], localized near the intersections and with angle-
dependent masses. Although a purely effective field theory studyssthawrelatively light vector-
like fermions, especially when they mix with the top quark, are the most likelycsoofr modi-
fications of trilinear couplings [52], the presence of Flavour Changiagtidl Currents in these
models overcomes in general any phenomenological relevance of these s

We have therefore seen that at the level of the light spectrum, models witbdatieg branes
have a number of nice features, namely four-dimensional chiral ferpaiigral family replication
and local and global symmetries and matter content of the SM (or simple extenkareof). As
we have seen, the closed string sector, which lives in the full ten-dimexisarget space, contains
among other fields the graviton. These models thus have a natural hjeddrdimensionalities,
with gravity propagating in ten dimensions, gauge interactions in seven and mdtar. As we
sketched in the introduction, this will allow us to reduce the string scale dowlostereable levels.

In our particular example, as can be seen in Fig. 18, there are no dimetsioaverse tall
the branes and therefore no transverse volume can be made largé é¢m@aegount for the large
effective four-dimensional Planck mass with a small string scale. The thatgststopping us are
of course the gauge couplings which would receive the same volumeessppr seen in Eq.10.3
and become extremely small. This problem can be circumvented in seveglthawimplest one
is to connect our small torus to a large volume manifold without affecting theelstructure [53],
for instance, cutting a hole and sewing and large volume manifold in a regiay &iam the
branes’. This approach is in spirit quite similar to the bottom-up approach. A secossllplity

8There is a conceptual difficulty in this construction that can be phrasedhpin such a large volume manifold,
the relevant physics occurs in such a tiny region. This difficulty is in oneawanother always present in the large extra
dimensions approach to the hierarchy problem but, as we have engihabie vacuum degeneracy problem makes this
possibility at least conceivable in a stringy set-up.
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is to consider lower-dimensional branes, for which transverse dimengioall branes do exist.
Realistic examples with D5-branes and a string scale as lol@va3eV have been constructed
in [54]. (See also [55] for other examples with extra vector-like fermioms.jhese models the
effective four-dimensional Planck mass reads

Mp = AZHM;f A (11.7)
whereV, > stand for the volume of the four-dimensional manifold where the brangs awd the
volume of the two-dimensional one transverse to all the braned arislthe string coupling and
Ms is the string scale. In this situation it is possible to have all scales of ordebliEitie transverse
dimensions then have to bemm[4].

Gauge couplings can be simply computed from a dimensional reduction ofating-Mills
theory living on the world-volume of the stack of branes. As expected,stuppressed by the
volume of the compact dimensions of the brane,

1 M3

2 16, Vay (11.8)

where we have considered the case at haed, D6-branes wrapping 3-cycles on the compact
space and considered the gauge coupling of afNg\.group. Reasonable values for the couplings
are obtained if the relevant volume for the bran&/jsv M3 ~ TeVé. Contrary to the original
expectation, under certain mild assumptions, gauge coupling unificatiorecalntdined [56] (see
also [57] for a study of gauge threshold corrections in intersectingebrastels).

Models with intersecting branes therefore allow in principle for a very loingscale Ms ~ 1
TeV, while keeping the Planck mass (11.7) and the gauge couplings (11h®) @bserved values.
Notice as well that in the case of non-supersymmetric models, a low stringisqaieferred to
avoid large corrections to the Higgs vev.

11.3 Globally consistent models

We have not yet elaborated on the details of the construction and theistemty conditions
such as the absence of Ramond-Ramond tadpoles or the presenceckeantupersymmetries.
These conditions greatly restrict the number of possibilities, usually regulrenpresence of more
complicated spaces by further orbifolding and orientifolding the toroidaksire we have dis-
cussed. Nice reviews are given in refs. [58, 59].

12. Interactions, esp. Yukawa couplings

In order to do much meaningful phenomenology, one needs informatiaut &ie superpo-
tential. In string models in flat backgrounds it is rather satisfying that theaictiens in the su-
perpotential can be computed with standard CFT techniques. Often thegelthfinite results
for amplitudes that in the equivalent extra dimensional field theory wouldad/tbehaved. The
techniques are common to both closed and open strings and | will concenirtite latter.
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12.1 Perturbation theory

In order to discuss the calculation of couplings, let us briefly return todiseeb, and develop
the formalism for doing perturbation theory in flat backgrounds. In pagfonve need to be able
to describe the emission and absorption of physical states. Just as in diefy, ttve may define a
perturbation series expansion for string scattering amplitudes. Perturltiagiory with strings is
potentially superior to perturbation theory with particles for two reasonstlfsisince the different
elements of a string worldsheet contain a multiple of string states simultaneosshgla string
diagram contains many Feynman diagrams: string theory is potentially much rfiorenéfthan
field theory. Second, there is no unique point in spacetime at which alharsewill agree that
a string interaction takes place. In field theory, propagators coming togattse well-defined
interaction point lead to ultraviolet divergences, but since the interactiorm m string diagrams
is in this sense ‘smeared out’ over spacetime, UV divergences are dvoide

In field theory, terms in the perturbation expansion of a scattering amplitedwdered topo-
logically according to the number of loops in the Feynman diagram, and thesigpgarameter is
taken to be the coupling strength of the field. In string theory, terms are @lsoedl topologically:
we add a terml x to the action (4.44), wherg is theEuler numbey

1 v 1
X= E/Mdadn/—ym— ET,/aMdSk (12.1)

Here, R is the Ricci scalar for a given worldshelgt with boundarydM, andk is the extrinsic
curvature of the worldsheet. This term is not dynamical, and does reatdffe spectrum found
above: instead, its effect is to weight the action by a factor which depmrig®n the topology of
the worldsheet. The perturbation expansion parameters are taken tmgaipength of open and
closed stringsgo andgc respectively.

The Euler number may also be expressed as

X=2-2h—b—c, (12.2)

whereh is the number of handles a given worldsheet bas the number of boundaries it has and
is the number of crosscaps present. Some example diagrams showingwetsdaith boundaries
and handles are presented in figure 19. In the third diagram, we seethalosed string can be
replaced by two open strings. Therefore, making a closed string ‘dbs&tsame as making two
open strings, so that the couplings have the relation

g%~ dc. (12.3)

Cross-caps occur only in unoriented theories, in which only those skgesloked in sec. 5.3 which
are preserved under the worldsheet parity operation

Q: o—rm-o0o (12.4)

are retained, as described earlier. To make a cross-cap, we cut dsteali the worldsheet, and
then glue together all diametrically opposed edges.
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Open strings, tree-level Closed strings, one-loop Mixed, two-loop
X=1 X=0 X=-3

Figure 19: Example diagrams in string perturbation theory. In the sdaow, the external states have been
conformally mapped to points, to be replaced by vertex dpesa

The Polyakov path-integral

To obtain the¥’-matrix for string theory, one should imagine that the incoming and outgoing
(asymptotic) states are taken off to infinity, just as one does in field thedwy.\Wey! invariance
(4.29) may then be used to map the external states to local disturbances warltigheet, as
shown in the figure, which are then replaced by logattex operators/ (k,7,0). The general
procedure for calculating scattering amplitudes is then to consider a partioplaogy, insert
vertex operators onto it, calculate the probability of the diagram spontalyemecuring, and sum
over all physically distinct cases.

There are three complications associated with this procedure. First, toasitbunting, we
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must account for the diff Weyl gauge invariance of the action. Second, some of the topologies have
moduli associated with them, describing different embeddings of the worldsheespacetime.
For the torus, for instance, one may imagine tori of different ‘fathesd*aval-ness’ — and indeed,
as we saw in section 6, the torus is defined by a complex moduliee Teichmuller parameter.
All values of the moduli associated with a particular topology must be taken odouat, so
whatever the diagram, one would always expect to have to integrate evarrtlamental region
of some moduli space, as we did for the one-loop partition function. Thiphlégies may have
Conformal Killing Vectorg(CKVs) associated with them. These isometries lead to worldsheets
which are mathematically distinct but have the same physical embedding inispgand as such
we should divide out by them. Taking the torus as an example again, the €dMse thought of
as the two ways in which a (regular) torus may be rotated whilst leaving itigailysunchanged.
For a given topology, the number of modpliand CKVsk are related to the Euler number by the
Riemann-Roch theorem,
U—K=-3Y. (12.5)

There are two general approaches to calculating amplitudes in a manmsigtenonhwith the
above: the operator approach, as typified by [1], and the (Polygkath-integral approach, as
typified by [2]. The operator approach is not without its merits, but theoségievolved is tiresome.
Therefore, we generally make use of the path-integral formalism in thissthétere, one first
Euclideanizes the worldsheet,

(1,0) — (—y,X) (12.6)

after which one may write down a well-defined path integral,

‘@X‘@,’U‘@g —SE-AX 2 e 7 12.7
7= Z/ Vdiff x Weyl /d 2Vrilk.2) (12.7)

Xx.aB
where & is the Euclideanized version of the action (4.44) andzhe x; + iy; are points on the
Euclideanized worldsheet. The sum is over topologieand alsospin-structuresx 3, which are
all possible ways in which we may choose periodic and anti-periodic boyrdaditions for the
fermionsy on a particular topology.

A gauge in the difk Weyl space is then fixed by a Faddeev-Popov procedure [2], in vameh
fixes the coordinates of of the vertex operators, and integrates over the positions of those that
remain. The moduli and CKVs are accounted for by introducing anticommagtiogtfieldsb, ¢
and on the worldsheet: ofieghost is introduced for each modulus, and omgost for each CKV.

In practice, the contributions of the ghosts can be simply determined bytoperathods.

We now discuss some of the specific topologies which play a role in pertunbiusmry,
beginning with tree level wherg > 0. There are three possible topologies to consider, none of
which have any moduli associated with them:

e The sphere&s, with x = 2. The Riemann-Roch result (12.5) tells us tkat 6 CKVs are
present. We may use these to completely fix the positions of three vertexapeva the
worldsheet.

e The diskD», which has one boundary. Hepe= 1 and sax = 3 by eq. (12.5). As the vertex
operators must be on the worldsheet boundary, this is again enoughthe fpositions of
three vertex operators.
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e The projective plan®R, which has one cross-cap and hence glsel, k = 3.
At one-loop levelx = 0. There are four possible topologies,

e The torusT,, with u =k = 2.

e The cylinder/annulu€,, with y =k = 1.

e The Klein bottleK,, with u = k = 2.

e The Mobius stripM,, with =k = 1.

The simplest way to construct each of these is to identify various regiahg abmplex plane and
integrate over just the fundamental domain in the amplitude. The classic exampleisrse the
fundamental region of the one-loop partition function which we already ms&gdtion 6.1, where
the moduli are represented by the complex Teichmiller parameter

Vertex operators

Mathematically, the state-operator correspondence may be describgdhssitools of con-
formal field theory. After the Euclideanization eq.12.6, the closed-stringeneagansions (4.36)
may be written (defining = €~ and hence, on the Euclidianized worldsheet, &+ ) as

X (z \/ ZOI“Z‘” ! oxt (2) \/ ZO(“Z‘” 1 (12.8)

whered = d,, d = d,. Notice that the left-movingholomorphig fields are written in terms o,
whilst the right-moving éntiholomorphig fields are in terms af. These expressions invert to

2 [dz 2 [dz —
- H ~U_ - U /s
=y a’ﬁanﬂax’ @ h = \/;7({: 2nz“ax+ @), (12.9)

with the contoulC taken to enclose the origin of the complex plane anti-clockwise. Applying the
residue theorem gives the state-operator correspondence ¥ffidiles,

2 1 ~ 2 1
at, _>|\E(n_l)!a XH(0) at, — |\/;(n_1)!a XH(0) . (12.10)

This result is valid for operators inserted at the origin; for operatoastatrary pointsz, the fields
are simply translated. Now, an operator which localizes the string to a partmita X in space-
time is

/dzz 3P (X -X(z2), (12.11)
and the (tachyonic) ground state is the spacetime Fourier transform op#riator:
0:K) — / a2z dX (2) | (12.12)

Excited states are then constructed using eq.12.10; for instance, tlexditsd state of the closed
string (the gravitong"V) has the vertex operator

at @’ |0:k) — / d2zaxHaxX ek (2) | (12.13)
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For the open string, the procedure is analagous, except that we malyha set of operators) .
The fermionic oscillatorgy' may be treated in a similar fashion to tb§. Here, the mode
expansions (4.56) become

WH(2) =Y gz 2 W)=y gz (12.14)

r r
And the state-operator correspondence is

1 1
1 1
(r—3)! (r—3)!
This is all the information required to construct vertex operators of N¥eetates. R-sector
states, built up froms), are potentially more complicated since the expansion in eq.12.14 has a

branch-cut, and the state-operator correspondence is not simplsollitien lies in bosonization:
first group the field$PH into complex pairs as

_r_1_
W — 93 WH (0) pH — a 2QH(0). (12.15)

1 — 1

= (Ylyjy? Y= (Yl_jy?), 12.16
75 (W) 7 (W) (12.16)
The behaviour of these fields as they come together at a point on the hemtds determined by
their operator product expansiof©OPE):

W

1

If we introduce a complex bosonic fieldl obeying
H(w)H (z) ~ —log(w—2) (12.18)
then the identification
W(z) =@ Yz =eHO (12.19)

is consistent with the OPE (12.17); as such, all physics is unchangect bgethtification. The
antiholomorphic field$ (z) may be bosonized in an analogous manner. Bosonising the ten dimen-
sions of the string into five complex pairs of the form (12.16) and introduaiset of five bosonic
fieldsH, the open string R-sector ground state is then identified as

) — / dzdsH (12.20)

wheres is the vector (5.26) and the integration is over the worldsheet boundaryth& closed
string, an symmetric operator f is added, and the integration is taken ostér.
As an example, the vertex operator for the open string phaqtp|0;k), is
2

7H (k,2) = goA e PWHERX (2) . (12.21)

This operator should be understood to be integrated over the worldshestary, and a factor of
the open string couplingo has been explicitly inserted. Two other points about this expression
deserve further comment.
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Figure 20: Scattering amplitudes with orientated worldsheets caritaces of Chan-Paton factors.

Picture-changing

First, notice that the subscriptl has been attached to eq.12.21, and an opezafdncluded.
The argument for its presence goes as follows; firstly, we use the Yarasmstraints (4.51) to
define a stress-energy tensors ¥oand W fields on the worldsheet. In general, the OPE of this
tensor with a vertex operatdr takes the form

Tw) ¥ (2= V(2 +... (12.22)

whereh is the conformal weightof ¥". To offset the factor ofiz which appears together with
eq.12.21, it turns out that” must have a total conformal weight of one. The conformal weights
of W and kX are—% and %’kz respectively andk?® = 0, so we have a problem. The solution is
to add commutinguperconformal ghodtelds 3, y onto the worldsheet, which may be bosonized
in terms of the fieldp. The operatoe?? then has weight—%a(a+ 2) [3], so that the composite
operator (12.21) correctly has unit weight.

To avoid an anomaly in thBy CFT, it is necessary that the total superghost charge in a par-
ticular amplitude sums to the Euler numbeiof a particular topology. In general then, we will
need some prescription for changing trecharge, orpicture, of our vertex operators. Such a
prescription is the picture-changing operation,

Fie1(k2) = im POXH g, (W) 4 (2) (12.23)

Chan-Paton factors

Second, &han-Patonfactor A2 has been introduced into (12.21). This is a non-dynamical
guantity which may be associated with the endpoints of strings. The idea is totheigeneral
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open string statg; k) in the basis

k) =Yl kAL (12.24)
]

Then, as figure 20 demonstrates, open-string scattering amplitudes mtash@ofactor

ATATAGAT =tr (ATAZA324) | (12.25)
i,k

Since the trace is cyclic, scattering amplitudes are invariant under the ggungeetry
22— uaaut (12.26)

whenU € U (N). Under this symmetry, one eridof the string transforms in thsl of U (N),
whilst the other end (due to the relative orientation reversal) transform® iN.tiTherefore, the
open string vertex operatdrf‘1 transforms in the adjoiritl ® N representation, which supports our
identification of it as a gauge boson.

12.2 Yukawas and flavour in open strings

Among the many phenomenological implications of low scale models, flavouigshigsone
of the most pressing, so it is to flavour that we now turn. Flavour expetsyae typically able to
probe mass scales much higher than the energy of current experimdras ae will see shortly
this is particularly true in the case of intersecting brane models. The flauatige of these
models is not restricted to Yukawa couplings but flavour violating foumfen contact interactions
are also present at the classical level, giving them a uniquely rich steu®ionetheless, since both
sources of flavour violation are intimately related we shall start with the géiser of Yukawa
couplings.

The leading contribution to Yukawa couplings between two fermions andarseach living
at a differentintersection, is due to world-sheet instantons [41]. @néhink of this as the classical
action for a stretched string leaving an intersection

(with one end on each brane) and travelling to the opposite corners ofutteavé triangle.
The action for a string is the worldsheet area, and therefore the amplitodédsdepend on the
area the string sweeps out;

Yijk ~ e Aiw/a’ (12.27)

where Ajjc is the area of the minimal area worldsheet with vertices at the three intersgction
bounded by the corresponding branes. (See Fig. 21.) A more detaildy atorukawa cou-
plings, using calibrated geometry [48], and confirmed later by conforrela fineory techniques
[60], showed that when the compact space is a factorizable torus abdaties wrap factorizable
cycles, the relevant area is the sum of the projected areas of the triaregleaxh sub-torus. The
final result, including the quantum part reads

V|,1—V|) /ergz)

B 3 ArB( ~
Y_ﬁ/\”zn,;\/B(v|,9|)F(v|,1—v|—6|);e , (12.28)

where we have neglected the presence of non-Bdield and Wilson lines and is the Euler Beta
function, | runs over the three toriy and6, are the angles at the fermionic intersectiamguns
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Figure 21: World-sheet instanton contribution to the Yukawa coumingt each intersection a fermion or a
scalar is localized.

over all possible triangles connecting the three vertices on each of tleetthir&here is an infinite
number of them due to the toroidal periodicity) ahdm) is the projected area of tme—th triangle
on thel —th torus.

This exponential dependence has been claimed as a nice feature ofmthéslks since it is
expected to naturally give a hierarchical pattern of fermion masses. Ashalksee, in practice
this does not hold, at least in the simplest models. The reason is that in neayy ttee dynamics
of left-handed and right-handed fermions turns out to occur in diffeémgnand the property that
only the projected triangles are relevant translates into a factorization outkeeva couplings.
An example is the very model we have been discussing in this section andydidjtedetail in
Fig. 18. Left-handed quarks live at different points only in the sedongs while they live at the
same unique intersection in the third one. The opposite happens for rigtiedhauarks. This
results in the following factorizable form of the Yukawa couplings

Vi =ab, ¥ =abf, (12.29)

where we have only explicitly written the classical part, including this time thespiesof non-zero
B—field and Wilson lines. The coefficients are

(142 332

a=93. (7) (12.30)
(1. @4 23] 333

u_ 3 tEY+E 3J

b =9 %05 5o (57): (12.31)
(L@ _z@] 330

d _ 3 + € &

i =913 5 50 ] (57): (12.32)

wherei, j, j* = —1,0,1, 3% denotes the complex Kahler structure of kheth torus,0, 6, 63
parameterize the Wilson lines afdis the complex theta function with characteristics, defined as

s, . ) .
9 [(p] (k) _I;exp[m(cﬂ—l) K+21(3+1)q). (12.33)

This factorizable form of the Yukawa couplings, Eq. (12.29), is too simplead to a realistic
fermion spectrum. Itis a rank one matrix with one massive and two masslessaiges. There are
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of course different ways out of this, either by using a more complicatea-{actorizable) compact
manifold or by looking for configurations of branes in which the left antitrdynamics occur at the
same torus. An example of the latter has been provided recently in [50jeatieree Higgs model
with democratic rather than hierarchical Yukawas is studied. There isvyeova@other feature of
these very simple models that makes the naive assertion above invalid wéeamucorrections
are taken into account. This new feature is the presence of flavougicigameutral couplings that
propagate through quantum loops to the otherwise trivial structure awalkcouplings, providing
them with enough complexity to give rise to a realistic set of fermion masses aigraixgles’.

12.3 Flavour Changing Neutral Currents

We have emphasized in this review that, after the second string revolutiog,tskeory greatly
influenced (and in turn received some degree of inspiration from) fielwhyhiavestigations, par-
ticularly in the area of models with extra dimensions. We shall see a salient Exafrthe com-
plementarity between string and field theory in extra dimensions in this sectiordelMavith
intersecting D-branes are a stringy realization of the brane world idegizhviour-dimensional
fermions live in the boundaries of extra dimensions where gauge bosoaiaved to propagate,
these latter dimensions being a further restriction to a submanifold of the adkesfime where
gravity lives [4, 61]. One well known property of brane worlds in whtble different fermions
live in separate points of the extra dimensions, the split fermion scenalfici$é®e appearance
of flavour changing neutral currents that tightly constraint the compaattiic scaleMc > 1073
TeV in the case of flat extra dimensions [68] (See also [65] for a model with light vector-like
fermions, relevant for phenomenology despite this very large compatitificecale.) The origin
of these FCNC can be simply traced to the fact that Kaluza-Klein modes of thiedimuiensional
gauge bosons, having a non-trivial profile in the extra dimensions,ledn@m different way to
the fermions localized at the different positions. Family hon-universaggdosons then induce
FCNC in the fermion mass eigenstate basis [66]. Gauge boson KK genEf@iéd are therefore
expected from a purely field theory viewpoint in models with intersectingds. A string cal-
culation of the tree level four-fermion amplitude, which can be performéfiyéing an extension
of the conformal field theory techniques developed for the heteroticabdsif16], indeed repro-
duces the field theory expectation. In addition, though, it reveals a neslypstringy source of
flavour violation in these models mediated by string instantons [49]. Thesiapé/ worldsheets
that directly connect four fermions of different generations livingiffiecent intersections in the
same way that the Yukawas connected the higgs to two fermions. Again tpeesgipn goes
roughly as the area, so that one would expect the FCNC effect frorsdhige to increase as the
compactification length and hence worldsheet area decrease.

The full amplitude is a bit of a beast to work out but for completeness | wélsent it:

A(1,2,3,4) = —gsa'(ATAZABA% + A4A3A2AY) [ dx rl—a’S(l—x)—l—a/tW 1234
X [U(2> Yu u(l)U<4)y“u(3)] Ze—S:I S ( ' )

9Although not necessary for the generation of fermion masses, ti@N€ flso affect the model in [50] as well,
and therefore similar bounds on the string scale apply.
10The particular localization properties of KK modes in warped scenarid e bounds in that case milder [64]).
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The functiongJ| are;

=

((1&2)?;1:333 r(gs(igglr)(réfﬁgs) 2F1[1— 91,393,824+ 93,1 — X 2F1[1— 81, 83, 93+ T4 X

S o sl oF1[91,1— 93,01 + 943 1— X oFa[01, 1 — 93, 91 + 192;x}>

(12.35)

where,F; are the standard hypergeometric functions. Ea€hi$ the contribution from theth
internal complex dimension and one must use the relevant angles fdp thab-torus. Tha'’s are
the famous Chan-Paton factors, @nd — (k; +kz)?, t = — (ko + k3)?, u= —(k; + k3)? are the usual
Mandlestam variables. The classical act@&n(which is of course the world-sheet area in the full
6D internal space) turns out to be the sum of the projected world-sheget @ the thred; tori
when, as in this case, the compactification manifold is factorizable.

The point of displaying this lengthy expression is that it allows me to demonstnatef the
beauties of string theory: grotesque as it may be, this expression coaltashthe necessary pole
structure to generate the correct field theory behaviour. For exampies Eigghange (which | shalll

discuss presently) can be extracted from the situation shown in fig.22wdhé-sheet areas are

SU(3)

SuU@)

Figure 22: Higgs exchange as a “double instanton”

two Yukawa couplings and the Higgs field is the intersection state in middle.

The KK mediated flavour violating four fermion interactions come from diagnaitisS;) = 0
— i.e. two fermions annihilate, produce an open string KK mode with both endsmerbrane,
which propagates to a different intersection where it produces two pew string states. These
contributions are of the form,

Q)
o = (CL,k,I)S‘k’Cd (PaL V" oL ) (WeL Y WaL ), (12.36)
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with the following dependence of the coefficient

(e Yabear~ 8 MM S (U )ai(UL)o (Ui (L) cos| M- (5 — 55)]. (12:37)
]

U, are the corresponding unitary matrices rotating current eigenstates infoeigagstates and
0 is an order one (but always larger) number that depends on the sgaeifie configurations
and represents the string smoothing of the KK contribution at high enerdieh s generally
divergent in the field theory calculation of the same effect. (Essentiallgttiig smoothing arises
because the branes have a finite width of order the string length, anceagéotie unable to excite
modes of a shorter wavelength than this.) We have only written the Left-aeftibution, the case
of Right-Right and Left-Right contributions is a straight-forward gelieation of this. Note that
in order to have FCNC it is essential that current and mass eigenstatest al@ned (so that the
rotation matrices are non-trivial) and the different generations are leckdizseparate points of the
extra dimensiony{ —y; # 0). The exponential smoothing provided by the string dynamics, which
is crucial in the case of more than one extra dimensions where the sumskKveodes typically
diverge, has to be introduced by hand in a field-theory approachg$itwéory automatically cuts-
off the contribution of KK modes heavier than the string scale. Thereferiatger the ratid;/Ls,
the bigger the number of KK modes that contribute and the larger the effect is

On the other hand, string instanton flavour changing neutral couplingsndevery much
on the chiralities of the external fermions (through the difference in the rumbindependent
angles). Four-fermion interactions with all fermions of the same chirality (edtth&H or all RH)
correspond to a parallelogram with only one independent angle. Giesfac¢torization property
of the model we are discussing, the only non-vanishing world-sheatc@urs in one torus and
the result is of the form

(C(ﬁ))abcd T T
Off = iz (Wa V¥ ou) (P v ), (12.38)

with the following dependence of the coefficient

A
()abca~ € 2% Z(UJ)ai(UL)(i+1)b(UJ)c(i+l) (UL (i+2)ds (12.39)
|

whereA is the area of the corresponding parallelogram (which {@R2)/3) andLs = 1/Ms is
the string scale. Already in this chirality preserving interaction we obsemeral differences with
respect to the field theory case. The first one is that there are FCNCretlge case of Yukawa
couplings aligned with gauge couplingse( U = 1). Secondly, the exponential dependence on
the ratio of string and compactification scales is opposite to that coming fromKhaddes, the
larger the ratidR;/Ls, (i.e. the larger the area in string units) the stronger the suppression. Notice
however that it is still necessary to have different generations livirsgpéarate points in order to
have FCNC. The opposite dependence of the KK and string instantoribcaiains on the ratio of
compactification and string scales allows us to put a lower bound on the stéleg ;midependently
of this ratio. An estimation of this bound [49], using the KK contributiong| and the string
instanton contribution to — eeu and relatively small mixing angles, leads to the bovikd> 100
TeV as shown in Fig. 23.

90



String Phenomenology Steven Abel

700

600
500

400 f T->eql

Mg (TeV)

300

200

100

Ldls

Figure 23: Bound on the string scale as a function of the ratidLs from the KK contribution toex | and
the string instanton contribution to— eeu. A global boundVis 2> 100 TeV is found.

The chirality changing four-fermion interactions, connecting two left-leanand two right-
handed fermions, is a bit more involved but far more interesting. We will thigdinal expressions
here and outline the reasons for the new features without entering intdiicadres of the calcu-
lation. The main new feature is the absence of L-R factorization in the ampliéxdet in some
limiting cases). The reason is that now in general there are non-zetdbcions in more than
one 2-torus and the classical action is no longer the sum of the areashobktine quadrangles
(incidentally, this does not happen for the Yukawa couplings because thitke-point amplitude
we can fix all three vertices usir§lL(2, R) invariance whereas in the four-point one we have to
integrate over the position of the fourth vertex, see.) As we shall seg ge®mtroduces enough
flavour violation to generate, through loop corrections, a semi-realisticrpattédermion masses
and mixing angles.

Another nice feature with possible important phenomenological implicationslatedeto
Higgs-mediated like processes. Let us consider the situation displayed.i24zigThe Higgs
mediated process can be obtained as the field theory limit of a string progafyatinthe vertices
2 and 3 down to the Higgs vertex and then back to the vertices 1 and 4. Thigotion goes, in
thet channel, like

g P [2MEg—Aun 28 oy,
t— M2 Ttomg

(12.40)

where My is the Higgs mass. On the other hand there is another, purely stringy cdiotmibu
(not expected on field theory grounds) that can be very much enthéoica low string scale and
corresponds to a string sweeping out the area of the quadrangle betvestur vertices 1,2,3,4
without going through the Higgs vertex (shaded area in the Figure). Ircdisis if all the flavour
dynamics happens on a single torus the amplitude goes as

2
e*A1234/2m-s N Y23/Y14
2 2
Mg M

(12.41)
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If the flavour dynamics happens in more than one torus the detailed repatidieon the particular
configuration due to the non-factorization property of this four point anggitalluded to above,

but is roughly the same. A more detailed study is necessary before makirgjaaegent about

the phenomenological implications of this property but it seems that a gdeatafte of models

with intersecting branes is the presence of Higgs-like processes ath@scopposite to the usual
expected suppression) by light Yukawas.

Figure 24: Higgs vs string instanton mediation of the proc&%s dur) (0crAdL)

Let us now concentrate on the relevant amplitude for the generationrofoiermasses and
mixing angles. In particular we will consider the quark sector and are stegt@n th€da . gpr) (0crAdL)
amplitude. The full expressions are intricate and do not admit a simple anbfgtica In order to
give some feeling of what happens we will consider a simplified case in vth&lelevant angles
are the same on each sub-torus. In this case the classical action tuta®euyé0]

\/Z 25— Via) ;(@3—@4)2, (12.42)

1 sinmd;sinmtds
4Amta’ sin(1td2 + 1d3)

S =

where 6,3 are the (independent) angles at the corresponding intersectiongand, are the
distances between the relevant intersections. From this expression @righeeonly in the trivial

case (whera=d or b = c) or in the degenerate case (when distances in all sub-tori are equal) the
amplitude~ exp(—S;) factorizes.
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Appendix A: Conserved currents in 1+1D

Conserved currents are an important concept so it is worth recapp@ng libre. I'll use a
two dimensional (1 noncompact spacelus time, with a generic field) field theory to do this.
(Note that in string theory the obvious analogy is 1, X = g, u = X* although theres is always
compact). We will use the lagrangian formalism;

t oo
S[u] - / ’ / g(u, ut, UX, uXx, uXxx, ) dth (1243)
tj_ 0

For example the Sine-Gordon equation has

2 2
=% %1 cos) (12.44)
2 2
with the Euler-Lagrange equation giving
Uit — Uxx + Sinu = 0. (12.45)

Here for later reference note th&® = 1 — cosu is playing the role of the potential. Assume that
two functionsX andT can be assembled from thiey such that

0T o0X
LI 12.46
at Tox ° (12.46)

Assume further thaX remains constant at— 4o
X —=c (12.47)

Then eq.12.46 means that
d [© © JdT
© dgX
== [ Gx o
— X%
-0 (12.48)

SO

Q= /:)T dx (12.49)

is a conserved quantity. Note that the RHS of eq.(12.48) is the net inflowanfe at the bound-
aries.

93



String Phenomenology Steven Abel

Appendix B: Symmetries and conservation laws in 1+1D

Emmy Noether was the first to elucidate the deep connection betsyeemetrieand con-
servation laws. The Euler-Lagrange equations derive from Hamiltairgiple: that if we let
u— u+ duthendS= 0 implies a set of locally obeyed equations of motion. One thing which is
important though are the boundary terms. Assume that the Lagrangianddemely onu, U, Uy.
(This will suffice for perturbative string theory, although there are m@myous examples that
depend on the higher derivatives.) Making the variation we actually get

58:0://3 U+ OU, Ut + OUt, Ux + OUy) — -Z (U, Uy, Uy) dtdx
_//75 +—5ut+‘;$5uxdtdx
X

do¥Y do¥
//(du dt oy, _dxo"'ux>5Udtdx

+boundary terms (12.50)

(Here for examplel/dt means use the chain rule witkix,t) anduy(x,t) but do not differentiate
with respect tox.) Setting everything in brackets to zero gives the E-L equations

04 doy dog
Jdu dtou dxdux

However to get the last two terms | integrated by parts once and geneoatedlsoundary terms”
(i.e. complete derivatives); in fact | used

a agéu —cSuE 0L +0du 0L
dx \ duy — hdx \ duy *\ duy

d (0.7 d (0.7 0.7
dt<a 5) 5dt<& >+5“‘<aut> (12.52)

and the additional boundary terms are

d /o
// dx<auX ) dat <a$5u> dxdt (12.53)

since they are total derivatives they make no difference to the equafiorion which are obeyed
locally.

If the theory has only time, then things get trivial since we drop theoordinate and insisting
thatdS= 0 gives

(12.51)

5S = / % <w6u> dt = (12.54)
[036 ] =0 (12.55)
du |y,
and if there is an invariance under— ou we immediately find a conserved current
Q= ‘9;5”5 (12.56)
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The Hamiltonian density: time translation symmetry

Now let’s find the current conserved under time translation; recall wieXaadT such that

Xx"‘Tt =0
X|xetoo = 0 (12.57)
so thatd; [ Tdx= [ Tidx= — [ Xxdx = 0. Consider the infinitessimally small constant shift-
t+¢&. If Sis invariant under this shift it is called tame-translation symmetrgf the action, and
there is a conserved current associated with that given by the bguedars. We see it as follows:
under the shift we have by Taylor expanding that
t—1t+¢
u(x,t) — u(x,t+¢&) = u(x,t) +eu
U(Xt) = W(Xt+e) = U(Xt)+ ey
Ux(X,t) — Ux(X,t+€) = Ux(X,t) + Euy

The extra bits on the RHS | will caBu, du, duy, duyy etc. Now look at the shift in the action, or
rather everything inside the integral. Since the E-L equations are satistity)all we have left

are the boundary terms. These are (assuming for the momer#thatZ (u, u;, ux) only and does

not depend oty or very importantly explicitly orx ort)

0% = d <a$5u>+d<w6u>

dx \ du dt \ du
d /0% d /0%
= e& (dux ut) +ea <m”‘) (12.58)
dividing by & and taking thee — 0 limit to get 2 — 4£ we have the relation
d /0% d /0%
el Bl BT = 12.
dx<c§'uxut>+dt<dutut g) 0 (12.59)
This relation is in precisely the forx + T, = 0 with
0%
T= = —U — 12.
H =G w2 (12.60)

so [ #dxis a conserved current; you may recognize this as the Hamiltonian pwitld .~ /du;)
hence the name?’. So the hamiltonian is an expression of time-translation invariance. Coglyers
an explicit time dependence in the Lagrangian would break time translati@miamce, and the
current would no longer be conservedebr the SG equation

2 2

A R S . S
‘%ﬂ_dutut L = U 2+2+(1 cosu)
2 2
= %+%+(1—COSU) (12.61)

which is clearly the kinetic plus potential energy (densities) of the system.
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Space translation symmetry

Now consider the infinitessimally small constant skift> x+ €. If Sis invariant under this
shift it is called aspace-translation symmetof the action, and again there is a conserved current
associated with that given by the boundary terms. Under the shift we have

X — X+ €&
u(x,t) — u(x,t+¢&) = u(x,t) + eux
U (X,t) — (X t+€) = u(Xt)+ Ely
Ux(X,t) — Ux(X,t4€) = ux(X,t) + Euxx

To get the conserved current we can read of from the boundary teans

d (02 d (0%

The only difference from the time-translation case is that-tl#& went in thed/dxterm. In this
case the conserved current is related to the momentum density

X

P Fm

Uy (12.63)
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Appendix C: Modular invariance in detall

C.1 The partition function for the complex fermions

First consider a single complex world sheet fermion with boundary condition This means
that the fermion acquires a phase faa®l¥ when propagated through the complex tinter 2= t.
Propagation in the other direction on the torus must give the phase &®tbfor each fermion.
The partition function (c.f{e"!)) is then

Zy(t)="Tr (qHVeZ’“'(%*“)Nv) (12.64)

whereq = €?T and where the final factor includes a phase from every world sheeidie excita-
tion in a particular physical state. To take the trace we sum over all statess the sum over all
possible excitations (i.e. all possibilities one or zero numbers of each famexcitation)

Tr(6) = (0/0]0) + (0]b,Ob{|0) + (0|b1;Obl, ,|0) + ...(0|byby,ObY , b5 |0) + ..
+(0|dy_,Od!_,|0) + (0]d_,Od}_,|0) + ...

The bgwfl anddg,\, can be commuted left through th andN, operators which then annihilate
on the vacuum. The end result is

ZV = |—| (1+ qn+vfle2ni(%fu))(1+ qnfvefzm(%fu))_ (12.65)
n=1

Conventionally this is expressed in terms of Jacobi theta functions

1 vy
1 1 6 [3_ % ]
7V — mv—3)u-3) L <1 12.66
! n(r) ( )
where the Dedekind eta function is
n(r) =g’ @1-a"). (12.67)
n=1

The total contribution is then trivially given by the product of the individuahtributions since
they commute;

4 16
Vi) = [Z% v 2.68
Zm=Zo 20 (12.68)

For the complete one loop partition function we must include bosons and in Hegluere are
8 real bosons for the left and right movers. In addition we sum overoaliple sets of boundary
conditions, and include a (very important) overall phase fac{p(always allowed) when we add
the contribution from different sectors

(=Y In@¥mE) -1z (12.69)
{allU\V}

where the(—1) is a factor of—1 for states that are space-time fermions. As we will now see, the
phase factor€| can be chosen to give modular invariance.
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C.2 Modular properties of the partition function

Remember that the point was to now apply the modular invariance condition.
Z1(1)=21(—1/1) =Z1(T+1) (12.70)
The individual transformation properties of the eta and theta functionselt&nown

n(t+1) = "/*2n(1)
n(-=1/1) = V—itn(r)

a _ ; ma B
e[B](—l/r)_ﬁez Be[_a](r)

Using these it is straightforward to show that
Zi(1+1) = "Iz (1)
Zi(-1/1) = @Mz (1)
or collecting all the contributions together

Z)(r+1) = VWV ZY (1)
Z)(~1/7) = VLU Y, (7)

h
where 1. 1.1

_[(T\4 (=\8/T)\8
Wo=[(5)* (5%, (12.72)
defines the NS sector which as we have seen gives us the graviton tijisioéd phases appearing

in Z are to be taken mod(1) - e.g:1/3=2/3.)
Now consider the effect af — —1/1. This sends the fermionic part of the p.f. to

QY (-1 =5 mUUVICYZY, (7). (12.72)
{allUV} {allUV}

But then since we sum over all boundary conditions, we can trivially write

Uz =5 CHhZ%(1). (12.73)
{allU v} {allUv}

Comparing the two expressions, the partition function is invariant if we celrﬁ§S$uch that

cYy, = VU U)oy (12.74)
for all sectors in the model. Likewise invariance under 1+ 1 requires that

cy_, = eV WV)cy (12.75)

for all sectors.
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C.3 Proof of modular invariance

To show modular invariance for the models outlined in the text, we now adogé thades.
That is we define the sum over sectors by using a basis of vattaad writing

wherea is summed over. The fermionic part of the PF can be written

o f v
Ztermion= Z (-1 “CgZU(T). (12.77)
{aaﬂﬁa}

Consider where this expression came from (i.e. write it before evaluatnyabe)
Ma, My

Ztermion= z (—1) faTr (ngHVezm(éco_ﬁC)Wc'Nv) , (12.78)
{aavﬁa}

where we sum ovec. It is the sum ovel; that is giving us the projection in the text simply
i |

because we are summing over&lk andgg’;l eMPeme — & for integer. The modular invariance

projection in the rules means that we must have

cl = 2711 (00— Be) (Ke-+Wg+koo—We.V) (12.79)

To repeat the argument, the contribution to the partition function vanishessithketerm in the ex-
ponent summed ovgl’s is zero, thereby enforcing the projection on states that we havenpeese
in the text. It is a straighforward (but tedious) exercise to show, usinghtbael building rules in
the main text, that this expression f@M satisfies the conditions for modular invariance derived
above. The more masochistic reader may like to do this.
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Appendix D: Simple modular invariance for type Il

The type Il theories allow a particularly simple proof of modular invariansehare are only
4 sectors. Here we will verify that the rules in the text give modular invagarfirst let us infer
from the projection rules what the form of the partition function is. As in the wex define the
sum over sectors by using a basis of vectWjsand writing

wherea= 0,1 is summed over, ang, B, = 0,1 . Assume that the fermionic part of the PF can be

written
1 L1

Z(n) =7 > In@Im(n) (-1 C5z(1). (12.81)
{0a,Ba}
where the first piece is the bosonic contribution &nd)' is 41 for states that are space-time

bosons/fermions. Consider the fermionic contribution written out befakiating the traces;

11

Zfermion(T) = % Z Tr ((_1) fanqu eZni(cSco—Bc)Wc.N\/> ) (12-82)
{aa.Ba}

where we sum ovec. It is the sum ovelB; that is giving us the projection in the text for the

following reason. If we writeCg = e?(%0~Fe)% and we havé\,..Ny + @ = odd/2 for anyc, then

the sumB. = 0,1 gives a factor + 1 = 0, and that particular state cannot contribute to the partition

function and isn’t in the spectrum. On the other hand states that s@fidflyy + @ = integerfor

all c contribute 1 to the partition function. The partition function is then doing its jolnahting

physical states, and we can interpret the rules in the text as implying

CE' — 2T (80— e) (Kepp+Wg-+koe—We.V) (12.83)

since this reproduces the right projection.

Now we just need to evaluate the partition function with mﬁ’sand show it is modular invari-
ant. For the type Il model@g simplifies. Indeed we can substitiute in the right hand side of the
projections we worked out in the text, to find

Crg=1

C&S = (- 1)2(koo+kol)
Crg=1

Cox = —1

Clo=1

ngi = —(—1)2kotko)
Crg =1

C(])-i- — _(_1)2(k11+|<01)
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Coo = (-1
Cf = —(-1)
Cog =1
crd=-1
G35 = (~ytorrn
C%i = —(—1)Akartkor)
Cop = (~1)%
Ciy = —(-1)%«
The different choices dfy; just give an overall definition of chirality and without loss of

generality we can takiey; = ki1 = 0.

We now need to evaluate the partition function. By performing the trace a&siloes at the
beginning of Appendix C, we express it in terms of Jacobi theta functions

1_
ZLvJ:ezm‘w—%)(u—%)iz (12.84)

where the Dedekind eta function is

00

n(r)=q"* |1(1—q”)- (12.85)

The total contribution is then given by the product of the individual couatiilms since they com-
mute;

Z(1) = ﬁza (1) ﬁlzX} (1) (12.86)

Performing the sums over,s andB’s and including the —1) facg prefactors, gives an expression
that can be factorized into left moving and right moving parts;

16 -4 !
)= MO0 a2yt )+ @ .

¥ x| @@ - @
(12.87)

where as we saw in the texio = 0, £ for type 1IB,A respectively. This expression should be
modular invariant

NN
NI Nl

Z(1T) = Z1(—1/1) = Z4 (T + 1) (12.88)

The modular properties of jacobi theta and dedekind eta functions caokedlop. They are
written in Appendix C.2 and substituting them into the above expressions dieexigive
invariance.

Exercise: substitute the modular transformations in Appendix C.2 into theeabgrove modular
invariance.
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Appendix E: Some lie algebra definitions

The Lie algebra determines the local structure of the gauge group in arigbeand hence
the number and structure of generators and so forth. The groupeckfe in the text are ...

e SQ(n): the group of real orthogonalx n matrices of determinant 1. The generators are an-
tisymmetric Hermitian matrices. There argh— 1)/2 independent entries in such a matrix,
and hence the same number of generators

e SU(n): the group of unitary matrices with determinant one. The generators aedesa
hermitiann x n matrices, which have? — 1 independent elements, and hence there are the
same number of generators.

e Spk): The symplectic groups are the groups consisting of unitary mattitethat satisfy

I

MUM~ = (UT)~t whereM =i wherely is thek x k identity matrix. They are

Iy
generated byRx 2k matrices T, that satishMTMt =TT,

e The generators of the exceptional grolasE7, Es can be decomposed into representations
of the corresponding maximal subgroups. For example generatBgohsist of the adjoint
16(16— 1)/2 of SQ(16) plus a single chirality of the fermionic representatidrg®ing 248
generators foEg. For Ez we can decompose it into representatiordgl) x SQ(12); the
single boson ofJ (1) = 1, both chiralities 0fSQ(12) fermions= 2° = 64 and the adjoint
of SQ12) = 12.11/2 = 66, giving 133 generators in total. Finally we can decompose the
generators oEg into representations &f (1) x SQ(10) in exactly the same way> 1+ 45+
32= 78 generators. The decompositiorkgfwas made evident in the text, so if nothing else
you can use the heterotic string to help you decompose large groups!
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