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Abstract

This thesis investigates one of the most important observables in cosmology: the galaxy two-
point function. The proper characterisation of this quantity is of the utmost importance if we
want to compare theoretical predictions with the experimental results coming from planned
redshift surveys. In particular we focus here on the modification that light-cone effects in-
troduce – at large scales – in the correlation function. We start by computing, through
first-order cosmological perturbation theory, expressions describing the galaxy distribution in
the universe, i.e. galaxy number counts. These results are then used in order to construct
the fully relativistic correlation function, which is valid in full-sky, i.e. beyond the so-called
flat-sky approximation. A publicly available code is provided for fast and accurate numerical
evaluation of the two-point function which allows us to forecast the possibility, with future or
planned experiments, of constraining cosmological parameters through the multipoles decom-
position of the correlation function. Other relevant topics, related to the two-point function,
that we discuss in this work are: the regularisation of an apparent infra-red divergence in
the potentials terms such as the Sachs-Wolfe effect, the existence of a second feature in the
matter correlation function due to the baryon-baryon correlation in the early universe and,
finally, a framework to analyse a possible anisotropic component in the two-point function.
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Résumé

La cosmologie physique est la branche de la physique et de l’astrophysique qui étudie les
origines physiques et l’évolution de l’univers. Il comprend également l’étude de la nature de
l’univers à grande échelle. Pour décrire l’univers, il est indispensable de faire appel à la rela-
tivité générale, découverte par Albert Einstein en 1915. En considérant qu’il est improbable
que la dynamique de l’univers soit dominée par des interactions à courte distance et que, en
moyenne, l’univers n’est pas chargé électriquement, il n’est pas surprenant qu’une théorie de
la gravité soit nécessaire pour aborder la cosmologie scientifiquement. Ainsi, à partir de 1915,
il devint possible d’étudier l’univers à partir de deux piliers de la science moderne: la rela-
tivité générale et, plus tard, le modèle standard de la physique des particules (en particulier
en ce qui concerne l’univers primordial). En 1922, Alexander Friedmann introduisit l’idée
d’un univers en expansion et, en 1929, l’astronome américain Edwin Hubble découvrit que
la distance des galaxies était proportionnelle à leur décalage spectral (redshift en anglais),
confirmant que les galaxies s’éloignent de leur observateur. Cette observation, associée à la
métrique et aux équations de Friedman-Lemaître-Robertson-Walker (FLRW), a jeté les bases
du modèle standard de la cosmologie. Un important travail théorique sur l’histoire thermique
de l’univers a été entrepris par Gamow, Alpher and Herman et, en 1964, la plus vieille image
de l’univers qu’il soit possible d’obtenir a été découverte par hasard par Penzias et Wilson:
le fond diffus cosmologique (rayonnement fossile ou CMB, issu de l’anglais).

Le fond diffus cosmologique était une observable clé et très important pour l’étude de la
cosmologie, car ses propriétés sont liées aux paramètres qui décrivent l’univers. Á partir de
1989 la NASA et l’ESA ont décidé d’envoyer trois satellites en orbite dans le but d’étudier
le rayonnement fossile, et les données collectées ont aidé à établir le modèle standard de
la cosmologie qu’on appelle ΛCDM (pour Λ Cold Dark Matter en anglais). Ce modèle de
concordance décrit un univers homogéne et isotrope (à grande échelle), âgé de 13.8 mil-
liards d’années, dont la courbure spatiale est nulle et qui contient 26.5% de matière noire,
68.6% d’énergie sombre alors que la matière ordinaire (baryonique) ne représente que 4.9% de
l’univers. La matière noire n’interagit pas avec la lumière mais peut être décelée par son at-
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traction gravitationnelle. La composante appelée énergie sombre peut être modélisée par une
constante cosmologique Λ dans les équations d’Einstein (d’oú le nom ΛCDM). Cette dernière
forme d’énergie est responsable de la récente expansion accélérée de l’univers découverte par
le Supernova Cosmology Project et le High-Z Supernova Search Team en 1998. Le problème
est que le 95% de l’univers est inconnu: on peux détecter la matière noire de façon indirecte
(car la matière noire, comme la matière ordinaire, exerce une attraction gravitationnelle) mais
aucune détection directe n’a été jamais annoncée, et la valeur de Λ mesurée est plus petite
de plusieurs ordres de grandeur que ce qu’on attendrait de la contribution des fluctuations
quantiques du vide. La caractérisation de l’univers sombre est donc un des objectifs les plus
importants de la recherche cosmologique d’aujourd’hui et de demain.

Mises à part les observations du fond diffus cosmologique, beaucoup d’expériences pour
étudier la structure à grande échelle de l’univers sont actuellement en cours ou prévues. Il
s’agit de grands relevés des galaxies, ou relevés du décalage vers le rouge (redshift survey en
anglais): la mesure d’une section du ciel pour detecter le décalage vers le rouge des galaxies
(ou des autres objects) et leur distribution. Un relevé du décalage vers le rouge, comme par
example Euclid, donne un catalogue de millions des galaxies, leur positions et leur redshift.
Une interprétation correcte de ces données est fondamentale si nous voulons les relier cor-
rectement aux paramètres cosmologiques. Parmi les nombreuses complications et subtilités
de cette tâche, le sujet principal de cette thèse est étudier comment les effets relativistes (ou
light-cone effects) affectent les observables que l’on peut construire a partir de catalogues des
galaxies. L’origine des effets relativistes est le changement de coordonnées de la métrique
de référence (background metric), par rapport aux vraies coordonnées observées (position et
décalage vers le rouge d’un objet). En d’autres termes, l’origine physique des effets de projec-
tion se situe dans la déviation des rayons lumineux en suivant la courbure de l’espace-temps,
en accord avec la théorie d’Einstein. En effet l’univers n’est pas complètement homogène,
à cause de la présence de structures: il est cependant possible tenir compte, en utilisant la
théorie des perturbations cosmologiques, des effets relativistes qui influencent la distribution
de galaxies en fonction du position et du décalage vers le rouge.

Dans le chapitre 1 j’introduis les sujets traités dans cette thèse: une brève histoire de
la cosmologie avec ses découvertes principales expérimental comme théorique. Une attention
particulière est réservée à l’introduction de la formation des structures et aux effets relativistes.

Dans le chapitre 2, reproduisant la référence [134], je montre comment tenir compte,
au première ordre de la théorie des perturbations, des effets relativistes qui concernent
l’observable le plus simple qu’on peut faire avec un relevé du décalage vers le rouge: comp-
tage de galaxies (galaxy number counts en anglais). Cette analyse, qui se trouve déjà dans la
littérature, est enrichie en considérant la contribution des perturbations vectorielles et ten-
sorielles.

Dans le chapitre 3, reproduisant la référence [294], je commence l’étude de la fonction de
corrélation à deux points, en développant le cadre théorique qui permet la caractérisation et
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l’étude des effets relativistes sur la fonction à deux points.

Dans le chapitre 4, reproduisant la référence [295], je décris comment les résultats du
chapitre précédent nous ont permis d’écrire un code qui calcule efficacement la fonction de
corrélation. Le code est accessible au public et toutes les corrections relativistes sont inclues
au niveau linéaire. On utilise des techniques basées sur les matrices de Fisher pour analyser
en détail les capacités des prochaines expériences telles que SKA et Euclid pour contraindre
l’effet de lentille gravitationnelle utilisant la fonction à deux point. Par ailleurs, je discute
une subtilité: comment éviter une divergence infra-rouge qui affecte certaines corrections rel-
ativistes à la fonction de corrélation. Une discussion plus détaillé sur ce dernier point est
présentée dans le chapitre 7.

Dans le chapitre 5, reproduisant la référence [292], je présente une nouvelle observation
concernant la fonction à deux points: l’existence d’un deuxième signal (ou "trait") due à la
corrélation baryonique dans l’univers primordial.

Dans le chapitre 6, reproduisant la référence [293], je décris comment comment les mul-
tipoles de la fonction de corrélation peuvent être analysés dans le cas où ils comprennent
un signal vectoriel anisotrope. On développe des nouvelles observables spécifiques au cas
anisotrope et l’analyse de Fisher est utilisée une nouvelle fois pour établir des contraintes sur
les paramètres caractérisant l’anisotropie.



Notation

Fourier transform We will use asymmetric conventions for the Fourier transform:

F (x) = ∫
dnk

(2π)n
F̃ (k)e−ik⋅x ,

F̃ (k) = ∫ dnxF (x)eik⋅x ,
and we will sometimes omit the tilde if there is no ambiguity F̃ (k) = F (k) = Fk. The dirac
delta satisfies

∫ dnxeik⋅x = (2π)nδ(n)(k) .
∫ dnk eik⋅x = δ(n)(x) .

The power spectrum of a statistically homogeneous and isotropic random variable F is defined

⟨F (k)F ∗
(k′)⟩ = (2π)3δ(3)(k − k′)PF (k) ,

and the dimensionless (if F (x) is dimensionless) power spectrum is obtained via

PF (k) =
k3

2π2
PF (k) .

Signature and indices We use the metric signature (−,+,+,+) throughout the thesis, while
for the indices we follow, when possible, the following rules: greek indices α,β, ... are space-
time indices and run from 0 to 3, latin indices i, j, k, ... are spatial indices and run from 1 to
3. We sometimes use indices a, b, ... running from 1 to 2 for angular coordinates. Uppercase
indices A,B,C, ... are not tensor indices but labels or tags.

Derivatives We work mainly in conformal time η and derivatives w.r.t. η are denoted by
an over-dot: Ḟ . Covariant derivatives ∇µ and spatial gradients ∇i are distinguishable by the
type of index. The spatial Laplacian is denoted by ∆ while the angular Laplacian by ∆Ω.
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List of symbols For reference we report here the list of symbols used in this thesis.

background
a scale factor
H Hubble parameter (H0 Hubble parameter today)
H comoving Hubble parameter H = aH (H0 =H0 with our normalization of a)
h reduced Hubble parameter h =H0/100
ρ̄X energy density of the species X
ρc critical density ρc = 3H2/(8πG)

ΩX density parameter ΩX = ρ̄X/ρc
η, (η0) conformal time (today)
t, (t0) cosmic time (today)
χ comoving distance χ = η0 − η (denoted χ̄ in chapter 3)
z redshift
D̄L luminosity distance

perturbations
n, n̂ line-of-sight direction of an object at x = χ(z)n (−n in chapter 3)

r distance between two tracers r = x1 − x2

Φ(x), Ψ(x) Bardeen potentials
Si(x), Hij(x) vector and tensor metric perturbations

δ(x) CDM density constrast in longitudinal gauge
δc(x) CDM density constrast in comoving gauge

∆g(n, z) observable galaxy density contrast (number counts)
ng(n, z) galaxy density per redshift and solid angle bins

v(x) velocity perturbation in longitudinal gauge
v(x) velocity potential v = −∇v
V (k) defined as v(k) = k−1V (k) (V (x) is dimensionless)

Σi(x), v
(V )
i (x) vector part of v: ∂iΣi = 0

Ωi(x) relativistic vorticity Ωi = Σi − Si
⟨[...]⟩, ⟨[...]⟩P ensemble average

⟨[...]⟩E average over the euclidian group
⟨[...]⟩SO(3) average over the SO(3) group
⟨[...]⟩Ω directional average
PAB(k) power spectrum ⟨A(k)B∗(k′)⟩ = (2π)3δ(3)(k − k′)PAB(k)
Pζ(k) primordial curvature power spectrum Pζ = As(k/k∗)ns−1

As, ns, k∗ primordial amplitude, spectral index and pivot scale
ξ(θ, z1, z2) two-point correlation function
C`(z1, z2) angular power spectrum
D1(z) matter growth function
g(z) Bardeen potentials growth function g =D1/a
gS(z) scalar-induced vector modes growth function
f(z) velocity growth rate f = d lnD1/d lna
shor sound horizon
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mathematics
P`(x) Legendre polynomials
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XJM
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RSD redshift-space distortion
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(I)SW (integrated) Sachs-Wolfe effect
S/N signal-to-noise
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CHAPTER 1

Introduction

The story so far:
In the beginning the Universe
was created. This has made a lot
of people very angry and been
widely regarded as a bad move.

Douglas Adams

The vast ocean of space is full of starry islands called galaxies1. Beside offering a peerless
spectacle when we look into the night sky2, galaxies are a valuable source of information and
object of study of the science which deals with the origin, the history and the structure of
the universe: cosmology. Since the dawn of time mankind has always tried to make sense
of the world’s origin: no human society has been found in which myths of creations are not
part of its culture or its religion [91]. Science, on the other hand, took its time to contribute
on this matter. Even with the advent of the scientific method in the 15th century, tools to
properly deal with this subject were not developed until the beginning of the 20th century.
It was Einstein’s formulation of General Relativity (GR) that paved the way for a scientific
understanding of the universe. If we consider that the dynamic of the universe is unlikely to
be dominated by short-range interactions and that, on average, the universe is not electrically
charged, it is not surprising that a theory of gravity was needed. General relativity is indeed a
theory of gravity but the equivalence principle allows us to identify its action with the space-
time itself. It was Einstein himself [136] that, two years after the completion of his theory,
decided to apply it to the universe as a whole: assuming an homogeneous distribution of mat-
ter he found a solution to his field equations in which the universe is expanding or contracting

1Houjun Mo, Frank van den Bosch, Simon White "Galaxy formation and evolution" (2010) [231].
2We should point out that "look into the sky" is here intended by means of a powerful telescope: with the

naked eye we can only see stars from our own galaxy, with few exceptions.

1
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depending on its total energy density. Being convinced that the universe must be static, he
introduced an additional term in the equations: the cosmological constant Λ (we will come
back to this issue later). A solution to the Einstein’s equations which embrace the expansion
of space was found, independently, a few years later by Friedmann and Lemaître [154, 205].
Robertson and Walker [262, 263, 264, 309] then proved that this was the unique solution
compatible with the cosmological principle which assumes that the universe, on the largest
scales, is spatially homogeneous and isotropic (see appendix A.1 for a technical introduction).
The first experimental confirmation of the newborn idea of an expanding universe came in
1929 when Hubble [181] measured, from their redshift, the recession velocity of galaxies and
found a relation between the velocity at which a galaxy moves away from us and its proper
distance: v = H0D, where H0 is the Hubble constant. This observation, together with the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric and equations laid the foundation for
the prevailing standard model of cosmology, or Big Bang model. Success for this model was
not immediate as in the ’30 and ’40 other concurring scenarios were proposed such as Hoyle’s
steady state model (which we mention here also to stress the irony of the fact that it was
Hoyle himself who coined the term Big Bang in 1949 on BBC radio). Important theoretical
work was carried on by Gamow, Alpher and Herman [21, 22] in the subject of the thermal
history of the universe, but it was the 1964 discovery of the cosmic microwave background
(CMB) radiation by Penzias and Wilson [243] to tip the balance in favor of the Big Bang
model.

Today, after decades of theoretical research and a history of successful experimental obser-
vations, we believe the universe has existed for 13.8 billion years, it is nearly flat and it is
composed by 26.5% of cold dark matter (CDM), a - still to be discovered - form of mat-
ter which does not interact electromagnetically, 68.6% of dark energy (DE), an unknown
form of energy behaving like a cosmological constant and only 4.9% of "familiar" particles:
baryons [11]. We call this model ΛCDM and, although other promising alternatives are avail-
able (e.g. [229, 48, 281, 180, 49]), we will stick to it for almost all the research presented in
this thesis. The ΛCDM model has been uphold by numerous experimental evidence; however,
we have already mentioned two puzzles that show how measuring something does not mean
we understand it. The first one concerns the nature of dark matter. As we already pointed
out, the simplest cosmological observation one can perform is look at galaxies. It turns out
that galaxies are just the cherries on top of a cake we still have to get our hands on. Not
interacting electromagnetically, dark matter is very elusive but we can still infer its presence
by looking at its gravitational effect. In fact we have evidence of dark matter on a wide range
of scale. The most famous piece of evidence that upholds the existence of a significant com-
ponent of non-baryonic matter are galaxies’ rotation curves and clusters’ velocity dispersion
measurements: variations in the orbital circular velocity of stars (in a galaxy) at different
distances from the center and the velocity dispersion of galaxies (in a cluster). The shape of
the rotation curves is linked with the amount and distribution of matter via Kepler’s third law
and it turns out that visible matter alone can not account for the mass distribution necessary
to explain these curves. On the other hand if a dark matter halo envelops a galaxy (or clus-
ter) it can provide the linear growth of total mass with distance from the center necessary to
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explain a flat rotation curve or a high velocity dispersion. Observationally the velocity curve
of stars in the Andromeda galaxy was first observed by Vera Rubin in 1970 [265] (see also
later measurement such as [304]) while for galaxies in the Coma cluster velocity dispersion
was famously measured by Fritz Zwicky in 1933 [329]. Another important evidence for dark
matter is provided by gravitational lensing: matter bends and distorts light-paths traveling
near it and this means, in turn, that we can infer the amount and distribution of matter that
caused a deformation of some background object’s image. Cosmologist and astrophysicist
usually distinguish between two regimes: strong and weak lensing. On the one hand strong
lensing occurs when the lens is very massive, the source is not too far away and both are
roughly aligned with our line-of-sight. In this scenario strongly distorted multiple images of
the source are visible and we can try to reconstruct the mass distribution in the lens plane,
As this is a purely gravitational effect it is sensitive also to non-baryonic matter (see e.g. [301]
for an example). On the other hand in the weak lensing regime we do not get multiple images
or arcs but instead the image is slightly magnified (convergence) or deformed (shear). The
underlying idea is again what we described before: link the lensing effect with the distribution
of (dark) matter between the source and us. We usually look at the shape of galaxies, i.e.
their ellipticity, (even though lensing in the CMB is extremely important [206, 12]) and as we
of course know only the average properties of the un-lensed galaxies, weak lensing is treated
with a statistical approach (see [118] for the latest result of the Dark Energy Survey). We also
point out that weak lensing allowed for the reconstruction of the dark matter distribution in
the Bullet cluster [107]: two colliding clusters of galaxies where the different ways in which
interacting baryonic matter and non-interacting dark matter behave during a collision are
clearly visible. On cosmological scales measurement of the dark matter density Ωcdm are the
baryon acoustic oscillations (BAO) in galaxy clustering [137, 56, 61, 25, 47] and the photon
acoustic oscillations in the CMB. In the galaxy correlation function, for example, we can
relate the position of the BAO peak with the speed of sound cs before recombination which,
in turn, is related to the baryon-to-photon density ratio R ≡ 3Ωb/4Ωγ : we expect a peak in
the correlation function at a (comoving) position equal to the sound horizon shor at redshift
z ∼ 1100 [241, 286, 141]. If no dark matter is present, however, we would expect a feature
in the 2-point function positioned at ∼ 2shor. We will come back to this argumentation in
section 1.1 and in chapter 5. In the CMB we observe a similar pattern as photons are slightly
hotter in over-dense regions and colder in under-dense regions; however, since we usually look
at the CMB spectrum in angular space we see a number of succeeding peaks. The position
(in angular space) and the relative heights of these peaks encode informations about Ωcdm
and Ωb (and of course all the other cosmological parameters). Following this brief excursus
we should point out that beside the indirect observational evidence we have discussed, the
debate on the nature of dark matter amongst particle physicist is still ongoing [53, 23] and
DM still escapes direct (non-gravitational) detection.

We now turn our attention to the second troubling component of the ΛCDM model: dark
energy. In its simplest form dark energy is identified with the cosmological constant Λ. The
need for this additional component in the model surfaced in 1998 with the measurement of
the distance-redshift relation for type Ia Supernovae (SNIa) by Riess, Schmidt and Perlmut-
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Figure 1.1: Sketch of the relevant phases in the evolution of the universe.

ter [260, 274, 244] (Nobel prize in 2011). The simple linear Hubble Law v =H0D is only valid
at small distances D while at bigger distances the law is modified to account for the different
components of the universe. Nowadays more evidence for ΩΛ ≠ 0 has been gathered, mainly
in the CMB power spectrum and with large scale structure (LSS) probes (DE modifies the
clustering properties of the universe). So why is DE a problem? In its simplest realization,
a cosmological constant, it is not very satisfactory from a theoretical point of view: in GR
there is no formal reason to set it to zero nor to set it to any other value. Even if we allow
Λ ≠ 0 in the theory we are left with a fine tuning problem: the measured value differs from
the vacuum expectation value predicted by quantum field theories (QFT) by a staggering 120
orders of magnitude: in other words to obtain an energy density ρΛ as small as the one we
observe we would need the contributions arising from QFT to cancel to better than a part
in 10120 [96]. Possible solutions to this issue come in three flavors: i) modify the matter
sector, ii) modify the gravity sector and iii) back-reaction. The line between point i) and ii)
is sometimes blurry: consider, for example, an additional scalar field coupled to matter (e.g.
massive gravity theories or quintessence). Are we modifying the gravity sector or the matter
sector? In fairness we could also ask the same question regarding the cosmological constant:
is it a modification of gravity or an additional matter field with constant energy-density and
equation of state? The answer is somewhat arbitrary and some authors regard as modified
gravity theories only theories in which the additional degrees of freedom (d.o.f.) are non-
minimally coupled to the Einstein-Hilbert term in the action. A unified (effective) treatment
of some class of DE and modified gravity models is possible via the effective field theory of
DE [163]. The idea of modifying gravity to match theory and observations is a cornerstone of
modern research in cosmology; however, as this subject is beyond the scope of this thesis we
refer to the review [106] for a comprehensive discussion on this topic. We will limit ourself to
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point out that probes which are sensitive to the DE behavior are extremely important as they
could discriminate between possible deviations from a bare cosmological constant [185]. The
third possible solution to the DE problem is back-reaction: the idea that inhomogeneities in
the universe have an effect on its large-scale evolution. To state this idea in a more formal
way let us introduce the Einstein field equations (EFE) for the first time:

Gαβ(gµν) = 8πGTαβ(gµν) . (1.1)

Here Gαβ is the Einstein tensor, Tαβ is the energy-momentum tensor and they both de-
pend on the metric tensor gµν (see appendix B.2). The back-reaction idea is based on the
fact that due to the non-linearity of the EFE an averaging procedure is non-commutative:
⟨Gαβ(gµν)⟩ ≠ Gαβ(⟨gµν⟩). The former is related to the average of the energy-momentum
tensor ⟨Tαβ⟩ via the EFE; however, in cosmology we write down the FLRW equations using
the latter Gαβ(⟨gµν⟩). The difference between the two can potentially act as dark energy with
the perk that this approach solves the coincidence problem (why are we living in a moment in
cosmic history in which Ωm ∼ ΩΛ?) by linking the late-time acceleration of the universe with
the growth of structures. As of today this matter is still very much debated in the cosmology
community (see [82, 85, 105, 142, 87, 86] and references therein).

Another topic that we ought to touch in this brief introduction is inflation: exponential
expansion of the universe in its initial moments. The development of the inflationary the-
ory began 25 years ago [165] to answer two3 problems that were puzzling cosmologist: the
horizon problem (why do we observe isotropic CMB radiation with a black body spectrum
in patches of the sky that correspond to a distance much bigger than the causal horizon at
the last scattering surface?) and the flatness problem (essentially a fine tuning problem: to
obtain a flat model today Ωtot ≃ 1 one needs to start with an extremely fine tuned value of
Ωtot = 1 ± 10−60 [97] as Ωtot − 1 decreases going backwards with time). Inflation can solve
both of these issues. As we said it consists of a period of exponential expansion, meaning
that the scale factor grows as a ∼ eHt and this means that the causal horizon also grows
exponentially while the Hubble horizon is constant: if inflation lasts long enough by the end
of it the causal horizon is bigger than any sub-Hubble length scale, thus solving the first
problem. The second issue is also solved as the quantity Ωtot − 1 is exponentially suppressed
during inflation and when inflation ends we are left (locally) with an almost perfectly flat
model. In order to achieve accelerated expansion we need the pressure and energy density of
the dominant component in the universe to satisfy p < −ρ/3. This condition can be satisfied
by means of a simple scalar field: the inflaton, but many models of inflation have been pro-
posed (see [208, 81, 261, 41] for reviews) as constrains in the parameter space get tighter [14].
As a "bonus" inflation not only explains why we experience an homogeneous universe but
also explains the little inhomogeneities: the seed perturbations which allow the gravitational
growth into structures. In the inflationary paradigm they are explained by quantum fluctu-
ations of the inflaton, brought to cosmological scale during the exponential expansion phase.
These perturbations are responsible for the temperature fluctuations observed in the CMB

3three problems if we include the magnetic monopole problem [255] which, in truth, was what inspired
Guth in the first place [173].
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spectrum [178, 11]: one of the biggest achievements of the hot big bang model. This obser-
vation somewhat closes the circle of our excursus in which we hope we have given the reader
a feeling for the interesting topics covered in modern cosmology and its challenges.

As a last remark it is interesting to notice the interplay between theory and observations:
like in others fields of physics cosmologists were sometimes in a situation in which theoretical
arguments anticipated observations (e.g. the detection of CMB radiation or, possibly, the de-
tection of primordial gravitational waves) while other times it is experimental evidence that
awaits for theoretical understanding (e.g. the dark sector) and the community invests in new
probes to find hints on the theoretical direction to follow. It is then often said that nowadays
cosmology "is a data driven science" or that we "entered the precision era of cosmology"4.
Let us try to put into numbers this argument for CMB experiments and galaxy surveys. The
first measurement of the CMB anisotropies was carried out by the COBE satellite (1989) that
reached an angular resolution of 7○ with a sensitivity of 0.1mK; WMAP (2001) improved these
figures to 0.2○ and 35µK while Planck (2009) had a resolution of 5 arc-min and a sensitivity
of ∼ 5µK. The next generation satellites promise an order ∼ 10 improvement [1, 117]. It is
clear that these numbers translate into precision on the determination of cosmological param-
eters in a non-trivial way but the trend is clear. The same objection holds for galaxy survey
but we could still quote the exponential improvement on the number of galaxies observed:
cfA (completed 1982) gathered spectra for 2200 galaxies, cfA2 (1995) for 18000, 2dF (2002)
observed ∼ 220000, SDSS (ongoing) roughly a million and Euclid (launch 2020) will have a
catalog with 10 millions tracers. With this overwhelming amount of data coming (especially
on the LSS side), will we understand what we measure? The goal of this work is, we hope,
to contribute to this matter.

This thesis is organized as follows. The remainder of this chapter is dedicated to an in-
troduction to the main subjects of this work: galaxy clustering (and perturbation theory)
and light-cone effects. In chapter 2 we introduce the galaxy number counts and compute how
projection effects modify this observable. We will follow Durrer & Tansella (2016), which
computed the projection effects for vector and tensor perturbations, and integrate the re-
sults of this work with the well-known results for scalar perturbation as we will use them
throughout this thesis. In chapter 3 we begin our study of the galaxy two-point function,
presenting the theoretical framework developed in Tansella et.al. (2017). In chapter 4 we
detail how the results of chapter 3 have been employed to write the code coffe, presented in
Tansella et.al. (2018a). We will also discuss some subtleties regarding the two-point function
(further examined in chapter 7) and present forecast on the detectability of the lensing sig-
nal in the galaxy correlation function. Chapter 5 follows Tansella (2018) in which we point
out the existence of a second feature in the matter two-point function, besides the acoustic
peak, due to the baryon-baryon correlation in the early universe and positioned at twice the
distance of the peak. In chapter 6, based on Tansella et.al. (2018b), we present a suitable
decomposition to discuss the signal induced by anisotropic vector perturbation in the galaxy

4This sentence was actually used by the Nobel-prize committee for the 2006 prize (https://www.
nobelprize.org/nobel_prizes/physics/laureates/2006/press.html).

https://www.nobelprize.org/nobel_prizes/physics/laureates/2006/press.html
https://www.nobelprize.org/nobel_prizes/physics/laureates/2006/press.html
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two-point function and perform a Fisher forecast to determine the detectability of the param-
eters which characterise the anisotropy with planned or futuristic galaxy catalogs. Although
part of this thesis, different chapters are thought to be self-contained.

1.1 Galaxy clustering

The definition of galaxies poses no difficulties in cosmology. They are easily identifiable ob-
jects as the density of stars inside them is roughly ∼ 107 times the average density in the
universe5. It is interesting to note however that at the beginning of the last century the
debate on whether observed galaxies where part of the Milky way or external objects was
very spirited. It was Hubble in 1920 that settled what went down in history as the Great
debate [299]. From a cosmological point of view we essentially want to study how primordial
fluctuations coming from inflation and imprinted in the CMB are amplified through gravita-
tional instability to form the LSS of the universe. What seems like a simple task is however
extremely complicated. Firstly, we need to deal with physics governing a very wide range
of scales: from the size of the Hubble horizon H−1

0 ∼ 4000Mpc to the typical size of galax-
ies ∼ 10kpc and secondly one in principle needs to solve the coupled Boltzmann-Liouville
equations for each species in the universe. At early times perturbations enjoy, at least, some
useful properties. As they come from quantum fluctuations of the inflaton field, their Fourier
coefficients have a Gaussian probability distribution. Each coefficient is uncorrelated with the
other, hence also the real space fluctuations are Gaussian. Furthermore the variance is inde-
pendent of the direction of the wave-vector k: for the primordial curvature perturbation we
usually write Pζ ∼ kns−1. If the spectral index ns is unity we have a scale-invariant spectrum
while observations suggest ns ≃ 0.96, a slightly red spectrum. When perturbations are small
(as they are in the early universe) we can linearize the relevant equations and treat them in
the regime of linear perturbation theory, where different Fourier modes evolve independently.
The way in which curvature perturbations translate into late-time perturbations is usually
encoded in the transfer function: for the matter density contrast we could for example write
δk(η) = S(k, η)ζk where ζk is the value at horizon exit during inflation. The same equation
can be written, with a different transfer function, for each species in the universe and for the
metric perturbations (e.g. the gravitational potential Φ). For a pressure-less, collision-less
fluid (i.e. CDM), taking moments of the Liouville equation6 we end up with a Boltzmann
hierarchy with only two equations (continuity and Euler equations) which is closed by the
Poisson equation. For other species, such as baryons and photons, the hierarchy is not nat-
urally closed and to compute the transfer function we have to rely on numerical codes like
class [67] and camb [207] or on analytic approximations [139]. An important effect that
early universe physics imprints on the matter correlation function (and power spectrum) are
the BAO which originate in the primordial plasma when baryons are tightly coupled to pho-
tons via Thompson scattering. To heuristically explain this process let us focus on some

5This does not mean however that galaxies have well defined boundaries.
6In the case of a non-relativistic and collision-less fluid the mean-field limit of the Boltzmann-Liouville

equation is called Vlasov equation.



8 1. INTRODUCTION

initial over-dense patch of the plasma: if the fluctuations are adiabatic7 the over-density will
be shared by all species. In particular a region over-dense in photons will also have an over-
pressure with respect to its surroundings. This pressure imbalance causes an acoustic wave in
the baryon-photon plasma which travels at the speed of sound cs until recombination. When
photons decouple from the plasma the baryon’s speed of sound goes to zero and the wave is
frozen: the initial over-density is now composed only of DM while baryons have created an
over-dense spherical region around the initial point. Every over-density will behave as we just
described and the net result is that matter is more likely to cluster with a correlation length
corresponding to the sound horizon at recombination. It is clear that this process, as we have
already anticipated, is responsible for the BAO peak: the correlation function is defined as
the excess probability (over Poisson noise) of finding two tracers separated by a comoving
distance r and hence it peaks for r ∼ shor. We have also learned that after recombination,
with photons out of the picture, baryons have essentially no pressure and we can treat them,
together with CDM, as a pressure-less fluid (or dust). There are essentially two approaches
to deal with the perturbation theory of dust: Eulerian and Lagrangian. The former (some-
times called standard perturbation theory, or SPT) relies on a perturbative expansion of the
density and velocity fields of matter in fixed (comoving) coordinates [55, 80, 50, 131]. The
latter (Lagrangian perturbation theory, or LPT) follows the trajectories of particles or fluid
elements relating the Eulerian position to the initial Lagrangian position through a displace-
ment vector [80, 135, 50, 256, 221, 33]. The main prediction of linear perturbation theory is
the growth of matter density fluctuations with time, given by the function D1(η) called the
growth function.

To complicate a bit this simple picture one needs to account for the gauge freedom in the
theory: when we describe perturbations we are talking about two different manifolds. The
physical manifold (M, gµν) and the fictitious background manifold (M̄, ḡµν) with respect to
which the perturbations are defined. For a given coordinate system in the background there
is no natural choice of coordinates in the perturbed space-time: different coordinates are
related by a gauge transformation and fixing them corresponds to a gauge choice. With a
gauge transformation we can introduce spurious degrees of freedom in the metric perturba-
tions which are unphysical but still satisfy the linearized EFE, hence the need of developing
perturbation theory in terms of gauge invariant variables. Pioneering work in this direction
was first carried out by Lifshitz in 1946 [209] and later on by the other architects of the gauge
invariant perturbation theory [35, 201, 144, 236, 284, 130]. The main idea of this approach
is to write down perturbations of the metric tensor and the energy momentum tensor, study
how they behave under a gauge transformation and then combine them into gauge invariant
quantities such that the theory is no longer plagued by the gauge freedom and exhibit only the
physical degrees of freedom. We can quickly count them: let us perturbe the metric around
the FLRW solution as gµν = ḡµν + δgµν . The perturbation δgµν , being a symmetric tensor,
has 10 d.o.f. which can be split (via Helmholtz decomposition) into scalar (4 d.o.f.), vector

7We call the perturbations adiabatic if all the species are perturbed in the same way and the total curvature
perturbation is space-dependent, as opposed to isocurvature fluctuations for which the ratio of different species
varies in space but the total perturbation is constant.
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(4 d.o.f.) and tensor (2 d.o.f.) components, with the advantage that the scalar, vector and
tensor evolution equations are decoupled in linear theory. With a coordinate transformation
we can "gauge away" 2 scalars and 2 vectors hence revealing the 6 physical d.o.f. of the theory
(2 scalars, 1 transverse vector and 1 transverse trace-less tensor). A gauge choice essentially
fixes how the physical d.o.f. are combined into δgµν : in this thesis we will mainly work in
Poisson gauge in which one scalar is described by δg00, the transverse vector by δg0i and
the other scalar together with the transverse trace-less tensor by δgij . The issue of gauge
invariance unfolds in a similar way for the energy-momentum tensor Tµν . Let us finally point
out that what we have sketched here is sometimes called the metric approach to perturbation
theory and an important alternative to it is the 1+3 covariant approach [174, 143, 146, 104].
For a technical discussion on linear perturbation theory we refer the reader to [131] or to
appendix A.2.

Linear perturbation theory is able to describe a significant range of scales and most of the
history of the universe but as all good things it must come to an end: it eventually breaks
down. It is difficult to define a "non-linear scale" beyond which we cannot trust the linear
predictions anymore but it is clear that as perturbations grow under the effect of gravity
it will come a point where different techniques must be employed. Leaving the comfortable
ground of linear physics, complications are quick to arise: as there is no general exact solu-
tion in the non-linear regime one must still rely on some expansion scheme, with the added
complication of mode coupling (i.e. Fourier modes do not evolve independently anymore)
and the subsequent loss of the Gaussian properties. Furthermore the convergence properties
of some schemes are in question when higher order contributions get bigger than the lower
order ones and do not improve agreement with N-body simulations [65, 64, 94]. Different
techniques have been developed in the recent years; some straightforward, such as higher
order SPT [289, 218, 188, 276] and LPT [84, 256, 222], some more involved such as Time-
RG theory [245], Renormalization group perturbation theory [224], Lagrangian resummation
theory [220, 219], Effective field theory [45, 95, 79], Time sliced perturbation theory [62] and
others [296, 303]. These approaches are able to push the reach of perturbation theory in the
so-called quasi-linear scales (≳ 0.1 Mpc−1 at z = 0) but eventually we enter the non-linear
scales where a perturbation theory description is not at all suited. The best bet is then to
rely on (time-consuming) N-body simulations to follow the growth of structure at small-scales
([283, 282, 8] among many others). To gain insight on non-linear collapse we can nevertheless
construct oversimplified, heuristic models such as the Spherical collapse model, Secondary
Infall Models [164, 149, 54] and the Zeldovich approximation [325] which help understanding
the different phases of collapse until a virialized8 structure is formed. The main result is
that a region in which the (extrapolated) linear density field is bigger than the critical value
δ(x, η) > δc ≃ 1.686 will have collapsed to form a structure (dark matter halo) by time η. It
is natural to wonder which is the probability that the Gaussian density field is bigger that δc
or, a closely related question, which is the number of dark matter halos per comoving volume
with a certain mass: the halo mass function. Theoretical understanding of this issue comes

8Virialized means a system of gravitationally interacting particles that is stable (i.e. self-gravitating or
decoupled from the Hubble flow): its kinetic and potential energy satisfy the virial theorem 2K +U = 0.
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from the Press-Schechter formalism [246] or, in a more recent formulation, the Excursion Set
Formalism [69, 277].

The reason for which we are interested in the properties of dark matter halos is because
galaxies form (with a complex process of cooling of baryonic gas9) inside them. In fact it is
generally assumed that galaxies follow the matter distribution within their host halo. The
challenging task is then to relate the statistical properties of the matter field (given by the
linear or beyond-linear perturbation theory) to the statistic of halos and hence of galaxies:
this problem goes under the name of galaxy bias. This subject is both interesting from a
theoretical point of view and crucial if we want to relate our theory with observations: it is
in fact clear that in general we do not observe the matter field (with the notable exception of
gravitational lensing as discussed above) but tracers of it. For example a galaxy is a tracer
of the density field (although not the only one, we will sometimes use the word "tracer" as a
synonym of "galaxy" in this work) but as galaxies are collapsed, non-linear objects the way
in which they mirror the density field is non-trivial. In its simplest formulation the bias is
linear and scale-independent: it can be defined as the ratio of the correlation function of the
tracers with respect to the correlation function of matter b =

√
ξtracer/ξm. At large scale this

is a good approximation [306, 156] (and we will stick to it for the purposes of this thesis),
however at smaller scales (or if we want to profit from more precise surveys, e.g. [159]) a full
bias expansion is required: a finite number of bias parameters is then needed to relate the
galaxy density to the properties of the large-scale environment. For a comprehensive review
of the concept presented in the last two paragraphs see [121].

1.2 Light-cone effects

Cosmological observations are restricted to objects and sources which are located on our past
light-cone. Given a space-time (M, gµν) we can define the past light-cone for any point xµ as
the set of points yµ for which exists a null geodesic joining yµ to xµ. Essentially it contains
all the events that can be observed at xµ through light propagation10: in cosmology the light-
cone is a 3-dimensional null surface parametrized by two angles (θ, φ) ≡ n̂, which define the
direction of observation, and the redshift z. This has an immediate consequence and a more
subtle one. The immediate consequence is that our possibilities to probe the universe are fun-
damentally limited: we cannot observe something that lies outside our light-cone. The second
consequence is a modification of the geometry of the light-cone due to the perturbations in the
universe. As light-like geodesic are conformally invariant, the background universe has the
light-cone geometry of Minkowski space. On the other hand if we introduce perturbations to

9See [231] sections 1.2.4 and 8.4 for details.
10It is clear from the definition that two different observers have distinct light-cones. This is in general not

a practical concern in cosmology due to the time-scale of the processes it describes; however, an interesting
possibility was envisioned in [271]: the redshift drift. The idea is to collect data from the two light cones at the
observer space-position but separated by the time period ∆t and look for the change of redshift of a source
given by ∆z ≃ [(1 + z)H0 −H(z)]∆t.
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Figure 1.2: The effect of redshift-space distortion (top), lensing (middle) and the local
gravitational potential (bottom) on the galaxy number counts. See text for the discussion.
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the metric one needs to solve the perturbed null geodesic equation to follow the propagation
of light. Since, as we said, we do not observe spatial hyper-surfaces but the past light-cone,
this is an effect which must be taken into account when we compare theoretical predictions
to observables: the coordinates (θ, φ, z) will receive corrections due to the inhomogeneities
in the universe (δθ, δφ, δz), that, if not accounted for, will lead to misinterpretations of our
measurements. We will take as an example the galaxy number counts as they represent the
main measurement we will deal with in this thesis. This observable is constructed by binning
a galaxy catalog into redshift slices of thickness ∆z and solid angle bins dΩ and then counting
the number of galaxies per bin N(n̂, z). The fluctuations in the number of tracers per bin
with respect to the directional average ⟨N⟩Ω(z) is denoted by ∆(n̂, z) (we will give the proper
definition in section 2.2) and can be related to the matter fluctuation in the same bin δm,
through the simple linear bias relation ∆ ≃ b ⋅ δm. Light-cone effects (often called relativistic
effects or projection effects) enter this measurement as they modify the shape, the angular
position, the radial distance and the number of tracers.

To gain intuition on how this happens we will give an heuristic description, with the
help of figure 1.2, of three projection effects: redshift-space distortion (RSD), lensing and
the local potential terms. The first formulation11 of RSD was given by Kaiser in 1987 [198]
(it is in fact sometimes called Kaiser effect): the idea is that the mapping from real space
to redshift space is not only derived by considering the Hubble flow, but one also needs to
account for the peculiar velocities of the tracers which induce an additional Doppler shift.
In figure 1.2 (a) we sketch the typical situation in real space. Imagine an observer looking
in direction n̂ towards a spherical over-density: galaxies in front and behind the halo will
have coherent peculiar velocities (grey arrows) in the direction of the over-dense region which
will cause a perturbation δz in the observed redshift. In particular galaxies in front, as
they are moving away from the observer will appear redder than the Hubble flow would
dictate and, vice versa, galaxies behind will appear blue-shifted. In the figure dashed lines
are surfaces of constant distance χ̄ = const, and solid lines are iso−z surfaces zobs = const: as
the change in redshift is proportional to the projection of the peculiar velocity n̂ ⋅ v⃗ tracers
closer to the line-of-sight will be more red-shifted (resp. blue-shifted) than the others and
hence they have to be closer to us (resp. further away from us) to lay on the same iso−z
surface. When we bin a catalog into redshift slices and compute the correlation function
this effect induces the famous pancake shape [257]. In the second panel (figure 1.2 (b))
we consider lensing: we already discussed how inhomogeneities in the universe bend the
photons geodesics. In practice this means that a source with background position n̂ will be
seen by the observer at a different position n̂ + δn̂. The effect of lensing is two-fold: firstly
a solid angle bin A at the source position will be magnified and distorted so that in the
image plane it describes a different area A′. Secondly we must consider flux magnification:
a galaxy survey can only observe sources with an intrinsic flux grater than some limiting

11Note that here we are discussing the "large scales" redshift space distortion, the pancakes of God effect,
due to the coherent infall of galaxies towards a central mass. At smaller, non-linear scales the random velocity
dispersions in galaxy clusters also induces RSD, elongating the observed structure along the line-of-sight: an
effect know as fingers of God [186].
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value Flim. If we start with a bin containing a number N(Fi > Flim) of tracers with this
properties (i.e. we count only the galaxy with intrinsic flux Fi big enough for our detector
sensitivity), lensing will cause us to observe a higher (or lower) flux from the sources and we
will actually detect a number N ′(µiFi > Flim) of tracers, where µ is the magnification factor.
Lensing is one of the so-called integrated effects as the calculation requires the integration
of the photon geodesic along the line-of-sight. As a last example we consider the effect of
the gravitational potential at the source position, in figure 1.2 (c). Our sketch is similar to
the one we did for redshift-space distortion, except now the perturbation in the observed
redshift is given by the gravitational redshift which adds to the Hubble flow as photons
have to climb the potential well of the halo (grey solid line). Galaxies which are closer to
the over-density will appear redder and hence the iso−z surfaces are (in real space) "bent"
towards the observer: redshift bins in the catalog ∆zobs will cover a bigger physical volume
if they are behind the potential well rather than in front of it. Other projection effects
include, notably, the Shapiro time delay, a perturbation in the radial distance due to the
gravitational potentials that the photon encounters from the source to the observer, and
the Integrated Sachs-Wolfe effect (ISW) [267], gravitational redshift effect that occurs when
light travels through a time evolving potential. In summary galaxy number counts not only
describe the matter density but also the light-cone effects: we will carefully derive the full
expression in chapter 2. We will mainly deal with number counts and galaxy 2-point function
in this thesis but relativistic effects also play a role in various LSS observables: higher order
n−point functions such as the bispectrum [123, 127, 302, 195, 196], cross-correlations [158], the
luminosity distance [73, 59], quasars and the Lyman−α forest [184], the Hubble diagram [152]
and 21-cm intensity mapping [170].



CHAPTER 2

Vector perturbations of galaxy number counts

Based on:

[134] R. Durrer and V. Tansella, “Vector perturbations of galaxy number counts”,
JCAP 1607 (2016) 037, [arXiv:1605.05974].

Abstract. In this chapter we derive the contribution to the relativistic galaxy number counts
fluctuations from vector and tensor perturbations within linear perturbation theory. In this
thesis we also detail the computation for the scalar contribution both for completeness and
because we will make a large use of it in the following chapters. The result for vectors and
tensors is consistent with the relativistic corrections to number counts due to scalar pertur-
bations, where the Bardeen potentials are replaced with line-of-sight projection of vector and
tensor quantities. Since vector and tensor perturbations do not lead to density fluctuations
they do not contribute to the standard density term in the number counts. We apply our re-
sults to vector perturbations which are induced from scalar perturbations at second order and
give numerical estimates of their contributions to the power spectrum of relativistic galaxy
number counts.

2.1 Introduction

As promised in section 1.2, we review in this chapter the general relativistic description of
galaxy clustering at linear order in perturbation theory. We introduce the observable galaxy
number counts and discuss how projection effects must be taken into account if we want to
compare theory with observations.

Within the last decade, cosmology has become a precision science, especially thanks to the
very accurate measurements of the temperature fluctuations and the polarisation of the cosmic

14
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microwave background with the Planck satellite [11]. These measurements have allowed us
to determine cosmological parameters with a precision of 1% and better. Now we plan to
continue this success story with very precise and deep large scale observations of the galaxies
distribution. Several observational projects are presently under way or planned [2, 18, 129,
204, 116, 216].

In order to profit maximally from these future data, we have to understand very precisely
what we are measuring. With perturbation theory and N-body simulations we compute the
spatial matter density distribution in the Universe, while we observe galaxies in different
directions on the sky and at different redshifts. The relation between the matter density and
galaxies is the so called biasing problem. On large scales we expect biasing to be linear and in
the simplest cases not scale dependent. Another problem is the fact that we observe redshifts
and directions while the matter density fluctuations are calculated in real (physical) space. In
order to convert angles and redshifts into physical distances we have to assume cosmological
parameters. On the other hand, we would like to use the observed galaxy distribution to
infer cosmological parameters. Therefore we have to calculate the density fluctuations in
angular and redshift space (i.e. coordinates on the light-cone) to compare it directly with
observations. This leads to several additional terms in the observed galaxy number counts
due to the fact that also directions and redshifts are perturbed in the presence of fluctuations.

In the recent years, the truly observable density fluctuations have been determined in angle
and redshift space [321, 72, 99]. In addition to the usual galaxy fluctuations there are con-
tributions from redshift space distortions (RSD), lensing, Shapiro time delay, an integrated
Sachs-Wolfe (ISW) term and several other contributions from the gravitational potential
which are due to the perturbations of the observed direction and redshift. Additional effects
such as galaxy bias and primordial non-gaussianities are discussed in [191, 193]. A gener-
alisation to non-flat geometries is given in [126]. Galaxy number counts have recently also
been calculated to second order [51, 324, 122] and the bispectrum has been determined [123].
Reviews on this topic can be found in [318, 70] and - with the general "cosmic rulers" and
"cosmic clocks" formalism - in [192].

In this chapter we determine the galaxy number counts from vector and tensor perturba-
tions (see also [100, 51]). This is relevant for different reasons. First of all, the non-linearities
of structure formation induce vector and tensor fluctuations as first discussed in [232] and
then further in [46, 214, 24]. The first estimate of the vector power spectrum was carried out
in [215] and it has been shown recently [7] that the induced frame dragging can become quite
substantial, of the order of 1%. For discussion on small scales non-linear effects see [83, 27].
Furthermore, if cosmology is not standard ΛCDM, e.g. if there is a contribution from cosmic
strings, the presence of vector perturbations may be a very interesting diagnostic.

We also introduce the angular-redshift power spectrum C`(z1, z2). This quantity has been
introduced in [72, 99], where it has also been shown that due to relativistic projection effects,
the linear power spectrum is not simply given by density fluctuations and redshift-space
distortions, but, as we said, it acquires several additional terms from lensing, ordinary and
integrated Sachs Wolfe terms, gravitational redshift, Doppler terms, and Shapiro time delay.
These projection effects had been previously identified in [321, 317].

Subsequently, linear Boltzmann codes like camb [207] and class [66] have been general-



16 2. VECTOR PERTURBATIONS OF GALAXY NUMBER COUNTS

ized to calculate this galaxy count angular power spectrum [125, 124].

The remainder of this chapter is organised as follows. In the next section we derive the
expression for perturbations of number counts from scalar, vector and tensor perturbations.
Equations (2.47) and (2.48) are the main results of section 2.2. In particular we will make
extensive use of (2.47) in this thesis. In section 2.3 we apply our result to second order vector
perturbations. This gives a good indication of the order of magnitude of vector perturbations
induced at second order in the number counts. In section 2.4 we summarise our findings and
conclude.

We work with a flat Friedmann-Lemaître (FL) background using conformal time denoted
by η, such that

ds2
= a2

(η) (−dη2
+ δijdxidxj) .

Spatial vectors are indicated by boldface symbols and by latin indices, while the 4 spacetime
indices are greek. A photon geodesic in this background which arrives at position x0 at time
η0 and which has been emitted at affine parameter λ = 0 at time ηs, moving in direction n is
then given by (xµ(λ)) = (ηs +λ,x0 +(λ+ηs −η0)n). Here λ = η −ηs = χ̄s − χ̄, where χ̄ denotes
the comoving distance χ̄ = ∣x(λ) − x0∣, hence dχ̄ = −dλ. We can of course choose x0 = 0. We
denote the derivative w.r.t. conformal time η by an overdot such that the conformal Hubble
parameter is H = ȧ/a = aH.

2.2 Relativistic galaxy number counts

Galaxy surveys provide a catalog which contains the redshift and the angular position for
every observed galaxy. The mapping from the artificial FLRW background coordinates and
the observed ones is non-trivial - as observed coordinates are affected by perturbations in
the universe - and it gives rise to the projection effects. As we discussed in the Introduction,
gauge freedom implies that the background-perturbations splitting is not uniquely determined;
however, as number counts are observable and hence gauge invariant, we have the freedom to
perform the derivation in an arbitrary gauge. We chose Poisson gauge (see Appendix A.2 for
details) and write the metric as

ds2
= a2 [−(1 + 2Ψ)dη2

− 2Si dηdxi + [(1 − 2Φ)δij + 2Hij]dxidxj] . (2.1)

Here Ψ,Φ are the Bardeen potentials, Si is a transverse vector andHij is a transverse-traceless
tensor, i.e., ∂iSi = 0, ∂iHij = 0 and H i

i = 0.1

We follow the approach of [72, 233] generalising the derivation with the metric (2.1). We
consider the number of galaxies in direction −n at redshift z, called N(n, z)dΩndz. The aver-
age over angles gives their redshift distribution, ⟨N⟩Ω(z)dz. The galaxy density perturbation

1Spatial indices of perturbed quantities are raised and lowered with δij .
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at fixed redshift in direction n is given by

δz(n, z) =
ρg(n, z) − ⟨ρg⟩Ω(z)

⟨ρg⟩Ω(z)
=

N(n,z)
V (n,z) − ⟨N⟩Ω(z)

V (z)⟨N⟩Ω(z)
V (z)

=
N(n, z) − ⟨N⟩Ω(z)

⟨N⟩Ω(z)
−
δV (n, z)

V (z)
,

(2.2)

where V (n, z) is the physical survey volume density per redshift bin, per solid angle and ρg
denotes the galaxy density per comoving volume. The volume is also a perturbed quantity
since the solid angle of observation as well as the redshift bin are distorted between the source
and the observer. Hence V (n, z) = V (z)+ δV (n, z). The observed perturbation of the galaxy
number density is

N(n, z) − ⟨N⟩Ω(z)

⟨N⟩Ω(z)
= δz(n, z) +

δV (n, z)

V (z)
≡ ∆g(n, z) . (2.3)

The redshift density perturbation δz(n, z), the volume perturbation δV (n, z)/V (z) and hence
the galaxy number counts ∆g(n, z) are gauge invariant quantities [72]. Note that the vector
and tensor perturbations do not lead to density fluctuations, their contributions to the number
counts fluctuation comes from two terms: the redshift perturbation δz which contributes to
δz(n, z) and the volume perturbation δV .
In the following two sections we never use Einstein equations, hence the results are valid for
general theories of gravity as long as tracers follow geodesics.

2.2.1 Redshift perturbations

We start by relating the redshift density perturbation δz(n, z) to the metric and energy-
momentum tensor perturbations. Note that in order to do this we assume ergodicity and
we replace the directional averages in eq. (2.2) with ensemble averages, denoted by ⟨⟩. We
will come back to this subtlety in section 4.2.2 and chapter 7. Expanding in Taylor series
⟨ρg⟩Ω(z) ≡ ⟨ρg⟩(z) = ρ̄g(z) = ρ̄g(z̄) + ∂z̄ρ̄g δz(n, z), where z = z̄ + δz, we obtain [72]:

δz(n, z) = δg(n, z) −
dρ̄g(z̄)
dz̄

δz(n, z)

ρ̄(z̄)
= δg(n, z) −

3

1 + z̄
δz(n, z) , (2.4)

where we have defined
δg ≡

ρ(n, z) − ρ̄(z̄)

ρ̄(z̄)
. (2.5)

For the second equal sign of (2.4) we have used a3ρ̄g = const., so that

∂z̄ρ̄g = 3ρ̄g/(1 + z̄) . (2.6)

Note that at linear order we can evaluate first order quantities at the background position:
for example the difference between δg(n, z) and δg(n̄, z̄) is second order small and we neglect
it. Let us also stress that the density contrast δg is not gauge invariant.
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In the perturbed universe a photon emitted by a galaxy, the source s, arrives at the
observer o with redshift

1 + z =
(nαuα)s
(nαuα)o

. (2.7)

Here we have introduced the perturbed photon momentum n = a−2(1+δn0, n̄+δn), where n̄ is
the unperturbed radial direction.2 The observer 4-velocity is u = a−1(1−Ψ,v) and one should
keep in mind that the peculiar velocity v is of the same order as the metric fluctuations.
A brief first order calculation, ignoring unobservable contributions at the observer position,
yields

(1 + z) ≃ (1 + z̄) (1 + δn0
s − δn

0
o + (Siv

i
)s − (vin

i
)s) = (1 + z̄) (1 + δz) . (2.8)

Solving the (conformally related) geodesic equation d
dλδn

0 = −Γ0
αβn

αnβ we obtain

δn0
o − δn

0
s = 2Ψs + (Siv

i
)s + ∫

χ̄s

0
dχ (Ψ̇ + Φ̇) + ∫

χ̄s

0
dχ Ṡini − ∫

χ̄s

0
dχḢijn

inj . (2.9)

Inserting this result in eqs. (2.8) we infer

δz = −(1 + z̄) (Ψs + ∫

χ̄s

0
dχ (Ψ̇ + Φ̇) + ∫

χ̄s

0
dχ Ṡini − ∫

χ̄s

0
dχḢijn

inj + (vin
i
)s) . (2.10)

The redshift density perturbation in eq. (2.4) is then written as

δz = δg + 3Ψs + 3(vin
i
)s + 3∫

χ̄s

0
dχ (Ψ̇ + Φ̇) + 3∫

χ̄s

0
dχ Ṡini − 3∫

χ̄s

0
dχḢijn

inj . (2.11)

The galaxy density fluctuation in Poisson gauge δg traces the matter density in the same gauge
δpoiss via a bias relation. However it is most physical to assume that both the tracers and dark
matter follow the same velocity field as they experience the same gravitational acceleration.
We then expect that biasing should be applied to the density fluctuation in comoving gauge,
δc, not to δpoiss. Therefore, we transform

δc = δpoiss + 3Hv , (2.12)

where we have introduced the velocity potential in Poisson gauge which appears in the de-
composition of the velocity field in scalar and vector part:

vi = −∂iv + vi,V . (2.13)

With δg = b ⋅ δc − 3Hv we can rewrite eq. (2.11) as

δz =b ⋅ δc + 3Ψs + 3(vin
i
)s − 3Hv + 3∫

χ̄s

0
dχ (Ψ̇ + Φ̇)

+ 3∫
χ̄s

0
dχ Ṡini − 3∫

χ̄s

0
dχḢijn

inj .

(2.14)

2With this convention the direction of observation is −n.
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2.2.2 Volume perturbations

To compute the volume perturbation δV (n, z)/V (z), let us express the spatial volume element
in terms of ’observable’ quantities such as the angles at the observer position and the perturbed
redshift. An observer moving with 4-velocity uµ sees a spatial volume element

dV =
√
−g εµναβu

µdxνdxαdxβ =
√
−g εµναβu

µ∂x
ν

∂z

∂xα

∂θs

∂xβ

∂φs
∣J∣dzdθdφ (2.15)

≡ ν(z, θ, φ)dzdθdφ ,

where we have introduced the volume density ν such that δV (n, z)/V (z) = δν(n, z)/ν(z)
and ∣J∣ is the determinant of the Jacobian matrix, J, of the transformation from the angles
at the source (θs, φs) to the angles at the observer (θ, φ). Given the unperturbed radial
trajectory (θ, φ) = (θs, φs) we can write, at first order, θs = θ + δθ and φs = φ + δφ, so that
∣J∣ = (1 + ∂θδθ + ∂φδφ). The expression for the metric determinant is given by

√
−g = a4

(1 +Ψ − 3Φ)χ2 sin θs = a
4
(1 +Ψ − 3Φ)χ̄2 sin θ (1 + cot θδθ +

2

χ̄
δχ) , (2.16)

where we consider the fact that χ = χ̄ + δχ and we evaluate everything in terms of the
observed redshift and angles at the observer. Note that vector and tensor perturbations do
not contribute to the first equal sign in the expression for

√
−g as at linear order ∣J∣ ≃ Tr[J].

With this we can express ν as

ν = a3
(1 +Ψ − 3Φ)χ̄2 sin θ (1 + cot θδθ +

2

χ̄
δχ)

× ((1 −Ψ)
dχ
dz

+
a

H
vin

i
)(1 +

∂δθ

∂θ
+
∂δφ

∂φ
) .

(2.17)

Since at lowest order, on a photon geodesic, dη = dλ, the derivative of comoving distance χ
w.r.t. redshift, to first order, is given by

dχ
dz

=
dχ̄
dz̄

+
dδχ
dz̄

−
dδz
dz̄

dχ̄
dz̄

=
a

H
(1 −

dδχ
dλ

+
a

H

dδz
dλ

) . (2.18)

Inserting this in the volume element ν we obtain

ν =
a4χ̄2 sin θ

H
(1 − 3Φ +

∂δθ

∂θ
+ cot θ δθ +

∂δφ

∂φ
−
dδχ
dλ

+
2

χ̄
δχ +

a

H

dδz
dλ

− vin
i
) . (2.19)

We are interested in the fluctuation of the volume density δν = ν(z) − ν̄(z). The unper-
turbed volume element is simply ν̄(z̄) = a4H χ̄2 sin θ but we need to evaluate it at the observed
(perturbed) redshift. We then expand ν̄(z) around the background redshift z̄ obtaining

ν̄(z̄) = ν̄(z) +
dν̄
dz̄
δz , (2.20)
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and
dν̄
dz̄

= −ν̄(z̄)(4 −
2

χ̄H
−
Ḣ

H2
)

1

1 + z̄
. (2.21)

Combining eq. (2.19) with eqs. (2.20–2.21) we find

δν

ν
= −3Φ − vin

i
+ (cot θ + ∂θ)δθ + ∂φδφ −

dδχ
dλ

+
2

χ̄
δχ

+
1

(1 + z̄)H

dδz
dλ

+ (4 −
2

χ̄H
−
Ḣ

H2
)

δz

1 + z̄
.

(2.22)

Considering this equation, we are still missing the geodesic displacements δxj(λ) in order to
express the volume fluctuation in terms of the metric potentials and the peculiar velocities.
To find them we write

dxα

dt
=
dxα

dλ
dλ
dt

=
nα

1 + δn0
, (2.23)

and we use the photon geodesic equation to find the δni. Together with eq. (2.9) we can
express the integrals of (2.23) in terms of metric perturbations to find

δχ = ∫

χ̄s

0
dχ (Ψ +Φ) + ∫

χ̄s

0
dχSini − ∫

χ̄s

0
dχHijn

inj , (2.24)

(cot θ + ∂θ)δθ + ∂φδφ = −∫
χ̄s

0
dχ

χ̄s − χ

χ̄sχ
∆Ω (Ψ +Φ + Sin

i
−Hijn

inj)

− ∫

χ̄s

0
dχ

1

χ
(∇Ω ⋅ SΩ −∇Ω ⋅ (Hijn

j
)Ω) ,

(2.25)

where the subscript Ω denotes the angular part of a vector A⃗Ω = Aiê
i
θ +Aiê

i
φ and we denote

the angular divergence and the angular Laplacian respectively by

∇Ω ⋅ A⃗Ω = (cot θ + ∂θ)Aθ + ∂φAφ , (2.26)

and

∆Ω = (cot θ∂θ + ∂
2
θ +

1

sin2 θ
∂2
φ) . (2.27)

Combining eq. (2.22) with eqs. (2.24) and (2.25), and using the redshift perturbation given
in eq. (2.14) which yields

1

(1 + z̄)H

dδz
dλ

= Ψs + vin
i
−

1

H

d
dλ

(vin
i
) −

1

H

dΨ

dλ
+

1

H
(Ψ̇ + Φ̇ + Ṡin

i
− Ḣijn

inj)

+ ∫

χ̄s

0
dχ (Ψ̇ + Φ̇ + Ṡin

i
− Ḣijn

inj) ,

(2.28)
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we find

δν

ν
=Ψ − 2Φ + Sin

i
−Hijn

inj − vini +
1

H
(Ψ̇ + Φ̇ + Ṡin

i
− Ḣijn

inj −
dΨ

dλ
−

d
dλ

(vin
i
))

+ (−3 +
2

χ̄H
+
Ḣ

H2
)(Ψ + vin

i
+ ∫

χ̄s

0
dχ (Ψ̇ + Φ̇ + Ṡin

i
− Ḣijn

inj))

+
2

χ̄s
∫

χ̄s

0
dχ (Ψ +Φ + Sin

i
−Hijn

inj) − ∫
χ̄s

0
dχ

χ̄s − χ

χ̄sχ
∆Ω (Ψ +Φ + Sin

i
−Hijn

inj)

− ∫

χ̄s

0
dχ

1

χ
(∇Ω ⋅ SΩ −∇Ω ⋅ (Hijn

j
)Ω) .

(2.29)

Adding the results given in eqs. (2.14) and (2.29) we finally obtain the galaxy number count
fluctuations for scalar modes (S) and vector plus tensor modes (V,T) in a perturbed FLRW
universe:

∆(S)
g (n, z) = bδc +Ψ − 2Φ +

Φ̇

H
− 3Hv +

1

H
∂χ(v

S
i n

i
)

+ (
2

χ̄sH
+
Ḣ

H2
)(Ψ + vSi n

i
+ ∫

χ̄s

0
dχ (Ψ̇ + Φ̇))

− ∫

χ̄s

0
dχ

χ̄s − χ

χ̄sχ
∆Ω(Ψ +Φ) +

2

χ̄s
∫

χ̄s

0
dχ (Ψ +Φ)

∆(V,T)
g (n, z) = −Hijn

inj −
1

H
Ḣijn

inj +
1

H
∂χ(v

V
i n

i
)

+ (
2

χ̄sH
+
Ḣ

H2
)(vVi n

i
+ ∫

χ̄s

0
dχ (Ṡin

i
− Ḣijn

inj))

− ∫

χ̄s

0
dχ

χ̄s − χ

χ̄sχ
∆Ω (Sin

i
−Hijn

inj) +
2

χ̄s
∫

χ̄s

0
dχ (Sin

i
−Hijn

inj)

− ∫

χ̄s

0
dχ∂χ (Sin

i
−Hijn

inj) − ∫
χ̄s

0
dχ (

2

χ
Sin

i
−

3

χ
Hijn

inj) ,

(2.30)

where we have decomposed the velocity as in eq. (2.13): vi = −∂iv + vi,V = vi,S + vi,V. For the
last two equations we have used the fact that - with our normalization of the affine parameter
dη = dλ - the chain rule reads dA

dλ = Ȧ + n ⋅ ∇A = Ȧ − ∂χA. We have also exploited the
transversality conditions, ∂iSi = 0 and ∂iHij = 0 which imply 1

χ∇Ω ⋅ SΩ = ( 2
χ + ∂χ)Sin

i and
equivalently for Hij . Furthermore we have assumed that galaxies move along geodesic and
use their geodesic equation, given respectively by:

v̇S
⋅ n +HvS

⋅ n − ∂χΨ = 0 , (2.31)

v̇V
⋅ n − Ṡ ⋅ n +H(vV

⋅ n − S ⋅ n) = 0 , (2.32)

Equation (2.30) is the main result of this section. Let us comment on ∆(V,T) before we
move on to the study of a numerical application. We will comment in details on ∆(S) in
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chaper 3. We first notice that since vector and tensor perturbations do not produce density
fluctuation we have no density term in the number counts which is the biggest contribution
in the case of scalar perturbation. In the first line we have two terms coming from the tensor
metric potential and the redshift-space distortion term:

∆P1
(n, z) = −Hijn

inj , (2.33)

∆P2
(n, z) = −

1

H
Ḣijn

inj , (2.34)

∆RSD
(n, z) =

1

H
∂χ(vin

i
) . (2.35)

The second line of eq. (2.30) contains the Doppler term and the Integrated Sachs-Wolfe term:

∆Dop
(n, z) = (

2

χ̄sH
+
Ḣ

H2
) vin

i , (2.36)

∆ISW
(n, z) = (

2

χ̄sH
+
Ḣ

H2
)∫

χ̄s

0
dχ (Ṡin

i
− Ḣijn

inj) . (2.37)

We group the remaining contributions which account for distortions of the volume element
into a lensing term and a radial distortion term:

∆Len
(n, z) = −∫

χ̄s

0
dχ

χ̄s − χ

χ̄sχ
(2 +∆Ω)Sin

i

+∫

χ̄s

0
dχ

χ̄s − χ

χ̄sχ
∆ΩHijn

inj (2.38)

−∫

χ̄s

0
dχ (

2

χ̄s
−

3

χ
)Hijn

inj ,

∆Vχ
(n, z) = −∫

χ̄s

0
dχ∂χ (Sin

i
−Hijn

inj) . (2.39)

In the number counts all the terms that are not integrated are evaluated at the unperturbed
source position (in direction −n at redshift z(χ̄s)) while the terms inside integrals are evalu-
ated along the unperturbed line of sight (Born approximation), from comoving distance χ̄s = 0
to χ̄s and conformal time η0 − χ̄s.

2.2.3 Magnification bias & evolution bias

Up until now we have assumed that galaxy survey are volume-limited so that we can observe
all the tracers in the survey’s volume. However, surveys are characterised by a limiting flux
below which we cannot detect sources hence galaxy survey are flux-limited. As sketched in
figure 1.2 (b), because of projection effects (e.g. gravitational lensing) - which modify the
observed flux of a source - a galaxy below the flux threshold can "make the cut" if its signal
is magnified along the line-of-sight, and, viceversa, a galaxy below the flux threshold might
become unobservable if its signal is de-magnified along the LOS. Including this effect, so
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considering that the observed number counts depend also on the luminosity L, at a given
fixed flux F , we write

∆g(n, z, F ) = ∆g(n, z) +
∂n̄g(L > L∗)

∂L

δL

L̄
. (2.40)

Here L∗ is the limiting luminosity and L̄ is the background luminosity corresponding to the
flux F . Using the expression L = 4πD2

LF we can relate the fluctuation in the luminosity to
the fluctuation in the luminosity distance DL as

δL

L̄
= 2

δDL
D̄L

. (2.41)

We introduced the dependence of the number density on the luminosity via the logarithmic
derivative

s(z,L∗) ≡ ∂log10n̄g(L > L∗)
∂m

, (2.42)

where we have defined the magnification bias s as the slope of the luminosity function and
m = −2.5log10F is the apparent magnitude so that

∂n̄g(L > L∗)
∂L

= −
5

2
s . (2.43)

The fluctuations in the luminosity distance are computed as

(
δDL
D̄L

)

(S)
= −(1 −

1

χ̄sH
)(Ψ + vSi n

i
+ ∫

χ̄s

0
dχ (Ψ̇ + Φ̇)) −Φ

− ∫

χ̄s

0
dχ

χ̄s − χ

2χ̄sχ
∆Ω (Ψ +Φ) +

1

χ̄s
∫

χ̄s

0
dχ (Ψ +Φ) ,

(2.44)

(
δDL
D̄L

)

(V,T)
= −(1 −

1

χ̄sH
)(vVi n

i
+ ∫

χ̄s

0
dχ (Ṡin

i
− Ḣijn

inj)) −
1

2
Hijn

inj

− ∫

χ̄s

0
dχ

χ̄s − χ

2χ̄sχ
∆Ω (Sin

i
−Hijn

inj) +
1

χ̄s
∫

χ̄s

0
dχ (Sin

i
−Hijn

inj)

− ∫

χ̄s

0
dχ (

2

χ
Sin

i
−

3

χ
Hijn

inj) .

(2.45)

Before combining these expression to give the final form of ∆g, we must consider another
additional effect. We have so far neglected any possible time evolution for n̄g and we have
used eq. (2.6). We can allow for a non-vanishing evolution term by introducing the evolution
bias

fevo(z) ≡
d ln(a3n̄g)

Hdη
= −(1 + z)

d

dz
ln(

n̄g

(1 + z)3
) . (2.46)

This modifies eq. (2.6) so that ∆g in eq. (2.30) gains an additional factor fevoδz/(1 + z) and
we must include it in the gauge transformation δg = b ⋅ δc − (3 − fevo)Hv.
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Including the evolution bias and combining eqs. (2.40), (2.43), (2.44) and (2.45) we obtain
the final expressions:

∆(S)
g (n, z) = bδc +Ψ + (5s − 2)Φ +

Φ̇

H
+ (fevo − 3)Hv +

1

H
∂χ(v

S
i n

i
)

+ (5s +
2 − 5s

χ̄sH
+
Ḣ

H2
− fevo)(Ψ + vSi n

i
+ ∫

χ̄s

0
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2
∫

χ̄s

0
dχ

χ̄s − χ

χ̄sχ
∆Ω(Ψ +Φ) +

2 − 5s

χ̄s
∫

χ̄s

0
dχ (Ψ +Φ) ,

(2.47)

∆(V,T)
g (n, z) =
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H
Ḣijn
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)
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− Ḣijn
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0
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χ̄s − χ

χ̄sχ
∆Ω (Sin

i
−Hijn
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+
2 − 5s

χ̄s
∫

χ̄s

0
dχ (Sin

i
−Hijn

inj) − ∫
χ̄s

0
dχ∂χ (Sin

i
−Hijn
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+
5s − 2

2
∫

χ̄s
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dχ (

2

χ
Sin

i
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χ
Hijn

inj) .

(2.48)

In the next section we set the magnification bias s = 0.

2.3 Application to second order perturbation theory

We now apply our main formula (2.48) to vector perturbations present in a standard ΛCDM
universe. At first order the situation is not promising since standard inflationary scenarios do
not produce vector perturbations and even if they would, vector perturbations decay without
the presence of a non-standard source term, e.g. cosmic strings. However, at second order,
non linearities in the scalar sector source vector modes and here we target these scalar-induced
vector modes as a test of eq. (2.48).

We use the following perturbation scheme for the metric potentials

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

g00 = −a
2 (1 + 2Ψ(1) +Ψ(2))

g0i = −a
2(S

(1)
i + 1

2S
(2)
i )

gij = a
2 ((1 − 2Φ(1) −Φ(2)) δij +H(1)

ij + 1
2H

(2)
ij ) ,

(2.49)

for the energy-momentum tensor ρ = ρ̄ + δρ(1) + 1/2δρ(2), p = p̄ + δp(1) + 1/2δp(2) and for
the 4-velocity uµ = a−1 (1 + δu0,v(1) + 1/2v(2)). Here we have used Newtonian gauge for the
scalar perturbations which (locally) is well defined at every order. At first order, Ψ(1) and
Φ(1) are the usual Bardeen potentials. We neglect second order scalar and tensor fluctuations
as well as first order vectors and tensors. The metric, up to second order, is then written

ds2
= a2

(η) (−(1 + 2Ψ(1)
)dη2

− S
(2)
i dηdxi + (1 − 2Φ(1)

)δijdxidxj) . (2.50)
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Within ΛCDM we can identify the two Bardeen potentials, Ψ(1) = Φ(1) = Ψ. It is worth
pointing out that our metric vector potential and the second order peculiar velocity are pure
vector quantities: S = SV and v(2) = vV(2), where, following the notation used above, with
V we denote the transverse part of a vector that we can extract in Fourier space with the
projection operator Pij which acts as

AVi = PijA
j
= (δij −

kikj

k2
)Aj . (2.51)

Following [215] we also define Ω(2) = v(2) −S = ΩV(2). The covariant 4-velocity of the fluid
is obtained via the normalisation condition gµνuµuν = −1

uµ = a(−1 −Ψ +
1

2
Ψ2

−
1

2
v(1)

⋅ v(1) , v(1)
− 2Ψv(1)

+
1

2
Ω(2)

) . (2.52)

With this, modelling matter as a perfect fluid, we can construct the energy momentum tensor
Tµν = (ρ + p)uµuν + p gµν . At first order, the Einstein constraint equations reduce to

4πGa2δρ = ∆Ψ − 3H(HΨ + Ψ̇) , (2.53)

4πG(1 + ω) ρ̄ a2v
(1)
j = ∂j(HΨ + Ψ̇) , (2.54)

where ω = p/ρ and ∆ is the 3-dimensional Laplacian. At second order we use T
0(2)
j =

1
2 (ρ̄Ωj + 2v

(1)
j (δρ − 3ρ̄Ψ)) and the 0i Einstein equation is

Ωi =
1

6(1 + ω)H2
(−∆Si +

16∆Ψ

3H2
∂i(HΨ + Ψ̇) − 8HΨ∂iΨ −

16

H
Ψ̇∂iΨ̇ − 8(3Ψ̇∂iΨ + 5Ψ∂iΨ̇))

V

=
1

6(1 + ω)H2
(−∆Si +

16∆Ψ

3H2
∂i(HΨ + Ψ̇) − 8(3Ψ̇∂iΨ + 5Ψ∂iΨ̇))

V

,

where in the second line we ignored the pure gradient terms: Ψ∂iΨ ∝ ∂iΨ
2 and Ψ̇∂iΨ̇ ∝ ∂iΨ̇

2

which have vanishing vector projections. Since both the left hand side and the right hand
side are pure vector terms, they are fixed by their curl. We can than write ∂[iΩj] = ∂[i(⋯)j],
where [i(⋯)j] denotes anti-symmetrization, as

6(1 + ω)H2∂[iΩj] = ∂[i (−∆Sj] + 8(2Ψ̇∂j]Ψ +
2

3H2
∆Ψ∂j](HΨ + Ψ̇))) , (2.55)

and conclude that

6(1 + ω)H2Ωj = −∆Sj + 8(2Ψ̇∂jΨ +
2

3H2
∆Ψ∂j(HΨ + Ψ̇))

V

, (2.56)

in agreement with eq. (18) of [215].
The vorticity in the fluid is defined as ωµν = F λµF σν (uλ;σ−uσ;λ), with Fµν = gµν+uµuν [131].

In [215] it is shown that in a perfect fluid there is no generation of vorticity at any order.
This allows us to set
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Figure 2.1: The dimensionless power spectra of the Bardeen potential P (dashed)
and of the scalar induced vectors PS (solid), for different redshifts: z = 0 (black),
z = 1 (green) and z = 3 (orange).

0 = !ij = @[i⌦j] + 6 v
(1)[i @j] + 2 v

(1)[i v̇
(1)
j] . (2.57)

Inserting eqs. (2.54) and (2.56) in this expression we obtain

∇2Si = 16

3H2⌦m(1 + !m) �∇2 @i(H +  ̇)�V , (2.58)

where !m = pm�⇢m and we shall set it to 0 in the following. Using the fact that for
pressureless matter  (x, ⌘) = g(⌘) (x, ⌘0), we find that  ̇@i = (ġ�g)@i( 2�2) so that( ̇@i )V = 0. Inserting this and (2.58) in eq. (2.56) yields ⌦ = 0 and v(2) = S.

From eq. (2.58) we can conclude that the scalar-induced vector power spectrum
PS(k, z) is a convolution of the scalar power spectrum P (k, z). We can furthermore
factorize the gravitational potential as  (k, z) =  (in)(k)T (k)g(z), where T (k) is the
transfer function, a good approximation to it can be found in [94], and g(z) is the
growth factor which, in a ⇤CDM cosmology can be approximated as

g(z) = 5

2
g∞⌦m(z)�⌦4�7

m (z) −⌦⇤ + �1 + 1

2
⌦m(z)��1 + 1

70
⌦⇤)��−1 . (2.59)

The pre-factor g∞ is chosen such that g(0) = 1. With this the dimensionless power spec-
trum of the Bardeen potential is given by, P (k, z) = k3�(2⇡2)P (k, z) = P⇣(k)T 2(k)g2(z),
where we define the primordial power spectrum P⇣(k) by

P⇣(k) = As � k

k∗�
ns−1

, (2.60)
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Figure 2.1: The dimensionless power spectra of the Bardeen potential PΨ (dashed) and of
the scalar induced vectors PS (solid), for different redshifts: z = 0 (black), z = 1 (green) and
z = 3 (orange).

0 = ωij = ∂[iΩj] + 6 v
(1)[i ∂j]Ψ + 2 v

(1)[i v̇(1)j] . (2.57)

Inserting eqs. (2.54) and (2.56) in this expression we obtain

∆Si =
16

3H2Ωm(1 + ωm)
(∆Ψ∂i(HΨ + Ψ̇))

V
, (2.58)

where ωm = pm/ρm and we shall set it to 0 in the following. Using the fact that for pressureless
matter Ψ(x, η) = g(η)Ψ(x, η0), we find that Ψ̇∂iΨ = (ġ/g)∂i(Ψ

2/2) so that (Ψ̇∂iΨ)V = 0.
Inserting this and (2.58) in eq. (2.56) yields Ω = 0 and v(2) = S.

From eq. (2.58) we can conclude that the scalar-induced vector power spectrum PS(k, z) is
a convolution of the scalar power spectrum PΨ(k, z) with itself. We can furthermore factorize
the gravitational potential as Ψ(k, z) = Ψ(in)(k)T (k)g(z), where T (k) is the transfer function,
a good approximation to it can be found in [139], and g(z) is the growth factor which, in a
ΛCDM cosmology can be approximated as

g(z) =
5

2
g∞Ωm(z) (Ω4/7

m (z) −ΩΛ + (1 +
1

2
Ωm(z))(1 +

1

70
ΩΛ)))

−1

. (2.59)

The pre-factor g∞ is chosen such that g(0) = 1. With this the dimensionless power spectrum
of the Bardeen potential is given by, PΨ(k, z) = k3/(2π2)PΨ(k, z) = Pζ(k)T

2(k)g2(z), where
we define the primordial power spectrum Pζ(k) by

Pζ(k) = As (
k

k∗)
ns−1

, (2.60)

where k∗ is an (arbitrary) pivot scale. In Fourier space eq. (2.58) becomes

Si(k) = −
ik−2

(2π)3

16

3H2Ωm
∫ d3q q2Pij(k)(q

j
− kj)Ψ(q) (HΨ(k − q) + Ψ̇(k − q)) . (2.61)



2.3. APPLICATION TO SECOND ORDER PERTURBATION THEORY 27

RSD 1
2H∂χ(S ⋅ n) green

Lensing −1
2 ∫

χ̄s

0 dχ χ̄s−χ
χ̄sχ

(2 +∆Ω) (S ⋅ n) magenta

Volume
distortion −1

2 ∫
χ̄s

0 dχ∂χ (S ⋅ n) orange

Doppler 1
2 ( 2

χ̄sH + ḢH2 ) (S ⋅ n) blue

ISW 1
2 ( 2

χ̄sH + ḢH2 ) (∫
χ̄s

0 dχ (Ṡ ⋅ n)) red

Table 2.1: The color coding used in the plots for the auto correlation angular power spectra
C`(zs, z

′
s) of the different contribution to ∆vec(n, z) in eq. (2.63).

Defining

⟨Si(k)S
∗
j (k

′
)⟩ = (2π)3Pij

2
PS(k)δ(k − k′) ,

the power spectrum of vector perturbations, we find

PS(k, z) =
4

(2π)3

64k−4

9H2Ω2
m

g(z)2
(g(z) − (1 + z)g′(z))2

× ∫ d3q q2
(2kiq

i
− k2

)(q2
−

(kiq
i)2

k2
)T 2

(q)P
(in)
Ψ (q)T 2

(∣k − q∣)P
(in)
Ψ (∣k − q∣) ,

which can be simplified to [215]

PS(k, z) = 4
8A2

s

9H2Ω2
m

g(z)2
(g(z) − (1 + z)g′(z))2 k2 Π(k) , where (2.62)

Π(k) =

∞
∫

0

dx
x+1

∫

∣x−1∣
dy

(y2 − x2)((x + y)2 − 1)((y − x)2 − 1)

y2
(
k2xy

k2∗ )

ns−1

T 2
(kx)T 2

(ky) .

We now go back to the galaxy number counts. With the results of this section we can
rewrite the vector contributions to eq. (2.30) for a vorticity-free fluid as

∆(V)
g (n, z) =

1

2H
∂χ(S ⋅ n) −

1

2
∫

χ̄s

0
dχ

χ̄s − χ

χ̄sχ
∆Ω (S ⋅ n) − ∫

χ̄s

0
dχ

χ̄s − χ

χ̄sχ
(S ⋅ n)

−
1

2
∫

χ̄s

0
dχ∂χ (S ⋅ n) +

1

2
(

2

χ̄sH
+
Ḣ

H2
)(S ⋅ n + ∫

χ̄s

0
dχ (Ṡ ⋅ n)) .

(2.63)

The first term is the vector-redshift space distortion, the second and third terms are the
lensing contributions. In the second line the first term is the radial distortion of the volume
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Figure 2.2: The angular power spectrum for the different terms at redshifts
zs = z′s = 0.1 (left) and zs = z′s = 1 (right). We use the following color coding: redshift
space distortion (green), lensing term (magenta), radial volume distortion term
(orange), Doppler term (blue) and ISW effect term (red).

We now go back to the galaxy number counts. With the results of this section we
can rewrite the vector contributions to eq. (2.30) for a vorticity-free fluid as

�(V)(n, z) = 1

2H@�(S ⋅ n) − 1

2 �
�̄s

0
d�

�̄s − �
�̄s�

∇2
⌦ (S ⋅ n) − � �̄s

0
d�

�̄s − �
�̄s�

(S ⋅ n)
− 1

2 �
�̄s

0
d�@� (S ⋅ n) + 1

2
� 2
¯̄�sH + ḢH2

��S ⋅ n + � �̄s

0
d� (Ṡ ⋅ n)� .

(2.63)

The first term is the vector-redshift space distortion, the second and third terms are
the lensing contributions. In the second line the first term is the radial distortion of
the volume and the last two terms come from the redshift perturbation of the volume:
a Doppler term and the vector-type integrated Sachs-Wolfe (ISW) term (see table 2.1).
Since, at fixed redshift, (2.63) is a function on the sphere we expand it in spherical
harmonics with redshift dependent amplitudes

�(V)(n, z) = �̀
m

�`m(z)Y`m(n) , (2.64)

and we denote the angular power spectrum of vector galaxy number counts by

��`m(z)�∗̀′m′(z′)� = C`(z, z′)�``′�mm′ . (2.65)

The computation of the angular correlators is straightforward given that, with our
Fourier convention,

@�(S ⋅ n) = −i� d3k(2⇡)3niki n
jSj(k)ei�̄k⋅n . (2.66)
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and the last two terms come from the redshift perturbation of the volume: a Doppler term and
the vector-type integrated Sachs-Wolfe (ISW) term (see table 2.1). Since, at fixed redshift,
(2.63) is a function on the sphere we expand it in spherical harmonics with redshift dependent
amplitudes

∆(V)
g (n, z) = ∑

`m

δ`m(z)Y`m(n) , (2.64)

and we denote the angular power spectrum of vector galaxy number counts by

⟨δ`m(z)δ∗̀′m′(z′)⟩ = C`(z, z′)δ``′δmm′ . (2.65)

The computation of the angular correlators is straightforward given that, with our Fourier
convention,

∂χ(S ⋅ n) = −i∫
d3k

(2π)3
niki n

jSj(k)e
iχ̄k⋅n . (2.66)

It is useful to factorise the scalar-induced vector power spectrum of eq. (2.62) as PS(k, z, z′) =
gS(z)gS(z

′)k2Π(k) with

gS(z) =
4
√

2As
3H(z)Ωm(z)

g(z)(g(z) − (1 + z)g′(z)) . (2.67)

We present the angular power spectra for the auto-correlations of the different effects
defined in eqs. (2.34)–(2.37). The expressions for the cross-correlations are given in Ap-
pendix 2.A. We denote the comoving distance to the source redshift zs by χ̄s, H is the
Hubble parameter at zs and H′ is the Hubble parameter at z′s.

CRSD
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2
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×((` − 1)j`(kχ̄
′
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′
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′
s))PS(k, zs, z

′
s)] ,
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Figure 2.3: Different terms for the transversal power spectrum C`(zs, zs) at fixed
multipoles ` = 5 (left) and ` = 20 (right) as a function of redshift. Color coding as in
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It is useful to factorise the scalar-induced vector power spectrum of eq. (2.62) asPS(k, z, z′) = gS(z)gS(z′)k2⇧(k) with

gS(z) = 4
√

2As

3H(z)⌦m(z)g(z)(g(z) − (1 + z)g′(z)) . (2.67)

We present the angular power spectra for the auto-correlations of the different
effects defined in eqs. (2.34)–(2.37). The expressions for the cross-correlations are
given in Appendix 2.A. We denote the comoving distance to the source redshift zs by
�̄s, H is the Hubble parameter at zs and H′ is the Hubble parameter at z′s.
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Figure 2.3: Different terms for the transversal power spectrum C`(zs, zs) at fixed multipoles
` = 5 (left) and ` = 20 (right) as a function of redshift. Color coding as in figure 2.2.
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where WL(χ) =
χ̄s−χ
χ χ̄s

and PṠ(k, z, z
′) = ġS(z)ġS(z′)k2Π(k).

As vector perturbations do not affect the density of galaxies, all the contributions relate to
gravitational effects on the propagation of light. We calculate these contributions numerically
for a flat ΛCDM model with Planck [11] cosmological parameters. More precisely, we choose
Ωbh

2 = 0.022, Ωmh
2 = 0.12, ns = 0.96, As = 2.21 × 10−9 at the pivot scale k∗ = 0.05 Mpc−1 .

The Hubble constant at present time is H0 = h×100 km/s/Mpc with h = 0.67. If we correlate
perturbations at fixed redshift C`(zs, zs) we obtain the transversal power spectrum but we
can also correlate perturbations at different redshifts to obtain the radial power spectrum
C`(zs, z

′
s). In figures 2.2–2.6 we plot the transversal and radial angular power spectra for the

different terms. Comparing them with the effects induced by scalar perturbations we see in
figure 2.7 that the amplitude of the corresponding vector terms is suppressed by 2 orders of
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Figure 2.5: Most relevant terms for the radial power spectrum C`(zs, zs′) as a
function of multipoles for zs = 0.5, z′s = 1 (left) and zs = 1, z′s = 1.5 (right). Cross
spectra are dashed. Color coding as in figure 2.4.
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distortion (dashed, dark green). Cross spectra are dashed and negative contributions are
dot-dashed.

magnitudes in the case of the relativistic terms and up to 4–5 orders of magnitudes in the
case of RSD, see fig. 2.7. The standard density term is however absent and this means that,
in total, the vector number counts amplitude can be suppressed up to 6 orders of magnitudes
at low redshifts. The RSD is the dominant contribution only at low redshift while the lensing
term starts to dominate for zs ≳ 0.2. Like for scalar perturbations, the radial power spectra
terms are largely dominated by the integrated terms, especially the lensing term. Therefore,
in radial spectra with zs ≠ z′s the vector contribution is less suppressed.

Note also that all the results presented here have been obtained with a δ-function window.
Admitting a wider window function in redshift would significantly reduce the density term
and the redshift space distortion without affecting integrated terms like lensing. [125, 235].
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2.4 Conclusions

We have computed the galaxy number counts for vector and tensor fluctuations in linear
perturbation theory. The well-known computation for the contribution from scalar modes
has been also detailed since it represents the foundation upon which the following chapters
are based. We have obtained a general expression which can be applied for all situations
where linear cosmological perturbation theory is valid. We have employed it to compute the
contribution to the galaxy number counts from vector perturbations which are induced from
the usual scalar perturbations at second order in perturbation theory. While these terms are
certainly present in the standard ΛCDM cosmology, they are very small.

Since within the perfect fluid approximation no vorticity is generated, the only ’standard
term’, the redshift space distortion is also very small. For intermediate to large redshifts,
z ≳ 0.2, the lensing term dominates the result for both radial and transversal correlations.
It is however 4 to 5 orders of magnitude smaller than the corresponding signal due to scalar
perturbations. This means that only if the amplitude of the scalar lensing contribution can
be measured to an accuracy of better than 1%, it might be feasible to see this vector contri-
bution. This seems to be difficult, but the scalar lensing contribution by far dominates the
radial correlation function and will probably be measured with good accuracy in the future.
Furthermore, it has been found in simulations [7] that higher order non-linear contributions
tend to enhance vector perturbations. However, this effect is strong only on small scales
which are relevant in angular power spectra only at high multipoles [9].

Interestingly, when going to higher redshifts, up to redshift z = 3, the total vector to scalar
ratio is increasing, see figure 2.7, even though the second order vectors are smaller at higher
redshift. This is due to the fact that at higher redshift the lensing term increases while the
density and redshift space distortions decrease [72]. Therefore the lensing term becomes more
relevant and for this contribution vector perturbations are least suppressed.
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Nevertheless, it seems not very promising to detect vector perturbations in the number
counts with presently planned observations, if they are not larger than what is expected
within ΛCDM. This probably stems from the fact that number counts are an inherently
scalar quantity which is expected to be dominated by scalar perturbations. It has recently
been suggested [275] that intrinsically spin-2 quantities like the alignment of the ellipticity
of galaxies might be more promising. Another intriguing possibility might be measuring the
alignment or the correlation of the spins of distant galaxies.

In chapter 6 we will come back to vector perturbations (with an anisotropic component)
and we will see how an observable which is specifically designed can increase the chances of
detection.



Appendices

2.A Cross-correlations

For completeness we present here the results of eq. (2.65) also for the cross-correlations be-
tween the different terms of eqs. (2.34–2.37).
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(
2

χ̄′sH′ + Ḣ
′

H′2)∫ dk
k3

⎡
⎢
⎢
⎢
⎢
⎣

((` − 1)j`(kχ̄s) − kχ̄sjl+1(kχ̄s))

×∫

χ̄′s
0

dχ′ j`(kχ′)
χ′ PSṠ(k, zs, z

′
)

⎤
⎥
⎥
⎥
⎥
⎦

34



2.A. CROSS-CORRELATIONS 35

CLen-Vχ
` (zs, z

′
s) =

π

2
`(` + 1)(`2 + ` − 2)∫

χ̄s

0
dχ∫

χ̄′s
0

dχ′WL(χ)∫
dk
k3

⎡
⎢
⎢
⎢
⎢
⎣

j`(kχ)

χ

×(
(` − 1)j`(kχ

′) − kχ′j`+1(kχ
′)

χ′2 )PS(k, z, z
′
)

⎤
⎥
⎥
⎥
⎥
⎦

CLen-Dop
` (zs, z

′
s) =

π

2
`(` + 1)(`2 + ` − 2)(

2

χ̄′sH′ + Ḣ
′

H′2)∫ dk
k3

j`(kχ̄
′
s)

χ̄′s ∫

χ̄s

0
dχ

×[WL(χ)
j`(kχ)

χ
PS(k, z, z

′
s)

⎤
⎥
⎥
⎥
⎥
⎦

CLen-ISW
` (zs, z

′
s) =

π

2
`(` + 1)(`2 + ` − 2)(

2

χ̄′sH′ + Ḣ
′

H′2)∫
χ̄s

0
dχ∫

χ̄′s
0

dχ′

×

⎡
⎢
⎢
⎢
⎢
⎣

WL(χ)∫
dk
k3

j`(kχ)

χ

j`(kχ
′)

χ′ PSṠ(k, z, z
′
)

⎤
⎥
⎥
⎥
⎥
⎦

CVχ-Dop
` (zs, z

′
s) =

π

2
`(` + 1)(

2

χ̄′sH′ + Ḣ
′

H′2)∫ dk
k3

⎡
⎢
⎢
⎢
⎢
⎣

j`(kχ̄
′
s)

χ̄′s
×∫

χ̄s

0
dχ(

(` − 1)j`(kχ) − kχj`+1(kχ)

χ2
)PS(k, z, z

′
s)

⎤
⎥
⎥
⎥
⎥
⎦

CVχ-ISW
` (zs, z

′
s) =

π

2
`(` + 1)(

2

χ̄′sH′ + Ḣ
′

H′2)∫
χ̄s

0
dχ∫

χ̄′s
0

dχ′∫ dk
k3

×

⎡
⎢
⎢
⎢
⎢
⎣

(
(` − 1)j`(kχ) − kχj`+1(kχ)

χ2
)
j`(kχ

′)
χ′ PSṠ(k, z, z

′
)

⎤
⎥
⎥
⎥
⎥
⎦

CDop-ISW
` (zs, z

′
s)=

π

2
`(` + 1)(

2

χ̄sH
+
Ḣ

H2
)(

2

χ̄′sH′ + Ḣ
′

H′2)∫ dk
k3

j`(kχ̄s)

χ̄s

×∫

χ̄′s
0

dχ′[j`(kχ′)
χ′ PSṠ(k, zs, z

′
)] ,

where PSṠ(k, z, z
′) = gS(z)ġS(z′)k2Π(k).



CHAPTER 3

Correlation function I: Theoretical aspects

Based on:

[294] V. Tansella, C. Bonvin, R. Durrer, B. Ghosh and E. Sellentin, “The full-sky relativistic
correlation function and power spectrum of galaxy number counts. Part I: Theoretical
aspects”,
JCAP 1803 (2018) 019, [arXiv:1708.00492].

Abstract. In this chapter we derive an exact expression for the galaxy two-point function in
redshift shells including all the relativistic contributions. This expression, which does not rely
on the distant-observer or flat-sky approximation, is valid at all scales where linear PT holds
and includes both local relativistic corrections and integrated contributions, like gravitational
lensing. We present two methods to calculate this correlation function, one which makes
use of the angular power spectrum C`(z1, z2), introduced in the previous chapter, and a
second method which evades the costly calculations of the angular power spectra. In this
work theoretical aspects of this procedure are presented, together with quantitative examples.
In particular, we show that gravitational lensing modifies the multipoles of the correlation
function and of the power spectrum by a few percent at redshift z = 1 and by up to 30% and
more at z = 2. We also point out that large-scale relativistic effects and wide-angle corrections
generate contributions of the same order of magnitude and have consequently to be treated
in conjunction. These corrections are particularly important at small redshift, z = 0.1, where
they can reach 10%. This means in particular that a flat-sky treatment of relativistic effects,
using for example the power spectrum, is not consistent.
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3.1 Introduction

In chapter 2 we have discussed the corrections induced by light-cone effects on the galaxy
number counts, with an application to the angular power spectrum C`(z1, z2). We now move
to the observable which will be the common thread for the rest of this thesis: the correlation
function ξ. To define the correlation function ξ, let us recall that, as we have done in chapter 2,
given a certain distribution of point galaxies, we can define the local number density in a small
volume of size V . The point is that this may be regarded, after suitable normalisation, as
the probability for finding a galaxy in the volume V . We treat the galaxy distribution as
the result of a random process. If there was no correlation then we would simply have a
distribution of randomly distributed, independent, point-like events, i.e. Poisson noise. In
this sense the two-point function (2pF) ξ(r) can be regarded as the excess probability, with
respect to the Poisson distribution, to find two galaxies separated by a distance r. In other
words for an homogeneous Poisson process the probability of findings galaxies in two volumes
dV1, dV2, separated by a distance r is given by

dP12 = n̄
2dV1dV2 , (3.1)

where n̄ is the mean galaxy density. However, because of the underlying density field, clus-
tering is not homogeneous and, as we anticipated, the excess probability w.r.t. Poisson noise
is the two-point function

dP12 = n̄
2
(1 + ξ(r))dV1dV2 . (3.2)

If the probability is higher than Poisson noise then ξ(r) > 0 (correlation), if it is smaller
ξ(r) < 0 (anti-correlation).

Theoretically the relevant field is the number count fluctuation ∆g(x), which is a random
field with vanishing expectation value ⟨∆g⟩ = 0. The excess probability is given by the field
correlator, i.e. the expectation value of products of fields at different points

ξ(r) = ξ(x − y) = ⟨∆g(x)∆g(y)⟩ . (3.3)

Notice that x, y are spatial coordinates while redshift surveys generally associate (at least)
two quantities to each galaxy they detect: the direction from which photons are received, n,
and the redshift z. It has therefore been argued in the past [175, 176, 290, 291, 254, 72], that
galaxy correlation functions are truly functions of two redshifts and an angle. Essentially this
comes from the fact that our observations are limited to our past light-cone: this means that
the correlation function, in a similar way of the angular-redshift power spectrum C`(z1, z2),
acquires corrections due to the projection effects. There is a simple way to obtain the two-
point function starting from the C` and, as we have already determined the observed angular
spectrum, this link will provide us with the general expression for the observable ξ. To
determine the C`(z1, z2) observationally, one correlates the number of galaxies in a redshift
bin around z1 and in a small solid angle around direction n1 with those in a redshift bin
around z2 and in a small solid angle around direction n2. Due to statistical isotropy, the
resulting correlation function only depends on the angle θ between n1 and n2, cos θ = n1 ⋅ n2
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(see appendix B.1) and is related to the angular power spectrum in the well known way,

ξ(θ, z1, z2) =
1

4π
∑
`

(2` + 1)C`(z1, z2)P`(cos θ) , (3.4)

where P` denotes the Legendre polynomial of degree `.

Before the introduction of the C`(z1, z2)’s, cosmologists have mainly concentrated on
determining the correlation function and the power spectrum in Fourier space. In comoving
gauge, on sub-horizon scales the latter is given by [199]

Pg(k, ν, z̄) = D2
1(z̄) [b(z̄) + f(z̄)(k̂ ⋅ n)

2]
2
P (k) (3.5)

= D2
1(z̄) [b

2
+

2bf

3
+
f2

5
+ (

4bf

3
+

4f2

7
)P2(ν) +

8f2

35
P4(ν)]P (k) .

Here z̄ is the mean redshift or the survey, P (k) is the matter density power spectrum today,
D1(z̄) is the growth factor normalised to D1(0) = 1 and related to g(z) in chapter 2 via
(1 + z)D1 = g. Furthermore b(z̄) is the galaxy bias and

f(z̄) = −
D′

1

D1
(1 + z̄) =

d lnD1

d ln(a)
, (3.6)

is the growth rate, where the prime denotes the derivative with respect to the redshift z̄.
The direction cosine ν is the cosine of the angle between k and the observation direction n
(in the literature this direction cosine is often denoted as µ but here we reserve µ for the
corresponding angle in real space and in order to avoid confusion we denote it by ν in Fourier
space).

Equation (3.5) has an interesting property: projecting out the monopole, quadrupole and
hexadecapole in ν, one can directly measure the bias b and the growth rate f . This has
been exploited in previous observations and has led to the best determinations of f so far
(see [108, 239, 4, 10, 19, 272] and refs. therein). It is clear that the form (3.5) of the power
spectrum can only be valid if the bins are not too far apart in the sky. Eq. (3.5) indeed
implicitly assumes that the galaxies are observed in one single direction n so that a ’flat-sky
approximation’ with a well defined angle ν is a reasonably good approximation.

The correlation function ξ(r, µ, z̄) is an observable alternative to the power spectrum,
which is routinely used in galaxy surveys. The separation between the galaxies is again
denoted by r, while we have introduced a dependence on µ, which is the orientation of the
pair with respect to the direction of observation n and on z̄, which is the mean redshift of
the bin. The correlation function is observed in terms of z1, z2 and θ. To express it in terms
of r, µ and z̄, the redshifts z1 and z2 have to be converted into comoving distances and a
direction cosine µ has to be defined.

Neglecting spatial curvature we can use the cosine law to express r in terms of the comoving
distances to z1 and z2,

r(z1, z2, θ) =
√
χ(z1)

2 + χ(z2)
2 − 2χ(z1)χ(z2) cos θ , (3.7)
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where
χ(z) =

1

H0
∫

z

0

dz
√

Ωm(1 + z)3 +ΩXgX(z)
. (3.8)

Here Ωm is the matter density parameter and ΩXgX(z) is the dark energy density in units
of the critical density today; gX is normalised to gX(0) = 1 and accounts for the possible
evolution of the equation of state parameter w. Hence the correlation function ξ(r, µ, z̄),
as well as the power spectrum, are not directly observable: they both require the use of a
fiducial cosmology to calculate r and χ(z). If the redshift is small, z ≪ 1, we can write
χ(z) ≃ z/H0, and the dependence on H0 is taken into account by measuring cosmological
distances in units of Mpc/h, where Mpc denotes a megaparsec (≃ 3.1 × 106 light years) and
h = H0/100 km/s/Mpc. However, in present and upcoming catalogues which go out to z = 2
and more, this is no longer sufficient and r depends in a non-trivial way on the dark matter
and dark energy density, on the dark energy equation of state and on curvature (which is set to
zero throughout this thesis for simplicity). Fortunately this dependence can be accounted for
by introducing correction parameters, which allow for deviations from the fiducial cosmology,
see e.g. [312]. Note that in this and in the following chapters we do not need to distinguish
anymore between χ and χ̄: to avoid heavy notation we now set χ to be the background
comoving distance as in eq. (3.8). Furthermore we sometimes use χ̄ as the mean distance of
a pair of galaxies. In the flat-sky approximation, the standard correlation function takes the
simple form [171]

ξflat-sky(r, µ, z̄) =D
2
1(z̄)[(b

2
+

2bf

3
+
f2

5
) I0

0(r)

− (
4bf

3
+

4f2

7
) I0

2(r)P2(µ) +
8f2

35
P4(µ)I

0
4(r)] ,

(3.9)

with
I0
` (r) = ∫

dk

2π2
k2P (k)j`(rk) , (3.10)

(the reason for the superscript 0 will become clear in chapter 4). Note that the terms con-
taining the growth factor f come from the Jacobian transforming real space positions x
into redshifts1. In Appendix 3.D we derive the general relation between the I0

` (r) and the
corresponding pre-factors of the Legendre polynomials in the power spectrum.

Expressions (3.5) and (3.9) are currently used to analyse redshift surveys2. These expres-
sions are sufficiently accurate to place meaningful constraints on cosmological parameters with

1We point out that the original derivation of redshift-space distortion from [199] contains a contribution
proportional to n ⋅ v = vr. This term does contribute to the monopole and quadrupole and it consequently
modifies (3.9). It is however neglected in most redshift-space distortion analysis and therefore we do not
consider it as ’standard’ and we do not include it in (3.9). We include it however in the relativistic corrections,
along with the other Doppler corrections, which are of the same order of magnitude (see eq. (3.15)). Note
that, as discussed in more detail in Section 3.2.2, this specific contribution has been studied in detail in [290,
291, 240, 254] and its impact on the correlation function was found to be important at small redshift and
large separation.

2Note that these expressions are valid in the linear regime only. Theoretical models accounting for non-
linearities have been developed and are used to extend the constraints to non-linear scales, see e.g. [151].
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current data. They may however not be sufficient to analyse future surveys since they suffer
from two important limitations: first they are based on the flat-sky (sometimes also called
distant-observer) approximation. And second they take into account only density fluctuations
and redshift-space distortions. They neglect lensing which is relevant especially at high red-
shifts. They also neglect all the relativistic projection effects which are relevant on large scales
(close to horizon scale). These expressions are therefore only an approximate description of
what we are observing, which is also reflected by the fact that they are gauge-dependent.

Due to these limitations, one would be tempted to use the angular power spectrum instead
of eqs. (3.5) and (3.9) to analyse future redshift surveys. The gauge-invariant C`(z1, z2)’s
account indeed for all observable effects. They are directly observable and do not rely on the
flat-sky approximation. And they can be determined numerically within a few seconds with
sub-percent accuracy. Unfortunately they are not fully satisfactory for several reasons:

1. If we want to profit optimally from spectroscopic redshift information from a survey
like the one that will be generated by Euclid [204], DESI [16] or the SKA [93], we
need several thousand redshift slices leading to several million C`(z, z

′) spectra. For
an MCMC parameter estimation this is simply prohibitive. Even if one spectrum is
calculated within a few seconds, calculating the millions of spectra ∼ 105 times would
take months even if highly parallelised.

2. In each spectroscopic redshift bin we then only have a few 1000 galaxies, less than one
per square degree, and the observed spectra would have very large shot noise ∝ 1/N ,
allowing only computation up to very low `.

3. One of the big advantages of ξ(r, µ) and P (k, ν) is that the growth rate f(z) can be
simply determined by isolating the monopole, quadrupole and hexadecapole components
in an expansion of P and ξ in Legendre polynomials in µ and ν respectively. With the
C`’s on the other hand there is no simple way to isolate redshift-space distortions since
each multipole ` is a non-trivial combination of density and velocity.

Hence even though the C`’s are very convenient theoretically, they are not fully satis-
factory from an observational point of view. In this chapter we therefore derive general
expressions for the correlation function and the power spectrum, that can be used as the-
oretical models for future surveys. Our work builds on the result of several papers, which
have studied the impact of some of the relativistic effects on the correlation function and on
the power spectrum. In [194, 322], expressions for the flat-sky power spectrum including all
non-integrated relativistic effects have been derived. In [182, 213, 183] the lensing contribu-
tion to the flat-sky power spectrum and the flat-sky correlation function has been studied
in detail. Refs. [290, 291, 240] have derived full-sky expressions for density and redshift-
space (RSD) contributions to the correlation function, which have then be further developed
in [254, 269, 52, 323]. These expressions have been re-derived using an alternative method
in [90]. Ref. [259] has studied in detail the relation between the full-sky and flat-sky density
and RSD for both the correlation function and the power spectrum. In [76] the full-sky cal-
culation of [290, 291, 240] has been extended to include gravitational redshift and Doppler
terms, which are especially relevant in the case of multiple populations of galaxies. Ref. [52]
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further expands the formalism introduced in [290] by computing theoretical expressions for
the wide-angle corrections including also the integrated terms and Ref. [250] numerically eval-
uates all the non-integrated relativistic terms in the full-sky. In [252] the integrated terms in
the correlation function are plotted for the first time for two values of the angle θ. The theo-
retical expressions in these works rely on an expansion of the correlation function in Tripolar
Spherical Harmonics which on the one hand is a powerful tool to obtain simple expressions in
the full-sky but on the other hand hides some properties of the correlation function enforced
by isotropy.3

Here we generalise and complete these results. We first derive a full-sky expression for
the correlation function including all local and integrated contributions, in which isotropy of
the perturbations is explicit. In particular, we provide a detailed study of the gravitational
lensing contribution to the correlation function which does not rely on the flat-sky or Limber
approximation. We discuss how these full-sky contributions modify the simple multipole
expansion of eq. (3.9). This represents the first analysis of the full-sky lensing contributions
to the multipoles of the correlation function, which is most relevant when extracting the
growth factor. In this aspect as in several other ways, this analysis goes beyond the work
of [252].

In the last section of this chapter we use the correlation function to calculate the power
spectrum, which we define as the Fourier transform of the full-sky correlation function. In
this way the power spectrum does not rely explicitly on the flat-sky approximation. However,
as we will explain in section 3.3, it has an unambiguous interpretation only in this limit. A
comparison between the usual flat-sky derivation and the full-sky Fourier transform of the
correlation function is not reported in this thesis but can be found in Tansella et.al. (2017),
where we find that relativistic effects and wide-angle corrections4 are of the same order of
magnitude and they have therefore to be treated in conjunction. This leads us to the conclu-
sion that relativistic effects cannot be consistently studied in the flat-sky approximation and
that the correlation function is therefore more adapted than the power spectrum to investigate
these effects.

This chapter is the first part of this study where we present the theoretical derivation and
some numerical results. For an exhaustive numerical study we have written the public code
coffe which we present in the next chapter. Of course, there are many studies estimating
cosmological parameters using the C`(z1, z2), see for example [124, 253, 235, 92, 126]. However
as argued above, these can mainly be used for large, photometric redshift bins while within
such bins, in order to profit optically from spectroscopic redshift information, a correlation
function or power spectrum analysis is required.

The remainder of the chapter is structured as follows: in the next section we describe
how we obtain the redshift-space correlation function from the angular correlation function.
As already discussed above, the procedure of course depends on the cosmological model. We
shall describe two possibilities: to go either over the C`(z1, z2) spectra or to obtain ξ(r, µ, z̄)

3Whether in flat-sky or full-sky the correlation function depends on three variables: two distances and one
angle (ξ(χ1, χ2, θ) or ξ(χ̄, r, cosα) in this work), one distance and two angles (ξ(θ, γ, r) in [290], ξ(χ2, θ, φ) in
[250]) or three distances (ξ(χ1, χ2, r)). When ξ is expanded in Tripolar Spherical Harmonics one obtains a
function ξ(x1,x2) and the three physical variables are in general not directly inferred.

4Here we call wide-angle corrections the difference between the flat-sky and full-sky expressions.
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directly from the density fluctuations, velocity fluctuations and the Bardeen potentials in
Fourier space. In Section 3.4 we discuss the implications of our findings for future surveys
and we conclude. Several technical derivations are relegated to the appendices.

3.2 The correlation function

We have derived the galaxy number counts including relativistic corrections in eq. (2.47),
with the following result

∆g(n, z) = ∆den
+∆rsd

+∆len
+∆d1

+∆d2
+∆g1

+∆g2
+∆g3

+∆g4
+∆g5 , (3.11)

where

∆den
= bδc(χ(z)n, z) , (3.12)

∆rsd
= −H

−1∂rvr , (3.13)

∆len
=

5s − 2

2χ
∫

χ(z)
0

dλ
χ − λ

λ
∆Ω(Φ +Ψ), (3.14)

∆d1
= −(

Ḣ

H2
+

2 − 5s

Hχ
+ 5s − fevo) vr , (3.15)

∆d2
= −(3 − fevo)Hv , (3.16)

∆g1
= (1 +

Ḣ

H2
+

2 − 5s

Hχ
+ 5s − fevo)Ψ , (3.17)

∆g2
= (5s − 2)Φ , (3.18)

∆g3
= H

−1Φ̇ (3.19)

∆g4
=

2 − 5s

χ
∫

χ(z)
0

dλ(Φ +Ψ) , (3.20)

∆g5
= (

Ḣ

H2
+

2 − 5s

Hχ
+ 5s − fevo)∫

χ(z)
0

dλ(Φ̇ + Ψ̇) . (3.21)

Here δc is the matter density fluctuation in comoving gauge, vr is the radial component of the
velocity in longitudinal gauge, v is the velocity potential such that v = −∇v, vr = −∂rv; hence v
has the dimension of a length (we later define V via its Fourier transform, v̂ = k−1V (k), so that
V (x) is dimensionless). Φ and Ψ are the Bardeen potentials and ∆Ω denotes the Lapacian
on the sphere of directions n. The galaxy bias is denoted by b, s is the magnification bias and
fevo is the evolution bias. These biases generally depend on redshift. The magnification bias
s comes from the fact that in general we do not observe all galaxies but only those which are
brighter than the flux limit of our instrument. Due to lensing and to some relativistic effects,
some fainter galaxies may make it into our surveys. This is taken into account by s which is
proportional to the logarithmic derivative of the galaxy luminosity function at the flux limit
of our survey, see [99, 125] or section 2.2.3, for more details.

The terms ∆den and ∆rsd are the density and redshift-space distortion terms usually taken
into account. In the following we call the sum of these two terms the ’standard terms’. ∆len
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represents the lensing term, also often called magnification. This term has already been
measured with quasars at large redshift, see e.g. [228], but it is usually neglected in galaxy
surveys, since it is subdominant at low redshift. ∆d1 is the Doppler contribution. Note that
here we have used Euler’s equation to derive this term. In all generality this term contains
a contribution from gravitational redshift, proportional to ∂rΨ/H, which can be rewritten
in terms of the velocity vr using Euler equation, see e.g. [76]. ∆d2 is a velocity term which
comes from transforming the longitudinal gauge density into the comoving density. ∆g1,∆g2

and ∆g3 are relativistic effects, given by the gravitational potentials at the source. As such
they are sometimes called ’Sachs-Wolfe’ terms. ∆g4 denotes the so-called Shapiro time-delay
contribution and ∆g5 is the integrated Sachs-Wolfe term.

In the following we will sometimes group together the relativistic non-integrated terms
(d1, d2, g1, g2, g3). The lensing term is treated separately since its calculation is different.
The relativistic integrated terms (g4 and g5) are neglected (for now, but are included in the
coffe code and discussed in chapter 4) in our numerical results since their contribution is
largely subdominant with respect to the lensing term.

3.2.1 Using C`’s

We start by deriving the correlation function of (3.11), using the angular power spectrum C`.
Using eqs. (3.4) and (3.7) we can write

ξ(r, z̄, θ) =
1

4π
∑
`

(2` + 1)C`(z̄ −∆z, z̄ +∆z)P`(cos θ) , (3.22)

where ∆z is given by (H̄ =H(z̄), χ̄ = χ(z̄))

∆z(r, z̄, θ) =
H̄

√
r2 − 2χ̄2(1 − cos θ)
√

2(1 + cos θ)
∈ [0, rH̄/2] . (3.23)

This is a simple consequence of (3.7) setting z1,2 = z̄±∆z and approximating χ1,2 = χ(z̄±∆z) ≃
χ(z̄) ± ∆z/H(z̄). This function is the same full correlation function as the one given in
eq. (3.4), but now expressed in terms of the variables r, z̄ and θ instead of z1, z2 and θ. We
shall use the same symbol ξ to denote it.

Usually, the correlation function is not considered as a function of r, z̄ and the opening
angle θ between the two directions which are correlated, but as a function of r, z̄ and the
angle with a fictitious but fixed line-of-sight between the two directions of observation. If θ
is small enough, redshift-space distortions are proportional to the cos2 of the angle with this
fictitious direction. To mimic this situation we introduce

r∥ = χ2 − χ1 ≃ 2∆z/H(z̄) ≤ r , (3.24)

µ =
r∥
r
, −1 ≤ µ ≤ 1 and r⊥ =

√
r2 − r2∥ . (3.25)

Writing χ̄ = (χ1 + χ2)/2 and using eq. (3.24) we obtain

cos θ =
2χ̄2 − r2 + 1

2µ
2r2

2χ̄2 − 1
2µ

2r2
=

2χ̄2 − r2⊥ − 1
2r

2∥
2χ̄2 − 1

2r
2∥

≡ c(z̄, r, µ) . (3.26)
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Note that χ̄ and χ(z̄) are not exactly the same but in what follows we neglect this difference
which is of order (∆z)2/H(z̄). With this, the correlation function, ξ(r, z̄, θ) can be written
as a function of z̄, r∥ and r⊥ (or, equivalently, z̄, r and µ)

ξ(r∥, r⊥, z̄) =
1

4π
∑
`

(2` + 1)C` (z̄ −
r∥H̄

2
, z̄ +

r∥H̄
2

)P` (c(z̄, r, µ)) (3.27)

= ⟨∆g(x1, z̄ −∆z)∆g(x2, z̄ +∆z)⟩ . (3.28)
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Figure 3.1: The definitions of the angles α (left panel, r∥ = χ2 −χ1), γ (middle panel) and β
(right panel) as discussed in the text.

Expression (3.27) is valid as long as ∆z is small so that ∆z ≃ r∥H(z̄)/2 = (χ2−χ1)H(z̄)/2 is
a good approximation. Expression (3.28) however, is valid for all possible values of r∥ = χ(z̄+
∆z)−χ(z̄−∆z) and r =

√
(x1 − x2)

2, r⊥ = √
r2 − r2∥ where x1 = χ(z̄−∆z)n1, x2 = χ(z̄+∆z)n2

such that c(z̄, r, µ) = n1 ⋅n2. For a given cosmology, fixing r∥ and z̄ is therefore equivalent to
fixing z1 and z2 while r⊥ then fixes cos θ. Given a cosmological background model, there is a
one-to-one correspondence between the model-independent angular correlation function (3.4)
and the model-dependent correlation function (3.28).

The angle α, given by µ = cosα defined by eq. (3.25), is the angle between the line r
connecting x1 and x2 and the line connecting the intersection of the circle around x2 with
radius r∥ = µr and the Thales circle over r (see fig. 3.1, left panel). This angle is not very
intuitive and it is not what observers use. In practice the angles used are either β, the angle
between r and the line dividing r into two equal halves (see fig. 3.1, right panel) or γ, the angle
between the line bisecting the angle θ and r (see fig. 3.1, middle panel). Using elementary
geometry we can express the angles β and γ in terms of θ, χ1 and χ2 (see Appendix 3.A for
a derivation):

cosβ = µfβ(θ,χ1, χ2) , cosγ = µfγ(θ,χ1, χ2) , (3.29)

fβ =
χ1 + χ2

√
χ2

1 + χ
2
2 + 2χ1χ2 cos θ

, fγ =

√
1 + cos θ
√

2
. (3.30)
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In the small angle approximation, θ → 0, both functions behave as

fβ,γ = 1 +O(θ2
) .

If r∥ ≠ 0, i.e. χ1 ≠ χ2, we can express c(z̄, r, µ) in terms of z̄, r, cosβ as

c(z̄, r, cosβ) =
1

2χ1χ2
[
(χ2

1 − χ
2
2)

2

r2 cos2 β
− χ2

1 − χ
2
2] . (3.31)

Here χ1,2 are given in terms of χ̄ and r by solving the equations

χ̄ = (χ1 + χ2)/2 and r2
= χ2

1 + χ
2
2 − 2χ1χ2 cos θ . (3.32)

If we want to express the correlation function in terms of z̄, r and cosβ, we have to solve the
system (3.31,3.32). A short calculation gives

cos θ = 1 −
8r2χ̄2(1 − cos2 β)

16χ̄4 − r2 cos2 β(8χ̄2 − r2)
, χ1,2 = χ̄ ±

¿
Á
ÁÀχ̄2 −

4χ̄2 − r2

2(1 + cos θ)
, (3.33)

r∥ = χ2 − χ1 = 2

¿
Á
ÁÀχ̄2 −

4χ̄2 − r2

2(1 + cos θ)
. (3.34)

Inserting cos θ from (3.33) and r∥ from (3.34) in (3.27), we can express the correlation function
as a function of r, z̄ and cosβ. In terms of γ we find

cos θ = 1 −
r2

2χ̄2
(1 − cos2 γ) . (3.35)

In the small angle limit, all three angles, α, β and γ coincide. In Section 3.2.2 we will see
that the angle which gives the result closest to the flat-sky limit is the angle cos−1(µ). For
this reason and due to its simplicity in what follows we express both, the correlation function
and the power spectrum in terms of the projection along and transverse to the line-of-sight
using the angle α with cosα = µ = (χ2 − χ1)/r = r∥/r. As explained above, for small angles
this is equivalent to choosing β or γ, but for large angles, the expressions in terms of µ are
simpler.

In fig. 3.2 we show the correlation function at z̄ = 1 as a function of r∥ and r⊥. In all figures,
we use the cosmological parameters: h2Ωm = 0.14, h2Ωb = 0.022, h = 0.676, As = 2.215 × 10−9

at k∗ = 0.05 Mpc−1, ns = 0.961, b(z) = 1, fevo = 0 and s = 0 unless otherwise stated. In the left
panel of fig. 3.2 we include only the density, in the middle panel we also consider redshift-space
distortions (RSD) and in the right panel we include also the lensing term. While the pure
density term is spherically symmetric with a well visible baryon acoustic oscillation (BAO)
feature at r ∼ 100Mpc/h, the RSD removes power for small r⊥ and adds power at large r⊥.
Also the maximal amplitude has more than doubled due to RSD5. Finally the lensing term

5Note that we have chosen b = 1. For larger values of b, the importance of redshift-space distortion with
respect to the density contribution is reduced.
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Figure 3.2: The correlation function at redshift z̄ = 1 as a function of r∥ and r⊥. The left
panel contains only the density contribution, ξden, the middle panel contains also RSD, ξst,
and the right panel contains also the lensing term, ξst+len.

adds a very significant amount of power for large r∥ and small r⊥. This is the case when a
foreground density fluctuations lenses a structure at higher redshift along its line of sight.
The additional relativistic contributions are very small and become visible only on very large
scales, as we shall see in the rest of this chapter and as has already been anticipated in several
papers, e.g. Refs. [72, 99].

In fig. 3.3 we show fractional differences for µ = 0 (left) and µ = 1 (right)

∆ξA ≡
ξA − ξst

ξst
, (3.36)

where
ξA = ⟨(∆st

+∆A)(n1, z1)(∆st
+∆A)(n2, z2)⟩ . (3.37)

In this way we show separately the contribution of each correction A with respect to the
standard term, including its correlation with density and redshift-space distortion. The middle
panel shows ∆ξA for A = lensing and the lower panel for all the non-integrated relativistic
effects, namely the terms d1, d2, g1, g2 and g3 (see eqs. (3.11) to (3.21) for a definition of
the various relativistic terms). Note that the contribution d2, g1, g2 and g3 are infra-red
divergent. Here we simply pick an infra-red cutoff in the computation kIR ≃ H0, while we will
discuss and fix this problem in section 4.2.2. Finally, as reference, we plot in the top panel
the fractional difference due to redshift-space distortion, namely ∆ξrsd = (ξst − ξden)/ξden.

Not surprisingly, for µ = 0 the lensing term is very small apart from a small effect on the
acoustic peaks. For µ = 1 however, at large scales r > 150Mpc, lensing becomes the dominant
term. As also noted in [213], it increases linearly with distance. Comparing our full-sky
calculation of the lensing (orange) with the flat-sky expression (blue) derived in [213] and
in Appendix 3.E (see eq. (3.111)) we see that for µ = 1 the two expressions agree very well,
which is not surprising because in this case n1 = n2 and flat-sky is a good approximation. The
only source of difference in this case comes from the fact that the flat-sky result uses Limber
approximation whereas the full-sky result is exact. This difference is very small, showing
that Limber approximation for µ = 1 is very good. For µ = 0 on the other hand we see a
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Figure 3.3: The relative difference ∆ξ at redshift z̄ = 1 for µ = 0 (left panels) and µ = 1 (right
panels). Top panels: ∆ξrsd = (ξst − ξden)/ξden. Middle panels: fractional difference induced
by lensing ∆ξlensing (full-sky in orange and flat-sky in blue). Bottom panels: ∆ξA where A =:
d1 (blue), d2 (orange), g1 (green) and g2 (red). The contribution g3 is subdominant (see
eqs. (3.11) to (3.21) for a definition of the various relativistic terms). Negative contributions
are dashed.

non-negligible difference between the flat-sky and full-sky result. We will discuss this in more
detail in Section 3.2.2.

From the bottom panel, we see that the non-integrated relativistic terms generate a cor-
rection of the order of the percent at large separation r ∼ 350Mpc/h. Naively we would
expect the Doppler term (d1: blue) to dominate over the other relativistic effects because
it is proportional to the peculiar velocity and contains therefore one more factor k/H than
the terms proportional to the potentials (see e.g. eqs. (3.39) to (3.48) below). However, as
shown in [76] (see also Appendix 3.B), the correlation of this term with the standard term
⟨∆d1∆st⟩ exactly vanishes in the flat-sky because it is totally anti-symmetric. The contri-
bution that we see in fig. 3.3 is therefore due to the correlation ⟨∆d1∆d1⟩, which is a factor
H/k smaller, hence ∼ ⟨∆stΨ⟩ and to the full-sky contributions to ⟨∆d1∆st⟩, which are of the
order r/χ⟨∆d1∆st⟩ ∼ ⟨∆d1∆d1⟩ ∼ ⟨∆stΨ⟩. Consequently, with one population of galaxies the
Doppler contribution to the correlation function is of the same order of magnitude as the grav-
itational potential contributions (d2, g1 and g2). Only in the case where one cross-correlates
two populations of galaxies, the Doppler contribution strongly dominates over the other rel-
ativistic contributions, because in this case ⟨∆d1∆st⟩ does not vanish in flat-sky. At smaller
redshift the Doppler d1 is nevertheless the dominant contribution amongst the relativistic
effects as the flat-sky approximation fails at smaller separations.

For µ = 0, the Sachs-Wolfe like term (g1) dominates over the other corrections at all scales.
For µ = 1 this term still dominates at small separation, but at large separation the full-sky
corrections to the Doppler term become important and dominates over g1. Interestingly the
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second Sachs-Wolfe like term (g2) and the second Doppler term (d2) are nearly equal for both
values of µ. It is easy to derive from the continuity and the Poisson equations that in a matter
dominated Universe (H/k)V = −(2/3)Φ, hence ∆d2

` = ∆g2
` if s = 0, see eqs. (3.43) and (3.45).

At lower redshifts, when Λ-domination sets in, we expect this equality to be less precise. The
relativistic terms not shown in fig. 3.3 are the Shapiro time delay (g4) and the integrated
Sachs-Wolfe term (g5). These integrated terms are always subdominant with respect to the
lensing term.

Let us also note that the difference between the flat-sky standard term and the full-sky
standard term is of the same order of magnitude as the relativistic terms depicted in the
bottom panel of fig. 3.3. It is therefore not consistent to use the flat-sky approximation for
the standard terms when investigating relativistic effects.

Finally we should point out that in this chapter we present the theoretical contributions
of relativistic effects on the correlation function (see figs. 3.3, 3.8, 3.11). To estimate the
observational impact of these terms one should build a realistic estimator and proceed with
signal-to-noise analysis, forecasts and constraints for a specific survey. Such studies have
been performed for the angular power spectrum C` in [124, 253, 251, 92, 126, 212] and for
the antisymmetric part of the correlation function ξg in [77]. This would allow us to compare
the observational impact of the relativistic effects on the angular power spectrum with their
impact on the multipoles of the correlation function, which are one of the standard observables
currently used in large-scale structure surveys to measure the growth rate f . A comprehensive
study of this kind is currently planned. In chapter 4 however we will take the first steps in
this direction by defining estimators of the multipoles of the correlation function, computing
their covariance matrices and performing a signal-to-noise analysis of the lensing signal.

3.2.2 Direct determination of the correlation function

In the calculation of the correlation function presented in the previous section, we still need
all the C`(z1, z2) for an accurate calculation. Hence the reason (1) given in the introduction
for the use of the correlation function and the power spectrum is not satisfied: the calculation
is not simplified. To compute the correlation function for thousands of spectroscopic redshifts
in an MCMC would still take months even if very highly parallelised. In this section we show
how to improve this. The method explained in this section reduces the calculation of several
thousand C`(z1, z2)’s into just several terms. This results in a very significant speed up so
that the computation becomes feasible.

We expand on a method introduced in [90] which avoids the computation of C`(z1, z2) but
requires integrations in k-space and over the line-of-sight, as we shall see. In this method, no
flat-sky approximation is performed, and the correlation function is therefore exact, within
linear perturbation theory. We start from expression (3.4) for the correlation function and
use that the C`(z1, z2) are of the form (see e.g. [125]),

C`(z1, z2) = ∑
A,B

CAB` (z1, z2) ,

CAB` (z1, z2) = 4π∫
dk

k
Pζ(k)∆

A
` (k, z1)∆

B
` (k, z2) .

(3.38)
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Here Pζ denotes the primordial power spectrum, determined by the amplitude As and the
primordial spectral index ns:

Pζ(k) = As (
k

k∗)
ns−1

,

and ∆A
` , ∆B

` are the Fourier-Bessel transforms of the terms defined in (3.12) to (3.21). More
precisely

∆den
` = b(z)SDj`(kχ) , (3.39)

∆rsd
` =

k

H
SV j

′′
` (kχ) , (3.40)

∆len
` = (

2 − 5s

2
)
`(` + 1)

χ
∫

χ

0
dλ
χ − λ

λ
(Sφ + Sψ)j`(kλ) , (3.41)

∆d1
` = (

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)SV j

′̀
(kχ) , (3.42)

∆d2
` = −(3 − fevo)

H

k
SV j`(kχ) = ∆d2

(z, k)j`(kχ) , (3.43)

∆g1
` = (1 +

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)Sψj`(kχ) = ∆g1

(z, k)j`(kχ) , (3.44)

∆g2
` = (−2 + 5s)Sφj`(kχ) = ∆g2

(z, k)j`(kχ) , (3.45)

∆g3
` =

1

H
Ṡφj`(kχ) = ∆g3

(z, k)j`(kχ) , (3.46)

∆g4
` =

2 − 5s

χ
∫

χ

0
dλ(Sφ + Sψ)j`(kλ) , (3.47)

∆g5
` = (

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)∫

χ

0
dλ(Ṡφ + Ṡψ)j`(kλ) . (3.48)

Here j` are the spherical Bessel functions and the functions SX(z, k) are the transfer functions
for the variable X which we specify in Appendix 3.B. Over-dots indicate derivatives with
respect to conformal time. For the evolution bias fevo, the magnification bias s and the galaxy
bias b we follow the conventions of [125], detailed in section 2.2.3. From these expressions
one also infers the scaling of the different terms with respect to the density term. On sub-
Hubble scales, k > H, the scaling of these terms with powers of H/k is a simple consequence of
Newtonian physics. The continuity equation implies SV ∼ (H/k)SD and the Poisson equation
yields Sφ ∼ Sψ ∼ (H/k)2SD, we see that the density, RSD and lensing terms dominate, while
the Doppler term d1 is suppressed by one factor of (H/k), and all other terms are suppressed
by (H/k)2. For this reason all relativistic terms apart from lensing are strongly suppressed
on sub-horizon scales and we call them ’large-scale contributions’. Most of them are relevant
only on very large scales close to H(z)−1. Exceptions to this rule are ∆d1

` and ∆g1
` which

contain a pre-factor 1/(χH) which becomes large at very low redshift where χ is small. On
super horizon scales all the transfer functions SX are typically of the same order but they
become gauge dependent.
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Using these expressions, the correlation function ξ can be written as

ξ = ∑
A,B

ξAB with ξAB(θ, z1, z2) = ∫
dk

k
Pζ Q

AB
k (θ, z1, z2) , (3.49)

where we define

QABk (θ, z1, z2) ≡ ∑
`

(2` + 1)∆A
` (k, z1)∆

B
` (k, z2)P`(cos θ) . (3.50)

In most of the terms QABk we have a sum of the form

∑
`

(2` + 1)P`(cos θ)j`(kχ1)j`(kχ2) = j0(kr) , (3.51)

where r =
√
χ2

1 + χ
2
2 − 2χ1χ2 cos θ (see e.g. [3] (10.1.45)). Inserting (3.51) into (3.49) we can

easily calculate the correlation function for these terms avoiding the numerically costly sum
over the C`’s. The redshift-space distortion and the Doppler term give rise to contributions
that are slightly different because they contain first and second derivatives of the spherical
Bessel functions with respect to kχ1 and kχ2. These terms can however be treated in a very
similar way using recurrence relations for the spherical Bessel function. For this we define

ζij ≡ ∑
`

(2` + 1)j
(i)
` (kχ1)j

(j)
` (kχ2)P`(cos θ) = ∑

`

(2` + 1)j
(i)
` (x1)j

(j)
` (x2)P`(cos θ) , (3.52)

where we have set xi = kχi and j
(i)
` (x) = ∂i

∂xi
j`(x). Using

ζij(x1, x2) = ζ
ji
(x2, x1) and

∂n+m
∂xn1∂x

m
2

ζij = ζi+n,j+m,

we can determine explicit expressions for the ζij for i, j ∈ {0,1,2}. They are all given in
Appendix 3.B.

The only coefficients that do not fall into this category are the ones in ∆len
` which contain

additional factors ` and (`+ 1) (see eq. (3.41)). These terms can however be computed using
the identity

△ΩP`(cos θ) = −`(` + 1)P`(cos θ) .

They are given by

ζLL ≡ ∑
`

(2` + 1)`2(` + 1)2j`(x1)j`(x2)P`(cos θ) = △2
Ω ζ

00 , (3.53)

ζiL ≡ ∑
`

(2` + 1)`(` + 1)j
(i)
` (x1)j`(x2)P`(cos θ) = −△Ω ζ

i0 , (3.54)

where LL denotes the correlation of lensing with itself and iL the cross-correlation of lensing
with one of the other terms. With this we can build all the functions QABk and hence, with
eq. (3.49), the correlation function. The complete list of QABk is given in Appendix 3.B. Here
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we just report the dominant contributions, i.e. the contributions which are not suppressed
with additional powers of H/k with respect to the density term:

Qden
(θ, z1, z2) = b(z1)b(z2)SD(z1)SD(z2) ζ

00
(kχ1, kχ2) ,

Qrsd
(θ, z1, z2) =

k2

H1H2
SV (z1)SV (z2) ζ

22
(kχ1, kχ2) ,

Qlen
(θ, z1, z2) =

(2 − 5s)2

4χ1χ2
∫

χ1

0
∫

χ2

0
dλdλ′[(χ1 − λ)(χ2 − λ

′)
λλ′ Sφ+ψ(λ)Sφ+ψ(λ′)ζLL(kλ, kλ′)] ,

Qden-rsd
(θ, z1, z2) =

kb(z1)

H2
SD(z1)SV (z2) ζ

02
(kχ1, kχ2) ,

Qden-len
(θ, z1, z2) = b(z1)SD(z1) (

2 − 5s

2χ2
)∫

χ2

0
dλ[

χ2 − λ

λ
(Sφ(λ) + Sψ(λ)) ζ

0L
(kχ1, kλ)] ,

Qrsd-len
(θ, z1, z2) =

k

H1
SV (z1) (

2 − 5s

2χ2
)∫

χ2

0
dλ[

χ2 − λ

λ
(Sφ(λ) + Sψ(λ)) ζ

2L
(kχ1, kλ)] .

Note that here and in the following we suppress the argument θ in the functions ζAB(kχ1, kχ2, θ)
for simplicity. The correlation function is then given by eq. (3.49). For example, the correla-
tion function including only the standard terms is given by

ξst =∫
dk

k
Pζ[Q

den
(θ, z1, z2) +Q

den-rsd
(θ, z1, z2) +Q

rsd-den
(θ, z1, z2) +Q

rsd
(θ, z1, z2)]

=
2As

9π2Ω2
m

D1(z1)D1z2)∫
dk

k
[b(z1)b(z2)ζ

00
(kχ1, kχ2) − b(z1)f(z2)ζ

02
(kχ1, kχ2)

− b(z2)f(z1)ζ
02
(kχ2, kχ1) + f(z1)f(z2)ζ

22
(kχ1, kχ2)] (

k

H0
)

4

(
k

k∗)
ns−1

T 2
(k) .

(3.55)

For the second equal sign we made use of the transfer functions given in Appendix 3.B.
Eq. (3.55) is expressed in terms of the redshift z1 and z2 and the angle θ. It can however
easily be written in terms of a mean redshift z̄, the separation of the galaxies r and the
orientation of the pair using eqs. (3.24),(3.25),(4.7).

The correlation function obtained in this way agrees with the full-sky expressions derived
in [290, 291, 240] for the standard terms and in [76] for the Doppler term. This method
has however the advantage that it can be used to calculate also expressions for the inte-
grated terms valid in full-sky. Since the lensing is the dominant correction, it is important
to have an accurate expression for this term valid at all scales and not relying on the Limber
approximation.

µ and r dependence of the correlation function

Let us first discuss the full-sky correlation function as a function of µ and r. In fig. 3.4 we
show the lensing contribution

ξL = ⟨(∆st
+∆len)(n1, z1)(∆st

+∆len)(n2, z2)⟩ − ⟨∆st
(n1, z1)∆

st
(n2, z2)⟩ , (3.56)
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as a function of µ and r. We compare the full-sky result (solid lines) with the flat-sky
result (dashed lines) derived in [182] and given in eq. (3.111). In the top left panel we show
the cross-correlation between density and lensing, whereas in the top right panel we show
the lensing-lensing correlation. We see that the flat-sky expression for the lensing-lensing
agrees extremely well with the full-sky expression. The density-lensing cross-correlation is
however significantly different in flat-sky and full-sky, even at small separation. This can
be understood in the following way. The flat-sky result assumes not only that n1 = n2,
but it also uses the Limber approximation, which implies that only correlations at the same
redshift contribute to the correlation function. Hence instead of integrating the lensing along
the line-of-sight as is done in the full-sky expression, the flat-sky expression correlates the
density at position z2 with the lensing from the same redshift. This can be seen by looking
at eq. (3.103), where the integral along the line-of-sight has been replaced by the function
δ(χ2 − λ). This approximation is quite good for values of µ close to 1, i.e. when the galaxies
are behind each other, but it is very bad when µ becomes small and for small separations
r. In such cases, the density δ is correlated with the gravitational potentials generated by
that same density Φ and Ψ and therefore the correlation is non-negligible even when the two
redshifts are not exactly the same. As a result the flat-sky expression, which ignores this
direct correlation, strongly underestimates the density-lensing correlation. Since the density-
lensing cross-correlation is negative whereas the lensing-lensing is positive, this means that
the flat-sky result overestimates the total correlation function, as shown in the bottom left
panel of fig. 3.4. The bottom right panel shows the total lensing contribution as a function
of separation for various values of µ. In general we find that the relative difference between
the flat-sky and full-sky result is of the order of 20 percents and it can become much larger
in some configurations.

In all these plots we do not calculate the lensing contribution when µ is exactly equal to
1. This value is indeed not physical since it would correspond to a galaxy situated exactly
behind the other, which we can of course not see. The largest value that we take is therefore
µ = 0.9997895. This value ensures us that the line-of-sight from the most distant galaxy
passes sufficiently far away from the closest galaxy to avoid being absorbed by it. In the
following when we discuss about the parallel correlation function or when we show plots for
µ = 1, this has to be understood as µ = 0.9997895. Finally let us mention that we do not
include the correlation between redshift-space distortion and lensing (it is however possible to
obtain it with the coffe code, see chapter 4). This correlation is exactly zero in the flat-sky
approximation and we do expect it to remain very small in full-sky6.

So far we have calculated all the flat-sky and full-sky correlation functions using the linear
power spectrum. Since we are mainly interested in correlations at large separations, this is a
very well motivated approximation for all the non-integrated terms. We have indeed checked
that all the large-scale relativistic contributions change by at most 2-3 percents at small scales
if we use the halo-fit power spectrum instead of the linear one to calculate the correlation
function. For the lensing contribution on the other hand, non-linearities are important even
at large separation, as already pointed out in [182, 213, 183]. This is due to the fact that

6We have checked numerically that at z̄ ∼ 1 the RSD-lens contribution to the angular power spectrum is 3
to 4 orders of magnitude smaller than the δ-lens term.
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Figure 3.4: Top panels: correlation between density and lensing (left) and lensing-lensing
(right) at z̄ = 1, as a function of µ and for fixed separation r = 8Mpc/h (orange),
r = 100Mpc/h (blue) and r = 420Mpc/h (green). Solid lines show the full-sky result and
dashed lines the flat-sky result using Limber approximation. Bottom panels: total lensing
contribution as a function of µ (left) and r (right) at z̄ = 1.

lensing is sensitive not only to correlations between the two positions of the galaxy, but also
to all correlations between the two lines-of-sight from these galaxies. When µ is large, these
two lines-of-sight are close to each other at least in the vicinity of the observer, even when r
is large, and consequently non-linear effects are important. Lensing has the property to mix
large and small separations and a full-sky non-linear treatment is therefore necessary.

The simplest way to calculate the full-sky lensing non-linearly is to use the Poisson equa-
tion to relate the gravitational potentials along the line-of-sight to the density (this equation
is indeed valid also in the non-linear regime) and to use halo-fit to calculate the non-linear
density power spectrum. This procedure can however not be implemented exactly because
the full-sky lensing requires the density power spectrum at different redshifts along the two
lines-of-sight P (k, z, z′) where z and z′ can take any values between 0 and z1 and z2. Halo-
fit gives an expression for the power spectrum only when z = z′. Note that this problem
does not arise in the calculation of the flat-sky expression which uses Limber approximation
and therefore neglects correlations coming from z ≠ z′. In order to overcome this problem
we use the following approximate procedure: we calculate the non-linear power spectrum at
a middle redshift along the line-of-sight z∗ and then evolve it using the linear growth rate
D1(z) along the photon trajectory. This is of course not completely correct because in the
non-linear regime density does not evolve with the linear growth rate, but it gives us a good
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Figure 3.5: Fractional differences ∆ξL at redshift z̄ = 1 using the full-sky formalism. The
solid lines show the fractional difference using the linear transfer function and the dashed line
is using halofit. In the left panel we show ∆ξL as a function of separation r for fixed values
of µ: µ = 1 (green), µ = 0.98 (blue) and µ = 0.8 (orange), and in the right panel we show
it as a function of µ for fixed separation: r = 8Mpc/h (orange), r = 100Mpc/h (blue) and
r = 420Mpc/h (green).

approximation of the true non-linear lensing contribution. To determine which z∗ is the most
appropriate, we use the flat-sky approximation7. We checked that our result behaves in a con-
sistent way when we vary z∗, which gives us confidence in this approximation (see fig. 3.C.1
in Appendix 3.C for more detail).

In fig. 3.5 we show the fractional difference with respect to the standard term due to
the full-sky lensing in the linear and non-linear regime ∆ξL. Contrary to fig. 3.3 where the
fractional difference of all the terms was calculated with respect to the full-sky standard
term, here we show the fractional difference with respect to the flat-sky standard term given
in eq. (3.9). In this way fig. 3.5 can be directly interpreted as the fractional error that one
makes when using the standard flat-sky correlation function instead of the full-sky observable
correlation function containing lensing8. Clearly, lensing becomes very important at large
separation and large µ. Neglecting it in this regime can therefore impact the determination
of cosmological parameters in a significant way. Comparing linear and non-linear results, we
find that for µ = 1, the non-linear result is very different from the linear one at all separations
up to 250 Mpc/h. For r ≤ 150Mpc/h, the non-linear lensing is significantly enhanced with
respect to the linear regime. At larger separation however, the tendency is reversed. This
reflects the fact that non-linearities move power from small to large k. On the right panel

7More precisely we do the following: we calculate the flat-sky contribution using the correct non-linear
power spectrum integrated along the line-of-sight (remember that in the flat-sky we can do that since we have
only one line-of-sight). Then we use the same approximation as in the full-sky to calculate also the flat-sky
and we compare the correct flat-sky result with the approximate flat-sky result for various values of z∗. This
allows us to find the best z∗. For z = 1 we find z∗ = 0.42 and for z = 2, z∗ = 0.73.

8Note that to calculate the flat-sky standard expression in the non-linear regime we use the linear continuity
equation to relate the velocity to the density and then we use halo-fit for the density power spectrum. This
procedure is not completely correct as the continuity equation is also modified in the non-linear regime.
Current data analyses use a more sophisticated procedure to calculate the non-linear redshift-space distortions,
based on [151]. Our procedure is however conservative since it tends to overestimate the impact of non-
linearities on redshift-space distortions and therefore to underestimate the relative importance of lensing.
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we see that at small separation, r = 8Mpc/h, the non-linear lensing is significantly larger
than the linear one for all µ. In summary, fig. 3.5 shows that lensing cannot be neglected at
redshift 1 and that it has to be calculated in the full-sky non-linear regime, because it mixes
small scales (where non-linearities are important) and large scales (where full-sky effects are
important).

Multipole expansion of the correlation function

The correlation function is in general a function of separation r and orientation µ. However,
the dependence in µ of the standard flat-sky expression (3.9) is very simple, since it is given
by P2(µ) and P4(µ) only. This simple dependence has been exploited to measure directly
the growth rate f . In practice this means that each pair of galaxies is weighted either by
P0(µ) = 1, P2(µ) or P4(µ). The average over all orientations is then performed, allowing
one to measure the coefficient in front of each of the P`, i.e. the monopole, quadrupole and
hexadecapole.

In the full-sky regime the dependence of redshift-space distortions on µ becomes more
complicated, first due to the fact that n1 and n2 are not parallel (wide-angle effects) and
second because the growth rate and bias are evolving with time f(z1) ≠ f(z2). In addition,
the large-scale relativistic effects and the integrated effects have their own µ-dependence,
which cannot be simply expressed in terms of P2(µ) and P4(µ) as we saw in fig. 3.4. As
a consequence the multipole expansion of the full-sky observable correlation function differs
from the flat-sky standard expansion. Firstly the monopole, quadrupole and hexadecapole
of the full-sky standard term differ from the flat-sky ones. Secondly, these multipoles get
corrections from the relativistic and lensing contributions. And finally, due to wide-angle
effects and lensing, the multipoles beyond ` = 4 no longer vanish.

In fig. 3.6 we show the impact of wide-angle effects on the monopole, quadrupole and
hexadecapole. Since the standard terms are almost not affected by non-linearities above
20Mpc/h, we calculate these multipoles using the linear power spectrum. In black we show
the flat-sky multipoles from density and redshift-space distortions, that are simply given by
the coefficients in front of P`(µ) in eq. (3.9). In blue, purple and green we show the full-
sky multipoles from density and redshift-space distortions obtained from expression (3.55),
which we multiply by the appropriate Legendre polynomial and numerically integrate over
directions9

ξ`(r, z̄) =
2` + 1

2
∫

1

−1
ξ(r, z̄, σ)P`(σ)dσ . (3.57)

As discussed in Section 3.2.1, in the full-sky there is no unique way to define the orientation of
the pairs of galaxies. We therefore calculate the multipoles for different choices: σ = cosβ, σ =

cosγ and σ = µ. The amplitude of the multipoles depends on this choice, as can be seen from
the different colours in fig. 3.6. At redshift z̄ = 1 (right), we find that the monopole differs only

9Note that the multipoles defined in eq. (3.57) completely differ from the multipoles defined in [252] (see
their eq. (17)). The multipoles in (3.57) are defined at fixed galaxy separation r and they correspond to
what observers are measuring in redshift surveys. The multipoles in [252] are on the contrary defined at fixed
angular separation θ (see their fig. 1). As a consequence they mix different separations r and have completely
different properties.
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Figure 3.6: The multipoles from density and redshift-space distortions, ξst, at redshift z̄ = 0.1
(left) and z̄ = 1 (right). We show the monopole (top) quadrupole (middle) and hexadecapole
(bottom) for different definitions of the angle in the full-sky: µ (blue, solid), cosγ (purple,
dash-dotted) and cosβ (green, dashed) and we compare this with the flat-sky multipoles
obtained from (3.9) (black, dotted).

at very large scales by a few percent, while the quadrupole also differs at intermediate scales
by a few percent. The hexadecapole is significantly different at most scales. At redshift z̄ = 0.1
(left) the difference is much more important, up to 10% on the quadrupole at intermediate
scales already. And the hexadecapole is very different at most scales. As already pointed
out in [290, 291, 240, 254, 269, 52, 323] it is therefore important to account for wide-angle
effects when interpreting the multipoles. We also see in Fig 3.6 that the angle which is closest
to the flat-sky result is nearly always µ and especially it is always µ for z̄ = 1. Note that
in [259], expressions for the dominant wide-angle corrections to the monopole, quadrupole
and hexadecapole have been derived for various choices of angles.

In fig. 3.7 we show the multipoles from all the non-integrated contributions in the full-sky
linear regime. We use the angle µ for this figure. Each plot represents a different relativistic
contribution (see eqs. (3.12) to (3.21) for a definition of the terms). As in figs. 3.3 and 3.5,
this encompasses the correlation of the term with itself as well as its cross-correlation with
the standard term (density and redshift-space distortion). One would naively expect that the
dominant contribution would come from the Doppler term d1 correlated with the standard
term. However, as discussed in Section 3.2.1, this contribution exactly vanishes in the flat-
sky approximation. It would contribute only to a dipole, which cannot be seen with one
population of galaxies, due to its anti-symmetry (indeed only even multipoles exist in this
case). As a consequence to measure the dominant dipole one needs to cross-correlate two
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Figure 3.7: We show the multipoles of different contributions to the full-sky correlations
function at z̄ = 1. The monopole (blue), quadrupole (orange), hexadecopole (green) and ` = 6
purple.

populations of galaxies, as discussed in [76, 77, 155, 169].
However, as discussed in Section 3.2.1, in full-sky the Doppler-standard correlation does

not exactly vanish and it contributes to the even multipoles. The amplitude of this term is
then of the same order of magnitude as the d1-d1 correlation and as the other relativistic terms
(for example g1 correlated with density). This is evident from the various panels in fig. 3.7,
where we see that all the non-integrated relativistic terms generate multipoles of the same
order of magnitude. The only exception is g3 which is much smaller. This is not surprising
since at z = 1 the universe is still matter dominated and the gravitational potential is nearly
constant. For the same reason also d2 and g2 are very similar. The Doppler contribution is
the only one which generates a non-negligible hexadecapole. This comes from the correlation
of d1 with redshift-space distortions which contains 3 gradient of the potential. In flat-sky
this gives rise to a µ3-dependence, which again vanishes for symmetry reason, but in full-sky
one obtains an additional factor µ ⋅r/χ which leads to an hexadecapole10. In flat-sky the other
relativistic terms (d2, g1, g2 and g3) generate only a monopole and quadrupole, due to their
correlation with redshift-space distortion. In full-sky they do generate higher multipoles, but
again those are suppressed by powers of r/χ and are consequently subdominant.

In fig. 3.8 we plot the fractional difference due to all non-integrated effects with respect
to the standard flat-sky multipoles

∆ξrel
` =

ξrel
`

ξst,flat−sky
`

, (3.58)

where ξrel
` contains the correlation of all the non-integrated relativistic terms with themselves

as well as their correlation with the standard term, i.e. they come from

⟨∆st∆rel
⟩ + ⟨∆rel∆st

⟩ + ⟨∆rel∆rel
⟩ = ⟨∆st+rel∆st+rel

⟩ − ⟨∆st∆st
⟩ . (3.59)

10This can been seen for example by expanding α1−α2 in powers of r/χ in the expression ζ12 in Appendix 3.B.
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Figure 3.8: Fractional difference generated by the sum of the non-integrated relativistic effects
on the monopole (blue), quadrupole (orange) and hexadecapole (green). The relativistic
multipoles are calculated in the full-sky linear regime, whereas the standard multipoles are
calculated in the flat-sky linear regime, to reproduce the theoretical prediction currently used.

At z̄ = 1 (right panel), the relativistic terms modify the monopole by a few percent at
separations ≥ 300Mpc/h. The impact of these terms on parameter estimation is therefore
probably negligible at high redshift. At z̄ = 0.1 however (left panel) the relativistic contri-
bution to the multipoles is non-negligible at most scales. The contributions to the monopole
and quadrupole are already of a few percent at 50Mpc/h. At 100Mpc/h these contributions
reach 10% and they quickly increase with separation.

The large amplitude of the relativistic terms at small redshift is due to one specific term
in the Doppler contribution, namely the one proportional to 1/(Hχ) (see eq. (3.15)). The
correlation of the Doppler term with itself has roughly the following amplitude:

1/(Hχ)2
(H/k)2

⟨∆den∆den
⟩ ∼ (r/χ)2

⟨∆den∆den
⟩ ,

where we have used that k corresponds to 1/r. At small redshift and large separation, this
suppression is not very strong. For example at z̄ = 0.1, χ = 433Mpc/h and therefore the am-
plitude of the Doppler term at r = 200Mpc/h is roughly (r/χ)2⟨∆den∆den⟩ ∼ 0.2⟨∆den∆den⟩,
i.e. 20% of the standard term. The same argument applies to the full-sky Doppler-standard
correlation which contributes at the same level. The other relativistic terms on the other
hand are more strongly suppressed. For example, the correlation g1-standard has the fol-
lowing amplitude: 1/(Hχ)(H/k)2⟨∆den∆den⟩ ∼ (r/χ)rH⟨∆den∆den⟩. At z̄ = 1, H ∼ 1/χ and
the Doppler contribution is similar to the g1 contribution, as already discussed. At z̄ = 0.1
however, H is significantly smaller than 1/χ and therefore the Doppler contribution is en-
hanced with respect to the g1 contribution. Note that the importance of this Doppler effect
on the correlation function has already been studied in detail in [240] and further discussed
in [254, 269]. These references, however, do not include the other Doppler terms or lensing.

This result is especially relevant for a survey like the SKA that will cover wide parts
of the sky from z = 0 to 2 and will therefore be strongly affected by the Doppler term at
low redshift. In a forthcoming publication we will study the impact of this effect on the
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measurement of cosmological parameters, in particular on the measurement of the growth
rate f from the monopole and quadrupole. Note that, as discussed above, such a study has
to be performed using the full-sky formalism, since full-sky effects (from the Doppler-density
correlation) contribute at the same level.
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Figure 3.9: Multipoles of the lensing contribution (including its correlation with the standard
term) at z̄ = 1. In the left panel we show the linear full-sky (solid) and linear flat-sky (dashed)
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in purple.
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Figure 3.10: The full-sky non-linear lensing multipoles as a function of ` for different sepa-
rations at z̄ = 1.

In fig. 3.9 we show the lensing contribution to the multipoles at z̄ = 1. In the left panel
we show the linear result, using the flat-sky and Limber approximation (dashed) and the
full-sky calculation (solid); and in the right panel we show the non-linear result. The flat-sky
systematically overestimates the lensing contribution. As explained in Section 3.2.2 this is due
to the fact that the Limber approximation underestimates the correlation between density and
lensing, which is negative, and consequently it overestimates the total in most configurations.
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Figure 3.11: Fractional difference generated by lensing on the monopole (blue), quadrupole
(orange) and hexadecapole (green). The lensing multipoles are calculated in the full-sky
non-linear regime, whereas the standard multipoles are calculated in the flat-sky non-linear
regime, to reproduce the theoretical prediction currently used. The left panel is for z̄ = 1 and
the right panel for z̄ = 2.

Above r ∼ 50h−1Mpc the lensing contribution is 10% and more. Hence it has to be included
for an accurate estimation of the growth rate f . Contrary to the non-integrated relativistic
effects, lensing generates non-negligible ` = 4 and ` = 6. Actually, as is shown in fig. 3.10 the
amplitude of the multipoles remains large for large values of `. Measuring ` > 4 will therefore
provide a way of isolating the lensing contribution from the standard terms.

In fig. 3.11 we show the fractional difference of the monopole, quadrupole and hexadecapole
generated by lensing at z̄ = 1 and z̄ = 2. At z̄ = 1 we see that lensing modifies the monopole
by a few percent at intermediate scales. The quadrupole is less affected, apart from at very
large scales r ∼ 350Mpc/h where lensing contributes by 5%. The hexadecapole is the one
that is the most affected by lensing, up to 10-20% above 250Mpc/h. At z̄ = 2 the lensing
contribution is significant for all multipoles. The monopole is modified by 30% already at
a 150Mpc/h and this increases to 50% at 300Mpc/h. The contribution to the quadrupole
is slightly smaller, but it still reaches 10% at 150Mpc/h and 40% at 300Mpc/h. And the
hexadecapole is strongly affected at all scales. Surveys like Euclid and the SKA, that will
observe up to high redshift should therefore include lensing in their modelling of the multipoles
of the correlation function.

In this Section we have only discussed the contribution from even multipoles to the cor-
relation function. As stated before, in the flat-sky approximation only even multipoles exist,
even in the presence of relativistic effects and lensing11. This follows directly from the fact
that the correlation function is symmetric ξ(r) = ξ(−r) and that the flat-sky angle goes from
µ to −µ when r goes to −r. In the full-sky, the existence of odd multipoles depend on the
choice of angle used to measure them. If the cosine of the angle simply changes sign when
r goes to −r, then odd multipoles exactly vanish also in the full-sky. This is the case for
the angles β, γ and α defined in fig. 3.1. However if one uses instead the angle α1 (see
fig. 3.A.1) to measure the multipoles, then the correlation function contains odd multipoles

11Note that this is not the case with the alternative definition of multipoles used in [250] which mixes
different scales.
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in the full-sky because α1 goes to π +α1 − θ when r goes to −r. Hence even if the correlation
function is symmetric, its expansion in terms of α1 contains odd multipoles due to the fact
that the angle itself breaks the symmetry of the configuration [259]. Note that the dipole of
the correlation function using the angle α1 has been measured in [155]. Finally let us stress
that if we cross-correlate different populations of galaxies, then the correlation function is not
symmetric anymore ξAB(r) ≠ ξBA(−r) (where A and B denote the two populations under
considerations) and it contains therefore odd multipoles already in the flat-sky approximation,
as demonstrated in [76].

3.3 A word on the power spectrum

As discussed in the introduction, an alternative observable which is routinely used to anal-
yse redshift surveys is the power spectrum. Here we discuss the impact of the large-scale
relativistic effects and of lensing on this observable.

At the beginning of this chapter we pointed out that the power spectrum is consistently
defined only in the flat-sky approximation. The reason for this is that P (k) is not defined on
the light-cone: to construct it one has to measure δ(k) on a spatial hyper-surface to which
we do not have access observationally. In the flat-sky limit one can make the approximation
that the patch of the sky he measures is a spatial hyper-surface but as the correlation length
increases this becomes a bad approximation. Since, as we said, galaxies are seen on our
background light-cone and not in 3D physical space, its positions are fixed by the redshift z
and the direction n. We can however split the distance vector between two galaxies, r (which
is the argument of the galaxy correlation function ξ(r, z̄)) in a sufficiently small redshift bin
into a radial, r∥ and a transverse, r⊥ component and express ξ in the variables ξ(r∥, r⊥, z̄).
We can then define the power spectrum simply as the Fourier transform of the correlation
function: this is an approach that was already advocate in [316], while a different approach
based on the Spherical-Fourier analysis of the observed galaxy fluctuation is presented in [319].
We then write

P (k∥, k⊥, z̄) = ∫ d3rξ(r∥, r⊥, z̄)ei(r∥k∥+r⊥k⊥ cosφ) (3.60)

= 2π∫
∞

−∞ dr∥∫ ∞
0

dr⊥ξ(r∥, r⊥, z̄)ei(r∥k∥)J0(k⊥r⊥) . (3.61)

In this expression r∥ = rσ and r⊥ = r√1 − σ2 where

[−1,1] ∋ σ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

µ = cosα
cosβ
cosγ
cosα2

(3.62)

depending on the angle used to split the survey into a radial and a transversal component.
Note that r⊥ = r⊥(cosφ, sinφ) is a 2D vector in the plane normal to the parallel direction and
we have performed the φ integration choosing the x-axis in the r⊥ plane parallel to k⊥. For the
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case σ = µ, r∥ = χ2−χ1 the expression for the correlation function is given in Appendix 3.B and
Section 3.2, (3.49). For the other angles, one has to use the relations given in Appendix 3.A.

However, we must consider that while the correlation function as given e.g. in eq. (3.27)
can be defined for all values r∥ ∈ [0, χ(∞)] ≃ [0,14h−1Gpc] and r⊥ ∈ [0,2χ(∞)], and is correct
for ∣r∥H(z̄)∣ ≪ 1, this is no longer so for its Fourier transform12. To compute it we have to
integrate the correlation function over all space, but as we just said, we cannot observe the
correlation function outside of our horizon and the result is not reliable if ∣r∥H(z̄)∣ ≳ 1. It is
well defined only for a range of (r∥, r⊥). This situation is further complicated by the fact that
this range depends on redshift. Therefore, the simple Fourier transform given above gives a
physically sensible result only for

k∥ ≫ 1

χ(z̄ +∆z) − χ(z̄ −∆z)
∼ 2∆zH(z̄) =

1

r∥max(z̄,∆z)
, ∆z ≪ 1.

For these values of k∥, contributions from radial distances such that the two galaxies are not
in a thin shell around χ̄ = χ(z̄) are cancelled by the rapid oscillations of the exponential in
the Fourier transform.

With this word of caution we now simply Fourier transform the correlation function to
obtain the power spectrum. We can either use the correlation function obtained via the
C`(z1, z2)’s or the one from the direct computation. Here we present the details for the
latter.

As stated above, for the ’true’ power spectrum, the integral over r∥ should extend from
−∞ to +∞ and the integral over r⊥ should extend from 0 to +∞. The correlation function is
however not observable outside the horizon and the integral must therefore be truncated by
a window function which removes these scales. In practice galaxy surveys do not observe the
whole horizon but only part of it and therefore the range of integration is even more reduced.
The true window function of the observation patch leads to a convolution in the correlation
function and therefore to a multiplication of the Fourier transform of the window in the power
spectrum

From eq. (3.61) we see that there is another reason to truncate the integral. The arguments
k∥ and k⊥ (or equivalently k and ν = k̂ ⋅ n̂) of the power spectrum are parallel to r∥ and r⊥
respectively. Now the direction of r∥, for example, depends on the direction of the pair of
galaxies we consider. If the domain of integration in (3.61) is sufficiently small, then a mean
direction n can be introduced and this splitting is well defined: one can identify one line-of-
sight for the whole patch of sky we are observing and split parallel and transverse directions
with respect to this line-of-sight. If the patch is too large however, this procedure is no longer
valid 13. The integral (3.61) can still be done mathematically, but its physical interpretation
becomes unclear. This illustrates the fact that the power spectrum is truly well defined only
in the flat-sky. In practice this means that we can consider the Fourier transform of the
correlation function in a sphere of radius ∆z/H(z̄) for values k ≫H(z̄)/∆z.

Similar to what is done for the correlation function, in the standard analysis, the ν de-
pendence of P (k, ν, z̄) is used to extract the growth rate f(z̄). Indeed as seen in eq. (3.5),

12Here χ(∞) ≃ 14h−1Gpc represents the comoving size of our horizon today.
13Note however the work of [315] which proposes methods to account for different lines-of-sight in the

measurement of the power spectrum.
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the standard power spectrum takes the simple form

P (k, ν, z̄) = p0(k, z̄) + p2(k, z̄)P2(ν) + p4(k, z̄)P4(ν) , (3.63)

where the coefficients pn are given by:

p0(k, z̄) = D2
1(z̄)P (k) [b2 +

2bf

3
+
f2

5
] , (3.64)

p2(k, z̄) = D2
1(z̄)P (k) [

4bf

3
+

4f2

7
] , (3.65)

p4(k, z̄) = D2
1(z̄)P (k)

8f2

35
. (3.66)

The multipoles p0 and p2 contain different combinations of the bias and of the growth rate
f(z̄) and can be used to measure these two quantities. If p4 can be measured as well it can be
used as an additional consistency check. Furthermore, this quantity is independent of galaxy
bias which renders it especially valuable.

The large-scale relativistic effects and the gravitational lensing are however expected to
modify this simple multipole expansion. In principle to calculate the contribution of these
effects to the multipoles, one would need to calculate eq. (3.61) for all values of k∥ and k⊥
and then integrate over all directions, weighting by the appropriate Legendre polynomial

p`(k, z̄) =
2` + 1

2
∫

1

−1
dνP (k, ν, z̄)P`(ν) . (3.67)

As the correlation function is a symmetric function of µ, ξ(x1,x2) = ξ(x2,x1), the power
spectrum will be symmetric in ν so that only even `’s are non-zero. This is no longer the case
when one correlates different tracers, e.g. bright and faint galaxies [225, 322].

The procedure to obtain the multipoles of the power spectrum can however be simplified
by using directly the multipoles of the correlation function ξ`(r) (see Appendix 3.D for a
proof of this relation)

p`(k) = 4πi`∫
∞

0
drr2j`(kr)ξn(r) . (3.68)

As discussed before, the integral over r cannot run until infinity because the correlation func-
tion (and consequently its multipoles) is not observable over the whole space. For simplicity
we assume that we observe galaxies within a sphere of radius rmax, centred at redshift z̄.
This corresponds to introducing a window function in eq. (3.68) which removes scales larger
than rmax. For the standard terms, the multipoles p`(k) are relatively insensitive to the
choice of rmax since r2ξst → 0 as r → ∞. The large-scale relativistic effects scale however as
r2ξrel → constant as r → ∞ and consequently their multipoles depend on the choice of rmax.
This reflects the fact that these terms diverge when k → 0 as we will see in section 3.3.1. The
situation for the lensing term is even worse: the correlation function scales as r2ξlen →∞ and
the dependence in rmax is even stronger. The lensing power spectrum is therefore strongly
dependent on the geometry of the survey, as already noticed in [213].
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3.3.1 The flat-sky approximation

In the previous section we obtained the power spectrum by integrating over the full-sky
correlation function, weighted by a window function to restrict the range of integration to
the observed patch of the sky. Here we would like to compare this procedure with a flat-sky
direct calculation of the power spectrum14. The power spectrum for the non-integrated terms
has been derived previously in [194, 322]. It can be easily obtained by Fourier transforming
the non-integrated relativistic contributions to the number counts, namely ∆d1,∆d2,∆g1,∆g2

and ∆g3 (see eqs. (3.15) to (3.19)). Note that in principle this procedure does not generate
an observable, because the Fourier transform of a function f(k, η) at a given conformal time
η requires the knowledge of the function over the whole hypersurface of constant η 15. An
observer cannot observe this hypersurface, but only its intersection with her past light-cone.
However, due to the statistical homogeneity and isotropy of our Universe, the properties of the
function are the same everywhere, and the Fourier transform can be performed. We obtain
(in agreement with [194] where only the non-integrated terms are considered)

P flat,non−int
∆ (k, ν, z) = ∣A +B

H

k
+C (

H

k
)

2

∣

2

D2
1(z)P (k) , (3.69)

where

A(ν, z) = (b − ν2f) , (3.70)

B(ν, z) = −iν (
Ḣ

H2
+

2 − 5s

Hχ
+ 5s − fevo) , (3.71)

C(z) = [3f +
3

2
Ωm(1 + z)

H2
0

H2
(1 − 5s −

Ḣ

H2
−

2 − 5s

Hχ
− 5s + fevo)] . (3.72)

A represents the standard terms, density and redshift space distortions. B is the Doppler term
which is suppressed by a factor H/k and C represents the additional relativistic contributions
which are suppressed by (H/k)2. To arrive at this result we have set Ψ = Φ and we have
neglected the term containing the time derivative of the potential, since it is relevant only at
late time and at very large angular scales where the flat sky approximation is not valid.

The contribution of the integrated terms to the flat-sky power spectrum are more compli-
cated to calculate and have been neglected in [194, 322]. The reason is that integrated terms,
like for example the lensing ∆lens(n, η), depend on the value of the gravitational potential
along the photon trajectory in direction n. As a consequence ∆lens(n, η) is well defined only
on the past light-cone of the observer and not on the whole hypersurface of constant conformal
time η. Calculating ∆lens(n, η) for a point which is not on the past light-cone of the observer
would require to calculate the lensing signal along arbitrary trajectories that have nothing to
do with the trajectories followed by photons, as depicted in fig. 3.12.

14Note that the relation between the flat-sky and full-sky power spectrum of density and RSD has been
studied in detail in [259].

15In principle we do not observe at constant conformal time η but rather at constant redshift z. However
the difference between η and z has been consistently included in the derivation of ∆g so that a constant z can
now be seen as a constant η.
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x

Observer

Past light-cone

hypersurface of 
constant time

Figure 3.12: To calculate the Fourier transform of the lensing term ∆lens(k, η), one needs to
know the value of ∆lens(x, η) for all x on the hypersurface of constant time η. However for a
given observer, ∆lens(x, η) is well defined only on her past light-cone. Calculating ∆lens(x, η)
outside of the past light-cone, like for example at the position of the cross would require to
integrate the gravitational potential along the dashed trajectory, which is not physical, and
would lead to wrong results.

To calculate the power spectrum of the integrated terms, we need therefore to go through
the correlation function.

In Appendix 3.E we show how this can be done in the flat-sky approximation. To calculate
the integrated terms in the flat sky approximation, we define a sky direction n∗ and split the
observation directions as n1 = n∗ + ∆n/2, n2 = n∗ − ∆n/2. We also split r = r⊥ + n∗r∥ with
r⊥ = χ(z)∆n. Representing the correlation function as the Fourier transform of the power
spectrum, we can then perform the integral over k∥ by neglecting the slow dependence of the
power spectrum and taking into account only the fast oscillations of the exponential. This
leads to the δ(k∥) and δP (k∥) defined below. All details are given in Appendix 3.E. We obtain

P flat,int
∆ (k, ν, z) = −3π

ΩmH
2
0(1 + z)D1(z)(2 − 5s(z))

χ
P (k⊥)α(k⊥,0, z) [χδP (k∥) + 2

k2⊥ δ(k∥)]

+
π

2
(

3ΩmH
2
0(2 − 5s(z))

χ
)

2

δ(k∥)∫ χ

0
dλP (kχ/λ) [

(χ − λ)χ2

λ
+

2

k2
]

2

D2
1(z(λ))(1+z(λ))

2 .

(3.73)

The first line comes from the correlation of the integrated terms with density and the second
line is the correlation of the integrated terms with themselves. The distribution δP is defined
by (see Appendix 3.E for more detail)

δP (k) =
1

2π
∫

∞
−∞ dx∣x∣eikx . (3.74)

The lensing terms are proportional to the distributions δ(k∥) and δP (k∥). They have to
be understood as formal expressions. Physical power spectra are obtained by smoothing
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the signal with a longitudinal window function. Let us briefly explain this: we assume
that our galaxies are all inside a radial window, W (r∥), with which the correlation function
has to be convolved. Its Fourier transform, the power spectrum is then multiplied by the
Fourier transform of the window, Ŵ (k∥). As an example, for the cross term involving δP (k∥),
denoting the pre-factor of δP (k∥) by P× and the result by P×obs, we obtain an integral of the
form

P×obs(k, z) = P×(k⊥, z) 1

2π
∫ dr∥dk∥∣r∥∣eik∥r∥ ∣Ŵ (k∥)∣2 . (3.75)

More details with examples of Gaussian and top hat windows can be found in [183].

3.4 Discussion and Conclusions

In this chapter we have studied the redshift-space correlation function and the power spectrum
of galaxy number counts. Even though these functions depend on the cosmological model used
to convert angles and redshifts into distances16, they are useful for several reasons. First they
are well adapted to describe the 3-dimensional information present in large-scale structure.
This is not the case for the observable C`(z1, z2) angular-redshift power spectrum for which
we cannot employ very fine redshift binning due to under-sampling. Second, the multipoles of
the correlation function and of the power spectrum contain important information about the
growth of perturbations which is difficult to isolate in the angular-redshift power spectrum.
We therefore propose to use the redshift-space correlation function to analyse thin shells in
redshift space, ∆z ∼ 0.2 and the power spectrum to analyse small (a few 100 Mpc) patches
of sky.

Computing these quantities within linear perturbation theory and with the halofit ap-
proximation, we have shown how they are affected by large-scale relativistic effects and by
lensing. The large-scale relativistic effects are important mainly at small redshifts. At z = 0.1
they introduce corrections to the monopole and quadrupole of the correlation function of the
order of 10% at a separation of 100Mpc/h and they quickly increase with separation. The
hexadecapole is less affected at intermediate scales, but at large scales the correction becomes
similar to the other multipoles. We have seen that this large correction is due to the Doppler
effect, which contains a term proportional to 1/(Hχ) which is enhanced at small redshift.
This term has previously been identified in [240, 254, 269]. At large redshift however, this
Doppler term contributes to the multipoles at the same level as the other relativistic effects
and generates corrections that are never larger than about 1%. We have also seen that full-sky
corrections to the correlation function are of the same order as relativistic corrections. It is
hence inconsistent to take onto account only one or the other. They have to be discussed
together as we do it in this work.

At large redshift the lensing term becomes much more relevant than the large-scale rela-
tivistic contributions. Furthermore, the importance of lensing strongly depends on the orien-
tation of the pair of galaxies. In particular it is most important along the line-of-sight, when
µ ∼ 1. In this case on large scales, r > 200Mpc/h, the lensing term even dominates over the

16Note that deviations from the fiducial model can be accounted for in a consistent way by introducing
correction parameters that rescale the correlation function, see e.g. [312].
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standard terms (see fig. 3.3). We have also studied the contribution of lensing to the multi-
poles of the correlation function and of the power spectrum and we have seen that at z = 1
lensing modifies the monopole and quadrupole of the correlation function and of the power
spectrum by a few percents. At larger redshift z = 2 these corrections amount to 10-30%
at intermediate scales and quickly increase with separation. This clearly shows that lensing
cannot be neglected in the analysis of future galaxy surveys at high redshift. Moreover we
have seen that the hexadecapole of the correlation function and of the power spectrum are
strongly affected by lensing at z = 1 and z = 2. This comes from the fact that the hexade-
capole from the standard terms is significantly smaller than the monopole and quadrupole,
whereas the hexadecapole of lensing is of the same order as the monopole and quadrupole (as
can be seen from fig. 3.10). Measuring the hexadecapole is expected to provide a clean way
of measuring the growth rate f since it is independent of bias. Here we see however that such
a measurement would require a careful modelling of the lensing contribution. Furthermore,
we have found that lensing generates significant higher multipoles ` > 4 in the correlation
function , see figs. 3.9, 3.10 and 3.11.

In our work, contrary to previous studies on the subject, we have derived an expression
for the lensing correlation function which is exact, i.e. which does not rely on the flat-sky and
Limber approximation. By comparing our result with the flat-sky result, we have found that
the flat-sky approximation is only good in forward direction, µ = 1, see fig. 3.4. The full-sky
lensing multipoles differ from the flat-sky one by 20-40%, see fig. 3.9. Finally, we have seen
that due to the mixing of scales, non-linearities in the matter power spectrum are relevant
for lensing even for large separations out to r > 200Mpc/h for µ ∼ 1 where lensing is most
relevant, see fig. 3.5. A correct treatment of lensing requires therefore the use of the full-sky
non-linear expressions.

The presence of higher multipoles in both, the correlation function and the power spec-
trum, might represent an ideal observational target to identify the lensing term. As it has
been discussed previously [235], measuring the convergence κ via the lensing of number counts
is a promising alternative to shear measurements. On the other hand, it has been shown that
neglecting lensing in the analysis of future surveys, at least for photometric surveys induces
significant errors in parameter estimation [92]. It will be important to investigate whether
this is also the case when precise spectroscopic redshifts are available.



Appendices

3.A Relations between the angles

In this appendix we derive in detail the relation between the angles θ, α, β and γ, see
fig. 3.A.1. More precisely, we give expressions for cosα, cosβ and cosγ in terms of r, cos θ
and z̄ = (z1 + z2)/2 or rather χ̄ = χ(z̄). Note that (χ1 + χ2)/2 and χ(z̄) differ by a term of
order (∆z)2/H((̄z) which we neglect.

As defined in the main text, α is the angle between the line of length r connecting the two
positions at redshifts z1 and z2 which span an angle θ at the observer and the line connecting
z2 and the intersection or the circle or radius r∥ around z2 with the Thales circle over r (see
fig. 3.1, left panel). Evidently α is given by

cosα = r∥/r = 2

r

¿
Á
ÁÀχ̄2 −

4χ̄2 − r2

2(1 + cos θ)
. (3.76)

Here we have used eq. (3.34) to express r∥ in terms of (r, χ̄, cos θ).
The angle β is obtained as follows: We denote by s the length of the line from the observer

O to the middle of r and by α2 the angle of the triangle (O, z2, z1) at z2, see fig. 3.A.1. The
cosine law gives the following relations

χ2
2 = s2

+ (r/2)2
+ rs cosβ , s2

= (r/2)2
+ χ2

2 − rχ2 cosα2 (3.77)

Eliminating s and solving for cosβ we find

cosβ =
−r2/2 + rχ2 cosα2

r
√

(r/2)2 + χ2
2 − rχ2 cosα2

(3.78)

Using furthermore

cosα2 =
χ2 − χ1 cos θ

r

68
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Figure 3.A.1: The angles α1, α2, β, γ and the lengths s and t used to determine respectively
β and γ are indicated.

we obtain after some simplifications

cosβ =
χ2

2 − χ
2
1

r
√
χ2

1 + χ
2
2 + 2χ1χ2 cos θ

=
2χ̄

r

¿
Á
ÁÀ 2r2 − 4(1 − cos θ)χ̄2

8χ̄2 cos θ2 + (1 cos θ)r2
. (3.79)

For the second line we used expressions (3.33) for χ1,2.
Considering the angle γ and using t as indicated in fig. 3.A.1 and α2 as before we see that

γ = θ/2 + α2 hence

cosγ = cos(θ/2) cosα2 − (1 − cos2 θ/2)1/2
(1 − cos2 α2)

1/2

Inserting

cos θ/2 = (
1 + cos θ

2
)

1/2

and the expressions for cosα2 we obtain

cosγ =
(1 + cos θ)1/2(χ2 − χ1)

√
2r

=

√
r2 − 2(1 − cos θ)χ̄2

r
. (3.80)

Again we have inserted the expressions (3.33) for χ1,2 in the last equal sign.
We shall also use the expressions for cosαi which are easily derived from the cosine

theorem:

cosα2 = r̂ ⋅ n2 =
χ2 − χ1 cos θ

r
, cosα1 = r̂ ⋅ n1 = −

χ1 − χ2 cos θ

r
. (3.81)
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3.B The full angular–redshift correlation function

The ’full angular redshift correlation function’ is ξ(θ, z1, z2) when we include all the relativistic
terms. It can be computed as follows.
We first write down derivatives of eq. (3.51) wrt χ1 and χ2 which are encoded in the functions
ζij(kχ1, kχ2). Using r =

√
χ2

1 + χ
2
2 − 2χ1χ2 cos θ and the recurrence relations for derivatives

of spherical Bessel functions

j ′̀ = 1

2` + 1
(`j`−1 − (` + 1)j`) and

j`(x)

x
=

1

2` + 1
(j`−1 + j`) (x)

we find

ζ00
= j0(kr)

ζ01
=

χ1 cos θ − χ2

r
j1(kr) = −j1(kr) cosα2
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2

kr
j1(kr) − j0(kr))(

χ1 − χ2 cos θ

r
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χ2 − χ1 cos θ

r
) + j1(kr)

χ1χ2 sin2 θ

kr3
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r2
j2(kr) +

cos θ

3
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= j2(kr) cosα2 cosα1 +
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3
[j0(kr) − j2(kr)]

ζ02
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2
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χ2 − χ1 cos θ

r
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χ2
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5
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1 + 2 cos2 θ

15
j0(kr) −

1

21
[1 + 11 cos2 θ +
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4
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[4 + 9 cos(2α1) + 9 cos(2α2) + 2 cos(2(α1 − α2))] j2(kr) +

[3 cos(2(α1 − α2)) + 35 cos(2(α1 + α2)) + 10 cos(2α1) + 10 cos(2α2) + 6]
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j4(kr) .
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The coefficients ζ21(x1, x2) etc. are obtained from ζ12 etc. via the symmetry relation

ζij(x, y) = ζji(y, x) .

The flat sky limit of the above function is obtained by setting α1 = α2 ≡ α. In this case all the
terms in front of a j` are a multiple of the Legendre polynomial P`(cosα). More precisely,
denoting the flat sky limit of ζij by ζ̄ij we obtain

ζ̄00
= j0(kr) ,

ζ̄01
= −L1(cosα)j1(kr) , ζ̄11

=
2

3
P2(cosα)j2(kr) +

1

3
j0(kr) ,

ζ̄02
=

2

3
P2(cosα)j2(kr) −

1

3
j0(kr) ,

ζ̄12
= −3L1(cosα)j1(kr) −

2

5
L3(cosα) ,

ζ̄22
=

8

35
P4(cosα)j4(kr) +

4

7
P2(cosα)j2(kr) +

1

5
j0(kr) .

The terms ζ̄00, ζ̄02 and ζ̄22 give rise to the standard flat sky result (3.64) to (3.66). The flat
sky results ζ̄01 and ζ̄12 are more subtle. Since we always have to add ζ̄ij + ζ̄ji and ζ̄ij(cosα) =
ζ̄ji(cos(π − α)) = ζ̄ji(− cosα) these odd terms actually cancel and do not contribute in the
case of a single population of galaxies. They do contribute to a multi tracer signal, see [76].

The only coefficients that do not fall into this category, as explained in the main text, are
the lensing terms which are computed using the identity

−`(` + 1)P`(cos θ) = △ΩP`(cos θ) =
1

sin θ
∂θ (sin θ∂θP`(cos θ)) .

They are given explicitly by
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χ2 (2 (1 − 3 cos2 θ)χ5
2 + 6 cos θ(3 − cos2 θ)χ1χ

4
2 + (cos4 θ + 12 cos2 θ − 21)χ2

1χ
3
2)

35r4

−
χ2 (2 cos θ (cos2 θ + 3)χ3

1χ
2
2 − 12χ4

1χ2 + 4χ5
1 cos θ)

35r4

⎤
⎥
⎥
⎥
⎦
j4(kr)

⎫⎪⎪
⎬
⎪⎪⎭

= −(kr)2
⎧⎪⎪
⎨
⎪⎪⎩

1

15

sinα1(2 sinα1 − 3 sin(2(α1 − α2)) cosα1)

sin2(α1 − α2)
j0(kr) +

sin(α1)

84 sin4(α1 − α2)
×

[3 sin(3α1)(cos(2α2) + 3) − 12 cos3 α1 sin(2α2) − sinα1(3 cos(2α2) + 1)] j2(kr)

+
sinα1

560 sin2(α1 − α2)
[5 sin(α1+2α2) − 35 sin(3α1+2α2)

+ sin(α1−2α2) + sin(3α1−2α2) + 2 sinα1 + 10 sin(3α1)]j4(kr)

⎫⎪⎪
⎬
⎪⎪⎭

(3.82)

ζLL = − sin2 θ(k2χ1χ2)
2
[(

6(r2 + 5χ1χ2 cos θ)

35r2
−
χ2

1χ
2
2 sin2θ

r4
) j4 (kr)

+
2 (2r2 + 3χ1χ2 cos θ)

7r2
j2(kr) +

2

5
j0 (kr)

⎤
⎥
⎥
⎥
⎦

+4 cos θk3χ1χ2[(
r2 + 6χ1χ2 cos θ

15r
−
χ2

1χ
2
2 sin2 θ

2r3
) j3 (kr)

+
2 (r2 + χ1χ2 cos θ)

5r
j1 (kr) +

r

3
j−1 (kr) ] (3.83)

= (kr)3
⎧⎪⎪
⎨
⎪⎪⎩

4

3

sinα1 sinα2 cos(α1 − α2)

sin2(α1 − α2)
j−1(kr)

−
2

5

sinα1 sinα2 cot(α1 − α2)[cos(2(α1 − α2)) + cos(2α1) + cos(2α2) − 3]

sin3(α1 − α2)
j1(kr)

+
sinα1 sinα2 cos(α1−α2)

60 sin4(α1−α2)
[2 + 6 cos(2α1) + cos(2(α1−α2)) + 6 cos(2α2)
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−15 cos(2(α1+α2))] j3(kr)

⎫⎪⎪
⎬
⎪⎪⎭

+(kr)4
⎧⎪⎪
⎨
⎪⎪⎩

−
2

5

sin2 α1 sin2 α2

sin2(α1 − α2)
j0(kr) −

2 sin2 α1 sin2 α2

7 sin4(α1 − α2)

× [2 sin2
(α1 − α2) + 3 cos(α1 − α2) sinα1 sinα2] j2(kr) +

sin2 α1 sin2 α2

280 sin4(α1 − α2)

×[35 cos(2(α1 + α2)) − 10 cos(2α2) − cos(2(α1 − α2)) − 10 cos(2α1) − 14]j4(kr)

⎫⎪⎪
⎬
⎪⎪⎭

.

For the lensing terms the flat sky limit cannot be obtained by setting α1 = α2 since
the terms ξiL diverge in this limit. We discuss the flat sky approximation of lensing in
Appendix 3.E.

We now give explicit expressions for the QABk in terms of the ζij , to be inserted in eq. (3.49)
to build the correlation function:

Qden
(θ, z1, z2) = b(z1)b(z2)SD(z1)SD(z2) ζ

00
(kχ1, kχ2, θ) ,

Qrsd
(θ, z1, z2) =

k2

H1H2
SV (z1)SV (z2) ζ

22
(kχ1, kχ2, θ) ,

Qlen
(θ, z1, z2) =

(2 − 5s)2

4χ1χ2
∫

χ1

0
∫

χ2

0
dλdλ′ (χ1−λ)(χ2−λ

′)
λλ′ Sφ+ψ(λ)Sφ+ψ(λ′)ζLL(kλ, kλ′, θ) ,

Qden-rsd
(θ, z1, z2) =

kb(z1)

H2
SD(z1)SV (z2) ζ

02
(kχ1, kχ2, θ) ,

Qden-len
(θ, z1, z2) = b(z1)SD(z1) (

2 − 5s

2χ2
)∫

χ2

0
dλ
χ2 − λ

λ
Sφ+ψ(λ) ζ0L

(kχ1, kλ, θ) ,

Qrsd-len
(θ, z1, z2) =

k

H1
SV (z1) (

2 − 5s

2χ2
)∫

χ2

0
dλ
χ2 − λ

λ
Sφ+ψ(λ) ζ2L

(kχ1, kλ, θ) ,

Qd1
(θ, z1, z2) = [(

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)SV ](z1)

× [(
Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)SV ](z2) ζ

11
(kχ1, kχ2, θ) ,

QX
(θ, z1, z2) = ∆X

(z1, k)∆
X
(z2, k)ζ

00
(kχ1, kχ2, θ) X ∈ {d2, g1, g2, g3} ,

Qg4
(θ, z1, z2) =

(2 − 5s)2

χ1χ2
∫

χ1

0
dλ∫

χ2

0
dλ′Sφ+ψ(λ, k)Sφ+ψ(λ′, k)ζ00

(kλ, kλ′, θ) ,

Qg5
(θ, z1, z2) = (

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)(z1)(

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)(z2)

× ∫

χ1

0
dλ∫

χ2

0
dλ′ Ṡφ+ψ(λ, k)Ṡφ+ψ(λ′, k)ζ00

(kλ, kλ′, θ) ,
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Qden-d1
(θ, z1, z2) = b(z1)SD(z1) [(

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)SV ](z2)ζ

01
(kχ1, kχ2, θ) ,

Qden-X
(θ, z1, z2) = b(z1)SD(z1)∆

X
(z2, k)ζ

00
(kχ1, kχ2, θ) ,

Qden-g4
(θ, z1, z2) = b(z1)SD(z1)

2 − 5s

χ2
∫

χ2

0
dλSφ+ψ(λ, k)ζ00

(kχ1, kλ, θ) ,

Qden-g5
(θ, z1, z2) = b(z1)SD(z1)(

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)(z2)

× ∫

χ2

0
dλṠφ+ψ(λ, k)ζ00

(kχ1, kλ, θ) ,

Qrsd-d1
(θ, z1, z2) =

k

H1
SV (z1) [(

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)SV ](z2)ζ

21
(kχ1, kχ2, θ) ,

Qrsd-X
(θ, z1, z2) =

k

H1
SV (z1)∆

X
(z2, k)ζ

20
(kχ1, kχ2, θ) ,

Qrsd-g4
(θ, z1, z2) =

k

H1
SV (z1)

2 − 5s

χ2
∫

χ2

0
dλSφ+ψ(λ, k)ζ20

(kχ1, kλ, θ) ,

Qrsd-g5
(θ, z1, z2) =

k

H1
SV (z1)(

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)(z2)

× ∫

χ2

0
dλṠφ+ψ(λ, k)ζ20

(kχ1, kλ, θ) ,

Qlen-d1
(θ, z1, z2) =[(

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)SV] (z2)

×
2 − 5s

2χ1
∫

χ1

0
dλ
χ1−λ

λ
Sφ+ψ(λ)ζL1

(kλ, kχ2, θ) ,

Qlen-X
(θ, z1, z2) =∆X

(z2, k)
2 − 5s

2χ1
∫

χ1

0
dλ
χ1−λ

λ
Sφ+ψ(λ)ζL0

(kλ, kχ2, θ) ,

Qlen-g4
(θ, z1, z2) =

(2 − 5s)2

2χ1χ2
∫

χ1

0
dλ
χ1−λ

λ
∫

χ2

0
dλ′Sφ+ψ(λ, k)Sφ+ψ(λ′, k)ζL0

(kλ, kλ′, θ) ,

Qlen-g5
(θ, z1, z2) =(

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)(z2)

2 − 5s

2χ1

× ∫

χ1

0
dλ∫

χ2

0
dλ′χ1−λ

λ
Sφ+ψ(λ)Ṡφ+ψ(λ′, k)ζL0

(kλ, kλ′, θ) ,
Qd1-X

(θ, z1, z2) = [(
Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)SV ](z1)∆

X
(z2, k)ζ

10
(kχ1, kχ2, θ) ,

Qd1-g4
(θ, z1, z2) = [(

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)SV ] (z1)

×
2 − 5s

χ2
∫

χ2

0
dλSφ+ψ(λ, k)ζ10

(kχ1, kλ, θ) ,

Qd1-g5
(θ, z1, z2) = [(

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)SV ](z1)(

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)(z2)
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× ∫

χ2

0
dλṠφ+ψ(λ, k)ζ20

(kχ1, kλ, θ) ,

QX-Y
(θ, z1, z2) = ∆X

(z1, k)∆
Y
(z2, k)ζ

00
(kχ1, kχ2, θ) X , Y ∈ {d2, g1, g2, g3} ,

QX-g4
(θ, z1, z2) = ∆X

(z1, k)
2 − 5s

χ2
∫

χ2

0
dλSφ+ψ(λ, k)ζ00

(kχ1, kλ, θ) ,

QX-g5
(θ, z1, z2) = ∆X

(z1, k)(
Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)(z2)

× ∫

χ2

0
dλṠφ+ψ(λ, k)ζ10

(kχ1, kλ, θ) ,

Qg4-g5
(θ, z1, z2) = (

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)(z2)

2 − 5s

χ1

× ∫

χ1

0
dλ∫

χ2

0
dλ′Sφ+ψ(λ, k)Ṡφ+ψ(λ, k)ζ00

(kλ, kλ′, θ) .
The correlatorsQBA(z1, z2) are obtained fromQAB(z1, z2) using the identityQBA(z1, z2) =

QAB(z2, z1). The functions SX and ∆X are given in terms of the transfer function T (k) and
the density growth function D1(a) as

SD = −
3

5

k2

ΩmH
2
0

D1(a)

a
T (k) , (3.84)

SV =
3

5

kH

ΩmH
2
0

dD1(a)

da
T (k) = −f

H

k
SD , (3.85)

Sφ =
9

10

D1(a)

a
T (k) , Sφ+ψ = 2Sφ , (3.86)

∆d2
= −

9

5

H2

ΩmH
2
0

dD1(a)

da
T (k) , (3.87)

∆g1
= (

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)Sφ , (3.88)

∆g2
= −(2 − 5s)Sφ , ∆g3

= H
−1Ṡφ . (3.89)

Here we have set Φ = Ψ and the transfer function T (k) as well as the growth function
D1(a) have to be determined either with a Boltzmann solver like class or using an analytic
approximation like the one derived in Ref. [139]. We have normalized the growth function
as well as the scale factor to unity today, D1(1) = 1. For the numerical results shown in our
figures we used the Boltzmann solver class. We have checked analytically and numerically
that our correlation functions for the standard and (d1)-terms agrees with the full sky results
of [76].

3.C Approximation for the non-linear full-sky lensing

As discussed in Section 3.2.2, to calculate the non-linear full-sky lensing we calculate the
halo-fit power spectrum at a fixed redshift z∗ and then evolve it along the line-of-sight using
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Figure 3.C.1: We show the full-sky non-linear density-lensing correlation function (left) and
lensing-lensing correlation function (right) at z̄ = 1 as a function of separation, for µ = 1. The
black solid line shows the calculation with z∗ = 1, the blue line with z∗ = 0 and the red line
with z∗ = 0.42.

the linear growth rate. To choose z∗ we use the flat-sky non-linear result, that we calculate
first without approximation and second with the same approximation as in the full-sky. We
find that when z∗ = 0.42 the approximate solution is in extremely good agreement with the
correct solution. We use therefore the same z∗ to calculate the full-sky result, for which it is
not possible to do an exact integration (see discussion in Section 3.2.2).

In fig. 3.C.1 we compare the non-linear full-sky lensing calculated with different values for
z∗. In red we show the result for z∗ = 0.42 (best fit from the flat-sky), and in black and blue
we show the two extreme cases: z∗ = 1 (black) and z∗ = 0 (blue). We see that the lensing
terms behave as expected: a smaller z∗ gives rise to a larger result, since in this case we
overestimate the power spectrum along the line-of-sight. The curve z∗ = 0.42 is well situated
between the two extreme cases, as was the case in the flat-sky. This gives us confidence that
the approximation works well also for the full-sky lensing.

3.D Direction dependent power spectra

In this appendix we prove a simple property of direction dependent power spectra which is
often used. This result is of course not new but it is usually used without derivation and
mainly in special cases. Here we prove it in full generality.

Theorem ξ(r) is a correlation function which depends on the orientation of r only via its
scalar product with one fixed given direction n (e.g. the line of sight). Denoting the corre-
sponding direction cosine by µ and expanding ξ in Legendre polynomials, we have

ξ(r) = ∑
n

ξn(r)Pn(µ) , µ = r̂ ⋅ n . (3.90)

In this situation the Fourier transform of ξ, the power spectrum, is of the form

P (k) = ∑
n

pn(k)Pn(ν) , ν = k̂ ⋅ n where (3.91)



3.D. DIRECTION DEPENDENT POWER SPECTRA 77

pn(k) = 4πin∫
∞

0
drr2jn(kr)ξn(r) , and (3.92)

ξn(r) =
(−i)n

2π2 ∫

∞
0

dkk2jn(kr)pn(k) . (3.93)

Proof The Fourier transform of ξ is defined as

P (k) = ∫ d3reir⋅kξ(r) . (3.94)

We use that
eir⋅k = ∑

`

i`(2` + 1)j`(kr)P`(k̂ ⋅ r̂)

and

P`(k̂ ⋅ r̂) =
4π

2` + 1

`

∑
m=−`Y`m(k̂)Y ∗̀

m(r̂) =
4π

2` + 1

`

∑
m=−`Y`m(r̂)Y ∗̀

m(k̂) .

Here Y`m are the spherical harmonics as given e.g. in [131]. Inserting these identities in (3.94)
using the ansatz (3.90) for the correlation function, we obtain

P (k) = ∑
`m

∑
nm′

(4π)2i`

2` + 1
∫ d3rξn(r)j`(kr)Y`m(k̂)Y ∗̀

m(r̂)Ynm′(r̂)Y ∗
nm′(n) . (3.95)

Using the orthogonality relation of spherical harmonics, the integration over directions gives

P (k) = 4π∑
n

in∫
∞

0
drr2ξn(r)jn(kr)Pn(ν) . (3.96)

Identification of the expansion coefficients yields (3.92). Eq. (3.93) is obtained in the same
way using the inverse Fourier transform,

ξ(r) =
1

(2π)3 ∫ d3ke−ik⋅rP (k) .

Clearly, if ξ(r) = ⟨∆g(x)∆g(x+ r)⟩ is independent of x (∆g is statistically homogeneous),
ξ does not depend on the sign of r and in the sum above only ξn with even n’s can contribute
so that P (k) is real.

Inserting the expressions for the QAB in (3.49) to obtain the correlation function, we
realize that in the flat sky limit (n1 → n2), all our terms ξAB where the corresponding QAB

do not contain integrated terms, are actually of this form. This also shows that in this limit
ζ01 + ζ10 and ζ12 + ζ21 must vanish since they contain j1(kr) and j3(kr) and would yield
imaginary contributions to the power spectrum.

For wide angles n1 ≠ n2 the correlation function depends on two directions. Furthermore,
for large r it is not translation invariant as it depends on the redshift on our background
light-cone at which r is placed. In this case, the Fourier transform of the correlation function
is no longer simply given by the power spectrum of the fluctuations.
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The theorem proven above has a simple but useful corollary which is sometimes called the
closure relation of spherical Bessel functions [30]. Inserting the expression (3.92) into (3.93)
and using that it holds for arbitrary functions pn(k), we find

2

π
∫

∞
0

jn(rk)jn(rk
′
)r2dr = δ(k − k′)k−2 , (3.97)

for positive k and k′. Using
jn(x) =

√
π

2x
Jn+1/2(x)

we can convert (3.97) into an equation for ordinary Bessel functions Jm:

∫

∞
0

Jn+1/2(rk)Jn+1/2(rk′)rdr = k−1δ(k − k′) , (3.98)

This identity also holds for Jm with integer m, see [161], No 6.512-8.

3.E The flat sky approximation

To derive expression (3.73) we consider the observed galaxy density fluctuation in real space
given in eq. (3.11). We neglect the integrated Sachs Wolfe term and the Φ̇ term in the first
line; they are very small and relevant mainly on very large angular scales where the flat sky
approximation breaks down. The remaining integrated term is then only the lensing term
and the subdominant Shapiro time delay. Furthermore, we set Ψ = Φ which is a very good
approximation in ΛCDM at late times. Denoting the power spectrum of the comoving density
contrast δc at redshift z = 0 by Pδ and using the perturbed Einstein and continuity equations
we find

Φ = Ψ = −
3

2

ΩmH
2
0(1 + z)D1(z)

k2
δc (3.99)

V = −
H

k
f(z)D1(z)δc , (3.100)

where f(z) is the growth rate as given in (4.3), D1(z) is the growth function such that
δc(k, z) =D1(z)δc(k) ≡D1(z)δc(k,0) and Ωm is the matter density parameter today.

Neglecting first the integrated terms we can simply Fourier transform this expression
from χ(z)n ≡ x to k and use that the power spectrum is the square of the Fourier transform
amplitude. This yields

Pn.i = ∣A +B/(kH) +C/(kH)
2∣

2
Pδ(k) , (3.101)

where A, B and C are given in (3.70) and (3.72).
To derive the cross term of the non-integrated with the integrated terms, it is more useful

to start with the correlation function. Let us denote A +B/(kH) +C/(kH)2 = α(k, ν, z) and
F̂ (k, ν, z) = α(k, ν, z)δc(k) with Fourier transform F (x, z) . Denoting

I(χ(z)n, z) =
2

χ(z)
∫

χ(z)
0

dλ [2 −
χ(z) − λ

λ
∆Ω]Φ , (3.102)
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we have

ξ∆∆(r, z) = ⟨F (χ1n1, z1)F (χ2n2, z2)⟩ + ⟨I(χ1n1, z1)F (χ2n2, z2)⟩

+⟨F (χ1n1, z1)I(χ2n2, z2)⟩ + ⟨I(χ1n1, z1)I(χ2n2, z2)⟩ ,

where χi = χ(zi) and r = χ2n2 − χ1n1, z = (z1 + z2)/2 and we assume both χi ≫ r and the
zi should not be very different. Using the relation between Φ and δc, the contribution of the
cross term to the correlation function is then given by

ξIF (r, z) = −
3

(2π)3

ΩmH
2
0(2 − 5s(z))

2χ1
∫

d3k

k2
Pδ(k)e

−ikn2χ2α(k, ν, z2)

× ∫

χ1

0
dλ [λ(χ1 − λ)k

2⊥ + 2]D1(z(λ))(1 + z(λ))e
ikn1λ .

In the spirit of the flat sky approximation we now set n1 = n∗ + ∆n/2 and n2 = n∗ − ∆n/2
assuming that ∆n is very small. Splitting r = r⊥+n∗r∥ with r⊥ = χ(z)∆n and r∥ = r cosα2, see
fig. 3.A.1, we then perform the k-integral in the direction parallel to n∗, dk∥ exp(−ik∥(χ2−λ)).
We neglect the slow dependence of the power spectrum on k∥ and only consider the rapidly
oscillating exponential which gives 2πδ(χ2−λ). Hence the integral over λ does not contribute
if χ2 > χ1, otherwise it reduces to the integrand at χ2,

ξIF (r, z) = −
3

(2π)2

ΩmH
2
0(2 − 5s(z))Θ(χ1 − χ2)

2χ1
D1(z2)(1 + z2)

× ∫
d2k⊥
k2⊥ Pδ(k⊥)e−ik⊥⋅r⊥α(k⊥,0, z2) [χ2(χ1−χ2)k

2⊥+2] ,

(3.103)

where Θ is the Heaviside Θ-function.
Using polar coordinates, d2k⊥ = dk⊥k⊥dϕ we can perform the ϕ integration which yields a

Bessel function, 2πJ0(k⊥r⊥) = 2πJ0(k⊥r sinα2). The term ξFI(r, z̄) contributes in the same
way with z1 and z2 exchanged. Setting χ1 − χ2 = r∥ = rµ and neglecting the difference of χ1

and χ2 (z1 and z2) in all other places, we find for the sum of both mixed terms

ξIF+FI(r, z) = − 3

2π

ΩmH
2
0(2 − 5s(z))

2χ
D1(z)(1 + z)

× ∫
dk⊥
k⊥ Pδ(k⊥)J0(k⊥r√1 − µ2)α(k⊥,0, z) [χ∣µ∣rk2⊥+2] .

(3.104)

Here we have also neglected the difference between cosα2 and µ. In the flat sky approximation
all these angles are equal. (If we would want to be precise, actually in the case z1 ≡ z2, hence
µ = 0 the Shapiro time delay would obtain a factor 4, not 2, but we neglect this in the flat
sky approximation.)

To obtain the Fourier transform of (3.104) which is the contribution n.i.-I to the power
spectrum we first multiply the equation with ∫ dk∥ exp(−ik∥r∥)δ(k∥) = 1. We then write the
factor ∣χ2 − χ1∣ = ∣r∥∣ = ∣µ∣r inside the integral,

∫ dk∥ exp(−ik∥r∥)∣r∥∣δ(k∥) = ∣r∥∣
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is the Fourier transform of

δP (k∥) ≡ 1

2π
∫ dr∥ exp(ik∥r∥)∣r∥∣ . (3.105)

Note that without the absolute value δP would become −iδ′. This distribution is purely
imaginary while δP is real. However, like δ or δ′ its support is on k∥ = 0, i.e. for a function f
which vanishes in a small neighborhood around k∥ = 0 we have δP ⋅ f ≡ 0.

Inserting (3.105), we can write the correlation function ξIF+FI as the Fourier transform
of

Pn.i.−I(k, z) = −3π
ΩmH

2
0(2 − 5s(z))

χ
D1(z)(1+z)

× Pδ(k⊥)α(k⊥,0, z) [δP (k∥) + 2

k2⊥ δ(k∥)] .
(3.106)

Note also that since k∥ = 0, in the flat sky limit, the integrated term is not correlated with
redshift space distortions.

Let us finally compute the double integrated term,

ξII(r, z) =
(3ΩmH

2
0(2 − 5s(z)))2

(2π)34χ2 ∫
d3k

k4
Pδ(k)∫

χ1

0
dλ∫

χ2

0
dλ′

× [λ(χ1 − λ)k
2⊥ + 2] [λ′(χ2 − λ

′
)k2⊥ + 2]D1(z(λ))(1 + z(λ))

×D1(z(λ
′
))(1 + z(λ′))e−ik(n1λ−n2λ

′) .
(3.107)

Via the same procedure as above, the integration over k∥ leads to 2πδ(λ − λ′) and we find

ξII(r, z) =
(3ΩmH

2
0(2 − 5s(z)))2

(2π)24χ2 ∫
d2k⊥
k4⊥ Pδ(k⊥)

× ∫

χ

0
dλ [λ(χ − λ)k2⊥ + 2]

2
D2

(z(λ))(1 + z(λ))2e−ik⊥r⊥(λ/χ)) .
(3.108)

We now perform a change of variables, k⊥ ↦ (λ/χ)k⊥. In terms of this new variable, the
integral contribution to the correlation function becomes

ξII(r, z) =
(3ΩmH

2
0(2 − 5s(z)))2

(2π)24χ2 ∫

χ

0
dλ∫

d2k⊥
k4⊥ Pδ(k⊥χ/λ)e−ik⊥r⊥

× (
λ

χ
)

2

[
(χ − λ)χ2

λ
k2⊥ + 2]

2

D2
(z(λ))(1 + z(λ))2 .

(3.109)

Again, performing the ϕ integration we end up with

ξII(r, z) =
(3ΩmH

2
0(2 − 5s(z)))2

8πχ2 ∫

χ

0
dλ∫ dk⊥k⊥Pδ(k⊥χ/λ)J0(k⊥r√1 − µ2)

× (
λ

χ
)

2

[
(χ − λ)χ2

λ
+

2

k2⊥ ]
2

D2
(z(λ))(1 + z(λ))2 .
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Inserting the same factor 1 as for the mixed term above, we can read off the flat sky power
spectrum of the integrated contribution,

PII(k, z) =
π(3ΩmH

2
0(2 − 5s(z)))2

2χ2 ∫

χ

0
dλPδ(kχ/λ)δ(k∥) (λ

χ
)

2

× [
(χ − λ)χ2

λ
+

2

k2
]

2

D2
(z(λ))(1+z(λ))2 .

(3.110)

Adding (3.101, 3.106, 3.110) we obtain the result (3.73). For completeness, and since we use
it for some of our results, we also write down the flat sky correlation function,

ξ∆(r, z) = ∫ dk⊥kk⊥Pδ(k)J0(k⊥r√1 − µ2)∫

1

−1
dν∣α(k, ν, z)∣2e−ikνµr

−
3ΩmH

2
0(2 − 5s(z))

4πχ
D1(z)(1 + z)∫

dk⊥
k⊥ Pδ(k⊥)J0(k⊥r√1 − µ2)α(k⊥,0, z) [χ∣µ∣rk2⊥+2]

+
(3ΩmH

2
0(2 − 5s(z)))2

8πχ2 ∫

χ

0
dλ∫

dk⊥
k3⊥ Pδ(k⊥χ/λ)J0(k⊥r√1 − µ2)

× (
λ

χ
)

2

[
(χ − λ)χ2

λ
k2⊥ + 2]

2

D2
(z(λ))(1 + z(λ))2 .

(3.111)

Since α only contains terms which are constant, linear or quadratic in ν, the ν-integration is
easily performed analytically.



CHAPTER 4

Correlation function II: The coffe code

Based on:

[295] V. Tansella, G. Jelic-Cizmek, C. Bonvin and R. Durrer “COFFE: a code for the full-sky
relativistic galaxy correlation function”
in publication, [arXiv:1806.11090].

Abstract. In this chapter we continue our work on the 2pF presenting the public code coffe
(COrrelation Function Full-sky Estimator) available at https://github.com/JCGoran/coffe.
The code computes the galaxy two-point correlation function and its multipoles in linear per-
turbation theory, including all relativistic and wide angle corrections, employing the results
presented in chapter 3. coffe also calculates the covariance matrix for two physically rel-
evant estimators of the correlation function multipoles. We illustrate the usefulness of our
code by a simple but relevant example: a forecast of the detectability of the lensing signal
in the multipoles of the two-point function. In particular, we show that lensing should be
detectable in the multipoles of the two-point function, with a signal-to-noise larger than 10,
in future surveys like Euclid or the SKA.

4.1 Introduction

It is often argued, as we did in chapter 1, that cosmology has become a precision science thanks
to the very accurate measurement of the Cosmic Microwave Background (CMB) temperature
fluctuations and polarisation power spectra [6, 11]. It is now time for the observation of the
galaxy distribution to contribute to this name. Measurements of the two-point correlation
function (2pF) have been performed by different collaborations over the past years [197, 115,
17] and upcoming redshift surveys will probe the LSS of the universe at deeper redshift and
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for larger volumes [20, 203, 216]. To correctly interpret and to profit maximally from the
data that will soon be available we need robust theoretical predictions of the signal: this was
the subject of the previous chapters. However, not only the signal has to be understood from
a theoretical point of view, but it is necessary to find accurate and fast methods to compute
it. For the CMB, we have at our disposal fast linear Boltzmann codes such as camb [207]
and class [66]. Recently, these codes have been extended to compute also the angular power
spectrum of galaxy number counts, C`, [98] and [125]. However, redshift surveys traditionally
measure the 2pF and its multipoles (monopole, quadrupole and hexadecapole), rather than
the C`’s. In this chapter we present a public version of the code coffe (COrrelation Function
Full-sky Estimator) which computes the galaxy 2pF including all the relativistic projection
effects and does not rely on the flat-sky approximation. The code builds on the results
derived in the previous chapters to consider not only the density fluctuations and redshift-
space distortions (RSD) but also several additional terms which we have already discussed:
lensing, ordinary and integrated Sachs Wolfe effects, gravitational redshift, Doppler terms,
and Shapiro time delay. These contributions arise in the expression of eq. (2.30) for the
observed galaxy number counts ∆g(n, z) at redshift z and direction n in the sky and of
course they contribute also to the correlation function defined as in eq. (3.3)

ξ(cos θ, z1, z2) = ⟨∆g(z1,n1)∆g(z2,n2)⟩ , (4.1)

where cos θ = n1 ⋅ n2. The brackets in eq. (4.1) are intended, from a theoretical point of
view, as an ensemble average but if ergodicity holds (as it does for the case of a statistically
homogeneous Gaussian random field), in observations, they can be replaced by a spatial
average. The expression that is most commonly used in the literature for the 2pF is the
Fourier transform of the Kaiser formula for the galaxy power spectrum [199]

P (z̄, k, ν)Kaiser =D
2
1(z̄) [b

2
+

2bf

3
+
f2

5
+ (

4bf

3
+

4f2

7
)P2(ν) +

8f2

35
P4(ν)]P (k) . (4.2)

Here z̄ is the mean redshift of the survey, P (k) is the matter density power spectrum today,
D1(z̄) is the growth factor normalised to 1 today, ν is the cosine of the angle between k and
the line-of-sight direction (assumed fixed in the flat-sky limit), ν = n ⋅ k, and the P` are the
Legendre polynomials of degree `. We have also defined b(z̄) as the galaxy bias which relates
the galaxy density fluctuations to the matter perturbation in synchronous-comoving gauge:
∆den = b ⋅ δc. Furthermore

f(z̄) = −
D′

1

D1
(1 + z̄) =

d lnD1

d ln(a)
, (4.3)

is the growth rate, where the prime denotes the derivative with respect to the redshift z̄.
Equation (4.2) relies on the flat-sky approximation and does not include all the projection
effects we mentioned before. A simple way to write the 2pF in full generality is to use eq. (3.4):

ξ(θ, z1, z2) =
1

4π
∑
`

(2` + 1)C`(z1, z2)P`(cos θ) , (4.4)

where C`(z1, z2) is the number counts angular-redshift power spectrum introduced in [72,
99]. Even though fast and reliable codes such as camb and class have been generalised
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to calculate the number count angular power spectrum [125, 124], the use of eq. (4.4) to
compute the 2pF is not advisable. As we anticipated in chapter 3 this approach has two
relevant drawbacks:

• Window function: eq. (4.4) is essentially an inverse Fourier-Bessel transform. The sum
over ` runs to infinity and we are forced to cut it at some `max. This is equivalent to
introducing a top-hat window function W` in `-space which enforces C` = 0 for ` > `max.
The inverse transform is then a convolution of ξ with the inverse transform ofW` (given
usually in terms of spherical Bessel functions j`): this introduces spurious oscillations
in the result. A possible workaround is to introduce in the sum a decaying window
function which ensures (2` + 1)C` ≃ 0 for ` ≳ `max but the result will then depend on
the smoothing scale chosen.

• Run time: Typical values for `max in order to reproduce the correct behaviour of ξ are
`max > 3000. This means that every point of the 2pF requires the computation of several
thousands spectra C`: class is very fast but this quickly becomes unfeasible, especially
when terms which require line-of-sight integrations are sought (i.e. lensing).

As argued in Ref. [294], this problems become especially relevant when we want to exploit
the very high redshift resolution of spectroscopic surveys in a redshift bin ∆z. For correlating
only a small number of rather wide photometric redshift bins, the C`(z1, z2) probably remain
the method of choice.

The code coffe performs a direct calculation of the 2pF which does not need the angular
power spectra C`(z1, z2). For the standard and one of the Doppler terms this has already
been done in [90], with an implementation in the public code AngPow [89]. Here we extend
this work to include lensing and all other relativistic effects in full sky. In particular, our code
computes: 1) the 2pF as a function of redshift, separation and orientation, 2) the multipoles
of the 2pF, which is the output directly delivered by redshift surveys, and 3) the covariance
matrix, necessary e.g. to assess the detectability of lensing and relativistic effects and their
information content. In the next section we summarise the theoretical results which allow for
a direct calculation and we deal with the problem of Infra-Red (IR) divergence which afflicts
some terms in the correlation function. In section 4.3 we illustrate the usefulness of our code
through one simple example. In section 4.4 we present the code and in section 4.5 we conclude
and discuss future implementation to expand its functionalities.

4.2 The relativistic full-sky correlation function

4.2.1 The formalism

In the spirit of having self-contained chapters in this thesis, we summarise in this section
the results obtained in chapter 3. The reader familiar with the formalism can jump to
section 4.2.2, taking however note of the change in notation we present here.

Let us start with the set up for computing the two-point correlation function. The 2pF
is usually not regarded as a function of two redshifts and one angle as in eq. (4.1) but as
a function of the separation between the two points r, the mean redshift z̄ and the cosine
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µ of the angle between the separation vector r and a line-of-sight (LOS) between the two
directions of observation, determined by convention. There is not a unique way to define
this angle. In the flat-sky limit common definitions coincide, but in full sky they lead to
differences in the multipoles, which are potentially of the same order of magnitude as the
relativistic effects. It is therefore crucial to clearly specify the chosen angle. It is common
practice to split r into its parallel component r∥ (i.e. parallel to the LOS) and transverse
component r⊥ (i.e. perpendicular to the LOS) so that r =

√
r2∥ + r2⊥. In the full-sky regime,

where we take into account that the two points do not share the same LOS, we chose to define
the parallel separation as the difference between the comoving distance of the two points

r∥ = χ2 − χ1 , (4.5)

where χi = χ(zi). We also define µ in the usual way as µ = r∥/r, which reduces to the standard
definition in the flat-sky limit. Assuming vanishing spatial curvature ΩK = 0 (as this first
release of coffe does) the separation between the two points is given by

r(θ, z1, z2) =

√

χ2
1 + χ

2
2 − 2χ1χ2 cos θ , (4.6)

and cos θ can be related to r, µ and z̄ by

cos θ =
2χ̄2 − r2 + 1

2µ
2r2

2χ̄2 − 1
2µ

2r2
, (4.7)

where we have introduced1 χ̄ = (χ1 + χ2)/2 ≃ χ(z̄). We point out that when writing the
correlation function ξ(r, µ, z̄) (considering physical distances) a cosmology must be assumed
to convert the observed redshifts to χ1 and χ2, while ξ(θ, z1, z2) can be directly measured
in observations. However the former approach allows us to compute the multipoles of the
correlation function which are often useful to break the degeneracy between cosmological
parameters [102, 103, 111, 179, 310, 101, 326]. One then has to be careful when estimating
cosmological parameters, taking into account that the data ξ(r, µ, z̄) itself depends on them.
This is usually done by introducing rescaling parameters in the correlation function, which
are fitted at the same time as cosmological parameters, see e.g. [313].

Having clarified the setup, we can now turn to the computation of the 2pF. Including all
the relativistic corrections, the galaxy number counts can be written as in eqs. (3.12)-(3.21):

∆g(n, z) = ∆den
+∆rsd

+∆len
+∆d1

+∆d2
+∆g1

+∆g2
+∆g3

+∆g4
+∆g5 . (4.8)

Let us go through the physical meaning of each term once more: the standard terms, i.e. the
density fluctuations and the RSD term, denoted respectively by ∆den and ∆rsd, are usually
taken into account in galaxy clustering analyses. ∆len represents the lensing term. ∆d1 is the
Doppler contribution, ∆d2 is a velocity term which comes from transforming the longitudinal
gauge density into the comoving density. ∆g1,∆g2 and ∆g3 are relativistic effects, given by

1Note that χ̄ and χ(z̄) are not exactly the same but in what follows we neglect this difference which is of
order (∆z)2

/H(z̄).
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the gravitational potentials at the source. As such they are sometimes called ’Sachs-Wolfe’
terms. ∆g4 denotes the so-called Shapiro time-delay contribution and ∆g5 is the integrated
Sachs-Wolfe term. Redshift-space expressions for the contributions in eq. (4.8) can be found
in eqs. (3.12)-(3.21), here we will only use the Fourier-Bessel transform of these terms given
by eqs. (3.39)-(3.48):

∆den
` = b(z)SDj`(kχ) , (4.9)

∆rsd
` =

k

H
SV j

′′
` (kχ) , (4.10)

∆len
` = (

2 − 5s

2
)
`(` + 1)

χ
∫

χ

0
dλ
χ − λ

λ
(Sφ + Sψ)j`(kλ) , (4.11)

∆d1
` = (

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)SV j

′̀
(kχ) , (4.12)

∆d2
` = −(3 − fevo)

H

k
SV j`(kχ) , (4.13)

∆g1
` = (1 +

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)Sψj`(kχ) , (4.14)

∆g2
` = (−2 + 5s)Sφj`(kχ) , (4.15)

∆g3
` =

1

H
Ṡφj`(kχ) , (4.16)

∆g4
` =

2 − 5s

χ
∫

χ

0
dλ(Sφ + Sψ)j`(kλ) , (4.17)

∆g5
` = (

Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo)∫

χ

0
dλ(Ṡφ + Ṡψ)j`(kλ) . (4.18)

We define the matter transfer function SD, which relates the primordial power spectrum
Pζ(k) = As(k/k∗)ns−1 to the matter power spectrum at redshifts z1 and z2, via

Pζ(k)SD(k, z1)SD(k, z2) =
k3

2π2
D1(z1)D1(z2)P (k)∣z=0 =

k3

2π2
P (k, z1, z2) . (4.19)

In standard ΛCDM, the velocity and potentials transfer functions are related to SD through

SV = −(Hf)/k SD , (4.20)

SΦ = SΨ = −
3Ωm

2a
(
H0

k
)

2

SD , (4.21)

SΦ̇ = SΨ̇ = −
3Ωm

2a
(
H0

k
)

2

(ṠD −HSD) . (4.22)

Furthermore s denotes the magnification bias and fevo is the evolution bias.
The basic idea upon which the direct calculation is performed is based on eq. (4.4) and

the explicit expression for the contributions of the correlation of the terms A and B in the
angular power spectrum

CAB` (z1, z2) = 4π∫
dk

k
PR(k)∆A

` (k, z1)∆
B
` (k, z2) , (4.23)
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Figure 4.1: A possible output of the coffe code. The correlation function r2ξ(r, µ) is
plotted at z̄ = 0.1 for different values of µ (color coded): the left panel is the flat-sky result
of eq. (4.32), the middle panel the full-sky result considering only density and redshift-space
distortion, while the right panel also considers the "d1" doppler term (the most relevant
relativistic contribution at low redshift). Note that the full sky result for the standard terms
is negative at large distances while the flat sky result can be positive depending on the
orientation µ. Including the relativistic terms (in this case only d1 contributes visibly), the
correlation function becomes again positive for almost transverse orientations. For large µ
and large r it is significantly more negative than the standard flat sky result.

where we set schematically {A,B} ∈ {den, rsd, ...,g5}. Combining eqs. (4.4) and (4.23) we
can exchange the sum over ` and the integral over the wavenumber: we then need to evaluate
sums of the form

∑
`

(2` + 1)∆A
` (k, z1)∆

B
` (k, z2)P`(cos θ) . (4.24)

The ∆A
` depend on ` only via a spherical Bessel function or derivatives of it and hence we can

perform the infinite sum over ` analytically, leading to simple functions of θ, z1, z2 multiplying
jL(kr) with L ∈ {0,1,2,3,4}. We refer the interested reader to section 2.2 of [294] for details
of this calculation. Here we report the results with a somewhat different notation w.r.t. chap-
ter 3, to present the expressions in a way which is closer to what is implemented in coffe. It
is useful to split the discussion between non-integrated terms {den, rsd,d1,d2,g1,g2,g3} and
integrated terms {len,g4,g5}, which require a LOS integration.

For the non-integrated terms we define2

ξAB(θ,χ1, χ2) =D1(χ1)D1(χ2)∑
`,n

(Xn
` ∣A +X

n
` ∣AB +X

n
` ∣BA +X

n
` ∣B)In` (r) , (4.25)

where the Xn
` ∣AB = Xn

` (θ,χ1, χ2)∣AB, {A,B} = {den, rsd,d1,d2,g1,g2,g3} are listed in Ap-
pendix 4.B. Note that a single tag means autocorrelation: Xn

` ∣A ≡Xn
` ∣AA. The sum is intended

2Note that since we have assumed a cosmological model we write ξ(θ,χ1, χ2) = ξ(θ, z1, z2) = ξ(r, µ, z̄) =
ξ(r, µ, χ̄) with no distinction. In fact we can use χi = χ(zi), µ = (χ2 − χ1)/r and eqs. (4.6),(4.7) to switch
between the different variables in which we express the correlation function. We neglect the difference between
χ̄ and χ(z̄).
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over all the values of `, n ∈ {0,1,2,3,4} for which the coefficients (given in the appendix) are
non-zero. Note that the symmetry of the 2pF implies

Xn
` ∣AB(θ,χ1, χ2) =X

n
` ∣BA(θ,χ2, χ1) , (4.26)

and we have defined3

In` (r) = ∫
dk k2

2π2
P (k)

j`(kr)

(kr)n
. (4.27)

The use of this notation is justified in two ways: firstly it is now clear that the integrals
In` (r) need to be computed only once for every separation, independently of the orientation
(i.e. µ). This fact was somewhat hidden in the notation of chapter 3 and we make it explicit
here. Secondly we have isolated the integrals In` (r): a fast and accurate computation of
these integrals is crucial for the precision of the 2pF. We have implemented the 2-fast [162]
algorithm in C and included it in our code4. In eq. (4.25), ξAB means ξAB = ⟨(A+B)(A+B)⟩

and in general we define

ξABCD... = ⟨(A +B +C +D + ...)(A +B +C +D + ...)⟩ , (4.28)

where in this case the sum in eq. (4.25) is done over all possible combinations.

For the integrated terms we define

ξAB(θ,χ1, χ2) = (Z ∣
A
+Z ∣

AB
+Z ∣

BA
+Z ∣

B
) , (4.29)

where Z = Z(θ,χ1, χ2), {A,B} = {den, rsd, ..., len,g4,g5} and a single tag means autocorrela-
tion. We again have

Z ∣
AB

(θ,χ1, χ2) = Z ∣
BA

(θ,χ2, χ1) , (4.30)

and the full list is given in Appendix 4.B. Examples of the correlation function are shown in
fig. 4.1.

For completeness we also give the definition of the multipoles of the correlation function:

ξ`(z, r) ≡
2` + 1

2

1

∫−1

dµξ(z, r, µ)P`(µ) , (4.31)

and we remind the reader that in the flat-sky approximation, redshift-space distortions are
included by Fourier transforming eq. (4.2), which simply yields eq. (3.9):

ξ(z̄, r, µ)flat-sky =D
2
1(z̄)[c0(z̄)I

0
0(r) − c2(z̄)I

0
2(r)P2(µ) + c4(z̄)I

0
4(r)P4(µ)] , (4.32)

3It is now clear that the superscript 0 in eq. (3.10) is to uniform the notation.
4The original, publicly available, 2-fast code (https://github.com/hsgg/twoFAST) is implemented in the

high-level language julia.

https://github.com/hsgg/twoFAST
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with

c0 = b
2
+

2

3
bf +

f2

5
, (4.33)

c2 =
4

3
bf +

4

7
f2 , (4.34)

c4 =
8

35
f2 . (4.35)

4.2.2 IR divergence
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Figure 4.2: The divergent (solid) and convergent (dashed) correlation function for two po-
tential terms as a function of the IR cut-off kIR. It is shown how eq. (4.40) regularise the
Infra-Red behaviour of the correlation function. Different colours are different choices of
(r, µ).

We now turn to a problem which afflicts the 2pF contributions coming from the auto-
correlation and cross-correlation of potentials terms, namely ξAB with {A,B} = {d2, ..,g5}.
The issue is essentially that the integral I4

0 has an Infra-Red divergence. It is in fact known
that the variance of the curvature has an IR divergence [34, 157, 52, 60]:

⟨ζ2
(x)⟩ = ∫

∞
kIR

dk

k
Pζ(k) ∼ (

kIR
k∗ )

ns−1
kIR→0
ÐÐÐ→∞ for ns ≤ 1 . (4.36)

This is a problem for the integral I4
0 . Recall that Φk ∼ ζkSΦ(k) ∼ k−2ζkSD(k) which, with the

large scale behavior SΦ(k) → 1, gives SD(k) ∼ k2 for k → 0. This implies

I4
0(r) = ∫

dk k2

2π2
P (k)

j0(kr)

(kr)4
∼ ∫

dk

k5
SD(k)2

Pζ(k) ∼ ∫
dk

k
Pζ(k) → ∞ . (4.37)

This means that the auto- and cross-correlations of potential terms (d2,..,g5) grow indefinitely
as kIR → 0 (as they all depend on I4

0 , see appendix 4.B). It is clear that this is an unphysical
divergence as ∆g(n, z) and its 2pF, ξ(θ, z1, z2), are observables and they can therefore not
diverge.
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To understand why the divergence in (4.36) does not contribute to the observable, let us
go back to the definition of ∆g(n, z):

∆g(n, z) =
N(n, z) − ⟨N⟩Ω(z)

⟨N⟩Ω(z)
, (4.38)

where N(n, z) is the number of galaxies in direction n at redshift z and ⟨N⟩Ω(z) is the
directional average of N(n, z):

⟨N⟩Ω(z) =
1

4π
∫ dΩnN(n, z) . (4.39)

It is clear from eq. (4.38) that ⟨∆g⟩Ω = 0. This simply reflects the fact that ∆g is the
departure from the average number of galaxies. Since in linear perturbation theory directional
average and ensemble average commute [71], we also have ⟨ξ(θ, z1, z2)⟩Ω = 0, meaning that
the correlation function does not have a monopole contribution. Physically this comes from
the fact that an observer will include into ⟨N⟩Ω not only the background but also all the
IR modes which he cannot distinguish from the background. This includes super-horizon
modes as well as terms at the observer, which we have neglected in this chapter specifically
for this reason. All these modes contribute only to the monopole5 and as they are included
in the directional average they are subtracted in eq. (4.38), leading to C0 = 0. If we apply
these considerations to eq. (4.4) we see that we are able to cure the divergence by explicitly
removing the monopole

ξg Ð→ ξg −C0/4π . (4.40)

In principle this line of reasoning could be applied to all the contributions to the 2pF, however
we only regularise in this way the contributions for which the monopole C0 is divergent
(auto- and cross-correlations of potential terms (d2,..,g5)). For the other terms this correction
is negligible. Equation (4.40) can be easily implemented in the code as it amounts to a
redefinition of I4

0(r):

I4
0(r) Ð→

1

r4 ∫
dk

2π2
k−2P (k)(j0(kr) − j0(kχ1)j0(kχ2)) . (4.41)

The result of this procedure is shown in figures 4.2 and 4.3.

We point out that from a theoretical point of view the regularisation of the divergence can
be achieved by consistently keeping track of the terms at the observer [60, 59]. The resulting
2pF will be gauge invariant, consistent with the equivalence principle6 and free of divergences.
However to achieve this result one has to ensemble average over different realisations of the

5The peculiar velocity at the observer also induces a dipole contribution [321], which is irrelevant for this
regularisation discussion.

6Inconsistency with the equivalence principle can be regarded as the reason for which the divergence arises:
a term like ∆g2, for example, is given by the value of the gravitational potential at the source Φs. This is not
observable, while considering a counter term at the observer Φs −Φo does not only agree with the equivalence
principle but it also regularises the divergence.
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perturbation fields at the observer. As we will explain in chapter 7, this procedure leads to
a result which is not linked with the observable correlation function: although the ergodic
hypothesis can be applied on fields at the observer position, their contribution is relegated to
the monopole for which the ergodic approximation fails.
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Figure 4.3: Left : the divergent correlation function for two potential terms as a function
of separation r for different values of the IR cut-off. Right : subtracting the unobservable
monopole the correlation function converges for "reasonable" values of kIR ≲ 10−4.

4.2.3 Estimators and the covariance matrix

The correlation function can be estimated in several ways from a given galaxy catalog. In
this section we present the two estimators for the multipoles of the 2pF that we consider in
coffe and we compute their covariance matrix. We start by splitting a catalog covering a
fraction of the sky fsky and a redshift interval (z̄ − δz, z̄ + δz), amounting to a total volume
V , into pixels of comoving size Lp. We then count the number of galaxies Ni in each pixel i
at redshift zi in the sky and we define ∆i ≡ ∆g(xi) as in eq. (4.38):

∆i =
Ni − ⟨N⟩Ω(zi)

⟨N⟩Ω(zi)
, (4.42)
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where the directional average ⟨N⟩Ω is performed over all the pixels at redshift zi. The simplest
estimator we can construct for the multipoles is then

ξ̂`(r, z̄) = β`∑
ij

∆i∆jP`(µij)δK(rij − r) , (4.43)

where rij = ∣xi − xj ∣ is the distance between the two pixels and µij = r∥/r = (χ(z1) − χ(z2))/r
represents the orientation of the pixels. The function δK denotes the (dimensionless) Kro-
necker delta representing the fact that in a binned catalog the values rij are discrete. The
normalisation factor β` is obtained by imposing that in the continuum limit the ensemble
average of the estimator satisfies ⟨ξ̂`⟩ = ξ`. One finds (more details are given in appendix 4.A)

β` =
2` + 1

4π

L5
p

r2V
. (4.44)

Equation (4.43) is the estimator which is usually used in redshift surveys7. However to ob-
tain this result we have made one important approximation, which is to neglect time-evolution
in our redshift shell. We have indeed assumed that all pairs of pixels (i, j) in eq. (4.43) have
the same mean redshift z̄. It is only under this assumptions that the estimator (4.43) is un-
biased, i.e. that ⟨ξ̂`⟩ = ξ`. In practice however, we know that the galaxy distribution evolves
with redshift, so that each pair of pixels (i, j) contributes in a slightly different way to the
sum. This is especially relevant when computing the multipoles of the correlation function
at large separation r, for which thick redshift bins must be used8. In this case, the mean
of (4.43) can be different from the theoretical predictions ξ` and the estimator is therefore
biased. For this reason we propose a second estimator, which distinguishes between different
mean redshifts zij = (zi + zj)/2 inside the redshift bin, and which is therefore unbiased also in
the full sky regime

Ξ̂`(r, z̄, δz) = γ` ∑{zk}
W (zk)∑

i,j

1 + cos θij

2r2
j

∆i∆j P`(µij) δK(rij − r)δK(zij − zk) , (4.45)

which sums all the pairs at fixed separation r and at fixed mean redshift zk and then sums over
all the different redshifts in the bin {zk} so that no pair in the catalog is lost. Here θij is the
angle between xi and xj (note that this is not µij = 2(∣xi∣ − ∣xj ∣)/(∣xi∣ + ∣xj ∣). The expectation
value of this new estimator is the quantity Ξ` (which we can compute with coffe) defined
as

Ξ`(r, z̄, δz) = H0

z̄+δz
∫

z̄−δz
dz

W (z)

H(z)(1 + z)
ξ`(r, z) . (4.46)

Here W (z) denotes the redshift distribution (normalised to unity) and the normalisation
factor γ` has to be chosen as

γ` =
2` + 1

(4π)2

L5
pH0

r2fsky
. (4.47)

7Note that in practice the Landy-Szalay estimator [202] is used, in order to account for the geometry of
the surveys and for irregularities in the galaxy distribution.

8In order to measure the multipoles at large separation r, we need indeed a redshift bin thicker than r in
order to include pairs with all orientations in the average over µ.
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Details of the derivation of this result are given in appendix 4.A, where we show that Ξ̂` is
an unbiased estimator of Ξ` at all separations. Note that the non-trivial factor

1 + cos θij

2r2
j

, (4.48)

that we have introduced in eq. (4.45) is necessary to find eq. (4.46). It accounts for the
geometry of the average over pairs in the full-sky regime. It can be expanded as

1 + cos θij

2r2
j

≃
1

χ̄2
(1 ± µ

r

χ̄
+O (

r

χ̄
)

2

) , (4.49)

and it reduces to 1/χ̄2 in the flat-sky approximation.
Let us finally address one important subtlety in the definition of eq. (4.46). Equation (4.46)

is a weighted average of ξ`(r, z), with z running over the size of the redshift bin, i.e. from
z(χ1) = z̄−δz to z(χ2) = z̄+δz. In practice however, the mean redshift of the pair of galaxies z
cannot take all the values between z(χ1) and z(χ2). The calculation of the multipoles defined
in eq. (4.31) contains indeed a sum over all orientations µ. However, for a given separation
r and orientation µ not all values of z are permitted. More precisely, the allowed values are
z ∈ [z(χ1 +r/2), z(χ2 −r/2)]. If we want to take care of this subtlety theoretically, we have to
make the limits of integration and the redshift distribution W (z) in eq. (4.46) r-dependent.
For a simple top-hat distribution, coffe computes

Ξ`(r, z1, z2) =
H0

z2(r) − z1(r)

z2(r)
∫

z1(r)
dz

ξ`(r, z)

H(z)(1 + z)
, (4.50)

where z1(r) = z(χ1 + r/2) and z2(r) = z(χ2 − r/2).
We can now compare our two estimators. In figure 4.4 we show the fractional difference,

at z̄ = 1, between the mean of the two estimators: ξ`(r) and Ξ`(r, δz) for different values of
the half-width of the bin δz. The main difference between the two estimators is a different
normalisation: this is because the ξ` are computed exactly at z̄ = 1, while the Ξ` are averaged
over the redshift bin. The wider the bin, the larger is the deviation from the multipole at
the mean redshift. The second difference is more fundamental since it is directly due to the
evolution of the galaxy number counts with redshift. This effect is slightly scale-dependent
and it can be isolated in the following way: let us define a flat-sky Ξ` starting from the flat-sky
ξ`. In this case, as evolution is neglected in the flat-sky limit, the only difference between the
two estimators would be due to their different normalisation. In particular, in the flat-sky
limit we can separate the z- and r-dependence of the multipoles, as in eq. (4.32), to obtain

Ξ`(z̄)flat-sky =
⎛
⎜
⎝

H0

2δz

1

c`(z̄)D
2
1(z̄)

z̄+δz
∫

z̄−δz
dz

c`(z)D
2
1(z)

H(z)(1 + z)

⎞
⎟
⎠
ξ`(z̄)flat-sky , (4.51)

where the c`’s are defined in eqs. (4.33)-(4.35). In the full-sky regime, at large separations,
we expect a deviation from this simple behaviour. In figure 4.4 we therefore normalise the
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Figure 4.4: The fractional difference (Ξ`(r) − ξ̃`(r))/ξ̃`(r) for the monopole ` = 0 at redshift
z̄ = 1. The Ξ` are computed in redshift bins with different half-widths δz. The monopole at
z̄ can only be calculated out to r ∼ 2δz/H(z). The ’glitch’ at r ≃ 120Mpc/h comes from the
monopole going through zero. The result for ` = 2,4 is similar.

multipoles ξ` with

ξ̃` ≡
⎛
⎜
⎝

H0

2δz

z̄+δz
∫

z̄−δz
dz

1

H(z)(1 + z)

⎞
⎟
⎠
ξ` . (4.52)

In this way, we get rid of the difference due to the normalisation and we show only the intrinsic
difference due to evolution. Overall the difference between the estimators is small, but it can
be substantial (of order 1%) if a thick redshift bin is considered. Finally, let us emphasise
again that whereas Ξ` is an unbiased estimator of Ξ̂` at all separations, ξ` is biased at large
separations due to evolution. The order of magnitude of this bias is related to the difference
plotted in figure 4.4. For very thick redshift bins, ξ` is therefore not a reliable estimator of
the multipoles and Ξ` should be used instead.

We can now compute the covariance matrix for the two estimators:

cov(ξ)``′ (r, r′) ≡ ⟨ξ̂`(r)ξ̂`′(r′)⟩ − ⟨ξ̂`(r)⟩⟨ξ̂`′(r′)⟩ , (4.53)

cov(Ξ)
``′ (r, r′) ≡ ⟨Ξ̂`(r)Ξ̂`′(r′)⟩ − ⟨Ξ̂`(r)⟩⟨Ξ̂`′(r′)⟩ . (4.54)

The variance of the number counts has two contributions

⟨∆i∆j⟩ =
1

dN̄
δij +Cij . (4.55)

The first term accounts for shot noise, where dN̄ is the average number of tracers per pixel. It
comes from the fact that we Poisson sample from the underlying smooth density distribution.
Shot noise contributes only to the correlation function at zero separation, i.e. when i = j. The
second term is the cosmic variance contribution. For simplicity we perform the covariance
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calculation in the flat-sky approximation (which means we stop at the 0th-order term in
eq. (4.49)) and we consider only the density and redshift-space distortion contributions. Since
this is by far the dominant term, it is a good approximation to the full result. Assuming
Gaussianity (i.e. we write 4-point functions as products of 2-point functions), we can express
the covariance matrix in terms of Wigner’s 3j-symbols as

cov(ξ)``′ (ri, rj) = i
`−`′
V

⎡
⎢
⎢
⎢
⎢
⎣

2` + 1

2πn̄2Lpr2
δijδ``′ + 1

n̄
G``′(ri, rj , z̄)∑

σ

cσ (
` `′ σ
0 0 0

)

2

+D``′(ri, rj , z̄)∑
σ

c̃σ (
` `′ σ
0 0 0

)

2 ⎤
⎥
⎥
⎥
⎥
⎦

,

(4.56)

cov(Ξ)
``′ (ri, rj) =

i`−`′
4πfsky

z̄+δz
∫

z̄−δz
dz

W 2(z)

H(z)χ2(z)(1 + z)

⎡
⎢
⎢
⎢
⎢
⎣

2` + 1

2πn̄2Lpr2
δijδ``′

+
1

n̄
G``′(ri, rj , z)∑

σ

cσ (
` `′ σ
0 0 0

)

2

+D``′,z(ri, rj , z)∑
σ

c̃σ (
` `′ σ
0 0 0

)

2 ⎤
⎥
⎥
⎥
⎥
⎦

,

(4.57)

where n̄ is the mean number density9 in the redshift bin and we have defined

G``′(r, r′, z) = 2(2` + 1)(2`′ + 1)

π2 ∫ dk k2P (k, z)j`(kr)j`′(kr′) , (4.58)

D``′(r, r′, z) = (2` + 1)(2`′ + 1)

π2 ∫ dk k2P 2
(k, z)j`(kr)j`′(kr′) , (4.59)

together with the modified coefficients

c̃0 = c
2
0 +

c2
2

5
+
c2

4

9
, (4.60)

c̃2 =
2

7
c2(7c0 + c2) +

4

7
c2c4 +

100

693
c2

4 , (4.61)

c̃4 =
18

35
c2

2 + 2c0c4 +
40

77
c2c4 +

162

1001
c2

4 , (4.62)

c̃6 =
10

99
c4(9c2 + 2c4) , (4.63)

c̃8 =
490

1287
c2

4 . (4.64)

These results are also derived in appendix 4.A, while in fig. 4.5 we show the covariance matrix
for the monopole, the quadrupole and their cross-correlation.

9In the covariance we ignore the redshift dependence of n̄ and set n̄ ≡ n(z̄) inside a given redshift bin. A
method to include n̄(z) consistently can be found in [313].
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Figure 4.5: The covariance matrix for the monopole, the quadrupole and their cross-
correlation, normalised as cov``′,ij/(cov``,iicov`′`′,iicov``,jjcov`′`′,jj)1/4. SKA2 specifications
are used here and we plot the covariance for the middle bin of the 5-bin configuration, i.e.
Lp = 20Mpc/h.

4.3 A simple application: is lensing detectable?

As a first, simple application of coffe we want to discuss the feasibility of measuring the
lensing contribution in the correlation function with future galaxy surveys. In order to do so,
we introduce an artificial parameter AL, encoding the amplitude of the lensing signal, in the
multipoles of the two-point function. Schematically, with the notation of eq. (4.28) we write
(neglecting the Doppler and potential terms)

ξ` = ξ
st
` +AL ξ

L
` , (4.65)

where
ξst` = ⟨den + den⟩` + ⟨den + rsd⟩` + ⟨rsd + den⟩` + ⟨rsd + rsd⟩` , (4.66)

represent the standard density and redshift-space distortion term, and

ξL` = ⟨den + len⟩` + ⟨len + den⟩` + ⟨rsd + len⟩` + ⟨len + rsd⟩` + ⟨len + len⟩` , (4.67)

is the lensing contribution. Clearly the physical value of the lensing amplitude is AL = 1
and we want to forecast the precision with which we can measure it. In figure 4.6, we show
the monopole, quadrupole and hexadecapole with (AL = 1) and without (AL = 0) the lensing
contribution. The shadowed regions show the size of the error-bars for an SKA2-like survey
(specification givenbelow).

The Fisher matrix is defined as

Fαα′ ≡ ∂2χ2

∂α∂α′ = ∑`,`′,i,j
∂⟨ξ̂`⟩(ri)

∂α
∣
f
cov−1

``′(ri, rj)
∂⟨ξ̂`′⟩(rj)

∂α′ ∣
f
, (4.68)

where α and α′ are the parameters we want to constrain and ∣f means evaluation at some
fiducial values of the parameters. The sum runs over all pixels’ separations ri, rj in the
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Figure 4.6: The monopole (left), the quadrupole (middle) and the hexadecapole (right) at
z̄ = 1.5. Solid lines have AL = 1 while dashed lines have no lensing contribution AL = 0.
Specifications, in particular biases, are for an SKA2-like survey.

survey as well as over the even multipoles `, `′ = 0,2,4,6. Note that the covariance matrices
account for both correlations between different pixels’ separations, ri ≠ rj , and correlations
between different multipoles, ` ≠ `′. The Cramér-Rao bound states that we can assign the 1σ
uncertainty as

σα =
√

(F−1)αα , (4.69)

and this gives the smallest possible achievable error on α. We assume that the thickness of
the redshift bins in which we split our catalog is big enough so that we can treat them as
uncorrelated, implying

F tot
αα′ = ∑{z̄i}

Fαα′(z̄i) . (4.70)

Furthermore, for simplicity, we consider only the parameter AL and, instead of marginalizing
over the remaining cosmological parameters, we fix them to: Ωcdm = 0.26, Ωb = 0.048, h =

0.676, As = 2.22 × 10−9 and ns = 0.96. In this case we only have

FALAL
≡ F = ∑

`,`′,i,j
∂⟨ξ̂`⟩(ri)

∂AL
∣
f
cov−1

``′(ri, rj)
∂⟨ξ̂`′⟩(rj)
∂AL

∣
f

= ∑
`,`′,i,j

ξL` (ri)∣
f
cov−1

``′(ri, rj)ξL` (rj)∣
f
.

(4.71)

Note that the parameter AL does not have a direct physical interpretation; however, it allows
us to estimate the signal-to-noise (S/N), a measure of the sensitivity to the lensing signal in
galaxy clustering. This is an important information, especially as a high S/N is needed to
test deviations from general relativity, for example with the widely used (Σ, µ) parametriza-
tion (see e.g. [163, 279, 148] and references therein): µ ≠ 1 represents a modification to
Poisson equation while Σ ≠ 1 represents a modification to the gravitational slip relation (see
eqs. (4.81),(4.82)). The standard terms constrain µ, while one needs to be sensitive to the
lensing potential to constrain also Σ.

In this analysis we make one optimistic assumption and one conservative assumption. The
optimistic one, as we mentioned, is to neglect the parameter degeneracies that will increase
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the actually achievable error bar on AL. A forecast study on all the cosmological parameters
is left as future work. The conservative one is to treat the lensing term within linear pertur-
bation theory, while non-linearities increase the lensing signal [294]: coffe is for the moment
a fully linear code and, as we discuss it in section 4.5, pushing its capabilities beyond the
linear treatment is amongst our priorities.

The forecast (4.71) is easily done with coffe and we compute the result for the signal-
to-noise, which is simply given by

S/N =
√

F = 1/σAL
, (4.72)

with AL∣f = 1.
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Figure 4.7: The cumulative signal-to-noise on the parameter AL for three different survey
specifications and two different choice of binning, as explained in the text.

In Figure 4.7 we show the results for the signal-to-noise for three different spectroscopic
survey specifications: an Euclid-like survey (specifications given in [203]), an SKA2-like survey
(specifications given in [307]) and a survey limited only by cosmic variance, in which shot
noise is neglected (essentially performing the limit n̄→∞ in eq. (4.56)). We split the surveys
into 5 bins (right panel of figure 4.7) or 10 bins (left panel of figure 4.7) to accommodate the
full redshift range: z ∈ [0.1,2.0] for the SKA2 and the CV-limited survey and z ∈ [0.7,2.0] for
Euclid (respectively solid and dashed vertical lines in fig. 4.7). For the 5-bins configuration
we chose Lp = 20Mpc/h while for the 10-bins configuration we set Lp = 10Mpc/h. We include
separations from rmin = Lp to rmax = χ(z̄bin + δz)−χ(z̄bin − δz). The redshifts z̄ < 1 contribute
very little to the signal. Only for z̄ > 1 sufficient lensing has accumulated to be truly visible
in the correlation function. The S/N for the 5-bin configuration is somewhat larger than the
one for the 10 bin. This is due to the fact that lensing dominates for large radial separation.
Since we neglect correlations between different bins in the calculation of the Fisher matrix,
we include more correlations at large separations when we have 5 bins than when we have
10 bins. The results for the cumulative S/N of eq. (4.72) on the lensing amplitude AL are
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summarised as follows: for the 5-bins splitting we obtain

S/N∣CV-lim ≃ 25.2 ,

S/N∣Euclid- ≃ 17.6 ,

S/N∣SKA ≃ 13.8 ,

(4.73)

while for the 10-bins splitting they are slightly lower. Note that the monopole alone con-
tributes to ∼ 45% of the total S/N , the quadrupole to ∼ 30%, the hexadecapole to ∼ 15%
while, interestingly, the ` = 6 multipole contributes to roughly 10% of the total signal-to-noise.
This can be explained as the balance between two different effects: on the one hand the lensing
contribution is more relevant for higher multipoles, but on the other hand, as seen in fig. 4.6,
the covariance also gets bigger for higher `. We therefore conclude that upcoming galaxy
surveys will be able to detect the lensing signal in the 2pF. This will open the possibility to
put constraints in the (Σ, µ) plane from the clustering signal alone.

Note that here we have used the ξ` for the forecasts. Since we split the survey in bins
of half-width δz = 0.05 and δz = 0.1, given the discussion in section 4.2.3, we do not expect
these results to change if we use the Ξ` instead.

4.4 Structure of the code

coffe is entirely written in C and the code can be divided into several key structs and
functions. The main flow of the program can be summarized as follows:

1. Read the settings file containing all of the necessary parameters: cosmological parame-
ters, the input P (k) and desired output.

2. Compute and store the background quantities.

3. Calculate all of the In` (r) using an implementation of the 2-FAST algorithm for a fixed
number of separations, specified by the user; I4

0 is only computed if one of the following
contributions is requested: d2, g1, g2, g3, g4, g5.

4. Compute one of the following, depending on input:

• angular correlation function ξ(θ, z̄)

• full sky correlation function ξ(µ, r, z̄)

• multipoles of the correlation function ξ`(r, z̄)

• redshift averaged multipoles Ξ`(r, z̄, δz)

• covariance of multipoles cov(ξ)``′
• covariance of redshift averaged multipoles cov(Ξ)

``′
5. Save the necessary output.
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6. Perform a memory cleanup and exit.

In the next sections we will go over the structure in more detail. For more information, the
interested reader can consult the user manual, available at
https://cosmology.unige.ch/content/coffe or at https://github.com/JCGoran/coffe.
The manual also contains detailed instructions on how to run the code.

4.4.1 The parser & background modules

The parser module is used for the parsing of the structured settings file and making sure all
of the values in the input are valid. The library used for parsing is the libconfig library10.

The background module is responsible for calculating all of the derived redshift dependent
quantities in a ΛCDM or wCDM cosmology with zero curvature, such as the Hubble rate
H(z), growth rate f(z), comoving distance χ(z), etc. All of the quantities are computed
at equally spaced intervals up to redshift z = 30, with a user defined sampling rate, and are
stored in interpolation structures. We have compared our results with class and have
found an agreement of order 10−4.

4.4.2 The integrals In` (r)
For the integrals In` (r) we have created a native implementation of the 2-FAST algorithm
introduced in [162]. We have tested it against the original implementation in julia, and have
found a negligible discrepancy of the order 10−5. As they are computed only for a discrete
number of points, we again use interpolation to find their values for arbitrary r.

Note that for the non-integrated terms we have to deal with the r → 0 limit of the In` (r)
only if the value of the correlation function at zero separation is required. On the other hand
the expressions for the integrated terms contain integrals of the type (see appendix 4.B)

χ1

∫

0

dλ [...] In` (r) ,

χ1

∫

0

dλ

χ2

∫

0

dλ′ [...] In` (r) , (4.74)

where inside the integrals we have, respectively,

r =
√
λ2 + χ2

2 − 2λχ2 cos θ , (4.75)

r =
√
λ2 + λ′2 − 2λλ′ cos θ . (4.76)

When we compute the 2pF along the line-of-sight (i.e. µ = 1 or θ = 0) the integrand evaluates
at r = 0 and hence we have to deal with this limit. We treat the following three cases
separately:

10described in https://hyperrealm.github.io/libconfig/

https://cosmology.unige.ch/content/coffe
https://github.com/JCGoran/coffe
https://hyperrealm.github.io/libconfig/
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1. For ` < n we have limr→0 I
n
` (r) = ∞; however, these terms always appear in the corre-

lation function multiplied by the appropriate power rn−`, so that

lim
r→0

rn−`In` (r) ∼ ∫ dk k2

2π2
P (k)k`−n . (4.77)

Assuming that the linear power spectrum behaves in the IR and UV as

P (k) ∼ {
kn1 for k/keq ≪ 1
kn2−4 for k/keq ≫ 1

(4.78)

the condition for which the integral in eq. (4.77) converges is −3 − n1 < ` − n < 1 − n2,
which is always satisfied for ΛCDM cosmologies11 for the values of `, n needed (except
for I4

0 in the IR as we discussed in section 4.2.2). We use 2-fast to interpolate rn−`In`
until a small separation rmin ≃ 1Mpc/h. As the 2-fast algorithm cannot be pushed to
r → 0 we use the standard GSL integrator for r ≲ 1Mpc/h, where the very oscillatory
behaviour of the integrands is less pronounced, and GSL gives a reliable result.

2. For ` = n we have limr→0 I
n
` (r) = const, and we can simply switch to GSL from r ≲

1Mpc/h to In` (r = 0).

3. For ` > n the limit gives limr→0 I
n
` (r) = 0 and the In` go to zero as r`−n. The behaviour

close to r = 0 is again captured with the GSL integrator. Note however that capturing
the overall behaviour would be really important only if the coefficients by which the In`
are multiplied diverge at zero like rn−`. As all the coefficients are well behaved at zero,
our procedure causes no concern.

The I4
0(r) integral of eq. (4.41) is not in a form suitable for the 2-FAST algorithm and it is

therefore integrated using standard GSL integration for a predefined number of separations,
and then interpolated. In this case, we have the further complication that we also need the
counter term to renormalise I4

0(r) which is a function of both comoving distances χ1 and χ2.
This term is calculated for a fixed number of points (200×200) and is then 2D interpolated
for all other points.

4.4.3 Outputs

To calculate the correlation function ξ, its multipoles ξ` and the redshift averaged multipoles
Ξ`, we use the Xn

` and Zn` coefficients defined in appendix 4.B and build the desired quantities
using eqs. (4.25),(4.29),(4.31) and (4.46) respectively. The In` integrals are computed with our
implementation of the 2-FAST algorithm. Integrated terms have a structure as in eq. (4.74).
To compute them, depending on the number of integrations required, we use either standard
GSL integration (1 integration) or one of the following options:

• GSL Monte Carlo methods, using either importance sampling or stratified sampling

• the CUBA library [166], using a deterministic integrator employing cubature rules
11The values obtained for the linear P (k) used in the figures of this chapter are n1 ≃ ns ≃ 0.96 and n2 ≃ 1.
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output time

ξ(r, µ) (den+rsd) up to ∼ 1000Mpc/h ∼ 0.5 s
ξ(r, µ) (den+rsd+len) up to ∼ 1000Mpc/h ∼ 17 s

ξ`(r) (den+rsd) up to ∼ 1000Mpc/h ∼ 9 s
ξ`(r) (den+rsd+len) up to ∼ 1000Mpc/h ∼ 2 min

Ξ`(r) (den+rsd) δz = 0.3 ∼ 1.5 s
Ξ`(r) (den+rsd+len) δz = 0.3 ∼ 3 min

cov(ξ)``′ (ri, rj) (Np = 50) Np ×Np ∼ 20 s
cov(Ξ)

``′ (ri, rj) (Np = 50) Np ×Np ∼ 20 s

Table 4.1: Run time of coffe calculating the correlation function at fixed µ (for ∼ 200 sepa-
rations), one multipole ` for ξ` and Ξ` or the covariance matrices on one Intel(R) Core(TM)
i7-7700 CPU @ 3.60GHz core. coffe is however parallelized using the openMP standard.

The user can select which one to use at compile time, as well as the number of iterations at
run time.

The covariance is built from eqs. (4.56),(4.57). The challenging part of the computation
are clearly the integrals D``′ and G``′ . As the 2-FAST algorithm is not optimised to compute
covariances12 it is (at the moment) too slow to be implemented in the public version of the
code. We therefore choose to release coffe v.1.0 with the covariance implemented in GSL,
which is much faster but less precise. Note that this trade of precision for speed has some-
times important drawbacks: for thick redshift bins the GSL covariance might not be positive
definite because of numerical fluctuations. For this reason the results reported in section 4.3
have been obtained with the 2-FAST algorithm: in future versions of coffe we will optimize
this for covariance calculation and release it to the public.

For reference, in table 4.1 we list the run time of coffe for the different possible outputs.

4.5 Conclusion and outlook

In this chapter we have presented a code to calculate the relativistic full-sky correlation
function and its covariance matrix. As we have shown previously [294], relativistic effects and
wide-angle contributions are of the same order and it is therefore inconsistent to consider one

12To be precise, 2-FAST allows for the computation of integrals with two Bessel functions such as D``′ and
G``′ . However the algorithm is structured to output them for a list of ri but fixed R = rj/ri. In the covariance
we however need N2

p pairs of (ri, rj), where Np = rmax/Lp is the number of pixels in the covariance. To get
them, with no modification of the algorithm, we need to run 2-FAST N2

p times, with a runtime not suitable
for a public code. The covariance in section 4.3 is nevertheless computed in this way: with our implementation
of the 2-FAST double-Bessel algorithm (we use the main principle of the algorithm, i.e. an Hankel transform
of the integrand, but not their specific hyper geometric function 2F1 implementation).
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but not the other. Presently, the code uses the linear matter power spectrum and therefore
is most relevant on large scales. This will be important for the many planned future deep
wide-angle surveys. We have argued that the correlation function is a better tool than the
–in principle equivalent– angular power spectrum C`(z1, z1) for spectroscopic surveys. As an
example of how to use the code we have computed the signal-to-noise of the lensing term
for some near-future galaxy surveys. The code is publicly available at https://cosmology.
unige.ch/content/coffe or at https://github.com/JCGoran/coffe.

We finally discuss some features that we plan to implement in upcoming versions of coffe:

• class integration: We will integrate class on top of coffe so that with only one
parameter file it will be possible to generate the matter power spectrum necessary
for the 2pF computation and to obtain the desired correlation function output. This
integration will be particularly useful for forecasts.

• Non-linearities: coffe v.1.0 is a fully linear code. On the one hand this is justified by
the fact that wide-angles and relativistic projections effects are most relevant at large
scales. On the other hand it will be important in future versions to include the effects of
non-linearities on the 2pF. Especially lensing, which is an integrated effect where non-
linearities close to the observer contribute, is always affected by non-linearities. One
can of course, already in the present version, use the halo-fit matter power spectrum for
non-integrated effects to mimic these non-linearities. But this is not really consistent
as long as the linearized continuity equation is used to infer velocities. At small-scales
the velocity dispersion is responsible for the fingers-of-god effect which can be modeled
as a convolution of the real-space 2pF with the probability distribution for velocity
along the LOS [150, 258, 58]. Also at intermediate scales, both the position and the
shape of the BAO peak are affected by non-linearities [141, 110, 280]. In this sense a
promising formalism is the one developed in [223] as it is mostly based on quantities
already computed in the code.

• Bias: Another important feature that ought to be implemented in future versions of
the code is the generalisation of the simple redshift-dependent bias b(z) to different
contributions of the bias expansion and scale-dependent bias, as they are known to
have important effects on the 2pF [119].

• Curvature: A generalisation of the code functionality which seems trivial at first sight
is to allow for non-zero curvature ΩK ≠ 0; however, from a technical point of view it
has some challenges. As we discussed in section 4.2, the way the code computes the
correlation function is based on the fact that we can analytically re-sum eq. (4.24) via the
addition theorem for spherical Bessel functions. The j`’s appear in the Fourier-Bessel
transform ∆` as they are the radial part of the eigenfunctions Qk(x) of the flat-space
laplacian (i.e. Qk(x) = Exp(ik ⋅ x)). The addition theorem can then be derived from
the identity

eik⋅r = eik⋅x2e−ik⋅x1 (4.79)

where r = x2 − x1. For a manifold with constant curvature, expressions for the eigen-
functions can be obtained (one finds expressions equivalent to the plane wave expansion

https://cosmology.unige.ch/content/coffe
https://cosmology.unige.ch/content/coffe
https://github.com/JCGoran/coffe
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of the flat case but with the spherical Bessel replaced by hyperspherical Bessel func-
tion [126]) and they do satisfy

Qk(x2 − x1) = Qk(x2)Qk(−x1) (4.80)

from which the addition theorem can be derived. Therefore, including curvature in
coffe is in principle straight forward, but it will require additional theoretical and
coding efforts.

• EFT of DE : An interesting application of the code will be to study the effect of dark
energy and modified gravity on the galaxy 2pF beyond the cosmological constant be-
haviour. On the one hand the code heavily relies on the ΛCDM equations and modifying
it to account for a different model will require a substantial rewriting of some portions
of it. On the other hand we can explore all the dark energy and modified gravity models
that contain one additional scalar degree of freedom with the effective field theory of
dark energy (EFT of DE) [109, 163, 68]. We can in fact describe a range of models only
using an handful of couplings, making it a very useful approach to constrain deviations
from GR. If we limit ourself to Horndeski theories and fix a background history close
to ΛCDM we can parametrise the changes to the Poisson and the anisotropy equations
by introducing two scale- and time-dependent quantities µ and Σ:

k2Ψ = −µ(z, k)
3ΩmH

2

2a
δc , (4.81)

Φ/Ψ = Σ(z, k) . (4.82)

A simple suitable parametrisation for the two couplings and applications of this idea
for the CMB and the galaxies angular power spectrum can be found in [268, 327].

• Multi-tracer observables: it has been shown that by combining different tracers of the
density field (e.g. two populations of galaxies with different biases), one can reduce
cosmic variance [226] and improve the detectability of relativistic effects in the power
spectrum [322] and in the C`’s [212]. In the 2pF, correlating two populations of galaxies
has the particularity to generate a dipole and octupole contribution [76, 77, 155, 169],
which for symmetry reasons are absent in the case of one tracer. This dipole can be used
to test the equivalence principle in a model-independent way and constrain modifications
of gravity with relativistic effects [75]. An extension of the code to multiple tracers is
therefore planed in the future. This will require the computation of odd multipoles and
their covariance matrices.



Appendices

4.A Estimators and Covariances

In this appendix we give some more details on the estimators used and we derive their co-
variances. We especially derive our estimator Ξ̂` which is new.

4.A.1 Estimators

Let us start with the estimator of the multipole of the correlation function averaged of the
redshift bin [z̄ − δz, z̄ + δz] given in eq. (4.43),

ξ̂`(r, z̄) = β`∑
ij

∆i∆jP`(µij)δK(rij − r) . (4.83)

Here ∆i ≡ ∆g(xi, zi) is the number counts per pixel of size L3
p and µij = r∥/rij where rij =

xi−xj and r∥ = χ(zi)−χ(zj). We want to normalise this estimator such that in the continuum
limit, N = V /L3

p → ∞, its expectation value is the multipole of the correlation function. Let
us compute its expectation value,

⟨ξ̂`(r, z̄)⟩ = β`∑
ij

⟨∆i∆j⟩P`(µij)δK(rij − r) . (4.84)

We now perform the continuum limit and set xi = y+r/2, xj = y−r/2 and µij = µ. The volume
of a ring of radius r with direction cosine µ to the outward direction is 2πrdr rdµ = 2πr2drdµ.
In our discrete sample we have to replace the infinitesimal scale dr by the pixel size Lp. Hence
one of the sums can by replaced by ∫ d3y/L3

p while the other becomes 2πr2
∫ dµ/L

2
p. Since

at fixed mean redshift z̄ the correlation function does not depend on y, the y-integration just
contributes a volume factor. Putting it all together we obtain

⟨ξ̂`(r, z̄)⟩ = β`
2πr2V

L5
p
∫

1

−1
dµξ(r, µ, z̄)P`(µ) . (4.85)

105
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Inserting the expansion

ξ(r, µ, z̄) =
∞
∑
`=0

ξ`(r, z̄)P`(µ) (4.86)

and making use of the orthogonality relation

∫

1

−1
dµP`(µ)P`′(µ) = 2

2` + 1
δ`,`′ ,

we find

⟨ξ̂`(r, z̄)⟩ = β`
4πr2V

L5
p(2` + 1)

ξ`(r, z̄) . (4.87)

In order for this to estimate ξ` we must choose

β` =
2` + 1

4π

L5
p

r2V
. (4.88)

Let us now turn to the more sophisticated estimator Ξ̂` which does not just assign a global
mean redshift inside our redshift bin but instead assigns to each pair its correct mean redshift.
Since the redshift resolution of a spectroscopic survey can be very high, 10−3 or better, it may
well be that there are only a few galaxy pairs with a fixed distance and the precise mean
redshift in a bin (of width 2δz ∼ 0.1 or so). Therefore we shall integrate over the bin with a
given redshift distributionW (z). If one wants to select a fixed redshift one can simply choose
W to be a delta function.

The quantities ∆i are again the number counts per pixel of size L3
p. For the continuum

limit of eq. (4.45) we therefore have to replace

∑
ij

∆i∆j Ð→ ∫
d3xid

3xj

L6
p

∆g(xi)∆g(xj) ,

where now ∆g(x) is the continuum density contrast. We also replace the sum over discrete
redshifts zk by an integral, ∫ dz. With this, the continuum limit of Ξ̂` is

Ξ̂`(r, z̄, δz) → γ`∫
z̄+δz

z̄−δzdzW (z)∫
d3xid

3xj

L6
P

[
1 + cos θij

2r2
j

×∆g(xi, zi)∆g(xj , zj)P`(µij)Lpδ(rij − r)δ(zij − z)] ,

(4.89)

Note that we have replaced the Kronecker delta for the relative distance rij by a Dirac delta
multiplied by the pixel size. This not only has the right dimension but also takes care of the
fact that we do not distinguish distances within one pixel.

We now make the coordinate transformation

xi → r = xi − xj and xj → (χij =
∣xi∣ + ∣xi∣

2
, θj , φj) .
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Here θj and φj are the polar angles of xj , and we do not distinguish between χ((zi + zj)/2)
and (∣xi∣ + ∣xi∣)/2. The Jacobian of the transformation is readily calculated and amounts to

J = Det [
∂(xi,xj)

∂(χij , θj , φj)
] =

2x2
j sin θj

1 + cos θij
, (4.90)

where as above θij is the angle between xi and xj . To eliminate this xj and xi dependent
factor, we had to define our estimator as the density pair multiplied by the inverse of the factor.
After this coordinate transformation the integration over (θj , φj) can readily be performed
and simply gives a factor 4π. As above, the integral d3r can be written as 2πr2drdµ. We
then obtain, for the expectation value of our estimator,

⟨Ξ̂`(r, z̄, δz)⟩ = γ`
(4π)2r2

2L5
p
∫

z̄+δz
z̄−δzdz

W (z)

H(z)
∫

1

−1
dµξ(r, µ, z)P`(µ) . (4.91)

Here we have performed the χij-integration using the redshift delta-function and the identity
δ(zij − z) = δ(χij − χ)/H(z). Like above, the µ-integration now yields the moment ξ`,

⟨Ξ̂`(x, z̄, δz)⟩ = γ`
(4π)2r2

(2` + 1)L5
p
∫

z̄+δz
z̄−δzdz

W (z)

H(z)
ξ`(r, z) . (4.92)

Hence in order to obtain the desired estimator for

Ξ`(r, z̄, δz) =H0∫

z̄+δz
z̄−δzdz

W (z)

H(z)
ξ`(r, z) , (4.93)

we have to choose

γ` =
2` + 1

(4π)2

L5
pH0

r2fsky
. (4.94)

The factor fsky has been introduced here to account also for partial sky coverage. Note
that the normalization factor γ` has the correct dimension (length)2 to compensate for the
dimensions of the factor 1/r2

j in the sum of (4.89) which therefore yields a dimensionless
estimator. For the formula to hold, we also have assumed that the redshift window function
is normalized to unity.

The estimators discussed here are optimal for the unrealistic case of a nearly full and
homogeneous sky coverage. If there are certain parts of the sky where observations are
better, more complete and or more precise, this can be taken into account by multiplying
with an inhomogeneous weighting function in order to enhance the weight of these regions.
Furthermore, for a complicated fractional sky coverage a simple multiplicative factor fsky is
also not optimal. In this thesis we do not discuss these subtleties which, however are part of
every real observation.

4.A.2 Covariance matrix

Here we briefly derive the expressions for the covariance matrices, eqs. (4.56) and (4.57).
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In this calculation we only include the dominant terms: density and redshift space dis-
tortion. Even though at very large distance the correlation function is dominated by lensing,
the covariance matrix C(r, r′) includes contributions from distances much smaller than r and
r′ where the standard terms largely dominate. This means that the density and RSD are the
main contribution to the covariance matrix also at large distances. We also neglect redshift
evolution and wide angle effects in the covariance matrix such that our estimator for the
correlation function is

ξ̂(r) =
1

V
∫
V
d3x∆̂g(x)∆̂g(x + r) . (4.95)

Including Poisson noise the observed two-point correlation function is given by

⟨∆̂g(x)∆̂g(x
′
)⟩ = ξ(x − x′) + 1

n̄
δ(x − x′) , (4.96)

where n̄ is the mean number density in the redshift bin under consideration.
Assuming Gaussianity the covariance matrix of ξ̂ is then becomes

C(r, r′) = ⟨ξ̂(r)ξ̂(r′)⟩ − ⟨ξ̂(r)⟩⟨ξ̂(r′)⟩
=

1

V 2 ∫V ×V d
3xd3x′ [ξ(x − x′)ξ(x + r − x′ − r′) + ξ(x + r − x′)ξ(x − x′ − r′)]

+
2

V n̄
[ξ(r − r′) + ξ(r + r′)] + 1

n̄2
[δ(r − r′) + δ(r + r′)] .

Here we have used that the correlation function (for one population of galaxies) is symmetric,
ξ(r) = ξ(−r). The first line is the cosmic variance term, the second line contains terms which
mix cosmic variance and Poisson noise and the last term is a pure Poisson noise term. Note
that - as we have already anticipated - even if both r and r′ are very large, the covariance
matrix contains the correlation function at very small arguments, maybe in ξ(r − r′) but
surely in the pure cosmic variance term, and these terms dominate the covariance. This has
disadvantages, namely the covariance becomes much larger than ξ(r) and ξ(r′) for large r and
r′ leading to a small signal with large noise, but it also means that it is a good approximation
to neglect wide angle effects and lensing in the covariance matrix as these are subdominant
for small separation.

After a change of variables, (x,x′) → (x,y) with y = x−x′, the x-integration of the cosmic
variance term becomes trivial. Inserting the Fourier representation

ξ(y) = (2π)−3
∫ d3kP (k) exp[ik ⋅ y] ,

the y-integration of the cosmic variance term can be performed leading to a Dirac delta of
the two Fourier variables. Representing also the Dirac delta of the Poisson term in Fourier
space, we end up with

C(r, r′) = 1

V (2π)3 ∫ d3k [P 2
(k) +

2

n̄
P (k) +

1

n̄2
] (eik⋅(r−r′) + eik⋅(r+r′)) . (4.97)

We now use the fact that (in the flat sky approximation) P (k) = P (k, ν) where ν is the direc-
tion cosine between the observation direction n and k. Furthermore, we write the exponentials
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in terms of Bessel functions, j`, and Legendre polynomials P` as

exp(ik ⋅ r) =
∞
∑
`=0

i`(2` + 1)P`(µ)j`(kr) ,

where µ is the direction cosine between k and r. With this for example the pure cosmic
variance term becomes

1

V (2π)3 ∫ d3kP 2
(k, ν)∑

`,`′
P`(µ)P`′(µ′)j`(kr)j`′(kr′) [i`−`′+ i`+`′](2` + 1)(2`′ + 1) .

Since P (k) is even in k, we obtain non-vanishing results only if both, ` and `′ are even.
Therefore i`−`′ + i`+`′ = 2i`−`′ . We expand also P and P 2 in Legendre polynomials using
P (k, ν) = P (k)(c0 + c2P2(ν) + c4P4(ν)) and

P 2
(k, ν) = P 2

(k)
4

∑
`=0

c̃2`P2`(ν) , (4.98)

where the coefficients c̃L are obtained by expanding the square (P (k, ν)/P (k))2 in Legendre
polynomials,

(c0P0 + c2P2 + c4P4)
2
=

8

∑
L=0

c̃LPL . (4.99)

The values cL and c̃L are given in (4.33) to (4.35) and (4.60) to (4.64).
Employing the addition theorem of spherical harmonics for ν = k̂⋅n, µ = k̂⋅r̂ and µ′ = k̂⋅r̂′ we

convert the Legendre polynomials into products of spherical harmonics. The angular integral
of the pure covariance and of the mixed term leads to an angular integral of a product of
three spherical harmonics which can be performed exactly using

∫ dΩkYLM(k̂)Y`′m′(k̂)Y`m(k̂) =

√
(2L + 1)(2`′ + 1)(2` + 1)

4π

⎛

⎝

L `′ `

0 0 0

⎞

⎠

⎛

⎝

L `′ `

M m′ m

⎞

⎠
.

This yields

∫ dΩkPL(ν)P`(µ)P`′(µ′) =
¿
Á
ÁÀ (4π)5

(2L + 1)(2`′ + 1)(2` + 1)

⎛

⎝

L `′ `

0 0 0

⎞

⎠

× ∑
M,m,m′

⎛

⎝

L `′ `

M m′ m

⎞

⎠
Y ∗
LM(n)Y ∗̀′m′(r̂′)Y ∗̀

m(r̂) .

We now choose n = ez so that YLM(n) =
√

(2L + 1)/4πδM,0. Inserted this in (4.97) we find

C(r, r′) = 2(4π)2

V (2π)3 ∑
L,`,`′,m,m′

√
(2`′ + 1)(2` + 1)

⎛

⎝

L `′ `

0 0 0

⎞

⎠
i`−`′ ⎛

⎝

L `′ `

0 m′ m

⎞

⎠

× Y ∗̀′m′(r̂′)Y ∗̀
m(r̂)∫ dkk2

[c̃LP
2
(k) + cL

2

n̄
P (k) + δ0L

1

n̄2
] j`(kr)j`′(kr′) .
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The covariance matrix for the multipoles n and n′ is given by

cov(ξ)n,n′(r, r′) = (2` + 1)(2`′ + 1)

4
∫

1

−1
dµ∫

1

−1
dµ′Pn(µ)Pn′(µ′)C(r, r′) , (4.100)

where now µ = n ⋅ r̂ = cos θ and µ′ = n ⋅ r̂′ = cos θ′. Using that Pn(µ) =
√

4π/(2n + 1)Yn0(r̂)
together with the orthonormality of the spherical harmonics we can write

cov(ξ)`,`′(r, r′) = 1

V π2
(2`′ + 1)(2` + 1)∑

L

⎛

⎝

L `′ `

0 0 0

⎞

⎠

2

i`−`′

× (∫ dkk2
[c̃LP

2
(k) + cL

2

n̄
P (k) + δ0L

1

n̄2
] j`(kr)j`′(kr′)) .

Integrating the last term with

∫

∞
0

dkk2kj`(kr)j`′(kr′) = δ``′ π
2r2

δ(r − r′) ,

and using
⎛

⎝

0 `′ `

0 0 0

⎞

⎠
= (−)`

√
1/(2` + 1)δ``′ , we finally obtain

cov(ξ)`,`′(r, r′) = i
`−`′
V

⎡
⎢
⎢
⎢
⎢
⎣

(2` + 1)

2πn̄2r2
δ(r − r′)δ``′ + 1

n̄
G``′(r, r′, z̄)∑

σ

cσ
⎛

⎝

` `′ σ

0 0 0

⎞

⎠

2

+D``′(r, r′, z̄)∑
σ

c̃σ
⎛

⎝

` `′ σ

0 0 0

⎞

⎠

2 ⎤
⎥
⎥
⎥
⎥
⎦

,

(4.101)

where G``′ and D``′ are given in eqs. (4.58) and (4.59). This is simply the continuum limit of
eq. (4.56).

In order to find the corresponding expressions for Ξ we integrate the result obtained
for ξ over the redshift interval with the weight given in (4.46). This is of course not very
precise since it does not take into account the exact mean redshift of the points x, x + r and
x′, x′ + r′, but these redshifts depend also on the directions of r and r′ which would lead
to very complicated expressions. Furthermore, since the covariance matrix is dominated by
small distances, we expect only very minor changes which we neglect.

4.B Xn
` and Zn

` list

The full list of Xn
` is given (where b1 = b(z1), f2 = f(z2) etc.):

X0
0 ∣den = b1b2 ,

X0
0 ∣rsd = f1f2

1 + 2 cos2 θ

15
,

X0
2 ∣rsd = −

f1f2

21
[1 + 11 cos2 θ +

18 cos θ(cos2 θ − 1)χ1χ2

r2
] ,
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X0
4 ∣rsd = f1f2 [

4(3 cos2 θ − 1)(χ4
1 + χ

4
2)

35r4
+ χ1χ2(3 + cos2 θ)

3(3 + cos2 θ)χ1χ2 − 8(χ2
1 + χ

2
2) cos θ

35r4
] ,

X2
0 ∣d1 = H1H2f1f2G1G2

r2 cos θ

3
,

X2
2 ∣d1 = −H1H2f1f2G1G2 ((χ2 − χ1 cos θ)(χ1 − χ2 cos θ) +

r2 cos θ

3
) ,

X4
0 ∣d2 = (3 − fevo1)(3 − fevo2) r

4
H

2
1H

2
2f1f2 ,

X4
0 ∣g1 =

9 r4Ω2
m

4a1a2
(1 +G1)(1 +G2)H

4
0 ,

X4
0 ∣g2 =

9 r4Ω2
m

4a1a2
(5s1 − 2)(5s2 − 2)H4

0 ,

X4
0 ∣g3 =

9 r4Ω2
m

4a1a2
(f1 − 1)(f2 − 1)H4

0

X0
0 ∣den-rsd =

b1f2

3
,

X0
2 ∣den-rsd = −b1f2 (

2

3
− (1 − cos2 θ)

χ2
1

r2
) ,

X1
1 ∣den-d1 = −b1f2H2G2(χ1 cos θ − χ2) ,

X2
0 ∣den-d2 = (3 − fevo2) r

2b1f2H
2
2 ,

X2
0 ∣den-g1 = −b1

3Ωm

2a2
(1 +G2)r

2
H

2
0 ,

X2
0 ∣den-g2 = −b1

3Ωm

2a2
(5s2 − 2)r2

H
2
0 ,

X2
0 ∣den-g3 = −b1

3Ωm

2a2
(f2 − 1)r2

H
2
0 ,

X1
1 ∣rsd-d1 = f1f2H2G2

(1 + 2 cos2 θ)χ2 − 3χ1 cos θ

5
,

X1
3 ∣rsd-d1 = f1f2H2G2

(1 − 3 cos θ)χ3
2 + cos θ(5 + cos2 θ)χ2

2χ1 − 2(2 + cos θ2)χ2χ
2
1 + 2χ3

1 cos θ

5r2
,

X2
0 ∣rsd-d2 =

3 − fevo2

3
f1f2r

2
H

2
2 ,

X2
2 ∣rsd-d2 = −(3 − fevo2)f1f2H

2
2 (

2

3
r2
− (1 − cos2 θ)χ2

2) ,

X2
0 ∣rsd-g1 = −

Ωm

2a2
f1(1 +G2)r

2
H

2
0 ,

X2
2 ∣rsd-g1 =

3Ωm

2a2
f1(1 +G2)H

2
0 (

2

3
r2
− (1 − cos2 θ)χ2

2) ,

X2
0 ∣rsd-g2 = −

Ωm

2a2
f1(5s2 − 2)r2

H
2
0 ,
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X2
2 ∣rsd-g2 =

3Ωm

2a2
f1(5s2 − 2)H2

0 (
2

3
r2
− (1 − cos2 θ)χ2

2) ,

X2
0 ∣rsd-g3 = −

Ωm

2a2
f1(f2 − 1)r2

H
2
0 ,

X2
2 ∣rsd-g3 =

3Ωm

2a2
f1(f2 − 1)H2

0 (
2

3
r2
− (1 − cos2 θ)χ2

2) ,

X3
1 ∣d1-d2 = −(3 − fevo2)H1H

2
2f1f2 r

2
(χ2 cos θ − χ1) ,

X3
1 ∣d1-g1 =

3Ωm

2a2
H

2
0H1f1(1 +G2) r

2
(χ2 cos θ − χ1) ,

X3
1 ∣d1-g2 =

3Ωm

2a2
H

2
0H1f1(5s2 − 2) r2

(χ2 cos θ − χ1) ,

X3
1 ∣d1-g3 =

3Ωm

2a2
H

2
0H1f1(f2 − 1) r2

(χ2 cos θ − χ1) ,

X4
0 ∣d2-g1 = −

3(3 − fevo1) r
4Ωm

2a2
H

2
0H

2
1f1(1 +G2) ,

X4
0 ∣d2-g2 = −

3(3 − fevo1) r
4Ωm

2a2
H

2
0H

2
1f1(5s2 − 2) ,

X4
0 ∣d2-g3 = −

3(3 − fevo1) r
4Ωm

2a2
H

2
0H

2
1f1(f2 − 1) ,

X4
0 ∣g1-g2 =

9 r4Ω2
m

4a1a2
H

4
0(1 +G1)(5s2 − 2) ,

X4
0 ∣g1-g3 =

9 r4Ω2
m

4a1a2
H

4
0(1 +G1)(f2 − 1) ,

X4
0 ∣g2-g3 =

9 r4Ω2
m

4a1a2
H

4
0(5s1 − 2)(f2 − 1) .

where

G(z) =
Ḣ

H2
+

2 − 5s

χH
+ 5s − fevo . (4.102)

The full list of Zn` is given (note that inside the integral: r = r(λ,λ′) as defined in eqs. (4.75),(4.76)):

Z ∣len =
9Ω2

m

4
H

4
0

(2 − 5s1)(2 − 5s2)

χ1χ2

χ1

∫

0

dλ

χ2

∫

0

dλ′ (χ1 − λ)(χ2 − λ
′)

λλ′
D1(λ)D1(λ

′)
a(λ)a(λ′)

× {
2

5
(cos2 θ − 1)λ2λ′2I0

0(r) +
4r2 cos θλλ′

3
I2

0(r)

+
4 cos θλλ′(r2 + 6 cos θλλ′)

15
I1

1(r) +
2(cos2 θ − 1)λ2λ′2(2r4 + 3 cos θr2λλ′)

7r4
I0

2(r)

+
2 cos θλλ′ (2r4 + 12 cos θr2λλ′ + 15(cos2 θ − 1)λ2λ′2)

15r2
I1

3(r)
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+
(cos2 θ − 1)λ2λ′2 (6r4 + 30 cos θr2λλ′ + 35(cos2 θ − 1)λ2λ′2)

35r4
I0

4(r)} ,

Z ∣g4 = 9Ω2
mH

4
0

(2 − 5s1)(2 − 5s2)

χ1χ2

χ1

∫

0

dλ

χ2

∫

0

dλ′D1(λ)D1(λ
′)

a(λ)a(λ′) r4I4
0(r) ,

Z ∣g5 = 9Ω2
mH

4
0G1G2

χ1

∫

0

dλ

χ2

∫

0

dλ′D1(λ)D1(λ
′)

a(λ)a(λ′) H(λ)H(λ′)(f(λ) − 1)(f(λ′) − 1)r4I4
0(r) ,

Z ∣den-len = −
3Ωm

2
b1H

2
0

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
χ2 − λ

λ

D1(λ)

a(λ)
{2χ1λ cos θI1

1(r)

−
χ2

1λ
2(1 − cos2 θ)

r2
I0

2(r)} ,

Z ∣rsd-len =
3Ωm

2
f1H

2
0

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
χ2 − λ

λ

D1(λ)

a(λ)
{
λ

15
(λ − 6χ1 cos θ + 3λ cos 2θ)I0

0(r)

− λ
6χ3

1 cos θ − χ2
1λ (9 cos2 θ + 11) + χ1λ

2 cos θ(3 cos 2θ + 19) − 2λ3(3 cos 2θ + 1)

21r2
I0

2(r)

−
λ

35r4
[ − 4χ5

1 cos θ − χ3
1λ

2 cos θ(cos 2θ + 7) + χ2
1λ

3 (cos4 θ + 12 cos2 θ − 21)

− 3χ1λ
4 cos θ(cos 2θ − 5) − λ5

(3 cos 2θ + 1) + 12χ4
1λ]I

0
4(r)} ,

Z ∣d1-len =
3Ωm

2
H

2
0H1f1G1

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
χ2 − λ

λ

D1(λ)

a(λ)

× {2λ
cos θ (λ2 − 2χ2

1) + χ1λ(2 cos 2θ − 1)

15
I1

1(r) +
2

3
r2λ cos θI2

0(r)

− λ
4χ4

1 cos θ − χ3
1λ (cos2 θ + 9) + χ2

1λ
2 cos θ (cos2 θ + 5) − 2χ1λ

3(cos 2θ − 2) − 2λ4 cos θ

15r2
I1

3(r)} ,

Z ∣d2-len = −
3Ωm

2
(3 − fevo1)f1H

2
1H

2
0

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
χ2 − λ

λ

D1(λ)

a(λ)
{2χ1λr

2 cos θI3
1(r)

− χ2
1λ

2
(1 − cos2 θ)I2

2(r)} ,

Z ∣g1-len =
9Ω2

m

4
(1 +G1)H

4
0

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
χ2 − λ

λ

D1(λ)

a(λ)
{2χ1λr

2 cos θI3
1(r)

− χ2
1λ

2
(1 − cos2 θ)I2

2(r)} ,
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Z ∣g2-len =
9Ω2

m

4
(5s1 − 2)H4

0

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
χ2 − λ

λ

D1(λ)

a(λ)
{2χ1λr

2 cos θI3
1(r)

− χ2
1λ

2
(1 − cos2 θ)I2

2(r)} ,

Z ∣g3-len =
9Ω2

m

4
(f1 − 1)H4

0

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
χ2 − λ

λ

D1(λ)

a(λ)
{2χ1λr

2 cos θI3
1(r)

− χ2
1λ

2
(1 − cos2 θ)I2

2(r)} ,

Z ∣g4-len =
9Ω2

m

2
H

4
0

(2 − 5s1)(2 − 5s2)

χ1χ2

χ1

∫

0

dλ

χ2

∫

0

dλ′χ2 − λ
′

λ′
D1(λ)D1(λ

′)
a(λ)a(λ′) {2λλ′r2 cos θI3

1(r)

− λ2λ′2(1 − cos2 θ)I2
2(r)} ,

Z ∣g5-len =
9Ω2

m

2
H

4
0G1

2 − 5s2

χ2

χ1

∫

0

dλ

χ2

∫

0

dλ′H(λ)(f(λ) − 1)
χ2 − λ

′
λ′

D1(λ)D1(λ
′)

a(λ)a(λ′) {2λλ′r2 cos θI3
1(r)

− λ2λ′2(1 − cos2 θ)I2
2(r)} ,

Z ∣den-g4 = −3ΩmH
2
0b1

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
D1(λ)

a(λ)
r2I2

0(r) ,

Z ∣den-g5 = −3ΩmH
2
0b1G2D1(z1)

χ2

∫

0

dλH(λ)(f(λ) − 1)
D1(λ)

a(λ)
r2I2

0(r) ,

Z ∣rsd-g4 = 3ΩmH
2
0f1

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
D1(λ)

a(λ)
{(

2r2

3
+ (cos2 θ − 1)λ2

) I2
2(r) −

r2

3
I2

0(r)} ,

Z ∣rsd-g5 = 3ΩmH
2
0f1G2D1(z1)

χ2

∫

0

dλH(λ)(f(λ) − 1)
D1(λ)

a(λ)
{(

2r2

3
+ (cos2 θ − 1)λ2

) I2
2(r) −

r2

3
I2

0(r)} ,

Z ∣d1-g4 = 3ΩmH
2
0H1f1

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
D1(λ)

a(λ)
{r2

(λ cos θ − χ1)I
3
1(r)} ,

Z ∣d1-g5 = 3ΩmH
2
0H1f1G2D1(z1)

χ2

∫

0

dλH(λ)(f(λ) − 1)
D1(λ)

a(λ)
{r2

(λ cos θ − χ1)I
3
1(r)} ,

Z ∣d2-g4 = −3ΩmH
2
0(3 − fevo1)f1H

2
1

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
D1(λ)

a(λ)
r4I4

0(r) ,



4.B. XN
` AND ZN` LIST 115

Z ∣d2-g5 = −3ΩmH
2
0(3 − fevo1)f1H

2
1G2D1(z1)

χ2

∫

0

dλH(λ)(f(λ) − 1)
D1(λ)

a(λ)
r4I4

0(r) ,

Z ∣g1-g4 =
9Ω2

m

2a1
H

4
0(1 +G1)

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
D1(λ)

a(λ)
r4I4

0(r) ,

Z ∣g1-g5 =
9Ω2

m

2a1
H

4
0(1 +G1)G2D1(z1)

χ2

∫

0

dλH(λ)(f(λ) − 1)
D1(λ)

a(λ)
r4I4

0(r) ,

Z ∣g2-g4 =
9Ω2

m

2a1
H

4
0(5s1 − 2)

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
D1(λ)

a(λ)
r4I4

0(r) ,

Z ∣g2-g5 =
9Ω2

m

2a1
H

4
0(5s1 − 2)G2D1(z1)

χ2

∫

0

dλH(λ)(f(λ) − 1)
D1(λ)

a(λ)
r4I4

0(r) ,

Z ∣g3-g4 =
9Ω2

m

2a1
H

4
0(f1 − 1)

2 − 5s2

χ2
D1(z1)

χ2

∫

0

dλ
D1(λ)

a(λ)
r4I4

0(r) ,

Z ∣g3-g5 =
9Ω2

m

2a1
H

4
0(f1 − 1)G2D1(z1)

χ2

∫

0

dλH(λ)(f(λ) − 1)
D1(λ)

a(λ)
r4I4

0(r) ,

Z ∣g4-g5 = 9Ω2
mH

4
0G2

2 − 5s1

χ1

χ1

∫

0

dλ

χ2

∫

0

dλ′H(λ′)(f(λ′) − 1)
D1(λ)D1(λ

′)
a(λ)a(λ′) r4I4

0(r) .



CHAPTER 5

Correlation function III: The 2nd feature

Based on:

[292] V. Tansella “On the 2nd feature of the matter two-point function”
Phys.Rev. D97 (2018) 10, [arXiv:1804.05826].

Abstract. In this chapter we point out the existence of a second feature in the matter two-
point function, besides the acoustic peak, due to the baryon-baryon correlation in the early
universe and positioned at twice the distance of the peak. We discuss how the existence of
this feature is implied by the well-known heuristic argument that explains the baryon bump
in the correlation function. A standard χ2 analysis to estimate the detection significance of
the second feature is mimicked. We conclude that for realistic values of the baryon density,
an SKA-like galaxy survey will not be able to detect this feature with a standard correlation
function analysis.

5.1 Introduction

The main subject of this thesis is the two-point function of galaxies. It is one of the most
important probes of the large scale structures (LSS) of the universe and measurements of
the two-point function (2pF) have been reported by different collaborations in the past
years [197, 115, 17, 179, 31, 20]. In the future, upcoming redshift surveys will probe the
LSS of the universe at deeper redshift and for larger volumes [203, 216], with unprecedented
precision.

With these surveys we can nicely link late-time measurements to early-time physics. The
most striking example are the acoustic oscillations in the primordial plasma – first predicted
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in [288, 287, 242] – which leave their imprint on cosmological observables. Their measure-
ment is considered as one of the most important successes of the ΛCDM model. In the
cosmic microwave background, the scale of the baryon acoustic oscillations (BAO) is a probe
of the sound horizon at decoupling and it manifests itself as a series of peaks in the angu-
lar spectrum [11]. A similar feature can also be seen in the matter power spectrum [227],
while, in the 2pF, the same physics is responsible for a single peak located at a comoving dis-
tance slightly bigger – as we will explain in section 5.2 – than the sound horizon at decoupling.

The BAO peak in the correlation function has been first measured in [137]. Since then
it has been systematically used as a standard ruler to probe the distance-redshift rela-
tion [57, 61, 25], in order to constrain the cosmic expansion history [140]. The peak is
also sensitive to other cosmological parameters [305, 44, 42, 43]. A complication arises as the
position of the peak measured with data cannot be fitted with linear theory: non-linearities
affect both the position and the shape of the BAO feature [141, 110, 280, 223, 308, 29].

Here we consider a second feature: a trough in the correlation function positioned at
twice the distance of the peak. The existence of this feature is implied by the well-known
heuristic argument that is commonly used to explain the BAO peak (see section 5.2), but
never mentioned in the literature. In section 5.3 we mimic the fitting procedure – used by
galaxy surveys to measure the peak position – to study the expected detection significance of
the second feature for an SKA-like survey.

5.2 The 2nd feature

We outline in this section the heuristic argument given in the seminal paper [141] and sum-
marized in the review [40]. This will give us insight on how this argument implies a second
feature in the correlation function. The technical foundations can be found in [38, 39, 234].

Let us focus on some initial over-dense point in the primordial plasma – when baryons
are tightly coupled to photons via Thomson scattering. If the fluctuations are adiabatic the
over-density will be shared by all species: in particular a region over-dense in photons will
also have an over-pressure with respect to its surroundings. This pressure imbalance causes
an acoustic wave in the baryon-photon plasma which travels at the speed of sound cs until
baryons decouple from the photons. When this happens the baryon’s speed of sound goes
to zero and the wave is frozen: the initial over-density is now composed only of dark matter
while baryons have created an over-dense spherical region around the initial point. Every
over-density will behave as we just described and the net result is that matter is more likely
to cluster with a correlation length corresponding to the sound horizon at decoupling. It
is clear that this process, as we have already anticipated, is responsible for the BAO peak:
according to our discussion in section 3.1, the correlation function is defined as the excess
probability (over Poisson noise) of finding two tracers separated by a comoving distance s
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and hence it peaks for s ∼ shor, where the comoving sound horizon is defined as

shor =

tdrag

∫

0

dt cs(t)(1 + z) . (5.1)

and t is cosmic time. The end of the Compton drag epoch tdrag is the time at which the
baryons are released from the drag of photons. It is the moment at which the baryons ve-
locity decouples from the photons. Baryons decoupling takes place at a later time than
photon-decoupling, roughly at zdrag ≃ 100. In fact, even if radiation decoupling epoch is
z ≃ 1100, the mean-free path of electrons and photons is given respectively by `e = (σTnγ)

−1,
`γ = (σTne)

−1, where σT is the Thomson cross-section and ne,γ the energy densities. As
nγ ≫ ne we have `e ≪ `γ and the scattering rate of electrons is sufficient to keep the baryons
temperature Tb equal to radiation temperature Tγ down to redshifts zdrag. One must however
be careful to solve eq. (5.1) analytically up to zdrag as the tight-coupling approximation fails
below z ≃ 850, where shor essentially stops to grow since the baryons sound speed drops dra-
matically. Here we do not solve for shor analytically but using the Boltzmann code class [66].

If we go back to our idealistic picture of a dark matter perturbation surrounded by a
spherical shell of baryons we see that the correlation will not only be enhanced at shor but, as
all the baryons are in the shell, we will also get a trough when the correlation length reaches
the diameter of the shell: 2shor. In other words – in our idealized picture – as long as the
correlation length is < 2shor the baryon-baryon correlation contributes to the matter 2pF as
it is always likely to ‘find’ two baryons in the shell. On the other hand, when the correlation
length reaches the diameter of the shell, the baryon-baryon contribution has a sharp trough.
This 2nd feature (2FT) is illustrated in figure 5.1: we can clearly see the drop in the 2pF at
2shor for high values of Ωb, while the feature is less pronounced when baryons contribute less
to the energy-density budget.

One might notice that, even in linear theory, the position of the acoustic peak is not ex-
actly centered on shor: this is a known effect due to imperfect baryon-photon coupling, which
allows photons to diffuse out of the perturbation and drag the baryons with them1, and veloc-
ity overshoot – both discussed in detail in [270]. Note that the dark matter over-density does
not remain at the center of the shell as it is gravitationally bound to the outgoing species,
this does however not change the position of the peak. Despite these complications the peak
is an extremely interesting cosmological observable as it is sensitive to a range of cosmological
parameters. For example shor is directly related to the sound speed cs via eq. (5.1) which,
in turn, is related to the Ωb and Ωγ ratio. The positions of the features are also sensitive to
the expansion history prior to decoupling as the propagation time of the sound wave depends
on the expansion rate, introducing for example a subtle dependence on Ων (see [298] for a
comprehensive treatment). Finally, measuring the positions of the features as a function of
redshift – using them as statistical standard rulers – constrains the late-time expansion rate
and gives informations on Ωm, ΩΛ and the equation of state of dark energy w.

1In Fourier– and angular– space this effect is responsible for the Silk damping.
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Figure 5.1: The angle-averaged matter correlation function at z̄ = 1 for three different
cosmologies with Ωb = 0.25 (gray), Ωb = 0.15 (blue) and Ωb = 0.05 (red). The total matter
density is fixed to Ωm = 0.31 and the sound horizon at the drag epoch for the different models
is shown.

We could naively think that, since we are searching for a feature at twice the separation
of the BAO peak, we are safe from non-linear effects at these very large scales. This is only
partially correct. Non-linear effects on the BAO peak come in two aspects: a broadening of
the feature and a shift of the peak position. The damping effect is easily understood in real
space, where non-linear physics can move the tracers around, on the scale of ∼ 10Mpc, pulling
them out of the 100Mpc/h shell and hence broadening the peak feature [223]. In Fourier space
this effect is responsible for the smoothing of the subsequent peaks in the power spectrum
(see e.g. [28]). The fact that we are looking at two galaxies at a distance where linear physics
should give an adequate description is not important in this case: the local non-linearities
around the two tracers have an observable (and important) effect. For this reason we expect
the 2FT to suffer from the same non-linear correction to its shape as it is not protected from
non-linear broadening. We stick to the linear description of the 2pF in this work where the
feature is sharper and therefore we will overestimate the detection significance in section 5.3.
This does not change our conclusions. On the other hand, in order to induce a shift in the
position of the feature, non-linear physics has to coherently and systematically move tracers
separated by shor or 2shor either closer or further away from each other. The small shift of
the BAO peak has been widely investigated [280, 120, 32, 29, 238, 63] and in this sense the
fact the 2FT is located at larger scales means it will be less affected, as the position is only
sensible to non-linear effects at the ∼ 200Mpc/h scale.
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Fourier space

Let us now discuss how the simple picture depicted in this section is translated in Fourier
space2. The matter transfer function can be written as

SD(k) = fcdmScdm(k) + fbSb(k) , (5.2)

where fcdm = Ωcdm/Ωm, fb = Ωb/Ωm and we drop the redshift-dependence here. Scdm is the
smooth contribution of cold dark matter to the transfer function while Sb ∼ sin(shork) contains
the ‘sine-wave’ oscillations of the BAO (note that Scdm and Sb are intended as contributions
to the matter transfer function at late time but they are no transfer functions themselves).
The power spectrum is then proportional to

k3P (k) ∼ f2
cdmS

2
cdm + 2fcdmfbScdmSb + f

2
b S

2
b . (5.3)

For fb ≪ fcdm the last term is subdominant and P (k) has the familiar shape of a superpo-
sition of a smooth function and a ‘sine-wave’. On the other hand for fb ≳ fcdm the squared
oscillations start to dominate, increasing both the frequency of the BAO and their amplitude
(see fig. 5.2). When we Fourier transform to obtain the 2pF, the ‘sine-wave’ part of P (k)
contributes to the BAO peak while the ‘sine-square’ part from S2

b is responsible for the feature
at twice the peak distance as it oscillates with twice the frequency. Hence, also in Fourier
space, bigger values of fb correspond to a more pronounced 2FT.

5.3 Fitting Methodology

We now want to gain insight on the ability of galaxy surveys to detect the second feature in
the matter two-point function. The procedure to detect the BAO peak is now well-established
(as described in [314] and used e.g. in [217]) and we follow it here for the 2FT. The BAO
detection is usually quoted as the χ2 difference between the best fit model and the model
with no features. In other words we study how reliably we can reject a no-feature model. We
do not deal with real data here but generate a fake ‘data’ vector ξ from our fiducial model
and compute the χ2 from the standard definition

χ2
fit(α) = (ξfit(α) − ξ)

TC−1
(ξfit(α) − ξ) , (5.4)

where C is the covariance matrix for the fiducial model, which we have computed in sec-
tion 4.2.3. The quantity α is the scale dilatation parameter which measures the position of
the feature (being the BAO peak or the 2FT) with respect to the fiducial model. In real data
analyses α is a measure of

α =
DV (z)s∗,fid
Dfid
V (z)s∗ (5.5)

2This argument is discussed in https://www.cfa.harvard.edu/~deisenst/acousticpeak/spherical_
acoustic.pdf: a short but vey nice essay which, to our knowledge, is the only place where the 2FT is
briefly mentioned for the purely-baryonic case.

https://www.cfa.harvard.edu/~deisenst/acousticpeak/spherical_acoustic.pdf
https://www.cfa.harvard.edu/~deisenst/acousticpeak/spherical_acoustic.pdf
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Figure 5.2: The residual BAO oscillations P (k)/Pnw(k) − 1 once the broadband shape is
factored out with the no-wiggle power spectrum Pnw, defined in eq. (5.14). Color coding as
in fig. 5.1.

where the subscript ‘fid’ means ‘fiducial’, s∗ is the comoving position of the feature and DV

is the spherically averaged3 distance defined as

DV (z) = [cz(1 + z)D2
A(z)H(z)]

1/3
. (5.6)

The parameter α is the measurement of the 2FT scale in the sense that it characterises any
observed shift in the relative position of the acoustic feature in the data versus the model.
The value of α which minimises χ2 is related to the feature position via eq. (5.5), and the
feature position roughly marks 2shor.
In this work the fiducial model is generated starting from the linear matter power spectrum
P (k) obtained from class (multiplied by the large-scale galaxy bias b2(z)) and converted
into the full-sky correlation function [294] using the coffe [295] code4. To mimic most BAO
analyses we include the effect of redshift-space distortion in the 2pF but neglect other rela-
tivistic effects (such as lensing and the Doppler effect). We also neglect non-linear damping5

and set the streaming scale to zero as our fiducial model – from which we draw data – is
fully linear. To improve the signal-to-noise, galaxy surveys measure the spherically averaged
two-point function ξ0(r) (the monopole) and the quadrupole ξ2(r) defined as

ξ`(r) =
2` + 1

2
∫ dµξ(r, µ)P`(µ) , (5.7)

3Note that in real data situations both the angle averaged parameter α and an additional parameter ε are
considered: ε parametrises the anisotropic clustering due to redshift-space distortions and due to an analysis
where an incorrect cosmology is assumed.

4Available at https://github.com/JCGoran/coffe.
5We also do not consider a Gaussian damping term which is commonly introduced in the Fourier transform

P (k) → ξ(r) to improve numerical convergence as the coffe code is based on the very reliable 2-fast
algorithm [162].

https://github.com/JCGoran/coffe
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Figure 5.3: A zoom of fig. 5.1 for the range used in the ∆χ2 estimation, where the 2nd

feature is clearly visible for high-baryon models. The gray region marks the error bars given
by the covariance for an SKA-like survey and the purple dashed line is the best-fit non BAO
(de-wiggled) model.

where P` is the Legendre polynomial of degree ` and µ is the orientation with respect to the
line of sight at which we measure the 2pF. Our data vector is then given by

ξ =
⎛

⎝

ξ0

ξ2

⎞

⎠
. (5.8)

Fake ‘data’ are generated for three different cosmologies: the fiducial Planck2015 6 cosmology
and two unrealistic toy models with Ωb = 0.25 and Ωb = 0.15 – keeping Ωm and all the other
parameters fixed – to illustrate the procedure in models where the 2FT is more pronounced.
The binning of the data vectors (ξ0 and ξ2) is chosen in a range of ∼ 75Mpc/h around the
value 2shor for each fiducial model and with a bin size Lp = 3Mpc/h, for 25 bins in total. The
covariance matrix is computed for an SKA-like survey, with parameters taken from [88] (Table
3). We consider a single redshift-bin centred at z̄ = 1 with thickness ∆z = 0.2, sky-coverage
fsky ≃ 0.72, mean number density n̄ ≃ 8.7×10−4 Mpc−3 and bias b ≃ 1.3. Given our data vector
in eq. (5.8) the covariance is written as

C =
⎛

⎝

cov00 cov02

cov20 cov22

⎞

⎠
, (5.9)

where cov``′,ij = cov(ξ)``′ (xi, xj), defined in eq. (4.56).

Fitting models

To fit the correlation function we adopt two template models, one with the BAO peak and
the 2FT and the other with no baryonic features. The fit is performed, as in recent BAO
data analyses, with 5 parameters: a multiplicative bias B, the scale dilatation α and (as we

6We set h = 0.676, Ωcdm = 0.26, Ωb = 0.048, ΩΛ = 0.68. The primordial spectrum has ns = 0.96 and
As = 2.22 × 10−9 at kpivot = 0.05Mpc−1 .
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the BAO model.

are only interested in the position of the 2FT) a 2nd order polynomial to marginalise over the
broad-band shape of the multipoles. We then write

ξfit0 (r) = B2ξmod
0 (α, r) +A0(r) ,

ξfit2 (r) = ξmod
2 (α, r) +A2(r) ,

(5.10)

where we define
A`(r) =

a1,`

r2
+
a2,`

r
+ a`,3 ; ` = 0,2 , (5.11)

with three nuisance parameters per multipole (a1, a2, a3), to account for the overall unknown
shape of the correlation function. A difference with the standard approach is that we set
here B = 1 for two reasons. Firstly, as we are not dealing with real data, we have full control
on the linear bias parameter when we generate fake data from our fiducial model. Secondly
we are not comparing different cosmologies (for which the amplitude of the feature might
change) but the same cosmology with and without the feature. This also prevents the data
to be fitted only by the quadratic polynomial A`.

The first template model is simply given by

ξmod
` (α, r) = ξfid` (αr) . (5.12)

Note that when performing the BAO analysis in real space, it is standard practice to shift
the all model as in eq. (5.12). A different approach is usually employed in the Fourier space
analysis where only the BAO oscillations are shifted. As the nuisance parameters ai,` are
marginalizing over the broadband shape of the multipoles, this has no effect [26].

The second template is the de-wiggled model. It is a phenomenological prescription widely
used in BAO analysis: it consists in generating a correlation function starting from a power
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spectrum Pnw(k) in which the BAO features have been erased. To obtain Pnw(k) we start with
the Eisenstein&Hu [138, 139] approximated power spectrum PEH(k) and perform a Gaussian
smoothing on the ratio P (k)/PEH(k):

Pnw(k) = PEH(k)S[P (k)/PEH(k)] , (5.13)

where S schematically represents the smoothing. The no-wiggle spectrum is then given
by [308]

Pnw(10klog)

PEH(10klog)
=

1
√

2πλ
∫ dqlog[

P (10qlog)

PEH(10qlog)
Exp(−

1

2λ2
(klog − qlog)

2
)] , (5.14)

where λ is a parameter that controls the size of the smoothing. We found the best results for
λ = 0.14Mpc/h. In figure 5.2 we plot the fractional difference of the no-wiggle power spectrum
and the linear one. The multipoles of the correlation function with no feature ξnw` (r) are then
generated by feeding coffe with Pnw and the second template model is given by

ξmod
` (α, r) = ξnw` (αr) . (5.15)

For every value of α we fit the remaining parameters to minimise the χ2 for both models.
We chose only one fiducial redshift z = 1, hence we require the size of the redshifts bin of the
survey to be ∆z ≳ 0.2. We focus here only on one redshift bin as the shape of the correlation
function is nearly constant at large scales for the depth accessible by galaxy surveys and
the analysis is trivially extended to more bins, given also the fact that we can treat them
as uncorrelated to a good approximation (see e.g. the analysis we perform in section 4.3).
In figure 5.3 we show the fiducial model monopole ξfid0 (r) with the error bars obtained from
eq. (4.56), together with the best fit no-feature model of eq. (5.15). Clearly as Ωb decreases
the feature is less and less pronounced and the no-feature model is an increasingly better fit
to the data. For a realistic model with Ωb ≃ 0.05 the 2FT is barely visible and lies completely
within the error bars. This situation is reflected when we compare the ∆χ2(α) = χ2(α)−χ2

min
for the two templates. We can read off the detection significance for the 2FT in fig. 5.4. In the
two toy models – with an unrealistically high baryon fraction – the no-feature templates are
disfavored at ∼ 5σ and ∼ 2σ respectively. The realistic model Planck2015 shows no preference
for the template which correctly describes the 2FT compared to the smoothed template. We
have checked that these results marginally change when we vary the order of the polynomial
fit in eq. (5.11). Note that the no-BAO model has a broad χ2 as the lack of features makes
the scale less constrainable.

5.4 Conclusions

In this chapter we have introduced a second feature in the matter correlation function. This
feature, positioned at twice the distance of the BAO peak, is understood – in the early universe
– as a trough in the baryon-baryon correlation for separations bigger than twice the sound
horizon at tdrag. The feature is clearly visible in models with an high baryon fraction but in
a realistic cosmological model it is a very small effect. We proved this with a χ2 analysis that
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showed how – in an SKA-like survey – it is not possible to distinguish between the models
with and without the feature. We have considered only one redshift bin and it is possible
to increase the detection significance by a factor ∼

√
N by considering N bins; however, the

analysis requires ∆zbin ≳ 0.2 hence limiting the number of bins N in which we can split a
galaxy catalog. Furthermore, the fact that at 2shor the error is cosmic variance dominated
suggests that the two-point function is not the best observable to detect this feature.

In a Fourier space analysis the effect described here is correctly modeled if the template
P (k) is generated from a Boltzmann code such as class [66, 125] or camb [207].

It is nevertheless interesting to study if other observable – e.g. intensity mapping – are
more sensitive to this feature which, if detected, would provide an additional probe for early-
time cosmology. We leave this matter for future work.



CHAPTER 6

Correlation function IV: Anisotropic signal

Based on:

[293] V. Tansella, C. Bonvin, G. Cusin, R. Durrer, M. Kunz and I. Sawicki “Redshift-space
distortions from vector perturbations II: Anisotropic signal ”
submitted for publication, [arXiv:1807.00731].

Abstract. In this chapter we study the impact on the galaxy correlation function of the pres-
ence of a vector component in the tracers’ peculiar velocities, in the case in which statistical
isotropy is violated. We present a general framework – based on the bipolar spherical harmon-
ics expansion – to study this effect in a model independent way, without any hypothesis on the
origin or the properties of these vector modes. We construct six new observables, that can be
directly measured in galaxy catalogs in addition to the standard monopole, quadrupole and
hexadecapole, and we show that they completely describe any deviations from isotropy. We
then perform a Fisher analysis in order to quantify the constraining power of future galaxy
surveys. As an example, we show that SKA2 would be able to detect anisotropic rotational
velocities with amplitudes as low as 1% of that of the vorticity generated during shell-crossing
in standard dark matter scenarios.

6.1 Introduction

Mechanisms such as topological defects [133, 114, 211], magnetic fields [132], inflation with
vector fields [153, 160], or vector-field-based models of modified gravity [187, 328, 177, 297],
the shell-crossing present in concordance cosmology, but also non-linear effects (as discussed
e.g. in chapter 2) can generate vector perturbations throughout the history of the Universe
and on a wide range of scales. It is important to properly characterize the signature of these

126
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vector degrees of freedom on the observables of large scale galaxy surveys. The reason for this
is twofold. On the one hand, the presence of such vector perturbations – if not properly taken
into account – will ‘pollute’ (i.e. bias) the measurement of the scalar degrees of freedom and
act as a source of systematic error. On the other hand vector degrees of freedom can leave
their imprint on observables which, in turn, can be used to constrain their properties and to
study the mechanism that generated them.

Various approaches exist in the literature with the aim of constraining vector-type de-
viations of the metric and they have mostly focused on the Cosmic Microwave Background
(CMB). They can be grouped into three categories: (i) introducing dynamical vector de-
grees of freedom in the early universe while maintaining isotropy and homogeneity at the
background level. Then, one can either maintain statistical isotropy and homogeneity of the
perturbations or allow for statistically anisotropic perturbations [210, 237]. Alternatively
(ii), one can deform the isotropy of the cosmological background and therefore constrain its
anisotropy, while keeping the matter content standard, making sure that this anisotropy de-
cays with time [266]. Finally (iii), one can introduce an anisotropy directly in the primordial
power spectrum (through some interactions in the early universe, e.g. [5, 36]). One then tries
to look for ‘anomalies’ in the CMB, such as in, for example, [13]. Signatures of this primordial
signal in galaxy surveys have been analyzed in [248, 190, 278, 285].

Additionally, late time non-linear evolution, as simulated in N-body codes, is found to
generate vector perturbations of both the metric [7, 8] and the fluid vorticity [247, 189]. It
is interesting to develop statistical tools to measure these vector modes, which are present
also in standard ΛCDM cosmology, and to distinguish them, e.g. from an intrinsic, global
anisotropy.

In [74] the authors considered the impact of statistically isotropic vector modes in the
peculiar velocity field of galaxies and in particular on the redshift-space distortion (RSD)
observed in galaxy surveys. We have found that vector contributions to RSD enter in the
monopole, quadrupole and hexadecapole of the galaxy correlation function. While the impact
of vector perturbations from topological defects is very small, those from non-linear clustering
affect especially the hexadecapole quite strongly, contributing up to 20% of the total signal on
scales smaller than 5h−1Mpc. This additional contribution should in principle be detectable
with next generation surveys, such as Euclid or the SKA.

In this chapter we consider a vector component of the peculiar velocities, which violates
statistical isotropy, and study its impact on the galaxy correlation function. This is a natural
generalization of the study in [74]. We present a general framework suitable specifically to
study this effect, with no assumptions on the origin or properties of these vector modes.
We show that the anisotropic signal can be completely characterised by six new observables,
that can be directly extracted from galaxy catalogs. General results regarding the Fisher
analysis of these types of models are also discussed. We investigate the detectability of these
contributions, for a specific example, with planned or futuristic galaxy surveys.

In particular we want to develop tests of statistical isotropy using large-scale structure
(LSS) observations. While it is clear that our Universe is not strongly anisotropic, a small
anisotropy is still compatible with, if not favoured by the analysis of CMB anisotropies and
polarisation [13]. This might be due to e.g. a small global magnetic field or some slight
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anisotropy which remained after inflation. In this work we do not make assumptions on the
model responsible for the global anisotropy in the vector sector but we want to investigate
its observational consequences. We study the situation where scalar perturbations are still
statistically isotropic but vector perturbations are not. It will be interesting not only to study
whether LSS also favours a slight anisotropy of the Universe but whether the characteristics of
any such anisotropy are in agreement with the one of the CMB. Furthermore, LSS observations
allow for a tomographic approach, i.e. we can observe many different redshifts, making it easier
to overcome limitations from cosmic variance.

This chapter is structured as follows: In section 6.2 we detail the general anisotropic
structure of vector perturbations. In 6.3 we study the effects of a vector component in the
velocity field on the two-point function and present a suitable decomposition to describe it.
Finally, in section 6.4, we forecast the constraints on the anisotropic parameters for upcoming
clustering surveys.

6.2 Vector Contribution to Galaxy Velocities

We assume here that our Universe shows signs of a violation of statistical isotropy, manifesting
itself by the presence of vector modes in the peculiar velocity of tracers. We investigate how
galaxy catalogs can be used, independently from other probes, to constrain the amplitude
of these anisotropies. We therefore model our Universe as a perturbed Friedman-Lemaître
universe, with a metric given by eq. (2.50):

ds2
= a2

[ − (1 + 2Ψ)dη2
− Sidηdxi + (1 − 2Φ)dxidx

i
] . (6.1)

Here Φ and Ψ are the standard Newtonian-gauge scalar potentials, and Si is a pure vector
fluctuation, ∂iSi = 0, related to frame dragging1. We define H = ȧ/a = aH to be the conformal
Hubble parameter.

The general velocity field for galaxies located at position x at conformal time η, vi(x, η),
can be decomposed into a scalar (potential) part, v, and a pure vector part, Σi, with ∂iΣi = 0,

vi ≡ ∂iv +Σi . (6.2)

The gauge-invariant relativistic vorticity [131] can be obtained by lowering the index of Σi

with the perturbed metric. The relativistic vorticity is often denoted Ωi (e.g. in [215, 131]
and chapter 2) and it is an additional rotational velocity on top of the frame-dragging effect.
We also denote it by Ωi ≡ gijΣ

j/a = aδij(Σ
j − Sj).2 We mainly concentrate on Σi as it is the

velocity with an upper index that is relevant for us and we use the notation Σi = δijΣ
j ≡ Σi.

We assume that galaxies move on time-like geodesics of the metric, i.e. they obey the
Euler equation. Then, to first order in perturbation theory we can write, for perfect fluids,
eq. (2.32):

Σ̇i − Ṡi +H(Σi − Si) = 0 , (6.3)
1We have fixed the gauge such that the 0i component of the metric has no scalar contribution and the

vector part of the ij component vanishes. We also neglect gravitational waves (tensor perturbations).
2The difference between aΣj and Ωj is only relevant on large scales.
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which is equivalent to ∂ηΩi = 0. Hence vorticity is conserved. This is not only true within lin-
ear perturbation theory but also in full General Relativity as long as matter can be described
as a perfect fluid [215]. The 0i component of the energy momentum tensor of a perfect fluid
is given by

T i
0 (V ) = [(ρ + P )vi](V ) = T i

0 − T
i

0 (S) . (6.4)

Taking the curl of this equation the scalar part vanishes and we obtain

εijk(T
j

0 ),k = εijk[(ρ + P )vj],k

= (v ∧∇(ρ + P ))i + (ρ + P )(∇ ∧ v)i . (6.5)

Only the vector velocity Σj contributes to the second term, while the first term is non-
vanishing when the gradient of the density fluctuations in not parallel to the velocity. This also
happens in perfect fluids at second order in perturbation theory, see e.g. [8]. At second order
therefore, despite vorticity conservation, vector perturbations of the metric are generated,
which induce effects like frame dragging. It has been shown recently [189] that the vector
potential found in relativistic numerical simulations is actually mainly due to the first term
of (6.5) and not to vorticity which is also induced in N-body simulations.

The perfect fluid description is just an approximation when we want to describe the motion
of dark matter (or galaxies). In the real Universe, dark matter particles are free-streaming, i.e.
they move on geodesics. As soon as shell crossing occurs, velocity dispersion can no longer
be neglected and vorticity is generated. In [113], the vorticity generation from large-scale
structure was modelled by including velocity dispersion using a perturbative approach.

Clearly, even if in the standard ΛCDM model vector perturbations are generated by non-
linearities, they are statistically isotropic. In this work we assume that the vectorial part of
the peculiar velocity in eq. (6.2) acquires an anisotropic component.

6.2.1 Tensor structure of vector perturbations

In order to compute the two-point correlation function of galaxies, we need a model for the
two-point auto-correlation of the vector velocity, ⟨ΣiΣj⟩ and its cross-correlation with the
dark matter overdensity ⟨δmΣi⟩. We will characterise their structure in Fourier space:

1. The auto-correlation of the vector field takes the general form

⟨Σi(k)Σj(k
′
)⟩ = (2π)3δ(3)(k + k′) [Wij(k)PΣ(k) + iαij(k)PA(k)] , (6.6)

where PΣ(k) and PA(k) contain information about the amplitude of the vector field.
The Dirac delta function appearing in the above equation, δ(3)(k+k′), is a consequence
of statistical homogeneity, and if we assume that scalar spectra are isotropic, the am-
plitudes, PΣ(k) and PA(k), depend on k only through its absolute value k ≡ ∣k∣. One
might think it would be more natural for an anisotropic spectrum to show an anisotropy
also in PΣ(k). However, in a real observation, the power spectrum is usually obtained
by averaging the squared Fourier modes over directions. Here we mimic this by con-
sidering PΣ and PA to be functions of the modulus k only. In practice, these are the
direction averaged spectra. For scalar perturbations, this averaging removes all signs of
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an anisotropy, for vector perturbations this is, interestingly, not the case as we show in
this chapter.

The tensors Wij and αij are, respectively, symmetric and anti-symmetric tensors, that
encode the dependence on direction. Since Σi is a pure vector field, Wij and αij must
satisfy kiWij = k

jWij = k
iαij = k

jαij = 0. The PA-term is parity odd while the PΣ-term
is parity even. If no parity violating processes occur in the Universe we may set PA = 0.
The tensorial form for αij is completely fixed by anti-symmetry and transversality,

αij = αεijmk̂
m . (6.7)

The most general form for Wij is then

Wij =
ω

2
(δij − k̂ik̂j) + ω

A
ij , (6.8)

where we have decomposed the tensor into its trace ω and trace-free part

ωAij = ωij − ωilk̂
lk̂j − ωlj k̂

lk̂i + ωlmk̂
lk̂mk̂ik̂j , (6.9)

with ωii = 0. As usual k̂ denotes the unit vector in the direction of the vector k. The
first term of (6.8) respects statistical homogeneity and isotropy, whereas the second
one is non-zero only when isotropy is violated. In what follows, we absorb the trace ω
into the normalisation of the power spectrum PΣ in eq. (6.6). Note that in general the
isotropic and anisotropic contribution do not need to have the same amplitude PΣ(k):
in this sense one can use ω(k) to parametrise the difference between P (iso)

Σ and P (ani)
Σ .

Interestingly, the only possible parity odd term given in (6.7) is statistically isotropic.

The symmetric tensor ωij can be diagonalised or, equivalently, decomposed into a sum
of the tensor products of its orthonormal eigenvectors ω̂Ii ,

ωij =
3

∑
I=1

λI ω̂
I
i ω̂

I
j , (6.10)

where the eigenvalues satisfy ∑I λI = 0.

2. The cross-correlation with dark matter can be non-zero only if statistical isotropy is
violated. Assuming that the vector field is fluctuating in some fixed direction ω̂, the
cross-correlation takes the form

⟨δ(k)Σi(k
′
)⟩ = (2π)3WiPδΣ(k)δ(3)(k + k′) , (6.11)

where Wi is transverse since Σi is a pure vector field i.e. divergence free. A non-
vanishing ⟨δΣi⟩ always defines a preferred spatial direction ω̂i and therefore violates
statistical isotropy.
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6.3 Correlation function

Galaxy number counts are observed in redshift-space, rather than in real-space. The leading
correction arising from the fact that we observe on the light-cone is the Kaiser term, or
redshift-space distortion [200], which is included in the number counts ∆g as

∆g(x) = δg(x) −
1

H
ni∂i(n

jvj(x)) .

Here δg is the tracer’s density perturbation, related to the dark matter density perturbation
via the bias expansion δg ≃ b ⋅δc+ ..., and vi is the peculiar velocity field. We have also defined
the line-of-sight direction n as

n ≡
x

χ
,

i.e. the unit vector in the direction of the galaxy lying at x = χ(z)n, with the observer located
at x = 0. Splitting the velocity into the scalar and vector parts, as in eq. (6.2), we have

∆g(x) = δg(x) −
1

H
ninj(∂i∂jv(x) + ∂iΣj(x)) . (6.12)

The effects of vector perturbations in the general relativistic number counts were derived in
[192] and studied in detail in chapter 2, where we found that – akin to scalar perturbations –
redshift-space distortion and (at high redshift) lensing are the dominant effects. Since in the
relativistic angular power spectra, C`(z1, z2), the light-cone effects cannot easily be extracted,
we study here the impact of the vector modes on the two-point correlation function of galaxies.

The two-point correlation function is defined as

ξ(x1,x2, z1, z2) = ⟨∆g(x1, z1)∆g(x2, z2)⟩ .

Without redshift-space distortion, and neglecting subdominant evolution effects, the correla-
tion function depends only on the galaxies’ separation

r ≡ ∣x1 − x2∣ ,

and on the mean distance of the pair from the observer χ̄ = 1
2(χ1 + χ2) or, equivalently, its

mean redshift z̄ = 1
2(z1 + z2). Redshift-space distortion introduces an additional dependence

on the orientation of the pair with respect to the line-of-sight n (we work in the small angle
or flat-sky limit where we neglect the difference between the line-of-sight to x1 and x2).
It is customary to expand ξ in a basis of Legendre polynomials so that, in the flat-sky
approximation, n1 = n2 = n we can write

ξ(z̄, r,n) = ∑
`

ξ`(z̄, r)P`(µ) , (6.13)

where P` is the Legendre polynomial of degree ` and µ = n ⋅ r̂, with r̂ being the direction of
the vector connecting the two galaxies.

Let us now review the standard flat-sky expression for the correlation function in the
presence of scalar perturbations (see e.g. [294] for details). We will use this result both
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for comparison with the vector case and to compute our covariance matrix in section 6.4.
Including the Kaiser term we write

ξiso(s)(z̄, r, µ) = c0(z̄)I
0
0(z̄, r) − c2(z̄)I

0
2(z̄, r)P2(µ) + c4(z̄)I

0
4(z̄, r)P4(µ) . (6.14)

We can identify the multipole coefficients in eq. (6.13) as

ξ`(r, z̄) = i
`c`(z̄)I

0
` (z̄, r) . (6.15)

Following the notation of this thesis, we have also used the definition (4.27):

I0
` (z̄, r) = ∫

dk

2π2
k2P (z̄, k)j`(kr) , (6.16)

together with the coefficients given in eq. (4.33)-(4.35):

c0 = b
2
+

2

3
bf +

f2

5
, (6.17)

c2 =
4

3
bf +

4

7
f2 , (6.18)

c4 =
8

35
f2 . (6.19)

Here jn is the n-order spherical Bessel function, f is the growth rate, f ≡ d lnD1/d lna (with
D1 being the linear growth function), and P (z̄, k) is the matter power spectrum at redshift
z̄. We have made the standard assumption that the galaxy bias b is deterministic and, like
the growth rate f in ΛCDM, it is scale independent.

We now turn to the study of the vector component. We split the vector contribution to
the correlation function into a statistically isotropic and anisotropic part

ξ(v) = ξ
iso
(v) + ξ

ani
(v) , (6.20)

where we have emphasised that the source of violation of statical isotropy comes from the
vector sector. First, we summarise the structure of the isotropic contributions to the correla-
tion function coming from vector perturbations and we then propose a general framework to
compute the anisotropic part.

The new vector contribution to the correlation function in eq. (6.20) comprises three
terms:

1. Cross-correlation with the density

2. Cross-correlation with the scalar velocity

3. Auto-correlation.

The first two vanish in flat sky since they are odd under n→ −n and ξ is evidently even, see
chapter 4. Hence combining eqs. (6.12) and (6.3) we write

ξ(v) =
1

H(z1)H(z2)
∫

d3k

(2π)3
k2

(n1 ⋅ k̂)(n2 ⋅ k̂)Wij(k̂)n
i
1n

j
2PΣ(k)eik⋅r .
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This object has a complicated tensor structure, which characterises the anisotropy of the
vector field. However, when isotropy is assumed we simply write Wij = δij − k̂ik̂j , so that,
see [74],

ξiso(v) =
1

H2 ∫
d3k

(2π)3
k2

(n ⋅ k̂)2(1 + (n ⋅ k̂)2)PΣ(k)eik⋅x .
Rewriting the n ⋅ k̂ contributions in terms of Legendre polynomials and integrating over the
direction of k, we obtain for the isotropic contribution [74]

ξiso(v)(z̄, r, µ) =
2

15
P0(µ)C

Σ
0 (r) −

2

21
P2(µ)C

Σ
2 (r) −

8

35
P4(µ)C

Σ
4 (r) , (6.21)

with
CΣ
` (r) =

1

2π2

1

H2 ∫ dk k4PΣ(k)j`(kr) . (6.22)

The CΣ
` are the vector equivalent of the In` : to avoid heavy notation we set H−2I0,Σ

` = CΣ
` .

Notice here the extra k2 factor multiplying PΣ, which is absorbed in the scalar case when the
velocity power spectrum is re-expressed in terms of the density power spectrum.

Statistically isotropic vector perturbations modify the shape of the multipoles coefficients
in the Legendre expansion of ξ. One can estimate this effect and study its detectability. This
was the strategy followed in [74]. In the anisotropic case however, the standard multipole
expansion fails to capture the additional angular dependence encoded in Wij . In the next
section we therefore consider the decomposition of this dependence into bipolar spherical
harmonics (BipoSH).

6.3.1 Statistically anisotropic contribution

When statistical isotropy is violated, the correlation function is no longer only a function
of µ = n ⋅ r̂. Therefore, the standard expansion in Legendre polynomials does not properly
describe the angular dependence of ξ. The correlation function can however be expanded in
terms of the orthonormal set of bipolar spherical harmonics (see appendix B.4). Since this
approach captures an arbitrary angular dependence of the observable under consideration, it
has been used in cosmology to analyse CMB [167, 168, 37, 249, 112, 78] and LSS [175, 172,
290, 291, 240, 52, 278, 36, 285] data.

In the small angle approximation the correlation function depends on two directions
ξ(n, r), we hence expand

ξ(r,n, z̄) = ∑
``′ JM

ξJM``′ (x, z̄)XJM
``′ (r̂,n) , (6.23)

with

XJM
``′ (r̂,n) = {Y`(r̂) ⊗ Y`′(n)}JM

= ∑
mm′ C

JM
`m`′m′Y`m(r̂)Y`′m′(n) , (6.24)
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where CJM
`m`′m′ are the Clebsch Gordan coefficients which are related to the Wigner 3j symbols

by,

CJM
`m`′m′ = (−)

`−`′+M√
2J + 1

⎛

⎝

` `′ J

m m′ −M

⎞

⎠
. (6.25)

In other words, XJM
``′ (r̂,n) isolates the total angular momentum J and helicity M contribu-

tion. The useful property of the BipoSH XJM
``′ is that they filter the isotropic signal into the

J = 0 mode and any non-zero coefficient with J > 0 indicates anisotropy. In fact, if there is
no anisotropic signal in the power spectrum, i.e. if ξ depends on n only via µ = r̂ ⋅ n, we can
compute the coefficients via

ξJM``′ = ∫ dΩn∫ dΩr ξ(r,n, z̄)X
JM∗
``′ , (6.26)

and we simply obtain

ξJM``′ (r, z̄) =
4π

√
2` + 1

ξ`(r, z̄)δJ,0δM,0δ`,`′ , (6.27)

recovering the expansion of eq. (6.13). In particular, we see that no off-diagonal component is
generated (we have ` = `′) and that all the isotropic signal is contained in the J = 0 coefficient.
On the other hand if anisotropy is included we will generate J ≥ 1 and ` ≠ `′ modes. Therefore,
to search for anisotropy we only look at the J ≥ 1 modes, and we set ξ = ξani(v) in the expansion
of eq. (6.23).

We focus on the computation of the statistically anisotropic contribution to the galaxy cor-
relation function (6.3). To this end, it is useful to compute the anisotropic contribution to the
power spectrum of (6.3) and then Fourier transform it. Explicitly, the Fourier transformation
of galaxy number counts in the Kaiser approximation, eq. (6.3), is given by

⟨∆̃g(k,n, z̄)∆̃g(k
′,n, z̄)⟩ = (2π)3Pg(k,n, z̄) δ(k + k′) , (6.28)

where the power spectrum is given by (omitting the dependence on n, z̄)

Pg(k) = P
iso
(s) + P

iso
(v) + P

ani
(v)

= (b + f(n ⋅ k̂)2)
2
Pδδ(k) −

k2

H2
ω(n ⋅ k̂)2

(1 − (n ⋅ k̂)2
)PΣ(k)

−
k2

H2
(n ⋅ k̂)2n̂in̂jωAijPΣ(k) ,

(6.29)

where all the isotropic contribution is in the first line and the anisotropic one, P ani
(v) , is in

the second line. The tensor ωAij is defined in eq. (6.9). The isotropic contribution depends
on directions only through the angle between the mode k and the line-of-sight, i.e. it can be
expanded in a basis of Legendre polynomials as

P iso
(k,n, z̄) = ∑

`

p`(k, z̄)P`(n ⋅ k̂) . (6.30)
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We observe that this is not a specific property of redshift-space distortions but simply a
consequence of statistical isotropy. Hence eq. (6.30) holds for all the relativistic contributions
to the galaxy number counts.

When statistical isotropy is violated, we expand the power spectrum in terms of the
orthonormal set of bipolar spherical harmonics, as

P ani
(v) (k,n, z̄) = ∑

``′ JM
πJM``′ (z̄, k)XJM

``′ (k̂,n) , (6.31)

where

XJM
``′ (k̂,n) = ∑

mm′ C
JM
`m`′m′Y`m(k̂)Y`′m′(n) . (6.32)

In the case where there is not anisotropic signal in the power spectrum, the coefficients πJM``′
simply reduce to

πJM``′ =
4π

√
2` + 1

p`(k)δJ,0δM,0δ`,`′ , (6.33)

and we recover the expansion of eq. (6.30). For convenience, we can split the anisotropic
contribution to the power spectrum (6.29) in three contributions

P ani
(v) (k) = −

k2

H2
(n ⋅ k̂)2n̂in̂jωAijPΣ(k) = P (a)

(k) + P (b)
(k) + P (c)

(k) (6.34)

where we have separated the three cases:

(a) ωAij = ωij ,

(b) ωAij = −ωilk̂
lk̂j − ωlj k̂

lk̂i ,

(c) ωAij = ωlmk̂
lk̂mk̂ik̂j ,

so that
P ani
(v) (k,n, z̄) = ∑

``′ JM
(π

JM(a)
``′ + π

JM(b)
``′ + π

JM(c)
``′ )XJM

``′ (k̂,n) . (6.35)

Note that this splitting has no direct physical interpretation: each contribution has a scalar
component which however disappears in the sum of eq. (6.35). These contributions can be
written in terms of the eigenvectors and eigenvalues ω̂I and λI . After a long but straightfor-
ward computation we find

π
JM(a)
``′ = −

16π3/2
45

k2

H2
PΣ(k)∑

I

λIY
∗

2M(ω̂I)
⎛

⎝
δ`,0δ`′,2 + 2

√
2`′ + 1

5

⎛

⎝

2 2 `′
0 0 0

⎞

⎠
δ`,2

⎞

⎠
δJ,2 , (6.36)

π
JM(b)
``′ = −

16π3/2
5

k2

H2
PΣ(k)

√
(2` + 1)(2`′ + 1)

√
2

15
∑
I

λIY
∗

2M(ω̂I)

× [2
⎛

⎝

3 1 `

0 0 0

⎞

⎠

⎛

⎝

3 1 `′
0 0 0

⎞

⎠

⎧⎪⎪
⎨
⎪⎪⎩

1 2 1

` 3 `′
⎫⎪⎪
⎬
⎪⎪⎭

+ 3
⎛

⎝

1 1 `

0 0 0

⎞

⎠

⎛

⎝

1 1 `′
0 0 0

⎞

⎠

⎧⎪⎪
⎨
⎪⎪⎩

1 2 1

` 1 `′
⎫⎪⎪
⎬
⎪⎪⎭

]δJ,2 ,

(6.37)
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π
JM(c)
``′ = −

16π3/2
15

k2

H2
PΣ(k)∑

I

λIY
∗

2M(ω̂I)[
1

5
δ`,2δ`′,0 + 8

105

√
2` + 1

⎛

⎝

4 2 `

0 0 0

⎞

⎠
δ`′,4

+
4

7
√

5

√
2` + 1

⎛

⎝

2 2 `

0 0 0

⎞

⎠
δ`′,2]δJ,2 ,

(6.38)

where curly brackets {} denote the Wigner 6j-symbols. We first note that vector anisotropies
can only generate J = 2 modes. This is not surprising as they are the product of two j = 1
states which can give either J = 0 which is isotropic or J = 2. The triangular relation imposed
by the 3j and 6j symbols determines the limits of the sum in the expansion in eq. (6.35). It
is easy to see that both ` and `′ have to be even and, more precisely, in {0,2,4,6}. We can
now reconstruct the correlation function (6.3) from the power spectrum. This is similar to
the isotropic case in which the Fourier- and real-space coefficients in the Legendre expansion
are related by

ξ`(r) = i
`
∫

k2dk

2π2
j`(kr)p`(k) . (6.39)

Explicitly, the coefficients of the BipoSH expansion of the correlation function, eq. (6.23),
are related to the ones of the power spectrum, eq. (6.31) by

ξJM``′ (r) = i`∫
k2dk

2π2
j`(kr)π

JM
``′ (k) . (6.40)

With this we can rewrite the real-space version of eqs. (6.36)-(6.38) in terms of the CΣ
` , which

we defer to an appendix: eqs. (6.71)-(6.73). The sum of the three contributions can be cast
in matrix form as (remember all terms with J ≠ 2 vanish)

(ξ2M
``′ ) =

16π3/2
5
∑
I

λIY
∗

2M(ω̂I)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1
35C

Σ
0 0 0 0 0

0 0 0 0 0 0 0

1
25C

Σ
2 0 −1

5

√
2
35C

Σ
2 0 2

225

√
2
7C

Σ
2 0 0

0 0 0 0 0 0 0

0 0 0 0 − 4
9
√

385
CΣ

4 0 0

0 0 0 0 0 0 0

0 0 0 0 − 8
63

√
55
CΣ

6 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.41)

where CΣ
` = CΣ

` (z, r). Equation (6.41) is one of the main results of this chapter. It shows
in complete generality that any anisotropic signal induced by redshift-space distortion in the
galaxy correlation function is encoded in the functions ξ2M

``′ (which depend in principle on red-
shift and on galaxy separation). The six non-zero coefficients ξ = {ξ2M

02 , ξ2M
20 , ξ2M

22 , ξ2M
24 , ξ2M

44 , ξ2M
64 }

are therefore the equivalent of the monopole, quadrupole and hexadecapole that are measured
in standard redshift surveys, when anisotropies are assumed to be absent. As we will show
below, these six coefficients can be directly extracted from catalogs of galaxies, by averaging
over pairs of galaxies with an appropriate weighting. A detection of a non-zero ξ2M

``′ would
represent a smoking gun for the presence of anisotropies in the galaxies peculiar velocities.
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Note that the dependence of the ξ2M
``′ on the model responsible for the anisotropies is en-

coded in the CΣ
` (z, r) and in the eigenvectors ω̂I and eigenvalues λI . In the following, we

construct estimators for the six non-zero coefficients ξ and we forecast the detectability of
these coefficients with future surveys.

6.4 Forecast for LSS surveys

We now forecast the constraints on the anisotropy parameters – which we define later – as
expected from future redshift surveys. In the next section we define our estimators for the
BipoSH coefficients and compute their covariance matrix.

6.4.1 Estimator & covariance

To estimate the expansion coefficients the obvious choice is to weight the correlation function
by X2M

``′ , in the same way that we weight the two-point function by the Legendre polynomials
P` to estimate the multipoles. In a binned survey the estimator is

ξ̂ 2M
``′ (r) = aN∑

i,j

∆i∆jX
2M∗
``′ (r̂ij , n̂ij)δK(rij − r) , (6.42)

where δK is the Kronecker delta, ∆i the galaxy over-density in the bin labelled by the index
i (as in eq. (4.42)) and we have defined rij = xi − xj , nij = 1/2(xi + xj). The normalisation
factor aN is found by imposing that the estimator is unbiased,

⟨ξ̂ 2M
``′ ⟩ = ξ 2M

``′ , (6.43)

in the continuous limit

∑
i

→
1

L3
p
∫
V
d3xi , δK(rij − r) → LpδD(rij − r) , (6.44)

where Lp denotes the pixel size and V is the total volume of the survey. We obtain

aN =
3L5

p

V r2
. (6.45)

We also have aN = 1/N(r), where N(r) is the number of pixels which contribute to the
estimator. The variance of the estimator is defined as

var (ξ̂ 2M
``′ ) ≡ varM``′ = ⟨(ξ̂ 2M

``′ )
2
⟩ − ⟨ξ̂ 2M

``′ ⟩
2
, (6.46)

and we recall that ⟨∆i∆j⟩ contains a Poisson noise contribution and a cosmic variance (CV)
contribution,

⟨∆i∆j⟩ =
1

dN̄
δij +C

∆
ij , (6.47)

where dN̄ is the mean number of galaxies per pixel. The correlation C∆
ij is due both to the

scalar and vector parts of ∆g. However, the scalar component strongly dominates over the
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vector one, so that we can neglect the latter. Physically, this reflects the fact that even though
the coefficients ξ2M

``′ are constructed to remove the scalar isotropic signal and to isolate the
vector anisotropic signal, the covariance of these coefficients is still affected (and dominated)
by the scalar contribution. We then obtain three different contributions to the variance which
are understood respectively as the Poisson term (P), the mixed term (M) and the CV term
(C). Explicitly, we find

varP (r, r′) = 6V

r2N2
tot
δD(r − r′) , (6.48)

varM(r, r′) = 24

πNtot
∫ dk k2P (k, z̄)j`(kr)j`(kr

′
)∑
w

cwβ
w
``′ , (6.49)

varC(r, r′) = 12

πV
∫ dk k2P 2

(k, z̄)j`(kr)j`(kr
′
)∑
σ

c̃σβ
σ
``′ , (6.50)

where Ntot is the total number of tracers in the catalog and the indices w,σ take values
w = 0,2,4 and σ = 0,2,4,6,8. The explicit form of the coefficients βσ``′ and details on the
derivation of the various contributions of the variance can be found in appendix 6.A, where
we also compute the covariance matrix of the estimator, defined as

cov (ξ̂ 2M1

`1`′1 , ξ̂
2M2

`2`′2 ) ≡ covM1M2

`1`′1`2`′2 = ⟨ξ̂ 2M1

`1`′1 ξ̂
2M2

`2`′2 ⟩ − ⟨ξ̂ 2M1

`1`′1 ⟩ ⟨ξ̂ 2M2

`2`′2 ⟩ . (6.51)

6.4.2 Fisher forecasts

We now want to forecast the constraints on the anisotropic parameters from a survey. Given
a model for the anisotropy power spectrum, i.e. a parametrization for PΣ, we are left with the
5 degrees of freedom (d.o.f.) of the symmetric traceless tensor ωij and an overall amplitude
AV for the vector power spectrum, which can be reabsorbed in a redefinition of ωij . Following
our decomposition in eq. (6.10) we identify the d.o.f. as the eigenvalues and eigenvectors of
ωij . On the one hand the eigenvalues are of zero-sum so that we can pick the first two
λ1, λ2 as independent and the third one is fixed to −(λ1 + λ2). On the other hand we find it
convenient to parametrize the three orthonormal eigenvectors ω̂I in terms of the three angles
of an Euler-rotation which rotates the canonical basis of R3 into the ω̂I ,

ω̂I ≡ R(α,β, γ) ⋅ êI , (6.52)

where êI are the three orthonormal vectors of R3 and R(α,β, γ) is the rotation matrix with
Euler angles α,β, γ. Furthermore we can absorb the amplitude AV in the eigenvalues by
defining λ̃I = AV λI . In summary the 5 d.o.f. of the tensor ω̄ij and the overall amplitude AV
are encoded in our parameter space

θ = {λ̃1, λ̃2, α, β, γ} . (6.53)

The Fisher matrix is defined as

Fθθ′ ≡ 1

2

∂2χ2

∂θ∂θ′ = ∑A,A′
∂⟨ξ̂A⟩
∂θ

∣
f
cov−1AA′ ∂⟨ξ̂

∗A′⟩
∂θ′ ∣

f
(6.54)
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where, schematically, A = {`1, `
′
1,M1, xi, z1}, A′ = {`2, `

′
2,M2, xj , z2}, and the derivatives are

evaluated at the fiducial model. The Fisher matrix contains therefore a sum over the six
non-zero coefficients which constitute our data, over all pixels separations xi, xj and over all
bins of redshifts zi, zj . The covariance matrix properly accounts for all correlations between
these quantities, except for the correlations between different redshift bins zi ≠ zj , which we
assume to be uncorrelated, since the bin size that we consider is sufficiently large. We then
have

covAA′ = cov`1`′1`2`′2(ri, rj)δM1M2δz1z2 . (6.55)

We recall that, according to the Cramer-Rao inequality, the Fisher matrix provides a lower
bound on the marginal parameter uncertainty σθ as

σθ ⩾
√

(F−1)θθ . (6.56)

We start by constraining the parameters λ1, λ2. The sub-matrix is then written

Fλ̃Aλ̃B = ∑{zbin}∑i,j ∑
`1`′1`2`′2

∑
M

∂ξM`1`′1(ri, z)
∂λ̃A

cov−1
`1`′1`2`′2(ri, rj)

∂ξM∗
`2`′2(rj , z)
∂λ̃B

= ∑{zbin}∑i,j ∑
`1`′1`2`′2

5

4π
(2 + P2(δAB)) ξ̃`1`′1(ri, z)cov

−1
`1`′1`2`′2(ri, rj)ξ̃

∗̀
1`′1(rj , z) ,

(6.57)

where we have defined
ξ2M
`1`′1 ≡ AV ∑

I

λIY
∗

2M(ω̂I)ξ̃`1`′1 , (6.58)

by explicitly writing the amplitude AV of PΣ out of the CΣ
` . We normalize this amplitude

such that λmax ≡ 1. The variables which determine the anisotropy are then the amplitude
AV , the ratio λ2/λ1 = λ2 and the three angles (α,β, γ) which determine the orientation. For
the second equal sign of eq. (6.57) we have performed the sum over M using that

∂ξ2M
`1`′1

∂λ̃A
= Y ∗

2M(ω̂A)ξ̃`1`′1 − Y
∗

2M(ω̂3)ξ̃`1`′1 , (6.59)

together with the orthogonality properties of products of spherical harmonics. We observe
that the final result does not depend on the fiducial values of the parameters λ̃I since they
enter linearly in the estimator ξ̂2M

`1`2
. We also note that we did not need to fix any fiducial

direction ω̂I since the dependence on ω̂I cancels out in the final result.
In appendix 6.B we show that the off-diagonal blocks of the full Fisher matrix (6.54) are

vanishing, hence Fθθ′ has a block diagonal structure

[Fθθ′] =
⎡
⎢
⎢
⎢
⎢
⎣

FλAλB 0

0 Fαβγ

⎤
⎥
⎥
⎥
⎥
⎦

. (6.60)

As a consequence of the block structure of the Fisher matrix, it follows that the constraints
on the amplitudes λI can be derived directly with eq. (6.57). In particular, they do not depend
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Figure 6.1: Constraints on amplitudes of anisotropies for the model (A). We have rescaled
the parameters λI as λ̃I ≡ AV λI . Compare this with the amplitude of the isotropic vorticity
power spectrum generated by shell crossing in the standard cold dark matter scenario, where
AV,iso ∼ 10−5, see e.g. Ref. [247].

on the fiducial values of the eigenvectors ω̂I . This reflects the fact that the precision with
which we can measure the eigenvalues does not depend on the direction of the anisotropy.
The constraints on directions, i.e. (σα, σβ, σγ), can be obtained by inverting the lower block
of the Fisher matrix. It turns out that the constraints on each of the directions depend on
the fiducial values of both the eigenvalues and the eigenvectors of ω̄ij . However, this direction
dependence is somewhat artificial, as we could have chosen our basis directions differently.
Instead of considering each direction independently, it makes more sense to compute the
volume of the ellipsoid described by the constrains on (α, β, γ), using the Haar measure
dµ = sinβdαdβdγ. Note that with this non-normalized Haar measure, the volume of the
rotation group SO(3) is 2(2π)2 ≃ 79. We can think of this uncertainty volume as the inverse
of a ‘figure of merit’ for the average accuracy with which we can recover the directional
information. This combined direction constraint has the great advantage that it does not
depend on the fiducial model for the directions, but only on the choice of the eigenvalues’
ratio λA/λB and the vector amplitude AV . This remaining dependence is physical and simply
reflects the fact that the precision with which we can measure the direction of the anisotropy
does obviously depend on how large it is.

6.4.3 A model for vector perturbations

To illustrate how our general formalism can be used, we consider an explicit model in which
a non-isotropic vector contribution to the galaxy peculiar velocities gives new contribu-
tions to the correlation function. We derive constraints on the directions and amplitudes
of anisotropies for both a Euclid-like and SKA2-like survey. The specifications for these sur-
veys are taken from [203] and [307] respectively: the two redshift ranges are z ∈ [0.7,2.0] for
Euclid and z ∈ [0.1,2.0] for SKA2 and we split them into 14 and 19 bins of thickness ∆z = 0.1
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respectively, with Lp = 2Mpc/h. This choice of Lp is motivated by the fact that this pixel size
gives the best constraints in [74]. Note that in the isotropic case, exploiting separations as
small as 2Mpc/h does require a good understanding of the scalar non-linear signal at those
scales, which is highly non-trivial. In the anisotropic case however, since the scalar part does
not contribute to the estimators ξ̂ 2M

``′ , but only to the covariance, we can exploit very small
separations even without a very precise modelling of the scalar behaviour at those scales. As
maximum separation we choose 40 Mpc/h.

Until this point our formalism has been model independent but, clearly, to forecast the
detectability of the anisotropy parameters we have to assume a shape for PΣ(k). As an
example we choose the isotropic vorticity power spectrum from N-body simulations while
we note that, as we have stated before, the isotropic and anisotropic PΣ can in principle be
different.

According to the numerical simulations of Ref. [247, 189], the vorticity power spectrum
appears to evolve as H(z)2f(z)2D1(z)

7 at large scales. At small scales, the evolution has an
additional scale-dependence, leading to a suppression of power at small scales at late times,
see fig. 4 of [247]. In the following we will ignore this small-scale dependence and assume that
the power spectrum at redshift z is given by3

PΣ(k, z) = PΣ(k, z = 0)(
H(z)f(z)

H0f(z = 0)
)

2

(
D1(z)

D1(z = 0)
)

7

.

We use the vorticity power spectrum plotted in fig. 4 of [247] to construct the following fit
for PΣ,

PΣ(k, z = 0) = AV
(k/k∗)n`

[1 + (k/k∗)]n`+ns
(Mpc/h)3 ,

where the power at large scales is given by n` = 1.3, the power at small scales by ns = 4.3
and the transition scale by k∗ = 0.7h/Mpc. From fig. 4 of [247] we find that the predicted
amplitude for PΣ is AV = 10−5.

In fig. 6.1 we use this spectrum to estimate the constraints on the eigenvalues λ̃1,2. Note
that there is no dependence on the fiducial values of the parameters λ̃I since they enter linearly
in the estimator ξ̂2M

`1`2
. Furthermore the constraints do not depend on the orientation of the

eigenvectors due to the block diagonal structure of the Fisher matrix. The 1σ-constraints on
the amplitude of the eigenvalues are σλ ≃ 6 × 10−6 with Euclid and even σλ ≃ 1 × 10−7 with
SKA2. It is also interesting to note that the constraints are better if both eigenvalues have
the same sign. This is of course owing to the fact that then the norm of the third eigenvalue
is larger. With the SKA and optimistic assumptions we should therefore be able to constrain
an anisotropic vector signal with amplitude of 1% of the amplitude of the vorticity generated
by shell-crossing in cold dark matter AV,iso ∼ 10−5 [247].
In fig. 6.2 we show the volume of the ellipsoid described by the constraints on (α,β, γ). As

3Note that the constraints obtained in this way are conservative, because we underestimate the vorticity
power spectrum at small scales for large redshift.
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Figure 6.2: Volume of the 1σ (solid) and 3σ (dashed) ellipsoids in the α − β − γ space as a
function of the ratio between the λA and λB. The anisotropic amplitude is set to AV = 10−5.
The constraint should be compared to the the cube root of the Haar volume 3

√
79 ∼ 4.

we discussed above the constraint does not depend on the fiducial directions but it depends on
the fiducial values of λ̃1,2 or, equivalently, on the choice of AV and the ratio λ1/λ2. In the plot
we fix the biggest eigenvalue to λmax = AV = 10−5. The features in the plot can be explained
intuitively as follows. We first note that the constraint asymptotes to a constant for λ1/λ2 > 1:
this is a result of two concurrent effects. On one hand, as we keep the largest eigenvalue,
λ1, fixed, the other, λ2, becomes smaller, reducing the overall signature of the anisotropy.
On the other hand, as the ratio increases, the departure from isotropy is more pronounced
yielding better constraints. Note that we could have fixed the smallest eigenvalue equal to
AV : in this case as the ratio becomes bigger the overall signature of anisotropy increases
and the two effects add up to give better constraints. Secondly the constraints are worst
for λ1/λ2 = 1 or −1/2. In both cases this is because we approach a degeneracy: λ1 = λ2 or
λ1 = λ3 respectively. Note that the constraints are slightly better in λ1 = λ2 w.r.t. the second
case as the overall amplitude is bigger in this case. The absolute values of the volume show
that Euclid constrains the direction of the anisotropy only loosely, while the constraints from
SKA2 are excellent, for our choice of amplitude AV = 10−5. Note that the constraint on the
volume scales as A3

V , so that decreasing AV by an order of magnitude would degrade the
bounds in fig. 6.2 by a factor 10.

6.5 Conclusions

In this chapter we have discussed the effects of an anisotropic vector component in the peculiar
velocity field, focusing on the redshift-space distortions induced in the galaxy correlation
function. We have presented a general method to isolate the anisotropic signal through a
decomposition in bipolar spherical harmonics. We provide an analytical expression for the
coefficients of this expansion which does not require the adoption of a specific model. We
then show how one can practically use this approach to forecast constraints on the anisotropic
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sector for two upcoming redshift surveys.
We derive two types of constraints, both on the total amplitude of the anisotropy and on

the preferred direction (in terms of the SO(3) volume of its Euler angles). We can compare
our results with the constraints found in [74] for the isotropic case which of course has no
preferred direction. Given the block-diagonal form of the Fisher matrix, we find that we are
able to achieve similar constraints on the amplitude of the vector modes (since we also assume
the same shape for the spectrum). Let us however note that even though the constraints are
similar, the interpretation of the result in the anisotropic case is cleaner, since in this case
the scalar degrees of freedom do not contribute to the estimators and therefore they do not
need to be accurately modelled.

This work is meant as a study of the feasibility of detecting an anisotropic vector signal in
the galaxy two-point function and together with the analysis carried out in [74], it represents
a comprehensive study of the detectability of vector modes in the correlation function.

Given a model for the anisotropy, one needs to determine not only the eigenvalues and
the directions of its eigenvectors, but also the corresponding vector power spectrum. Here, to
provide a concrete example of our formalism, we just assumed this to be given by the vorticity
spectrum generated by non-linear structure formation. In full generality the power spectrum
could be reconstructed from the data as a function of multipole and redshift, at the price of
much larger error bars.



Appendices

6.A Covariance matrix

The variance of the estimator ξ2M
``′ is given by

var (ξ̂ 2M
``′ ) = a2

N∑
ij
∑
km

⟨∆i∆j∆k∆m⟩X2M
``′ (r̂ij , n̂ij)X

2M∗
``′ (r̂km, n̂km)δK(rij − r)δK(rkm − r′)

= varP + varM + varC .

Since ⟨∆i∆j⟩ contains a Poisson noise contributions and a cosmic variance (CV) contribution

⟨∆i∆j⟩ =
1

dN̄
δij +C

∆
ij , (6.61)

where dN̄ is the mean number of galaxies per pixel, the three different contributions to the
variance are understood respectively as the Poisson term, the mixed term and the CV term.
The first terms is easily found

varP (r, r′) = 18L10
p

V 2(rr′)2

1

dN̄2∑
ij
∑
km

δikδjmX
2M
``′ (r̂ij , n̂ij)X

2M∗
``′ (r̂km, n̂km)δK(rij − r)δK(rkm − r′)

=
6V

r2N2
tot
δD(r − r′) ,

144
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where we have set the factor (1 + (−1)`) = 2 as only even ` appear in the expansion. The
mixed term is

varM(r, r′) = 18L10
p

V 2(rr′)2

1

dN̄
∑
ij
∑
km

(δikC
∆
jm + δjmC

∆
ik)X

2M
``′ (r̂ij , n̂ij)X

2M∗
``′ (r̂km, n̂km)

× δK(rij − r)δK(rkm − r′)
=

18L10
p

V 2(rr′)2

2

dN̄
∑
ij
∑
m

C∆
jmX

2M
``′ (r̂ij , n̂ij)X

2M∗
``′ (r̂im, n̂im)δK(rij − r)δK(rim − r′) .

We use the flat-sky expression for C∆
ij

C∆
ij (z̄) =

1

(2π)3 ∫ d3k eik⋅(xj−xi)P (k, z̄)(c0P0(n̂ ⋅ k̂) + c2P2(n̂ ⋅ k̂) + c4P4(n̂ ⋅ k̂)) , (6.62)

and we perform (in the continuous limit) the following change of variables yj = xj − xi,
ym = xm − xi together with xi = n. We obtain

varM(r, r′) = 24

πNtot
∫ dk k2P (k, z̄)j`(kr)j`(kr

′
)(c0β

0
``′ + c2β

2
``′ + c4β

4
``′) , (6.63)

where we have defined the coefficients

βσ``′ = (2` + 1)(2`′ + 1)
⎛

⎝

σ ` `

0 0 0

⎞

⎠

⎛

⎝

σ `′ `′
0 0 0

⎞

⎠

⎧⎪⎪
⎨
⎪⎪⎩

`′ ` 2

` `′ σ

⎫⎪⎪
⎬
⎪⎪⎭

. (6.64)

Finally the CV term is given by

varC(r, r′) = 18L10
p

V 2(rr′)2∑
ij
∑
km

C∆
jmC

∆
ikX

2M
``′ (r̂ij , n̂ij)X

2M∗
``′ (r̂km, n̂km)δK(rij − r)δK(rkm − r′) ,

we can perform a similar change of variable as above yj = xj −xi, ym = xm −xk so that, after
substituting eq. (6.62) twice, the two exponentials are written

eik⋅(xm−xj)eik′⋅(xk−xi) → eik⋅(ym−yj)ei(k+k′)⋅(xk−xi) , (6.65)

and the integral over xk enforces k = −k′. The angular integrals are performed with the
properties of BiPoSH as before and we obtain

varC(r, r′) = 12

πV
∫ dk k2P 2

(k, z̄)j`(kr)j`(kr
′
)∑
σ

c̃σβ
σ
``′ , (6.66)

where the c̃` are given in eqs. (4.60)-(4.64).

The computation for the off-diagonal covariance matrix, defined in eq. (6.51), follows
the same steps with the exception that Poisson noise does not contribute for off-diagonal
components as it is proportional to δ`1`2δ`′1`′2δM1M2 . Furthermore the mixed and Cosmic
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contributions are proportional to δM1M2 and the general case is obtained from eqs. (6.63)
and (6.66) by substituting the product of spherical Bessel functions inside the integral with
j`1(r)j`2(r

′) and redefining the β coefficients as

βσ`1`′1`2`′2 = i
`2−`1√(2`1 + 1)(2`′1 + 1)(2`2 + 1)(2`′2 + 1)

⎛

⎝

σ `1 `2

0 0 0

⎞

⎠

⎛

⎝

σ `′1 `′2
0 0 0

⎞

⎠

⎧⎪⎪
⎨
⎪⎪⎩

`′1 `1 2

`2 `′2 σ

⎫⎪⎪
⎬
⎪⎪⎭

.

6.B Fisher matrix

In this appendix we sketch a proof of why the off-diagonal blocks of the Fisher matrix (6.60)
vanish, i.e. FλA,αi

= 0. We have

FλA,αi
= ∑{zbin}∑i,j ∑

`1`′1`2`′2
∑
M

∂ξM`1`′1(ri, z)
∂λA

cov−1
`1`′1`2`′2(ri, rj)

∂ξM∗
`2`′2(rj , z)
∂αi

= ∑
M

(Y ∗
2M(ω̂A) − Y

∗
2M(ω̂3))

∂

∂αi
(∑
I

λIY2M(ω̂I))

× ∑{zbin}∑i,j ∑
`1`′1`2`′2

ξ̃M`1`′1(ri, z)cov
−1
`1`′1`2`′2(ri, rj)ξ̃

M∗
`1`′1(rj , z) ,

(6.67)

with
∂

∂αi
(∑
I

λIY2M(ω̂I)) = ∑
I

λI (
∂θI
∂αi

∂

∂θI
+
∂φI
∂αi

∂

∂φI
)Y2M(θI , φI) , (6.68)

and (θI , φI) are the polar angles defining the directions of ω̂I . We recall that

∂θY2M(θ, φ) = −
(/∂ + /∂

∗
)

2
Y2M(θ, φ) = −

√
6

2
( 1Y2M(θ, φ) − −1Y2M(θ, φ)) ,

∂φY2M(θ, φ) = i sin θ
(/∂ − /∂

∗
)

2
Y2M(θ, φ) = i sin θ

√
6

2
( 1Y2M(θ, φ) + −1Y2M(θ, φ)) ,

where /∂ and /∂
∗ are the spin-raising and -lowering operators respectively (see appendix B.3).

For definiteness, let us consider the case λA = λ1 and αi = α in eq. (6.67). One has

Fλ1,α = i

√
6

2
∑
M

(Y ∗
2M(ω̂1) − Y

∗
2M(ω̂3))∑

I

λI sin θI (1Y2M(ω̂I) + −1Y2M(ω̂I)) [. . . ] , (6.69)

where the [. . . ] represents the part of the Fisher matrix (6.67) which does not depend on ω̂I .
We recall √

4π

2` + 1
∑
m′ mY`m′(θ1, φ1) sY

∗̀
m′(θ2, φ2) = sY

∗̀−m(β,α)eisγ , (6.70)

where here (α,β, γ) are the Euler angles of the rotation rotating the direction (θ2, φ2) in
(θ1, φ1) and not the angles defined in eq. (6.52). In eq. (6.69) the products is between two
harmonics evaluated either at the same directions or at orthogonal directions. In our case we
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have ` = 2, s = 0 and m = 1. Furthermore (β,α, γ) denotes a rotation by either 0 or π/2 since
either ω̂1 = ω̂2 or they enclose and angle of π/2. In other words, R(β,α, γ)e3 = ±eI where
I ∈ {1,2,3} and Y`m(β,α) = Y`m(R−1(β,α, γ)e3) = Y`m(±eI), see [131]. The Euler angle γ is
irrelevant here since a rotation around ez leaves ez invariant. But for the cartesian axes eI ,
ϑ is either 0 or π/2 and Y21(ϑ,ϕ) ∝ sinϑ cosϑ vanishes. This completes the proof that the
off-diagonal boxes in the Fisher matrix vanish.

6.C ξ2M
``′

The explicit expressions for the real-space version of eqs. (6.36)-(6.38) are given by
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CHAPTER 7

Ensemble average on the light-cone

Based on:

[230] E. Mitsou, R. Durrer, F. Scaccabarozzi, V. Tansella and J. Yoo “Observer terms and
ensemble averages”
in preparation

Abstract. We analyse here the averaging procedure of cosmological observable from a theo-
retical and observational point of view. In this technical chapter we first carefully define and
discuss the differences between theory and observers N-point functions. We then show how,
under the ergodic hypothesis, on the one hand averaging over fields at the observer position
poses no difficulty but on the other hand their contribution is relegated to the unobservable
monopole. This justifies the approach we detailed in section 4.2.2.

7.1 Introduction

A crucial tool for relating theory and observations in cosmology is the assumption of sta-
tistical homogeneity and isotropy. Theoretically we can only provide statistical predictions,
i.e. ensemble averages over several universe realisations, but observationally we only have
access to a single realisation of the universe and a single light-cone within that realisation
(and of course the light-cone interior but in cosmology we essentially measure light coming
from different sources). The assumption of statistical homogeneity and isotropy along with
the application of the ergodic theorem allows one to effectively treat different parts of the
universe as different realisations and thus to connect the theoretical predictions to observa-
tions. Truthfully, a formal proof of ergodicity for a random process is not usually easy [15]
and in cosmology it is perhaps best regarded as a common-sense hypothesis.

148
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The requirement for the ergodic hypothesis to be applicable, i.e. for spatial averages to be
approximated by statistical ones, is the observational availability of a large enough number of
source points. Indeed, the common motto is that the theorist is allowed to ensemble average
a given product of fields evaluated at source positions, because the observer probes several
of these positions. This viewpoint is perfectly sufficient as long as one is only interested in
the lowest-order approximation where a cosmological observable is entirely determined by the
value of fields at the source position.

In the era of precision cosmology, however, the above approximation is no longer valid,
because observations are able to capture several sub-leading effects which depend on fields
evaluated on the whole line of sight from the source to the observer (as we have discussed
in previous chapters). As one approaches the observer on its past light-cone, the number of
observable points decreases and therefore so does the validity of the ergodic hypothesis. The
extreme case is the observer point itself, for which we can only have a single measurement.

In recent years, studies concerning non-trivial effects of averaging in cosmology have ap-
peared in the literature [71, 320], but the question we want to answer in this chapter is the
following. Theoretically we can certainly perform ensemble averages of fields at, and in the
vicinity of, the observer position, but are we then allowed to use the ergodic hypothesis to
compare the results with observations?

To understand the relevance of this issue, note first that the usual approach in the litera-
ture, and the one we have adopted in this thesis until this point, is to avoid at least part of the
issue by simply neglecting the fields at the observer position (see e.g. [73, 72, 122, 294, 295]).
We will see that this is a fair procedure in the following. As for the line-of-sight integrated
terms, they are ensemble averaged just like the source terms, which implicitly assumes that
ergodicity applies on all points, independently of how close they are to the observer position.
However another school of thought in the community considers observer terms fundamental as
they must be taken into account in order to obtain gauge-invariant predictions [59, 147, 273].
Moreover, if fields at the observer are retained when computing correlation functions, i.e.
ensemble averages of products of observables, one must perform that average on all points of
the line of sight, including the observer point, in order to obtain expressions that are free of
spurious infrared divergences [60]. In fact, from the mathematical viewpoint, this is the only
consistent way to proceed, because if we impose statistical homogeneity (which is an essential
assumptions for ergodicity to hold [311]) then no point can be privileged in space. Thus, if one
wants to consider non-random field values at the observer, then one must abandon statistical
homogeneity. The issue we have presented in this introduction can therefore be restated as
the fact that the only well-defined theoretical computation involves ensemble averaging all
the terms involved in the observable, while ergodicity is difficult to apply in the vicinity of
the observer.

7.2 Definitions and conventions

A cosmological observable is a function of two space-time points f(xo;xs), the “observer”
point xµo and the “source” point xµs , that are constrained to lie on a light-like geodesic. For
simplicity we will exclusively work within linear perturbation theory around FLRW space-
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time with t an arbitrary time-parametrisation and we will also fix the time of the observer
to zero to = 0. We can then trade, as we have done throughout this work, the constrained xµs
information for the corresponding fundamental observables that are the observed redshift z
and the observed position in the sky n, the latter being a unit-normed vector in the rest-frame
of the observer. We can thus parametrise the observables as f(x⃗o; z,n), so that all involved
variables are unconstrained, i.e. z and n parametrise the past light-cone of the observer
at x⃗o. On the other hand, x⃗o parametrises the past light-cones whose tips lie in the t = 0
hypersurface.

We will work with perturbation fields Φa which, for the purpose of this chapter, can be
thought of as “Bardeen variables”, which is effectively the same as working in the longitudinal
gauge. With this specification, the FLRW space-time on which these fields live is uniquely
defined. When promoting the Φa to stochastic fields, linearity and statistical invariance under
the Euclidean group implies that the Fourier modes Φa(t, k⃗) are independent random variables
and that the probability distribution function (PDF) is of the form

Pt[Φ] = ∏

k⃗∈R3

Pt,k⃗(Φ(k⃗)) , Pt,k⃗(Φ(k⃗)) = Pt,k(Φ(k⃗)) . (7.1)

Moreover, in the absence of primordial non-Gaussianity, linearity implies a Gaussian PDF:

Pt,k(Φ(k⃗)) ∼ exp [−
1

2
Kab(t, k)Φa(k⃗)Φ∗

b (k⃗)] , (7.2)

which we do not need to specify here. The ensemble average of a product of fields at different
times is defined as usual, i.e. we first note that Φa(t, k⃗) can be expressed in terms of the
fields at some reference time, say t = 0, through a linear relation1

Φa(t, k⃗) =Dab(t, k)Φb(k⃗) , Φa(k⃗) = Φa(0, k⃗) , (7.3)

so we can define (see appendix B.1)

⟨Φa1(t1, k⃗1)...Φan(tn, k⃗n)⟩P =Da1b1(t1, k1)...Danbn(tn, kn) ⟨Φb1(k⃗1)...Φbn(k⃗n)⟩P

=Da1b1(t1, k1)...Danbn(tn, kn)

× ∫ DΦP0[Φ]Φb1(k⃗1)...Φbn(k⃗n) ,

(7.4)

and then Fourier-transform to real space if desired. The relative perturbation of f is

δf(x⃗o; z,n) ≡
f(x⃗o; z,n) − f̄(z)

f̄(z)
, (7.5)

where f̄(z) is the background value and thus coincides with the ensemble average

f̄(z) = ⟨f(x⃗o; z,n)⟩P . (7.6)
1In the case of non-propagating fields, such as scalar perturbations, we have that D(t, k) =D(t) is a growth

function, whereas in the case of propagating fields, such as tensor modes, one must consider the field velocities
as part of the independent set {Φa} to obtain the above relation.
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Note that δf is gauge-invariant (up to terms at the observer), thanks to the fact that we are
using the observed (non-perturbative) redshift z. This is also dictated by Stewart lemma: if f̄
has a known redshift dependence, say f̄(z) =Df(z)f̄0, then we can construct a quantity that
vanishes at the background level ⟨f(z,x)−f0(x)Df(z)⟩P = 0 and eq. (7.5) is its perturbation.
This quantity can then be split into three terms

δf = δfo + δfl + δfs , (7.7)

where δfo is made of fields evaluated at the observer position, δfs is made of fields evaluated
at the source position and δfl is an integral of fields over the background line of sight. We
will refer to these as the “observer”, “source” and “line-of-sight” terms, respectively. Note that
this separation is not unique because one can perform integrations by parts in δfl producing
boundary terms which alter δfo and δfs. In particular, depending on the way the expression δf
is derived, one can use this freedom to make all three terms individually gauge-invariant [273].

7.2.1 Observational and theoretical correlation functions

In what follows we will need to consider generic products of f(x⃗o; zk,nk), so it will be impor-
tant to work with a convenient angular parametrisation. A product of N observables depends
on 2N angles, out of which one can form 2N − 3 rotationally-invariant angles, i.e. “relative”
angles. This is because the rotation group is 3-dimensional so three of the 2N angles simply
amount to the freedom of choosing a reference frame. Concretely, we can choose the relative
angular parametrisation where n1 is the azimuthal direction and n⊥ is a unit-vector normal
to n1 such that

n2 = n1 cos θ2 + n⊥ sin θ2 ,

nk>2 = [n⊥ cosφk + (n1 × n⊥) sinφk] sin θk + n1 cos θk ,
(7.8)

which involves indeed 2N − 3 independent SO(3)-invariant angles

θk = cos−1
(n1 ⋅ nk) , k = 2, ...,N ,

φk = cos−1 ⎛

⎝

n2 ⋅ nk − (n1 ⋅ n2) (n1 ⋅ nk)
√

(1 − (n1 ⋅ n2)
2) (1 − (n1 ⋅ nk)2)

⎞

⎠
, k = 3, ...,N .

(7.9)

The remaining three angles θ1, φ1 and φ2 must then be given with respect to some external
set of orthonormal vectors x̂, ŷ, ẑ in the observer’s rest-frame and correspond to a choice of
reference frame (n1, n⊥).

We can now define the “observational” correlation functions. The observer has access to
f(x⃗o; z,n) on a single past light-cone x⃗o and for a single realisation of the universe. With this
data, the observer can compute correlation functions by performing averages of f products
over all possible reference frames,

Gob
(x⃗o;{zk}

N
k=1,{θk}

N
k=2,{φk}

N
k=3) ≡

1

8π2 ∫ sin θ1 dθ1 dφ1 dφ2

N

∏
k=1

f(x⃗o; zk,nk) , (7.10)
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which therefore depend only on the invariant/relative angles. On the other hand, the one-
point function is simply the average over the observer sky

f̄ob
(x⃗o; z) ≡

1

4π
∫ sin θ1 dθ1 dφ1 f(x⃗o; z,n1) . (7.11)

It is very important to note that these N -point functions depend on x⃗o, not only because of
the observer terms δfo, but simply because a given universe realisation is not exactly homo-
geneous and isotropic. For instance, a fictitious observer located in the Holmberg galaxy2,
measuring the CMB temperature anisotropies would obtain a different map than ours, since it
would correspond to another past light-cone. The two maps would be indistinguishable only
statistically. Of course, we do not have access to the data for x⃗ ≠ x⃗o, apart from the points
that lie at the intersections of the x⃗ and x⃗o past light-cone. Nevertheless, it is important to
keep in mind this implicit x⃗o dependence which comes from the fact that observation in a
inhomogeneous universe is light-cone-dependent.

The integral in (7.10) admits a nice group-theoretical interpretation. Indeed, the set
of frames is isomorphic to the SO(3) manifold, because n1(θ1, φ1) and φ2 can be thought
of as the direction and magnitude of a rotation, i.e. they form the vector θ⃗ ≡ φ2n1 that
parametrises the group algebra θ⃗ ⋅ J⃗ ∈ so(3), where J⃗ are the generators. By choosing the
latter appropriately, one can interpret θ1, φ1 and φ2 as Euler angles β, γ and α, respectively.
The integral in eq. (7.10) is therefore an integral over the SO(3) manifold and sin θ1 dθ1 dφ1 dφ2

is the corresponding Haar measure (which we first introduced in chapter 6), so that we can
use the notation

Gob
(x⃗o;{zk}

N
k=1,{θk}

N
k=2,{φk}

N
k=3) = ⟨

N

∏
k=1

f(x⃗o; zk,nk)⟩SO(3) . (7.12)

On the theoretical side, the quantities for which we can make predictions are ensemble
averages, to which we will refer here as “theoretical” N -point functions

G({zk}
N
k=1,{θk}

N
k=2,{φk}

N
k=3) ≡ ⟨

N

∏
k=1

f(x⃗o; zk,nk)⟩P . (7.13)

As in the observational case, these functions solely depend on the relative angles and not on
the choice of reference frame, because the PDF Pt[Φ] is invariant under rotations, so one can
rotate θ1, φ1 and φ2 away. Contrary to the observational ones, however, these functions are
also independent of x⃗o, because the PDF is invariant under translations, so one can translate
the arguments to x⃗o → 0 (without affecting the relative quantities zk, θk and φk).

7.3 The ergodic hypothesis and its practical approximation

We now wish to relate the theoretical and observational N -point functions. To that end, we
start by considering the set of 3-dimensional field configurations over which we sum when
performing an ensemble average, i.e. in eq. (7.4). This ensemble can be partitioned into

2A dwarf galaxy in the constellation Ursa Major, roughly 3Mpc from the Milky Way.
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equivalence classes, where two field configurations are deemed equivalent if they can be related
by a Euclidean transformation. Denoting by [Φ] the equivalence classes, we can then describe
any element in [Φ] as

ΦR,a⃗(x⃗) = Φ1,0(Rx⃗ + a⃗) , (7.14)

where R is a rotation matrix, a⃗ a translation vector and Φ1,0 is some representative of the
class. In Fourier space, this translates into

ΦR,a⃗(k⃗) = e
ia⃗⋅k⃗Φ1,0(Rk⃗) , (7.15)

and it will be convenient to parametrise R by the three Euler angles θ1, φ1 and φ2. The reason
for partitioning the set of configurations thusly is that the PDF gives the same weight to all the
elements of a given class, thanks to its invariance under the Euclidean group E ≡ SO(3) ×R3.
We can therefore split the functional integration in eq. (7.4) into an integral over the elements
of a given class [Φ] followed by an integral over all possible classes. By the latter we mean
an integral over suitably chosen representatives Φ1,0 such that the corresponding functional
integral is well-defined.3 The PDF will then factorise outside of the first integral to yield

∫ DΦP0[Φ]X[Φ] = ∫ DΦ1,0 P0[Φ1,0] ⟨X[Φ1,0]⟩E , (7.16)

where X[Φ] represents the quantity we are averaging (essentially products of fields). The
average over the Euclidean group is defined

⟨X[Φ(x⃗)]⟩E ≡
1

V
∫ d3a

1

8π2 ∫ sin θ1 dθ1 dφ1 dφ2X[Φ(Rx⃗ + a⃗)] . (7.17)

As one could expect, the ensemble average therefore contains a purely geometric average over
the symmetry group of the PDF. The integral over the SO(3) subgroup of E was already
encountered in the observational N -point functions, where it appeared as an average over
reference frames. The average over the translation subgroup, however, would correspond to
an average over all possible observer positions x⃗o. More precisely, the “active” transformation
of the field Φ(x⃗) → Φ(x⃗+ a⃗) can be interpreted “passively” as the change of observer position
x⃗o → x⃗o − a⃗.

The advantage of the factorisation in eq. (7.16) is that it disentangles the statistical and
geometrical parts of the average. In particular, it implies that the ergodic hypothesis can be
formulated as

⟨
N

∏
k=1

f(x⃗o; zk,nk)⟩P
erg.
= ⟨

N

∏
k=1

f(x⃗o; zk,nk)⟩E , (7.18)

since the ensemble average is already a Euclidean group average before even considering the
choice of statistics. In terms of the theoretical and observational N -points functions this reads

G({zk}
N
k=1,{θk}

N
k=2,{φk}

N
k=3)

erg.
=

1

V
∫ d3xoG

ob
(x⃗o;{zk}

N
k=1,{θk}

N
k=2,{φk}

N
k=3) ,

f̄(z)
erg.
=

1

V
∫ d3xo f̄

ob
(x⃗o; z) ,

(7.19)

3The existence of such a splitting of the integration is a non-trivial mathematical assertion, whose proof,
if possible, would go beyond the scope of this paper.
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i.e. the ensemble average is equated to an average over all reference frames and light-cones
(at least for infinite volume and Gaussian statistics). Note how both sides of the equation
consistently have the same dependencies. Also, it is understood here that the left-hand
side contains stochastic fields, whereas the right-hand side contains the actually observed
realisation.

In practice, however, the information from several x⃗o is of course not available, so the best
thing one can do is to use the standard approximation

G({zk}
N
k=1,{θk}

N
k=2,{φk}

N
k=3) ≃ G

ob
(x⃗o;{zk}

N
k=1,{θk}

N
k=2,{φk}

N
k=3) ,

f̄(z) ≃ f̄ob
(x⃗o; z) .

(7.20)

To estimate the error associated to this approximation, one usually considers the (statistical)
covariance matrix

σ2
stat(αN , α

′
N) = ⟨[Gob

(x⃗o;αN) −G(αN)] [Gob
(x⃗o;α

′
N) −G(α′N)]⟩P

= ⟨Gob
(x⃗o;αN)Gob

(x⃗o;α
′
N)⟩P −G(αN)G(α′N) ,

(7.21)

where we have used the condensed entry notation

αN ≡ ({zk}
N
k=1,{θk}

N
k=2,{φk}

N
k=3) , (7.22)

and it is understood that the fields inside Gob have been promoted to stochastic ones. More
precisely, the “1-sigma” error in (7.20) is the square root of the diagonal σstat(αN , αN). On
the other hand, one could also define a geometric covariance matrix

σ2
geo(αN , α

′
N) =

1

V
∫ d3xo [G

ob
(x⃗o;αN) −G(αN)] [Gob

(x⃗o;α
′
N) −G(α′N)]

erg.
=

1

V
∫ d3xoG

ob
(x⃗o;αN)Gob

(x⃗o;α
′
N) −G(αN)G(α′N)

erg.
= (7.21) ,

(7.23)

since G(αN) appears as the average of Gob(x⃗o;αN) over x⃗o in eq. (7.19). Not surprisingly,
because of statistical homogeneity and ergodicity, we have

σstat = σgeo ≡ σ , (7.24)

as we show the appendix 7.A. This equality implies that the fundamental statistical uncer-
tainty σstat, usually known as “cosmic variance”, can be interpreted as the error due to the fact
that we observe a single universe realisation and from a single viewpoint x⃗o. Indeed, if either
one of these two conditions were dropped, under the ergodic hypothesis we could beat cosmic
variance4. On the one hand, if we could observe a single realisation from all possible x⃗o, then
eq. (7.19) would allow us to match the theoretical predictions exactly. On the other hand, if
we could observe all possible universe realisations, but from a single viewpoint x⃗o, then we
would be able to compute directly the theoretical N -point functions, which are independent

4This statement is only true for an infinite universe, as a compact universe would still have cosmic variance.
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of x⃗o. In both cases we would essentially be able to observe the expectation value of G, which
of course has no variance. Note how crucial the assumption of statistical homogeneity and
isotropy is in this argumentation.

Let us also make contact with the more common definition of cosmic variance in the
context of the CMB power spectrum. In that case, cosmic variance is usually explained as
the lack of enough m values for low `, i.e. the small number of large sky patches over which
to average. In the perspective considered here, we understand that this is due to the lack of
alternative viewpoints x⃗o. Indeed, if we had access to these, then we would have access to
any region from multiple viewpoints at the intersections of different light-cones, which would
then eliminate cosmic variance.

7.4 The subtlety of connected correlations functions

Until now we have only considered generic correlation functions, but for each N the non-trivial
information lies in the connected part. Given the fact that the complexity in the definition of
spherical connected functions increases rapidly with N , here we will solely focus on the most
relevant case for this thesis: the connected two-point functions. On the theoretical side we
have

G̃(z1, z2, θ2) ≡ G(z1, z2, θ2) − f̄(z1) f̄(z2)

= f̄(z1) f̄(z2) ⟨δf(x⃗o; z1,n1) δf(x⃗o; z2,n2)⟩P ,
(7.25)

where δf was defined in eq. (7.5). On the observational side we have

G̃ob
(x⃗o; z1, z2, θ2) ≡ G

ob
(x⃗o; z1, z2, θ2) − f̄

ob
(x⃗o; z1) f̄

ob
(x⃗o; z2)

= ⟨∆fob
(x⃗o; z1,n1)∆fob

(x⃗o; z2,n2)⟩SO(3) ,
= f̄ob

(x⃗o; z1) f̄
ob

(x⃗o; z2) ⟨δf
ob

(x⃗o; z1,n1) δf
ob

(x⃗o; z2,n2)⟩SO(3) ,
where

∆fob
(x⃗o; z,n) = f(x⃗o; z,n) − f̄ob

(x⃗o; z) , δfob
(x⃗o; z,n) =

∆fob(x⃗o; z,n)

f̄ob(x⃗o; z)
. (7.26)

Here we stress with the “ob” subscript that the fluctuations are computed with respect to the
observational average f̄ob(x⃗o; z) which is not the ensemble average f̄(z). Let us now see how
the ergodic hypothesis (7.19) relates the theoretical and observational connected two-point
functions. To that end, it will be convenient to decompose these in Legendre polynomials, as
we have done in chapter 3,

G̃(z1, z2, θ) =
∞
∑
`=0

(2` + 1)P`(cos θ) G̃`(z1, z2) ,

G̃ob
(x⃗o; z1, z2, θ) =

∞
∑
`=0

(2` + 1)P`(cos θ) G̃ob
` (x⃗o; z1, z2) ,

(7.27)
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so that

G̃`(z1, z2) = G`(z1, z2) − f̄(z1) f̄(z2) δ`0 ,

G̃ob
` (x⃗o; z1, z2) = G

ob
` (x⃗o; z1, z2) − f̄

ob
(x⃗o; z1) f̄

ob
(x⃗o; z2) δ`0 ,

(7.28)

where G` and Gob
` are the multipoles of the non-connected ones. Using eq. (7.19) in the

Legendre basis we then find

G̃`(z1, z2) = G`(z1, z2) − f̄(z1) f̄(z2) δ`0
erg.
=

1

V
∫ d3xoG

ob
` (x⃗o; z1, z2) − f̄(z1)f̄(z2) δ`0

=
1

V
∫ d3xo G̃

ob
` (x⃗o; z1, z2) + [

1

V
∫ d3xo f̄

ob
(x⃗o; z1) f̄

ob
(x⃗o; z2) − f̄(z1) f̄(z2)] δ`0

=
1

V
∫ d3xo G̃

ob
` (x⃗o; z1, z2) + σ

2
(z1, z2) δ`0 ,

(7.29)

i.e. the ergodic relation holds only up to a monopole term and the latter is nothing but the
covariance matrix of the one-point function. We can understand this difference simply by the
fact that, in order to obtain connected functions, one must subtract products of averages with
different definitions in the theoretical and observational cases. To understand the monopole
discrepancy in particular, note that G̃ob

0 (x⃗o; z1, z2) ≡ 0 by construction

G̃ob
0 =

1

2
∫ sin θ2 dθ2 G̃

ob
(x⃗o; z1, z2, θ2)

=
1

16π2 ∫ sin θ1 dθ1 dφ1 sin θ2 dθ2 dφ2∆fob
(x⃗o; z1,n1)∆fob

(x⃗o; z2,n2)

= [
1

4π
∫ dΩ1 ∆fob

(x⃗o; z1,n1)] [
1

4π
∫ dΩ2 ∆fob

(x⃗o; z2,n2)] = 0 ,

(7.30)

since each factor in the end is identically zero. On the other hand, the theoretical monopole
of G̃0(z1, z2) is not zero generically. To see this, remember first that the ensemble average
can be partitioned as in eq. (7.16), thus leading to a statistical average of directional averages
as above. The difference, however, is that the directional average of δfob is zero by definition,
while the one of δf is not zero because δf is the fluctuation around the ensemble average
f̄(z), not the sphere average f̄ob(x⃗o; z). As a result of eq. (7.29) the ergodic relation for
connected two-point functions holds for ` > 0

G̃`>0(z1, z2)
erg.
=

1

V
∫ d3xo G̃

ob
`>0(x⃗o; z1, z2) , (7.31)

and the ergodic approximation (eq. (7.20) for the generic N-point functions) holds, for the
connected two-point function, in the form

G̃`>0(z1, z2) ≃ G̃
ob
`>0(x⃗o; z1, z2) . (7.32)

On the other hand the ` = 0 case, along with G̃ob
0 ≡ 0, simply states that the monopole of the

theoretical connected two-point function is the (cosmic) variance of the one-point function

σ2
(z1, z2) = G̃0(z1, z2) . (7.33)
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Another relation we must check in the connected case is eq. (7.24), i.e. that both deviations
of variance coincide. Expressing the covariance matrix of the connected two-point function in
terms of the connected one and using (7.24) one can prove that the statistical and geometric
uncertainties on G̃`(x⃗o; z1, z2) are equal for ` > 0

σ̃geo,``(z1, z2, z1, z2) = σ̃stat,``(z1, z2, z1, z2) , ` > 0 , (7.34)

but not for ` = 0.

7.5 Discussion

We now have the required argument to tackle the question that was raised in the introduction,
i.e. of whether we can ensemble average the terms that are close and/or at the observer point.
The ergodic hypothesis (7.19) relates, in an infinite universe, the quantity that is predicted
by the theorist G(...) not to the one that observer actually measures Gob(x⃗o; ...), but rather
to an average over all the possible light-cones x⃗o of Gob(x⃗o; ...). By considering all possible
x⃗o, we also have a “large enough” number of observer points, just as for the source points, so
it is completely legitimate to ensemble average the observer terms as well.

The discomfort arises only because of the ergodic approximation (7.20), which is the only
relation one can use in practice and contains indeed a single x⃗o on the observer side. However,
we showed that the error related to privileging x⃗o, i.e. σgeo, is nothing but the usual statisti-
cal error σstat associated with this approximation, i.e. cosmic variance. This means that, by
ensemble averaging all terms in the theoretical N-point functions G, we are not getting any
further from the observed quantities than the usual statistical uncertainty.

The situation is slightly more involved in the case of connected correlation functions,
which are ultimately where the interesting information lies. In particular, in the two-point
function case, all of the above conclusions hold for all multipoles except for the monopole. As
we have anticipated in chapter 4, we have formally proven here that the monopole is exactly
zero on the observational side, while it can be in general non-zero in the theoretical compu-
tation. Let us also go back to an argument that we have raised in chapter 4: the subtraction
of the monopole for the regularisation of the IR divergence of the correlation function. The
reason for subtracting G̃0 was, as we said, two-fold: (i) G̃obs

0 = 0 by construction and (ii) the
correlation function converges only after this operation. We have however neglected in our
discussion the terms at the observer δfo. It has been shown in the literature [59, 147, 273]
that including the contributions from these terms regularise the theoretical monopole G0.
Furthermore we have argued here that the ensemble average of fields at the observer position
poses no difficulty but, on the contrary, it is the sensible procedure to ensure that statistical
homogeneity is enforced. Terms at the observer, together with super-horizon long wavelength
modes, only contribute the the monopole of the two-point function and we have proven in
this chapter that the ergodic hypothesis cannot be applied on the monopole. In other words,
although keeping track of observer terms and ensemble averaging over them is possible, they
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contribute to a quantity that cannot be matched with observations. This justifies the approach
we have used in chapter 4 of simply removing the monopole from the theoretical computation.

Finally, as a interesting side-note, let us highlight the fact that eq. (7.33) provides the
cosmic variance uncertainty for the average observable. Usually one thinks of cosmic variance
as a scale-dependent uncertainty, thus affecting only scale-dependent quantities such as cor-
relation functions. Here, however, we nicely recover the fact that even average measurements
of observables are of course affected by the fact that we can only observe them at x⃗o. More
precisely, the theoretical prediction for the observed quantity f̄ob(x⃗o; z) is f̄(z)±σ(z), where
σ(z) is consistently parametrically smaller than f̄(z). For instance, in the case of the CMB
temperature f ≡ TCMB we have

G̃0

T̄ 2
CMB

∼ (
∆TCMB

T̄CMB
)

2

∼ 10−8 , ⇒
σ

T̄CMB
∼ 10−4 . (7.35)

We then recover the well-know fact that one can of course measure the average CMB tem-
perature at x⃗o with arbitrary precision. However, only the first four non-trivial digits of this
number will be representative of this quantity in the universe and therefore cosmologically
relevant. The rest of the digits will be strongly dependent on x⃗o.



Appendices

7.A Proof of σstat = σgeom

We will show that the two non-trivial terms in the second lines of Eqs. (7.21) and (7.23) are
equal. First note that

1

V
∫ d3xoG

ob
(x⃗o;αN)Gob

(x⃗o;α
′
N) =

1

8π2 ∫ sin θ′1 dθ′1 dφ′1 dφ′2
×

1

V
∫ d3xo

1

8π2 ∫ sin θ1 dθ1 dφ1 dφ2

N

∏
k=1

f(x⃗o; zk,nk) f(x⃗o; zk,n
′
k) ,

where the second line looks like the x⃗o average of the observer 2N -point function. The only
subtlety is that the angles in n′k are relative to the (n′1,n′⊥) frame, not the (n1,n⊥) one.
Nevertheless, since we are integrating over all (n′1,n′⊥) frames (see first line), we can rotate
the latter such that θ′1, φ′1 and φ′2 are redefined to be the relative angles θN+1, φN+1 and φN+2

with respect to (n1,n⊥) in the product of 2N observables. Thus, using the ergodic theorem

1

V
∫ d3xoG

ob
(x⃗o;αN)Gob

(x⃗o;α
′
N)

erg.
=

1

8π2 ∫ sin θ′1 dθ′1 dφ′1 dφ′2
× G({zk}

N
k=1,{z

′
k}
N
k=1,{θk}

N
k=2,{θ

′
k}
N
k=1,{φk}

N
k=3,{φ

′
k}
N
k=1) .

(7.36)
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On the other hand, proceeding similarly for the non-trivial term of the statistical covariance
matrix, we find5

⟨Gob
(x⃗o;αN)Gob

(x⃗o;α
′
N)⟩P =

1

64π4 ∫ sin θ1 dθ1 dφ1 dφ2 sin θ′1 dθ′1 dφ′1 dφ′2
× ⟨

N
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f(x⃗o; zk,nk) f(x⃗o; z
′
k,n

′
k)⟩P

=
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N
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′
k}
N
k=1,{θk}

N
k=2,{θ

′
k}
N
k=1,{φk}

N
k=3,{φ

′
k}
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k=1)

=
1

8π2 ∫ sin θ′1 dθ′1 dφ′1 dφ′2
× G({zk}

N
k=1,{z

′
k}
N
k=1,{θk}

N
k=2,{θ

′
k}
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k=1,{φk}

N
k=3,{φ

′
k}
N
k=1) ,

which is indeed the same as (7.36).

5The last equality holds because the 2N -point function is independent of the reference frame angles θ1, φ1

and φ2.



CHAPTER 8

Summary and conclusions

In this thesis we analysed different probes of the large scales structures of the universe in
terms of the truly observable coordinates, namely the redshift z and the angular position n
of the sources. In recent years a lot of effort has been put into the fully relativistic charac-
terisation of LSS observables, considering the full set of light-cone effects. The latter arise as
our observations are limited to our past light-cone. On the one hand, as light-like geodesics
are conformally invariant, the background universe has the light-cone geometry of Minkowski
space. On the other hand, in a universe with structures, introducing fluctuations of the met-
ric induces perturbations to the light-cone which must be taken into account if we want to
correctly relate theory and observations. The most relevant example of this mapping from
real-space coordinates to light-cone coordinates (redshift-space) is Redshift Space Distortion,
which is responsible for the famous fingers of God and pancakes of God. While RSD has
been routinely included in the analysis of redshift surveys, other projection effects have been
generally neglected. The reason for this is that they are suppressed by powers of H/k, hence
they can become relevant only at very large scales1. However, planned and future galaxies
surveys promise to deliver very precise and deep large scale observations of the galaxy dis-
tribution where relativistic effects (especially weak lensing) contribute to the signal. We can
make a wishful comparison with the history of CMB observations, where very accurate mea-
surements of the temperature fluctuations and the polarisation have allowed us to determine
cosmological parameters with a precision of 1% and better. Now we plan to continue this
success story with LSS surveys.

From a theoretical point of view the observable of choice, the one more suited for a full-sky,
relativistic description of galaxy clustering is the angular power spectrum of number counts
C` (introduced in chapter 2). On the other hand experimental effort has been generally di-
rected to the two-point correlation function ξ(z1, z2, θ) (introduced in chapter 3). This thesis

1RSD and also lensing are not suppressed by powers of H/k, hence they are the most important effects.
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is mainly focussed on the latter. Even from the theory side, the two-point function has some
nice properties that qualify it as an observable which is complementary to the C`. The most
important feature of ξ(z1, z2, θ) is the possibility of performing an analysis in terms of its
multipoles ξ`(r) which allows to isolate certain contributions in a subset of the allowed values
of `. With the C` on the other hand there is no simple way to isolate – for example – RSD,
since each multipole ` is a non-trivial combination of density and velocity. The bulk of this
thesis is devoted to the study of the full-sky, fully relativistic two-point correlation function.

In chapter 2 we have introduced the galaxy number counts and computed how projection
effects due to scalar, vector and tensor perturbations affect this observable. We have ob-
tained a general expression which can be applied for all situations where linear cosmological
perturbation theory is valid. We have employed it to compute the contribution to the galaxy
number counts from vector perturbations which are induced from the usual scalar pertur-
bations at second order in perturbation theory. While these terms are certainly present in
the standard ΛCDM cosmology, they are very small. It is however interesting to note that,
for high redshift surveys, the total ratio of the vector-induced and scalar-induced effects is
increasing, even though the second order vectors are smaller at higher redshift. This is due to
the fact that at high redshift the lensing term increases while the density and redshift space
distortions are less relevant. Therefore the lensing term becomes more relevant and for this
contribution vector perturbations are least suppressed.

In chapter 3 we began our investigation of the galaxy two-point function, presenting the
theoretical framework for the study of the full-sky, fully relativistic multipoles of the correla-
tion function. We pointed out that even though these functions are not model independent
– as a cosmological model must be used to convert angles and redshifts into distances –
they are useful for several reasons. First they are well adapted to describe the 3-dimensional
information present in large-scale structures. This is not the case for the observable C`
angular-redshift power spectrum for which we cannot employ very fine redshift binning due
to under-sampling. Second, the multipoles of the correlation function and of the power spec-
trum contain important information about the growth of perturbations which is difficult to
isolate in the angular-redshift power spectrum. We have computed these quantities within
linear perturbation theory and with the halofit approximation, showing how they are affected
by large-scale relativistic effects and by lensing, the importance of which is bigger at high
redshift. Furthermore we discovered that the presence of higher multipoles in both, the cor-
relation function and the power spectrum, might represent an ideal observational target to
identify the lensing term.

In chapter 4 we detail how the results of chapter 3 have been employed to write the code
coffe. The code allows for a fast and accurate computation of the relativistic two-point
correlation function and its multipoles. We have also introduced two estimators of the ξ` and
computed their covariance. We discussed some subtleties regarding the two-point function
and presented forecast on the detectability of the lensing signal in the galaxy correlation func-
tion, finding that upcoming galaxy survey will be able to detect it in the multipoles. This
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opens the possibility of testing gravity from the clustering signal alone as it allows to put
constraints in the (Σ, µ) plane of GR modifications.

In chapter 5 we pointed out the existence of a second feature in the matter two-point func-
tion, besides the acoustic peak. This feature, positioned at twice the distance of the BAO
peak, is understood – in the early universe – as a trough in the baryon-baryon correlation
for separations bigger than twice the sound horizon at zdrag. The feature is clearly visible in
models with an high baryon fraction while in a realistic cosmological model it is a very small
effect. We proved this with a χ2 analysis that showed that – even in an SKA-like survey
– it is not possible to distinguish between the models with and without the second feature.
Note that in a Fourier space analysis the effect we have described is correctly modelled if the
template P (k) is generated from a Boltzmann code such as class or camb.

In chapter 6, we presented a suitable decomposition to discuss the signal induced by
anisotropic vector perturbation in the galaxy two-point function and perform a Fisher fore-
cast to determine the detectability of the parameters which characterise the anisotropy with
planned or futuristic galaxy catalogs. A general method to isolate the anisotropic signal is
obtained through a decomposition in bipolar spherical harmonics. We provided an analytical
expression for the coefficients of this expansion which does not require the adoption of a spe-
cific model and we have derived two types of constraints, both on the total amplitude of the
anisotropy and on the preferred direction (in terms of the SO(3) volume of its Euler angles).

In chapter 7 we analysed the averaging procedure of cosmological observable from a the-
oretical and observational point of view. We then showed how, under the ergodic hypothesis,
on the one hand averaging over fields at the observer position poses no difficulty but on the
other hand their contribution is relegated to the unobservable monopole, for which the ergodic
approximation cannot be employed.

As a final remark we argue that future directions of this line of work should be aimed at
bridging the gap between theoretical understanding of galaxy clustering and the complications
entailed in observations. One important aspect that we over-simplified in this work is biasing :
the relationship between the spatial distribution of galaxies (which is what we measure)
and the underlying dark matter density field (which is what we characterise theoretically).
Throughout this thesis we have employed the common approximation of a scale-independent
and linear galaxy bias, justified by the fact that at large scales (where relativistic effects are
most important) this is a fair assumption. Furthermore galaxy survey analyses that are only
aimed at measuring the BAO scale, can usually overlook this problem and include the effect
of bias into the nuisance parameters of their two-point function fit. In the future however,
if we are interested into the determination of cosmological parameters at the 1% precision
level, the bias problem has to be studied in conjunction with the projection effects. A similar
argument holds for non-linear effects as most of the scales interesting for the study of LSS are
affected by non-linear gravitational evolution. On the one hand the computation presented
in chapter 2 has been pushed to higher order in perturbation theory by several authors, while
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on the other hand (usually Newtonian) N-body simulations are the best bet to push into the
mildly non-linear regime. Finally let us also point out that the magnification bias s and the
evolution bias fevo are usually considered contamination of the signal in cosmology due to the
big uncertainty on them. They are however important probes of galaxy evolution, as they
are linked to the luminosity function of galaxies.



APPENDIX A

Background & Cosmological perturbation theory

This appendix is mainly based on [131].

A.1 The background cosmology

In this section we review the basic equations and concepts of the background evolution of the
universe. We present the relevant aspects of this subject for self-completeness of this thesis,
while we refer to many great cosmology books for an in-depth treatment.

As we discussed in the Introduction the guide for a mathematical description of the cosmos’
evolution is the cosmological principle, which states that at large scales (let’s say ≫ 10Mpc)
the universe is approximately homogenous and isotropic. In technical terms this means that
it exists a preferred time coordinate, ‘cosmic time’ t, such that the 4-dimensional manifold
M is foliated into 3-spaces Σt = {xi∣xµ = (t, xi) ∈ M} of constant curvature. Cosmic time
is the proper time of an observer which sees a spatially homogeneous and isotropic universe.
The metric is hence given by

ds2
= ḡµνdx

µdxν = −dt2 + a2
(t)γijdx

idxj = a2
(η)(−dη2

+ γijdx
idxj) , (A.1)

where we have introduced the scale factor a(t) which is linked to cosmological redshift via

1 + z =
a0

a
, a0 ≡ a(η0) . (A.2)

For the second equal sign of eq. (A.1) we have also defined the conformal time η, related to t
via dη = dt/a. We write the spatial metric γij , in spherical coordinates, as

γijdx
idxj = dχ2

+ S2
K(χ)dΩ2

= dχ2
+ S2

K(χ)(dθ2
+ sin2 θdφ2

) , (A.3)
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where K is the curvature parameter and we have defined

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

SK(χ) = 1√
K
sin(

√
Kχ) K > 0 ,

SK(χ) = χ K = 0 ,

SK(χ) = 1√
K
sinh(

√
Kχ) K < 0 .

(A.4)

The coordinates (χ, θ, φ) are referred as comoving coordinates: a particle moving on a back-
ground geodesic remains at (χ, θ, φ) = const as the universe expands. We denote with a prime
derivatives w.r.t. cosmic time ∂ta = a′ and with a dot derivatives w.r.t. conformal time
∂ηa = ȧ. The Hubble parameter is then defined as

H =
a′
a
, (A.5)

and for a generic function of time we have

f ′ = ḟ
a

f ′′ = f̈

a2
−H

ḟ

a2
, (A.6)

where we have introduced the comoving Hubble parameter

H =
ȧ

a
= aH . (A.7)

As in this thesis we always set a0 = 1, we have

H(η0) ≡ H0 =H(t0) ≡H0 ≡ h ⋅ 100km/s/Mpc ,

with h ≃ 0.7.

The evolution of the scale factor a(η) is governed by Einstein equations

Rµν −
1

2
Rgµν ≡ Gµν = 8πGTµν −Λgµν , (A.8)

where Rµν , Gµν are respectively the Riemann and Einstein tensors and R is the Ricci scalar.
For their definitions see section B.2. Λ is the cosmological constant and Tµν is the energy
momentum tensor which - because of homogeneity and isotropy - can be written in terms of
the (background) energy-density ρ̄ and the pressure p̄ as

T̄µν =
⎛

⎝

−ρ̄ḡ00 0

0 p̄ḡij

⎞

⎠
. (A.9)

In a FLRW universe the Einstein equation are

H2
+
K

a2
=

8πG

3
ρ̄ +

Λ

3
,

2
a′′
a
+H2

+
K

a2
= −8πGp̄ +Λ ,

(A.10)
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or

H
2
+K =

8πG

3
a2ρ̄ +

Λa2

3
,

2Ḣ +H
2
+K = −8πGa2p̄ + a2Λ .

(A.11)

It is also sometimes useful to write them as

4πGa2ρ̄(1 +w) = H
2
− Ḣ +K ,

2Ḣ = −
1 + 3w

2
(H

2
+K) .

(A.12)

Furthermore energy conservation imposes ∇µTµν = 0, from which

˙̄ρ = −3H(ρ̄ + p̄) . (A.13)

We can specify an equation of state for the fluid under consideration p̄ = wρ̄ such that in the
case w = const, eq. (A.13) yields

ρ̄ = ρ̄0a
−3(1+w) , (A.14)

and we can infer the evolution of the energy-density for the different components: for pressure-
less matter (or dust) we have w = 0, hence ρ̄m ∼ a−3. For relativistic particles or radiation
w = 1/3, hence ρ̄γ ∼ a−4. For the cosmological constant w = −1 and ρ̄Λ = const.

We introduce the adiabatic sound speed cs determined by

cs =
√

˙̄p/ ˙̄ρ . (A.15)

From this definition and eq. (A.13) we can write

ẇ = 3H(1 +w)(w − c2
s) . (A.16)

Hence w = const only if w = −1 or w = c2
s.

Note that in the absence of dark energy, Λ = 0, eq. (A.10) implies that for a specific value
of the energy-density

ρ̄c ≡
3H2

8πG
, (A.17)

we obtain K = 0. The value ρ̄c is called the critical density and corresponds to the value of
the energy-density for which the spatial geometry is flat. It is customary to define, for every
species X, the density parameter ΩX(η) = ρ̄X(η)/ρ̄c(η). In particular in this work we define

Ωm = Ωm(η0) =
ρ̄m(η0)

ρ̄c(η0)
, Ωγ = Ωγ(η0) =

ρ̄γ(η0)

ρ̄c(η0)
,

ΩΛ = ΩΛ(η0) =
Λ

3H2
0

, ΩK = ΩK(η0) = −
K

a2
0H

2
0

,

Ωb = Ωb(η0) =
ρ̄b(η0)

ρ̄c(η0)
, Ων = Ων(η0) =

ρ̄ν(η0)

ρ̄c(η0)
,

(A.18)
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Figure A.1: The ‘fate of the universe’ plot which shows how different combinations of the
density parameters determine the evolution of the scale factor a(t).

for total matter, radiation, dark energy, curvature, baryons and neutrinos respectively. With
these definitions we can divide eq. (A.10) by H2 and obtain

1 = ∑
X

ΩX(η) . (A.19)

This relation is usually employed to fix the dark energy content of a flat universe (ΩK = 0)
via

ΩΛ = 1 − ∑
X≠Λ

ΩX . (A.20)

The ΩX parameters fix the background evolution of the universe (i.e. a(t)) and the usual
examples are given in figure A.1. In general the differential equation for the scale factor has
no analytic solution while some notable exceptions are usually discussed in any cosmology
book.

If all the wX are constants, eq. (A.10) can be written in terms of the evolution of the
Hubble parameter as

H(a) =H0

√

∑
X

ΩXa−3(1+wX) , (A.21)

or, in a more familiar way,

H(z) =H0

√

Ωγ(1 + z)4 +Ωm(1 + z)3 +ΩΛ + ... . (A.22)

Let us now briefly discuss the last subject of this section: cosmological distances and
horizons. A question we could ask is how far light could have travelled since t = 0 in the
absence of interactions? From the metric (A.1) and ds2 = 0 we obtain

η = ∫
t

0

dt′
a(t′) . (A.23)
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Since no information can propagate further on the comoving frame, conformal time η provides
a comoving horizon. The proper distance to the horizon gives the particle horizon

RH(t) = a(t)∫
t

0

dt′
a(t′) . (A.24)

This leads to the definition of the comoving distance

χ = η0 − η = ∫
t0

t

dt′
a(t′) = ∫

z

0

dz′
H(z)

, (A.25)

that can be thought of as the distance with the expansion ‘factored out’, so that the comoving
distance between two object remains constant in time if they move only with the Hubble flow.
The particle horizon should not be confused with the notion of Hubble radius defined as H−1:
events separated by a distance greater that RH were never in causal contact while events
separated by a distance greater than H(t)−1 are not in causal contact at time t. In comoving
coordinates the Hubble radius is given by H−1.

Common ways to measure the distance in astronomy and cosmology are the angular
diameter distance and the luminosity distance. The latter is defined as

DL(z) =

√
L

4πF
, (A.26)

where L is the luminosity of a source at redshift z - namely the energy emitted in all directions
per second - and F is its flux - namely the energy received per second per unit area. The
angular diameter distance is defined as

DA(z) =
a

√
∣ΩK ∣H0

SK (
√

∣ΩK ∣H0∫

z

0

dz′
H(z′)) , (A.27)

which, for K = 0, reduces to DA(z) = χ(z)/(1 + z). The Etherington relation links DA to DL

DL(z) = (1 + z)2
DA(z) , (A.28)

where one factor (1 + z) comes from the change in proper time and the other is due to the
redshift of the photon energy. As a last remark let us expand the comoving distance around
t = t∗. The scale factor can be written

a(t) ≃ a(t∗) [1 +H∗(t − t∗) − 1

2
q∗H2∗(t − t∗)2

+ ...] , (A.29)

where we have introduced the deceleration parameter

q(t) = −
a(t)a′′(t)
a′2(t) . (A.30)
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In the same way, using eq. (A.2), we obtain

t∗ − t ≃ 1

H∗ [z − (1 +
1

2
q∗) z2

+ ...] . (A.31)

With this and eq. (A.25) we obtain

χ(z) ≃
1

H0
[z −

1

2
(1 + q0) z

2
+ ...] , (A.32)

and we sometimes use in this work the approximation χ(z) ≃ z/H0, for z ≪ 1.

A.2 Perturbation theory

For the moment we have only described the properties of the idealised background universe,
isotropic and homogeneous. Clearly, the true metric of the universe is not the FLRW metric of
eq. (A.1) as we can observe structures which are not isotropic nor homogeneous. Nevertheless
observations show that, at least on large scale, the ‘true’ metric is ‘close’ to the background
one. Essentially these inhomogeneities grew out of small variations of the geometry and of
the energy-momentum tensor, which we treat in linear perturbation theory. In other words
we can write the metric gµν as

gµν ≃ ḡµν + a
2hµν , (A.33)

where ḡµν is the background metric and hµν a small perturbation around it, parametrised as

hµνdx
µdxν = −2Adη2

− 2Bidηdx
i
+ 2Qijdx

idxj . (A.34)

Note that we only deal with a flat background here as we generally set ΩK = 0 throughout
this thesis.

A.2.1 SVT decomposition

It is customary to perform the scalar-vector-tensor (SVT) decomposition of the perturbations.
The reason is twofold: firstly, as we will see in a moment, this allows to explicitly count the
number of degrees of freedom. Secondly, and more importantly, the scalar, vector and tensor
d.o.f. evolve independently at first order, i.e. the corresponding Einstein equations are
decoupled. We then decompose Bi and Qij as

Bi = ∂iB
°(S)

+ B̂i
¯(V )

,

Qij = −Cδij + (∂i∂j −
1

3
∇

2
)E

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶(S)
+

1

2
(∂iÊj + ∂jÊi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶(V )
+ Êij
°(T )

.
(A.35)

Here B̂i and Êi are true vectors degrees of freedom, ∂iÊi = ∂iB̂i = 0, and Êij is a true tensor,
∂iÊ

ij = Eii = 0. The 10 degrees of freedom of the metric have been decomposed in 4+4+2
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SVT d.o.f.: the scalars A,B,C,E, the transverse vectors Êi, B̂i and the transverse-traceless
tensor Êij . A similar decomposition holds for the energy momentum tensor Tµν . In general
any rank-2 tensor can be decomposed by means of the projector

Pµν = gµν + uµuν , (A.36)

onto the subspace normal to uµ = dxµ/dt, where t is the proper time along the word-line. We
can then write [145]

Tµν = ρuµuν + qµuν + qνuµ + pPµν +Σµν . (A.37)

The energy density ρ is defined as the time-like eigenvalue given as

Tµν u
ν
= −ρuµ , uµuµ = −1, , (A.38)

so that ρ = Tµνuµuν is the relativistic energy density. Furthermore 1
3P

µνTµν is the relativistic
pressure, −P νµTνσuσ is the relativistic momentum density and

Σµν = −(Pα(µP βν) − 1

3
PµνP

αβ
)Tαβ ,

where () denotes symmetrisation, is the anisotropic (trace-free) stress tensor. Note that the
component u0 is fixed by the normalisation

u0
=

1

a
(1 −A) , (A.39)

and we further set
ui =

1

a
vi =

1

a
(−∂iv + v̂i) , (A.40)

where we have decomposed v into its scalar and vector component v̂i = v
(V )
i , ∂iv̂i = 0. The

spatial part of the momentum density is given by qi = (ρ̄ + p̄)vi. At first order we write the
perturbation in the energy density and in the pressure as ρ = ρ̄(1 + δ) and p = p̄ + δp so that
the perturbed part of Tµν is given by

δT 0
0 = −ρ̄ δ , (A.41)

δT 0
j = (ρ̄ + p̄)(vj −Bj) , (A.42)

δT j0 = −(ρ̄ + p̄)vj , (A.43)
δT ij = δp δij +Σi

j . (A.44)

We already performed the SVT decomposition on vi, while for the metric fields it was given
in eq. (A.35). For the anisotropic stress we define

Σij = (∂i∂j −
1

3
∇

2
)Σ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶(S)
+

1

2
(∂iΣ̂j + ∂jΣ̂i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶(V )
+ Σ̂ij
°(T )

. (A.45)
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A.2.2 Gauge problem

We now go back to the issue we have already briefly discussed in the Introduction: the gauge
problem. We have considered the first order perturbations (hµν , δTµν) on top of a FLRW
background ḡµν , T̄µν ; however, since the theory is invariant under diffeomorphism (coordinate
transformation), the perturbations are not uniquely defined, but depend on our gauge choice.
In other words when we wrote down the metric in eqs. (A.33)-(A.34) we implicitly chose a
space-time slicing and defined spatial coordinates on the constant time hyper-surfaces. A
different slicing choice will change the value of the perturbation fields. To show this let us
consider a generic coordinates transformation given by

xµ Ð→ x̃µ = xµ + ζµ(xν) , (A.46)

where we split the vector ζµ in ζ0 = α, ζi = ∂iβ + β̂i. The gauge transformation (A.46) for a
tensor F is given in terms of the Lie derivative along the vector ζν

F̃ (x̃ν) = F (xν) +LζF (xν) , (A.47)

so that
F̃µν = Fµν + Fµν,σζ

σ
+ ζσ,µFσν + ζ

σ
,νFσµ . (A.48)

In particular for the metric tensor hµν this implies

A → A − α̇ −Hα , (A.49)
B → B + α − β̇ , (A.50)

B̂i → B̂i −
˙̂
βi , (A.51)

C → C −Hα −
1

3
∇

2β , (A.52)

E → E − β (A.53)
Êi → Êi − β̂i , (A.54)
Êij → Êij . (A.55)

On other hand for the energy momentum tensor Tµν we obtain

δ → δ + 3(1 +w)Hα , (A.56)

δp → δp + 3
c2
s

w
(1 +w)Hα , (A.57)

v → v − β̇ , (A.58)

v̂i → v̂i +
˙̂
βi , (A.59)

Σij → Σij . (A.60)

It is then clear that if we start in a gauge where - for example - g00 is unperturbed (A = 0), a
coordinate transformation can generate an unphysical perturbation Ã = −α̇ −Hα. Similarly
we can remove a perturbation from the metric with an appropriate gauge choice. We are
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left with the problem of identifying which fields are a physical perturbation and which are
just spurious gauge modes. The solution is to introduce gauge invariant variables, i.e. special
combination of metric perturbation which do not transform under a gauge transformation,
and which therefore represents physical perturbations. For the metric the most important
gauge invariant variables are given by the Bardeen potentials defined as

Ψ ≡ A +H(B − Ė) + (Ḃ − Ë) , (A.61)

Φ ≡ C −H(B − Ė) +
1

3
∇

2E , (A.62)

while for the energy-momentum tensor the comoving gauge density perturbation is gauge
invariant:

δc = δ + 3H(1 +w)(v −B) . (A.63)

Another approach to the gauge problem is to fix the gauge. Out of the ten degrees of
freedom (one in A, three in Bi and six in Qij) of (A.34) we can use the freedom in the gauge
transformation to fix four of them. Different choices of gauge are used in cosmology. Our
pick for this thesis is Poisson gauge, given by the choice

B = E = Êi = 0 , (A.64)

so that we ‘gauge away’ two scalar d.o.f. and two vector d.o.f.. The metric is then given, as
in eq. (2.1), by

ds2
= a2 [−(1 + 2Ψ)dη2

− 2Si dηdxi + [(1 − 2Φ)δij + 2Hij]dxidxj] , (A.65)

where our gauge condition dictates A = Ψ, C = Φ and we have defined Si = B̂i, Hij = Êij ,
so that ∂iSi = ∂iHij = H

i
i = 0. Other gauges widely used in cosmology are: comoving gauge

(B = v and C = 0), synchronous gauge (A = B = 0) and spatially flat gauge (C = E = 0). In
the last sentence we have neglected vector perturbations (Bi = 0) so that a gauge choice is
made by fixing only two scalar degrees of freedom.

A.2.3 Einstein, Euler & continuity equations

We can now write down the Einstein equation for our metric (A.65), switching to Fourier
space as it is most relevant for this thesis (note that we denote with the same letter Ψ(x)
and Ψ(k)). The first-order part of the ‘00’ equation gives

k2Φ + 3H(Φ̇ +HΨ) = −4πGa2ρ̄δ . (A.66)

The ‘0i’ equations are

ki(Φ̇ +HΨ) = −(Ḣ −H
2
)kiv , (A.67)

k2Si = −4(Ḣ −H
2
)(v̂i − Si) , (A.68)
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while the ‘ij’ equations give

(∂η + 2H)k2Si = 8πGa2k2Σ̂j , (A.69)
D̃ij(Φ −Ψ) = 8πGa2D̃ijΣ , (A.70)
Φ̈ + 3HΦ̇ + (2Ḣ +H

2
)Φ = 4πGa2δp , (A.71)

(∂2
η + 2H∂η + k

2
)Hij = 8πGa2Σ̂ij , (A.72)

with D̃ij =
1
3δijk

2 − kikj . Combining eqs. (A.66) with (A.67),(A.63) and (A.12) we obtain
Poisson equation

4πGa2ρ̄ δc = −k
2Φ , (A.73)

or, using ρ̄m = Ωmρ̄ca
−3 and 4πGρ̄c =

3
2H

2
0,

3H2
0Ωm

2a
δc = −k

2Φ . (A.74)

Note that this is a Newtonian equation which holds at the fully relativistic level when the
density variable is the comoving gauge one and the potential is the one defined in Poisson
gauge.

The second set of perturbation equations can be derived from the energy-momentum
conservation

∇µT
µν

= 0 . (A.75)

In particular for ν = 0 we find the relativistic version of the continuity equation

δ̇ + (1 +w)(−k2v − 3Φ̇) + 3H(
δp

δρ̄
−w) δ = 0 , (A.76)

and for ν = i we obtain the relativistic version of Euler equation

V̇ +HV − 3HwV − kΨ =
δp

(1 +w)ρ̄
, (A.77)

where we have introduced the variable V , defined as v = k−1V , such that V (x) is dimension-
less.

Note that the Einstein equations and the energy-momentum conservation form a redun-
dant, but consistent, set of equations because of the Bianchi identities.

Let us also stress that in the case we consider a mixture of several fluids in the universe,
eqs. (A.76),(A.77) hold if the energy-momentum of the different components is separately
conserved. In this case we can specify those equation for a particular component. For example
- in the case of (pressure-less) matter - Euler equation is written

V̇ +HV − kΨ = 0 . (A.78)

On the other hand the Einstein equations determine the metric induced by the full perturba-
tions

δρ = ∑
X

δρX , δp = ∑
X

δpX , V = ∑
X

VX , Σij
= ∑
X

Σij
X . (A.79)
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A.2.4 Linear growth

If we want to understand how fluctuation in the universe grow to form the structure we see
today, we must start with the initial condition. Any mode of interest today was outside the
Hubble radius if we go back far into the past. Inflation sets the initial condition for these
super-horizon modes. Inflationary models usually predict the power spectrum of the comoving
curvature perturbation ζ which, in a generic gauge, is defined as

ζ ≡ −C −
1

3
∇

2E +H(B − v) = −Φ −
2

3(1 +w)
(

Φ̇

H
+Φ) , (A.80)

and we switched to Poisson gauge for the second equal sign. It can be shown that Einstein
equations imply that

d ln ζ
d lna

∼ (
k

H
)

2

, (A.81)

so that on super-horizon scales (k ≪ H), ζ is constant. This means that the value of ζk at
horizon exit during inflation is conserved until horizon entry at later time, for each mode k.
The task is then to relate the constant super-horizon value ζk to the super-horizon gravita-
tional potential Φk through radiation domination and matter/radiation equality1 and then
study the evolution of Φk (and the relevant energy-density perturbations) after it enters the
horizon. Clearly the evolution of the fluctuations depends on whether they enter the horizon
during radiation or matter domination. In matter domination, as a result of the fact that
cold dark matter is pressure-less, all modes experience uniform growth, independent of the
wavenumber k.

In short we write schematically, for each species and metric perturbation X,

Xk(η) = ζk × {Transfer Function(k)}
X
× {Growth Function(η)}

X
. (A.82)

The transfer function describes the evolution of perturbations through the epochs of horizon-
crossing and radiation/matter transition, while the growth function describes the wavelength-
independent growth at late times. It’s convenient to group together eq. (A.82) and simply
write

Xk(η) ≡ ζk SX(k, η) . (A.83)

To solve for the transfer function SX(k, η) one needs in principle the full hierarchy of
Boltzmann equations (see e.g. [131], Chapter 4) and Einstein equations. In fairness a great
deal of insights can be found analytically with just some approximations (see e.g. [128],
Chapter 7) but for the precision required by modern observations one needs to rely on Boltz-
mann codes such as cmb-fast, class or camb. We will not enter in the details here but we

1This is how the famous factor 9/10 comes: Φk is also conserved on super-horizon scale if the equation
of state w is constant, the change in w from radiation domination (RD) to matter domination (MD) implies
ΦMD = 9/10 ΦRD.
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stress that, at late times, Einstein equations provide a link between the transfer function of
different species. For example Poisson equation neglecting radiation and, for non-clustering
dark energy δ(DE)

c = 0, is given by

3H2
0Ωm

2a
δ(m)
c = −k2Φ . (A.84)

so that the transfer functions of the gravitational potential SΦ and the one of the matter
perturbation SD are related by

SΦ = −
3Ωm

2a
(
H0

k
)

2

SD . (A.85)

As we said, at later time than equality, the evolution is wavelength-independent and to find
the growth of matter perturbation we can use eq. (A.71) for pressure-less dust which gives

Φ̈ + 3HΦ̇ + (2Ḣ +H
2
)Φ = 0 , (A.86)

and, given ρ̄m ∼ a−3, eq. (A.84) implies Φ ∼ δ
(m)
c /a, so that

δ̈(m)
c +Hδ̇(m)

c + (Ḣ −H
2
)δ(m)
c = 0 , (A.87)

or
d2

da2
δ(m)
c + (

Ḣ

aH2
+

3

a
)
d

da
δ(m)
c −

3

2
Ωm

H2
0

a3H2
δ(m)
c = 0 . (A.88)

Integrating this equation twice we find

D1(a) =
5Ωm

2

H(a)

H0
∫

a

0

da′
(a′H(a′)/H0)

3
, (A.89)

where we define
δ(m)
c (η) = δ(m)

c (η∗) D1(η)

D1(η∗) . (A.90)

At late time we have then factored out the time-dependence of SD as

SD(η, k) = SD(η∗, k) D1(η)

D1(η∗) . (A.91)

The continuity equation gives

kV = −δ̇(m)
c = −δ(m)

c

Ḋ

D
= −Hfδ(m)

c , (A.92)

with the velocity growth rate defined as

f =
d lnD
d lna

, (A.93)
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so that
SV = −

Hf

k
SD . (A.94)

Neglecting anisotropic stress we trivially obtain, from eq. (A.70),

SΦ = SΨ , (A.95)

while we can also write

SΦ̇ = −
3Ωm

2a
(
H0

k
)

2

H(f − 1)SD . (A.96)



APPENDIX B

Useful Math

B.1 Statistics of random fields

Let us start by defining a random field : an application F ∶ S → {random variable} which
assign to every point x ∈ S a random variable. We can think of S being some constant-time
hyper-surface and the matter fluctuation δ(x) as the random variable or S being the CMB
sky and the CMB temperature T (n) as the random variable. In the first case the field has
zero mean, i.e. ⟨δ⟩ = 0 while in the second case ⟨T ⟩ = T̄ ≠ 0. The brackets ⟨[...]⟩ represent the
ensemble average or the expectation value of the field F :

⟨F ⟩(x) = ∫ DF P [F ]F (x) , (B.1)

where the integral is a functional integral over the fields configurations weighted by the
probability distribution function, which is a functional P [F ] corresponding to the probability
of realising some field configuration. Correlators of fields are expectation values of products
of fields at different points on S. For example the two-point function is defined

ξ(x,y) = ⟨F (x)F (y)⟩ = ∫ DF P [F ]F (x)F (y) , (B.2)

while in general an N−point function is written

⟨F (x1)F (x2)...F (xN)⟩ = ∫ DF P [F ]F (x1)F (x2)...F (xN) . (B.3)

Fields in cosmology are usually treated as statistically homogeneous and isotropic. Sta-
tistical homogeneity for fields in real space means that the statistical properties of the
translated field are the same as the original field:

P [F (x)] = P [F (x +w)] with w ∈ S . (B.4)
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Statistical isotropy means that the statistical properties of the rotated field are the same:

P [F (x)] = P [F (Rx)] . (B.5)

These two properties translate into the facts that the expectation value is independent of the
position and the two-point function only depends on the distance between the two points, i.e.

⟨F ⟩(x) = ⟨F ⟩ = F̄ , (B.6)

ξ(x,y) = ξ(∣x − y∣) . (B.7)
In Fourier space these conditions translate into

⟨F (k)F ∗
(k′)⟩ = (2π)3δ(k − k′)PF (k) . (B.8)

To see this we can simply insert eq. (B.7) into the Fourier transform

⟨F (k)F ∗
(k′)⟩ = ∫ d3xd3x′ ⟨F (x)F (x′)⟩ei(k⋅x−k′⋅x′)

= ∫ d3xd3x′ ξF (x,x′)ei(k⋅x−k′⋅x′)
= ∫ d3xd3x′ ξF (∣x − x′∣)ei(k⋅(x−x′)−(k′−k)⋅x′)
= ∫ d3rd3x′ ξF (r)ei(k⋅r−(k′−k)⋅x′)
= (2π)3δ(k − k′)ξ̃F (k) = (2π)3δ(k − k′)PF (k) .

(B.9)

For the fourth equals sign we made the variable transform r = x − x′ and for the last equals
sign we used the fact that the integral of eik⋅x is a delta function. Finally in angular space:
we know that ξ(x,y) is only a function of the distance between the two points hence, on the
sphere, the angular correlation function is only a function of the scalar product cos θ = x̂ ⋅ ŷ.
We can then expand it in terms of Legendre polynomials as

ξ(θ) =
1

4π
∑
`

(2` + 1)C`P`(cos θ) . (B.10)

A generic field on the sphere can be expanded in spherical harmonics

F (n) = ∑
`m

f`mY`m(n̂) , (B.11)

and in this case, statistical homogeneity and isotropy ensure

⟨f`mf
∗̀′m′⟩ = δ``′δmm′C` . (B.12)

This can be easily proved with the aid of eq. (B.10), that can be written (see section B.3)

ξ(θ) =
1

4π
∑
`

(2` + 1)C`P`(cos θ) = ∑
`m

C`Y`m(x̂)Y ∗̀
m(ŷ)

= ∑
`m`′m′⟨f`mf

∗̀′m′⟩Y`m(x̂)Y ∗̀′m′(ŷ) .
(B.13)

Integration over the sphere gives eq. (B.12)

∑
`m

C`∫ dΩY`m(x̂)Y ∗̀
m(ŷ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1

= ∑
`m`′m′⟨f`mf

∗̀′m′⟩∫ dΩY`m(x̂)Y ∗̀
m(ŷ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δ``′δmm′

. (B.14)



180 B. USEFUL MATH

B.2 Differential Geometry definitions

We present in this appendix some differential geometry definitions commonly used in gen-
eral relativity, to fix the notation of this thesis. Einstein’s summation convention is assumed
throughout this work on space-time and space indices.

We consider a four-dimensional pseudo-Riemannian spacetime given by a manifold M
and a metric g with signature (−,+,+,+). For a given choice of coordinates xµ with µ = 0, ..,3
the metric is given by the 10 components of a 4 × 4 symmetric tensor ds2 = gµνdx

µdxν . The
indices of contra- and covariant tensor fields are raised and lowered with the metric

gβνT
αν

= Tαβ = gανTµβ , (B.15)

where gµν is the inverse of the metric which satisfies

gµαg
αν

= δνµ . (B.16)

The Christoffel symbols are defined by

Γµαβ =
1

2
gµν [∂αgνβ + ∂βgνα − ∂νgαβ] , (B.17)

where ∂α is the partial derivative w.r.t. xα. The covariant derivative in coordinate represen-
tation for contra- and covariant vectors is then written as

∇µξ
ν
= ∂µξ

ν
+ Γνµσξ

σ , (B.18)

∇µην = ∂µην − Γσµνησ , (B.19)

while for a generic tensor:

∇µT
α1...αr

β1...βs
= ∂µT

α1...αr

β1...βs
+

r

∑
m=1

Γαm
µσ T

α1...σ...αr

β1...βs
−

s

∑
m=1

ΓσµβmT
α1...αr

β1...σ...βs
, (B.20)

where the index σ is taken at the mth position. The Riemann curvature tensor is defined by

Rαβµν = ∂µΓανβ − ∂νΓαµβ + ΓρβνΓαµρ − ΓρβµΓανρ , (B.21)

such that if we lower one index, the tensor Rαβµν = gασR
σ
βµν is anti-symmetric in the first

(αβ) and second (µν) pair of indices and symmetric in the pair exchange (αβ) ↔ (µν). The
first and second Bianchi identities read

Rαβµν +Rαµνβ +Rανβµ = 0 , (B.22)

∇γRαβµν +∇µRαβνγ +∇νRαβγµ = 0 . (B.23)

The Ricci tensor and the Riemann scalar are given by

Rµν = R
α
µαν , R = Rµµ . (B.24)
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The Einstein tensor is build from these quantities

Gµν = Rµν −
1

2
Rgµν , (B.25)

and is related to the energy-momentum tensor via Einstein’s field equations

Gµν = 8πGTµν . (B.26)

The second Bianchi identity and the symmetries of the Riemann tensor imply ∇µG
µ
ν = 0 so

that the energy-momentum tensor is covariantly conserved ∇µT
µ
ν = 0.

B.3 Spherical Harmonics

Spherical harmonics Y`m form a basis for (square-integrable) functions on the sphere. They
are extremely useful in cosmology as, since we observe fields as functions of n and z, we can
decompose them in terms of Y`m. We first discuss the Legendre Polynomials as we will give
the Spherical harmonics’ definition in terms of them.

Legendre polynomials

The Legendre polynomials P` form an orthonormal set of polynomials on the interval
[−1,1] and they are solutions of the Legendre’s differential equation

(1 − x2
)P

′′
` (x) − 2xP ′̀

(x) + `(` + 1)P`(x) = 0 . (B.27)

The explicit expression for the P` can be obtain either from Rodrigues’ formula

P`(x) =
1

2``!

d`

dx`
(x2

− 1)` , (B.28)

or, given P0 = 1 and P1 = x, from the recursion relation

(` + 1)P`+1 = (2` + 1)xP` − `P`−1 . (B.29)

Integrals of one polynomial can be performed using

P` =
1

2` + 1

d

dx
(P`+1 − P`−1) . (B.30)

Integrals of two polynomial satisfy the orthogonality condition

∫

1

−1
dxP`1(x)P`2(x) =

2

2`1 + 1
δ`1`2 , (B.31)

while integrals of three polynomials are given in terms of Wigner 3j symbols as

∫

1

−1
dxP`1(x)P`2(x)P`3(x) = 2

⎛

⎝

`1 `2 `3

0 0 0

⎞

⎠

2

. (B.32)
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Additional properties of the polynomials are given by their symmetry or antisymmetry:

P`(−x) = (−)
`
P`(x) , (B.33)

and (by convention) we also have

P`(1) = 1 , P
′̀
(1) =

`(` + 1)

2
. (B.34)

Associated Legendre functions

From the Legendre polynomials we can define the Associated Legendre functions as

P`m(x) = (1 − x2
)
m/2 dm

dxm
P`(x) = (1 − x2

)
m/2 1

2``!

d`+m
dx`+m (x2

− 1)` . (B.35)

The parity and the orthogonality relations are consequences of their definitions in terms of
P` and are given by

P`m(−x) = (−)
`+m
P`m(x) , (B.36)

∫

1

−1
dxP`1m(x)P`2m(x) =

2

2`1 + 1

(`1 −m)!

(`1 +m)!
δ`1`2 . (B.37)

Spherical harmonics

We can now finally define the Spherical harmonics

Y`m(n) = (−)
m

¿
Á
ÁÀ2` + 1

4π

(` −m)!

(` +m)!
eimφP`m(cos θ) , (B.38)

where we recall that the Y`m are function on the sphere and we define n = (θ, φ). The spherical
harmonics are eigenfunctions of the Laplacian on the sphere:

∆ΩY`m = −`(` + 1)Y`m . (B.39)

The Laplace spherical harmonics form a complete set of orthonormal functions (see eq. (B.43))
and thus form an orthonormal basis: any function on the sphere f(n) can be expanded as

f(n) =
∞
∑
`=0

`

∑
m=−` f`mY`m(n) (B.40)

with
f`m = ∫ dΩn f(n)Y ∗̀

m(n) . (B.41)

From the parity transformation properties and the orthogonality of the associated Legendre
functions, eqs. (B.36),(B.37), we conclude

Y`m(−n) = (−)
`Y ∗̀

m(−n) and Y`−m(n) = (−)
mY ∗̀

m(n) . (B.42)
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Orthogonality implies

∫ dΩn Y`1m1(n)Y ∗̀
2m2

(n) = δ`1`2δm1m2 . (B.43)

Integrals of the product of three spherical harmonics are computed as

∫ dΩn Y`1m1(n)Y`2m2(n)Y`3m3(n) =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

⎛

⎝

`1 `2 `3

0 0 0

⎞

⎠

⎛

⎝

`1 `2 `3

m1 m2 m3

⎞

⎠
,

while the product of any number of spherical harmonics can be integrated using eq. (B.43)
and the addition rule

Y`1m1(n)Y`2m2(n) =

√
(2`1 + 1)(2`2 + 1)

4π
∑
`3m3

(2`3+1)
⎛

⎝

`1 `2 `3

0 0 0

⎞

⎠

⎛

⎝

`1 `2 `3

m1 m2 m3

⎞

⎠
Y ∗̀

3m3
(n) .

The last equation deals with Y`ms of different orders but with the same argument n. For the
opposite situation, i.e. spherical harmonics of the same order but different arguments, one
relies on the addition theorem

P`(n1 ⋅ n2) =
4π

2` + 1

`

∑
m=−`Y`m(n1)Y

∗̀
m(n2) . (B.44)

The addition theorem can be derived by considering the behavior of the spherical harmonics
under a rotation R (see [131], Appendix A4.2.3). Here we only report the result as it is often
useful: it can be shown that

Y`m(R−1n) = ∑
m1

D
(`)
m1m(R)Y`m1(n) , (B.45)

where D(`)
m1m are elements of the Wigner D-matrix. This confirms the intuition that a rota-

tion cannot change the order of the harmonics, but linearly mix spherical harmonics of the
same degree. This is also linked to the fact that the Y`ms of degree ` are the basis for the
irreducible representation of the SO(3) group of dimension (2` + 1). See [300], Chapter 7.4
for more details.

Spin-weighted Spherical harmonics

Spin-weighted spherical harmonics are generalisations of the standard spherical harmonics
and –like the usual spherical harmonics– are functions on the sphere sY`m(n). The difference
is that the spin-weighted harmonics have an additional U(1) symmetry characterised by a
spin weight s. In other words a function f with spin weight s = 0 does not transform under
a rotation of our basis: 0f

′(n′) = 0f(n). On the other hand a spin-weighted function satisfy
sf

′(n′) = sf(n)e−isγ for some angle γ. For s = 0 we then recover the standard spherical
harmonics 0Y`m = Y`m.
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Spin-weighted harmonics are useful to expand a spin−s component of a tensor field on the
sphere. They are defined via

sY`m(n) = sY`m(θ, φ) = (−)
m

¿
Á
ÁÀ2` + 1

4π

(` +m)!(` −m)!

(` + s)!(` − s)!
(sin θ/2)2`eimφ

×∑
σ

(
` − s

σ
)(

` + s

σ + s −m
)(−)

`−σ−s
(cot θ/2)2σ+s−m ,

(B.46)

where the sum over σ runs over all the values for which the binomial coefficients are non-zero.
For each spin s they form a complete set of orthonormal function on the sphere

∫ dΩsY`m(n)sY
∗̀
m(n) = δ``′δmm′ , (B.47)

and
∑
`m

sY`m(n)sY
∗̀
m(n′) = δ(φ − φ′)δ(cos θ − cos θ′) . (B.48)

They can also be derived starting from the standard harmonics and using the spin-raising
and -lowering operators

/∂ sY`m = (s cot θ − ∂θ −
i

sin θ
∂φ) sY`m , (B.49)

/∂
∗
sY`m = (−s cot θ − ∂θ +

i

sin θ
∂φ) sY`m , (B.50)

which give
/∂ sY`m =

√
(` − s)(` + s + 1) s+1Y`m , (B.51)

/∂
∗
sY`m = −

√
(` + s)(` − s + 1) s−1Y`m . (B.52)

A useful properties which we have employed in this thesis is the generalised addition theorem:
let (α,β, γ) be the Euler angles which rotates n2 into n1, we then have

√
4π

2` + 1
∑
m′ sY`m′(θ2, φ2)−mY ∗̀

m′(θ1, φ1) = sY`m(β,α)e−isγ . (B.53)

We are now interested in finding an operator which acts in the same way that L2 ≡ −∆Ω acts
on the spin-0 harmonics, i.e.

L2Y`m = `(` + 1)Y`m . (B.54)

We call this operator L2(s) and we want the spin-weighted spherical harmonics to be eigen-
functions of this operator

L2(s) sYlm = `(` + 1) sY`m .

To construct this operator we follow Tansella (2015): we see that, by definition, the commu-
tators satisfy

[L2(s), /∂] = [L2(s), /∂∗] = 0 ,
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and we make the ansatz L2(s) = −∆2
Ω +K(s). The commutation relation [L2(s), /∂] = 0 implies

that
L2(s+1) /∂(s) = /∂(s)L2(s) ,

which gives
[−∆2

Ω, /∂(s)] = /∂(s)K(s) −K(s+1) /∂(s) .
For s = 0 (given that K(0) = 0 since L2(s) must reduce to L2 for s = 0)

K(1) /∂ = [ /∂,∆2
Ω] ,

explicitly,

K(1) (−∂θ − i

sin θ
∂φ) =

1

sin2 θ
(
−i

sin θ
∂φ + 2

cos θ

sin θ
∂2
φ − ∂θ + 2i cos θ ∂φ∂θ) ,

and we find
K(1) = 1

sin2 θ
(1 − 2i cos θ ∂φ) .

We can do the same procedure with [L2(s), /∂∗] = 0 to find an expression for K(−1). With this
procedure every K(s) can be found by recursion: the expression we are looking for is then

K(s) = −i 2s cos θ

sin2 θ
∂φ +

s2

sin2 θ
,

to give

L2(s) = −(∂2
θ +

cos θ

sin θ
∂θ +

1

sin2 θ
∂2
φ) − i

2s cos θ

sin2 θ
∂φ +

s2

sin2 θ
. (B.55)

B.4 BiPoSH

We have seen in section B.1 how the correlation function of a statical isotropic random field on
the sphere can be expanded in terms of Legendre polynomials (eq. (B.10)). If the field is not
assumed to be isotropic then the two-point correlation function will depend in general on the
two different directions n1 and n2. We then need a basis in which the two-point correlation
function can be expanded: this can be obtained by means of the Bipolar Spherical Harmonics
(BiPoSH). We write

ξF (n1,n2) = ∑
JM`1`2

fJM`1`2{Y`1 ⊗ Y`2}JM . (B.56)

We call the fJM`1`2 the BiPoSH coefficients and the {Y`1 ⊗ Y`2}JM are the bipolar spherical
harmonics. BiPoSH functions are irreducible tensor product of two spherical harmonics with
different arguments and, most importantly, they form an orthonormal basis on S2 ⊗ S2. We
can express them in terms of standard spherical harmonics as

XJM
``′ (n̂1,n2) = {Y`(n1) ⊗ Y`′(n2)}JM = ∑

mm′ C
JM
`m`′m′Y`m(n̂1)Y`′m′(n2) , (B.57)
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where CJM
`m`′m′ are the Clebsch-Gordan coefficients which are related to the Wigner 3j symbols

by,

CJM
`m`′m′ = (−)

`−`′+M√
2J + 1

⎛

⎝

` `′ J

m m′ −M

⎞

⎠
. (B.58)

In other words, XJM
``′ (n̂1,n2) isolates the total angular momentum J and helicity M contri-

bution. The BiPoSH coefficients are computed via

fJM``′ = ∫ dΩ1∫ dΩ2 ξF (n1,n2)X
JM∗
``′ . (B.59)

The useful property of the BiPoSH XJM
``′ that we exploit in chapter 6, is that they filter

the isotropic signal into the J = 0 mode and any non-zero coefficient with J > 0 indicates
anisotropy. In fact, if the random field F is statistically isotropic then the expansion in
eq. (B.56) has only the non-zero coefficients

f00
`` = (−)

`
√

2` + 1C` , (B.60)

i.e. we recover the standard expansion of eq. (B.10).
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