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The expansion of the field equations of general
relativity in powers of the gravitational coupling
constant yield conservation laws of energy, momentum,
and angular momentum, From these laws, the logs of
energy, momentum and angular momentum of a system
due to the radiation of gravitational waves is found.
Two techniques, radiation reaction and flux across
a large sphere, are used in this calculation and are
shown to be in agreement over a time average. These
results are then applied to the system of two point
masses moving in elliptical orbits around each other,
The secular decays of the semi-major axis and eccen-
tricity are found as functions of time and are inte-
grated to specify the decay by gravitational radia-
tion of such systems as functions of their initial
conditions. For completeness, the secular change
in the perihelion of the orbit for two arbitrary
masses 1s found by a method which is in the spirit of
the above calculations. The case of gravitational
radiation when the bodies are relativistic is then
considered, and an equation for the radiation simi-
lar to that of electromagnetic radiation is found,

Also a proof is given that, regardless of coordinate



R

systems or conditions, the energy of a system must
decrease as a result of the radiation of gravitational
waves, providing the potentials are inversely pro-
portional to the distance from the source for large

distances,
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I. INTRODUCTTION

The existence of gravitational radiation was pre-

dicted by Einstein(1’2>

shortly after he formulated

the general theory of gravitation. It was found that
physical systems emit gravitational waveg much in
analogy with the emission of electromagnetic waves by

a system of moving charges. FKarly attempts to calcu-
late the energy in these waves were based on using a
psgudo=-stress~energy Leusor lfor the evaluation of the
energy flux. One disadvantage of this was that one
could always choose a coordinate system where the energy

(3)

flux wonld vanish, This led many people to be
skeptical about the reality of gravitational radiation.
Another disadvantage of the calculation was that it

was valid only for systems which were not gravitation-
ally bound. Thus the problem in which one had the most

chance of finding effects of the radiation, the case of

double stars, had no solution at that time.

'A. Einstein, Sb. Preuss. Akad. Wiss. (1916), 688.

2. Einstein, Sb. Preuss. Akad. Wiss. (1918), 15k,

3For a detailed discussion of the status of the
theorlies of gravitational radiation and their objec-
tlions, the reader is referred to the review article
by F. A. E., Pirani in Gravitation: An Introduction to
Current Research, L. Witten, ed.,(John Wiley and Sons Inc.,
New York, 1962), Chap. 6.
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Later Eddington found the radiation from a sys-
tem by calculating the radiation reaction of the sys-
tem on itself.<4) However, like Einstein's method,
this was not valid for gravitationally bound systems.
For problems in which the radiation is constant, the
two methods are in agreement; for problems where the
radiation is time dependent, the answers differ. One
can show that over a time average of the motion, the
two answers agree, This is in analogy with similar
results from the theory of electromagnetic radiation
and radiation reaction.

For systems in which the velocities of the masses
are small compared to the velocity of light, the cal-
culation of Finstein has been extended to inelude
gravitationally bound systems.(S) The problem con-
cerning the choice of the stress-energy of the gravi-
tational field is still debated. Also the selection
of certain preferred coordinate systems and conditions
is subject to much criticism. One can find referen-
ces in the current literature which describe the radia-

(6)

tion from the system as carrying away energy, bring-

#A. S. Eddington, Proc. Roy. Soc. (London) 1024,
268 (1922).

5See, for example, L. Landau and E. Lifshitz, The
Classical Theory of Fields (Addison-Wesley Publishing
Co., Inc., Reading, Mass.), Chap. 11.

6Ibid.
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ing in energy§7) carrying no energysg) or having an
energy dependent on the coordinate system used.(g)
Clearly a consistent picture of gravitational radia-
tion is needed,

One approach to gravitational radiation is to
consider only exact solutions of the non-linear field
equations of general relativity. Although some solu-
tions have been found, they correspond to un-physical
systems.(TO) Therefore one usually employs some ap-
proximation procedure in solving the field equations.
The field equations are sometimes expanded in powers
of the gravitational coupling constant because of the
weakness of the gravitational interaction. In addition,
one encounters expansions in powers ol the ratio of the
velocities of the masses of the system to the velocity
of light and also expansions in inverse powers of the
distance from the system under consgideration. Each

approximation method 1is not independent of the others.

Throughout this paper, we will be concerned only with

"p. Havas and J. N. Goldberg, Phys. Rev. 128,
398 (1962).

8L. Infeld and J. Plebanski, Motion and Relativity
(Pergamon Press, Inc., New York, 1960), Chap. Vi.

Q
“Ibid.

1OFor an example, see J, Weber, General Relativity
and Gravltatlonal Waves (Intersclence Publishers, 1961),
pp. ©9-105.
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solutions obtained through the use of these approxi-
mation methods and not with any exact solutions of the
field equations,.

It will be assumed in the following that the
reader has a knowledge of the fundamentals of general
relativity theory. However, because of different no-
tations used, a brief summary will be given so that

there 1ls no confuslon about the symbols used,
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IT. BASIC CONCEPTS OF GENERAL RELATIVITY

We denote the metric tensor by Euy 9 where in

flat space g4, = duv and
duv = {1a/‘=\’= By =1, 4=V E Ny Oa/‘#é}. (2.1)

The index 4 denotes a time component and 1, 2, 3 de-
note spatial components. Greek indices can take the
values 1, 2, 3, and 4, whereas Latin indices can take
the values 14 24 3 of the spatial components. We may
have components of a vector or a tensor with lower or
upper indices. The former are called covariant com-
ponents and the latter contravariant components. We
raise or lower indices through the use of the metric
tensor g4¥ or guv o Where gMY is defined by

%. g,uu Eav ~ j\f and

i

5 {1, M=V 5 0, //‘#V} . (2.2)

AL

As a shorthand we employ the Einstein summation con-

s ° . [~ J—
vention for summing over repeated indices: Ax A =

o L 1 2 3 is te vadd
é A A7 = MAT =AM + ApA% + A0A%, This 1s valld

1
only if one index is an upper index and one is a lower
index, In later work we will be dealing with quanti-
ties such as SM%QM.AV 3 wheregjn;‘ﬂv; we then define
(Feynman summation convention) Ay A= S’“Vgﬁ&Av =

AHA# - A1A1 - A2A2 - ABAB. Thus if we have two re-
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peated lower indices, we sum them a la Feynmanj; if we
have one up and one down, we sum them a la Einstein,
The components of x, are (X1 v X 9 Ky ct).
Wle have a shorthand for the ordinary derivative with
respect 10 Xy ¢t A,y = —%%d. For the covariant deriva-
tive of a quantity with respect to x4 we use the
shorthand A;d « The covariant derivative of a tensor
involves the metric tensor as well as Llhe ordlnary
derivatives of the tensor and the tensor itself. The
metric tensor enters through combinations called
"Christoffel symbols of the second kind." Christoffel
symbols of the first kind are denoted by [ap,ﬁj and

are defined by

["(/597;] = %[gcxx 18t Bg¥sx ~ Bup ,7;] . (2.3)

Christoffel symbols of the second kind are denoted by

{;fk’} and are defined by
fo}= 7" [amY] (2.4)

Two successive covariant differentiations do not,
in general, commute. In particular, if we differen-
tiate covariantly a vector %/a or A/A with respect to

X 4 and then with respect to Xg 5 we get that

M _ M N M
Fawap T Hipse T B g

or
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_ N
Bpses s T g gt AT uas
R%/uo(/@ is an expression involving thc metric tengor
and its derivatives. The quantity R?ytﬁg = gvhiétu%ﬂ
is called the curvature tensor. The quantity R uy =
A

R uay 1is called the Riccl tensor. The quantity R =

g*”@iuv is called the curvature scalar. The R uws

satisfy the Bianchl identities
X PN *
R /uo(/gsx + H /u)’o(;p"}‘ .H/Mﬂxsd*— 0 P (2.5)
From thls 1t follows that

(M-} g4VR), =0 . (2.6)

so that thoe tonsor R*’ - % g4Y R has zero covariant
divergence, In order to relate the curvature of space
to matter, we would like to put a second rank symmetric
tensor on the right side of equation 2.6. We require it
to have zero covariant divergence for otherwise we would
not have a consistent equation. In flat space the ten-
sor would then have to be an ordinary divergenceless
tensor of rank two, of which the most obvious choice is

the stress-energy-momentum tensor T#Y, Thus we can

write the fileld equations of general relativity as

@* -3 g#m) = ERG o4 oy

where the constant has been chosen appropriately for
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later work and G 1s the ordinary gravitational constant.
V > a3

T M 1s the stress-energy tensor of all matter and

fields except gravity. Tor a classical particle of

mass m, we may write T*” as
Y m | §* az* dz”
T = '*—'—\/.__::-'é_."' (x =1z (S))a"‘s“"' Is ds (2.8)

where g = det gwa and s is the proper time of the

particle with s satisfying

M3V
g v 32 %g =1 . (2.9)

From equation 2.8 and the fact that the covariant
divergence of 7 MY vanishes, we can find the equations
of motion (equation of the geodesic path) for a par-

ticle of mass m in a gravitational field

2 M %
a“x M ax % axP
m ds?_ = -m {o(ﬁ ds ds . (2.10)

We will need to have the expression for R, ex-

plicitly. For this we use
R _ =4 }_ { = .
R P R P

*bdv}{f;s} - {;ﬁ}{ﬁ‘ :

One can easily see that this contains both first and

(2.11)

second derivatives of the metric tensor as well as the
metric tensor itself. The field eguations are there-
fore non-linear equations and one can not find a

general exact solution. It is for this reason that
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we consider an expansion in terms of the deviation

of the metric from the flat space metric.
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IITI. CONSERVATION LAWS

and the

GRAVITATIONAL FIELD STRESSES

A. ZExpansion of the Field Equations

Let g v = g/uv”‘ huy and expand quantities
in powers of h/m; . 1In practice we see that this is
a reasonable expansion. At a distance 1 from a mass
My h 4y is of the order @1/ (rc®). At the surface of
the earth this becomes ~ 10"9, at the surface of the
6

sun ~ 107", and at the surface of a white dwarf

~ 5 x 10"'.5 Thus where one term of the expansion

contains one more factor of h than another, one would

expect the first to be much smaller than the second.
The metric g#Y can be found as an infinite

series 1n h and 1is determined from the equation

g/““gm, = S/{:. This gives
g"‘v“——"(guv-h/,(v +h/ua‘hav+' A (3.1)

Expanding the field equations, equation 2.7, we get

- % [ Buv oxn = Bun sav = By + Sy o yon| =
+ PP nyh) + P nyhn) + e e o 2 G o (5

C
(k) is of order h* and H/uv is defined by

where F
huy = huy - 3 Suvhes . (3.3)

The only terms linear in h are within the brackets,
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If we take the ordinary divergence of the linear terms,

we get

[H/,w97\7~" H/M% 1AV T Ev% Izt E}J a)«rgﬂ_}v = (3.})

aMVaXXV‘«EMvaUVV"Evaaguv*'EAdaxWA: 0.
If in equation 3.2 we take the terms non-linear in
h to the right hand side, we have (sgetting ¢ = 1)
E/,,(V,}\)\ - H/ua' 3oy = Lyo sour g/uvHxU7kd =
- MY ]
where X(u,v) has the expansion Xm,w) = gié X(k)ﬁu,v).

(3.5)

The upper index again indicates the power of h present.
X(u,v) is not a tensor in the sense of general rela-
tivitys it 1s however a tensor with respect to Lorentz
transformations of special relativity. Because of
equation 3.4, the right side of equation 3.5 has zero

ordinary divergence, i. e,
[T#” + X(u,v) ], =0 . (3.6)

We can therefore write integral conservation laws for

the quantity TV + XQuyv) = S(uyv):

d - =

;EF(S(H, ) dv J/S(i»u) dSi 0. (3.7)
\ S

Because of these conservation laws, we can interpret

S(h,k4) = T X(4,%) as the total energy density of

L;--

the system and S(4,i) = T'" + X(4,i) as the total

momentum density of the system including gravity. Also
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because S(u,v) = S(vyu), we can write the law of con-

servation of total angular momentum as

ﬁf[xi 8y 3) = x5 5(,1) Jav -
- f[vl 5(k,J§) - xy S(k,i):) as, =0 .

The question arises as to whether S(u,v) is

(3.8)

uniquely defineds; we could just as well have expanded

different forms of the field equations, say,

R, - % g, R = 81wG T, (3.9)
or
(R4~ % g#VR)f=g = 8Tc ™™g (3.10)

However, it is obvious that one will obtain the same
S(u,V) from these, since equations 3.9 and 3.10 are
equivalent to equation 2.7. We shall find it advan-
tageous to work with the quantity T*%/=g , which we
shall hereafter call T4, The X(uyv) obtained from
the expansion of equation 3.10 and defined by S(u,v) =
= THY & X(u») , we shall call X, , the gravitational
field stresses corresponding to the stress-energy
tensor T4V, S(uyv) we shall hereafter write as Suv s
the position of the indices being unimportant since it
is an expression which 1s independent of the T used to
find 1t. It is a uniquely defined quantity, but it is
not a tensor with respect to arbitrary transformations

of coordinates. It is, however, a conserved quantity,
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and, as we saw above, can be called the total stress-

energy-momentum of the system including gravity.

B. Fileld Theory Approach

The quantity Q*ni could have also been obtained
by another method, namely from Feynman's field theory
of a spin-two meson coupled to energys1) The classical
1imit of thls quantum theory 1s precilsely the expanded
version of Einstein's field equations of general rela-
tivity. In the derivation of this theory, there is
some arbitrariness in that one must require as an ad-
ditional postulate that the resulting field equations
come from the variation of an action. As first pointed

out by Feynman and Huggins(Z)

s this requirement seems
to be the only way to uniquely define the theory and
still give one the feeling that the equations have not
been pulled out of a hat. Since this question has
bearing on the problem of gravitational radiation and
the motion of two point masses, a discussion of the

arbitrariness of the stress=~energy of the gravitational

fields will be given in the appendix.

1R. P. Feynman, lecture notes, California Insti-
tute of Technology Zunpublished).

2E. Huggins, Ph. D, thesis, California Institute
of Technology (1062).
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The first order field equations are
Byysnn = Bunoay - EV%:@M + S lgnyon = =167C T4 (3.11)
The divergence of the left side is zeroj however the
divergence of the right side is not, We find that
T‘“@V ~ 0(h?), Physically we can say that gravity is
coupled to all energy including the energy of gravity
itself, and we have not included the energy of gravity
in our equations, Thus we must add to the right side
an expression which gives the stress-energy of the
gravitational field. To lowest order, we expect this
to be bilinear in haa and to have just two derivatives.
If we assume that this must come from the variation of
an action, where in the action Lagrangian we take all
possible independent combinations of three ha/@'s and
two derivatives, then we have specified the Lagran-
gian and the second order stresses when we impose the
requirement that (T4 4+ i(g))7y ~ 0(h3). 1In a like

(3)

manner we could solve for X in which case (T””7 +

Xﬁf} (3)), ~ 0(h") and so on for higher
orders. This reproduces the expanded version of
Einstein's field equations.

From this point of view, therefore, the expanded
equations appear to be the fundamental equations., It

is the expanded equations which one uses in calcu~-

lating processes in the guantized gravity theory. Of
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course one can sum the series in the equations by in-
troducing the metric tensor and get bhack to Einstein's
equations and all of their geometrical beauty. How-
ever, one can imagine a world where only the expanded
equations were set down, and the geometrical signi-
ficance of the theory was never explored.

Because of the analogy of the expanded field
equations wilh other field theorles, we shall call
qu@ the gravitational potential. To be sure, the
rate at which clocks run and the lengths of rulers
depend on thils potential, but usually we will be con-
sidering cases where hwwe is small and the effects of
it are alsoc small,

_We shall assume the expanded field equations
to be valid:

H,uv,)O\ - E,u?\,l\? - Hv%a%/xm'*' /uxf—h-okaﬂk =

5 N (3.12)
= -16MG Suy = -16WG [T"’N + KZ__ZXSCB

In the following we will make extensive use of iifj.
It is given by
N(2) - 1 B g X AV A i
X/u\, ——-—-—-—-—32,’TG{ lf[ﬂ J[ B 1+
-2 %MV[Xp,d]fmﬂaaj +

+2h o(,@[h//w’"‘,@ = Buasgy = Dyasgu + hdﬁ’/ﬂ’] *
+2h/(/l0\[h\]0(7 x)\ - ho()\,'}\\) - hv?\,)\(?( + h)\}&, O&V] +

+28 o [ By A1

i

Boonadm = Bungne + By, oy,«] +
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+2h [hw,ax - hyysoq] +
- Zgﬂvhd,e[horleﬂk = Zhaasag + hkhd,@] +
+ S/UVhO‘G'[hXX7D(°\ - hyo«ard}- (3.13)

C. Coordinate Conditions

One would like to put equation 3.12 in the form
of an integral equation in order to solve for Eq/g by

an approximation method. This would be possible if

we had a wave equation, i. e, a O %&-“—?;;gd operating
on the hyy on the left side of equation 3.12. e
have the corresponding problem in electromagnetic
theory. The equation for the electromagnetic poten-
tials 1is given by

Auyan = Angur =T o (3.14)
We note that equation 3.1% i1s invariant under the
transformation A, — A/'u + Xou . Under this trans-
formation, Au,u transforms like Aupu —> A/L,/u + 7(,/“/,( ’
so that we can always find a X such that Augun can be

made to vanishj; we just choose

i

A corresponding choice can be made in equation

3.12. If we look at the linear terms only, we see

that they are invariant under the transformation

H
h/uv“""‘? h/)n) -+ n/qu""nV.,/A 9 (3016)
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where 7, is arbitrary. If we form the quantity?ﬁﬂy,v .
we see that h,,,, *—9E;M”V + Ny,vv, and as before
we can find an 7u such that Euy,y = 0, This type of
constraint on the h,y 1s called a coordinate condi-
tion., This has, however, neglected the higher order
terms on the right side of equation 3.12. They are not
necessarily Invariant under the transformation given
by equation 3.16. But it turns out that we can find
a transformation such that the entire field equations
are left invariant. We might also wish to impose a
different coordinate condition than Buv,» = 0. We
would thus like to examine to what extent any coordi-
nate condition can be chosen in a given problem. The
technique consists in showing that one can always make
a coordinate transformation so that in the new systenm
the specified condition is satisfied.,

The fleld equations of general relativity are
invariant under arbitrary coordinate transformations.

Under such a transformation, the guv transforms like

1 "% 3. '8
guv(x) —> guv(x) = gq/g(x') %—i—;%—; . (3.17)

If we let x'* = x* + M%(x), where MN*(x) is arbitrary
(not necessarily infinitesimal ), then we can write

equation 3.17 as
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) > ) gt s
3.1

T ® @ @
+ gor,é%ao,u%/iv"* Buvsr N+ F guyoax N+

Rewriting this symbolically,

By = By + [0 o[22+ h]+[200+ 20N e
— b 4 +[’Vlvw+"m\3+ Fourt Fout *°°

and forming the quantity Euvav yields

H

I . |
thV’V - h,uv,v +%ﬂ,vv+ F% e FB/" oo

If in the new system we want huv,y = 0, we need to
solve

P = ! ! LK ]
Bavsy = =Nupww + Fop + Fyu +

01} z )
To do this we let M, =Wy +Ng + o+ o Then My ,

the lowest order N is given by

n? - j[ Ruvyy ] av

g Y v ret,

and thus in the transformed system we have that

EMV,V ~ Féi4, a quantity of second order in h and % .

@
We then solve Féik :'ﬁ%i;g\, where b,y contains terms
. z .
like h2, hn® , and [n®]% which are known. Thus

11
@) _ 1 Fou
T “'”T”j[rjdv

Similarly we get

11
(m _ 1 Fon
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so that we can choose hyy,v = 0 + 0(h™), where n is
as large as we wish. If this series is convergent,
we can choose E”V,V = 0. Even if the series were not
convergent, we could effectively choose Eug,v =0
since we are never concerned with higher than third
order terms anyway.

The condition hyy,s = O is not the only coor-
dinate condition used in the literature. One can
divide the conditions used into two classes - those
which distinguish time and those which do not. Another
example of the latter is that one used by Fock,

( g/‘v:§~§»)= 0. The relation of this condition to
the condition hyy,y = O is

( gMy-g )V’ = = Duvyy + % hoo H/uv,v +

+ huo Bovsy  + Buogy oy = % hog Roygou + 0(hn3).
Since the extra terms can be incorporated into the s
the previous arguments apply. Therefore one could
always choose a coordinate system in which ( g”‘yvzé'),v=
= 0 rather than huy,v = O.

An example of a coordinate condition which dis-
tinguishes time is that used by Infeld and his co-
workers, Tnis condition is equivalent to the con-
ditions

By =05 By oy =0 (3.19)
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We can show that this condition is valid in a similar

manners first we solve’nzg)gx = Dya,n 5 and having

()

obtained‘n4

s we then find the transformation of

the quantity Eil,l'
- - 2
Bi1o1 = By19p + Mgy = My + 0(0%)

Then we must solve for

10 e (o)
Mis11 = By797 + Mgy

which can be done since we already know 7450 . e
note that we now have V?7? instead or [J Mm% , SO
that the solution for *n?’ will not be a retarded one.
The process is carried to further orders as before.

In most of the following discussion the coor-
dinate condition hiyy,y = O will be employed to reduce
expressions to a simpler form. In section VII we will
explore the effect, if any, of the different coordi-
nate conditions on the results obtained in the previous
sections., We will find that with reasonable assump-
tions concerning the asymptotic behaviour of h%‘v,

there will be no effect on the radiation if we choose

different coordinate conditions.
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D, Reduced Eguations

With the coordinate condition h,y,v = 0, we can
reduce the field equations to the form of an inhomo-
geneous wave eguation,

We can write an integral solution of these equations
™ - S
hyy = - #Cj[—-fé‘—ﬂ av . (3.21)

where the bracket indicates that the quantity within it

is to be evaluated at the retarded time t - r/c. The

QO
quantity Suy is given by TMY 4 ;Z;zX/((}({\; as
before, where ’F{fg is now given by
=z(2)  _
BT fﬁ*@{hapw hagsv - %S,uvno(,@w Rog sy +

+ 2 hb',u,s hyvsg = 2 Bugss Ny&oy + S,uv hoayys hxsey +
+ 2 hyy, %3 ho(,a + 2 hyahiyasan + 2 hyabyggan +
+ 2 hq]@ hq[e,/(,(y" -2 ha/@ hﬂ“’ﬂ)’ - 2 hq/@ hva,/g/,; +
= 28w hag hagyyr = huvsad oo = By Baasan +

-+ “é‘éuy hdo",@ﬂ hvafr . (3~22)

Equations 3,20 and 3.21 are non-linear equations and

we must solve them by some approximation method.
(2)
v

The divergence of /}\{:u is given by
=(2)  _ =
XMV 9y — = —'—é—j’-—rr—a (hCX/A,ﬂ had %" ho(ﬂ,/l,() ho{/@,j\)\ =

I

(ho(/m,é - 3 hoc/g,/u) Sor/g . (3.23)
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From the covariant divergence of T#Y, we have that

S/(,()E/uv,y = - (h«?\a,é - ‘%‘ ho(,aa?~> ,'fd'g - h%u’fowav‘ (3.24)

Therefore, since (THY + 2££)+ Xﬁ%>>,vf~'0(h“), 2£§)av

must be given by

i,((}v)w = - (ho(/ua/é -3 hor,@)/u) Xo(/g *
FAET) T (hapap = % hogyn) Bagyan - (3.25)

The divergence of higher order iﬁﬁ) can be obtained
in a like manner, without knowing explicitly the iﬁﬂ)
themselves., Thus we shall see that ﬁiﬁ) plays a role
in the radiation problem, but we never need to cal-
culate the %ﬁ%} explicitly.,

-There 1s another expression for Suv which we
will find useful in that our equations will have fewer

terms, and the structure will be more apparent. Let

S/MV = ["T’M\J + .X/SEV) + .}Z/SA3V) 4+ o o .J =

ua T+ TR +X3) +. . ] .

since T,Y # T,*, we see that the 2&%) defined here
are not symmetric with respect to an interchange of
indices., But the quantity Suy 1s symmetric since it
1s independent of the way the stress-energy is broken
up into the matter terms and the field stress terms.

Xﬁfﬁ is related to iﬁﬁ) through the following (in the



gauge Nyv,v = 0)

- b hoe, X?x]- (3.26)

The divergence of'iuv and of the Xﬁ%) is especially
gimple:s

(T’)sy =% hoppu T4 (3.27)
342 = (32m0) hus, u B = -3 (3.28)
AV IV T 3 %8 3 44 o&,a,’/\l = -3 ho(,a,/u Soc/g 3.2

X3 = % hggyu T2 (3.29)

= (k) 3 (k=1)

=+ h
v VT E Rafii Sog
where Eﬁ%} is related to %ﬁfﬁ through

%)~ ~(km
Lo = 58 + 0, X551 5 xv2 .

We will refer to both of these forms from time to time.

E. Equations of Motion and Conservation Laws

The equations of motion of a particle follow
from the assumption that T has zero covariant di-

vergence, Thus

(g/uo",i,’o(V )7)1 = '%' ha/é,/d?fo(’a (3-30)
implies
a axf axd axf
dsi Euet dsi ] ho(/;w a‘g% a—s-i: 9 (3-31)
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where
o Y.
dxi dxj _
If we change from s to t as the parameter of the path,
X
then since %—E— = (1 - v2 + h o vivA) "=, equation 3.31

with u = b and summed over all the particles becomes

exactly the same as

2o T a7 = 4 [ngep, TP av (3.33)

where T is given by equation 2.8. For example,

for one mass, j'fm’k dv  is given by

o boggt
T av = mfgq(xa - 2z,(s)) dz2" 457 4y qy 4z ds =

ds ds
=m Sg(t - 7,(s)) %%)4‘ %%LF ds
=n fg(t - 2,) %—gﬁdzLk =m %—JSE =
=m (1 - v + hdpv"‘vﬂ )-'_% . (3.3%)

Equation 3.30 can be written in integral form

A ~ol 2 ~o i -
a_l-'i: gl%_m T av + 2’)((18)“3‘0( T ) dv ‘
5 (3.35)
=é~[hd/g,4 TH#ar .
The second term on the left side of equation 3,35 can
be converted to a surface integral which then vanishes
if there are no particles entering or leaving the sys-

tem. Thus equation 3.35 1s equivalent to equation 3.31,
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and we may therefore denote both of them as the gravi-
tational equations of motion,
We can also write conservation laws for the

system.

S )sumar - foy; st =0 . (3.36)
\Y S
From equations 3.27 to 3.29, it is obvious that the

conservation laws together with the expressions for

the gravitational field stresses to all orders imply
equations 3.31 or 3.35, the equations of motion. The
converse 1s not true. We can not, for example, deter-
mine the energy of the system to all orders only from
the equations of motion., If in the approximation in
which we are working, jijii ast  can be neglected, then
the conservation laws can be derived from the equations
of motion. All we must do is convert %—Shdp,ﬁ‘%“/g av
into g%[ ] . That this is possible 1s seen from
an examination of the conservation laws., That this is
unique is seen since two resulting expressions whose
time derivatives vanish can differ by only a constant.
This type of calculation is much easier to perform Lhan
the explicit integrations over the iﬁfﬁ .« IT I%Mi dsi
can not be neglected in the approximation in which we
are working, we are in trouble if we attempt to find
%% from the equations of motion. Although we could

form the quantity 2_f£%-y® , where f£% is the total
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gravitational force acting on particle a and y# is the
velocity of this particle, there is no assurance that
this expression would give the correct energy loss of
the system. In fact, it will be seen that this method
ignores the contributions to the radiation coming from
the third order field stresses, iﬁﬁ) . Although iﬁ%}
does not contribute to the energy of the system to
order (v/c)Q, it does give a contribution to the radia-
tion in order (v/c)s, the order in which we are going
to be calculating the radiation. Explicitly, from
equation 3.29,

%j’zﬁﬁ) av = %f hygn, Xy av
This term represents the contributions of the reactions
of the masses on the fields and the fields on them-
selves, Thus we must go to the conservation laws to
find the correct expression for %% .

The conservation laws are therefore more funda-
mental than the equations of motion since the latter
are derivable from the former, and there are problems
(e.g. gravitational radiation) where the equations of
motlon are 1nadequate to gilve a correct description.
There are some objections to the conservation laws

because of the possible ambiguity in the definition of

the field etresses., However, in the appendix it is
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shown that this choice 1s unique when we assume that the
stresses come from the variation of an action or from
the expansion of the field equations themselves,

There is, of course, no analogy of this in electro-
magnetism, There are only bilinear combinations of
A/A in the stress-energy expression. The equations
of motion and conservation laws carry the same infor-
mation, even in the case of electromagnetic radiation,
It is in the non-linearity of the gravity theory that

this distinction comes in.

F, UNewtonian Approximation

For a non-relativistic system qu is much larger
than any other componcnts, It is approximately given
by

3
~ Ty R me ol - s
SL}.)..*. A T)_*_l+ o~ i ml & g(]\{' }:l) L] (3037)

Thus to lowest order only hy) is large, and from

equation 3.21, it is given by

Ay, =-46% 2 =2¢ | (3.38)
1
Since h,, = hy, - ¥ Suvhoo , we have that
= by hppxhyy = @, (3.39)

The equations of motion, equation 2,10, then take

the following form
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my Sy ¥ = hyu
or

my ii = =G m m xi/r3

which is the force law of the Newtonian theory of
gravitation.,

We can find (S, dV, the total energy of the
system, to order ¢O, If we consider the case of two
particles, then using equations 2.8 and 3.22, and the

expression for the lowest order h

luv 5 equation 3.38,

we have that

B = yS)_m av = (m1 + 1112)C2 + 'lg“m1v12 + %mzvg N

_(32Trc-)”15[3 Py oy + 20Q, 1AV . (3.%40)

The last term is easily integrated to give —Gm1m2/r12
as we would have obtained directly from the Newtonian
theory.

The form (3Q,; P,y + 20 @,ii) for the energy
density of the gravitational field is of some interest.
From a Newtonian theory one would have expected an
energy density like ¢%i Q%i . The additional term
2 P, Pyy + 290 qj’ii = 2(¢@ ¢’i)’i would have made
no difference in any problem, since we could convert
the integral 5k¢d%i),i dV  to a surface integral

S ¢ @,; dsy , which would vanish. In the general
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e

theory of gravitation there is a fundamental difference;
physical effects, i.e. the perihelion shift, depend on
the distribution of energy in the field, and one can
not add an arbitrary function, even if it 1s the di-
vergence of something. There is a physical meaning
to the form (3 CZ),i @,i +2Q @,ii). We may say that
there is a field energy'2<P(p,ii concentrated at the
masses and a field energy 3<D,1(P,i spread throughout
space. In the non-relativistic approximation, these
balance to give the total gravitational energy, but
in higher orders of (v/c), they may give rise to obser-
vable effects where we have gravity interacting with
the energy density of gravity itself,

. We also see that ~5X(2) is of the same order
of magnitude as leJ dV . In a non-relativistic sys-
tem, all of the X{5’

nitude as the spatial components of the mass energy

%(2)

o~
tensor Tij . However, since /4v to lowest order

will be of the same order of mag-

depends only on h%% s and hh% depends only on Thh s
we have a consistent procedure for solving the field
equations term by term.

The total momentum and angular momentum integrals
are, of course, also the same as one would expect from
a Newtonian theory since the fields momentum and stresses

are completely negligible in the Oth order approximaltion.
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IV. RADIATION

from a

NON-RELATIVISTIC SYSTEM

A, EBlectromagnetic Radilation

We are now in a position to apply the formalism
developed to the problem of gravitational radiation.
Ify in the following, one finds analogies with the
theory of electromagnetic radiation, he should not be
too surprised. There are many parallels between the
two theories, and notations which are used to describe
electromagnetic radiation can be carried directly over
to the case of gravitational radiation.

Let us bricfly summarize the results of electro-
magnetic radiation theory. We have, in the gauge

.%uyu = 0, the wave equation

A/A,’)\’)\ = "‘J/V( 9 (lf.1)

vhere J, satisfies the conservation equation

J/M ,/u_ =0 o (4-2)
If we define the fields to be Fuy = Ay = Ayzkc, we
see that the fields are invariant under the gauge trans-
formation A, — A, 47X, . (In gravity, we cannot

form fields as above which are invariant under arbi-
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trary coordinate transformations - e.g. see the Appen-
dix). The force density equation or egquation of motion
is given by

fu = Fuvdv , (%,3)

where the force density is also invariant under the
gauge transformation. (In gravity, we cannot intro-
duce such a gauge lnvarianl force.) ?W(is, by defi-

nition, the divergence of the matter tensor

m
?mt = ?uV7V ’

and since energy and momentum conservation laws can be

written, we have that

- s
gu - @uV:V ’

where Tfuv is the stress-energy tensor of the fields

and is given by

T;V - = IjMO( FVOK + g;gMVFdﬁ Fp(ﬂ ° (Li'.)-i“)

j’fi vy AV = _[fh dV 1is the power radiated as cal-
culated by the radiation reaction method. If we con-

sider the law of conservation of energy, we get

d m S 0
H—Eg(TM + Tl+)+) av J é—ii(Tgi + Tii) agv =0
v v

or

|

ﬁ- ((Tﬁ} + Tﬁh) av gTii ds; . (4.5)
v S
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so that the rate of change of energy of the system
can also be found by calculating the flux of energy
across a large sphere. Over a time average these two
methods are seen to agree since J&t f Tii dsi =

= fat vaii,i av = - j’dtvf T, 0y dvszjdtvf £, v .
We may therefore either calculate the force on a charge
due to the combined fields of all of the other charges
and the charge itself or find the flux of energy,
where we only need the wave fields (X 1/r) in the
expression. One could also decompose the radiation
into multipoles and relabe Lhelr amplitude to the
multipole expansion of the source., In the non-rela-
tivistic approximation, one of these, the electric
dipole, will usually dominate the radiation. This
discussion has implicitly assumed that the solution of
the wave equation is to be the retarded one. This

is the standard approach and is based on the idea that
the effect of a field should take place at a later
time than the time of the motion of the charges which
produced the field., Wheeler and Feynman(1) have for-
mulated the radiation problem in terms of the interac-

tlon of an absorber at large distances and the half-

retarded, half-advanced potentials of the sources.,

15. Wneeler and R. P. Feynman, Rev. Mod. Phys. 17,
157 (A9k5).
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This gives an effective retarded potential, but it
eliminates the annoyances of the infinite self~
energy of the interaction of a charge with itself.

We can carry over the ideas of the radiation
reactlon calculation and the flux of energy leaving
the gsystem to the cagse of gravitational radiation.

To generalize the absorber theory of radiation to

the case of gravitation appears at present to be

quite difficult. We wish to assume that space be-
comes flat at infinity; however, if there are systems
at indefinitely large distances which can absorb gravi-
tational radiation, then space cannot become flat.
Hence the asymptotic boundary condition that bw“’“’c
as r -y oo does not hold,

There is also some difficulty in gravitational
theory concerning the choice of half-retarded, half-
advanced potentials. This 1s due to the non-linearity
of the field equations., In gravity the principle
of superposition does not hold. Suppose we wished
to find the gravitational potential in a given problem
to all orders. If we took our lowest order potentials

to be retarded, hiy’, and use this to find the higher

. e .
order corrections to hﬁuf, we would arrive at a com-

plete retarded solution to the problem, which will be

ret
denoted by Huv's We
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and used this in the iteration, in which case we would

get & solution given by giﬂ?. Similarly, we could get

He" starting with n3" = (hjﬁ/t + rﬁ%}f) and Hyy

RSPt = 3 (WISt - n3AY).

fact to note is that % (Hj%v + Hf;.e}) # H,Suyf and

+ (};ﬁit - ij‘,v) # Hjir},tl in general., In fact the

linear combinations of the H's are not necessarily

starting with An important

even solutions of the problem.

The analogue of the absorber in gravity is pro-
bably connected with a similar problem involving the
action of distant masses on a system, namely Mach's
principle., This principle states that the effects of
acceleration or rotation with respect to the distant
stars are caused by the action of these stars on the
system, There are semi-quantitative arguments which
lead one to believe that this is true, but no completely
quantitative explanation has yet been given. One of
the primary reasons for this failure seems to be that
the metric is always assumed to become flat at infinity,
l.e, after one has gone past the distant stars. In the
actual universe, as far as one can see, this does not
happen. Thus if one had an explanation of how the
distant masses affect the choice of inertial frames
of reference, then one might have a much better view

of what the role of the distant absorbers is in the
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theory of gravitational radiation,
We will thus assume in the following that the
retarded solutions are the ones which are to be found

and used in the calculation of gravitational radiation.

B. FHEnergy radiation

Let us assume that the gravitational energy and
stresses are small compared to the energy and stresses
binding the system under consideration. Then the total
energy of the system is approximately given by JTQM dav,

L

Of course it is also given by YThh dv or jfﬁ dvV since

the QMV are assumed to be small. Let us then cal-
dE s ~h .
culate E% by finding ﬁ%s T,  dV. From equation 3.27

we then get

Q—al@
cHi

= i—";—t-yffh_u av = %51510(/5,4 T 42 aqv ’ (4.6)

where in the last term T %4 can be approximaled by T,
This result, which we shall call the radiation reaction,
was first derived by Eddington(g). We could also have
calculated %% using a slightly different energy, say

‘f%MH dv., From equation 3.24 we then get that

B[P av= ~[Batgsp TP Q¥ + 3 fn T ¥av . h7)

°h. 8. Eddington, Proc, Roy. Soc. (London) 1024,
268 (1922),
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The two expressions differ by the ternm yhdhzﬁ E?@”dv,
and one would be tempted to say that these two expressions
predict different energy losses, However, by lnte-
grating by parts with respect to the spatial deriva-
tive of h, and using the fact that T%,,= O for this
system, we can reduce the term to a pure time deriva-
tive term:

[hg,05 TF AV = fhpy, ¥ gy - Jig g T av =

. av

il

= fngy, T v+ fng, T,

= ﬁflo( L o)y ?[;0().} av + jh'o(l;. Tdh‘,h‘ av

i

H

% av. 4. 8)

fll"fj ho()+ 'f(x
Usually we will be dealing with periodic systems in
which the effect of the radiation on the motion can be
neglected when the motion of the system is used to cal-
culate the energy emission. In other words, we con-
sider the parameters of the system to return to the
same value after every multiple of the period ¥ . If
we want the secular change in energy due to the radia-

tion, we write

T
- (gE
ar = (Ear .
O
We then assume that the radiation is small so that in

aB

the formula for 3t We can use the motion of the system
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as 1f there were no radiation. Then any term in the
radiation formula which can be reduced to a pure time
derivative does not contribute anything to the sccular
change in energy AE and thus can be neglected. Then
because of equation 4.8, equation 4.7 can be reduced
to equation 4.6 over a time average, and we are led
back to Eddington's original equation.

In electromagnetism we were introduced to the
idea that different methods of calculation of the
energy emlssion need only agree over a time average.

We essentially had only two methods of calculation
available - the radiation reaction and energy emission
across a large sphere. In gravity, we have, even within
a given technique, e.g. radiation reaction, a number

of different formulae for %% which agree only over a
time average. Thus we shall make extensive use of this
concept of time averages in deriving the various radia-
tion formulae and in reducing these formulae to show
that they predict the same energy emission.

The energy flux in the wave zone can be reduced

to the form
Xy, = (32TTG)“1[:hqﬂ,4 Eqﬂﬁhj . (%.9)

This has been obtained by Landau and Lifshitz(3) from

3L. Landau and E. Lifshitz, The Classical Theory of
Flelds (Addison-Wesley, 1959), Chap. 11.
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a consideration of a pseudo-stress-energy tensor and
also has been obtained by Feynman(u) by decomposing
the radiation fields into outgoing waves of frequency
w o finding the energy carried in each wave, and
summing over all frequencies., We will find later
that this form can be directly found from the expres~
sion for Suy « Following Feynman's method for the

moment, the ﬁﬁu;are decomposed into components with

time dependence gmiwt ; then for large r,
g LG eiUJI‘ Ierw
hwuir,w) B %uv(r',aa ei r oav . (4,10)

If the bodies in the system are moving non-relativis-
tically and the system is small enough so that retar-
dation cffects can be ignored, we can approximate the
exponential in the integral by 1 since wr'/c will be

small. Then equation 4,10 becomes

LG ei“)r

! 1
= SSMV(r W) av, (%.11)

hMV(r,w) = -
or hence, putting the time dependence back,

By (r,t) = - -"—*—S—j Sulr'yt') av' , (%.12)

where the quantity on the right is to be evaluated at

H
the retarded time t =t - r/c, where r is the radius

LFR. P. Feynman, lecture notes, California Insti-

tute of Technology (unpublished).
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vector to the system. For a non-relativistic system
S-Sij dV  can be written

a3 N

ygij av = ¢ a5y =3 8y, (%.13)

where Qij is the moment of inertia tensor

_ a _a
If we look at the radiation in a certain direction,
we find that it can be broken up into contributions
from two different polarizations, much in analogy with
the corresponding result from electromagnetic theory,
A A A A

_00-~.909
17 2
s Which are, of course, transverse

These polarizations can be chosen to be e
AA A

- OP+00
2 A

to the direction of propagation of the radiation. ©

A
and @ are unit vectors in the O and ¢ directions,

and es

and the polarization tensor e v has only two inde-
pendent components. If we look at the radiation in
the 3-direction, then we get (summing over polari-

zations)

T - gﬁ{% (@yq - G 2(9-12)2} ,  (415)

where each squared term represents the energy radia-

ted into each polarization., We can get the radiation
into an arbitrary direction by taking all possible

comblnatlons of two tensors, ng » and unit vectors nj
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and requiring that the resulting expression reduce
to equation 4,15 when we set ny =np =0 and ny =1,
This yields

2

AR _ G e D
at an - &m{2 (nyn45Q54)

- 2 ngmQy 504y
e e L e 2
+ QijQij + nianijQKK -3 (QKK)} . (4.16)

The only angular dependence is in the unit vectors ny.
Thus the integrals over solid angles are trivial to

perform. This gives

o= -8l - T} (4.17)
which 1s then the total power radiated from a non-
relativistic system. This result does not depend on
whethér or not the systems are gravitationally bound.
Mathews(S) has decomposed the radiation fields
into multipoles in analogy with the similar decom-
position in the case of electromagnetic radiation.
His results agree with equation %.17 in the quadrupole
limit (equivalent to the non-relativistic approxi-
mation), where the terms denoted by magnetic quadru-
pole or M2 dominate. This is in analogy with electro-
magnetism where the electric dipole or E1 terms domi-

nate.

°3. Mathews, J. Soc. Ind. Appl. Math. 10, 768 (1962).
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It seems desirable to extend equation 4.6 to
include the case of gravitationally bound systems and
show that, at least non-relativistically, the results
are in agreement over a time average with the results
of the energy flux calculation given by equation 4.17.
It is also desirable, since we have defined a unique
g»“’ through the use of the conservation equations,
to find the energy flux using this Suy and find the
total radiation leaving the system,

The quantity jé%# dV is the total energy of
the system. Therefore %EJ’SMH dV is the time rate
of change of energy of the system and can be found by

using the conservation laws

de _da [ - 2 =
. 4 Js% av [axigui av fsqi ds, . (+.18)
v v S

4i

Sy is composed of the matter terms T and the stress
terms'iLi. The mass tensor contributes nothing to the
surface integral when we consider the surface to be

a large sphere of radius r, and let r — w. Thus we

have assumed a system in which no particles enter or
leave the system, and in which there are no other radia-
tion processes, e.g. electromagnetic, which are acting

on the system. If we did include the other radiation

processes, we would have that

%F’: - > (RAD); + (RAD)

t i # gravity gravity
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so that our discussion will be simpler if we consider

only gravitational waves being emitted. Thus we have

db £

From equation 3.21 we expect that in the far zone
(large r) huﬂcx1/r and hyg,. o« 1/r. The analogous
breakdown of the derivatives of the potentials into
induction zone and wave zone parts is well known in

electromagnetic theory. Then %% will be

dE ¥ (2) %(3) e .
At " Jxlm dsy YXL» ds; + thi ds; +
= j/ (2>ds + 0(1/r) .
Since X(k) for k2 3 contains terms with products of

at least three hq@'s or their derivatives, they will
yield a surface integral with a radius dependence of
1/r or smaller. Thus when we let r-yc, so that the
volume V can be thought of as encompassing the system,
only the second order stresses will contribute to the
surface integral. Therefore we have that equation

4,19 bhecomes

dE  _ 7(2) 4
a".E - j )+ ) (4.20)
s

where X(g) is given by equation 3.22,
In order to calculate the radiation we need the

terms in %ig) which are proportional to 1/r2. Some



=43

2)

terms inlﬁﬁi can therefore be neglected at the start.

Since T4 is zero for large r, we have that

Byp aan o X(“?@) x 1/r2 (.21)
so that we can neglect all terms inligg) which are of
~(2)

that form. Evaluating Xﬁi wlthout these terms gilves
®2) - Gawn h 2 L +
Ay = - (3ama) Regol, Noigss + 2 By Dyyap
= 2 Mg Byt 2 Mussapag T 2 hyph g ¥

Also because of the retarded solution to the wave

equation, we can write
ho‘,@ ’3 = - (Xi/r) hO(/@ ,)+ = - ni hOfﬂ ,l{_ ()’*‘022)

so that in the wave zone all spatial derivatives can

be reduced to time derivatives multiplied by the unit
direction vectors. If we consider now the time average
of the radiation (letting the limits of integration
from O to 7 be implicit and the division by ¥ also

implicit), we get

4 _ ~(2)
5’&% dt = HXL(:.L ds, dt

so that we can integrate any derivatives by parts we

choose through the use of equation 4.22., This then gives
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2 Mgt Digyg = 2 Mg Nygiog (4+.23)

= 2 Bygyp o = 2 Bagg nio‘,u} at .
The we can apply the coordinate condition EMV,V =

= Byysy = % hggyu = 0 and also equation 4.21 again to

reduce the averageliég)to the desired form

i

H%ﬁ?dsi at = (3ene) ™1 [hogrhiusr; - % CORRE VPR EM.I:

1l

1

~ (32me) ! g hygo), Eo\ﬂ?br dt ds , (4.24)
sphere
which is the same as equation 4%.9.
We can now derive the radiation reaction loss
if we convert the surface integral back to a volume

integral. Then
j{%?dsidt = (3217’@)-1“ Bagn, Bopsy dsydt
s
. -1 9 - _ -1 -
= (3210) jdtgdv 2% hapnfagny = (3276) fatfav B Fog 11
A\

. : : )
The integrand of the second integral is £ haﬂaiﬁdpai

and thus the integral over time gives a zero contri-

bution. The first integral can be written as
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(3216) ] Sdtfdv [Bagon, Fagoan * Bagon))| =

- (32WG)‘1jdtJdV‘[hapsh(16WG Sqﬂ + Haﬂang)

* e . a , i FI
Since haﬂ?hhqﬂ7#4 = 5% hq@sqhaﬂaq s thal term goes

out and we get

jdtfds <2> - —%jdtjdv Bups, Sos
as the flux of energy out of the system and thus we can

write

dE - 1 <
[Eat = 3 jdtjdxf Byga, Sug (4+.25)
which 1s the generalized version of equation 4.6, valid
for all kinds of energies and stresses present.
We can show that equation 4.25 agrees with equa-
tion %.17. The time average in the following is im-

plicitly assumed. Equations 4.25 and 3.21 imply that

dE _ 2_|se 2
it = - 2ij{so% 5—5[-«—;‘7&} - %8 -;E-[—cééj}dv av', (4+.26)
vV

where the brackets indicate that the quantities are to
be evaluated at the retarded time. When the velocities
and accelerations are small, it is useful to expand
quantities evaluated at retarded times in a Taylor series
so that all the quantities can be taken al Uhe present

S

time. Thus in equation 4.26 we can expand E4%§;]
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(6)

in the well known series

S _ S5 d i*_ d -7
[—;é] = 8aa _ 45 o ST . (2D

%?Me

In equation 4.26 the only time dependence is with the
Sa@ sO that the time derivatives can be commuted with
the r's. Ve see lmmedlately that the integral of terms
with an odd power of r, say r®, vanishes since when we
integrate by parts n times with respect to time, we
will get what we had to begin with, but with a minus
sign. Also we want to keep terms that will contribute
to %% only in order 1/¢? or lower. Thus we get contri-

butions only from the following termss:

%%’dt = 26((f av av'at {Saﬁ%;’g S'wa +

2 gt 1 W ua®
Tglap Izl T Sap + 955 Suplt-T ] T Sypt
L g 47 Shp o e 5o fpep'| 2 att o
- -a= 5 -
2 Yad d‘tz AP = 1D Pk d‘bg )=

Consider, for example, the first term of this equation,
Neither o nor g can be 4 since if they were, we could
use the condition Sﬁéyé = 0 to reduce the term to a
surface integral which would vanish to the order in

wnich we are calculating the energy loss. Therefore

6A. S. bdddington, The Mathematical Theory of Rela-

tivity (Cambridge, 1959), P. 253,
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!

we get a contribution only from - 2 G_yéij dVJéii av-.
In a term which contains r2, for instance, the condition
Sapig = O 1s used to reduce the expression to a product
of two integrals over the Sij or Sii‘ For instance,

in the term

Sop T2 Ses AV aV'dt - [[{S0,028), av av'dt -
_gg B a6 L T IS

- 2fff §,; v2 By av av'at + fff & 028, av av'at

the last term on the right is of order 1/¢’ so we can
neglect it. In the first term, if we use the fact
that ékh = 555514 » then integrating by parts twice
with respect to the spatial derivatives takes away the

2

r=, and a further integration by parts gives a surface

integral which again vanishes. In the second term,

é@i = Sik’k so that
f§(Sy1 r2 By av aviat = ([ 8534y 72 81y AV aV'dt =
~2ff( Sy (gm0 85,V aV'dt = -2fff85, § 81 av av'at =

-2fff &, 81, 4V av'at = -2jdtUéim dv][[s;m av'] .

I

In a like manner we find that the terms are either

0, of higher order in 1/c¢ than 1/c¢ or are separable
into the product of two integrals rather than the double
integral which we started out with. In this manner

we can reduce equation 4.26 to
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l_ l“ . J'l 1

1) [Eaav Sy av } :

These terms can be simplified using the fact that in

wiro

as .. _
Sa:&- dt= - 2 dot{ﬁ -

+ (

—

1
-3 "

o] —

the non-relativistic approximation fsij av = 4 éij .
This yields, remembering that the time average is im=

plicitly assumed,

dE _ G [ e 1 e ae
at = ~ % [Qij Qij -3 Ok Qmé] . (4,28)
This agrees with the previous calculation,

We can also get to equation 4.28 by way of the
energy flux calculation without mention of the polari-
zations and argumecnts about the energy in waves of dif-

ferent frequencies, j%% dt is given by
gt= ~(32m6) " (at(as| Bog,L B - % Houah -
e a8 L lap ol 2 Qxoslilgasl) =
= -(32ﬁG)—1japde{% Eﬁh,uﬁgq,” - Qﬁai,uﬁﬁi,# +
* Ragouhagan * Bygamaon - & BygaBygan g

In this expression the only restriction is that the

time average is allowed and the coordinate condition

EMV’V =0 = E%#,q + 7, @Qi’h is employed. Then we get
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am _ - N _ 5
= 2y oy Ry g gy (4.29)
+ NaNsRx s 0 -1 (& )21
iR oty T T Mlgeely ’

which is the same as cquation 4,16 if the solution for
quﬁ , equations %.13 and 4%.14%, are used. The quantity
in the brackets is a scalar and we can evaluate it in
any coordinate system we choose. TLet us choose n, =
=n, = 0 and Ny = 1. Then we get, after summing on

the indices as indicated

_..........2 - 1T - 2 2
jgtgs at = -(32mG) Wdt['f(hﬂvb,- = By +2h12,%.(4.3o>

This gives equation 4,15 if the solutionsfor Hij in
terms of the @ij are used. We see an additional feature
in this. The assumption that we are dealing only with
a non-relativistic system has nol beenr made 1n deri-
ving equation 4,30, It is only when we use the res-
tricted solution for Hij that this assumption enters
in, Also note that the quantity +(hyq,y - 522,4)2 +

+ 2 (512,4)2 is always positive. Thus when we inte-
grate over all angles, we are integrating a positive
function and the answer must also be positive. Because
of the minus sign in equation %.30, we can conclude

that the gravitational radiation must always corres-
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pond to a decrease of energy of the system with time.
This is opposed to the results of Havas and Goldberg(7)
who have reported an apparent ilncrease 1n energy of
the system in time. Their result was obtained in an
approximation method where only the matter tensor,
T"’W, was considered as the source of the potentials,
h v , and the stresses were neglected. The potentials
obtained in this way obviously do not satisfy Eﬂy,v =
= 0, the gauge we have chosen here, In addition, the
potentials chosen in this manner contradict the asymp=-
totic field equations and are therefore not valid.

A more thorough discussion of the decrease of energy
by radiation when the coordinate condition hyy, = O

is relaxed and the role of lhe asymptotic fleld equa-
tions is given in section VII,

We cannot explicity integrate equation 4,29 over
angles since the E;”;may be functions of the angles.
It is only in the non-relativistic case where retar-
dation effects within the source are neglected that
we can reduce equation 4.29 to an expression where
the direction vectors contain the only angular depen-
dence, In that case the integration can be carried out,

We get, as before,

7P. Havas and J. N. Goldberg, Phys. Rev. 128, 398
(1062).
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t=

Qxxﬂ:
o
gt [0

Y oo 1 e cve
[fij 915 — 3 911 Q5 . (%.31)

Let us examine some features of these derivations
and results. Equation 4.31 is wvalid only for a closed
system. Usually calculations are carried out in the
system of coordinates where the origin is taken to be
the center of mass of the system. However, Galilean
relativity states that we can transform our equations
to another system moving with a constant veloclty with
respect to the first and still get the same results.
Let Xi-—?xi‘ = x1 + al + plt, The moment of inertia
tensor Qij then is obviously not invariant under such
a transformation., However our formulae contain only

éﬁj' If we evaluate aij’ we get

Big = w3 vk o]+ ¥l D]
a

so that ng is given by

Qij = EZ:ma %§(3 V% + 3bi) +2Z:ma§g(x% +al + plt) +
a a
+ (1-23)
_ i . : : »
= Q44 7 {3b Zg;mavg + (at + blt)zg:mavg +
SREE SN
Thus the results will be consistent only if 2_ myvi = O.

a

But this is just the requirement that 2_ fi = 0, where
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f; is the total force on mass a; thus the system must
have no external forces acting on it. Therefore, in
applying this formalism, we must consider only systems
in which the bodles are moving only under their own
mutual forces,

If we wish to find the cnergy in a gravitational
wave h,y, = Re ey, exp(k'r - wt), vhere e,y e, =1,
we can apply equation 4.9 to get the result that the
wave carries an energy -%WZ/BP_’IT’G, the factor ¥4 coming
from the average over the phases of the waves. The
argument can be used in reversej; if %(M2/327TG is the
energy in a wave of frequency w , then the energy in
the field including all waves is (321C) ™ hegsnhugay,-
This has, however, neglected the transient energies in
the interference between waves of different frequency.
We must therefore use the argument about only the time
average quantity being inmportant, since the interfer-
ence terms then drop out. We will find, in discussing
the radiation from a relativistic system, that these
transient energies are to some degree important when
we try to relate the radiation to the parameters of
the motion.

%%, given by equation %.25, represents the rate
of change of energy of the system averaged over one

cycle. The expression for 544 contains the mass terms,
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ﬁhh’ and the stress terms, (2)+ Xfé)+ e o+ « . Let us

instead break up Sy, into T44 and the X% ik)

(2)

the change 1in X44 over one cycle of the motion. #rom

, and find

equation 3.29, we have

But over a time average we have found that
_(2)
ﬁx s. =%Smwm'%%dv 5

jdtf e av = o . (4.32)

In other words, the second order field stresses do not

so that

contribute to the gravitational radiation over a period
of the mollon, This would also have been found if we
had considered, say, the change in X(2> At first,
this seems to be a paradox. If we consider a system
which is gravitationally bound, we have from the virial
theorem applied to an inverse square law that the
kinetic energy T and potential energy V are always

related over a time average by
2T =-7
where the total energy is E =T + V. This would seenm
to show that a change in E implies a change 1in T and
(2)

a change in V. Since the X uv @re the only terms in

the gravitational field stresses which contribute to
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the non-relativistic potential energy, equation 4,32
implies that the change in V is zero, and thus the
change in I must be zeroc,

The answer to this problem is that we are working
with a system in which we have assumed that the radia-
tion has no effect on the motion of the system over
one cycle. The radiation, depending on parameters
such as v, a, m, etc., should not depend on whether
we use the actual motion of the system, say a spiral
type decay as would be observed over a long time, or a
slightly perturbed motlon, where the system is assumed
to move as if there were no radiation.

In electromagnetic radiation, one has the same
problem. Suppose we calculate the radistion from a
bound system of two charges. Assume that one has a
heavy mass so that the radiation comes from the smaller
mass. One method to find the energy loss due to electro-
magnetic radiation is to find the radiation reaction
force on the charge, which one always finds to be in
the direction such that the particle's velocity has
a negative component in the direction of this force.
One then says that the system is losing energy and atl
the end of one period it will have lost an energy
given by AE = ji;g_dt. One never asks what the change

in V is because it is trivially zero. This is because
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all of the parameters are assumed for simplicity to
return to the same value at the end of one period, and
the potential energy depends only on these parameters,
e.g. the separation of the charges. When one wants

to apply this calculation to find the actual decay of
a system, he first writes, knowing AE and E = T + V,
AE =AT +AV , and since 2T = -V on the average, he
gets

AT = - Al = 2AE

e
>
<

which is the actual secular decay of these quantities.
The same thing works in the case of gravity,
Once one has found AE, one can then proceed to find
the actual secular change in the guantities he wanted,
even though in the calculation of AE, these quantities
were assumed to have no secular decay. For example,
if one applies the method which was used on Xﬁg)to
find the secular change in Xﬁé}, one finds that it is
not zero. Although there is no meaning in geparating
out the different parts of the total energy, we will
see in section IV D. that we will not be able to get
the energy loss from any force calculation because
there is energy lost directly from the energy in the
Tields themselves,and 1t is this energy loss which is

represented by the third order field stress change.
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C. Angular Momentur Radistion

In addition to the conservation law of energy,
we have the conservation laws of total momentum and
angular momentum. The change in these quantities due
to the radiation will give us additional information
about the decay of the system.

The change in momcentum of the gystem is found

as in the energy radlation case

dPy - _d .=-J.... k,
2 dtjsqldv 8 55 (%+.33)

The introduction of the minus sign in equation 4.33 is
so that Pi will represent the total momentum of the
system. In a non-relativistic system Shixj Tui“‘

éia Sup 7% - Thi = - mv® so that the equationsfor
momentum and angular momentum in terms of the Shi have
the opposite sign from what one might expect. Thus
since P; is approximately .JThidV and in the absence
of radiation it is conserved, Pi is therefore equal

to - fskidv. Since in the case of angular momentum

we will also be dealing with the quantity Shi’ we

will have to put a minus sign in also so that the angu-
lar momentum 1s what we usually mean and not its nega-
tive. As in the energy radiation case, the only con-
tribution to S.. comes from the second order stresses.

1
Over a time average we can reduce‘%§§> for large r
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to the form

5§<§L§)dt = (327n6) " Sndﬁ,,i Bagrg At 5 (h.34)
so that

5§§i at
at

..(3211’G)_1jdtjdsj Hd/g ’3 hot/éaj_

I

+(32ﬁG)"1Satde By a1, Dugs g
sphere =@
-1 .
-(327G) jﬁtjds n; h%ﬂ’4 hqgaq .
O]

I

We can reduce hqﬂ’4 Eaﬂ,% as we did in equation

4,29, so that
(dPs . e r. . - .2
)a-_E'L dt = =-(3217G) ')dtgds ny 5l (nknmnkm’h-) -
- 2 g By B+ B, By
* ngy By By = % (Byyn)® ]
In the approximation in which the masses are moving
slowly and retardation effects within the source are
ignored, Hij’% is independent of the angles. Thus
the only angular dependence is in the Ny, and we see
that each term contains an odd number of the direc-
tion vectors e and thus the change in total momentum
vanishes when the integration over angles is carried
out,.

apP
Sa'%"l at =0 . (%+.35)
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This result is valid only if the above approximation
holds. One can imagine systems which radlate preferen-
tially in one direction, but they require a phase lag
between different components of the system. In this
case equation 4,35 would not be true. In our analysis
we have assumed that the phase lag between different
parts of the system 1s negligible., This will be valid
s0 long as the dimensions of the system are small
compared with the characteristic wavelength of the radia-
tion,

The change in the total angular momentum of the
system is given by

dL.
1

where Eijk =1 1if i,j, k are 1,2,3 or cyclic permu-
tations therofy - 1 if i,j,k are 1,3,2 or cyclic permu-
tations thereof; O if any two indices are the same.
This Li is seen to be the angular nomentum since in

the 1imit of no radiation it is a conserved gquantity.
Also in the non-relativistic limit, Ly corresponds to
the usual definitions of the ith component of the angu-

lar momentum of a system. From the conservation law

of angular momentum, equation %.36 becomes

dLs = . €., x. 2. S . 4v
e 13k/y I 2%y mik
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or

dly - -€e... {2 . .
_a_%_l Ukjaxm %55k dV + €ijk ysgk av

and since Sjk
the last term becomes zero., The first term can be con-

is symmertic and € is anti-symmetric
ijk 9

verted to a surface integral to give

dLs _ | - X
ol o= I Eijijjskmdsm = - eijk: SXijmdSm (#037>

sinceﬁfmk = 0 for large r. We must be careful in our
argument that i%k can be replaced bylviﬁ). Since
iéﬁ) is proportional to 1/r2, and xj ® r, we see that
the integral over the surface 1s proportional to r for
large r and therefore appears to diverge for large
distances. However, if we look at the part of the
~(2)

e

is given by (over a time average)

which is proportional to 1/r2, we see that it

fxéfc) at = (32mwa)”" n 7k kaho«,g,u Hogsy 4t .
T

Thus the lowest order contribution to equation %.37

will come from
- X 3Xp Xy -
- €4y (32776) fatjasm L

which vanishes because € is anlisymmetrlc in any

1ik
two indices. Thus we can have a contribution only

, 3 ~(2) 3 ~(3)
from the 1/r2 part of X ° and the 1/r° part of Xt o

We can show that §é§> does not count in finding
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the angular momentum radiated in the approximation in
which we are working. Assume that Xéi) yields an

angular momentum loss

1
Ly _ ¥(3)
ja'fl at = - €ijkyc1tjdsm x4 Xup’

§é§> contains three.hqﬁ and two derivatives. Further-
more, only the lowest order hgg (1/r) is needed in
this expression.Remembering that haﬁ,k = - Dy hqﬂ,q

to this order, we can integrate all components by parts
by first converting them to time derivatives and then
integrating by parts with respect to time. Thus the

contribution from any one term of igﬁ) can be reduced

to the form

€ijkjdtfdsm Xj Ho{,@’KHBET)\HO"Z‘ .
Through the use of the coordinate conditions, we can
reduce the components 9,48 ,56 , and € to spatial com-
ponents multiplied by the direction vectors Ny, and
the derivatives with respect to xy and x5 to time

derivatives multiplied by -ny and -n, , where ny =

=(-1, ny). This reduction gives

direction| e T

6 [l

ijkjétjas 5™ | vectors [ Tmp'k hqr’% Rov -

1f we write x; = n; r, we see that we have an angular

momentum radiation distribution which is of the order

of T E&T times the angular distribution of the energy
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radiation to lowest order. Since Eﬁ% ~ =L4GM/r ahd all

of the other componments hy  and h_ are smaller than

this, then at most %-%—' = GM %-%— , whereas we are

s . dE dLs
expecting terms such that I S W dt1

for a system
which is periodic with frequency w . Since GMw =
GMv/r = (GM/rc2)(v/c) = (v/c)3, the contribution
from’iéﬁ) will be of order (v/c) smaeller than the
contributions we expect fromlﬁéi) o With these sim-

plifications, equation 4.37 can be written

dL.s — %(2)

where only the part of iéé)

which 1s proportional to
1/r3 counts.

The formula for A)égfz) given by cquation “.34% does
not apply in this case. We must therefore go back to
the original expression forligﬁ). Any term in this
which is proportional to hegyxy will not contribute
to this radiation. Since Bagoan & hg, this type of
term will be of order h3. By the same argument as used
in eliminating the contribution of the third order
stresses, one can show that this term will not give
anything in the order in which we are findlng the
radiation., Alsc any terms in the second order stresses

ﬁgﬁ) which are proportional to Smk can be neglected

for then we would have the integrand in equation 4%.38
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be symmetrical in J and k and the indicated sum would
then vanish. Writing the remaining terms which can

contribute gives (letting huy = ﬁ%w;— %~§uvfﬁ

~(2 - Iy . - N
x(2) = (zamwae)! {— DggsyBapry =2 Dyicallynss +

N

2 hmk’6h77’8 t2 th’Shmé’K " hkx?mﬁmnx -

- Hvdagﬁmgak - % Hvdam Hxxak - 2 Hkmﬂuﬁgkﬂ -
-2 Ho«,ah—o:,ebnﬁ«: - hk,e Ho’o”ﬂm - hm,ghcm’ﬂk *
+ 2 BagBr o g * 2 Fgglipeoncy + Hddﬁgg,m} L (h39)

In each tTerm we have the product of two h's. In order
that the product be proportional to 1/r3, one of the h's
must be proportiocnal to ‘1/r2 and the other proportional
to 1/r. 1In order to reduce equation 4.39, one pro-
perty of the 1/r2 solution is needed. If we have only
the 1/r2 part of %ﬁvvk and differentiate this again

with respect to x, , we must have that

(EMV’%)’V = - na'guvak oo

We can see this from an examlination of the solution

- = e 2 (Sew(zit) (& —t+ip-zVat av' .
Ty = G gg & -z

Assume that the expansion to order 1/r2 has been carried
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out and consider only the 1/r2 part of hyy,n , de-

noted by h /ﬁ%iy.. The only way a further spatial deri-

vative can act on h(ézx and still have a term propor-

tional to 1/r° is to act on the retarded time S~

) 5(2)

function, which gives (h(v71>71 = -0y Dopyy.  Sup-
pose there was a product of two h's, say haﬂ,xhdé,g ’
and only the 1/23 part 1s considered. Then one of

the terms must be « 1/r and the other o 1/r2., If we

P )(3)

consider the quantity'_ggi(ﬁﬁe,) hoe,s , We see

that 1f the resulting expression is still to be of

2. )
Dxi( ) = nlat(

because only derivatives on the retarded time delta-

order 1/r3, we must again have that

function give a result which does not change the order
of the expression,

This, together with the fact that we can neglect
the terms mentioned before, allows us to eliminate
mony terms inA§%§> which do not coatribute Lo the
radiation of angular momentum and also simplify others
which do remain. The following terms of equation 4,239
vield no contribution in equation 4,38 in the order

in which we are calculating the angular momentum losg:

a) Jﬂﬁjﬁsmxa Xk’ShUM’S = ~%Jatjasmxahzk,53th

’a - — — o
~5dtgds hxthm788 - %Satjdsmxj5§p(hﬁk’Ph‘"'+ hykhym,p) .

The first two terms are neglected because of the ' 85 °
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In the last term, if the part of the expression within

the parentheses is proportional to 1/?3, then §§ =
= - ny g% , and the integral over time vanishes, ’
Therefore the only part of the quantity which counts
is the part proportional to 1/r2 or thus where each

term is proportional to 1/r. But then

Dy pgm + Bpfiymep = = 0y (oo gt Bydigp,n) =
0 — —
= - I’lp 'a"g (hkx hmb’) )

and the time integral eliminates this. A similar argu-

ment applies to the term Hmk,éﬁw,é .
v)  [atfasgzs | Bovsshss + Roosafing | =

_ 2 & =

As before the part in the parentheses has to be propor-
tional to 1/r°, so that we can write hyosshys =

= - nghppahys 5 and a time integration gives

D fyohpgst = = Hog Byges = 0. Thus this term also

vanishes.
c) dt\dsyxhysh = -\dtlds X-Q— (h,,.h )
™ j o3 km a3 m Jaxp axp-kmIk/ ¢

As in b), Ho(p By o = = pr,o,ﬁkm = 0.

D fatfasycy Ry gy
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_ 2 (% i =
= ._jdtjdsmxjaxp(hkp,ghms) = 0,
o) fatfasyx; Tgon Brasp + By 4 Bygopm) =
- 2 (v T -
= fdtJ’dSij -a-:-)*-{m(hk’é hoaa-,ﬂ) = 0,
The following terms simplifys:
- & 2 (o T
- 2fdt5dsmxthﬂ,mhqﬂ,k - 2Jdtjdsmxj S (Haghopnc)
The last term becomes
9 |z 9 (% 7 -
%, 2 | Xk 9 = 0,
j’dt fasgx, Dxm[r 2 (Bogliog )] 0
The term hgg han,yy, can similarly be reduced.
g) 2fdtj’dsm %5 Ho Byonpy =
- r 2 (5 &

where the last term is zero. A similar transformation
applies to the term 2 Hdﬂ Hmo(’ﬂk .
With the above results, equatlon %,38 can be

written

dLs -1 —
fa-fl dt = = Eljk(321rG> ydtjdsm Xj [’hdﬂ’k ho‘/@,m -

-2 Hq@’m Ekaye -2 H&ﬂak Hmd%é] . %+.140)
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This is the angular nmomentum analogue of equation 4.24,
The angular momentum change in the guadrupole

approximation can be found by two methods analogous

to those used in the energy radiation case. Let us

first congider the analoguc of the radiation reaction

calculation. The surface integral in equation 4,40

is converted back to a volume integral. This gives,

after some simplification

yg'—%idt - eijk<3zwa)‘“‘[dtjd*v'{§cj<hqp,k ~2hyas ) Rag o

- T Xy g}:k(ﬁa(,g,%ﬁdﬂﬂ) + 2 Xdeﬂ,%Hkm,@l -
- 2 x4 a@immm,kﬁmm,ﬂ) = (a) + (b) + (c) + (d).

Term (b) is proportional to

fase =5C ) - far §pC )

which vanishes. Term (¢) becomes

il

.{2éijkgatjasmxjhumﬂkhakﬂl + 2 Eijkjé?jav ot snlloe o
€1 g (ot faspxs S By o By + B B, ) =0
ik 1 oz, emd o T oo p :
Term (d) becomes
"2 €5 5% d?fasmxjﬁdﬂ’kﬁmauz 2 Eijkjatjav Dogsichjoys =

= )
= eijkfayfdsmxjsfp(ﬁdp,kﬁhd) -
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The first term of this is
9] e —
2 eijkydtﬁsm XJ g}’zp - ,:E ‘h‘O(p,)—{- hmo( ) =
— 3 P _
=+2 eijkfatfasm Byye Doty my =

= -2 €ijk55tjasm Bamog By 5 OF%)

so that the sum of (*) and (**) is symmetric in j and

k and thus vanishes. We then get that
abi 4t = =1 i~ = _
= o} eijkfdtjdv %5 (agare = 2 Pyong) Sop (4.%1)

which 1s the equation analogous to the radiation reac-
tion equation for the energy loss,
Equation 4.41 can be simplified by a further

integration by parts. This vields

f‘%’%‘i dt = - ’1§ eijkﬁtfdv(xjhdﬂ’lfsdﬂ =

(4.52)

. — _ S o o 1‘2"' . ]
Since hqﬂ = LFGj [""J':;"Q Sd/@ + 5 So;/j -z Sd'(3+ *ls
only the terms with even powers of r survive time
imbegrations in equation 4%.42., Thus we get +the fol-

lowing terms:



1 . 1 Dy e
+ % Sag —-}Zklr-;'ig Sip * 755 Sap S lp-pi® Sl +
1 9 & - 2 popy2 &
- F Saet axkb'/@ ) So((x an ‘I‘ ;;"l 8,6'/6 -+
1 2 )+ .....
- 3G So(o( ‘5‘52}{(2-“ ’\ Sﬂ'ﬂ] -2 SO(J a’(k -+

Explicitly reducing the expression using Saﬁwe = 0 and

o
fS15 a7 =% Oy

case, we pel Llhe contributlons

as was done in the energy radiation

g‘;i‘ - ... vea -2 )+ o] _ 2
which 1s then summed to give
dL. 2 v con
et dt = - 5 ¢ €y \dt Qi Qp - (%,.43)

This is then the expression for the total i=-component
of angular momentum radiated by the systems.

We may also get to equation 4.43 by way of the
calculation of the angular momentum flux crossing a
large sphere. This allows us to get the angular momen-
tun radiated as a function of the angles as well as the
total radiation. For this we need Hyy,» to order 1/r2,

‘@MV’H is, of course,
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/W},l{.(l’ ‘t) = -MGX-,&‘-Z—&J-—«-— g(t'_‘t-{»—}f I"l)dt'dV' .

lr - 1Y

We need @MVak more explicitly than the above:

— . o o
%uvﬁk(£9t> = “G,fﬁuv<§at> %%*mQEﬁQ §Catrave +

- 7!

+ 46 (5,0t B3 5 (Oavar .

“ [z -zP
Thus
E“V’k = - %k EMV’4 - f% EMV ~¥§25’éuvxﬁ §C HYat'av +
+ 4‘33 Xk}’éﬂ))}:‘ﬁ" §(Hatavr
Then
Hij’k - %k Eij,h - 5% Eij -Hggiyéijx&<5( datdv! +

r
LG : 1 137!
oy ysij er' §(avav .

The last two terms will be much smaller than the first
in the order of the quadrupole approximation. To see
this we let everything have a time dependence éiwt.
Then

hys(zw) o ysij(sz‘,w) ol (B2E)

av?
whereas the last two terms have the form

. |
forstziw) w0 gy,
In the quadrupole approxlmation, we let cux£:<< 1, so
!
that the exponential exp(-—iwg—f£ ) can be set equal to

one, The latter terms have the form of the second term
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in the expansion of the exponential and thus, in this
approximation, can be neglected. Therefore, to order

1/r2, we can write

- |« — -

where h is then given by R = - kg'fs dv. Let
i & T g r )P4y @Y.

us consider Eﬁk’m . Hﬁk’m = - npr-lhy - nphy, o), -

- ue w2 (g, x Savav + ke r=3f8, rep S aviave .
In the last two terms, we let §,, = Sey04 o in waich

case we can integrate by parts to get

_ np -— — 1 — . -
My = = 25 Bye - nghyy, ), - T gy * E%EJ hpy . (+.15)
Similarly,

- e — - n. —
By = = 25 By = my By, - 200 o 4

o (. 46)
ey 1= Oy o
¥ T Mm - 7 by + 7 Bmk .

The coordinate conditions hy ., =y, and hyy 5, = By o
are used to eliminate the time derivative terms. With
these expressions, we can find the solution to equation

4,40 directly.

al . - -
f’a‘%‘l dt = - €ijk(321r@) 1[@'1'2’@8 %[_hdﬂ,k hd,@’m —

= 2 Fogo Brgup = 2 Bupop Hka,/g] . (L47)
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In the first term, Dopa, HQﬂ’m y hygy, must be of

EAN 4 L
order 1/r2 since any term proportional to X, will
yield zero upon summation with GlexJ. Then Ea@,m =

=-mn. h %B’% . From equations 4.W4-6 we have that

— 21 -
C1kF5 By = €%y %“— B oy
€135 Dumoe = - €qg¥y
“1c%5 Ppgrx = O

so that for the first term of equation 4.47 we get

-
+ €5 (327T0) Sétjas [n. nympn B B -
- 2 ny np Eqk EQm’H 2 ny ng hgye hog,y .

For the second term of equation 4,47 we get in an

analogous manner
-1 -
- 2 €,45,.(3270) §a§§ds[nq ny o ng B B, -
= Hy By By, hmq ’LJ

The third term can be written

2 €ijkfdt£ds Ilm l’lj r Hdﬂ’m Ek;oﬁa/:’» =
D = -
-2 Eijkjdﬁgds np 0y T §Ehfhdm’p hyey ),

and since J&t AT Dy to order 1/r2 is equal to

5dt [-— Ny Dp g I:J:rmyli~ Ekq + Ny Hrma’-k Ekl’] 9
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the term becomes
-2 Eijksatgés[?p ny r g%m( - Ny Ny ng Rppay By +
©
* 1, Hfm’% Hkr {] °
Carrying out the differentiation with respect to X

then yields an expression in which we can wnse the

solutions given 4.hh-6 to get
-2 €ijkjatjds (4 Ny Np Ny Oy Dypyy by -
o
- ny 1y hy ey hkq -3 ny Ny hpmﬁ# hye ) .

Thus the total angular momentum radiation distribution is

21,

d _ €4 R
S’d’f“dlndt ) -%%—gdt{ ©nj Bp Qe Onp -
_gnjnmnp nq ka .@'pq%- (4.’4’8)
+ % ns npy émk ééé] R

where the solutions for Hji in terms of the Q31 have
been used. The integral over angles is trivially

performed. This gives

AL.s o er e
jé%l dt = 5 Eig jAt Unj Omic
which agrees with that found in equation L.43.

There remains yet another way of finding the

angular momentum radiated. We may use the multipole
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analysis developed by Mathews<8). A wave of frequency
w  with quantum numbers J and ¥ will have a z-com-
ponent of angular momentum flux of M/w times the

energy flux., Thus where the total energy radiated is

given by
an 2 2
T =-* JZ’:M [\emi + |myyl j )

the total z-component of angular momentum radiated will
be given by

aL. _ 1 2 2

€5 and myy are the amplitudes of the various multi-
poles present., In the quadrupole approximation we

have that By dominates the radiation, so that

2
dL 1 :Z: 2

M=-2

where Doy 1s given by Mathews as

. . +
-;%—(SXX - Syy) T i Sxy M= -2
_ . . P+
m2M = - 1u44@‘j&v F sz + i Syz M= =1
5 1 —
5(2 Szz - SXX - Syy) M=0,

Also in the guadrupole approximation we can let Ssijdv =

P
2@13‘

8J. Mathews, J. Soc. Ind., Appl. Math. 10, 768 (1962).
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In performing the sum indicated in equation 4,50,
we must remember that Qij nere are really phasors,
with real and imaginary parts. We then let Qij =

@ij + 1 Qij , where Qij = Re Qij and Qij = Im Qij .

Summing then gives

dL G 5
Tt = - v {A,@xy Qix - ny) -
2
- sz Qe - @yy) * (@ * gyz) *
* (@yz - gxz)a - (sz “.@yz)z - (gyz +,@xz)2j} ?

which reduces to

g..I.:‘. - 2G5 1 * 3k 3
dt> = - TY Re{:f—(QXX Oxy + Qxy Qyy + Oxz Qyz>] .
Putting this back into the form with time dependence gives

aL _ )+G Ve ., . ros ‘e rr
G [QXX Uy * Uy gy T Oxa Qyz] ’

which is the z-component of the following equation

dL _ 2(} '™ v
at” = % €19k Yn Qg o

which was found before.
Por a system which 1is clrcularly rotating, say a
spinning rod, there is only one parameter, w , which

specifies the state of the system. We have, however,

two equations, %% and %%i Lo speclfy tne secular

change in W over one period. It is necessary, there-

fore, to show that the formulae for L& ang i give

dt dt
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consistent results for circular motion.

For circular motion in the x-y plane, we have

)
Qry = I cos™wt
Qxy = I cos wt sinwt
. 2
ny = I sin wt ’

where I 1s the moment of inertia of the masses or rod,

Therelore

Qe = - 2 Twicos(awt) 5 Q=4 Iw'sin(2wt)
Oy =-2Iwsinwt) 5 @ = HTw’cos(2wt)
éyy =+ 2 T wcos(2wt) : é?y = “4Twsin(2wt).

L, and E are related by L, = Iw and E = 3 Iw?;

therefore %% should be equal to a)%%z . From equa-

tion 4%.28 we get

dE  _ G w2 D e ]
T T T T [m+2Qxy+ny
2 @
= - lé§~%_££_ [é sin22u¢ + 2 cos22wﬁ1
2,6
2G I~ w
and from equation 4.40 we get
dL _ 2 G oo as Y3 ree ow see .e oo
'&‘EZ - = T(QXXQX:Y + QyXny - Q}WQX}{ - ny@‘y}{)
2. .5
. 108 % @ (2 cos22ut + sin®2uwt)
320 1w’

"

5’ N
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Thus one could use either formalism to find the radia-
tion from a circularly rotating system. We will find,
in the case of two point masses moving in elliptical
orbits, that the two equations give different infor-
mation and allow one to find the secular change in the

eccentricity as well as in the energy.

D. Radiation from the FEquations of Motion

One would like to find an expression for the
gravitational radiation reaction force analogous to
the cleectromagnetic radiation reaction force. Com
this, one could predict both the energy radiation and
the angular momentum radiation of a system of masses.
As we have see, in the case of a gravitationally
bound system, the third order field stresses contri-
bute to the energy radiation, whereas we will see
that the equations of motion do not give this. Iven
in the case of non-gravitationally bound systems we
must have some siress-energy tensor as a result of the
binding forces. If the mass tensor is T4 and this
stress tensor is WY , then we have that

(T# + W*)5y = 0,
or that
(T + T4, + o@}('ﬁ“ﬂ-& W98 = 0

is interpreted as the force density
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due to the binding fields and T4, the effect of this
force on matter, e.g. pv4 in the ¥.,R. case, then the
terms of the right are interpreted as the force density
due to the gravitational fields. However, there is a
flaw in this: we would like to have the force density
be non-zero only where there is matter on which the
force acts. This is true for T4Y,, and %‘%i‘""ﬂ .
However &2’§“ﬂ is not localized at the masses, and
thus there is a gravitational force density even where
there is no matter. For example, this implies that
there might be a contribution to the radiation from
sources other than the masses themselves. In general
this will be true for both gravitationally and non-
gravitationally bound systems. This is not to imply,
however, that information cannot be obtained from the
equations of motlon. The equations of motion can show
explicitly why we do not get a dipole gravitational
radiation. Also we can get the energy loss for a cir-
cularly rotating system correctly, although for general
motion the method fails.

In electromagnetism, the radiation can be thought
of as being caused by the reaction of a given charge
to the motion of all of the charges present including
itself. 1In gravity, the radiation is caused by four

types of processes:
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a) reaction of a given mass to the motion of
21l of the masses present

b) reaction of the masses to the changes in the
stress-energy of the fields produced
by all of the masses

c¢) reaction of the fields to the motion of
all of the masses

d) reaction of the fields to the changes in the

stress-energy of the fields themselves.

Clearly a consideration of the equations of motion of
a gilven mass can yield only the radiation due to
proccsses a) and b). With these limitations in mind,
we can now proceed to describe the radiation from the
point of view of the equations of motion.

Our starting point will be the equatione for the
geodesic path, which describe the motion of a mass in
a gravitational field. In the following we will assume
that gravity is the only field affecting the motion.
If the position in space-time of the mass is denoted by

x? , then x9 1is given by

g/Md’X"U = [O(/Boxujxld xP ’ (4.51)

-4
ds

s to u as the independent variable, then we get

where ' , and g,, x#x¥ = 1. If we change from



o <ot s <o d du
EugX? = —@ﬁgﬂx“xﬂ-gﬂrxdaglnag , (4.52)
d . . .
where - = In c The same equation with u—>v 1is
LLd » » d d du
2,057 = ~[08,V] %% %P - g, X”a—é- n 35 -

If we multiply the first equation by g, %9 and the

second equation by = gp“,id and add, we get

g/“afiéd gy,g:}'{ﬂ - gﬂdf}éa gy/@i'{'{s =
= - gyolagypd £ 28 27 + guo [0, ] %% %8 27, (4.53)

Since u can be chosen to be anything we wish, we take
it to be the time t. Then denoting differentiation
with respect to t by - , we have that t = 1 and

t = 0. In equation 4.53 let =1 and v = 4., Then

o . . e B _
210X Guptl - 01,27 4,2 =
= - gug [0, 11 5%0%+ g, o [oB,4] 2P 17
To lowest order in hgs 5 we thus get that
8T = = [48,A] 5% 3B + 8, p [g, 4] 5% %P 29

An examination of the last term shows that it is of
order (v/c)? smaller than the first, and we will

neglect it. Therefore

‘1

;C = [O()éi'(‘j .7.(»0‘3.{‘6 - [ho{j_,/@ - 'r}g hor/@,]]}'{o‘ }’.\,t@ y



~80-

so that we may define the "force" due to gravitational

interaction to lowegst order in haﬁ in the N.R, limit as
£3 = hgisg - % Bygyi| vV, (U, 54)

where v¥ = x* ., This is the analogue of the Lorentz
force on a charge.

The calculation of the radiation reaction force
of a charge on itself in the 1imil of slowly varyilng
parameters is well-known in electromagnetism. The

result is that

e ¥; + 0(a) (4+.55)

1

}__b

]

i
%/

=,

<

+
wipo

where W, is the self energy of the charge, and a is

the approximate radius of the charge distribution.,

The result is most easily found by calculating the
force in a system in which the charge is momentarily

at rest, noting that the result is independent of the
coordinate system (for small velocities). The ternm

O0(a) will be small for small radii and can be neglected.
The term - % Wy vy ls usually taken to the left side
of the equation and included in the m v; . The power

i
loss 1s then f3 vy and its time integral is

2 . . .
in vy dt = 3 e2jfvi vy dt = - % e2 Svi vy dt o,

so that we get the familiar equation for the power
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radiated by a charge.
The analogous caleculation can be done in gravity
using equation 4.5%, In a system in which the mass is

at rest, the force is

£y = m [hniah - % hkuai]

i

m [Hﬁiau - % By + Foors) -

During this calculation the effect of the stresses

will Dbe ignored in the computatlon of ti’lendﬁ5 and

only the terms arising from the masses themselves

wlll be considered. Thus instead of the charge density
Pc and Qcvi @8 sources in clectromagnetism, we now
have the stress-energy density as the sources. The

sources are therefore taken to be

..__-.9_...._... - QV- . —-emqu
TM% B J1 - ve ? Thi B dT":‘;Z ’ Tij “JT:;Q-(F-/6)
From these we obtain the potentials (analogous to the

Lienard-Wiechert potentials of electromagnetism)

— _ Lem
SR
. _ . hkem Vi
s = e s
H’ . - _ L\LGm Vj_Vj
1J. T - ve s

= _ _hem N1 - ¥°
s
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where

and

= LI
Iy Ep(t ) .

The self force of a spherically symmetric mass distri-
bution is then found in the same manner as for the
corresponding problem in electromagnetism(g). The
details are more lengthy, but the steps are the same.

This calculation gives the following terms:

Eﬁiaq‘ — 8 W, %i -4 G m? Gi + 0(a)
a— L ) .
- '21? hl‘{‘)’}"j. — ‘3‘ WO Vj. + %‘ G mp Vi -+ O(a)
= 2. 5 .
1 — 1 o
t Nogyy —> S W,y - 3 Gm® v, +0(a)

1
where W, = GJT'Qg;QQ is the "self energy of the
mass'" and a is the "radius" of the mass distribution.
The total reaction force is then

7

22
f. = 3 W 3

. - -"«31 G m? ¥, + 0(a). (4.57)

o 1

The self energy term can be treated as before and the
0(a) term neglected. We would be tempted to say that

fi vy is the power radiated by the mass. Over a time

9F0r a discussion of the electromagnetic case, see
W. K. H. Panofsky and M. Phillips, Classical Electri-
city and Magnetism (Addison-Wesley Pub, Co., Inc.,
Reading, Mass., 1956), Chap. 20.
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average this gives

11

. vidt = - = an2 [v =+ om2(3, v
jfl vidt 3 Gme v, v,dt = + Gm=\v, v.dt ,

3 i

which implies that the mass 1s gaining or absorbing
energy, not losing it as we would expect. In addition,
this term is of order (V/C)B, which is (¢/v)® greater
than the contribution we had found from the previous
analysis. The answer to these difficulties lies in
the fact that the effects of the other masses of the
system have not been included in the calculation of
the force, If we find the force on mass a due to

all of the other masses to this same order, we get

11 -
f:(oma) = - =G E:; Me M. Vies
i 3 i a Mg Vki s

so that the total radiation reaction force, to order
(v/c)3, is

— . - d . -
fia "% mamkvki”maa’ﬁzk e vigg =0

where k runs over all of the rmasses, and where the
system is assumed to have no external force acting
on it. A similar cancellation occurs sometimes in
electromagnetism, If a localized non-relativistic
closed system contains only particles which have the
same charge to mass ratio, then the radiation in the
dipole approximation vanishes (order (v/c)3), and

we must go to the gquadrupole approximation (order
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(v/¢)?) in order to find an effect. In gravitation,
since all masses have the same mass to mass ratio, the
lowest possible order of the radiation is the gquadru-
pole approximation. This can be seen explicitly also
in the case where the contributions of the stresses
are included in the solution for hqﬂ .

Still working with equation W.54 with the mass
at rest, we write the solution for hqﬂ >

hq/@ = - kL GJ[ SO{,B - %—S“ﬁ SO’U‘] dav?t »

r

The expansion of the retarded brackets can be carried

out and the solution used in equation 4.5%. This gives

4

! 2 ]
£.o0= -homd 2 (Suay - (Suioay 4
ot T Q2

3 4
+ 4 §;3S’r84i avt - % §€45r2 Séi dVE}+

Su, - & S, J Sy, - & .
+2Cm { axij 1 = Soo gy 5% a’cs oy - Sevayr +
.._ a a’z / 1 ! 1 a 33 m' 1 1 T
3 5§15€ r(Syy ~#8gq)AV" - 5'5“'“;3S£2(°4n~53wa)df' +
3 Y 1 1 a 35 )"}‘ ! 1 ! H
* “Eax 5 (S, B8 )aV" - ok 2 atssf' (S, =584 )V .

Terms with an odd power of r can be eliminated by a
trick, If we had used the advanced solution for the

quﬂ in this expression, we would have changed the
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sign of each term with an even power of r. One would
expect a radiation with the opposite sign since, to
this order, the Syp does not depend on whether the
retarded or advanced solutions are taken. Thus to get

the radiation terms, we can take the quantity

2<hrut adv

o)

as the potential,
The terms of order (v/c) and (v/c)3 vanish. TFor

the term of order (v/c), we have zero because the

o

quantity does not depend on r, and we arc taking o%;

For the terms of order (v/c)3, we have

i

set . G oo /
boaf8h, ar - §vf344(xi - x{)av!

=L GJS

ii
Gt ot _
132597 = 3=y - =Pyt =0
by integrating by parts. If only one mass is con-
sidered, then since jéﬁi dv' = -mv; to this order,

mx; 1s given by

mi&i =—L%Gm2§;i+%—Gm2%}i Z—%Gmgir‘i

which was found before, Then the cancellation is seen
2
to occur because S%'gsﬁi dv' = 0 , or because the
total momentum of the system remains constant.
The fifth order terms will, in general, give a

non-vanishing reaction force., These ternms may arise
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from the expansion of the third order terms to order
(V/c)2 or from the lowest order part of the fifth
order terms. In evaluating the integrals, we use the

fact that for mass k,

Ty, = my S(r - r(£))
Thy = - my Vg Sr - n(t)) .

In a system of two masses, the force on mass 1 will

then be
- _ 2 o Cmqms ..o,
f13 = -5 Gmmp (r2vy) - .m%ﬁz (rex.) -

where the first two terms come from the fifth order
terms and the last two are from the expansion of the
third order terms. x; denotes (xp; - xp;(t)), where
Xpi denotes the observation point which becomes 94
in the final evaluation of the term. Since we are in
a system of coordinates in which mass 1 is momentarily
at rest, we get that vy = v4y - vpy(t), where vy is
assumed to be constant throughout the indicated time
differentiations. The terms with mq acting on Iy
vanish in this special coordinate system.

In the case where the two masses are moving

circularly around each other, the last term vanishes.

Then we get the following contributions to fq5:



evrea

(rvy) = gé vi [ - By-¥o + 6Fo0p - 22-¥n] -

wiro

ooooo

If the frequency of revolution is w , then ¥, = —u}vi,

etc. IBvaluating fyevy then gives

= 221 G I w®
f1ov,1 -——[ 15 3 m1+m ]

Then interchanging 1 and 2 and adding to find the total

radiation of the system gives

: L1
%% = _[%% - %QJ%;G 72 0%= - 372- ¢ 12 w® (O 50)

which is the same as is found from the analysis given
in section IVC. for a rotating system.

The same calculation can be made in the more
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general case of elliptical motion, although the work
is considerably longer. Both the angular momentunm
radiation and the energy radiation can be found from
the force, but they do not agree with that found by
the previous methods. One finds an expression for the
energy radiated of

[+ chgtsh o2 + 59 o]
(1 - e2)7/2

B =

Beirele

whereas the correct energy radiation should be (see

section V.A.)

1
I 1+ 558 &2 + 74 o))
circle a - 92>7/2 .

The difference is, of course, only in the terms pro-
portional to the eccentricity.

We can now show explicitly why this method works
for circular motion and fails otherwise., The force

equation 1is

m ii = [hai’ﬁ - % h%ﬁ’i] m v%ve
so that
- ééi }.{i = [haiaﬂ - % hq{[@,i] m v“vﬂvl =

— i 1 i3
- ln_*'] 71] + m VlVJVk [hi;] Y ’}2‘ hak,ij @

The last term 1s of higher order in v/c and can be
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neglected. We can then let
m vl — (- m, av = - g, av
wvlvl — (7, av = fs15 - Xgy av .
Taking time integrals for the secular change in energy

yields
dE _ PP N L '
S'&"’E at - mgﬂixidt = “Sj[hh‘i,h‘ e % flm%-’i] S)-{-j_ av at +
(g 50, (555 - %) avat

which reduces to

db _
Xa-%- dt = j%5h44,1+ Sy AV - fhlfiﬂk Syq AV +
+fhygay (Siy - Xyp) arjae .

Comparison with equation 4,25 shows that we now have

an additional term

It 1s easy to show that for circular motion

d_ . = 14
TEiFgar = 3 g jsij av

50, in that case, the extra term vanishes., In general
it does not cancel out and thus the radiation cannot be
found correctly by this method.

The force we have defined has a fourth component
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given by

£y = [fasp = E hagar]n vEVE

If the force f, is a proper four-vector, then we
wonld expect that f% also gives the negative of the
power radiated. It can Dbe shown that, over a time

average,

B, = - dfhag Sap AV - flagu,g - § Byge)%gg av

so that f} # fey. Nelther expression is equal to the
correct power radiated in general,

The results of this section are essentially of
a negative nature. No matter how one defines a force,
1t will have terms proportional only to Ty, Ty, and

T For the 4t and 4i components, we can let Ty =

ij
Sy and T4 = 5,44 but for the 1j components, the
stress contribution Xii is of the same order of mag-

nitude as the matter contribution Ti Since Xij is

j.
not localized at the masses, LU will never appear

explicitly in the force law, and therefore its contri-
bution to the energy radiation will not be included in

this type of caleulation,
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V. THE MOTICON OF TWO POINT MASSES

A. Imergy Radilation

Making use of the formalism developed in section
IV., we can now find the energy and angular momentum
radiation of a system of two point masses moving in
Keplerian orbits, This has been carried out, and the
energy radiation has been reported in a paper pub-
lished in the July 1, 1963 issue of the Physical
Review. Since essentially all of the features of the
energy radiation of two bound point masses are in-
cluded in the paper, this section will consist solely
of a reprint of the article, Equations and figures
in thig chapter will begin with those given in the
paper and continue consecutively throughout the re-

maining part of the chapter.
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Reprinted from Tue Puysicar Review, Vol 131, No. 1, 435-440, 1 July 1963
Printed in U. 8. A.

Gravitational Radiation from Point Masses in a Keplerian Orbit

P. C. PeTERS* AND ]. MATHEWS
California Institule of Technology, Pasadena, California
(Received 18 January 1963)

The gravitational radiation from two point masses going around each other under their mutual gravita-
tional influence is calculated. Two different methods are outlined ; one involves a multipole expansion of the
radiation field, while the other uses the inertia tensor of the source. The calculations apply for arbitrary
eccentricity of the relative orbit, but assume orbital velocities are small. The total rate, angular distribution,

and polarization of the radiated energy are discussed.

I. INTRODUCTION

HE linearized version of Einstein’s general theory
of relativity is strikingly similar to classical elec-
tromagnetism. In particular, one might expect masses
in arbitrary motion to radiate gravitational energy.
The question has been raised, however, whether the
energy so calculated has any physical meaning. We shall
not concern ourselves with this question here; we shall
take the point of view that the analogy with electro-
magnetic theory is a correct one, and energy is actually
radiated.

In Sec. I we outline briefly two methods which can
be used to calculate rates of emission of gravitational
energy from a system of masses on which no net external
force acts. Only enough details are presented to enable
them to be applied to other problems; derivations and
proofs are omitted. In Sec. III these methods are applied
to obtain the total rate of radiation by two point masses
going around each other in the familiar Kepler ellipse.
In Sec. IV we discuss the angular distribution and polar-
ization of the radiation,

II. GENERAL METHODS
A. Inertia Tensor

If one linearizes the equations of general relativity,
setting®*
Buv= 8yt khy,

with &%= 327G, one obtains
Dﬁuv= —%KTﬁlh (1)

hyw=hyu— %anvhh:

(| 6k | K1),

where

and T, is the total stress-momentum-energy tensor of
the source, including the gravitational field stresses.

* National Science Foundation Pre-Doctoral Fellow.

! See, for example, L. Infeld and J. Plebanski, Motion and
Relativity (Pergamon Press Inc., New York, 1960).

? L. Landau and K. Litshitz, The Classical Theory of Fields
(Addison-Wesley Publishing Company, Inc., Reading, Massachu-
setts, 1959), Chap. 11.

3R. P. Feynman, lectures, California Institute of Technology
(unpublished).

4 Greek letters run from 1 to 4; ab,=abs—a-b. Roman
letters run from 1 to 3; a;b;=a-b. The Kronecker delta §,, is +1
for y=p=4, —1 for u=w»=123. The d’Alembertian operator is
O =V.V,.=02/8—v? The phase of a plane wave is kv, =wi—k-x.
G is the usual gravitational constant =6.67X10™% cgs units.

The energy density in a plane wave

Ryw=h,= ae,, cos(wt—k-x)

U=}cwa? (2)

provided e,, is a unit polarization tensor, obeying the
conditions

Cuv= €y, €uu=0, kuen=0, eue,,=1

Just as in electromagnetic theory, we can work in a
gauge in which e,, is spacelike and transverse; thus, a
wave traveling in the z direction has two independent
polarizations possible:

1 1
e1=5(££—1757) 62=6(53!7+§£)-

One can now solve (1) for the radiation from a system
of masses undergoing arbitrary motions, and use (2) to
obtain the power radiated. The result,* assuming source
dimensions are small compared with the wavelength
(“quadrupole approximation”), is that the power
dP/dQ radiated into solid angle Q with polarization e,; is

P G [BQy \?
(~—e,»,»), @
ar

Q.  8mc®
where (;; is the tensor

Qij = Z aMaXaiXa i (4)

the sum running over all masses m, in our system. It is
to be noted that the result is independent of the kind
of stresses present.

If one sums (3) over the two allowed polarizations,
one obtains

(1’1) G [(1"0,] (PQ,‘,‘ 5 dKQ,J‘ (IKQU 1<(i3Q;;>2
S SxcL dp 4P dp " dP 2\ dp
lr  @Qu\' Qs dQu]
+-\ nan; )“I‘—”"j"k &)
2 de di dp

where # is the unit vector in the direction of radiation.
The total rate of radiation is obtained by integrating

435
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(5) over all directions of emission ; the result is
G (d:’fo Qi 1d%Qu (13@:’:‘)

Tse\dp dF 3 dP dp

(6)

B. Muliipole Expansion

The radiation %,,(x) can be decomposed into multi-
poles,® each with a definite total angular momentum
(J) and z component of angular momentum (3f). For
a given J and M, there are two independent types of
radiation, distinguished by their parity; we call them
“electric” and “magnetic” to emphasize the analogy
with electrumagnetic theory.

We analyze the source and field into Fourier com-
ponents, and treat each separately. If the source is

Tur=Re T“,c“““‘,

then the amplitudes of the electric and magnetic multi-
pole radiation are

o= —1';—‘” / P e (3) 7 (x), M

M= _MTW _[ Pxf ™ (x) :T(X)’ ®)

where 4:B means 4;B;;, and the fs3*™ are given in
reference 5. In the quadrupole approximation, the
dominant type of radiation is “magnetic quadrupole”;
in this limit, (8) with .” =2 becomes

ixw?
Mgy ==
1

/ Fx P (@P (), ©)

where
p= Reﬁeoﬂ'ut

is the mass density in the source.
The total power radiated is given in terms of the
multipole amplitudes (7), (8) by

P=%3 ol | esar|2+ !mJMP]'

III. TOTAL RADIATION

(10)

Let the masses m; and m, have coordinates (d; cosy,d;
sing) and (—d; cosyp, —ds siny) in the xy plane, as in
Fig. 1. The origin will be taken to be the center of mass,

so that
gy My
d1=( )d, d2‘=( )d.
1+, I

The simplest way to compute the power radiated is to
use the method of Sec. II A, above. The nonvanishing

°J. Mathews, J. Soc, Ind. Appl. Math, 1), 768 (1962). This
expansion into multipoles is not to be confused with general
multipole expansions usually given. See, for example, Gravitation,
on I'miroduction to Curreni Research, edited by Louis Witten
(John Wiley & Sons, Inc., New Vork, 1962), Chaps, 5 and 6,
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dp
/

my

F16. 1. Coordinate system used in calculation.

Q,‘j are
Qzz= pd® cosy,
Quy= ud? sinty,
Q2y=0y= pd® sing cosy,

where p is the reduced mass m s/ (my-+ms).
For Kepler motion, the orbit equation is®

a(l—e)
d=—" (12)
1€ cosy
while the angular velocity is given by
[GOmtma)a(l—e) ]
¥= - (13)

d?

Using (12) and (13), it is straightforward to calculate
the d?Q;,/df ; the results are

@30,y
fa =B(1+e cosy)?(2 sin2y+ 3e siny cosiy),
1
d(‘l
i = —B(1+e¢ cosy)?
a8
(14)
X[ 2 sin2¢+e sing (143 cosiy) ],
@0., d0,.
¢ = O = —f(1+4e cosy)?
dae df
X[ 2 cos2y—e cos (1—3 cosy) ),
where 3 is defined by
4G mPmgt (ma+my)
ab(1—e)®
The total power radiated is now given by (6);
8 G‘ "112"132 (m;+mz)
5 e e e (| g COSY )
154 ab(1—e)t (15)

X[12(1+e cosy)*-+e° sin®yp].

g is the semimajor axis and ¢ the eccentricity of our ellipse.
Note that we have chosen the x axis to be the direction of m; at
its closest approach to mg (periastron).
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In (15), ¢ is, of course, the refarded position of the sys-
tem. The average rate at which the system radiates
energy is obtained by averaging (15) over one period
of the elliptical motion; one obtains in this way

32 G4 m12Mz2 (m1+m2) 73 37
Uﬁz—-—-—-—-~(b&—&+~#> (16)
568 ad(1—e) 2496

Thus, the average power equals the power radiated
from a circular orbit of equal semimajor axis (or total
energy) times an enhancement factor

1-+(73/24)e*+ (37/906)e*
)= (73/24)e*+ (37/ )e. an
(1—e2y2

Figure 2 shows f(e) plotted against ¢. Note that
£(0.6)~10, 7(0.8)~10% f(0.9)~1(*. The power radi-
ated is a steeply rising function of the eccentricity e.
The same result follows from the method of Sec. II B,
but the formalism is rather different. We must evaluate
the may of Eq. (9). In terms of the Q;; defined by (4),

iw3/15 \I/ZM R o
KEE") (2o Upy22Usy),
v

M=

10V3
m;i1=0,
—ikaty 5 \M2
myg=———( ~——] (QztQu)-
“ 10%3(16r) "
10° b= =
10° - =
fle) a ]
0 = =
- -
1 —
0 10

F16. 2. “Enhancement factor” f(e) plotted against e.
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gin,e) —

Fi16. 3. g(n,e), the relative power radiated into the sth harmonic
fur €=0.2, 0.5, and 0.7.

The Fourier analysis of Kepler motion is well
known (to astronomers at least!), so we simply give
the results. The components of frequency 7wy, where
wo=[G(m+ma)/a* ] is the average angular velocity,
are

) g 15\ 2
Maye (ﬂ = ("—) MCLQ“
10V3\32x n

2
><{.fﬂ_z(ne)-—2a1n~1(ne>—k-ufn(ne>
n

(18)
+2eJ np1(ne) —J nya(ne)

F (L) T g (ne) —2J w(ne)+J ura(ne) ]y,

) ixw"( 5\ 24 (ne)
myg(n)= — ] wpat—J . (ne).
“ 1m61w) w

The power radiated in the nth harmonic is, from (10)
and (18),

32 G* ml’ma? (my-+ma)
Pn)=———————g(n,s), (19)
5 b a®

where

nt

g(n,e)= —-{ [J"_.z (ne)—2¢eS n1(ne)
32

92 2
=T n(ne)+2e ni1(ne) ~—],,+2(ne)—J
n
A+ (1—e)[ T n-2(ne)—2J n(ne)+J uya(ne) ¥
4
R ey
3n?

In Fig. 3, we plot g(n,e) against » for e=0.2, 0.5, and
0.7.
If (16) and (19) are to agree, we must have

14 (73/24)4 (37/96)e?
(1—e)” )

igwwxﬂd=

This is verified in the Appendix.
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That the radiation should depend so strongly on the
eccentricity is not surprising. As with electrogmagnetic
radiation, the power radiated increases for increasing
accelerations. Thus, the bodies will radiate most at
their closest approach, and for fixed energy the higher
the eccentricity, the higher the power radiated will be.
This also explains why the higher harmonics dominate
the radiation for e near 1; Fourier components of large
n must be present to give such a peaking of the radia-
tion at one part of the path.

IV. ANGULAR DISTRIBUTIONS AND
POLARIZATIONS

In this section we only use the method of Sec. ITA,
as it gives the answers directly without the need of sum-
ming over all harmonics.

Let us label the two polarizations

1 1
= (00— &), er=—(0¢+¢h), 2
e \/2_( &é), e 2( ¢+ 0) (21)

where 8 and ¢ are conventional polar coordinates. We

shall abbreviate the d*Q;;/df® of (14) by A, B, C:
£Q.. & EQu_ PO,
A, —2=p e (22)
dr de dr de

The power radiated into polarization 1 is obtained by
substituting (21) and (22) into (3); we omit the algebra
and quote the result:

aP G
(s (34224 B 3B4C?) (1 cos')
dQ 8mct

— 3 (A*+4-64B-+B*—4(*) cos

— 1 (A*— B (1—cos'0) cos2¢

—1C(A+B) (1—cos) sin2¢
4 (4 — B)*—4C*](14-cos)? cosde
+1C(A = B)Y(14cos')? sindg}.  (23)

The result of averaging (23) over one period of the
motion is

dP, 1 G‘ mimy® (my+ny) 99 51
<*‘~> o e [( -+t cf‘>
dQ ®  ab(1—et)T 2 64 25

935 47
X (14cos'®)+ <1 et —~c‘> cos*
32 128
13
+ ( _,(,,+ ) (1—cos'0) cos2¢

25
— e} (14 c08%0)* CUS%:!-
512

MATHEWS

The corresponding results for polarization 2 of (21)
are

dr, G
[4( 2 (A —B)?] cos®d
(/SZ Src

1
+—[4C?— (4 — B)*] cos¥ cosde
4

+C(B—A4) cos® sin4¢},

(24)

G mPmg® (e -+my)

(1”'(1 _82)7/2

97 49
X [(24‘—‘024“*04) cos’f
16 64

25
+——e! cos’0 cos4¢].
128

(l’l)g
<dsz> h

T c®

The total power radiated into both polarizations
may be obtained either by adding (23) and (24), or by
using (5) directly. The result is

> .
% = ;;:;‘ (%) (302424 B4+ 3B+ 4C2) (14 cos't)
+3 (A2~ 104 B+ B4 12C?) cos*
+1(B*— A4%) (1~ cos9) cos2¢
~3C (A4 B)(1 —cos¥) sin2¢
F16[ (4= B)*—4(*] sin¥ cosie

+1C(A—B) sin'9sindg).  (25)

The average of (25) aver the arhit i<

&
al

1 G mdmy? (my+m.)

P

a*(1—e)in

XA+ (99/64)e*+ (51/256)€ ] (1+cos')
+[3+(289/32)er+ (145/128)¢* ] cos'd

4+ (13/32)e2+ (1/16)e' J(1 — c08%9) cos2e

—(25/512)¢' sin'g costep).

The basic results of this section, Eqs. (23), (24), and
(25), are quite complicated. The quantities .1, B, and
are given by (22) and (14) as functions of ¢, the re-
tarded orientation of the line joining the mass pomnts.
We may extract some rather simple results from our
formulas, however.

For example, in the case of circulur motion (e= 0),
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the formulas become

dPy 16 mimgt (my+my)
e e T (1 cos¥)? $in2 ($— ),
dQ n a®
dPy 4 G mimet(my+ms
S cos’ cos?2(¢p—y),

dQ 7 b a®

dP 1G*  mimy(m,+m,)

e e T4 CONY0F S0 ST002 (4)"//)]
dQ 7 b at

The averages over the orbit are now quite trivially
done:

apr, 1G4 mlzmzz(ml‘f‘ml)
< > e (14-c08%)?,
27r c" a
dpr, 2 G* mi*ma? (my+my)
< > ———— 08%),
T 65
ar 1 G mi®mg? (mi+my)
< > e (146 COSY0- COSYE).
ds 2r 05 ad

Another aspect of Egs. (23) (25) is that thc total
power may be obtained by integrating over solid angle,
and the result for the total power should agree with
(15). Carrying out the integration over all directions, we
obtain

Pi=(G/120¢%) (11.42— 6.4 B+ 11 B+ 28C),
Py=(G/1206%) (54— 104 B+ 5 B4-20C*),
P= (2G/15¢%) (42— A B+ B2+3C?).

The corresponding averages over the elliptical orbit are

(26)

347

32 G miémt(mi-+ma) s 7 6R3
<P1>=~~~——————(— e‘*), @n

56 a(1—e)™ \12 384 1536

32G mlsz(ml—f—m?)/ 5 485 245
{(Py)=—— €+ ﬁ*) (28)

50 aS(l—e)™ \12 384 1536

It is straightforward to verify that (26), with 4, B, C
given by (22) and (14), agrees with our previous result
(15), and that the sum of (27) and (28) is just the value
{16) for (P) given earlier.
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APPENDIX

We now show that the sum over all harmonics # of
g(n,e) is the same as f(e), where g(n,e) is defined by
(70) and j(e) is given by (17).

We first reduce the right-hand side of Eq. (20) to
terms containing only [J.(ne) P, J. (ne)J.(ne), and
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[J4'(ne), by use of the recurrence relations and
Ressel’s equation. Prime denotes differentiation with
respect to the argument. This gives

VAV I 4N 2
HEC I

32 u e 13 n

O DR

T2 4Nt 27,0, 4
e {(5) - ame()
e

n €

gne)=

el

><<—4~—4>+3 7 } (A1)

A solution of the equation M = E—e¢ sinE for E(M e)
is given by the Fourier expansion

« sin(nM
EMe)=M~+2 3
n

(A7)

i

J a(ne).

=]

If we differentiate (A2) successively with respect to e,
we can form series with terms such as sin(nM)J,/,
sin(nM)nJ o, sin(nM)n2J ', and sin(nM)n*J .. We have
made use of Bessel’s equation to eliminate terms with
a higher than first derivative of J,.. If we multiply two
such series together, sa),

FE 19E7 4(1—¢) =
l:—-——}—* —} > Z sin(nM)
et e de 84 n=1 m=l

X sin(mM)nmJ ,(ne)J . (me),

and integrate both sides with respect to M from 0 to 2,
we get on the right-hand side

4(1—82)211' &
2 % (ne),
n==]

which is one of the expressions needed to sum (A1).
The integral on the left-hand side is straightforward.
The formulas obtained in this manner which are
necessary to sum (A1) are

o e ¢
2 #2 E (ne) = —— (1+~—),
nes0 4(1—e2)n 4

0 [ 3
2w, (ne)J . (ne)= -————-—~~< +3ez+—e“>,
a(1 8

n==l) e~)9/2

Z w[J,) (ne)]2~

n=0

62)“/2

39 79 45
X ( 1 +-—62+~~e4+w~(35>, (A3)
4 8 04
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5 " , 1 1+382 series (Al) yields
,Ef[’WMU‘g@_ng 7 ) 73 37
14— —et
24 96

- 37 594 275 }Eg(ne)—
47 2 [ SO JR— — g B =TT T,
g"how qyﬁwiHﬁf+sw%f) =l (1—e)e
Substitution of (A3) into the sum of the reduced which is the same as /(e) as calculated in (17).
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B. Angular Momentum Radiation

The angular momentum radiation of the system of
two polint masses may be found 1in the same manner as
the energy radiation. The angular distribution of the
i-component of angular momentum radiated has been

found to be

dzLi - G " ase
Tan - Om €ijk[6 By Ap Qe Qpp -

- 9 ny oy ny Ny @mk qu + (5.29)
+ 4 ong ooy O Qp] -

The total i-component of angular momentum radiated is

the integral over angles of equation 5.29:

dL. 2G .. v
- = - % Cijk Qmj Omk - (5.30)

Keeping the same notation and conventions as in the

paper, we have that

Qyx - fcos(2¥) + e cos3(Y) ]

éyy +k [cos(2V) + e cos(Y) [1 + cos?(¥)] + eZJ

ny = Qxy = -d*%in(ZV) + e sinCW)(1 + coszCWﬂ]
(5.31)

1

where X is defined by

2Gmqmo

A =
a(i«eé)
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The formulae for Q;4 are given in equation 5.14%.
We can find the total x, y, and z components
of the angular momentum radiated from equations 5.30,

5.14%, and 5.31. This gives

aL, . dly _
T T oary T
a, _ _8a’/?

2.2 +
dt _ _5, m1 m2 (m1+m2>‘2 {(1 + e COS-\I]}.?)X

yE(1+~eco§W)2+ (1 —egﬂ}

The average angular momentum radlated over one period
of the motion is then found to be
7/2, 2
ax” a7/2(1 - 82)2 B

Thus the average angular momentum radiated over one

perlod can be expressed as the product of the angular
momentum radiated by a circular orbit of the same semi-
major axis (or energy) times an enhancement factor
k(e), where k(e) is

(1 + 4 e2)

k(e) = 8 . (5.33)
(1 - 62)2

k(e) is plotted against e in Figure 4. The enhance-
ment factor for the angular momentum radiation is not
as steeply rising as the enhancement factor for the
energy radiation,

The angular distributions can also be found from
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Figure 4. Hnhancement factors, k(e) and f(e),
plotted against e.
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equation 5.29., Let éxx = a, Q = b, and éxy = c.

Then Qxx = a, Q;y = b, and Qxy ¢. The angular momen-—
tum radiation distribution is given by
d°L G . . .
T35 = - o cos@ sin®@ | cos® (Abe + 10ca + Leb) +

+ sin @ (6cé + 10bb + #béi]— 2 cosO sin39[écs3@ (ca -
- 2b¢ - cB) + cos® (3ca + 2bé + cb) + sing (3bb + ba +
+ 2¢é) - sin3@p(bb - ba - ZCéX{}

asL. . _ G . ) . .
Fah = * B 4cosO sin® [cosq)(écc + 1023 + Lab) +

. . Q v

+ sin@ (6aé + 10ch + kca)| - £ cos® sin30[cos3p (ad -
- 2¢é - ab) + cos¢ (3ad + 2¢c& + ab) + sin@® (3cb + cd +
+ 2adé) - sin3¢ (c¢bh - ca - Zaé)]}

d°L

Edo
+ sin2@ (5bb = 5aza + 2ba - 2ab) + cos2® (7cd + Teb +

_ G _ 2 .-.. -"
=+ g {(1 cos“O) [3(ca ac + bc ch) +

+ 3be + 3aéi] - 9(1 - cos? )2[:% cosh (2ca - 2bé -

- 2e¢b + 2aé) + 4cos2Q (cad + cb) + % (2ca + 2bc - 2¢cb -
- 2ac) + + sin2¢ (bb - aa + ba - ab) + % sint® (ba +

+ ab + Ye¢ - aa - bbii} . (5.34)

This of course gives equation 5.30 when integrated
over solid angle. The time averages of the products of

a, by c, and a, b, c, are

by = -<pey = Y[ + 12 e2]



Caty = =<2y = Y[t + 1% e?]

H
/\
oy
QJ.
N
]
S
L
o
vV
I

{bb Yy = {ee> =0 |,

where 0 is

¥ - ugo/ 2 my mge(m.i + mg)%
- 8.7/2(1 - 92)2 ¢

Thus the time average of the angular distribution of

the angular momentum radiation is

2
%E.%A_EI> = g-,g, {12 cos® sinO cos@P (1 +

+ 2 cos@sin39[g ezcosgcp -

- % cosp (1 + 23 egﬂ}
<d2L¥L> = g.,[—{ {12 cos @ sin® sin® (1 + JT% e?) +

e?) +

wino

dtd

+ g cos 9sin36[g 9251n3(p -
-4 sing (1 + %_% 62)]}

353’9 = - %’%{3“ + 20526 - 3cosTE )(1 + § €2) +
+ % 620032({) - % e2cosO cos2Q +

+ 151% e? cosbrg cosZQD} . (5.35)

The integral over angles reduces to equation 5.32.

These equations appear to be similar to those
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of the energy radiation case. However, as we shall see
in the next section, they give different information
about the deccay of the system, and they allow us to

get both the decay of the semi-major axis and the decay

of the eccentricity.

C. Changes in the Elements of the Crbit

The results of the previous two sections can be
applied to find the secular change in the elements
of the relative orbit due to gravitational radiation.

Ihe equation of the relative orbit of the motion is

a (1 = e2)
1 + e cos(¥Y-Y,)

(5.36)

s =

If the plane of the motion 1s specified, then there are
three parameters necessary to describe the orbit: a, e,
and Y5 . In the Newtonian theory they are constants

of the motion. In the complete gravity theory they
will be functions of time which will be slowly varying
in the non-relativistic limit. The variation of Y,
occurs in order (v/c)2 and is the well known perihelion
precession, Although this has been calculated for the
case of two arbitrary masses from the equations of
motion, we will show in the next section how it can
also be derived from a consideration of the energy and

angular momentum conservation laws.
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The parameters a and e are related to E and L
through the following equations:

Gmqm
. oo .

2. mTmt L) . (5.38)
mq + o

We have found that the change in B and L 1s of the order
(v/c)s and that this change is a result of the radia-
tion of energy and angular momentum by gravitational
waves. BEguations 5.37 and 5.38 therefore imply that

the secular change in a and e will also be of order

(v/c)s. Starting with the basic time averages for
.l dL
(g7 ana (s

"

dE\ - _ 32 G'm 7y (my+ mp) 2 b
<dt %‘ RSV (1 + %i& ec + %% e’) (5.39)

7/2 o o 5
2 G m, mac(m, + ma )%
aLy - _ 3; 172 71 727 (1 4+ 4 (5.%0)
<dt a7/2(1 _ 62)2 % e ? 5
we can find <—g—% and <%—%> .
da\ _ 6k G3mqmp (mq + 1) 2 . 37 Mk
3
de - i@"% G M1m2(m1+ mg) 194 0.
dt 1 © a)_}.(_! _ 62)5/2 1+ 3023 e”) . (5.“’2)

From equations 5.41 and 5.42, we can then get <%—2->,
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which relates the changes in a to the changes in e:
g g

da> _1_2_2._[(1 + 4 e® + 4 Lr)} (5.143)

1 -
(1 - e (1 + 15

If we change from a to the peried v , we get

(Er=25(8 . (5.44)

Consider now the decay of a system of two masses
moving under their own mutual gravitational attraction
in elliptical orbits., If the elements of the orbit
at time t = 0 are a, and e,, then the above equations
speclly a aund ¢ at a later tlme t, assuming that the
only decay process acting is gravitational radiation,

In particular, the case of circular motion can be

integrated directly to give a(t). Lot

B = %%G3m1m2(m1+ m,) .
Then if e = O,
@ __p
at a3 ?
which gives
I
a = \/ao - l‘;‘ﬁ t ® (50)'%'5)

This predicts that the system will collapse in a finite

time T given by



T = 5p - (5.46)
Thus if there are two systems, one with a, = A, and
the other with a_ = (10)7'4
L

o9 Tthen the second will

collapse in a time 107" times that of the first. Most
of the time of the collapse of the orbit is therefore

spent near a ¥ a If we consider now an elliptical

OO
orbit, then the only effective modification of the
time will be for e ¥ e,. Thus we can write the time

of collapse for e # O as
Iy

a
T = S
F51(50) (5.47)
where f(eO) is the enhancement factor which is plotted
in figure k4,
Iquation 5.43 can be integrated to get a(e) during
the collapse of a system. The integration is tedious

bual slralghl forward. a(e) 1s then found to be

12/19 _870
= Cg © 121 2| 2299
> (? - e2) {5 T 30n © ] ’ (5.148)

where ¢, is determined by the initial conditions a = ao

when e = ey. a is plotted against e in Figure 5.

For small e, this reduces to

e12/1‘9

a = cgq ) el & 1,
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and for e near 1 this becomes

a =2~ , (1-ed)« 1,

where 870
5209 _

Thus for all practical purposes we can neglect the
hideous factor and just coneider that a(c) is given

by
o J1e/1¢

ale) = . (5.49)
(1 - e2)

With equations 5.42 and 5.48 we can write the
equation giving the time decay of an eccentric systen
exactly. Since as a —» 0, e = 0, %% may be considered

rather than 9% o

-67/19 _ .2y3/2
=_%g..§1@ ( 81381 (5.50)

o [1 +33_§%e2]§§'9-§

QJ{QA
@

This could, in principle, be integrated to give T, the

time of collapse. If e is near 1, then

de (1 - e?)3/?
dt CE 9
o}
so that the time T is proportional to
L
T o —S0 = ag (1 - 63)7/2 R

(1 - e2)%
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which we can also obtain from equation 5.47 for e
near 1.

When these results are applied to a physical
system, 1t becomes apparent that gravitational radia-
tion isindeed a small effect. The formalism developed
here lends itself to finding the radiation from one
physical system which may be the system in which effects
of the radiation are most easily observed. This is
the case of close binary stars. Of course, binary
stars are not point masses. They have finite exten-
sion and exert tidal forces on each other. In general
they will be deformed and mass flow might even occur in
them. Other radiation processes are also certain to
be actlng. With all of these reservatlons in mind,
let us see what contribution gravitational radiation
might give in the decay of double stars.

One result we could predict is that a plot of
In Tvs. In e for the decay of a single binary star
should have a slope of 18/19 for small e, Unfortunately,
secular changes in the orbit of binary sfars have not
been observed because they are so small., We would
have to rely on a statistical average over binary stars.
Ait}«:en(” has compiled such an average and gives average

T vs. average e for spectroscopic binarles. He gets

'R, Aitken, The Binary Stars (U. of Calif., 1918)
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T (days) 2.7 7.6 14.1 30.6 102.5
e oLt .16 22 35 .31

The two points with the lowest eccentricity give a
slope of In T vs, In e of 1.03. WNo real meaning
for the effect of gravitational radiation can be
obtained from this, however, since the lifetime of
decay of even a 2.7 day binary star due to gravitational
radiation is longer than the estimated age of the
universe. We can see that the stars will have essen-
tially zero eccentricity by the time, if ever, that
gravitational radiation becomes an important energy
loss mechanism. Thus we will concern ourselves only
wilhi the zero eccentricity case.

For purposes of computation, we can rewrite

equation 5.46 for the lifetime of a double star as

Lo L
- 6.35 x 10" a
T mqmy (1 + m,) (5.51)
1
e w—
T o= 4,69 x 10 OBt mp)3 (5.52)
ma;mg

where m, and m, are given in solar masses, T in days,
. . 10 . .
a in units of 10 “em., and T in years. a is related

to T through the numerical conversion

3,96 x 10—5 a3

Z _
T = my + Mo .
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In figure 6, T is plotted against v for the casd

my =m, = 1. The radius of the sun is ~ 101lcn,

This means that two suns revolving around each other
separated by 10 solar radii would have a period of
4,5 days and hence a lifetime by gravitational radia-

tion of 3 x 1012

vears. We ecan get a shorter 1ife-
time if we consider the case of two white dwarfs
rotating around each other. Since white dwarfs have
2 radius ~ 10° Ciie s then the period corresponding to
10 radii would be ,004%5 days, and the lifetime would
be 3 x 10hr years., ‘'I'he most extreme case we could
have would be the case in which they are just touching,
in which case the lifetime becomes just 50 years. Lx-
perimentally, the closest one has come to finding bi-
nary stars for which the effects of gravitational
radiation might be verified is in a 7 = 0.057 day
binary reported by Kraft, Mathews, and Greenstein(2>.
Even here the lifetime 1s at least 106 YEears.

Cne can show that the radiation and thus the
lifetime does not depend on whether the stars are
point masses or are spherically symmetric bodies pro-

viding there 1s no overlap. Close binaries are cer-

tainly deformed. If the deformation is symmetric

°g. Kraft, J. Mathews, and J. L. Greenstein,
Astrophys. J. 136, 312 (1962).
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about the line joining the centers of the two stars,

1

then

mxls:‘u
o

2 & 2
- %T G wi(I, - I,) y

where I, = I,y and I, = Iyy when one axls 1s taken
along the line joining the masses, Even 1f the defor-
mation were great, it is doubtful whether it would
affect the order of magnitude of the radiation cal-
culated here by very much.

The energy and angular momentum radiated can
also be found for unbound systems providing that the
velocities are much smaller than the veloclty of light.
For e 2 1, it is inconvenient to use the formulae
developed as they stand. Since the orbits will not
now be periodic, let us calculate the energy loss AE

for one pass. For parabolic motion, e = 1, we get

__’Z___’IT G7m1 911: P

AE
(g + mp)3L7

7 (5053)

where L is the relative angular momentum of the masses.
If we express this in terms of the closest distance of

approach of the masses, b, we get

_ gz 07/

B = mq +m ,lf
A 12 T (_mng_;a) (5.5%)

For hyperbolic motion, e > 1, we get
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7. 9. 9 X
] g8 G L )
B = w =
D 15 (m1+ m2)3L7{1é}1 + e cos¥Y )< x

2

X [12(1 + e cosV)e + e Sinzﬁé}dV’ s (5e54)

where < is determined from the eguation cosx = - 1/e,
These results are valld only for small velocities;
however, we can formally take the limit as e—> o and
get the energy loss from a mass which is not appreciably

deflected in its transit. This gives

o]
- 3;7’“’ G7m1 /1112984 3 1L487T G3m1 3m23E2

i = e -

(mq+ m2)3L7 - 15 . (5.56)

(mq+ mg) L3

Let us asggume that m2>> m,I . Then we can expresgs this
in simple form, using the distance of closest approach,
by

3 3/2. 2 (omE
G”m m (28)
_ 37T 1 2
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D. Perihelion Advance for Arbitrary Masses

The advance of the perihelion of the elliptical
path of a small mass going around a large mass is a
standard problem in the general theory of relativity.
The solution is usually found from a consideration of
the equation for the geodesic path. When the masses
are arbitrary and nelther one can be considered fixed,
this method breaks down. Indeed, it becomes concep-
tually very difficult to wvisuvalize the geometric
meaning of the geodesic path in this case.

In 1933, Einstein, Infeld, and Horfuan3) solvea
the two body problem in general relativity and
Robertson<4) applied the results to find the perihelion
shift for the case of arbltrary masses. A discussion
of these melbthods 1s found in the book by Infeld and
Plebanski<5). Independently Fock also solved this
problems; the results can be seen most easlily in his

L (6)

beco . Both of these methods are successive approxi-

mation methods, where quantities are expanded in powers

3h. Einstein, L. Infeld, and B. Hoffman, Ann.
Math. 39, 66 (1938).
HH. P. Robertson, Ann. Math. 39, 101 (1938).

L. Infeld and J. Plebanski, Motion and Relativity
(Pergamon Press, 1960), Chap. V.

v, Fock, The Theory of Space, Time and Gravi-
tation (Pergamon Press, 1959), Chap. VI,
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of 1/c2, Starting from the field equations and the
covariant divergence condition on the stress-energy
tensor, they find a Lagrangian from which the energy
momentum and angular momentum integrals can be found

to order 1/¢2, The derivation is lengthy in both cases,
and the physics is obscured (for the author, at least)
long before practical results are obtained.

Since the perturbations on the equation of the
path of the two bodies can be found from a considera-
tion of the energy and angular momentum integrals (see
below), it would be desirable to find the answer in a
more direct way than through the intermediary Lagran-
gian. The method given below 1s based merely on the
conservation laws of energy and angular momentum. In
addition, the coordinate conditions used here are
different from those used by Infeld or Fock, and there
will be some check as to the consistency of choosing
different coordinate conditions,

Non-relativistically, if we know the energy
and angular momentum integrals of the two masses moving
around each other, we can find the equation of the

path. Since the energy is given by
1

E =% mqvf + % m1v$ - Gmym,/r = %/AVZ - CGmymy/1,(5.57)

and Lhe angular momentum and angular velocity are given



~117=-

by
1,;M32é s h = 20 ’ (5.58)

1

M = mz! + m2 9 (5- 59)
we get

E = %}4[52 + r292] - Gm1m2/r .
Letting u = 1/r, E becomes

E = %/M-hz e ugj - Cm,m.u

172
Then we take a_ and divide b hgu‘ where ' = a_
A dao J A 9 ae
to get
u'' +u = GM/h2 . (5.60)

This is the differential equation for the elliptical
path. Its solution is, of course,
- GM 6
u = 2 (1 + e cos(@-6)) , (5.61)
P =1 2y-1

where GM/h® can be replaced by a~'(1 - e=)™',

If now instead of the simple expressions for E
and L we had expressions with terms of higher order,
we would get for equation 5.60 by this method an equa-

tion of the form

u'' +u = GM/hZ + pert.
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If all of the perturbations are of the same order,
then we can just substltutetheunperturbed solution,
equation 5.61, into the perturbations and gel an equa-

tion of the form
ul't +u o= GM/hZ + £(O).

The effect of the £(©) on the equation of the path
can be found and the perihelion advance per revoiution
can be evaluated,

What remains then is the determination of the
next order terms in the energy and angular momentum
integrals. We know that energy and angular momentum
are radiated starting with order 1/c5. Since we will
be concerned only with terms of order 1/’c2, the energy
and angular momentum integrals can be considered to
be constants of the motion.,

Conservation of energy can be stated in the form

d (bl b -

a.gf[T +¥ar =0 (5.62)
. d (el . .
where 3T X 'dV is found to be given by

%53,{41@\/’ = j[hdhvﬂ %o"B -

so that equation 5.62 can be written

D

Nog o)y T"‘ﬂ]dv , (5.63)

%j[gw ﬁ?'ml*]dv = % Yhalgm T ar . (5.6M4)
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This form could also have been obtained from the condi-
tion that the covariant divergence of T must vanish,
We work with equation 5,64 rather than equation 5,62

(3> as well as X(Z)

since equation 5.62 involves X R

and’Xiﬁ) would have to be found to second order in 1/c.
The object 1s then to convert the right side of equa-
tion 5.64% into a time derivative of some quantity

(to second order), and then this quantity can only
differ from ﬁﬁq by either a constant or some quantity
of higher than second order. The whole quantity whose
Time derivative vanishes will then be the energy of

the system and will be used instead of equation 5.57.

E will have terms of order cg, co, and ¢™°., That
of order c¢? will be just the sum of the masses, which
will be constant; that of order ¢O will be the terms
given in egquation 5.57. In evaluating the terms of

-2

ordecr ¢ s Wwe see that we can use the solutions of the

classical problem, since the errors made will only be

of order 0“4

s and we are neglecting these.
Writing the right side of equation 5.6L4 out

explicitly yields

%—-ﬂgw [k Jav = Jhwm’f tay +jh)+ ,LPTL‘leV +
¥ yhij,ﬁijdv : (5.65)

The second term of the right side of equation 5,65 can
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be immediately converted to a time derivative which

can then be brought over to the left hand side.

~l _5 . -
4
2hishd .
. T T — 1 d "’Li'l
= {(av ave T chapmyg Tav .

Let ¢ = hgq = h$1 = hgg = h§3 = -2Gm/r , where °© means

the lowest order part. Then the last term on the right

side of equation 5.65 gives
il ~

v2 I “3

= - Gﬂ1m2v§ LeYo T -3 + Gm I,V

= ngVZ‘Eé% - —“(G v2/r) + 2@;Av v/r.

Since ¥ = -(GM/r3) r to lowest order, the last term
gives
- 2G2m1m2/4£.x/r4 = %? (G2m1m2/A/r2) .

These terms can likewise be taken to the left hand side.

The only remaining term, 4_Yhu4,4 )h av , is
difficult to work with as it stands because of the tine
derivative appearing on the h&%‘ It turns out to be
more convenient to work with spatlal derilvatives. To
do this we subtract from both sides of eguation 5.65

g R

the quantity dt2-h4% 7 s and then taking the

previocusly determined timc derivotives all to the left
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side, we get

o [ -

b
- G2m1m2/»‘/1"2}= - %jm.rg »1, AV

M]—§" ~
T - 3 ) B ar + gudver -

20}

i

-F%ﬁmgﬁhqwﬁ%e—

- % n%ﬁ,;§Qﬂ)dv + %jﬁugﬁhi,idv = %jh@@h@q,yﬁhndv +
Nl_ - ~ .
+ @Lyhlwinm lav - é—fh,_m,if*ldv . (5.66)

Here we have used conservation of energy (covariant
divergence) to reduce %4474 to spatial derivatives
and terms of order 1/c2. Evaluating the first two

terms on the right side of equation 5.66 gives

~ 2 2 1 > 9 )
T f<P<P,4TL*L* av. = % HGTmqms reys | 1 kG m‘?‘mg_ Le¥y
r I‘3 r rj%

= - 2G2m1m2/A;-y/r4 = %g (CPmqmptt/72)

P o0, v = & @Rued b))

i
We now have to convert the last term, —%Sﬁq@,iT‘ldﬂ
into a time derivative and the work will be done, In
order to do this, we need the expressiocn for hy,, to
L

order 1/c¢’, The exact expression for huq is given

by the integral

hyy, = - Lo [572 - E'F] av? . (5.67)

The retarded quantity can be expanded in powers of 1/c
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to give (to the desired order)

. L 4 Ry FEp, + %)
hbrl% _ , ‘;: . ;', avt -
2
-G ;;2 J:T#%lﬁ -xrYavt . (5.68)

Consider the first term on the right side of equation
5.68. This is, to lowest order, ¢ , which is of order

=2

. Thus we need an expansion of ﬁh# + Tl o4 §LH +
¥ . . ~l R
+ X5 to higher order in 1/c. If we break up 4 into

T (mass) and Tga(stress), we have that
T LF(mass) + = e 4 % mve

The expression for Thn(stress) + h#h T'le can be Tound

2(2)

from the lowest order approximation to X, . Skipping

the details of this, we get

ATJM(St:{‘eSS) + i@q + '}\zj_‘ = 32@(}[ +cP'):qutl + 6¢¢’ii] *

Substituting these in the first term of equation 5.68

gives
¢ ¢ Grove
g, = 9 39 - ge) B ?rm%viz. :
(a)  (B) (C) (D)

The evaluation of the second term is straight forward.
adding these two terms then gives h)+L1L correct to order

T/GL’. This rcoult is

’nhr)_;r = (L) + (B) + (C) + (D) +
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G 2By Onp(geyp)”
iz - zol Iz - o2

(%) (F)

. (5.69)

We label the terms and work with each individually.

~lg . .
(A) %51'1)!)1,1'}? av = Gm1m2(%1~ %‘%2> = - %’E Gm1m2/z’

(B) ~2Ggm%mqggg1r"h+2G2m2m$ggzzr‘” = %? G%M(m$ + mg)/r2

) - Odyiilxi- xi]

d
16T 13-5'13

- 2,25yl
AVlmivy = Fx GuM/r .

D, B, and F can be written as time derivatives in the

same manner. Only the result will be quoted.
(D) + (E) + (F) = %% {% Qp@Qg-E)z/r3 -2 Q/fv2/r +
2
+ %Gm,{mg,u/r } .
We also have the terms coming from the expansion of

Ay
T taken with the lowest order hhh’i:

1 2_ _ d 1 G 34 m ) ve
F oy nvs Bve- @) = a%[ 2 ﬁéﬁ ™ 2 Tt

+ % Cmd + M2 -} cRumf + m§>/x~2] .

One thing remains to be done. We have expressed
all of the terms on the right side of cquation 5,66 as
pure time derivatives. Thus we can write equation 5.66

in the form of an energy conservation,




B e

aofe

& SE?EL%M ok T 4

i d{_, ‘
. hqiT Yav + = Gm1m2/r +

1

+ + G/Az(,:g_-l?’)g/r?’ - G/ULZV?'/I' - 5 :Q;«Q_A_(m%%m%)%?}* O.(5 70)
i\,‘ ®

To calculate explicitly the terms ﬁ%%’ hhgﬁuq

¥

and
huiﬁqi, we must use the eguation for the stress-energy
tensor in terms of the velocities and potentials. This
was given in equation 3.,3%. To the desired order we
then get

jﬁ%%dv = m[1 +3v2 -3 by, =y vy - 3pve +

+%vh—%vg¢+%¢2] .
This can then be used in equation 5.70 to eliminate
all of the terms within the integral, converting them
to pure time derivatives. One must also use the expan-
sion of hyy, given by equation 5,68, When all of this
is done and carried out, one gets the energy conser-
vation law

/7

Qv [% move + mfvg + % m,v& + é zpv% - GImaln
2 2 O e

at L“ B < 1 C a2

+ 3 CoymW/r? + 3 GuPpp/ed ¢+ (501

l\.’)}r—s

2 2
+ % Gu(my + m3)ve/Mr + % cMi2/r } =0 .

The guantity in the brackets i1s then the energy of the

system, It is found to be equivalent to that found
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by Fock.

The calculation of the angular momentum integral
is done in the same manner as the energy integral.
The details are, however, much easler to do. We can
write angular momentum conservation in the same form

as equation 5.64,

o G -
a‘%ﬁxi Tyh -xy Ty Jav =
(5.72)

If we write out explicitly the terms in the right side
of equation 5.72, we find that there can only be a
contribution from hy,,, and of the terms in hhh only
the last one in equation 5.69 gives a contribution.

This gives the term
9 Gulr=T (vixs - Vixg)
at M 1% ¥/

As 1n the energy radilation case, we must expand
the left side of equation 5.72. When this is carried
out one can write the angular momentum conservation
in the form

%% {)A(Xivj - vai)[T + %(m? + mg)vz/m3 +
(5.73)
2 24 jus
+ 3G (my + m5)/Mr + 7Q%Vr] =0 .
The quantity in the brackets is then the angular momen-

tum of the system. This is also equivalent to that
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found by Fock.

Although Fock proceeds to solve these eguations
to glve the perlhellon advance, the author feels that
a different method, analogous tc the solution of the
non-relativistic equations, is easlier to understand.
If we now use the transformation u = 1/r on thc energy
and angular momentum integrals, we get from equations
5.71 and 5.73

o= JM(rP®2(u'? + u°) + %J‘m%+ m% O
- Gmymou + % Ggm1m2Mu2 + 4 Q}thu(u’)g +

2
g+
+ % Q}tﬁg 7 2 hQu(u‘2 + ug) +

+ % 9/12h2u(u'2 + 1)
(5.74%)

"3
_ 2¢ __m%'*‘mz 2, 42 )
L = m(r 9)[ 1 + 3 __mﬂg__ h=(u'c + uv<) +

2 2
mny +m
F‘1
+3u_..___T__..2.u +‘7G/u.u’ o

From 1. we can solve for (rgé) and substitute this into

the expression for E. In second order we consider that

L is approximately /ur1é , walch can then be considered
N

constant since errors made will be of order 1/¢’.

Then combining terms, we get for /4E/L2

ME/LZ = 2+ w?) - g nPmd w3 w2 + u2)?
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- G ¥ u/h® - % oM u(u'® + v?) - % Q/xu3 +

>
T (5.75)

We now differentiate equation 5.75 with respect to &
and then divide by u'. If we then substitute the
classical solution into the perturbation terms and

expand the terms in a series of cos(n®), we get

u't +u = GM/h° + A+ A10059 + A,cos26

where A1 is given by

A, = 6 ¢3 Me/nt .

It is easy to show that one~-half the coefficlent of the
cos@ term 1s the perihelion shift per unit angle
times GMe/hz. Thus our result is that the perihelion
shift is given by

AS, 36 _3c6H
& - 2(1 — a2y o (5.76)

where M = my + m,. This result agrees with the cal-
culation done in the 1limit that one mass is much
larger then theother, and also agrees with the calcu-

lations done by Fock and Infeld.



VI, RADIATION

RELATIVISTIC LIMLY

A, BElectromagnellc RBadlalbion

Before calculating the gravitational radiation
in the relativistic limit, 1t is worthwhile reviewing
the different results of the electromagnetic case
since the same methods can be applied to the gravi-
tational case., The analogy is not complete, however,
since in the case of gravity, the contributions from
the stresses must also be taken into account,

Let us first consider the radiation due to a
single charge acting on 1ltself. It has been noted
before that the self radiation reaction force is given
by
R, = 3 e vy (6.1)

in a system where the charge is at rest momentarily.
Transforming this force to a system where the charge
has arbitrary velocity yields the relativistically

correct radiation reaction force

By = '32' e g Vi3 T/ - vE)
PR N V.V + 3(X-j)2/(1 - vg}]?g . (6.2)
] - ve L™
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Thus in an arbitrary motion of the charge, the in-
stantaneous power loss can be found by calculating
R-v. As pointed out before, this does not have to
agree at all times with other methods of calculation,
but need only agree over a time average.
One could also find the energy loss by calcu-

lating the Poynting flux through a large sphere sur-
rounding the charge. The angular distribution of the

radiation is then found to be

2
?r 2 B{rx [@-w xil}

L2 o (6.3)
datda LAy (R - 3.3)6

in general, and

2 2 - R
d“E e v- 8in“O .
S = X (6.1)
atdn b (1 - v cos@)6 ?
d°R - ez,vz (1-v_c050)2=(1-v=)5in’0 cosaP (6.9)
dtdn. = T Iar (1 - v 0039)6 ) e
yily .

At this point one usually converts the rate with res-
pect to t to a rate with respect to the retarded time

t!' of the electron, where t' is given by
t' = t - |R - z(enl ,

where R 1s the radius vector to the observing point,
and r 1s the vector position of the charge at the

retarded time. The reason for this is that the guan=-
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tities on the right side of equations 6,.,3-5 are explicit
functions of @, @, and ¢', not t. Thus if we wanted
to find the total radiation emitted in a finlite time

T, we would calculate

T+ IR-xl|
25 5
E o dt - (a2m .
gatcmdt ﬁltcm grdt’ = ydt"a'n' att .
o+ iR-x| O

The last 1ntegral is easily done when the motion is
specified because the parameters will be explicit
functions of t'., Also we want to find the total rate
of emission of energy as the integral over solid angle.
We could not integrate equations 6.3-5 as they now
stand over all angles to find %% since v and v are
functions of t', which is a function of ©, @, and t.
Thus the right hand side is not an explicit function
of t. However if we consider t!' as independent and
calculate jgi?dn.dﬂ“’ we can explicitly evaluate the

integrals and get

dE 2 e - 1)<
Tt - -3 e? v<1 (iéfé in generaly (6.6)
- . D

g’—% oo, ?7. 2 v e

dat! 3 © (4 - V2)3 7}1“X 3 (6‘7)
a8 _ 2 o e .

akr =73 , ¥LI . (6.8)

It is easy to show that 5%%,dt' = gggy dt' by a

simple integration by parts.
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In the case of more than one charge, we alsd have
Lo Lueke 1nto account the effects of the Lorentz force
onn one charge due to the fields produced by the others.
For our considerations here, we will investigate a
system of two charges moving in a circular orbit. Let
us also assume that they have the same megnitude of
charge, but that they may differ in sign. Using the
standard L.W. polentizls for a moving charge, one can
find the relativistically correct force exerted on
one charge by the other. If the charges are in opposite
positions on the circular vrbil, then @ 1s defined to
be the angle between the lines joining the center of
the orblt with the present position of one of the
particles and ils positlion at the time t - r/c (see
Figure 7). Since a® = r v, the scalar product of the
force on one particle due to the other times the velo-
cily 1s given as a function of @ :

; 2 3
A};p'l:n‘i:.‘E - &~ aw
(1 + v sin}

-3inl ©
9)392 [k 3ink® + awcos®x

x(1 - v2) + + aBwsin® + azewzcos—é—QJ , (6.9)

where @ relates r and v through the lmplicit equations
(£/a)°
(r/a) = O/v

The total force acting on one of the charges i1s the

2(1 + cos@)
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RE TARDED
<y POSITION

Flgure 7. Diagram showing the parameters related
to the retarded position,
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sum of the radiation reaction force and the inter-
actlon force. We can see that in the extreme rela=-
tivistic 1imit the interaction force can be neglected
compared to the radiation reaction force. In the non-
relativistic limit the two forces become comparable.

In particular, taking the low velocity limit, we get
Ry =-%e2%2

Since O7= 2 v2(1 + cos@), in the first approximation
© = 2 v, and in the second approximation @= 2 v - v3,
Then

piit y = % e2w? v2 = I % 2 2 . (6.10)

Thus the forces are equal (to order (v/c)3) if the
charges are of opposite sign and they cancel (to order
(V/C)3) i the charges are of the same sign. In the
latter case, one would have to continue the expansion
to order (v/c)5 to get the first non-vanishing contri-
butions. These results are, of course, to be expected,
The first case 1s a case of a dipole source and the
second 1is a case of a guadrupole source, In gravity
we have an analogous situation except that all masses
have the same sign and thus no dipole radiation is
possible,

For non=-circular motion, the results are similar.
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The condition that the interaction force be much ’

smaller than the self force is that
(R = 2l = 3. - 2(t") DK (1 = v,

which 1s in general true for relativistic motion. Thus
in the extreme relativistic case the particles radiate
independently with negligible correlation effects.

This can also be seen by looking at the Poynting
flux emitted by a system of charges. As is well known,
the radiation fields are large only near the direction
of motion of the charge at the retarded time. Thus

if one of the charges 1s moving toward the observer

and the other away, we get a contribution to %% of
dE  _ £(vq 974 50,0) g(V19%19V25%299JD)
b 6" 3 37
(1 -~ vqycosd) (1 - vqeco080)2(1 + vpcosO)
h(v,,v,,0,0)
290
- —= s, (6.11)
(1 = v5co0s0)
where [vil = vy ¥q = ¥q(tq') and y, = Xo(tst).

The integration over angles cannot be carried out
explicitly with a trick as used before since the right
side 1s a function of both t,'(8,¢,t) and t,'(6,@,t).
However, in the extreme relativistic case the second
and third terms on the right side of equation 6.11 are

clearly negligible compared with the first term,and
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[s B3
at!
refers only to the charge moving toward the observer.

thus can be constructed as before, where t' now
Again we see the result that in the extreme relativis-
tic approximation the charges radiate independently.
Therefore, the results of the radiation from a single
particle are valid also for many particles moving with
(1 - v3) K 1, providing the rates for all of the

charges are added together.

B, Gravitational Radiation

We can proceed to apply the same methods in the
case of gravitational radiation. The big complication
here is in the calculation of the contributions of the
stresses binding the system of masses. Unlike electro-
magnetism, where only moving charges are the sources
of the radiation, gravity has as its source all energy
and momentum present as well as the stresses involved.
For this reason, we can only consider the case of an
isclated system such that there are essentially no
external forces acting on it, and cannot consider the
case of radiation from one body moving arbitrarily.
However, the radiation can be brocken up into the con-
tributions from the different sources present. We
will deal Tirst with the self force or radiation reac-

tion force in the same manner as was done in the electro-



. 36..

magnetic case. We might hope, in analogy with that
case, that thls would be the only important contri-
bution in the relativistic limit.

The sources of the potentials are taken to be

' \ﬁ - v2 VT -7 J 1T - v
(6.12)

FProm these we obtain the potentials (analogous to the

Lienard - Wiechert potentials)

- LG

— i
hh,).;. = \’1 - V2
. = '
e Vi - v (6.13)

where s = |R

1
=
1
P
)
i
3
N
<
3
B
1
e
N
c—l,.
:./
=
]
i<
P
d.
p—

In section IV.D. it was found that the equations of
motion together with these potentials implied a gravi-

tational radiation reaction force of

Hy

_ .U.. .
;= -Hont v . (6.14)
In the non-relativistic limit this force was cancelled
by Llhe lnleractlon force from the other masses much

like the cancellation in the electromagnetic case for

a system of two like charges. In the relativistic
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limit, one might assume, in analogy with electromagne-
tism, that the masses radiate independently. Then
cguation 6.14% would dominatc in the calculation of the
rediation in the relativistic limit. However, if we
transform equation 6,14% to the relativistic case, we get

_ 11 21 o (e - ve
f; = - = G m T“jf;2§}ﬁ.*’3vl<ﬂ'2)/(1 ve) +

+ —-;3’—3-“-—-5—- (e + 3(x-%/01 - v2>]} . (6.19)
-V

If this were the only radiation reaction force acting
on the mass, then this would imply that 5£f¥ dt > O,
and thus that the body 1s gaining energy as a result
of the self radiation. In section IV.A. it was shown
that, over a time average, the energy of a system
always decreases due to gravitational radiation. This
was done assuming the coordinate condition Euv,v =0 ,
In section VII. we will show that the system must
decrease in energy in any coordinate system or con-
dition in which the fileld eguations are consistent
with the boundary condition h,y~1/r as r—>e , From
this we can conclude that the interaction forces or
the stresses or both are important in determining the
radlation, since including only the self force part
vields an answer with the wrong sign.

We may get the contribution of the interaction
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force from the linear force law. If h<& 1, then

we can write

e

3 = %“%"gg" [hdisﬁ - % hqﬂai] :
In the case of circular motion, f.y o (1 - v2)7,
where the potentials h“ﬂ give the additional factor
of (1 = V2)%. The self force expression gives a power
loss for circular motion of f.v &« (1 - v2)"2, so that
for this case the interaction terms are of order
(1 - v°) smaller then the self force terms., Even for
the case of non-circular motion, if (1 _,gég) does
not reach a resonance, the interaction terms give a

2)'2 whereas the self force terms

2}”3

contribution o (1 - v
give a contribution o (1 - v . The resonance reg-
triction is the same as found in the electromagnetic
case., Thus any contribution which is to change the
sign of our answer must comec from thc stresses,

Let us attempt to calculate the radiation by

the Poynting flux method. The basic equation is

aB  _ (m(2)
7 = [Hilesy . (6.16)
%ﬁg) has been given previously. Over a time average,
we found that
2
aE - R -
Sa—_g dt = BErCA Sgd‘t an ho('ésqho(ﬂﬂ;. .

Then we can get the angular distribution
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dZE - gz —
dt dn. " 32wG . Boapaylagay . (6.17)

In the relativistic case, the hdﬂ s given by equation
6.13, are functions of the angles @ and ¢ , and of the
retarded time t', not the present time t. Therefore,

let us change the variable of integration from t %o

t! to get

4z d°E dt .., d2E , az ..,
ya-,,g at ngdt —:E,dt da -5 TiTda dttdn --ja-ftd't R
where

2% 2 2
d=f _dt 4d°E R dat —
dtTdn ~ qt' dtdn T T 32we at' Bagonbagsy 5 (6.18)
: 5 42w

and where the integration over angles of IrTgn  can

be explicitly carried out. Thus the change in energy
over one period can be found by either calculating
the integral of the power loss with respect to the
observer's time or the integral of the power loss
with respect to the particles own time. The two ex-
pressions %% and %%, are not related in any simple
manner except in an integral over the time correspon-
ding to one period of the motion., We cannot, for in-

stance, say that

o)
It

dakF

t=

QJIQJ
et
o

1

QJ!QJ
crict

because v 1s a funetion of the angles, whersas



~140-

both QE nd Q@i have been integrated over angles.
dt at
Thus we get that
2 2
d™E _ R dt
dt'aa ~ T 3IFwG d’c'[‘m‘fw+ Bggsy = 2 Bygon By +
* hygoy Bygay - 3 Bogo H)&q%]- (6.19)

Since we are interested in the fields Eﬁpah only for

large R (wave zone), the following relations may be

written
2 - -X2 ., 95 _ _ 5 ., At _ s
o%; R ot b Ptr T T AX 5 g T § o
Bvaluating the fields gives
By g, = - HORR / [:3-6(1—v2) + Vv s]
Py oly 33(1—v2)3 2 L=~ ~
h S [viB3(1=v?) + ¥y8(1-v2) +
g ok 33(1—v2)3/2 LR~ i
ViYL sj (6.,20)
- Lom R :
Rosg), = = —prmio— ViViReT(1-v2) + (viv. +
ijok 53(1-V2)3/2 1] L
— 2 b I
ViV Js(1=v=) ViVIE -V g]
Dogsy = - Eggﬁ“”“”l [R-%(1mv2) - YoV s] .
s3(1-v2)® ~ alig

The substitution of these fields into equation 6.19

vields
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25 302 ’
A2 _ _ GROMT[Y 0 920002y L (Red)eved) s -
at'dn T T 2y 55 [e@z YITO=vE) = (RT)(e¥) s

-3 @?20-v)7 S 2922 L (s.20)
> (V¥

For v 1 v, we get

2—1 ?':) -
d“E - Gmev 2N a2 z2
—mm = - (1-v=)sin“Ocos @ -
dt'da #ﬂ(1—vc039)5 [

-4 (1 -v cos@)gj . (6.22)

Integration over all © and Q yields

DJQQJ
(g fesd

——— 6.2
1-v2)° ’ (6.23)

which is in agreement with the result obtained from the
radiation reaction force, but which is in disagree-
ment with all physical intuition in that the energy

of the system still seems to increase. For y Il v,

we get
4°F ¢ m° 2 5, LD
TTTaes = ~ Z B1—V')sinae +
L(1-veos0) 7 (1-v2)
+ 3(1- v cose)g:} . (6.24)

Integrating this over all angles gives

ag 11 ¢ e o2
grr & T Ty e (6.25)
at 3 (1-v2)3 ’ ’

which 1s also in agreement with the radiation reac—

tion force calculation. It is also easy to show that
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the integral of equation 6.21 over all angles yields

1

+

the general expressio

o 02— .2
ar a2 [v (v x gimj (6.96)

again in agreement with the previous results.

When we consilder the case of more than one mass,
we get contributions which appear as in equation 6.11.
From this, one can again conclude that the interaction
terms can be neglected in the relativistic limit.

This, however, says nothing about the stress contri-
butions.

Since we have already shown that the energy of
the system must decrease with time, one might ask why
we have obtalned an answer whlch 1mpliles an energy
increase, The answer lies in the fact that our socurces
do not include the stresses and thus fail to satisfy
Suvsy = 0. This does not necessarily imply that the
potentials huy do not satisfy the coordinate con-
dition hyy,, = 0. Thus we would like to see what the
divergence is, 1f it is not zero, and to see how stress
contributions might be added so that the potentials
can be made to have zero divergence. If potentials
can be defined which satisfy ﬁuv,v = 0 in the wave
zone, then the previous proof implies that we will

get a net energy loss from the system, as we would
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expect,

In the non-relativistic case, one could not
define potentials which depend only on the sources
e, pvy, and PViVy o and which also satisfy the di-
vergence condition EMV9V = 0, even to lowest order
in v/e¢. Althoush E@q,g - H@i:i = 0 would be satisfied,

Hgi,u - Hij,j = 0 would not, since i& the stress

i
contribution, is of the same order of magnitude as
the components PViV;ye Thus we would certainly not
hope to obtain correct expressions for the radiation
from those potentials alone,

In the extreme relativistic case, where we ig-
nore lower orders of (1 - vg)_1, one can try again
to define potentials only by the mass terms. Let us
then calculate their divergenc to see to what extent
the coordinate condition QMV,V = 0 is satisfied.

Let ¥ ¢ m = 1., Then we get

- - X.X
sl = Aoy = - 7575 (6.27)

Vi Vi ¥-¥

g9y = Bijyy = ; . (6.28)
79 (1-ve2)%g (1-v2)3/24
The divergence is not zero in either case. However,

the divergence of EMV is related to hy,,, through the

order of magnitude expression



-1 lkm

v} [45]

Bpvyw ~ % 504,4 ~ (1 - v cos®) Eﬂ4’4 .

t

oo

In an angular distribution the factor (1 - v cos®)
causes one less factor of (1 - V2) in the denominator
after the integration over angles is carried out.

Llso, assuming that the radiation is peaked in the
forward direction, which our formulae seem to imply,
the divergence of EM”’ will be of order (1 -v2) smaller
in the forward direction than the potentials or fields
used to find the energy radiation. Although these
arguments would ordinarily be enough to justify the
neglect of the divergence, in this case they are not.
There is cancellation of the higher powers of (1—v2)"1
so that the dlvergence actually contributes in the same
order as the filelds., We can see an example of this
also from a consideration of the fields Ryy ,,. Even
Wough Hygy, ~ (1=v2) By, , 1t contrivutes to the
radiation in the same order as M,,),.

The calculation of the stress parts of the fields
appears to be very difficult in geuneral. We may, how-
ever, get potentials which have zero divergence with-
out explicit knowledge of the stresses. If we assume
that the radiction of a given mass only depeads orn the
parameters describing the motion and position of that

mass, then we may add a corrective term to E/AV such
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that the new hyy will have zero divergence in the
wave zone., This is not as arbitrary as it might seen.
Let the superscript m refer to the matter parts and
The superscript s refer to the stress parts. Then

we require that Ei”’ satisfy

=m = = 5 = 5

- N, = = +h 5, .

By = Bugsg = = Bapoy, * gy
It Hﬁi’% =@ y Wnlch will be an undetermined func-
tion, then all of the other components of %u%’# in the
wave zone will be determined from the divergence of
ﬁ*ﬁ;, equations 6.27 and 6.28, and the requirement
that E}ﬁ;be symmetric in 4 an v . This yields,

uniquely,

Byfin, = @

XY

A~

o S - —A
R S S N A

AP

I S e
Aijo = ByBy® - myng (1-v2)3725 - (6.29)

1 . . .
(1-v2) %571 [nivj gV - ﬂinj{ﬁ‘y)/ﬁ:}

E.

(1=v=)

E 5] - oY + E’Y + :3[’3‘5 By )
oot T G v2y372, T 12y Een (1-v2)3/? g

LA

/23 [nivj + njvi - ninj(ﬁ.y)/}%] .

When the complete fields, H/”V’l'i' = -ﬁ/ur?},# + E;M%?h— , are
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substituted in the energy flux,.bqﬂ,hﬁ%é,% , one’
finds that the resultant flux is independent of the
arbitrary function @ . This then yields for the

energy radiated

. 2
4% R° at §. 2 -
at'an - " 3owg b {z(ninjﬁijm) = 20y DR gyt

+ Hij’hﬁijsq + (ﬂinjﬁij,@)ﬁﬁm,u - %(Emm,q)é}'. (6.30)

If we now break up E)“, into the mass and stress terms
in equation 6.30, we find that the stress fields drop
out. Thus in the radiation given by equation 6,30,
we can replace Hij?% by Hi??% . Thus these stress
fields, which changed the sign of the answer when Ulle
hdﬂ?hﬁdﬂ7h form of the energy flux was used, play no
role when the energy flux is reduced to terms with only
spatial components. Of course, now the energy will be
guaranteed to decrease, since the form of equation
6.30 was all that was needed to show that the energy
change must be negative.

If we evaluate the angular distribution of equa-

tion 6,30, we find

4°F . ome Si,nLFQ 72 vl [(1 2y 4
t .- !! -
atida T (1-vc0s8)° (1-v2)>

+ (1—vcosei]2 , YU ¥ (6.31)
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A28 _ _ Gm? sin®@ %2 I8 22
= - — 4(1-vcosO)“v
dtida Hw (1«vcose)5(1—vd) L '
+ coszw{}1~v2)2 - 2(1+v2) (1-vcos©) < + (6.32)

L .
+ (1—vcos@)*]} sy VL v .

In integrating equations 6,31 and 6.32 over angles, we
should remember that we want only the lowest order part
since we already have neglected the interaction radia-
tion, which is of order (1-v2) smaller than the above.
In the extreme relativistic approximation, sin@ can

then be written

sine = vg(TnCOSZB) + (1=-v2)sinc@
= —(1-v2) + 2(1-vecos®) - (1—voos&)2 +
+ (1~v2)sin29

T . (1-v°) + 2(1-vcos©)

since, in the integration over angles, a factor
(1-vcos®) just brings a factor (1-v2) into the final
answer. Thus sin®@ ~ (1-v2) and (1-vcos®) ~ (1-v2).
IThen the 1ntegral of equations 6.31 and 6.32 over all

angles becomes (for v=1)

dg 1 Gmeve 1 4v :

CIREE hre s R ] FETL YOS
aE  _ Gm2y2

a—f‘ -7 z (1"‘V2)2 2 X‘LY * <6'35)
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Figuation 6.35 is similar to equation 6.23, with the
exception of the counstent in front. One can also see
that it is strikingly similar to that found in the
electromagnetic case with the exception of the constant
in front and the substitution of Gm2 for e2. Ggua-
tion 6.34% is more confusing. The logarithmic term

arises because we nave a term like

1
sin@ de
(T-vcos®) °

-1
If we neglect the slow variation of the logarithm,
we see that the form is the same as found in equa-

or some con

N

tion 25, except

£

3

<« - ~ T .
o tant factor. Howe

=

7
for v ¥ 1, the logarithmic term dominates and we get
a different behaviour than before. In order to under-
stand this better, let us examine the classical 1limit
of the same quantum mechanical derivation.

First 1t 1is useful to reconcile the gquantum
mechanical statements about electromagnetic radia=-
tion with the classical radiation laws. For instance,
one says quantum mechanically that the amplitude A of
the radiation goes like siné/(1-vcos® . One might
imply that the power radiated (which goes like AS)
has an angular distribution of sin2(9/(1-vcosc9)2. In
the case of vl ¥, the classical power loss has an angu-

lar distribution of sin?0/(1-vcos®)?, which ie more
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peaked than AZ would dimply. If we follow the formalism
of Feynman(1), then we can write the probability of

a photon of frequency W being emitted into frequency
interval dw and solld angle dQ in a scattering of a

charge from state 1 to state 2 as

o - (6.36)

dp = efdwdn  [ppee pi-e 77
Ppd/w Dy QW

where, to lowest order, only these diagrams dominate:

1

!
4 I

! !
Il !
/I !
/ 6 !
.6
Choosing e space-like end transverse, we lhiave that
Pore = Dosindy 5 poc/w = Er(1=v,c0880,)

Thus

1 vrsinb v45in® E
dp«5[2 2 - A2 5] (6.37)

(1-v5co56,) (T-v,cos6,
when O, and @, are different, then we have a peaking
in the forward direction of both 6% and ©, with ampli-
tude sin@;/(1-vicos®;). However, to get the classical

case, say yll v, we need the limit as ©, — 6, , keeping

i

vy = w5l Av fixed and small. Thus

-

'R, P. Feynman, Quantum Electrodynamics (W, A.
Benjamin, Inc., 1961), p. 110.




~150~
2

4P 1] (v + av)ein® _ v _5in@
Wi (1~ (v+av)cos@ ) (1= v cosO)

» 1 [ av_sin® ] 2
W (1 - v 0058)2

so that the energy emission (multiplying by the energy

of each quenium emitted yields an expression propor-

tional to Wf) is proportional to

(Av)° 5in°0

dBE I o
(1-v cos®)
This is still not the aneuler distribution of OB
1s 18 8T1 no 1< aﬁéu ar 1stTripution o dt’dﬂ °

However this is because we are not asking the same
question in both cases. Classically if we want to
find the energy emitted at frequency w in dw , we would

Fourier transform the fields

ey - 4 1wt _ £(t') iwt
El) = Jﬁ(t)e at = o goz(t’))3 e dat .
T

Changing the variable of integration from t to t'vields
2 J

- _ £(t1) iw(t'+ (L)) dt! .
Bl = /j;1~2.¥§t') 2 °

Since the transformed fields are proportional to
- —
(1-vcos®) < and not (1-vcos®) 3 as before, the energy

. . . .
emission 1s therefore proportional to (1-vcosd) now

?

in agreement with the guantum mechanical result. The

other details can be easily worked out to show the
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agreement with the quantum calculations, (Av)2 can
tien be replaced by v2 in the time dependent form of
the angular distribution, if a large number of col-
lisions with infinitesimal deflections are considered.

In gravity, e 1s replaced by the tensor polarl-
zatlon and the matter stress-energy-momentum becomes
the source. Thus the probability of emission is pro-
portional to

_p-eb
ped/w ’

IT we consider the diagranm

/////i\\<iJJ 11>>///L\\\\ (6.38)

we get in the same way as clectromagnetism that for

xy, 2
- 2 . 2
b a——— .;L‘ bl T °
dwdn (1-v22)3(1—v200392) (1-v12)2(1—v10086Q)J

(6.39)
By the same arguments as in the electromagnetic case,

this implies that

2. 2 2 .k 2
a°E vy sin' O [ 5
2 (1-v=) + (1=vcos®)
dt'dfi (1~vcos6)5(1—v2)3 ‘] ’

which was found classically. This also suffers from
the logarithmic defect in the integration over angles.

There 1s another diagram which will also contri-
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bute to the radiation in the classical limit. We sece
that energy and momentum must be conserved at the
vertex of the diagrams in equation 6.38. Thus the
particle propagating away from the vertex must carry
away energy AE and momentum Ap. The actual quantum
mcchanical process involves integrals over these
quantities, In the classical limit we take AE and
A P to have the values necessary to conserve energy
and momentum. The propagating particle will also act
ag a radiator of gravitons. Thus the diagram

’

/
’
/

PN

must also be Included. It produces an amplitude to
emlt a graviton of

(Ap)2 sin%9
AE - DAp cos©O

A X

If AB and Ap are found in terms of Av, the A becomes

(Av)singQ
(1—v2)3/£(v—cose)

A x - ) (6.540)

so that we can combine 1t with the amplitudes found

before. Since
(v - cosG)"1 = (1 - v 00860_1 + O[(1~v2)0]

the total amplitude becomes
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-
AV sin<®

A T
(1-vecos0)2(1-v2)%®

==

Translating this back to the time dependent form yields

a2 G m? 2 sin”@
—rr— = - vy . (6.41)
dttda LHr(1—\72)(’l—vcos<9)5 e

This has no logarithmic term in the integration over

angles. 1In fact, integration over angles gives

. 2 2
Al - _ 2 G m*~ v . ).
T = 3 G5 0 AW (6.%2)

which 1s the same as the electromagnetic result if
Gm2 replaces 82. The formula ror the radiation for
arbitrary v, v, would then become

2 6 mPlv? - (x x )27
(1-v2)>

=

(6.143)

ale
F

|
w

It should be noted that this result is subject to
some question. There might be other diagrams which
become important, since 1f we assume that (1-v2) « 1,
the ﬁ%“, may not be smell compared to 1 and higher
order stress terms may enter in. These typesof terms
would almost certainly be dependent on the kind of
stresses binding the system, and the radiation for
each individual case would have to be found separately.

The previous results are probably as close as one can
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come to an energy loss equation without specifying

the whole system under consideration.
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VII, RADIATION
without

COORDINATE CONDITIONS

In section TV.B. we gaw that the energy of a
system must decrease as a result of the radiation of
gravitational waves if the coordinate condition 5}“492
= 0 was used. We will now relax this restriction and
show that the result 1s valid for any coordinate sys-
tem or condition providing the boundary condition
hyy~1/r as r—ew is satisfied. In addition, in the
non-relativistic approximation, the value must also be

the gsame, namely,

4R _ ¢ 1o ]
T - "3 [Qij %35 7 3 %k Y] - (7.1)
The expanded field equations are

H,uva)\)\ - HMM%V - EVMVA + g/uv HUMO‘% =
= - 167G[T"“’+ X(2) ,S,«?)v)*‘ * o J . (7.2)

The only contribution to the energy flux across a
large sphere must come from the X /&%>. If the asympto-
tic behaviour of hyy is ~1/r, then only ’}f/&p‘) will
contribute to the energy flux across thig surface.

Let us consider asymptotic forms for 5}“, of
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- _ f(t - 7)
I, h#,; = —
- £(t)
1T, Ryy = *%”"
- _ const,
III. h/MV e . I‘ 8

Form III. has the property thot Hyyes ~ 1/r2  ond
huvot = 0, so its derivatives do not count in finding
the radiation. In forms I. and II., f(x) is assumed
to be a function such that |f(x)}&:lf'(x)(a:{f"(xﬂ
An example of such a function is f(x) = sin(x). In

type TTu, Dupyy ~ 1/7%, but By, ~ 1/r. In type
Toy Byysy = -1 by, where hy,, ~ 1/r. From
symmetry we shall assume that all of the Hhi have the
same asymptotic behaviour and that all oi the Hij
also have the same asymptotic behaviour. However,

we shall consider cases where hy,, Eﬁi’ and Hij have
different asymptotic forms.

The expanded field equations, equation 7.2, are
valid in any coordinate system since the non-linear
field equations are invariant under arbitrary cocordi-
nate transformations., Since in the far zone Xﬁﬁ) ~
1/r% for large r, the asymptotic forms of By, must

satisfy the following conditions in order to be con-

sistent with the field equations:
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ﬁuvsx% - ﬁ&;akv - Hvxakﬂ * éuv Ha)’d%ﬁ;q/r2 (7.3)

- 2 ; R
coxr T 2 Noxgon £ 1/7 (7 eh)

=5

It has been shown that the energy delined by the Ileld

equations 1s unique and has a time rate of change of

)
C_}.

$ o= fED e . (7.5)
(2)

fquation 3.13, giving X, , can be reduced by the con-
sistency conditions, equations 7.3 and 7.4, to give

the only part which can contribute to order 1/r2.
2 —_geme) M hyy,un 2
AV ==(3 dhwlagsy * h/umﬂhwxa,é -
- 2 h/,«o(aﬁhvﬂw( + 2 hdlg hdﬂwl’ + 2 ho‘:é h/uvgo{,é -

- 2 ho"lg h/uo(,ﬂy - 2 ho(/g hyo(,,@/b‘ + éMV[ ]}n (7o6>
)

Since we are interested only in iﬁ% , we shall forget
about the &y piece.

Let us first consider the case where E&q, Hﬁi’
and Hij all have the asymptotic form of type III.
Then hyy,ax = 0 to order 1/r, and the conditions

given by equations 7.3 and 7.4 become
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The time average of equation 7.5 is now considered as

2 - _ .9
o%; Piot

to lowest order in 1/r, any derivatives can be Lule-

before. Since for type III. solutions,

grated by parts. The reduced consistency relations,
equations 7.7 and 7.8, can then be applied to reduce

equations 7.5 and 7.6 to
bk > -1 —
L (Xﬁg)dsidt = ~(3210) ggdsidt{— hagnFogsy +

+ 3 Hﬂf’d[ﬁhﬂ’i - Hl/@’l]}. (709)

The first term is what was found before, To show
how one worlks with these consistency relations, we

shall explicitly show lhat the second term is zero.

g{ds dt ny h Uyd'(HL}-ﬂ3i * Hi,@’le -
0]

i

jds dt ni[-niﬁpg-,(fﬁqﬂﬂ.} - H,@U"V)-i-glﬂ] =

Q
0]

igds dt "Eﬁv:qégﬁﬁ + DiEQHEipaq%]

1
i

i

i}

i1

5 ds dt[-—HW,U)_‘_HL%)‘F + niﬁw,ﬁﬁﬁ - ni%uﬁaﬁa,@i]
0

(0) + (0) + gds dt Brphggys, = 0 .
o

i

Therefore, regardless of coordinate conditions (none

was used),

™ -1 —
%% at = -(32mG) gas At hagnBagsy ,  (7.10)
o}
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which demonstrates that the form of the gravitational
radiation 1s independent of the coordinate system or
conditions which one may use,

We can now reduce equation 7.10 to terms invol=-

ving only spatial components of @uv .

((nopsuBagonds at = fg [-% B, + 2 Bygonf; +
0]

- - - . 2
*hyg 5o gen = Mg, = S lng0) ]ds at . (7.11)

Making use of equations 7.7 and 7.8 yields
Stha,qﬁdpauds dt = %{;% Dygpiuh + 2 by g, 00 +
©

- — - - L 2]
By repeated use of equations 7.7 and 7.8 and inte-
grations with respect to time, we can calculate an
expression which does not have any 4 components., If

we then evaluate the flux in a syetem in which ny =

=1, = 0, ny = 14 we get

i

ds at '(32”G>*1[%(511’H"Haz’@)2+2(512’4)é]-
(7.13)

Thus the form of the angular distribution is the same

as before, In addition, this shows that the energy

ol a system always decreases due to gravitational

radiation if the EMV all have the same asymptotic

dependence, f(t - r)/r. If we were to have vanishing
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radiation, we would have to have hy,,, = 522,4 and

h12,4 = 0 in the wave zone, looking in the 3-direc-
tion. 1If we anticipate the result that in the N.R,
limit, Hij’# is a tensor which has no angular depen-
dence, we would then have that the radiation vanishes
only when the quantity 553,4 = Hij’# - % 553 Ryooon,

= 0. Thus if the radiation vanishes in one systenm

of coordinates, it vanishes in all systems of coor-
dinatess likewise, if the radiation is non-zero in one
system, 1t must be non-zero in all systems.

Instead of an asymptotic form of f(t - r)/r for
hyy , we can also consider the forms f(t)/r and
const./r distributed among the h,, . The details are
straignht forward. One substitutes the combinations
into the asymptotic field equations and sees if there
is any inconsistency. It is found that these equations

allow only three typcs of golutions,

H).f)_*, ” h)“‘i’ hlj ~a f(t - I‘)/I‘

hy, hij ~ T(t = r)/v hy, ~ const./r

Eijfu £(t - 7)/r hyp, , Wy ~ const./r .

we

©

Bach of these cases gives radiation given by equa-
tion /.13, and thus for all three cases the systen

must lose energy,
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In the non-relativistic approximation, one can
explicitly solve for 513,4 in terms of the mass dis-
tribution of the source. If we assume that E@H is

much larger than hy; and hy and that time deri-

i
vatives are small compared to spatial derivatives

so that retardation effects ecan be neglected near the
source, then the field equations with wm,v =14 , L

beconme

B sgq = 167G 8, . (7.14)

To lowest order, Sy, 1s Just the mass density and thus,
for a point mass,

HLFL;. = = 4% ¢ w/r . (7.15)

With the use of this expression for Hﬁq, the field

stresses can be found to order (v/c)O and thus also

the Sij' The integral over space of this part of the
Sij is simply given:
- L A

where Qij is the moment of inertia tensor of the
system

= %8 %@
Qij = j%; m, X3 x5 .

The equation for Hij is given by equation 7.2

with  u,v =1, j. This can be rewritten
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The last three terms must have an asymptotic radius

dependence of 1/1'-2

by equation 7.3 and our threc
allowed solutions, However, this and the 1/r3 part

is of higher order in v/c than we are calculating, and
thus the only part of the three terms which can count
is that proportional to 1/r4, which is localized at
the sources. Similarly, the only part of Sij which
counts is that localized at the sources. Simplifying
equation 7.17 by the assumption that retardation
effects can be neglected near the masses, we can then

write for the 1/r part of Hij

= 2 G Qi4(t - 1) La _
hij = - 1; + - SéV (hik’lj +
ERSICI 5ijﬁomax)] £ oo o . (7.18)

The last term on the right side vanishes by integra-
tions by parts with respect to spatial derivatives
and the use of the equation for Eﬁq closein,

e then have the same Hij’# as was found in the
gauge E;nhy = 0, and since the formulae for the radia-

tion were found to be the same, we find a total radia-
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tion emitted of

ai _ G [ .rs l vor wer
at ~ 7F XQij Qij 3 Qe Qmm] . (7:19)

This result 1s now true for any non-relativistic sys-
tem in which retardation effects can be ignored and
in which the potentials ~ 1/r for large r.

Infeld states that the gravitational radiation
can be made whatever we wish by choosing the coordi=-

(1)

nate system appropriately We will now consgider
to what extent this is true. Let us first consider
Ils slalemsnl that 1if hk’)\’?\ = 0 and 'h:m’k = 0 , the
radiation vanishes. The field equations, with this

cholce of coordinates, can be written
" Bpsgg = - 16WG Sy,

Hij3%% - 514143 - quaui - 5ijﬁy4,g4 = ~16TG 54 3 (7.20)

1, 1 o - [ s T T,

We note that we now have VY *° acting on hh% and h%i
instead of ., 1In the far zone Hhh and Ehi thus have
an asymptotic form of const./r. Because of the [
operating on hlg , hij will have the form f(t-r)/r.

It has Dbeen shown that this yields a negative energy

L. Infeld and J. Plebanski, Motion and Rela-
tivity (Pergamon Press, 1960), nap. VI,
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emission and indeed, in the non-relativistic case,
the energy emission is the same as for any other sys-
tem of coordinates which ylelds one of the asymptotic
forms for hy, h,;, and hy; . This contradicts
Infeld's statement that the radiation must always
vanlsh in this particular system of coordinates, he-
cause we get a vanlshing radiation only when Hij’” = 0,
that is when we expect it to vanish, and negative
otherwise.

Let us examine Infeld's arguments in this case,.

Assume that h

Ly >0 as T @ and S,; ~ 1/r2, Then

equation 7.20 becomes Hﬁi’jj = Ai/r2 for large r.

A; 1s a function of angles and time. Infeld expands

As; in terms of xj/r, i.e,
o J
= Aj Asvxs
- = i ] 4 s e a
Muingy = 720+ —— (7.21)

which has the solution

°

hy; = 4 In(z) + Aijxj/r b e, (7.22)

Thus since as r 5w, h s — In(r) =+ £(&,p), this
violates the assumption that hyy— 0 forr—-s e , and
thus he concludes that this implies that there can be

no terms in Shi of order 1/1‘2 and hence no radia-

tion.,

Ir thls proof were correct, this would also
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deny the existence of electromagnetic radiation or
any other type of radiation. TFor example, if we cal-
culate the electromagnetic radiation from a system,
we find a flux proportional to 1/r2. However the
previous argument shows that this would generate an
H%i which goes to infinity for large », contradic-
ting our assumptlon that space becomes flat for large
r. Therefore therefore there can be no electromag~
netic radiation,

Let us examine this question closer, We found
that the asymptotic radiation field depends only on
hyjs; , but hyy = hy;(t-r). Thus if the coefficients
As have a time dependence, it must be of the form

A; (t-r), so that we would then have
- 7 LN D
hyis55 = A3(L-0)/x (7.23)
which we could satisfy by a solution of the form
i = -r) /12 L
R, B, (t-r)/1 (7.24)

where A5 = Byt Therefore we get trouble only

if there is a constant part of A;, independent of t-r.
19

Therefore we must consider the solution to
— 2

I we take the time Integral of the radiation
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of a periodic system, we find a AE which is inde-
pendent of time. We know that this is not strictly
true. As a system loses energy, the parameters des-
eribing the system change, and consequently so does
the radiation. We have neglected this variation in
calculating the radistion. A better approximation
would be to let the parameters of the system have a
slowly varying non-periodic time dependence., Then
the flux would also be modified by a slowly varying
anmplitude which must also be a function of t-r. Thus
what we thought was a term like comst./r2 is really
a term like f(t-r)/r2, where for all practical pur-
poses, the change in £(t-r) in one period may be neg-
lceted, With this consideration, we can satisfy
eguation 7.25 for large r with a solution of the form
Ny = g(t-r)/r2 . Thus the author does not feel that
there 13 any inconsistenecy hetween Infeld's ccordi-
nate conditions and a non-zero radiation.

The next question involves coordinate trans-
formations. We know that the field equations are in-
variant under arbitrary coordinate transformations,
Under such a transformation, we have that the field

equations become

Buvean = Buasav = Byasvu + duvhorson + Wuw =
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o0
where W,, = EZH_Wﬁﬂj o We may gilve two definitions
=
of gravitational radiation, (1). We may define the
radiation to be the 1/r2 part of thc right hand side

of equation 7.26. (2). If we rewrite equation 7.26 as

ﬁﬂvak% - @MAJRV - Ev?ﬂ%M + %Mvﬁdhddl + 16mG Suv =0,
(7.27)
then we may define the radiation to be the part of the
expression on the left side of equation 7.27 which is
of higher than first order in .y and is proportional
to 1/r°. Under a coordinate transformation (1) is not
invariant while (2) is invariant. Definition (2) is
appealing as 1t takes care of any discussion aboub
the change of the field stresses from one system of
coordinates to another., However, since definition (1)
is the one mostly used, let us consider the effect of
a coordinate transformation on the radiation defined
by (1). UWe assume a time average as before and con-

sider coordinate changes « 1/r. Then since
HO(,@ — HO(/] 'i"%,xué ‘3'%/6,0( - 59{/6%037 + O(1/r2) ,

we have that

HO{,@’LPHOK%Z’LF - '%" H}.’A’L}.‘HO’O’QL}‘ — same + 2 Hd,é’1+[%“//8+
+ /}’l'g,O\ - 50{/37(0317],)_}‘ + 2 Edd74%%77\4 + (%“/ﬂ + %/329\ -

= Sup Vool Mot Mot~ Sugse)yy= 2 Marow Von o =
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= same + H%,q%d?ﬂq'% 2 Noxy84 Natypys (7.28)

Thus it appears as if there is a change. However, we
must remember that the field equations were consist-
ent with X4 £ 1/r2 only for the asymptotic forms
f(t-r)/r and const./r. Therefore, for consistency, we
must choose Ny ~ £ (t-r)/r or‘%mﬂ~const./r. Under
this type of transformation, jﬁtjdsiﬁéi) remains
unchanged.

If we had chosen ny= £(t)/r, we would have a
charnge which 1s non-zero, But we saw that this would
give a contradiction to the assumption that X4 = 1/r2,
Infeld's argument in this case rest on allowing such
coordinatc transformations. For the above reasons,
the author does not believe his conclusion that we
may make the radiation whatever we please by choosing
the coordinate transformation appropriately.

Summarizing, we can say that the energy of an
arbitrary system must decrease as a result of the
radiation of gravitational waves. This is true for
any coordinate system or coordinate condition where
the metric is asymptotically flat at infinity and
where the energy flux does not diverge as r- o . In
addition to causing a net decrease of energy of the

system, the energy radiation has been shown to be form
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invariant. In the non-relativistic approximation,
where the solution for Hijah is known independent

of the coordinate system, the energy redistion 1is

Just the familiar result, equation 7.19.



The Uniqueness of the Gravitational Field Stresses

We have seen that the field equations predict =a
definite expression for the total stress-energy-momen-
tum of the system. If this is broken up in the following
form,

o =[BT

A

i . . . )
then the field equations give a unique X,,, when the
WUV - s . .
matter tensor T is specified. One might ask, since

the expression for ﬁ;ﬁ) is rather complicated, if there

are other expressions for Xﬁﬁ) which would serve our
purpose as well and yet not be in contradiction to
present experimental evidence, One might also wish
to have these new stresses come from a principle or
method that determines them, in order that one could
not be accused of picking them out of thin air. Pre-
vious work on this same subject has heen carried out

1) (2)

by Feynman and Huggins .
Aside from the obvious reguirements that the

total energy, momentur and forces be correctly given

1
R. P. Feynman, lecture notes, Cglifornia Insti-
tute of Technology (unpublished)
2?‘1 L] 'Y Y o
&, Huggins, Ph. D. thesis, California Institute
of Technology (1962)
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in the non-relativistic approximation, the only experi-
mental result which one has is the perihelion shift

of a body moving in an elliptical orbit around another
body under the influence of gravity. How this may be
affected by different choices of the field stresses

is geen helow.

. L2 .
One may separate the expression for K( ) into

yiid
two parts: one, the part which is of order CO, and two,
the remainder,which 1s, for all practical purposes,
unobservable., For a non-relativistic system, we have

e el g v hy,, i e, al ha ~ h., =~ =
seen that only hqg is large, and that h11.v h22 h33

=y, =9 = %ﬁﬁ#. Then only space-like derivatives

of @ will be in the observable part of Xa). In
. s 5 ; (2) (2)
particular, in lhe expression for X%H or Xii y WE

will have only terms of the form 4 @,; @,5 + B ¢ @,.,.
We may also get terms of the form ¢Q%ii from the ex-
pansion of the matter tecngor in powers of %uV .
These are needed to give the correct energy and will,
in the following, be implicitly thrown into the stress
terms. Then we have that the energy depends only on
the difference A ~ B,

Consider now, however, the exact expression
for hyy, for a stationa;y mass:

), = - z;ﬁj T+ Ky - T 4 X )av

e - gl




]2

4 - % -, <2> - 4 - 4
Let us approximate X v by %Z“,. One can easgily work
out the formula for hy), in terms of ¢ for a mess at

~
rest ueing the I{/&%) given by gencral relativity to get

, ~ R
hy = @+ 3@ )

and it is this number 4+ which is necessary to give the

correct perihelion shift.
Let us now consider some other expression for
the stresses. This may have the form C @5@,; + D‘P¢5119
where C - D = A - B, In particular, the observable
) T - % =4 . s Wi

components of X, 5 399u 5 X, + X;4 will have to
be of the form

1 fo !

'5[}{1,_1{_ + Xig oF B ‘:@,ii@ + Cp,j_ d)’i - (A

orig.

1
There fore we will get a new hy), related to the old

hl.g.).}. by
Pyi@oy + QDyss

lr - r'

'hl.}l}. = hL}‘)‘i' - L"‘G‘E avt ®

Integrating by parts the ¢,i¢,j term, we get for the

integral

© P 1 IV and [

- ¢,.¢-~ﬂm~m:n~ﬂ dv' and inte-~
1roxile - &

grating a second time by parts gives

..a._. 1 1 1221 .
ﬁbqp’i RN +S(D Vig =1 47 o

A

2
so that f ¢, 3?)—;{’. ”Erif“r"i av' = 2mwP(r) , and Lhus
1 A~ ~
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Mg, = My, + 8 GEQ2 : (42)

We may therefore get any perihelion shift we want by

just changing E, This gives us an addiltional require-

ment that any expression for the stresses must satisfy.
To give an example at this point that we are

not dealing with guantities as they normally appear,

we look at the principle that if we add to a given

stress—energy tensor a sysmmetric guantity which is a

divergence and has no divergence, the same physics

follows. Consider the expression

L = Ragyubagsy + Doghagouy =

—g,uv[h“ﬂ7ih0‘,833’ + ho(,gho(/gﬁb*] . (A3)
We see that X, = [Sy)hdlg,/uho(/g - g/w,ho‘,g,,\h“/gj[,}\ ;
and alsoj%hv,v = 0. TFor the trace of X, and X, we gel

mn

L = -3 [ho(,@nhu,m - ‘ﬁo\,aha,gmr]

X, = - [ho(ﬂﬂ’ho(,ﬁ s = Daghoagsvs]
so that E # O in equation A1, and we get a different
perihelion shift.
In expanding the various forms of the field
equations, we found that we got different xjf} for
each case, even though the sum T - Ly was 1nvarlant.
+(2)

Thus specifying that X

Ly comes from the expansion
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- . . . (2) :
of the field equations does not specify X}“, because
one must specify which matter tensor one is using in
splitting up the %uv o The field eguations come from

a varilation with respect to gyuy of the quantity

A= Sﬁdfé'd%r + j?uu T”“vié d%t 5

which then specifies that
[R% - & g R = 8mc T . (AN)

Thus we may ask 1f the requirement that %L%) comes
from the variation of an action uniquely determines
. . R . . MY
it, 1f we are considering the matter tensor T .
We want to have %L%) have two h's and two deri-
vatives; therefore we must consider terms in the
L
. . , . .
action A like Sh“ﬂ,,hdﬂ,shzé d™ .+ We can find 16
independent terms of this type. Variation of this

action results in a X(2>

Ly With 16 undetermined para-
meters. If we use the condition that in the absence
, ) MV l a2 i R

of matter, T = 0, we have that X 7/ has zero di-
vergence, This yields 3% equations that the 16 para~
meters obey. They are not all independent, but it
turns out that all the parameters are determined up
to a scaling factor in the action or stresses, If

we then calculate the divergence of X;%) in the presence

of matter, we should find that this is the negative
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of the divergence of some matter tensor, because we
want energy and momentum conservation. Calculating

this, we find that

%L%zy = const.[dﬂgé]fdﬂ ,

when the first order field equations are used. Hence

this X£§3 corresponds to the T4 discussed before,
The remaining undetermined constant is then evaluated,

~(2)
and we then have the same Ai“; as was found from

expanding equation A4,

It 1s to be noted that we have not used the
assumption h,y,y = 0 . If this coordinate condition
is used after the variation of the action, then there
are only 16 cquations to be satisfied and not 3k,
Obviously we are not allowed to make this restriction
in the action itself. With by, = 0, we identically
reproduce the reduced Xﬁ%} , equation 3.22., Thus we
have found a uniquely defined iiﬁ) whicn corresponds
to only one TMY (the correspondence given by the di-
vergence condition) and none, say, which correspond to
other forms of the matter tensor. We will now investi-
gate to what extent there may be other choices.

One might assume that the correct gravitational
stresses would be obtained by the same methods as in

Uhe determinatlon of the electromagnetic stress tensor.
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In addition to the variation of an action method, they

could be:

a) Canonical construction of the stresses.
D) Hestriction to first derivatives.

¢) Building up the stresses from invariant fields.
d) Working from the equations of motion back-

wards to the divergence of the stresses.

e) Guessing.

a) Canonical.
e start with the Lagrangian of the first order
equation

L = - %'[hﬂv,ahﬂvav = 2 By iuose + 2 Liavsy Boror g
- hdagummvyuj 9 (A5)

Trom which puler's equations yield the correct first
order field equations in the absence of matter. We
may use the canonical procedure to give an expression
for the second order stresses(3). This, in the case
of gravity, 1s not symmetric. Belinfante has given

a method of symmetrizing any cancnical stress tensor
by adding & divergenceless guantity. However, there

is no reason why this symmetrization is unigue, and

3G. dentzel, Quantum Theory of Fields (Inter-
sclence Publ., New York, 190LC),
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indeed we may add any amount of terms like equation
A3 to thne answer,

However, something can be gained of intcrcest by
this method. If we choose Iy, = 0, then the solution
of the canonical method plus Belinfante corrections
breaks up into two pieces: a simple appealing expres-
sion for Xii) and some divergenceless Junk. This
appealing pilece 1is

H)
w(2) _ A = _
L = 32ne[h%aguhdpav - %éuvhqﬂwwhupaa] . (46)

In the absence of matter this has zero divergence. In

the presence of matter it is related to QMV sy loew,

~ - "
7oV wp = _ x(2) c A =1,

Y = ’QL ho(,é’/,( y28Y 3V 9

50, one might say, this is a simplified version of the
stresses obtained from the expansion of the field

equationsg
1% oV o - =V
[QM -3 g0 L]V—g = 8 Tow o (A7)

This is not valid for two reasons:

Xﬁfg obtained from equation A7 is not

N’

i The

symmetric, but equation A6 is symmetrie.
ii) The perihelion effect is wrongly given.

We could, of course, get the correct perihelion shift

by adding an appropriate amount of equation A3, but then

the simplicity is gone and, what is more important
£ 9 P ’
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the expression would probably give the wrong answers
to problems of higher order which have not been ex-
perimentally verified.
b) First derivatives.

Let us use the condition that hy,y,y = 0. Then
we can get 10 different terms in KL%) and thus 10
coefficlients to solve for. The requirement that
Xﬁfg,v = 0 in the absence of matter yilelds 8 equa-
tions, We then get two types of solutions which may
be superimposed: one which is the same as eguation

A6 and one which can be written

ni

-2

+ l/w/ao\ho’dao( - hﬂu,ﬂhvo(’ﬂ - _‘% h/uo{,vho-'d’(x - (AS)
1 h - ,1_6 h - 15 1

- 5 hwx,/,c oror s 2 Ouv o(,gsa'ho(b'ap g,uvha'a'so(n‘}ihso( o

In the presence of matter,
Il/(g) ~ ~ o
Ly 9y & ho(/ua,é it Rogyn T A
Consider the matter tensor given by

/ ~
TA =gy T2 (1 + & hyp) T4

Then
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so that 1f we choose A =1, B = - 2, we have an X,y
which corresponds to a T*Y with only first deriva-
tives. However the factor invelving the perihelion
shift is - 1 instead of ¢+ as should be obtained.

¢) Invariants.

In electromagnetism the basic field equations
for Ay are invariant if A,—> A4 + N, . Since in
this case the fields are measurable guantities, they
should also be invariant under the gauge transfor-
mation. Then we can only form the invariant tensor
Fuv = Ay = Avgu o If the stresses are to be bi-

linear in the fields, we can form only

Luv = A Fux Fva‘+33§uvﬁap 72

whlch, together with the correct divergence condi-
tion gives us A and B,

In gravity we look for combinations of hagyn and
see 1f there are any combinations which are invariant
under  hyy = Nyy = Nuyy =Ny, o It turns out that
there are none, even though the first order field
equations are invariant under this transformation.

Thus we can have no enalogue for this method in gravity.
d) Equations of Motion.
Since in gravity there are no invariant fields,

we cannot write a simple expression like
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. = {fields}ﬂ” pVA

where @u and TY™ are independent of the fields hdp,}
or the potentials @MV , and thus of the gauge chosen.
Then we cannot extrapolate back to get a uniquei&uy
since there are no unicgue equations of motion,
e) Guessing.

We have already seen that there are many possi-
bilities for xﬁfﬁ

It may be instructive to find out how much freedom one

and only one seems uniguely defined,

has in guessing to hit upon a given choice.

If we write all possible Xﬁ%} terms (with the
coordinate condition Euy,y = 0), we find that there
are 21 possible terms., The divergzence condition yields
16 equations for the 21 undetermined parameters, Thus
we have 5 arbitrary constants and 2 great dsal of
freedom, Then we can certainly construct many solutions
whilch give the correct perihelion shift and corres-
pond to some T”‘V, but there would be no feeling that
any one of them would be the correct one,

One may also ask if there is much freedom in

-

choosing a symmetrical divergenceless (identically

1

divergenceless) Xuy which comes from the divergence

fnd

of a quantity. We have 17 possible terms in any Fuvx

from which we get the Xy by the relation Lyv = Fuvrgr s
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Imposing the condition Luysy = 0, even in the presence
of matter, we get 16 cquations as before, However
there are many dependent equations, and wc arc left
with additional pieces like equation A3, These will
not change the energy and momentum, but will change
the predicted perihelion shift,

We can thus conclude that only the variational

principle gives the second order stresses uniquely

and correctly.



