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ABSTRACT 

If 2O-GeV electrons from the Stanford Linear Accelerator collide 

with 2-GeV electrons (or positrons) circulating in the storage ring now 

under construction at SLA.C, then the reaction center-of-mass energy 

will be Ecm = 12.6 GeV. The luminosity of this device is calculated 

tobeabout2.4x102’cm -2 > -1 set , andthenumberof e+e-e+e+X 

-1 reactions at this energy is estimated to be about 60 hour when 

x=/d++/&-, about 10 hour -1 when X= T+ + n- , and about 1 hour -1 

when X= no or 77. 
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I. INTRODUCTION 

Two methods for inducing high center-of-mass energy collisions are commonly 

accepted today. (1) A stationary target is bombarded by a beam produced in a high 

energy accelerator. (2) Two circulating beams of particles are stored and collided 

with each other in storage rings. The second method is less expensive provided 

that the particles to be stored are charged, long lived, and their energy is not too 

high. If the particles are uncharged, then of course they cannot be stored in the 

usual manner; if they have a short lifetime, it is difficult to achieve high enough 

densities in the stored beam; if the particles are electrons and their energy is too 

high, then very large storage rings are needed to avoid unacceptable energy losses 

in the form of synchrotron radiation. Due to these reasons only protons and muons, 

and electrons with moderate energy can be stored economically today. 

A method intermediate between (1) and (2) mentioned above, would consist of 

colliding an accelerator beam with a stored beam. By using directly a high energy 

beam of those particles which cannot be stored efficiently, one could induce in this 

manner a wider variety of reactions with reasonable counting rates than by method 

(2), although not as many as by method (1). On the other hand, the reaction center- 

of-mass energy which can be reached without an increase in the accelerator energy 

and with moderate radiation losses from the stored beam would be higher than what 

is accessible when the first method is used, but not as high as when both beams 

are stored at the accelerator beam energy. The method of colliding a high energy 

beam with a stored beam was proposed earlier 1,2,3 and it was found that acceptable 

counting rates could be obtained. 

Up to the present time the design of electron storage rings has concentrated on 

the achievement of high luminosities at center-of-mass energies of 6 GeV and below, 

extension to higher energies being generally left as an option for future development. 



The main reason for this, besides the large amounts of radiofrequency power 

needed to operate high energy storage rings, was the prevalent belief that the 

interesting production cross sections are a fast decreasing function of the reaction 

center-of-mass energy Ecm. This belief was based on the observation that the 

lowest order production amplitudes (in the electromagnetic coupling constant) are 

the “single photon annihilation processes;” es + e--y-X (see Fig. l), which 

-2 contain a factor k in the photon propagator, so that the cross section due to this 
2 -2 amplitude alone would be proportional to (k ) , When the incoming e- and eS 

momenta in the laboratory are equal in magnitude but have opposite sign, such as 

when the e’ and e- are both stored in rings with equal energy, then in the laboratory 

k has no space-like component, and its time-like component is equal to Ecm. 

Therefore it is clear that, in such experiments, the one-photon annihilation cross 

section contains a factor due to the photon propagator of .(Ecm)-4. This is partly 

compensated by a factor 5 EErn coming from the vertices, so that, indeed, the 

production cross section contains a factor which decreases at least as fast as (Ecm) 
-2 

. 

On the other hand, it was suspected for some time3 that, for high values of 

E cm, the production cross sections will be dominated by the “photon-photon scat- 

tering” amplitude e+ + e- -e- + e+ -I- Y-I- ye- + e+ + X (see Fig. 2). The reason 

for this dominance is that the two y’s can have large space-like momentum com- 

ponents, so that they need not be far off their mass shells even if the final state has 

high center-of-mass energy. Therefore, this amplitude does not contain the factor 

(Ecmi2 - 

F. E. Low calculated the cross section for X = r” and found it to vary approxi- 

mately as the square of the logarithm of Ecm. 4 P. C. DeCelles, and J. F. Goehl’ 

pointed out that the two-pion system in relative S state can be studied by observing 

two-pion production by two virtual photons. N. Arteaga-Romero, A. Jaccarini and 

-3- 



P. Kessler’ have calculated the cross sections for muon, pion and kaon production 

due to the photon-photon scattering amplitude. Subsequently, S. Brodsky, 

T. Kinoshita and H. Terazawa7 evaluated the cross sections for muon pair, pion 

pair, no and 77 production through the same mechanism. These four important 

references demonstrated that at high Ecm values photon-photon scattering dominates 

single-photon annihilation, that valuable information could be gained by observing 

these processes, and that the cross section actually increases with the electron 

(positron) energy. The results just mentioned give added impetus to the search 

for means to realize collisions at high Ecm. 

The purpose of this paper is to describe a device with which e + e collisions 

at high Ecm can be achieved. These collisions are induced by colliding a bunch 

of stored electrons (or positrons) circulating in a storage ring with synchronized 

bunches of electrons (possibly positrons) produced by a high energy linac. To 

illustrate the possibilities offered by such a device, we consider as an example 

the case when particles with energy Es = 2 GeV, stored in the storage ring now 

under construction at SLAC,8 collide with electrons with energy Ep = 20 GeV from 

the Stanford Linear Accelerator. With these parameters, to a good approximation, 

E = cm (1) 

which gives Ecm = 12.6 GeV. In the next section, we estimate the luminosity 

achievable in the proposed device, and, in the last section, we estimate the 

expected counting rates for various production processes. 
9 

II. LUMINOSITY 

The general arrangement of the proposed system is shown in Fig. 3. The 

linac beam collides with the stored beam in a straight section of the storage ring, 

and can either be dumped or led on to another experiment. Periodically, the 

linac supplies particles for filling the storage ring via another beam line not 

-4- 



shown. In the remainder of this section, we shall refer to the particles in the 

linac beam as electrons and to the stored particles as positrons. Some number 

Ns of positrons is stored in the ring and circulates there. Then, f times a second, 

a burst of N !I. electrons from the linac is conducted through the interaction region 

where it collides with the stored particles. Both linac and stored beams are focused 

down to small “waists” at the interaction region to increase the particle density 

and consequently the interaction rate. 

The region over which the products of interactions can be observed is limited 

by practical detector considerations to a fraction of a meter. In order to maximize 

the useful interaction rate, both the linac beam and the stored beam should be con- 

centrated in short pulses so that each linac electron encounters the entire swarm 

of stored positrons in the interaction region. This can be done by concentrating 

the stored beam into a single radiofrequency bunch and delivering the linac burst 

in a series of short pulses at intervals of the orbital period of the stored bunch. 

The interaction rate in a colliding-beam system is described in terms of the 

luminosity, the interaction rate per unit cross section. The luminosity of the 

proposed system is 

(2) 

where Aeff is the effective area of the beam collision. 

It is obvious that the smallest value of Aeff which is feasible should be used. 

Roughly speaking, for colliding beams of differing widths and heights, the effective 

area is determined by the product of the greater height with the greater width, and 

there is no advantage in making one beam smaller in either dimension than the 

other. Thus, we may limit our considerations to colliding beams of the same size 

and shape. Various factors must be considered in choosing the size and shape, 
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but the most important turns out to be the disruptive influence of the linac-beam 

space-charge forces on the stored beam. This effect depends only on the factors 

in the parentheses in Eq. (2), and we treat it in the following paragraphs. 

Consider a positron traveling around the storage ring. Every (l/f) seconds 

it encounters a pulse of Nm electrons from the linac in the interaction region from 

which it receives a transverse impulse which depends on its lateral position. 

Between impulses it circulates in the ring, undergoing radiation damping and 

fluctuations as well as Landau damping due to nonlinear forces, and we assume 

that these influences disturb its motion sufficiently that its lateral positions on 

successive- encounters with the linac pulse are statistically independent. We treat 

the case that the beams are distributed transversely as round Gaussians. A posi- 

tron passing through the linac pulse at radial distance r from its axis receives an 

increment of radial momentum 

Ap,(r) = -2remcN11 

r2 1-exp - -4 28 
r 

where re is the classical radius of the electron and m its rest mass, c is the speed 

of light and cris the standard deviation of the Gaussian distribution. 

NQ 
3103 = - 

27rdz 
(4) 

[2nr$(r)dr gives the number of electrons between r and r + dr.] The polar scat- 

tering angle corresponding to Ap, is 8 = (Ap,/ymc) where y is the relativistic 

energy parameter of the stored positrons. Since we are assuming that both beams 

are the same size, the positions at which the positron passes through the linac 

pulse are distributed according to Eq. (4) with Np = 1, so the mean square polar 
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scattering angle is given, 

+ e-41 - e-u)2 

The transverse motion of the positron in the storage ring is described in 

terms of two orthogonal normal modes of betatron oscillation, which, in an ideal 

ring with no horizontal-to-vertical couplings, are the- horizontal and vertical oscil- 

lations, but, in general, have other directions. The mean square projected scat- 

tering angle on either direction is 2 L<e2>. N ow, random increments in the pro- 

jected angles are equivalent to random increments in the corresponding normal- 

mode oscillation amplitudes A, 

.tn(4/3). (6) 

The parameter P denotes the local reduced betatron wavelength for the mode at 

the interaction region, 
10 assumed to be the same for both modes. These random 

increments may be regarded, in the same way synchrotron-radiation fluctuations 

are, l1 as producing a rate of oscillation-amplitude growth of the form, 

d<A2> 
dt 

> 
= f<AA2>. 

scatt 

The corresponding growth rate due to radiation is 

d<A2> 

> 

2A; 4~5 
= - = 

dt rad 
7 7 
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where T is the normal-mode radiation damping time, assumed to be the same for 

both modes, Ar is the rms modal amplitude which would obtain if there were only 

radiation effects present and or, is the corresponding rms size of the beam. Com- 

bining the rates of growth with the rate of decay due to radiation damping, we get 

2 
-qp = f <AA2> + ; (U; - 02) , (7) 

where c+is the rms size of the beam in the presence of the beam-beam interaction. 

For statistical equilibrium, the rate of growth is zero, and we obtain the fol- 

lowing equation for the beam size: 

Qn(4/3) = 0. (8) 

If the last term is small compared to one, the stored beam is little disturbed by 

the linac beam and crwcrr. If the last term is large compared to one, beam size 

is determined by the beam-beam interaction and c2- N Q’ 
For the round Gaussian beams of equal size under consideration, the effective 

area is Aeff = 4ncr2, so the luminosity is 

% NQ L== - 
( ) u2 * 

(9) 

Solving Eq. (8) for the quantity (NQ/02), we find, that it is a monotonically increasing 

function of NQ, but one which approaches a constant value as Np grows large in com- 

parison to a critical number, 

2yr2 
NC = --$ [fT Qn(4/3)]-1’2 ’ 

e 
(10) 

The constant value approached by the quantity (NQ/c2) is (NC/u:), so there is a 

limiting luminosity given by 

L 
wNs 

maX = 47rreP [ti’ Qn(4/3)] 1’2 ’ 
(11) 
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which applies for NQ >> NC. For other than asymptotic values of NQ, the luminosity 

must be obtained from Eq. (8) and Eq. (9). In terms of the critical number, 

L = Lmax(Z){[l +($2r’2 - 1) . (12) 

To sum up, we have found that the impulses due to the linac beam pulses 

cause the stored beam bunch to spread transversely in such a fashion that, when 

NQ>> NC, the effect on luminosity of an increase in linac beam-pulse population 

(NQ) is just counteracted by that of the consequent increase in beam area (4ncr2), 

and the luminosity remains constant. Thus, linac pulse populations greatly in 

excess of NC are not effective to increase the luminosity, an‘d, if the linac can 

produce pulse populations of the order of NC, a luminosity of the order of Lmax 

should be achievable. 

Now we apply these considerations to the SLAC storage ring now under con- 

struction. Turning first to the factor /3, it should be made small. However, 

small values of p imply that the length of the waist at the interaction region is 

small; because the length of high-particle-density region is of the order of 2p. 

This is turn implies that the linac pulses as well as the stored bunch must be 

similarly short which will reduce the bunch populations that the linac can produce. 

A compromise is in order. The bunch length in the SLAC storage ring, as 

designed, will be about 30 cm at 2 GeV, so we choose p = 15 cm. 

Next we turn to the factor Ns. A definite limitation on the number of stored 

positrons is set by the radiofrequency accelerating power available to the beam 

in the storage ring. The synchrotron-radiation energy loss per revolution for a 

2-GeV positron is 110 KeV. We assume an available rf power of 220 kilowatts so 

that a circulating current of 2 amperes can be stored. There are, of course, 
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other potential limitations on Ns. The rate of positron filling from the linac must 

be great enough to overcome the rate of loss of stored particles due to bremsstrah- 

lung in the residual gas in the vacuum chamber and to the Touschek Effect. l2 On 

the basis of present SLAC linac performance, we estimate a filling rate into one 

bunch to be about 9 amperes per hour, while we estimate the stored-beam lifetime 

to be an hour or more, so the filling rate is quite sufficient. Another requirement 

is that the stored-particle motions be stable in their own space-charge fields. Either 

incoherent or coherent instability may arise. The incoherent space-charge limit 

on the intensity of a single stored beam arises when the space-charge forces shift 

particle oscillation frequencies to the extent that individual particle motions become 

unstable. Using a frequency-shift formula due to Laslett, 13 we estimate the fre- 

quency shift to be less than 10 -2 for 2 amperes stored in the ring, a very safe 

value. Coherent instabilities of stored beams have been observed in most existing 

storage rings, and various mechanisms of origin have been studied. Storage in a 

single circulating bunch is especially favorable for controlling one class of such 

instabilities which can be suppressed by a proper choice of betatron frequencies. 14 

Furthermore, the SLAC storage ring will be equipped with feedback systems and 

other devices to control all of the presently understood coherent instabilities. For 

estimating the luminosity, we assume that these devices will permit the storage of 

2 amperes without deleterious coherent instability. ’ 

A circulating current of 2 amperes corresponds to 

Ns = 1013. 

Other relevant parameters for 2 GeV storage ring operation with a round beam 

are: y = 4 X 104, ar = 0.013 cm (corresponding top = 15 cm), 7 = 0.028 set, and 

f = 360 set -1 . We obtain with these parameters 

L -2 -1 max = 3.2 x 102’ cm set 

NC 
= 1.9 x lo? 
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We propose a mode of operation in which the linac delivers three one-nanosecond 

(30-cm) pulses spaced at 700-nanosecond intervals within the rf accelerating burst. 

These three pulses in a burst strike the circulating bunch on three successive turns 

around the ring. For purposes of estimating the luminosity, we lump their scat- 

tering effects as though they all came at once. We assume 10 
11 electrons per one- 

nanosecond pulse, so NQ = 3 X 10 
11 

. From Eq. (12)we obtain the estimated luminosity, 

L=2.4~ 10 29 -2 set-l cm (13) 

and this is the figure we shall use. 

III. COUNTING RATES 

We denote the number of e + e-e -+ e I- X events per hour (taking place in 

the interaction region) by N(X), and the cross section of this process by cr( X ), 

The N(X) is given by the well known formula 

N(X) = b {crnm2 set-‘\o(X)(pbarnf 3.6x1O-27 ]{hr-l\ . (1% 

Here the expressionincurly brackets gives the dimensions of the factor immediately 

preceding the bracket. Substituting the value of L from Eq. (13) into Eq. (14), one 

obtains +. 

N(X) = [0.86 x lo3 a(X){pbarnt]{hr-‘1 . (15) 

Expressions for u(X) are given in Ref. 7 for 1 GeV I Ecml 6 GeV, when X 

is one of the following: p’k-, n+?r-, no or q. Extrapolating these c( X ) to the 

case under discussion, i.e., when E cm = 12.6 GeV, we find the approximate 

results : a&+~-) % 7~10~~ pbarns, a(*+~-) w lx10v2 pbarns and o(q) zo(n’)x 

1x10B3 pbarns. With these values Eq. (15) gives the approximate values listed in 

the second column of Table I. These cross sections may be compared to the single- 

photon cross section for X= ,up (Fig. 1) of about 0.5 X low3 pbarn. 



Not all reactions which take place in the interaction region can be observed, 

because some of the final particles escape detection. Let us denote by N(X) the 

number per hour of those reactions, e + e-e + e + X , in which at least one of 

the final electrons (either an e+ or an e-) is detected. Let us denote by 0: the 

angle in the laboratory between the momentum,p f of particle V1 in the final state, 

and the direction of the incoming electron, and by of,, the same angle measured 

in the reaction center-of-mass frame. To estimate z(X), we assume that particle 

f is detected always, except when it scatters into the walls of the beam channel 

through one of the two magnets immediately adjacent to the interaction region. 

We assume that those particles which leave the beam before they pass through 

those magnets can be detected by the interaction region apparatus. On the other 

hand, we assume that those particles which scatter almost parallel or antiparallel 

to the incoming electron beam, and travel with one of the beams within the bore 

through these two magnets, can be detected leaving a bending magnet. (The scat- 

tered particles have less energy than the unscattered electrons and positrons.) 

We shall not discuss here in detail the experimental techniques of detection, nor 

the problem of scattered electron background produced by bremsstrahlung . The 

parameters of the storage ring under construction at the Stanford Linear Acceler- 

ator Center are such that particles scattered with an angle 

9.0 mr see 5 17.5 mr, (164 

and 

nradians- 17.5 mr<BfL&rradians- 9.Omr Pw 

hit the walls of the magnets while passing through the bore. Therefore, according 

to our assumptions, all final particles, except those which scatter into the laboratory 

angle intervals given in Eq. (16), can be detected. Performing a Lorentz transfor- 

mation from the laboratory to the reaction center-of-mass system, we find that 
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the angles 0: and Bfcm are related by6 

tge~=JiIF 

(pf/mf) sin ef cm 

(pf/mf) cos ef cm + U [I + (pf/mf)2]1’2 
(I7a) 

sin ef 

a00 
6-T cm, 

cog efcm + u 
(179 

where u is the velocity of the reaction center-of-mass as measured in the labora- 

tory, mf is the rest mass of particle f, and pf= lij’,,l. According to Eq. (17), 

the laboratory angle intervals given in Eq. (16) are transformed into the reaction 

center- of-mass angle intervals 

28.5 mr d Bfcm 5 56.0 mr, (18a) 

and 

r radians - 56.0 mr S Bfc, d n’ radians - 28.5 mr, Wb) 

so that, according to our assumptions concerning the geometry of the experimental 

region, all final particles can be detected, except those for which Ofcm lies in the 

intervals given by Eq. (18). 

We intend to calculate that fraction of all e + e-e -I- e -t-X events, for which 

e+ either ecrn or Ozrn lies in one of the intervals given by Eq. (18). To do this, we 

use the Weizsacker-Williams 637 approximation which leads to the expression 

e+ ; 0:; &‘dM = 
cm% , const x uYY(M) M 

“J? f (e$, J f (eCe, M) (19) 9 

given by Eq. (10) in the Appendix of the third of Ref. 6. In Eq. (19), M is the 

rest mass of X; uyy(M) the cross section for production of X with such a mass by 

two photons, and du eIrn M; 
( - 

e+ /dM is the differential cross section (with 
9 

ecrn 
, 
M ) 

respect to M) for those e + e-e + e + X processes, for which eErn < e,“, 
, 
M 

e+ and ecrn < 
e+ 

8,, M. For the range of parameters of interest to us, we can use 
, 

- 13 - 



the approximation6 

f (8fcm M) z Ln 
, 

efcm,M {radians1 , 
> 

Pm 

where f = e+ or e-. Again, the curly bracket indicates that efcm M is measured in 
, 

radians. The electron mass is m. The logarithm in Eq. (20) is a slowly cha$‘ing 

function of o, and, in the following approximation, we will consider it as a constant 

(function of w). With this approximation 

( 
+ 

- u ezm M’ , ‘zrn M , 
)=DxBn (+ OL,M)ln(+ Ofm,M), (21) 

e+ where D depends neither on $cm M nor on 
> 

6zrn 
, 
M. 

The cross section for those events for which eErn lies in the interval (18b) 

(electron scattered backwards), is very small, and we simply neglect these events. 

Similarly, we neglect those events for which 
e+ ecrn M lies in the interval (18a) (positron 

, 
scattered backwards). With this approximation, the cross section for those events 

for which eErn lies in any of the two intervals (18), is the same as the cross section 

for those events for which Qe- cm lies in the interval (18a). We denote this cross 

. It can be calculated from the formula 

, 
M = n radians, eIrn 

, 
+ 

=n’ radians, (fin M = 28.5 . 
, 

(22) 
+ 

A similar expression gives radians- 28.5 mr 5 @Em <, 7r radians - 56.0 mr) , 

which, within our approximations, is the cross section for all those events for which 

ee+ cm lies in any of the two intervals (18). 

Substituting Eq. (21) into Eq. (22), we obtain 

u 28.5 mr I ee ( 
- 5 56.0mr) = DX [ln(% 56.0X10m3)- ln(? 28.5 X IO-~)] 

cm 
-I- 

x f 
( 
Ozrn 

9 
M = 7r radians) (23) 
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To obtain D, we evaluate a( 

+ 
ezrn M = 4 mr, 

, 
Bzrn M = 4 111’1: from Eq. (21), and 

, 
compare the result with the published values of this cross section. 

6 Substituting 

the D so obtained into Eq. (23), we find 

mr 5 e:, <_ 56. 5 0.06 cr(X) 

We conclude that, under our assumptions, in only 6% of all e + e-e + e + X events 

does the final e- escape detection. Similarly, we find that about 94% of all final eS 

can be detected. We conclude that 

E(X) =N(X) * (25) 

The angular distribution of the particles which make up the system X is 

roughly isotropic, although peaked in the forward and backward directions, in the 

center-of-mass system, when X is either p+ + p- or 7r+ + ?r-, for Ecm = 4 GeV or 

6 GeV. 6y7 The same is true for the angular distribution of y rays coming from 

X -2y, when X=a’orq. Equation (17) shows that particles which are extremely 

nonrelativistic in the reaction center-of-mass system all have very small 0;. How- 

f f2 every, already when (p /m ) = l/4 or higher, and assuming that the production of 

particle f is isotropic as a function of t9fo, one finds that, with our assumption con- 

cerning the geometry of the interaction region, more than 85% of all particles f can 

be detected. On the other hand, particles with (pf/mf)2 < l/4 constitute only a small 

fraction of all the final particles because of the small phase space which is available 

to them. If u- 1, then 0: would become small, and many particles would escape 

detection. However, in the experiment we are considering, u z.O.8, which is not 

high enough for this to happen. We conclude that most particles which belong to the 

final system X, can be detected. 

These are encouraging results, and there is hope that the Stanford Linear 

Accelerator and the storage ring under construction there will be combined in the 

future in, the manner suggested in this paper. The present orientation of the storage 
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ring is such that the axis of its interaction region is roughly perpendicular to the 

20-GeV linac beam; however, with the addition of a bent beam line and a new beam 

dump the linac beam could be brought to the storage ring. 

We wish to thank S. J. Brodsky, P. C. DeCelles, P. Kessler, R. H. Miller, 

P. L. Morton, and A. M. Sessler for some very interesting discussions. 
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TABLE I 

r 
X NW) 

k&- 60 hr -1 

7r**- 10 hr -i 

7r” or 
q 

1 hr -1 

The number of e + e -e + e + X events taking place in the interaction region 

at Ecm = 12.6 GeV is N(X). The number of those events in which at least either 

the final electron or the final positron can be detected under the assumptions dis- 

cussed in the text is close to N(X). The number of those events in which all par- 

ticles contained in X can be detected is also close to N(X). 
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FIGURE CAPTIONS 

1. ‘Single-photon annihilation” of an electron-positron pair, producing the final 

particles X. 

2. Each of the two photons is produced by an e (either electron or positron). The 

colliding photons produce the outgoing particles X in a “photon-photon scattering. 1v 

3. A.n outline of the proposed arrangement: 20 GeV linac electrons collide with 

2 GeV stored positrons in the interaction region. 
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Fig. 2 
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Fig. 3 


