THE STATISTICS OF PARTICLES
IN LOCAL QUANTUM THEQRIES

S. Doplicher
Istituto Matematico, Universitd
41l Roma, Italy

Introduction

This is a review talk on Joint work with R.Haag and J.E. Roberts
{see [1,2,3] and references glven there to previous works).

Let us start with the question: why 1s there an alternative between
the Bose and the Fermi type of particle statistics?

This brings in succession two other questions: what are the
possible statistics compatible with general principlesg; and: how is
formulated the concept of statistics in terms of general principles.

The usual description in terms of fleld operators cannct be entirely
satisfactory since fields are not observable in general, {(e.g. as soon
as they do not commute with one another at spacelike distances) and
also because you have to introduce from the outset into the formalism
the type of statistics appearing in your theory, by assuming specific
commutation relations at spacelike distances.

These comments apply also to the superselection structure of a
theory. For the sake of strong interaction physics with short range
forces, that structure is customarily embodied into the fileld formalism
requiring that the exact internal symmetries of the theory are described
by a compact group,the gauge group of the theory. The cholce of this
group 1s in practice suggested by the empirical patterns of elementary
particles and resonances. Thls group acts locally on filelds but leaves
the observables uneffected slnce they are by definitlon gauge invarilant.

Now first principles ought to be formulated precisely in terms of
observables — if you start from there? no speclal commutation property
nor gauge invariance is built in expllciltly.

Our input is the algebra of all local observable O acting on the
Hilbert space g{ 0 they generate on the vacuum state vector @: 1i.e.
the vacuum superselection sector alone 1s given.

Equivalently you might think as given the abstract C¥-algebra L
and a pure state Wy on A , the vacuum expectation functional.

This means: @L is an irreduclible C¥-algebra acting on j{ 0

The maln postulate is locality. To each nice bounded region $ in
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space-time (double cones) a subalgebra L(#) of G 1is assigned, in a
way which preserves inclusions; by definition g (¢) 1s generated by

the local observables which can be measured within the space-~time limita-
tions of @& . The closure of the union of all O 's 1s .

Einstein causality together with Quantum Méchanics say that observ-
ables affiliated with spacelike separated double cones commute. This
locality postulate in turn defines what 1s meant by "local observables".
So it is natural to strengthen it by the 50 called duallty requirement,
so that the postulate becomes:

(1Y OL(#) 1s the set of all bounded operators on ?EO commuting
with every observable spacellke located to the double cone & .

In other words: B € (01(§) iff for each double cone in the spacelike
complement @' of @& and each A€ 02(01) we have

AB = BA .

By recent work of Bisognano and Wichmann the duality requirement
appears necessary for the exlstence of a suitable underlying Wightman
field theory.

Another requirement of this nature, which 1s actually used 1in a
very limited way, is the additivity assumption saying that any small
region in space time contains sufficiently many local observables to
build up any local algebra: if {§4 Wv... v 0 2¢ (all double cones)
then

(i’) { O?.(Qi)v._.vm(a-n)}n:;a(o,)‘

A detalled analysils of the possible superselection structures can
be done on the basis of postulate (i). The statistics can be defined
as a property of each superselectlon sector and classified in a simple
way.

To relate this to properties of one particle states and scattering
states one needs in full the general assumptions of relativistic quantum

theories, namely

(i1) relativistlc covariance of the local algebras
(1i1) the vacuum 1s Poincaré invariant and is a ground state in #{O.

As mentioned this is not needed for most of the general analysis;
to be quite careful, an algebralc consequence of (1'), (ii), (iii) is
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freely used as a technical assumption, when needed [1].

Superselection Sectors and Statistics.

Let j’o be the set of vector states on OL coming from 9’{’0 and
C{(JD the set of all states on @L. Since ¢l is irreducible on Hos
JfO 18 a collection of pure states among which the superposition
principle holds, and forms the vacuum superselection sector.

How does the structure of gl determine the collectlon of all

superseleetion sectors?

We want a universal recipee to select from (/) the subset
of "elementary" states which in the end will carry each a finite number
of elementary "charges".

The main criterion is that w & J@ should describe a deviation
from the vacuum state which becomes negligible in far away regions of

space. In general:

To & J§ ¢ Jw

The superselection sectors are then the coherence classes of pure

states in J;:
superselection sectors = &ﬂ N Pure states of 01/3

where for pure states wysWw5; ON O, wy & w, means equlvalently a.

or b.:

b. there 1is Blzé A s.t., for all A & L,

wy(R) = v, (BY,AB, )

12

i.e. w2 results from wl by a physical operation B12’ which typically
creates pairs but no single charge; a. and b. being equlvalent by the
theorem of Kadison.

As you see the criteriqn to select J? is of central importance.
By makilng the foregolng precise, one can prove that, in theories describ-
ing only short range forces, JQ i1s the vector states of the representa-
tiong of a special type, the localized morphisms. [1].

These are % isomorphisms © of O into 0L each localized in some

double cone Gp , l.e.:
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p(A) = A if Aen(8) and @& is a double cone
spacelike to &b
Let A Dbe the collection of those localized morphisms which up to
a unitary equivalence can be locallzed everywhere ( a less stringent
condition suffices, see [1]). This initial result implies
1. each sector contains a strictly localized state mp: here peA and
if A € ¢

wp(A} = wOOQ(A) = (8,p(A))

80 that o = wy on observables spacellke to Gb {in electrodynamics
this would imply absence of electric charge by the law of Gauss).

2. 1if Wy o
spacelike double cones, we can define an exact product state

are such states, Wy = We%04s localized in mutually

(1) wy X Wy = wgoPyPp
i.e wy X w, = wy X wq and
wy X w,(A) = wl(A)

if A 1is an observable localized 1n a double cone spacelilike to the
localization region 0’ of Wos and conversely.
Then we have the Theoreﬁ if wys Wy

the same sector, and pe A 1s any morphism in the class of that sector,

are strictly locallzed states in

(2) w; X w, 1s pure iff p(®) = .

Now the product (1) composes the "charges" of the two sectors; such
"charges" are labelled by the equlvalence class of irreducible pep .
Allowing mixtures, as seems appropriate by (2), we can see that the
equivalence classes of our representations are Just the elements of the
quotient

(3) &Y

of the semigroup A modulo inner locallzed automorphisms. The generaliz-
ed charges (3) form a commutative semigroup; those corresponding to the
localized automorphisms r{i.e. pel 1f pehr and pl(a) =) form

an abelian group /Yy in A/Y, the group of "simple” charges.



268

The generalized charges A/g of a theory are found so far by
classifying a subset of the states S () of L. It is however
possible to construct them at least 1in principle from the vacuum sector:
if mg is a strictly localilzed state with charge £ and GFh is a V
sequence of double cones moving off to infinity in a spacellke direction,
there 1s a seguence wne Cfo of states with no overall charge s.t.

mn(A) = wE(A) if A 1s an observable

{4y assoclated to any double cone specelike to aLn;

0 (R) > w (R) , A € QU

Thus wE is the limit of states with the same charge & 1n the locali-
zatiqn region of wg and with a compensating charge in GFHLI If &£ is
a simple charge l.e. &€ T/g ,» the compensating charge 1s £ ~. If all
charges are simple, the dual G of the discrete abelilan group T/¥ is
the gauge group of the theory and 1s compact abellan. In theories with
non abelian gauge groups there are conversely non simple charges as seen
by the physlcal example of single nucleon states 1n a fully SU2 in-
variant theory: 1if Wy, Wy, Aare such states the product state wy X W,
is a mixture of sihglet and triplet (compare (2)).

Simple sectors can also charaéterized by the fact that the duality
conditlon holds in the associated representations of 0L .

A deeper characterization is: <the simple sectors obey an ordinary
(Bose or Fermi) statistics; the other sectors obey a parastatistics.

This brings us to our second question: what 1s the statistlces of
a sector?

The product operation (1) allows us to define quite generally such
a notlon without referring to one particle states.

Let & be a sector and p€A a representative.

Let Wy s s sl be mutually spacelike localized states of the same
charge £ . The product state

(53 Wy X Wy Xt X oW

1s symmetric; 1t is a vector state in the representation pn. Now

p(@) 1is irreducible but o" () 1s reducible for n > 2 unless g 1s
simple. In that case there are several linearly independent state

vectors for (5) and they can change from one another under permutation
of the factors. Indeed let Wl,-‘-,wn be state vectors for Wys e e oW

n
resp. 1n the representation p; Wi is unlque up to a phase and given by

= U#
¥y Uiﬂ
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where U is a local unitary in OL. To the product (5) corresponds a

i
product
= # * #*
(6) Wl X Wz X.aaX Wn (U1 X UZX...XUn)Q
where Ul X U2 = Ulp(Uz) is an associative compesition law. between all

pairs of intertwining operators (see [1]).
One gets easily from thils the permutation behaviour

s e X ¥ = s(n><p} XP‘lxo..x ¥

(1) ¥ ®
p (1) p™t(n) P n

where sén)(p) is & unitary in 0L commuting with pn(mJ and p 1s an
element of the permutation group P(n). The eén)@) could depend upon
the choice of WoseorsWp3 however:

Theorem. pe P(n) ~+ Eén)®) is a representation of P(n) depending upon
p alone; 1its equivalence class sén) depends upon the sector £ alone.

This result makes it possible and natural to define the statistics
of the sector £ to be the sequence {eén); n=1,2,...} . Each eénj is
specified by a set of irreducible representations each with infinite
multiplicity.

Which are the possible statistics? A priorl, continuously many.
However

Theorem. To each sector & 1s assoclated a number A(E£), the statlistics
parameter of £, with values inverse integer or zefo, which determines
entlrely the statistics of & as follows:

if Aa(g) = 0, E(n) contains all representations of P(n);

if ]A(g)i = 1/4(&), eén) contains all representations

of P(n) with at most d(&) antisimmetrilzations resp.
symmetrizations for A(E) > 0 wresp. A(E) < 0.

We see here that £ obeys the ordinary statlstics if £ 1s a simple
sector; the converse holds too l.e. £ 1s simple Iff 4&(g) = 1.

We say that £ 1is a finite sector If A(E) # 0 and call ]A{g}l‘l
= d({£) the order of the parastatistics; £ is paraBose resp. paraFerml
if x(g) > 0 resp. A{E) < 0.

Let Z be the smallesﬁ set in A4j contalining the finlte sectors,
their products and theilr subrepresentations (but not all direct sums!).
Then:

Theorem. EFEach E£€I 1s a finlte sum of irreducible elements of I3 to
each E &I there 1s a statlistics parameter A(£) as above and
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Egl »A(E) Tez

is a homomorphism of the commutative semigroup I 1into the multiplicative
semigroup &Z. If E£€I and £ = £l€952 then

agg) = d(gy) + d(g,)
(8)
sign A(E) = sign M(E,)

It was mentioned before that each state in a sector £eA/Y 1s
the 1limit of bilocallzed states carrying the charge & and a compensat-
ing charge which makes them neutral (i.e. in the vacuum sector). If
£ dis finite this compensating charge can be found by the the cpposite
process on such states, of removing £ far away to spacellike infinity.
The resulting state belongs to the conjugate sector characterized

by:

Theorem. Letf be & finite sector; there is one and only one sector E
such that

(9) £°ET » vacuum representation @ ... ;
the sectors E&,Z have then the same statistics

A(EY = A(E)

and the vacuum charge appears only once in (9).
Note that thils charge conjugation of superselection guantum numbers

exlsts, as the statlstics of the sectors and 1ts classifilcation, solely
on the grounds of the locallity postulate (i), without use of space-time
covariance principles.

Note also the analogy between the structure of I and that of the
dual obJect of a compact gauge group.

We call also attention on the fact that, in theories of short range
forces, by the results of thls section superselection charges appearing
in compounds must alsc appear isclated, with a compatible statistics in
the sense of the preceding theorems.

Gauge groups and parastatistics

Statistics has been analyzed irrespectively of fleld commutation
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properties, actually in a2 formulation where no field at all is given
to transfer charge quantum numbers.

If however you do deal with a theory specified by a field algebra
J? and a gauge group G acting on 1t so that the observables are
precisely the fixed points

(10) oL = nu(G)!

then you can relate the superselection structure of oL and the statis-
tics intrinsically defined by it to properties of G and of the field
algebra .

Firstly there is a one to one correspondence from the set of all
classes of 1rreducible representations of G into the irreducible
elements of I; let
(11) uel » g ez
be this correspondence; we have the theorem

(12) dim u = d{Eu)

that i1s parastatistics appear necessarily as soon as the exact symmetry

group is not abelian.

Actually the relations (11) and (12) are particular cases of a full
correspondence between the dual structure of the gauge group G and
the intertwining operators between the representations in ¢ (see [2]).

This indicates that a compact gauge group should always be assoclat-
ed with finite sectors, although the sclution of this problem 1s not
compelling for the physical interpretatlion of a theory: the "dual gauge
structure’ is determined by the observables and gives all the informations
usually derived from the gauge group itself: reduction of products,
"Clebsh-Gordan coefficients™ etec. (see [2,31).

About the theorem expressed by (12) we stress the fact that
parastatistics might appear also if all fields obey ordinary commutation
or anticommutation properties; the only relevant hypothesis is that
fields should commute with observables at spacelike distances. In turn

?he statlstics of the sector Eu determines partially the commutation
properties of flelds transforming like u (i.e. carrying the charge
Eu}: if ¥,9' are irreducible tensor field opefators of type u, u
respectively which are spacelike located, then necessarily

[ v rrag = o
G
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where ¥ = -sign(A(g )).

Statlstics and Particles

If you assume full Lorentz invariance, axioms (1), (ii), (1ii)
above, we have that:
a. the spectrum condition PuPu > 0 follows from convariance in all
finite sectors.
b. 1f there is a one particle state [m,J,&] 1in the finite sector &,
s.t. there are finitely many descrete irreducible representations
of the Polncaré group with mass m 1n the sector &, then there are
antiparticle states [m,J,£] and the multiplicities are the same:

\)([m,J ,E]) = V([m,j :E])
c. i1n the previous hypothesis,

(-1)23 = sign(a(e)).

Thls expresses the generalized connection of spin and statistics; note

that here none of these concepts 1s mediated by algebraic or covariance
properties of filelds [2].

If particles [m,j,t] appear isolated from the continuum in the
sector &, by additivity of the spectrum [2] there 1s necessarily a
mass gap in the vacuum sector and scattering theory can be developed.
Indeed the exact product operation we defined between strictly locallzed
state vectors can be used to deduce, by the usual limiting procedure, an
asymptotic product between one particle state vectors [2]. The resulting
scattering states Wl %f---%fwn are state vectors in a representation
given by a localized morphism.

Since scattering states describe assembly of asymptotically
free partlicles we can ask what 1s the statistics of these partilcles.
For this sake we study n 1identical particles of "charge" g each in a
state spggifigg by a vector Wi and a commen reference morphism p.

Then Wl X e x ¥y is a state vector of pn and we find:
ex ex (n) ex ex
(13) v oxerexy o= e (P ke x Y
p (1) p~(n) P

namely the statistics of the sector ¢ defilned in terms of strictly
localized states coincldes with that of the asymptotlcally free particles
of charge £&.
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The state vectors (13) have natural tensor product metric properties
and can be used to calculate transition probabilities for scattering

processes
in in in in
w 8 = <Wa X voe x ¥ R Egut Wa X . X wa >
o 1 %n 1 n
where Egut 1s tgﬁtapprogriate support projection for the outgeing
ou
state vector WB X osee X ¥ in the weak closure of the algebra GL

of quasilocal ob%ervables, degcribing the possible final configurations
contained in the (generally non pure) outgoing state.

Problems

Of the many open problems related to the subject, I mention only
three. The following statements should become theorems under same
natural additional postulate besides (i) to (11i1) above.

1. Each locallzed isomorphism of ot into itself is in A.
2. Each peA 1is covarlant under Poincaré transformations (from
the covering group).
3. Each irreducible element in A/¥ has finite statistics;
i.e. no sector with infinite statlstics occcurs; see also [2, Appendix].
I hope that the relevance of these problems 1s clear from the content
of this talk.
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Discussion
Kamefuchi (Questlon): Have you got anything to say about the CPT
theorem wilthin your formalism?

Doplicher (Answer): Starting with local algebras generated by loecally
commuting or anticommuting bounded field operators, Henri Epsteln proved
in 1967 that, if yod assume asymptotic completeness, the S-matrix is
CPT invariant.

You can formulate asymptotic completeness in our scattering theory,
and this assumption should 1mply quite in the same way CPT invarilance of
the S matrix.



