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Abstract In this paper we study the role of the 5D Gauss–
Bonnet corrections and two-loop higher genus contribution
to the gravity action in type IIB string theory inspired low
energy supergravity theory in the light of gravidilatonic inter-
actions on the lightest Kaluza–Klein graviton mass spec-
trum. From the latest constraints on the lightest Kaluza–Klein
graviton mass as obtained from the ATLAS dilepton search in
7 TeV proton–proton collision experiments, we have shown
that due to the presence of Gauss–Bonnet and string loop
corrections, the warping solution in an AdS5 bulk is quite
distinct from the Randall–Sundrum scenario. We discuss the
constraints on the model parameters to fit with the present
ATLAS data.

Searching for extra dimensions in Large Hadron Collider
(LHC) experiments via a Kaluza–Klein (KK) graviton mode
is an extensive area of collider research. In particular the
recent ATLAS experiment put some stringent lower bound
on the lightest KK graviton mass in the context of Randall–
Sundrum warped geometry model via the dilepton decay
of the KK graviton. The Randall–Sundrum model has
become phenomenologically popular because of its promise
to resolve the fine-tuning problem in connection with the
Higgs mass without introducing any hierarchical parameter.
This model is defined on a slice of AdS5 with the bulk being
an Einstein–anti-de Sitter spacetime. Recent conflict between
the ATLAS data and Randall–Sundrum model in estimating
the lightest KK graviton mass motivate us here to extend the
bulk beyond Einstein–anti-de Sitter to a string loop corrected
Gauss–Bonnet anti-de Sitter space and explore the graviton
search experiment again to look for a possible stringy signa-
ture in collider physics.

a e-mail: sayanphysicsisi@gmail.com
b e-mail: tpssg@iacs.res.in

In this work we have first explored the phenomenological
features of string modified warped geometry in the presence
of 5D Gauss–Bonnet coupling and gravidilaton coupling in
a 5D bulk. Here the 5D warped geometry model has been
proposed by making use of the following sets of assumptions
as building blocks:

• The Einstein gravity sector is modified by the introduc-
tion of a Gauss–Bonnet correction [1–11] and a string
two-loop correction [4–6] originating from the holo-
graphic dual CFT4 disk amplitude in type II B string
theory or its low energy supergravity theory [12–15].

• The well-known S1/Z2 orbifold compactification is con-
sidered.

• We considered that the system is embedded in 5D AdS
bulk where the background warped metric has a Randall–
Sundrum (RS) like structure with AdS5 × S5 geometry
[16,17].

• The compactification radius/modulus is assumed to
be independent of four-dimensional coordinates (by
Poincaré invariance) as well as an extra-dimensional
coordinate [6].

• The strength of the gravidilaton interaction is determined
by dilaton degrees of freedom which are assumed to be
confined within the bulk.

• Additionally, the dilaton field also interacts with the 5D
bulk cosmological constant �5 via dilaton coupling.

• The Higgs field is localized at the visible brane and the
hierarchy problem is resolved via Planck to TeV scale
warping.

• The modulus can be stabilized by introducing a scalar
in the AdS5 bulk without any fine-tuning following the
Goldberger–Wise mechanism [7,18–20].

• It is assumed that the requirement of the solution of
the gauge hierarchy problem (or equivalently naturalness
problem/fine-tuning problem) is still obeyed as this reso-
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lution was one of the main goals of involving such warped
geometry model in the perturbative limit of our proposed
setup.

• Additionally while determining the value of the model
parameters from the proposed setup we also require that
the bulk curvature is less than the five-dimensional Planck
scale M5 so that the classical solution can be trusted
[21–23].

In the present article first we compute the warping solution in
the presence of 5D Gauss–Bonnet as well as gravidilaton cou-
pling and the two-loop higher genus string loop correction.
Further using the solution we have discussed the detailed phe-
nomenological features of the lightest Kaluza–Klein gravi-
ton mass in the light of the constraint obtained from the
ATLAS dilepton search. We further compare our results with
the results obtained from the well-known Randall–Sundrum
model and comment on the present status of both of them
in the light of present collider constraints. In this analysis
we use the combined phenomenological bounds on Gauss–
Bonnet coupling α5 obtained from Higgs diphoton and dilep-
ton decay channels [24] and from Higgs mass from the
ATLAS [25] and CMS [26] data within 5σ C.L. This bound
lies below the upper bound of the viscosity–entropy ratio [27]
and satisfies the unitarity bound [27–33] on the GB coupling.
We have also discussed the explicit dependence and the phe-
nomenological feature of the lightest Kaluza–Klein graviton
mass on the 5D Gauss–Bonnet coupling, gravidilaton cou-
pling and the two-loop higher genus string loop correction
by scanning our analysis throughout the allowed parameter
space in the perturbative regime of the proposed setup.

We start our discussion with the following 5D action of
the two brane warped geometry model given by [6]:

S =
∫

d5x

[√−g(5)

{
M3

5

2
R(5) + α5 M5

2
(1 − A1eθ1φ(y))

×
[

R ABC D(5) R(5)
ABC D − 4R AB(5) R(5)

AB + R2
(5)

]

+ g AB(5)

2
∂Aφ(y)∂Bφ(y) − 2�5eθ2φ(y)

}

+
2∑

i=1

√
−g(i)

(5)

[
L f ield

i − Vi

]
δ(y − yi )

]
(1)

with A, B, C, D = 0, 1, 2, 3, 4 (extra dimension) and a con-
formal two-loop string coupling constant A1. Here i signifies
the brane index, i = 1 (hidden), 2(visible), and L f ield

i is the
Lagrangian for the fields on the i th brane where the i th brane
tension is Vi and φ(y) represents the dilaton field which is
dynamical in the bulk with respect to the extra-dimensional
coordinate ‘y’. The background metric describing a slice of
the AdS5 is given by

ds2
5 = gABdx Adx B = e−2A(y)ηαβdxαdxβ + r2

c dy2 (2)

where rc is the dimensionless quantity in Planck units rep-
resenting the compactification radius of the extra dimen-
sion. Here the orbifold points are yi = [0, π ] and the peri-
odic boundary condition is imposed in the closed interval
−π ≤ y ≤ π .

Varying the action stated in Eq. (1) and neglecting the
back reaction of all the other brane/bulk fields except gravity
and the dilaton, the five-dimensional bulk Einstein equation
turns out to be

√−g(5)

[
G(5)

AB + α5

M2
5

(
1 − A1eθ1φ(y)

)
H (5)

AB

]

= − eθ2φ(y)

M3
5

[
�5

√−g(5)g
(5)
AB +

2∑
i=1

Vi

√
−g(i)

(5)g
(i)
αβδα

Aδ
β
Bδ(y − yi )

]

(3)

where the five-dimensional Einstein tensor and the Gauss–
Bonnet tensor are given by

G(5)
AB =

[
R(5)

AB − 1
2 g(5)

AB R(5)

]
, (4)

H (5)
AB = 2R(5)

AC DE RC DE(5)
B − 4R(5)

AC B D RC D(5)

− 4R(5)
AC RC(5)

B + 2R(5) R(5)
AB − 1

2
g(5)

AB

×
(

R ABC D(5) R(5)
ABC D −4R AB(5) R(5)

AB +R2
(5)

)
. (5)

Similarly varying Eq. (1) with respect to the dilaton field the
gravidilaton equation of motion turns out to be
θ2

M2
5

2∑
i=1

Vi

√
−g(i)

(5)
eθ2φ(y)δ(y − yi )

=√−g(5)

{
α5 A1θ1

[
R ABC D(5) R(5)

ABC D −4R AB(5) R(5)
AB +R2

(5)

]

+ 2
�(5)

M2
5

θ2eθ2φ(y) + �(5)φ(y)

M5

}
(6)

where the five-dimensional D’Alembertian operator is
defined as

�(5)φ(y) = 1√−g(5)

∂A

(√−g(5)∂
Aφ(y)

)
. (7)

To solve Eq. (3) and Eq. (6) we assume that the dilaton is
weakly coupled to gravity (weak coupling θ1) and the bulk
cosmological constant (weak coupling θ2) since the Gauss–
Bonnet coupling is an outcome of perturbative correction
to gravity at the quadratic order. Now including the well-
known Z2 orbifolding symmetry at the orbifold points, yi =
[0, π ], for perturbative regime of solution due to the presence
of very weak couplings θ1, θ2 and α(5) we can neglect the
contribution from first two terms in the right hand side of
Eq. (6) in the bulk. The contribution from the left hand side in
Eq. (6) automatically vanishes within bulk. Finally we are left
with only the last term in the right hand side of Eq. (6) from
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Table 1 Comparative study between the lower limit of the lightest
Kaluza–Klein graviton mass for the n = 1 mode from the proposed
theoretical model, the well-known Randall–Sundrum (RS) model, and
the LHC ATLAS dilepton search in 7 TeV proton–proton collisions. To
study the outcome from our proposed setup we fix the model param-
eters as follows: Gauss–Bonnet coupling α5 = 5 × 10−7 (which is
consistent with the solar system constraint [41], combined constraint
from the Higgs mass and favored decay channels H → (γ γ, τ τ̄ ) [24]

using ATLAS [25] and CMS [26] data), and string two-loop correction
A1 = 0.05 with MPl ≈ 1019GeV and Higgs mass m H = 125 GeV
(within the 5σ statistical C.L. of ATLAS and CMS). Throughout the
analysis additionally we have maintained another constraint between
the gravidilaton coupling and the dilaton coupling with the 5D cos-
mological constant in AdS spacetime, θ2 = −θ1. This implies at the
leading order approximation θ2φ(π) = −θ1φ(π) = 11 at the visible
brane

εRS = kRS
M5

εM = kM
M5

5D Planck
mass M5
[using Eq. (21)]
(in MPl )

Amount of warping
to accommodate SM
Higgs on the
visible brane
e−kMrcπ [using
Eq. (22)] (×10−17)

ZT Lower limit of the
lightest KK
graviton mass from
the LHC ATLAS
dilepton search
(within 5σ C.L.)
mG,ATLAS

1 (in TeV)

Lower limit of the
lightest KK
graviton mass from
the proposed
theoreticalmodel
mG

1 [using Eq. (25)]
(in TeV)

Lower limit of the
lightest KK graviton
mass from the
Randall-Sundrum
(RS) model mG,RS

1
(×10−1) (in TeV)

0.01 2.45 1.56 0.801 0.015 1.01 1.68 0.22

0.03 7.34 2.71 0.461 0.081 1.48 5.04 0.46

0.05 12.23 3.50 0.357 0.175 1.88 8.41 0.65

0.07 17.13 4.14 0.302 0.290 2.04 11.77 0.81

0.09 22.02 4.69 0.267 0.422 2.17 15.13 0.96

0.10 24.47 4.95 0.253 0.495 2.22 16.82 1.03

which we get the following solution of the dilaton degrees of
freedom within the bulk [6]:

φ(y) = c1|y| + c2 (8)

where c1 and c2 are integration constants, to be determined
from the value of φ(y) at the boundaries. We write the dimen-
sionless exponent of the dilaton factors by substituting Eq. (8)
at the orbifold point yi = π :

χ1 = θ1φ(π) = θ1(c1|π | + c2),

χ2 = θ2φ(π) = θ2(c1|π | + c2),
(9)

where we redefine the exponents by using the symbols χ1

and χ2. In the present context we have chosen that the two
different dilaton couplings are connected through θ1 = −θ2,
for which we have

χ1 = −χ2 = θ1(c1|π | + c2). (10)

For numerical estimations we take the dilation couplings
θ1, θ2 to be small to keep them within the perturbative regime
of the solution and we set the arbitrary integration constants
c1, c2 to a desired value for which the dimensionless expo-
nents of the dilaton factors are fixed at

lim
θ1→weak

e−χ1 = lim
θ1→weak

eχ2 = e11. (11)

Such a value of the dimensionless exponent of the dila-
ton factor produces a large enhancement even for a small
value of the dilaton coupling parameters θ1, θ2 and moder-
ate values for φ(0) and φ(π). In our subsequent calculation
this enhancement factor will play a significant role. As we

will see later such a choice is inspired by the requirement of
Planck to TeV scale warping as well as to keep the mass of the
first excited state of the Kaluza–Klein mode graviton above
the bound set by LHC, which is 1.01 TeV, as can be seen
from Table 1. Thus this choice sets a bound on the dilaton
coupling consistent with the LHC constraint.

In the presence of a dilaton the solution of the five-
dimensional bulk Einstein–Gauss–Bonnet equation of motion
at leading order in the GB coupling (α5) turns out to be [6]

A(y) = k±rc|y|

=

√√√√√ 3M2
5

16α5(1− A1eθ1φ(y))

⎡
⎣1±

√√√√
(

1+ 4α5(1− A1eθ1φ(y))�5eθ2φ(y)

9M5
5

)⎤
⎦rc|y|.

(12)

Also the localized brane tension can be computed as

V ±
2 = −V ∓

1 = ±24k±M3
(5)e

−θ2φ(y)

×
[

1 − α5
(
1 − A1eθ1φ(y)

)
3M2

5

k2±r2
c

]
. (13)

where the brane tensions V1 and V2 are localized at the posi-
tion of the orbifold fixed points, yi = [0, π ], where the hid-
den and visible branes are placed, respectively. However, it
is clearly observed from Eq. (12) and Eq. (13) that within
the bulk both the warp factor and the brane tension vary with
the extra-dimensional coordinate ’y’ due to the presence of
the dynamical dilaton degrees of freedom within the bulk.
Here we have discarded the other branch of the solution of
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k+ (+ve branch), which diverges in the limit α5 → 0, bring-
ing in ghost fields [11,34–38]. So we concentrate only on the
-ve branch of the solution, which we call k− := kM.

In the limits α5 → 0, A1 → 0, θ1 → 0, and θ2 → 0 we
retrieve asymptotically the same result as in the case of the
RS model with [16,17]

kM → kRS =
√

− �5

24M3
5

(14)

and the barne tension is given by

V −
2 → V RS

2 = 24M3
5 kRS (15)

with �5 < 0.
Now expanding Eq. (12) in the perturbation series order

by order around α5 → 0, A1 → 0, θ1 → 0, and θ2 → 0 we
can write

kM = kRS e
θ2φ(y)

2√√√√
[

1 + 8α5k2
RS

M2
5 (1 − A1eθ1φ(y))

{
1 − 2e(θ1+θ2)φ(y) A1 + e(2θ1+θ2)φ(y) A2

1 + · · · } + O
(

α2
5k4

RS

M4
5

)
+ · · ·

]
. (16)

For the graviton, the Kaluza–Klein mass spectra for the
nth excited state in the presence of gravidilatonic and Gauss–
Bonnet coupling by applying Neumann (−) and Dirichlet (+)
boundary conditions at the orbifold point yi = π where the
visible brane is placed, can be written as [6,39]:

mG
n =

(
n + 1

2
∓ 1

4

)
πkM(π) e−kMrcπ (17)

in the presence of the Gauss–Bonnet coupling and string
loop corrections. For the numerical estimations we use the
+ve Dirichlet branch throughout the article. Furthermore the
modified 4D effective Planck mass in the presence of the
Gauss–Bonnet coupling can be expressed in terms of the 5D
mass scale as [6]

M2
Pl = M3

5

kM

(
1 − e−2kMrcπ

)
. (18)

Now using Eq. (16) on Eq. (18) the 5D quantum gravity scale
at the position of the visible brane y = π turns out to be

M5 = 3
√

ZT MPl e
θ2φ(π)

6

⎡
⎣1 + 8α5 Z

4
3
T e− θ2φ(π)

3

(1 − A1eθ1φ(π))

×
{

1 − 2e(θ1+θ2)φ(π) A1 + e(2θ1+θ2)φ(π) A2
1+· · ·

}

+O
(

α2
5 Z

8
3
T e− 2θ2φ(π)

3

)
+ · · ·

⎤
⎦

1
6

(19)

where we use the fact that e−2kMrcπ << 1 approximation
holds good in Eq. (18). Here additionally we use the fact

that kRS = ZT MP L , where ZT is a dimensionless tuning
parameter. Now for the sake of clarity one can write ZT as

ZT = M5

MPl
εRS (20)

where we introduce an additional parameter, εRS = kRS
M5

,
with the restriction on the parameter, 0.01 < εRS < 0.1, as
used in [21,40]. This requirement emerges from the fact that
the bulk curvature must be smaller than the Planck scale so
that the classical solutions for the bulk metric given by the
proposed model can be trusted. On the other hand, string the-
ory also supports this favored range within the background of
the Klebanov–Strassler throat geometry motivated D3–D3
brane–antibrane setup [23]. It is important to mention here
that only for the RS model ZT ≈ εRS , as the M5 ∼ MPl

approximation holds good in an RS setup. Further substitut-

ing Eq. (20) in Eq. (19) we found the simplified expression
for the 5D quantum gravity scale in terms of εRS , which turns
out to be

M5 = √
εRS MPl e

θ2φ(π)

4

[
1 + 8α5ε

2
RS

(1 − A1eθ1φ(π))

×
{

1 − 2e(θ1+θ2)φ(π) A1 + e(2θ1+θ2)φ(π) A2
1 + · · ·

}

+O
(
α2

5ε4
RS

)
+ · · ·

] 1
4

. (21)

On the other hand to solve the hierarchy problem the brane
localized Higgs mass can be written as

m H ≈ mCUT e−kMrcπ (22)

where we introduce a new parameter mCUT, defined as

mCUT = MPl; (23)

it physically represents the cut-off scale of the theory, above
which new physics beyond the standard model is expected
to appear. A natural choice for this would be the Planck or
quantum gravity scale beyond which the standard model will
not be valid.

Now using Eq. (16) we introduce a new parameter, εM,
defined as

εM = kM

M5
≈ Z

2
3
T e

θ2φ(π)

3

⎡
⎣1 + 8α5 Z

4
3
T e− θ2φ(π)

3

(1 − A1eθ1φ(π))

×
{

1 − 2e(θ1+θ2)φ(π) A1 + e(2θ1+θ2)φ(π) A2
1 + · · ·

}
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+O
(

α2
5 Z

8
3
T e− 2θ2φ(π)

3

)
+ · · ·

⎤
⎦

1
3

= εRS e
θ2φ(π)

2

[
1 + 8α5ε

2
RS

(1 − A1eθ1φ(π))

×
{

1 − 2e(θ1+θ2)φ(π) A1 + e(2θ1+θ2)φ(π) A2
1 + · · ·

}

+O
(
α2

5ε4
RS

)
+ · · ·

⎤
⎦

1
2

. (24)

Further using Eq. (24) and Eq. (22) in the graviton Kaluza–
Klein mass spectra as stated in Eq. (17), the first Kaluza–
Klein excitation (n = 1) becomes

mG
1 = x1εMm H

(
1 − e−2kMrcπ

) 1
3

≈ x1 Z
2
3
T m H e

θ2φ(π)

3

⎡
⎣1 + 8α5 Z

4
3
T e− θ2φ(π)

3

(1 − A1eθ1φ(π))

×
{

1 − 2e(θ1+θ2)φ(π) A1 + e(2θ1+θ2)φ(π) A2
1 + · · ·

}

+O
(

α2
5 Z

8
3
T e

2θ2φ(π)

3

)
+ · · ·

⎤
⎦

1
3

≈ x1εRSm H e
θ2φ(π)

2

[
1 + 8α5ε

2
RS

(1 − A1eθ1φ(π))

×
{

1 − 2e(θ1+θ2)φ(π) A1 + e(2θ1+θ2)φ(π) A2
1 + · · ·

}

+O
(
α2

5ε4
RS

)
+ · · ·

] 1
2

≈ (mG
1 )RS�T (25)

where we again use the fact that e−2kMrcπ << 1 and the
lightest graviton mass for the Randall–Sundrum model is
given by

(mG
1 )RS = x1ε

2
3
RSm H (26)

where x1 = 7π/4 be the root of the Bessel function of order
1 as obtained from Eq. (17). Here in Eq. (25) we introduce a
new parameter, �T, given by

�T = ε
1
3
RS e

θ2φ(π)

2

[
1 + 8α5ε

2
RS

(1 − A1eθ1φ(π))

×
{

1 − 2e(θ1+θ2)φ(π) A1 + e(2θ1+θ2)φ(π) A2
1 + · · ·

}

+O
(
α2

5ε4
RS

)
+ · · ·

] 1
2

, (27)

which signifies the multiplicative uplifting factor of the
lightest Kaluza–Klein graviton mass spectra for the pro-
posed model compared to the lightest graviton mass for the
Randall–Sundrum model.

The five-dimensional action describing the interaction
between bulk graviton and visible Standard Model fields
dominated by fermionic contribution on the brane is given
by

SSM−G = −K(5)

2

∫
d5x

√−g(5)T
αβ

SM(x)hαβ(x, y)δ(y − π)

(28)

where Tαβ

SM(x) represents the energy momentum or stress
energy tensor containing all informations of Standard Model
matter fields on the visible brane and hαβ(x, y) be the bulk
graviton degrees of freedom. In this context K(5) := 2

M
3
2
(5)

is

the coupling strength describing the tensor fluctuation in the
context of graviton phenomenology. After substituting the
Kaluza–Klein expansion for graviton degrees of freedom:

hαβ(x, y) =
∞∑

n=0

h(n)
αβ (x)

χ
(n)
G (y)√

rc
. (29)

and rescaling the fields appropriately, the effective four
dimensional action turns out to be

SSM−G = −K(5)

2

∫
d5x rc e−4A(y)Tαβ

SM(x)

×
∞∑

n=0

h(n)
αβ (x)

χ
(n)
G (y)√

rc
δ(y − π)

= −
√

rcK(5)

2

∫
d4x e−4A(π)Tαβ

SM(x)

∞∑
n=0

h(n)
αβ (x)χ

(n)
G (π)

= −
√

kMrcK(5)

2

∫
d4x Tαβ

SM(x)

×
[

h(0)
αβ (x) + ekMrcπ

∞∑
n=1

h(n)
αβ (x)

]

= − rc

kRS MPl
e− θ2φ(π)

2

[
1 + 8α5k2

RS

M2
5 (1 − A1eθ1φ(π))

×
{

1 − 2e(θ1+θ2)φ(π) A1 + e(2θ1+θ2)φ(π) A2
1 + · · ·

}

+O
(

α2
5k4

RS

M4
5

)
+ · · ·

]− 1
2 ∫

d4x Tαβ

SM(x)

×
[

h(0)
αβ (x) + ekMrcπ

∞∑
n=1

h(n)
αβ (x)

]
. (30)

It is evident from Eq. (30) that, while the zero mode cou-
ples to the brane fields with the usual gravitational coupling
∼1/MPl , which we have taken as unity, the couplings of
the KK modes are ∼ekMrcπ/MPl ∼ TeV−1, which is much
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larger than the coupling of the massless graviton. Though
such a feature is also observed for the graviton KK modes
in the usual RS model, here the graviton KK mode coupling
depends on the GB coupling α5. In the present context the
values of kM though increase with α5; the enhancement of
the graviton KK mode mass causes the overall decrease in the
detection cross section. Thus the absence of any signature of
graviton KK modes, as reported by ATLAS data in dilepton
decay processes, may be explained by the GB coupling in
warped geometry models.

In Table 1 we present a comparative study between the
lower limit of the lightest Kaluza–Klein graviton mass for
the n = 1 mode from the proposed theoretical model, the
well-known Randall–Sundrum (RS) model and the LHC
ATLAS dilepton search in the 7 TeV proton–proton colli-
sion experiment. Additionally we show that the 5D mass
scale of the proposed model is lying within the window
1.56MPl < M5 < 4.95MPl for 0.01 < εRS < 0.1. For
the RS model, the lower limit of the graviton KK mode mass
lying within the window, 0.22 TeV < mG,RS

1 < 1.02 TeV
for 0.01 < εRS < 0.1. On the other hand the latest data from
ATLAS predicts the graviton KK mode mass lying within
1.01 TeV < mG,ATLAS

1 < 2.22 TeV for 0.01 < εRS < 0.1.
This implies a serious conflict between the graviton KK
modes as predicted in the RS model and the result reported
by the ATLAS Collaboration. For the proposed model the
lightest bound of the KK graviton mass is estimated as
1.68 TeV < mG,RS

1 < 16.82 TeV, which is above the recent
lower bound of the KK graviton mass measured through the
LHC ATLAS dilepton search and lies within the parameter
space for the future probing region of LHC. By taking into
consideration the enhancement of the coupling between SM
fields and graviton, it may be observed from Table 1 that, for
εRS = 0.07 or higher, the lower bound of the graviton KK
mode exceeds that predicted from the ATLAS data.

To study the various hidden phenomenological features
within the super-Planckian regime of the UV cut-off scale
from our proposed setup the scanned parameter space is given
by

α5 = O((4.8 − 5.1) × 10−7),

|A1| ∼ O(0.01 − 0.09),

θ2 = −θ1,

χ1 = θ1φ(π) ∼ −11,

χ2 = θ2φ(π) ∼ 11,

f or m H ∼ O((125 − 126) GeV ).

(31)

This bound on the GB coupling α5 is also consistent with
the solar system constraint [41], the combined constraint
from the Higgs mass, and the favored decay channels H →
(γ γ, τ τ̄ ) [24] using ATLAS [25] and CMS [26] data within
the 5σ statistical C.L. Additionally, the parameter space men-
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Fig. 1 Variation of the lightest Kaluza–Klein graviton mass mG
1 for

the n = 1 mode from the proposed model (red curve) and Randall–
Sundrum (RS) model (blue curve) with respect to the phenomenological
parameter εRS = kRS

M5
within the range 0.01 < εRS < 0.10. We also

show the present status of the lower limit of the lightest Kaluza–Klein
graviton mass for the LHC ATLAS dilepton search by the green curve
as depicted in Table 1. Here for this plot we fix the model parameters
as follows: α5 = 5 × 10−7, A1 = 0.05, θ2 = −θ1, θ2φ(π) ∼ 11, and
θ1φ(π) ∼ −11. Here the allowed region is in the upper half of the green
curve. The rest of the region (below the green curve) is ruled out

tioned in Eq. (31) is a necessary ingredient to increase/uplift
the lower bound of the lightest KK graviton mass constrained
from the LHC ATLAS dilepton search. It is important to men-
tion here that the bound on the 5D Gauss–Bonnet coupling
obtained from Eq. (31) is below the upper cut-off on the
coupling obtained from the Kubo formula, i.e. α5 < 1/4
[4,5,27], obtained in the context of the AdS5/CFT4 corre-
spondence.

In Fig. 1 we show the variation of the lightest Kaluza–
Klein graviton mass from the proposed model (represented
by a red curve) and the Randall–Sundrum (RS) model (repre-
sented by a blue curve) with respect to the phenomenological
parameter εRS = kRS

M5
, within the range 0.01 < εRS < 0.10

as stated in Eq. (31). We also show the present status of
the lower limit of the lightest Kaluza–Klein graviton mass
for the LHC ATLAS dilepton search by the green curve in
Fig. 1. Here the allowed region is in the upper half of the
green curve. The rest of the region below the green curve phe-
nomenologically is ruled out. We have also explored the phe-
nomenological feature of the lightest Kaluza–Klein graviton
mass with respect to the dilaton coupling χ2 = θ2φ(π) with
the 5D AdS5 cosmological constant �5 at the wall of the
visible brane for the proposed theoretical setup in Fig. 2.
We also show the present status of the allowed region for
the lower limit of the lightest Kaluza–Klein graviton mass
for the LHC ATLAS dilepton search by the yellow shaded
region in Fig. 2. This will constrain the parameter χ2 within
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ALLOWED REGION FROM THE
LHC ATLAS DILEPTON SEARCH REGION

FOR
FUTURE
SEARCH
AT LHC
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Fig. 2 Variation of the lightest Kaluza–Klein graviton mass mG
1 for

n = 1 mode with respect to the dilaton coupling χ2 = θ2φ(π) for
the proposed theoretical setup for 0.01 < εRS < 0.10 at the wall of
the TeV brane. We also show the present status of the allowed region
for the lower limit of the lightest Kaluza–Klein graviton mass for the
LHC ATLAS dilepton search by the yellow shaded region bounded
by the black colored line drawn for εRS = 0.10 and εRS = 0.01,
respectively. Here for this plot we fix A1 = 0.05, θ2 = −θ1, and
α5 ∼ 5 × 10−7. Additionally, the white region bounded by the red and
blue curves represents the future probing region for LHC. Also the black
dotted region represents the overlapping area between the parameter
space obtained from the proposed model and the present LHC ATLAS
dilepton search

χ2 ∼ O(6–12.8). This is also consistent with the present the-
oretical analysis as the proposed setup predicts χ2 ∼ 11 as
mentioned in Eq. (31). For both branches the lightest Kaluza–
Klein graviton mass increases exponentially by increasing
the dilaton couplingχ2 = θ2φ(π) and fixing the other param-
eters within the allowed parameter space stated in Eq. (31).
Next in Fig. 3a and b we present the characteristic feature of

the lightest Kaluza–Klein graviton mass with respect to the
5D Gauss–Bonnet coupling (α5) for the proposed theoreti-
cal setup for εRS = 0.01 and εRS = 0.10, respectively. For
both cases the lightest Kaluza–Klein graviton mass increases
by increasing the 5D Gauss–Bonnet coupling (α5) and fix-
ing the other parameters stated in Eq. (31). We also show
the present status of the lower limit of the lightest Kaluza–
Klein graviton mass for the LHC ATLAS dilepton search by
a point in Fig. 3a and b both. To uplift/increase the lower
bound of the lightest Kaluza–Klein graviton mass estimated
from the proposed theoretical setup compared to the LHC
dilepton search by proposing the 5D Gauss–Bonnet coupling
(α5) within α5 ∼ O((4.8–5.1) × 10−7), as explicitly men-
tioned in Table 1. Finally, in Fig. 4a and b we explicitly
show the behavior of the lightest Kaluza–Klein graviton mass
with respect to the string two-loop coupling A1 by fixing the
rest of the parameters for the proposed theoretical setup for
εRS = 0.01 and εRS = 0.10, respectively. For both cases the
lightest Kaluza–Klein graviton mass decreases by increasing
the string two-loop coupling A1 and fixing the other parame-
ters stated in Eq. (31). We also show the present status of the
lower limit of the lightest Kaluza–Klein graviton mass for
the LHC ATLAS dilepton search by a point in these figures.

To summarize, we say that the perturbative two-loop
higher genus correction to Einstein gravity in the presence
of a stringy type IIB gravidilatonic interaction can also be
examined through collider experimental tests by studying
the hidden phenomenological features of the lightest KK
mode from the graviton mass spectrum. Using the prescrip-
tion mentioned in this paper one can directly check the valid-
ity and justifiability of higher order gravity or any modified
gravity model in the presence of stringy higher genus correc-

PRESENT STATUS OF THE

LOWER BOUND OF

THE LIGHTEST

KALUZA KLEIN GRAVITON

MASS FROM LHC

ATLAS DILEPTON SEARCH FOR

0.01

AMOUNT

OF

UPLIFT

0.000 0.002 0.004 0.006 0.008 0.010
1.0

1.2

1.4

1.6

1.8

2.0

5 Gauss Bonnet Coupling

m
G

1
in

T
eV

mG1 vs 5 plot for RS 0.01

PRESENT STATUS OF THE

LOWER BOUND OF

THE LIGHTEST

KALUZA KLEIN GRAVITON

MASS FROM LHC

ATLAS DILEPTON SEARCH FOR

0.1

AMOUNT

OF

UPLIFT

0.0000 0.0002 0.0004 0.0006 0.0008

5

10

15

20

25

mG1 vs plot for 0.15 RS

m
G

1
in

T
eV

5 Gauss Bonnet Coupling

(a) (b)

RS

RS

Fig. 3 Variation of the lightest Kaluza–Klein graviton mass mG
1 with

respect to 5D Gauss–Bonnet coupling α5 for the n = 1 mode with a
εRS = 0.01 and b εRS = 0.1 for the proposed theoretical setup at the
wall of the TeV brane. We also show the present status of the lower
limit of the lightest Kaluza–Klein graviton mass for the LHC ATLAS
dilepton search by the black colored point drawn for εRS = 0.10 and

εRS = 0.01, respectively. For this plot we fix A1 = 0.05, θ2 = −θ1,
θ2φ(π) ∼ 11, and θ1φ(π) ∼ −11. Additionally, we show the amount
of the uplift of the lower bound of the lightest Kaluza–Klein graviton
mass compared to the result obtained from the LHC ATLAS dilepton
search
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Fig. 4 Variation of the lightest Kaluza–Klein graviton mass mG
1 with

respect to the string two-loop coupling A1 for n = 1 mode with a,
εRS = 0.01, and b, εRS = 0.1, for the proposed theoretical setup at the
wall of the TeV brane. We also show the present status of the lower limit
of the lightest Kaluza–Klein graviton mass for the LHC ATLAS dilepton

search by the black colored point drawn for εRS = 0.10 and εRS = 0.01,
respectively. Here for this plot we fix θ2 = −θ1, θ2φ(π) ∼ 11, and
θ1φ(π) ∼ −11. Additionally, we show the amount of the uplift of the
lower bound of the lightest Kaluza–Klein graviton mass compared to
the result obtained from the LHC ATLAS dilepton search

tions and also constrain the associated parameter space which
involves various couplings with such higher order gravity
corrections. Thus, in this work, by applying the requirements
from the latest data we have also elaborately analyzed the
multiparameter space dependence on the lightest Kaluza–
Klein graviton mass by studying the flow of the running
through the crucial parameters proposed in this article. This
analysis therefore determines the allowed parameter space
for the proposed model and brings out the phenomenologi-
cal constraint on the value of the stringy parameters in the
context of the recent LHC experiment by scanning the multi-
parameter space within a phenomenologically feasible range.
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