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Neutrinos emitted deep within a supernova explosion experience a self-induced index of refraction.
In the stationary, one-dimensional (1D) supernova “bulb model,” this self-induced refraction can lead to a
collective flavor transformation which is coherent among different neutrino momentum modes. Such
collective oscillations can produce partial swaps of the energy spectra of different neutrino species as the
neutrinos stream away from the proto-neutron star. However, it has been demonstrated that the spatial
symmetries (such as the spherical symmetry in the bulb model) can be broken spontaneously by collective
neutrino oscillations in multidimensional models. Using a stationary, 2D neutrino ring model we
demonstrate that there exist two limiting scenarios where collective oscillations may occur. In one limit,
the collective flavor transformation begins at a radius with relatively high neutrino densities and develops
small-scale flavor structures. The loss of the spatial correlation in the neutrino flavor field results in similar
(average) energy spectra for the antineutrinos of almost all energies and the neutrinos of relatively high
energies. In the other limit, the flavor transformation starts at a radius where the neutrino densities are
smaller (e.g., due to the suppression of the high matter density near the proto-neutron star). Although the
spatial symmetry is broken initially, it is restored as the neutrino densities decrease, and the neutrinos
of different flavors partially swap their energy spectra as in the 1D bulb model. This finding may have
interesting ramifications in other aspects of supernova physics.
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I. INTRODUCTION

Neutrinos are fundamental particles which are nearly
massless, carry no electric charge, and interact only through
the weak interaction and gravitation. Nevertheless, they can
have a significant impact on the evolution of their envi-
ronments such as the early universe, core-collapse super-
novae, and neutron star mergers where they are copiously
produced.
Neutrinos are emitted in weak-interaction states which

are not coincident to the mass states of the free particle.
As a result, neutrinos can undergo flavor oscillations even
in vacuum [1]. The flavor evolution of a neutrino becomes
more complicated when it propagates through a dense
medium. In the coherent forward scattering limit, the
neutrino acquires an index of refraction which depends
on the leptonic flavor content of the medium [2–4].
This effect becomes even more interesting when there
is a significant presence of other neutrinos, as the

coherent forward scattering permits the propagating neu-
trinos to exchange flavor information with background
neutrinos [5–7].
The flavor evolution of a dense neutrino medium is

governed by a system of seven-dimensional (1 in time, 3 in
space, and 3 in neutrino momentum), nonlinear, partial-
differential equations that have been tackled with various
simplifications. The well-known “bipolar model” assumes
a homogeneous and isotropic distribution of mono-
energetic neutrinos [8,9]. This model exhibits a behavior
which is isomorphic to a gyroscopic pendulum [10]. The
“bulb model” is a spherically symmetric and stationary
model which simulates neutrinos streaming off a single
spherical surface [11]. These models have been studied
extensively in the literature, and display a wealth of
interesting features such as spectral swaps/splits and
coherence across momentum modes over long-distance
scales (see, e.g., Refs. [12–17] among many others; see also
Ref. [18] for a review).
The results of the simplified models, however, are not

necessarily physical because of the symmetric conditions
that are artificially imposed to simplify the calculations.
Indeed, it has been shown through the stability analysis of
the linearized flavor evolution equations that these sym-
metries can be spontaneously broken by neutrino oscil-
lations [19–22]. The few existing numerical calculations
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confirm that the symmetry-breaking instabilities can indeed
trigger rapid oscillations of the neutrino flavor field on
small distance scales and thus reduce or even destroy its
correlation in time, space, and momentum [23–28].
(However, see Ref. [29] where a coherent fast oscillation
wave was reported for a dynamic model.)
The primary goal of this work is to investigate if the

spectral swap, the hallmark of collective neutrino oscil-
lations in the one (spatial) dimensional (1D) model, also
exists in multidimensional models. For this purpose we
adopt a stationary 2D neutrino ring model similar to that in
Ref. [26] except for trading the multiple angle bins for
multiple energy bins.
The rest of the paper is organized as follows. In Sec. II

we write down the equations of motion that govern the
neutrino oscillations in the ring model. In Sec. III we
describe the configurations of the numerical examples
and the approach that we used to solve them. In Sec. IV
we present the results of our calculations, and in Sec. V
we discuss the implications of our results and give our
conclusions.

II. EQUATIONS OF MOTION

We consider the mixing of two neutrino flavors, νe and
ντ, where ντ is a suitable linear combination of the physical
νμ and ντ. In the absence of collisions, the flavor contents of
the neutrino and antineutrino fields of momentum p⃗ at
spacetime point ðt; r⃗Þ can be represented by the normalized
polarization vectors Pp⃗ðt; r⃗Þ and P̄p⃗ðt; r⃗Þ in flavor space,
respectively. The evolution of the polarization vectors is
governed by the system of transport equations [30],

ð∂t þ v̂ · ∇⃗ÞPp⃗ ¼ ðωBþ λe3 þ Vv̂Þ × Pp⃗; ð1aÞ

ð∂t þ v̂ · ∇⃗ÞP̄p⃗ ¼ ð−ωBþ λe3 þ Vv̂Þ × P̄p⃗; ð1bÞ

where the three terms inside the parentheses on the right-
hand side of the equation represent the vacuum mixing, the
matter effect, and the neutrino self-coupling, respectively.
The vacuum oscillation frequency and the matter potential
are ω ¼ δm2=2E and λ ¼ ffiffiffi

2
p

GFne, respectively, where
δm2 and E ¼ jp⃗j are the mass-squared difference and the
energy of the neutrino, GF is the Fermi coupling constant,
and ne is the local net number density of the electrons. The
flavor basis vectors ei (i ¼ 1, 2, 3) are defined in such a
way that the vacuum mixing is given by the unit vector
B ¼ sinð2θvÞe1 − cosð2θvÞe3, with θv being the vacuum
mixing angle. In this basis,

Pνeνe ¼
1þ P3

2
¼ 1þ P · e3

2
ð2Þ

is the probability for a neutrino initially in the electron
flavor to survive in the same flavor or the νe survival

probability. Lastly, the neutrino self-interaction or neutrino-
neutrino forward scattering is given by

Vv̂ ¼
ffiffiffi
2

p
GF

Z
d3p0

ð2πÞ3 ð1 − v̂ · v̂0Þf½ρ0eeðp⃗0Þ

− ρ0ττðp⃗0Þ�Pp⃗0 − ½ρ̄0eeðp⃗0Þ − ρ̄0ττðp⃗0Þ�P̄p⃗0 g; ð3Þ

where ρ0ββ and ρ̄0ββ (β ¼ e, τ) are the initial occupation
numbers of the corresponding neutrino flavor. We use the
superscript 0 to denote the values of the physical quantities
when there is no neutrino flavor transformation.
We utilize a stationary, 2D neutrino ring model similar to

those in Refs. [26,31]. In this model, the neutrinos are
constantly emitted from a ring of radius Rν and stream
freely in the x-y plane. In the current work, we assume only
two neutrino beams are emitted from every point on the
neutrino ring such that

ρ0eeðp⃗Þ ¼
n0νe
2E

f0νeðEÞδðpzÞ½δðϑ − ϑ0Þ þ δðϑþ ϑ0Þ� ð4Þ

on the neutrino ring, where n0νe and f0νeðEÞ are the number
density and the normalized energy distribution of νe on the
ring, respectively, ϑ ∈ ½−π=2; π=2� is the angle that the
neutrino momentum p⃗ makes with the radial direction,
and ϑ0 > 0 is a constant. We assume similar emissivities for
the other neutrino flavors with the following normalization
conditions:

Z
∞

0

f0νðEÞdE ¼ n0ν
n0νe

ðν ¼ νe; ν̄e; ντ; ν̄τÞ: ð5Þ

In this stationary, two-beam neutrino ring model,

Pp⃗ðt; r⃗Þ → P�
E ðr;ΦÞ; P̄p⃗ðt; r⃗Þ → P̄�

E ðr;ΦÞ; ð6Þ

and

∂t þ v̂ · ∇⃗ → D� ¼ vr∂r �
Rν

r2
sin ϑ0∂Φ; ð7Þ

where we have used the polar coordinates (r;Φ) in the x-y
plane with the center of the neutrino ring at the origin,
the plus and minus signs are for the neutrino beams with
emission angles �ϑ0, respectively, and

vrðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Rν

r

�
2

sin2ϑ0

s
ð8Þ

is the radial component of the neutrino velocity. The
neutrino self-coupling potential becomes
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Vv̂→V�ðr;ΦÞ¼μ

Z
∞

0

½ðf0νe−f0ντÞP∓
E −ðf0ν̄e−f0ν̄τÞP̄∓

E �dE;

ð9Þ

where

μðrÞ ¼
ffiffiffi
2

p
GFn0νe

sin2ϑ0 cos ϑ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðRν=rÞ2sin2ϑ0

p
�
Rν

r

�
4

: ð10Þ

In Eq. (10) we have modified the ring model by including
an extra factor of Rν=r to mimic 3D supernova models in
which the neutrino fluxes decrease as 1=r2 instead of 1=r
in the original ring model. We also assume a large matter
density distributed symmetrically about the center of the
neutrino ring such that

�ωBþ λe3 →∓ ηjωj cos ð2θvÞe3 ð11Þ
in the appropriate rotating reference frame in flavor space,
where η ¼ þ1 for the normal neutrino mass hierarchy (NH)
and −1 for the inverted hierarchy (IH). In summary, the
original equations of motion (1) reduce to

D�P�
E ¼ ð−ηjωj cos ð2θvÞe3 þ V�Þ × P�

E ; ð12aÞ

D�P̄�
E ¼ ðηjωj cos ð2θvÞe3 þ V�Þ × P̄�

E ð12bÞ

for the model that we are considering. It is straightforward
to show from the above equations that the average electron
lepton number (ELN),

L ¼
Z

2π

0

dΦ
2π

Z
∞

0

dE½ðPþ
E;3 þ P−

E;3Þðf0νe − f0ντÞ

− ðP̄þ
E;3 þ P̄−

E;3Þðf0ν̄e − f0ν̄τÞ�; ð13Þ

is constant along r.

III. NUMERICAL APPROACH

As a concrete example, we consider a model with a
neutrino emission ring of radius Rν ¼ 10 km. Two neutrino
beams with emission angles �π=4 are emitted from each
point on the ring with an approximate circular symmetry
around the ring. As in Ref. [11], we assume the neutrino
species ν in each neutrino beam has the Fermi-Dirac
spectrum

f0νðEÞ ∝
E2

expðE=Tν − ξνÞ þ 1
ð14Þ

with Tνe ¼ 2.76 MeV, T ν̄e ¼ 4.01 MeV, Tντ ¼ T ν̄τ ¼
6.26 MeV, and ξν ¼ 3 for all the neutrino species.
We also assume μðRνÞ ¼ 5 × 104 km−1, n0ν̄e=n

0
νe ¼ 0.8

and n0ντ=n
0
νe ¼ n0ν̄τ=n

0
νe ¼ 0.4, and jδm2j cosð2θvÞ ¼ 2.5 ×

10−15 MeV2 for vacuum mixing.

One way to solve Eq. (12) is to first perform the Fourier
transformation:

PðmÞðrÞ ¼
Z

2π

0

Pðr;ΦÞe−imΦ dΦ
2π

; ð15aÞ

P̄ðmÞðrÞ ¼
Z

2π

0

P̄ðr;ΦÞe−imΦ dΦ
2π

; ð15bÞ

and then solve the evolution of the Fourier moments
numerically [26]. In the linear regime where jP − e3j
and jP̄ − e3j are much less than 1, one can perform the
flavor stability analysis on the neutrino gas [21]. In this
regime, the evolution of the Fourier moments of different
values ofm are decoupled. In Fig. 1 we show the maximum
exponential growth rate κmax for various Fourier moments
and at different radii assuming that no significant flavor
conversion has occurred.
In Ref. [26] all the Fourier moments but those with

m ¼ 0 and �1 were assumed to be 0 initially. Figure 1
shows that a calculation with this assumption would not
see flavor conversion until r≳ 50 km where the lowest
moments become unstable, even though the higher
moments are unstable at smaller radii. It has been shown
in the 2D neutrino line model, which is similar to the ring
model but has constant neutrino densities, that the high
moments that are unstable can not only grow by themselves
but also cause the growth of other Fourier moments, and
eventually lead to significant flavor conversion in the
whole system [28].
In this work we solve Eq. (12) directly in the polar

coordinates (r;Φ). We discretize both Φ ∈ ½0; 2πÞ and E ∈
½0; 75� MeV into predetermined, equal-sized, discrete bins,
and we solve the corresponding polarization vectors adap-
tively along the radial direction using a finite difference
algorithm derived from the Lax-Wendroff method [28,32].
We use a large number of Φ bins (128,000 for most of the
calculations) to ensure the numerical convergence and the
accuracy of the results. We use a relatively small number

FIG. 1. The maximum exponential growth rate κmax as a
function of the Fourier moment index m and the radius r in
the two-beam neutrino ring model. This growth rate is indepen-
dent of the neutrino mass hierarchy for this model.
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(128) of energy bins because collective neutrino oscilla-
tions are known to be insensitive to the energy resolution.
We do not enforce the unitary condition jPj ¼ jP̄j ¼ 1 but
use it as a validity check of the calculations.
Although the neutrino gas has flavor instabilities even

on the neutrino ring in the two-beam model, this is not
necessarily the case for the 2D and 3D models with
continuous angular distributions in neutrino emission. It
has been shown that these instabilities can be suppressed
near the proto-neutron star by the presence of a large matter
density [21]. [The largest index of the unstable moments is
underestimated in Ref. [21] because of the absence of a
factor of β2max in its Eq. (2.6).] To mimic this suppression in
the supernova environment, we start the calculations at
various radii rini in the two-beam ring model. In this work
we study six cases with different neutrino mass hierarchies
and various values of rini which are listed in Table I.
We stop the calculations at rfin ¼ 350 km where the
neutrino fluxes are too small to affect oscillations.

In all six cases, we assume the following energy-
independent initial conditions for the polarization vectors:

P�
E ðrini;ΦÞ ¼ P̄�

E ðrini;ΦÞ ¼
�
ϵ�; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2�

q �
; ð16Þ

where

2ϵ−ðΦÞ ¼ ϵþðΦÞ ¼ ϵ0 þ ϵ1 sinðΦÞ þ ϵge−ðΦ−πÞ2=2σ2 ð17Þ

with ϵ0 ¼ 10−3, ϵ1 ¼ 10−4, ϵg ¼ 10−3, and σ2 ¼ 0.1. We
have intentionally broken the symmetry between the two
neutrino beams emitted from the same point so that the
neutrino gas can be unstable in both mass hierarchies even
for the m ¼ 0 mode. We have also included perturbations
which break the circular symmetry both globally and
locally.

IV. FLAVOR EVOLUTION

A. Inverted mass hierarchy

In the upper panels of Fig. 2 we show the ratios of local
νe densities with and without flavor conversions,

nνe
n0νe

¼ 1

4

Z
∞

0

½ðPþ
E;3 þ P−

E;3Þðf0νe − f0ντÞ þ 2ðf0νe þ f0ντÞ�dE;

ð18Þ

in cases I through III with the IH, which mimic the
scenarios where the matter suppression is lifted at radii

TABLE I. The parameters of the six cases in the numerical
survey of the two-beam neutrino ring model.

Case No. Hierarchy rini (km) Φ bins

I IH 105 128,000
II IH 120 128,000
III IH 140 128,000
IV NH 120 256,000
V NH 130 128,000
VI NH 140 128,000

FIG. 2. Top panels: The ratios of local νe densities with and without flavor conversions, nνe=n
0
νe , in the polar coordinates (r;Φ) in cases

I through III which all employ the inverted neutrino mass hierarchy (IH) and have rini ¼ 105 km (left panel), 120 km (middle panel), and
140 km (right panel), respectively. Bottom panels: The ratios hn0νei=n0νe and hn0ν̄ei=n0ν̄e averaged over Φ at the same r. The values of rini,
the radii where the calculations begin, are shown as the vertical dot-dashed lines in the bottom panels.
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rini ¼ 105 km, 120 km, and 140 km, respectively. We also
show the ratios hnνei=n0νe and hnν̄ei=n0ν̄e averaged over the
angular coordinateΦ in the lower panels of the same figure.
Similar to the 1D bulb model [11,12], the neutrino gases in
the 2D ring model exhibit bipolarlike oscillations in all
three cases shortly after the calculations begin. The
oscillation length scales increase with r because the bipolar
oscillations have frequency ∝

ffiffiffiffiffiffiffiffiffi
μðrÞp

[8,9] which decreases
with r in the ring model. These oscillations at different Φ
are coherent initially, although the circular symmetry is
broken as manifested by the slightΦ dependence of nνe=n

0
νe

in the upper panels of the figure. Similar to the neutrino
gases in the line model [28], small flavor structures begin
to develop at r ≈ 160 km in case I, and hnνi=n0ν reach
equilibrium values at r ≈ 180 km after the small-scale
flavor structures are sufficiently developed. In contrast,
the coherent bipolarlike oscillations continue in cases II
and III until r≳ 250 km where collective oscillations fade
away because of the low neutrino densities.
In Fig. 3 we show the electron flavor neutrino survival

probabilities PνeνeðΦ; EÞ (averaged over the two neutrino
beams) in the above three cases at both 10 km after the
calculations begin and the final radius rfin ¼ 350 km where
we stop the calculations. This figure shows that the
bipolarlike oscillations in all three cases are coherent across
both the angular space and the energy space initially. It is
also clear that the circular symmetry is manifestly broken
by collective oscillations in all three cases, especially for
neutrinos with energies larger than a few MeV. However,
the neutrino gases in the three cases reach different fates at
the final radius. In case I, the flavor survival probability

PνeνeðΦ; EÞ of the gas at rfin has rather rapid oscillations in
terms of Φ but a relatively smooth dependence of E. In
contrast, in case III, the circular symmetry is almost
completely restored at rfin where PνeνeðΦ; EÞ has very
little dependence on Φ and is a step function of E. This
steplike dependence of Pνν is known as the spectral swap/
split which is a hallmark of the collective neutrino
oscillations in the 1D bulb model [11,12]. Case II is in
the middle ground between cases I and III. Its final neutrino
flavor survival probability PνeνeðΦ; EÞ shows both the
spectral swaps/splits and explicit breaking of the circular
symmetry.
In Fig. 4 we compare the averaged initial and final

energy spectra for all neutrino species in cases I through III.
In case I, the average spectra of ν̄e and ν̄τ become similar to
each other at rfin, as are νe and ντ with E≳ 15 MeV. We
note that the spectra of νe and ντ cannot be similar in all the
energy range, or the ELN L defined in Eq. (13) would not
be constant. In contrast, the e and τ flavor (anti) neutrinos
partially swap their energy spectra in the other two cases as
in the bulb model.

B. Normal mass hierarchy

The behaviors of the neutrino gases with the NH are
qualitatively the same as those with the IH. In the upper
panels of Fig. 5, we show the ratios nνe=n

0
νe as functions

of r and Φ for cases IV through VI, which mimic the
scenarios where the matter suppression is lifted at radii
rini ¼ 120 km, 130 km, and 140 km, respectively. In the
lower panels we show the angle averaged ratios hnνei=n0νe
and hnν̄ei=n0ν̄e as functions of r. Compared to the IH cases,

FIG. 3. The νe flavor survival probability Pνeνeðr;ΦÞ (averaged over the two neutrino beams) for the same three cases described in
Fig. 2 at radii rini þ 10 km (top panels) and rfin ¼ 350 km, respectively.
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the neutrino gases with the NH are more prone to develop
fine flavor structures. Even the neutrino gas in case V with
rini ¼ 130 km begins to have small-scale flavor structures
at r ≈ 180 km.
In Fig. 6 we show both the electron-flavor neutrino

survival probabilities and the averaged energy spectra of νe
and ντ at the final radius. Similar to case I, Pνeνe in case IV
has rapid oscillations with respect to Φ but is relatively
smooth in E. The small-scale flavor structures result

in similar νe and ντ spectra at E≳ 18 MeV. Similar to
case III, both the survival probability and average energy
spectra in case VI have developed spectral swaps/splits.
Case V is in the middle ground between cases IV and VI
and has more explicit fine flavor structures than case II.
We note that case VI is in contrast to the bulb model

which does not produce swap/split in the NH scenario
(without a suitable matter profile). This difference is due to
the fact that the neutrinos in the bulb model possess an axial

FIG. 4. The average energy spectra hfνðEÞi (over both the angular coordinate Φ and the neutrino beams) for various neutrino species
and at the initial and final radii, rini and rfin (as labeled), in the three cases described in Figs. 2 and 3.

FIG. 5. Similar to Fig. 2 but for a set of three calculations, cases IV through VI, with the NH and with rini ¼ 120 km, 130 km, and
140 km, respectively.
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symmetry about the radial direction which corresponds to
the symmetry between the two neutrino beams in the ring
model. The latter symmetry is spontaneously broken when
the circular symmetry is violated. It has been shown that the
neutrino oscillation modes which break the symmetry in
momentum space (e.g., the axial symmetry in the bulb
model) in the NH scenarios behave in a way qualitatively
similar to the symmetry preserving modes in the corre-
sponding IH scenarios [19,33–35].

V. DISCUSSION AND CONCLUSIONS

We have developed a numerical code to study the
nonlinear behavior of a dense neutrino gas emitted from
a 2D ring. Inspired by the suggestion that flavor evolution
may be suppressed by a large matter density near the proto-
neutron star, we have elected to investigate the behavior of
the gas in the nonlinear regime for cases in which flavor
evolution begins at different radii. We have chosen a set of
Fermi-Dirac energy spectra for the neutrinos of different
flavors and simulated the evolution of the gas from two
initial emission angles.
Our results show two distinct behaviors, each of which

has been observed in previous studies. We find that, when
flavor conversion begins at higher neutrino number den-
sities (and at lower radii), the spatial correlation of the
neutrino flavor field can be largely destroyed. This behav-
ior is similar to that of the neutrino gases in the 2D neutrino
line models which have constant neutrino densities.
Although the flavor instability window shifts and narrows
with the decreasing neutrino densities in the ring model,
small-scale flavor structures have been sufficiently

developed before the window fully closes. In this scenario,
the antineutrinos of different flavors achieve similar energy
spectra in the end. The neutrinos of different flavors with
relative high energies also obtain similar spectra, but at low
energies the spectra must differ in order to respect the
conservation of the ELN.
In our study we also find that there exists an opposite

scenario in which the gas is unstable to self-induced flavor
conversion, but the neutrino flavor field remains coherent in
space. In this second scenario, although the spatial symmetry
(i.e., the circular symmetry in the ring model and the
spherical symmetry in the bulb model) is manifestly broken
by neutrino oscillations, there is not a sufficient window
for the small-scale flavor structures to be fully grown.
Remarkably, the spatial symmetry is restored as the collective
neutrino oscillations cease. We also observe spectral swaps
with corresponding sharp splits in the survival probabilities.
This spectral swap/split behavior is a characteristic of the
neutrino flavor transformation in 1D studies, but until now it
has not been observed in 2D models.
We have observed qualitatively similar behaviors for

the neutrino gases with the NH and IH, although the NH
scenarios are much more prone to the development of
small-scale flavor structures than the IH ones. In the
limiting scenarios where the spatial correlation of the
neutrino flavor field is maintained, the neutrino gases
obtain similar spectral swaps in either mass hierarchy.
Although we have demonstrated this phenomenon using
the energy spectra similar to those with which the spectral
swaps were first reported [11,12], we have verified that
similar results are also obtained when other neutrino

FIG. 6. The νe flavor survival probability Pνeνeðr;ΦÞ and the average energy spectra hfνðEÞi for νe and ντ at rfin in the three cases
described in Fig. 5.
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spectra, e.g., the ones which induce multiple swaps/splits
[16,36], are employed.
Our study highlights the inadequacy of the analytic

analysis of the flavor stability of the neutrino gas in the
linear regime, which does not predict the behavior of the
neutrino flavor transformation in the nonlinear regime. Our
results suggest that neutrino oscillations, independent of
which scenario may occur in a real supernova environment,
can have important impacts on the nucleosynthesis and the
neutrino signals (e.g., see Refs. [37–39]).
The neutrino ring model we adopted has only two

neutrino beams from each emitting point. It is known that
the dispersion in the flavor oscillations of the neutrinos
propagating in different trajectories can introduce
kinematic decoherence and even suppress oscillations
[15,36,40]. We have artificially begun our calculations
at different radii to mimic the suppression of the large
matter density. These shortcomings will be addressed in
future works.
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