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A strongly continuous bisemigroup E(t) on a Banach space X is a 
function from R\{O} to the space of bounded operators L(H) such that: 
(i) E(t)E(s)=±E(t÷s) i f  sgn(s)=sgn(t)=+_ arid E(t)E(s)=O if sgn(s)=-sgn(t), 
(ii) E(.) is strongly continuous, 
(iii) ]I',÷R_=I, 
where ]l"±=s-lim(±E(t)) as ±t~O, are the separating projectors for the 

bisemigroup. An operator S is the generator of the bisemigroup E(S;t) if 
E(S;t)= ±exp(-t$)n,_, ±t>o and the separating projectors define invariant 
subspaces for S. The bisemigroup (B) will be called bounded, holomorphic 
(H), stronglg decaging (SD) or exponentially decaying (ED) if the semi- 
groups ±E(t)TI±, _+t>O, on RanTl'±, have the respective property. 

EDB (i.e. the resolvent of the generator contains a band around the 
imaginarg axis) arise in situations where the notion exponential 
dichotomg is relevant, e.g. in system theorg 1} or in the linearization of a 
dgnamical sgstem close to an tnvariant manifold 2). SD or ED HB arise in 
the theorg of stationarg one dimensional transport processes 3J,4),5),6},r). 

Suppose (for simplicitg) that S is a self-adjoint operator on a 
Hilbert space H and zero is not an eigenvalue of S. it is immediate that $ 
generates a SDHB and the separating projectors are exactlg the ÷/- 
spectral projectors for S. We ask the question: what are sufficient 
conditions a perturbation S"=S-SB to generate a SDHB? Note that this 
question is far more subtle that the problem of perturbing semigroupS 
because in our case one has to find separating projectors for S", but even 
when S is such a nice operator (self adjoint) there is no apriorg reason 
whg S" should have invariant subspaces. 

Consider the operator valued function Ik(.)=E(S;.)SB. For a H-valued 
function ~(.), define (~,~)(t)=j'dsE(t-s)~(s), -~,<s<~. If the operator 
(I÷ L")=(1-SJ -1 exists, then one checks that the perturbed bisemigroup E" 
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is given by E"(t)=((l+ .~,")E)(t):E(t).(I~".EXt). In checking that (I-;T~,) is 

invertible, a key role plays the Bouchner-Phillips theorem 6),9),10) (a 
noncommutative generalization of a lemma of Wiener11)). In order to apply 
the BP theorem we have to view I~ as an element of an appropriate Banach 
algebra of operator valued functions, integrable in a certain sense, with 
multiplication given by convolution. Then the BP theorem asserts that 
(I-S~) is invertible iff its symbol W(X) is invertible on the extended 
imaginary axis. it is immediate to check that W(~h)=l-J'exp(Xt)l~t)dt= 
(X-S)-V(X-S"). Thus, if the operator S" has no spectrum on the imaginary 
axis, (I-~) is invertible, and so SX=$-SB generates a bisemigroup. 

A complete characterization of operators generating EDB was made 
in 1) They also proved a theorem for perturbation of EDB by finite rank 
Perturbations. In ~2) a perturbation theorem was proved (though the term 
bisemigroup was not used) for EDB and perturbing operator B which is 
compact and satisfies the following regularity condition: RanBcRanI51 -o' 
for some cx>O. This condition assures that ~. belongs to the space of 
Bochner integrable functions LI(R,L(H)), for which the BP theorem holds, in 
trying to relax the regularity assumption one looks for weaker notions of 
integrability. Using the weak integrability of 1~ (which is always true), 
Feldman 13) showed that (!-,,~) is invertible on Lz functions. But the L2- 

setting is not appropriate for obtaining bisemigroup results. One has to 
view ~, as an operator on C(R,H) instead. To get a better understanding of 
the different spaces of integrable functions it is useful to consider them 
as different tensor product spaces (see 14),1s)), e.g. LI(FI,L(H))=LI(FI)®.nL.(H). 
It is known that C(FI,H)=C(R)®tH, thus the natural algebra of integrable 

Operator valued functions with multiplication given by convolution is 
£1,=LI(FI)®iL(H), where the norm is the operator norm on a viewed as a 

Subalgebra of the algebra of bounded operators on C(FI,H). One has the 
following: 
Theorem. If $ is self adjoint with no eigenvalue at zero and B is a 
Compact operator such that W(~) is invertible on the extended imaginary 
axis then 5" generates a strongly decaying (exponentially decaying if the 
SPectrum of S has a gap at zero) hoiomorphic bisemigroup. Moreover, for 
every t the difference E(t)-E"(t) is a compact operator. 



324 

This theorem was proved in 4},5} with one omission - we assumed 
that B is trace-class in order to prove thai .~, is bounded in C(R,H). This 

gap was filled in 7) see Lemma 2.1. 
All the equations modeling different stationary, linear transport 

processes (radiative transfer, n~utron transport, rarefied gas dinamics, 
etc.) 3}, when resticted to a spaciallg homogeneous media in a plane 
parallel, half-space geometr U can be represented as the following 
abstract boundar u value problem: 

Td~(x)/dx=-A~(x), ._x>O; Q!~(O)=~!; I~(x)~=o(x n) as n--~±oo, 

where n is some positive integer, the ÷/- sign stands for the right/left 
half space problems, (J:)± is the incoming flux, ~(x) is a vector in a Hiibert 
space H, T is a self adjoint injective operator on H, Q± are the separating 

projectors for T, and the coll ision operator A typicall U has the form 
"identit U plus a compact" or "Sturm-Liouville plus a compact'. Suppose 
that T-1A is a generator of a SDHB with separating projectors P,_. A 

solution of  the BVP will take the form E(T'IA,x)h (+_x>O for the right/left 
half space problems) for  some h ~H such that O,P~h=~,. Set V=Q,P, +Q_P. 

The BVP is uniquelg solvable i f f  the albedo operator E=V -1 exists, in case 
B=I-A is compact we obtain that P,_-Q,_ is compact =~ I-V is compact ~ V 

is Fredholm of index zero ~ V is lnvertible i f f  KerV=O. One obtalns that 
the BVP is uniquelg solvable if KerA=O and A is accretive. When KerA=O 
one first shows that an T-1A-invariant decomposition of H exists with one 
summand being the zero root linear manifold of Z0(T-1A). On the 
compliment the analgsis proceeds in the same fashion as for the KerA=O 
case. The measures of nonuniqueness and nonexistance are given bg the 
dimensions of certain subspaces of Z0(T-1A). The case when A is self- 
adjoint and positive has a long historg (for a complete reference to the 
literature see 3)). A complete investigation of  the unlque solvabilitg for 
the BVP in the case of nonsgmmetric, accretive A was made in 4~,6),~,) 

When the coll ision operator A is unbounded the Fredholm 
alternative is not applicable and "weak" solutions in spaces larger than 
the initial space H are sought 3~. In 4),lsl an elegant modification of the 
existing methods was presented. We propose to work in the closure of H 
with respect to the indefinite scalar product (T,,.) - a Krein space. 
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Instead of the Fredholm alternative one uses some simple geometrical 
facts about maximal definite subspaces in a Krein space. 
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