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We report on simulation results with overlap hypercube fermions (overlap HF) — a type of ex-

actly chiral lattice fermions — and their link to chiral perturbation theory. We first sketch the

construction of the overlap HF and discuss its high level of locality. Next we show applications

in the p-regime of QCD, where we evaluatemπ , mρ , the quark mass according to the PCAC re-

lation, the renormalisation constantZA and the pion decay constantFπ as functions of the bare

quark mass.Fπ is then reconsidered at even smaller quark masses in theε-regime, along with

the scalar condensateΣ. In that context we also discuss results for the topologicalcharges and

susceptibility.
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1. Overlap Hypercube Fermions

For free fermions, perfect lattice actions are known analytically [1]. The corresponding lattice
Dirac operator can be truncated to represent a free Hypercube Fermion (HF), which still has ex-
cellent scaling and chirality properties [2]. The HF is gauged by fat links over the shortest lattice
paths. Finally the links are amplified by a factoru&1 to restore criticality and minimise the viola-
tion of the Ginsparg-Wilson relation. Due to the truncation and the imperfect gauging procedure,
the scaling behaviour and the chirality are somewhat distorted. Chirality can be corrected again by
inserting the HF in the overlap formula [3] (at lattice spacinga)

Dov =
ρ
a

(1+A/
√

A†A) , A := D0−
ρ
a

, ρ &1 , (1.1)

whereD0 is some lattice Dirac operator withD0 = γ5D†
0γ5 (γ5-Hermiticity).

• Thestandard overlap fermionis obtained by inserting the Wilson operator,D0 = DW, which
is then drastically changed. We denote the resulting standard overlap operator asDov−W.

• Here we study the case where the HF is inserted in the overlap formula (1.1),D0 = DHF.
This yields the operatorDov−HF, which describes theoverlap HF.

In both cases, one arrives at exact solutions to the Ginsparg-Wilson relation, and therefore at an
exact (lattice modified) chiral symmetry [4].1 However, in contrast toDW, DHF is approximately
chiral already, hence its transformation by the overlap formula,DHF → Dov−HF, is only a modest
modification. Therefore, the virtues of the HF are essentially inherited by theoverlap HF [7].

Here we are going to show mostly quenched results with the standard gauge action atβ = 5.85
(i.e. a' 0.123 fm). For details of the overlap HF construction — as well as its locality, which is
superior compared toDov−W — we refer to Ref. [8].

In Fig. 1 we illustrate the locality at strong
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Figure 1: The locality of different overlap fermions,
measured by the maximal impact of a unit sourceψ̄x on
ψy over a distancer = ‖x−y‖1. At the same value ofβ ,
the overlap HF is clearly more local, and its locality per-
sists up toβ = 5.6, where the standard overlap fermion
collapses.

gauge coupling: atβ = 5.7 the standard over-
lap operator is still barely local, if one chooses
the optimal valueρ = 1.8. Similarly we op-
timiseu = 1.6 for the HF (atρ = 1) and we
still find a clear locality atβ = 5.7, which
is in fact stronger than the one observed for
Dov−W at β = 6 (and optimalρ) [9].
If we proceed toβ = 5.6, the locality col-
lapses forDov−W, hence in that case the stan-
dard overlap formulation does not provide a
valid Dirac operator. On the other hand, if
we insert the HF atu = 1.7 we still observe
locality. Thus the overlap-HF formulation
provideschiral fermions on coarser lattices.

2. Applications in the p-Regime

We first present results in thep-regime, which is characterised by a box lengthL � 1/mπ , so
that thep-expansion of chiral perturbation theory (χPT) is applicable. We considerβ = 5.85, a

1The correctness of the axial anomaly in all topological sectors has beenverified for the standard overlap operator
in Ref. [5], and for the overlap HF in Ref. [6].
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lattice of size 123×24 and (bare) quark masses ofamq = 0.01, 0.02, 0.04, 0.06, 0.08 and 0.1.
We computed 100 overlap HF propagators and first evaluatedmπ in three different ways: (1) From
the pseudoscalar correlator〈PP〉, whereP = ψ̄γ5ψ (2) From the axial correlator〈A4A4〉, where
A4 = ψ̄γ4γ5ψ (3) From〈PP−SS〉, whereS= ψ̄ψ . The subtraction of the scalar density is useful
at smallmq to avoid the contamination by zero modes.
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Figure 2: On the left: The pion mass evaluated in various ways. On the right: theρ-meson mass.

The results are shown in Fig. 2 (left): they follow well the expected behaviour am2
π ∝ mq, in partic-

ular for〈PP−SS〉, with a linearly extrapolated intercept ofa2m2
π,PP−SS(mq = 0) = 0.0001(15). The

hierarchy at smallmq, mπ,PP > mπ,AA > mπ,PP−SS, agrees with the literature [10]. Our smallest
pion mass has Compton wave length≈ L/2, so we are at the edge of thep-regime.

Fig. 2 (right) shows our results for the vector meson mass, with a chiral extrapolation to
mρ = 1017(39) MeV (quenched results tend to be above the physicalρ mass).
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Figure 3: The PCAC quark mass and the renormalisation constantZA = mq/mPCAC.

In Fig. 3 (left) we consider the quark mass obtained from the axial Ward identity,

mPCAC = [∑
~x

〈∂4A†(x)P(0)〉 ]/2[∑
~x

〈P†(x)P(0)〉 ] . (2.1)

We observe also here a nearly linear behaviour, with a chiral extrapolation to amPCAC(mq = 0) =

−0.00029(64). Remarkably,mPCAC is close tomq, which isnot the case forDov−W [11]. Conse-
quently the renormalisation constantZA = mq/mPCAC is close to 1; it has the chiral extrapolation
ZA = 1.17(2). This is in striking contrast to the largeZA factors obtained for the standard overlap
fermions [13, 11, 12]. According to Ref. [14] the fat link may be helpfulfor this favourable feature.

138 / 3



P
o
S
(
L
A
T
2
0
0
5
)
1
3
8

Overlap HF in QCD Wolfgang Bietenholz

At last we considerFπ =
2mq

m2
π
|〈0|P|π〉| ,
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Figure 4: The pion decay constant from a direct eval-
uation in thep-regime, using the overlap HF.

by using eitherPP or PP−SS, see Fig. 4. The
extrapolation tomq = 0 yieldsFπ,PP= 111.5(2.5)

MeV, resp. Fπ,PP−SS = 104(9) MeV, which
is above the physical value (taken to the chi-
ral limit) of 86 MeV [15]. In particular the be-
haviour of the〈PP−SS〉 result at smallmq mo-
tivates us to reconsiderFπ at yet smaller quark
masses, which takes us to theε-regime.

3. Applications in the ε-Regime

In theε-regime [16] the correlation length
exceeds the box length, 1/mπ > L, and the observables strongly depend on the topological sector.
Our motivation to study this unphysical situation is that it allows for an evaluationof the Low En-
ergy Constants (LEC) of the chiral Lagrangian with their values in infinite volume (unfortunately,
quenching brings in logarithmic finite size effects [17]).

Random Matrix Theory (RMT) conjectures the densitiesρ(ν)
n (z) of the lowest Dirac eigenval-

uesλ in theε-regime [18], wherez:= λΣV, n= 1,2, . . . numerates the lowest non-zero eigenvalues
andν is the fermion index, which is identified with the topological charge [4]. Theseconjectures
hold to a good precision for the lowestn and|ν |, if L exceeds a lower limit (a little more than 1 fm)
[19]. Then the fit determines the scalar condensateΣ. Fig. 5 (left) shows our results for〈z1〉 with
Dov−W andDov−HF, in V = (1.48 fm)3×2.96 fm. The RMT conjectures work best in the sectors
|ν | = 0,1,2, and they provide precise values forΣ; for Dov−HF we obtainΣ = (268(2) MeV)3.
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Figure 5: On the left: the lowest Dirac eigenvalue (re-scaled withΣV) compared the the RMT predictions
at the optimal value ofΣ. On the right: preliminary results for the axial correlatoratamq = 0.001, 0.003 and
0.005 in the sectors|ν | = 1 and 2, and fits to the formulae of quenchedχPT.

In quenchedχPT, the axial vector correlator depends in leading order only on the LECΣ and
Fπ [20]. The prediction for〈A4(t)A4(0)〉 (with Aµ(t) := ∑~x ψ̄(~x, t)γ5γµψ(~x, t)) is a parabola with a
minimum att = T/2, whereF2

π /T enters as an additive constant. In a previous study we observed
that L should again be above 1 fm, and that the history in the sectorν = 0 may be plagued by
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spikes [21]; “Low Mode Averaging” was then invented as a remedy [22]. In the non-trivial sectors
Σ can hardly be determined, butFπ can be evaluated. In Fig. 5 (right) we show preliminary results
from threemq values in theε-regime, in the sector|ν | = 1 and 2, with 10 propagators in each case.

Inserting the RMT result forΣ, a global fit yields bareF(0)
π = (96±10) MeV, which is renormalised

with ZA = 1.17 toFπ = (105±13) MeV, in agreement with other quenched results [22, 26, 12].

 0

 20

 40

 60

 80

 100

 120

-10 -5  0  5  10

topological charge

Overlap-HF  indices  on  123 x 24  at  β = 5.85  with  800  confs

Gaussian with same <ν2> and norm

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0  0.005  0.01  0.015  0.02
<

 ν
2  >

   
r 0

4   /
  V

a2  [ fm2 ]

Susceptibility in V = (1.48 fm)3 x 2.96 fm, 510 confs.

standard overlap, β=5.85, µ=1.6
overlap HF, β=5.85

standard overlap, β=6, µ=1.6
cont. limit of hep-th/0407052

Figure 6: Histogram of overlap HF indices, and results for the topological susceptibility.

For 800 overlap HF indices we obtained the histogram in Fig. 6 (left). The double peak reminds
us of the question if parity could be broken [23], but the current statisticsis of course not conclusive
for this point. Fig. 6 (right) shows our results for the topological susceptibility, compared to the
continuum extrapolation of Ref. [24], which usedDov−W. There is no contradiction, although our
susceptibilities are somewhat larger. TheDov−HF result is closer to the value of Ref. [24] (for
exactly the same configurations atβ = 5.85, with〈|νov−W −νov−HF|〉 ≈ 0.8) [25].

4. Conclusions

The overlap HF operator provides better locality, and therefore chiral fermion on coarser lat-
tices than the standard overlap operator. In thep-regime we gave results formπ , mρ and Fπ .
Compared to the standard overlap fermion,mPCAC is closer to the bare quark massmq, henceZA

is much closer to 1. In theε-regime the confrontation with RMT yields a precise value forΣ, and
from the axial correlation we extracted a preliminary result forFπ , which agrees (within the errors)
with the chiral extrapolation of the direct measurement in thep-regime. In theε-regime one may
consider as an alternative solely the 0-mode contributions to the mesonic correlators [26, 8, 25].
Finally we add that a topology conserving gauge action could be helpful in that regime [27].
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