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We study a free scalar field ϕ in a fixed curved background spacetime subject to a higher derivative field
equation of the form Fð□Þϕ ¼ 0, where F is a polynomial of the form Fð□Þ ¼ Q

ið□ −m2
i Þ and all

masses mi are distinct and real. Using an auxiliary field method to simplify the calculations, we obtain
expressions for the Belinfante-Rosenfeld symmetric energy-momentum tensor and compare it with the
canonical energy-momentum tensor when the background is Minkowski spacetime. We also obtain the
conserved symplectic current necessary for quantization and briefly discuss the issue of negative energy vs
negative norm and its relation to reflection positivity in Euclidean treatments. We study, without assuming
spherical symmetry, the possible existence of finite energy static solutions of the scalar equations, in static
or stationary background geometries. Subject to various assumptions on the potential, we establish
nonexistence results including a no-scalar-hair theorem for static black holes. We consider Pais-Uhlenbeck
field theories in a cosmological de Sitter background and show how the Hubble friction may eliminate what
would otherwise be unstable behavior when interactions are included.
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I. INTRODUCTION

Higher derivative field theories have received a consid-
erable amount of attention over the years for a variety of
reasons, not least because of the realization that theories
incorporating standard Einstein gravity inevitably suffer
from problems of non-renormalizability. Although it was
shown by ’t Hooft and Veltman [1] that pure Einstein
gravity itself was finite at one loop, this does not persist at
higher loop order [2], nor if (generic) matter is included.
The demonstration by Stelle [3] in the 1970s that the non-
renormalizability problem itself could be overcome by
adding quadratic curvature terms to the action opened the
door to many investigations of such theories, although the
realization that renormalizability could only thereby be
achieved at the price of introducing ghost states of negative
norm, or energies that are unbounded below, dampened
the enthusiasm for the idea. Subsequently, with the devel-
opment of string theory, the idea of higher derivative
corrections to gravity acquired a new impetus, but now

in the framework of an effective field theory in which
quadratic curvature corrections would represent just the
start of an infinite sequence of higher-order terms. Within
this framework, a focus on any particular lower-order term
or terms in the infinite sequence of corrections would seem
to be unjustified, since in circumstances where such a term
or terms leads to substantial modifications to the solutions
or spectrum of the theory, yet-higher order terms that are
being ignored would have at least as important an effect.
Although the conviction that the ghost states or

unbounded negative energies of a finite-order higher
derivative theory are sufficient to rule them out of consid-
eration is widespread, it is perhaps still worthwhile to study
them in more detail, and to investigate whether the
ostensible problems really are as severe as is commonly
believed. One of the earliest investigations of higher
derivative field theories was in the classic work of Pais
and Uhlenbeck [4], who studied scalar field theories in
Minkowski spacetime. Much of their focus was on differ-
ential operators of infinite order, such as the exponential
of the d’Alembertian, but they did also consider operators
of finite order, such as powers of the d’Alembertian or
products of massive Klein-Gordon operators. Many of
the features that are encountered in theories such as these
will have counterparts in more complicated theories such
as higher derivative theories of gravity.
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As a preliminary to studying higher derivative field
theories, much insight can be gained in the simpler case of a
classical higher derivative particle mechanical theory and
its quantum mechanical extension. A simple and much
studied example is the Pais-Uhlenbeck oscillator, ðD2−ω2

1Þ
ðD2−ω2

2ÞxðtÞ¼0, where D ¼ d=dt. Its Hamiltonian, con-
structed using the Ostrogradsky procedure [5], which
corresponds essentially to the difference between standard
oscillator Hamiltonians for particles with frequencies ω1

and ω2, is unbounded both above and below. At the level of
the free theory this is not a problem, but a widespread
intuition is that once interactions are included, instabilities
will inevitably set in since the energies in the negative
energy modes and the positive energy modes can both
increase (in magnitude) while the total energy remains
constant.1 A number of studies have shown that this need
not, in fact, be the case [6–11]. For example, for given
initial conditions, an added λx4 interaction term will not
give instabilities provided λ is sufficiently small [6]. And if
one instead adds a bounded potential, such as λ sin4 x, the
evolution of initial data is unconditionally stable [6]. For a
consideration of the Pais-Uhlenbeck oscillator from the
point of view of statistical physics, see [12].
It has often been argued (see, for example, Ref. [13]) that

instability problems in a higher derivative field theory will
be much more severe than in a particle mechanical theory,
because of the diverging entropy associated with the
infinity of unobserved high-momentum states, and that
this would lead to an instantaneous decay of the vacuum.
Countering this, it has been argued that the divergent
entropy results from integrating over the phase space of
unobserved decay products, and that in a closed system
such as our universe there exist no external observers who
would integrate over this infinite phase space. Actual
observers, inside the universe, would implicitly have
measured the momenta of the particles, and so there would
be no diverging phase space integrals leading to instanta-
neous vacuum decay [14]. It has, further, been argued that
the experience with adding interactions to a higher deriva-
tive particle mechanics model, where potentials that are
bounded both above and below do not give rise to any
instabilities, suggests that similarly bounded potentials in a
higher derivative field theory may not in any case give rise
to instabilities [14]. There have also been proposals, such as
that by Hawking [15], that one might impose boundary
conditions to eliminate ghost excitations, at least in
asymptotic states, since the concomitant acausality could
be at sufficiently short timescales that it may not be
observable in a Wheeler-DeWitt framework. More recently,

Hawking and Hertog [16] argued that in a path-integral
treatment in a Euclidean framework, one can obtain well-
defined rules for calculating probabilities, after continuing
to Lorentzian spacetime, even in a higher derivative field
theory.
In the light of some of these investigations, we shall take

the view that it is still of considerable interest to study the
properties of higher derivative field theories, and that
scalar theories of this kind may be useful as models for
more complicated systems such as higher derivative
gravities. Most of the previous work on higher derivative
scalar field theories has been in a flat Minkowski spacetime
background. Our main purpose, in this paper, is to consider
scalar theories of the kind studied by Pais and Uhlenbeck,
but now within the framework of curved spacetime back-
grounds. We shall show how the calculation of the
Belinfante-Rosenfeld energy-momentum tensor can be
greatly simplified by introducing an auxiliary field formal-
ism, and we shall also make comparisons with the
canonical flat spacetime energy-momentum tensor calcu-
lated using Noether methods. (An action was constructed
using an auxiliary field formulation in [17], although it was
not employed in order to calculate an energy-momentum
tensor.) We also obtain some general results for the
symplectic Noether currents that can be used in order to
construct the norms on states in the theories. One further
motivation for studying higher derivative scalar field
theories in curved backgrounds is that, as we shall discuss
later, this can actually help to mitigate some of the
instabilities that might otherwise occur in flat spacetime.
The organization of the paper is as follows. We begin in

Sec. II with a review of some basic aspects of the classical
and quantum properties of a point particle moving in
one dimension, governed by a higher derivative equation
of motion. Our discussion includes a review of the
Ostrogradsky [5,18] construction of the Hamiltonian
describing the system, and an elegant analysis by Smilga
[9] of the quantum theory of a fourth-order Pais-Uhlenbeck
oscillator. In Sec. III we review some properties of a scalar
Pais-Uhlenbeck field theory in a Minkowski background,
including the construction of the canonical energy-
momentum tensor and the conserved symplectic current.
In Sec. IV we extend our discussion to the scalar Pais-
Uhlenbeck field theory in a curved spacetime background,
showing how one can use an auxiliary field formulation in
order to facilitate the construction of the Belinfante-
Rosenfeld energy-momentum tensor, which allows a con-
sistent coupling to the gravitational field. By this means,
one avoids the necessity of varying the metrics in high
powers of the covariant derivative.
In Sec. V we discuss the quantization of higher derivative

scalar field theories using Euclidean methods. This may be
done if the background metric admits an analytic continu-
ation containing a real section on which the metric is
positive definite, as it does for real tunneling metrics [19].

1Although this intuition is commonly attributed to Ostrograd-
sky, either as the “Ostrogradsky instability” or “Ostrogradsky’s
instability theorem,” it appears that Ostrogradsky himself never
actually discussed the question of instabilities in higher derivative
theories.
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It may also arise in a full blown Euclidean quantum gravity
path integral calculation when a gravitational instanton
saddle point admits a reflection map, i.e., an involutive
isometry fixing a separating hypersurface. We generalize
previous arguments [15] showing that if one adopts the
Osterwalder and Schrader prescription [20] for constructing
the quantum mechanical Hilbert space, then reflection
positivity is not satisfied despite the Euclidean action of
the scalar field being positive definite. In other words,
negative norm states are inevitable.
In Sec. VI, subject to various assumptions about the scalar

potential, if present, we prove nonexistence results for static
solutions of the equations of motion in static or stationary
spacetimes. The background could beMinkowski spacetime,
in which case these results rule out stable solitons and
unstable sphaleron type solutions. They also hold in globally
stationary backgrounds. They are easily extended to cover
the case of static black hole backgrounds with regular event
horizons.
In Sec. VII, we consider Pais-Uhlenbeck field theories in

a de Sitter spacetime background and show how Hubble
friction can eliminate instabilities that would otherwise
occur when nonlinear couplings are present. These exam-
ples serve to illustrate the fact that the often-claimed
instabilities of higher-order field theories can sometimes
be illusory.

II. A HIGHER DERIVATIVE POINT PARTICLE

To orient ourselves, we begin by recalling some facts
about theories of particles moving in one spatial dimension
governed by a Lagrangian L ¼ Lðx; _x; ẍ; tÞ depending
upon the position x, velocity _x, and acceleration ẍ.
Varying the Lagrangian gives

δL − δt
∂L
∂t ¼ δx

∂L
∂x þ δ _x

∂L
∂ _x þ δẍ

∂L
∂ẍ ð2:1Þ

¼ δx

�∂L
∂x −

d
dt

∂L
∂ _x

�
þ d
dt

�
δx

∂L
∂ _x

�

− δ _x
d
dt

∂L
∂ẍ þ d

dt

�
δ _x

∂L
∂ẍ

�
ð2:2Þ

¼ δx

�∂L
∂x −

d
dt

∂L
∂ _x þ d2

dt2
∂L
∂ẍ

�

þ d
dt

�
δx

∂L
∂ _x þ δ _x

∂L
∂ẍ − δx

d
dt

∂L
∂ẍ

�
: ð2:3Þ

The equation of motion is thus

∂L
∂x −

d
dt

∂L
∂ _x þ d2

dt2
∂L
∂ẍ ¼ 0: ð2:4Þ

A. Energy and momentum conservation

If the equation of motion holds, then

d
dt

�
L − _x

∂L
∂ _x − ẍ

∂L
∂ẍ þ _x

d
dt

∂L
∂ẍ

�
¼ ∂L

∂t : ð2:5Þ

Thus, if L does not depend upon t, there is a conserved
energy

E ¼ _x
∂L
∂ _x þ ẍ

∂L
∂ẍ − _x

d
dt

∂L
∂ẍ − L; ð2:6Þ

which may be written as

E ¼ _x

�∂L
∂ _x −

d
dt

∂L
∂ẍ

�
þ ẍ

∂L
∂ẍ − L: ð2:7Þ

If the Lagrangian is translationally invariant, ∂L∂x ¼ 0, we
expect that momentum should be conserved. With an eye
on the equation of motion (2.4), we define the momentum
px by

px ¼
∂L
∂ _x −

d
dt

∂L
∂ẍ ; ð2:8Þ

so that equation of motion (2.4) takes the form

_px ¼
∂L
∂x ; ð2:9Þ

and hence if the Lagrangian is translationally invariant, the
momentum px is conserved. In terms of px, the energy is
given by

E ¼ _xpx þ ẍ
∂L
∂ẍ − L: ð2:10Þ

B. Ostrogradsky’s Hamiltonian

Following [4,5,18],2 we define

y ¼ _x; py ¼
∂L
∂ẍ : ð2:11Þ

If the “nondegeneracy” condition

∂2L
∂ẍ2 ≠ 0 ð2:12Þ

holds, then we may solve for the acceleration as a function
of ðx; y; pyÞ:

ẍ ¼ aðx; y; pyÞ: ð2:13Þ

2For a geometrical treatment, see [21].
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To obtain the Hamiltonian, we take the Legendre transform
of the Lagrangian and obtain

H ¼ px yþ py aðx; y; pyÞ − Lðx; y; aðx; y; pyÞÞ: ð2:14Þ

As a concrete example, consider the Pais-Uhlenbeck
oscillator, described by the Lagrangian

L ¼ 1

2
_x2 −

1

2
βẍ2 −

1

2
Ω2x2: ð2:15Þ

Clearly the nondegeneracy condition holds as long as
β ≠ 0, since

∂2L
∂ẍ2 ¼ −β: ð2:16Þ

The equations of motion are

ẍþ βx⃜þ Ω2x ¼ 0; ð2:17Þ

i.e.,

py ¼ −βẍ ⇒ ẍ ¼ −
1

β
py ¼ a: ð2:18Þ

We have

px ¼ _xþ βx⃛; ð2:19Þ

and so the equation of motion implies

_px ¼ −Ω2x: ð2:20Þ

In a general potential VðxÞ we would have

_px ¼ −
dV
dx

: ð2:21Þ

Thus Newton’s second law, expressed in terms of momen-
tum, is obeyed.
Making the ansatz x ¼ ℜAe−iωt we find

ω4 −
1

β
ω2 þ Ω2

β
¼ 0; ð2:22Þ

and thus

ω2 ¼ 1

2β

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4βΩ2

q �
: ð2:23Þ

If 0 < 4βΩ2 < 1, then all four roots ω ¼ ð�ω1;�ω2Þ will
be real, distinct, and nonvanishing. Useful relations are

ω2
1 þ ω2

2 ¼
1

β
; ω2

1ω
2
2 ¼

Ω2

β
: ð2:24Þ

The equation of motion may be written in terms of ω1

and ω2 as

x⃜þ ðω2
1 þ ω2

2Þẍþ ω2
1ω

2
2x ¼ 0: ð2:25Þ

We write the general solution as

x ¼ Ae−iω1t þ Be−iω2t þ Āeiω1t þ B̄eiω2t; ð2:26Þ

and therefore

xð0Þ ¼ ðAþ ĀÞ þ ðBþ B̄Þ;
_xð0Þ ¼ −iω1ðA − ĀÞ − iω2ðB − B̄Þ;
ẍð0Þ ¼ −ω2

1ðAþ ĀÞ − ω2
2ðBþ B̄Þ;

x
…ð0Þ ¼ iω3

1ðA − ĀÞ þ iω3
2ðB − B̄Þ: ð2:27Þ

Since ω1 ≠ ω2, there exists a unique solution for A and B
for all initial data [xð0Þ; _xð0Þ; ẍð0Þ, and x

…ð0Þ]. Moreover,
this solution is bounded for all time.
Thus the theory is predictive, the initial value problem

has a solution for all time, and it is well posed: it depends
continuously on the initial data.
It is, however, true that the conserved energy

E ¼ 1

2
ð _xÞ2 − 1

2
βðẍÞ2 þ β _x x

…þ 1

2
Ω2x2; ð2:28Þ

or equivalently in terms of the canonically conjugate
variables, the Hamiltonian

H ¼ pxy −
p2
y

2β
−
1

2
y2 þ 1

2
Ω2x2

¼ 1

2
p2
x þ

1

2
Ω2x2 −

1

2
ðy − pxÞ2 þ

p2
y

2β
ð2:29Þ

depends linearly on px, and it is the sum of two positive and
two negative squares (if β is positive, as discussed above).
In fact, Hamilton’s equations

_px ¼ −Ω2x; _py ¼ −px þ y;

_x ¼ y; _y ¼ −
py

β
ð2:30Þ

in this case are linear, and one may verify that they have the
same characteristic frequencies.
As mentioned in the Introduction, it is less obvious

what happens if an interaction term is added, rendering
the equations of motion nonlinear. An example would be
a potential term of the form λx4, where λ is a constant.
A widely held intuition is that some sort of instability
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will result, but, as shown in [6], for given initial conditions
the evolution may remain bounded if the λ interaction is
sufficiently small. The question may also depend crucially
on the definition of stability. The motion may always
remain within a bounded neighborhood of the unperturbed
motion, x ¼ 0 for example, even though it may not return
asymptotically to x ¼ 0. Moreover the timescale for any
instability may, in the cosmological context, be sufficiently
long, for small enough λ, as not to lead to any observable
effect within the relevant timescale.

C. Quantization of the Pais-Uhlenbeck oscillator

An obvious procedure would be to consider wave
functions of the form Ψ ¼ Ψðx; yÞ, in which case

p̂x ¼ −i
∂
∂x ; p̂y ¼ −i

∂
∂y ; ð2:31Þ

leading to

Ĥ ¼ −iy
∂
∂x −

1

2

∂2

∂y2 −
1

2
y2 þ 1

2
Ω2x2: ð2:32Þ

More revealing would be to consider wave functions of the
form Ψ ¼ Ψðx; pyÞ in which case

p̂ ¼ −i
∂
∂x ; ŷ ¼ i

∂
∂py

; ð2:33Þ

leading to

Ĥ ¼ ∂2

∂x∂y −
1

2

∂2

∂p2
y
−
p2
y

2β
þ 1

2
Ω2x2: ð2:34Þ

The first two terms are the wave equations in two-
dimensional Minkowski spacetime with the flat metric

ds2 ¼ dx2 þ 2dx dpy ¼ ðdxþ dpyÞ2 − dp2
y; ð2:35Þ

in which x is a lightlike coordinate.
Smilga [9] succeeded in finding a canonical transforma-

tion that clarifies what is going on. Starting with the
(rescaled) Lagrangian

L ¼ 1

2
½ðẍÞ2 − ðω2

1 þ ω2
2Þð _xÞ2 þ ω2

1ω
2
2x

2�; ð2:36Þ

Ostrogradsky’s Hamiltonian becomes

H ¼ pxyþ
1

2
p2
y þ

1

2
ðω2

1 þ ω2
2Þy2 −

1

2
ω2
1ω

2
2x

2: ð2:37Þ

Now let

x ¼ 1

ω1

ω1Y − pXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1 − ω2

2

p ; px ¼ ω1

ω1pY − ω2
2Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1 − ω2

2

p ;

y ¼ ω1X − pYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1 − ω2

2

p ; py ¼
ω1pX − ω2

2Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1 − ω2

2

p ; ð2:38Þ

which implies

X ¼ 1

ω1

px þ ω2
1yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1 − ω2

2

p ; Y ¼ py þ ω2
1xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1 − ω2

2

p ;

pX ¼ ω1

py þ ω2
2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1 − ω2

2

p ; pY ¼ px þ ω2
2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1 − ω2

2

p : ð2:39Þ

This is a canonical transformation, since

dpx ∧ dxþdpy ∧ dy¼ dpX ∧ dXþdpY ∧ dY: ð2:40Þ

Pulling back the Hamiltonian one finds

H ¼ 1

2
ðp2

X þ ω2
1X

2Þ − 1

2
ðp2

Y þ ω2
2Y

2Þ: ð2:41Þ

This may be quantized in the obvious way, with a positive
norm on the Hilbert space, by introducing annihilation
and creation operators in the standard way, with the
nonvanishing commutators ½aX; a†X� ¼ ½aY; a†Y � ¼ 1. We
have

Ĥ ¼
�
â†XâX þ 1

2

�
ω1 −

�
â†YâY þ 1

2

�
ω2: ð2:42Þ

Assuming that the “ground state” satisfies

âXj0i ¼ âY j0i ¼ 0; ð2:43Þ

all norms are positive, but the spectrum of the Hamitonian
is unbounded below.
Alternatively, we could assume that the vacuum is

defined by

âXj0i ¼ âY†j0i ¼ 0; ð2:44Þ

in which case the spectrum of the Hamiltonian is bounded
below but the norm on states would be indefinite. For
example, the state aY j0i now has the norm

jaY j0ij2 ¼ h0ja†YaY j0i ¼ −h0j0i: ð2:45Þ

(For different approaches entailing the introduction of
nonstandard time inversion parity assignments, see [22,23].)
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III. PAIS-UHLENBECK FIELD THEORY IN
MINKOWSKI SPACETIME

In this section we recall some aspects of the simplest
noninteracting higher derivative scalar field theories in a
Minkowski background spacetime. The field equations are
of the form [4]

Eϕ≡ Fð□Þϕ ¼ 0; ð3:1Þ

where3

□ ¼ −∂2
t þ∇2 ¼ ημν∂μ∂ν; ∂μ ¼ ð∂t; ∂xiÞ; ð3:2Þ

and FðuÞ is a real valued function of u.
A suitable action for a real scalar ϕ, up to factors and

possible boundary terms, is

1

2

Z
d4xϕFð□Þϕ: ð3:3Þ

The Lagrangian models studied by Ostrogradsky are
obtained by replacing □ϕ in (3.1) by −D2, where D ¼ d

dt.
A simple nontrivial example is

Eϕ ¼ ð□ −m2
1Þð□ −m2

2Þϕ ¼ 0; ð3:4Þ

where, unless otherwise stated, we assume that the masses
m1 and m2 are real and distinct. The case when m2

1 ¼ m2
2

has some different properties, and it is referred to as dipolar.
If □ ¼ −D2 we obtain the so-called Pais-Uhlenbeck
oscillator.
As we shall see, one may always introduce a symplectic

current Jμðϕ1;ϕ2Þ ¼ −Jμðϕ2;ϕ1Þ such that

ϕ1Fð□Þϕ2 − ϕ2Fð□Þϕ2 ¼ ∂μJμðϕ1;ϕ2Þ: ð3:5Þ

Thus on shell,

∂μJμ ¼ 0; ð3:6Þ

and hence a conserved (pre)symplectic form on solutions
ϕ1 and ϕ2 of (3.1) is given by

ωðϕ1;ϕ2Þ ¼ −ωðϕ2;ϕ1Þ ¼
Z
Σ
JμdΣμ; ð3:7Þ

where Σ is any Cauchy surface. (The prefix “pre” would
apply if the symplectic form were degenerate.)
The equation of motion (3.1) is clearly linear and if Fð□Þ

is a polynomial of degree N, then of necessity quasilinear,4

and hence its characteristic surfaces S ¼ const must, by
standard theory, satisfy

ðημν∂μS∂νSÞN ¼ 0: ð3:8Þ

In other words, the characteristic surfaces are null hyper-
surfaces. Thus (3.1) satisfies the Einstein-causality
principle.
Since (3.1) is linear we may substitute in it the Ansatz

ϕ ¼ Aeikνx
μ ¼ Aeið−ωtþk·xÞ; ð3:9Þ

where A and kμ are constant, and hence we find that

Fð−kμkμÞ ¼ 0; ð3:10Þ

where kμ ¼ ð−ω;kÞ. If the zeros of FðuÞ are at u ¼ m2
i

with real mi, then we have several branches to the
dispersion relation:

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ k2

q
: ð3:11Þ

A. The energy momentum tensor

In the simple case (3.4), an energy-momentum tensor is
presented in [24]. Making allowance for the conversion
from the ðþ − −−Þ spacetime signature used in that
reference, and also our choice for the overall sign for
the Pais-Uhlenbeck action, this symmetric tensor is [24]

T̄μν ¼ 2ð∂μ∂νϕÞ□ϕ − ð∂μϕÞ□ð∂νϕÞ − ð∂νϕÞ□ð∂μϕÞ
þ ð∂μ∂ν∂αϕÞð∂αϕÞ − ð∂μ∂αϕÞð∂ν∂αϕÞ

−
1

2
ημνð□ϕÞ2 − 1

2
ðm2

1 þm2
2Þ

× ðϕ∂μ∂νϕ − ∂μϕ∂νϕ − ημνϕ□ϕÞ

−
1

2
ημνm2

1m
2
2ϕ

2: ð3:12Þ

It obeys

∂μT̄μν ¼ −ð∂νϕÞEϕ; ð3:13Þ

and thus is conserved on shell. Moreover if ϕ ¼ ϕðtÞ, then

T̄00 ¼ −
1

2
ϕ̈2 þ _ϕ ϕ

…
þ 1

2
ðm2

1 þm2
2Þ _ϕ2 þ 1

2
m2

1m
2
2ϕ

2;

ð3:14Þ

which agrees with the energy of the Pais-Uhlenbeck
oscillator derived using Noether’s theorem.
The derivative terms in (3.12) differ from those in the

standard energy-momentum tensor for a scalar field that
one obtains by the Belinfante-Rosenfeld [25,26] procedure
(i.e., minimally coupling the action to a metric gμν and
taking the variational derivative). Later we shall construct an
energy-momentum tensor using the Belinfante-Rosenfeld

3Throughout the paper we adhere to the same −þþþ
signature convention as [4].

4In other words, all highest derivative terms occur linearly.
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procedure, and in Appendix we show how it is related
to (3.12).

B. Second quantization of the Pais-Uhlenbeck
field theory

Recall that for a free theory we first construct the one-
particle Hilbert space and then construct the full (non-
separable) Hilbert space using the Fock construction. The
standard approach is to complexify the Cauchy data and
introduce a (symmetric) sesquilinear form

hðϕ1;ϕ2Þ ¼ −iωðϕ̄1;ϕ2Þ; ð3:15Þ

where now ϕ1 and ϕ2 are complex valued and

hðϕ1;ϕ2Þ ¼ hðϕ2;ϕ1Þ: ð3:16Þ

In the case of just two time derivatives in the equations of
motion one has

hðϕ1;ϕ2Þ ¼ −i
Z
E3

ð _̄ϕ1ϕ2 − ϕ̄1
_ϕ2Þd3x: ð3:17Þ

If ϕ1 ¼ ϕ2 ¼ Ae−iωt, we have

hðϕ;ϕÞ ¼ 2ω

Z
E3

jAj2d3x: ð3:18Þ

Thus positive norm states have ω > 0, and so we identify
the one-particle Hilbert space with the space of positive
frequency Cauchy data.

1. Symplectic current for the Pais-Uhlenbeck field theory

When m2
1 ≠ m2

2, the general solution of the Pais-
Uhlenbeck equation ð□ −m2

1Þð□ −m2
2Þϕ ¼ 0 is given by

ϕ ¼ aχ1 þ bχ2; ð3:19Þ

where χ1 and χ2 are solutions of ð□ −m2
1Þχ1 ¼ 0 and

ð□ −m2
2Þχ2 ¼ 0, and a and b are constants. Thus χ1 and

χ2 provide a basis for the general solution. Without loss of
generality, we shall assume m2

1 > m2
2 in what follows.

We now write the field equation as

□2ϕ − ðm2
1 þm2

2Þ□ϕþm2
1m

2
2ϕ ¼ 0: ð3:20Þ

In Minkowski spacetime we have the following identities:

Jμ
□
≔ ϕ1∂μϕ2 − ðϕ1 ↔ ϕ2Þ;

∂μJ
μ
□
¼ ϕ1□ϕ2 − ðϕ1 ↔ ϕ2Þ;

Jμ
□

2 ≔ ϕ1∂μ□ϕ2 þ□ϕ1∂μϕ2 − ðϕ1 ↔ ϕ2Þ;
∂μJ

μ
□

2 ¼ ϕ1□
2ϕ2 − ðϕ1 ↔ ϕ2Þ: ð3:21Þ

Thus if

Jμ ¼ Jμ
□

2 − ðm2
1 þm2

2ÞJμ□; ð3:22Þ

then on shell

∂μJμ ¼ 0: ð3:23Þ

Now suppose that ϕ1 and ϕ2 are any two solutions of

□ϕ1 ¼ μ21ϕ1; □ϕ2 ¼ μ22ϕ2; ð3:24Þ

where each of μ21 and μ22 can be either m2
1 or m2

2. Then

Jμ ¼ððμ21þμ22Þ− ðm2
1þm2

2ÞÞðϕ1∂μϕ2−ϕ2∂μϕ1Þ ð3:25Þ

¼ ððμ21 þ μ22Þ − ðm2
1 þm2

2ÞÞJμ□: ð3:26Þ

Evidently if ϕ1 and ϕ2 have different masses (i.e., if μ21 ¼
m2

1 and μ22 ¼ m2
2, or else if μ21 ¼ m2

2 and μ22 ¼ m2
1),

then Jμ ¼ 0.
If ϕ1 and ϕ2 have equal mass-squared μ21 ¼ μ22 ¼ m2

1,
then

Jμ ¼ ðm2
1 −m2

2ÞJμ□: ð3:27Þ

while if ϕi and ϕ2 have equal mass-squared μ21 ¼ μ22 ¼ m2
2,

then

Jμ ¼ ðm2
2 −m2

1ÞJμ□: ð3:28Þ

If we choose the complex modes with mass m1 to have
positive frequency and the complex modes with massm2 to
have negative frequency, the Hermitian form hð·; ·Þ will be
positive definite and diagonalized in this basis.
Thus, despite the fact that we associate one creation

operator with a positive frequency mode and the other with
a negative frequency mode, we obtain a positive norm on
our Hilbert space. There are no states with negative norm
(sometimes called “ghosts”). Of course, if m2

2 > m2
1, we

must reverse the convention.

IV. PAIS-UHLENBECK FIELD THEORY IN
CURVED SPACETIME

A. Simplest model

We now replace ∂μ by ∇μ, the Levi-Civita covariant
derivative, and so □ ¼ ∇μ∇μ, the generally covariant
d’Alembertian. The field equation is

Eϕ≡ ð□2 − ðm2
1 þm2

2Þ□þm2
1m

2
2ÞÞϕ ¼ 0: ð4:1Þ

The field equation may be derived from the action
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S ¼ −
1

2

Z ffiffiffiffiffiffi
−g

p
d4x½ð□ϕÞ2 þ ðm2

1 þm2
2Þgμν∂μϕ∂νϕ

þm2
1m

2
2ϕ

2�; ð4:2Þ

from which one finds that under a variation of ϕ,

δS ¼ −
Z
D

ffiffiffiffiffiffi
−g

p
d4xδϕEϕþ

Z
∂D
ð∇μ

□ϕδϕ −□ϕ∇μδϕ

− ðm2
1 þm2

2Þ∇μϕδϕÞdΣμ: ð4:3Þ

The operator E may also be written as

E ¼ ð□ −m2
1Þð□ −m2

2Þ ¼ ð□ −m2
2Þð□ −m2

1Þ: ð4:4Þ

The identities

χ□ϕ ¼ ∇μðχ∇μϕÞ − gμν∇μ χ∇νϕ; ð4:5Þ

χ□2ϕ ¼ ∇μðχ∇μ
□ϕ − ð∇μ χÞ□ϕÞ þ ð□χÞð□ϕÞ; ð4:6Þ

imply the formal self-adjointness of E since, from them,
one deduces that

χEϕ − ϕEχ ¼ ∇μJμ; ð4:7Þ

where

Jμ½χ;ϕ� ¼ χ∇μ
□ϕ − ð∇μ χÞ□ϕ − ðm2

1 þm2
2Þχ∇μϕ

− ðχ ↔ ϕÞ: ð4:8Þ

If χ and ϕ are two solutions of the equation of motion (4.1),
then one deduces that

∇μJμ½χ;ϕ� ¼ 0; ð4:9Þ

and hence that the (pre)symplectic form ωðχ;ϕÞ on the
space of solutions of (4.1), given by

ωðχ;ϕÞ ¼
Z
Σ
Jμ½χ;ϕ�dΣμ ¼ −ωðϕ; χÞ; ð4:10Þ

where Σ is a Cauchy surface, is conserved.
Now we suppose that χ ¼ ϕ1 satisfies □ϕ1 ¼ μ21ϕ1 and

ϕ ¼ ϕ2 satisfies□ϕ2 ¼ μ22ϕ2, where each of μ21 and μ
2
2 can

be either m2
1 or m2

2. Then

Jμ ¼ ðμ21 þ μ22 −m2
1 −m2

2Þðϕ1∇μϕ2 − ϕ2∇μϕ1Þ: ð4:11Þ

Thus the space of Cauchy data and the symplectic form
splits as a direct sum of two summands, labeled by the
mass-squared m2

1 and m2
2.

1. Auxiliary field formulation

A convenient way to handle the higher derivative terms
in the Pais-Uhlenbeck equation is by introducing auxiliary
fields. In particular, as we shall see below, this provides a
simple way to calculate the contributions to the energy-
momentum tensor from the higher derivative terms. We
shall employ two related, but slightly different, approaches
in this paper. For now, we shall handle the various higher
derivative terms that arise in a general Pais-Uhlenbeck
theory separately, by developing an auxiliary-field con-
struction for a Lagrangian Ln ¼ − 1

2

ffiffiffiffiffiffi−gp
ϕð−□Þnϕ. The

general Pais-Uhlenbeck (PU) Lagrangian is then given as a
linear combination of such terms with certain constant
coefficients. The energy-momentum tensor for the PU
theory is then similarly given by the analogous linear
combination of the associated energy-momentum tensors.
In Appendix, we discuss a slightly different approach, in
which the Lagrangian for the full PU field theory is directly
rewritten by introducing auxiliary fields.
In the present simplest example we are considering, for

which the PU action is given by (4.2), there is just the one
higher derivative term, namely

Sð2Þ½ϕ� ¼ −
1

2

Z
D

ffiffiffiffiffiffi
−g

p
d4xð□ϕÞ2: ð4:12Þ

We now introduce an auxiliary field ψ and replace (4.12) by

S̃ð2Þ½ϕ;ψ � ¼
Z
D

ffiffiffiffiffiffi
−g

p
d4x

�
−ψ□ϕþ 1

2
ψ2

�
: ð4:13Þ

The variation of (4.13) with respect to ψ yields

ψ ¼ □ϕ; ð4:14Þ

and upon substituting this back into (4.13) one indeed
recovers (4.12). The variation of (4.13) with respect to ϕ
gives

□ψ ¼ 0; ð4:15Þ

whence we obtain the field equation□2ϕ ¼ 0 for ϕ, which
is indeed the same as the equation that arises directly
from (4.12).

2. Energy-momentum tensor

Up to an integration by parts the action (4.13) is
equivalent to

S̃ð2Þ½ψ ;ϕ; gμν� ¼
Z
D

ffiffiffiffiffiffi
−g

p
d4x

�
∂μψ gμν∂νϕþ 1

2
ψ2

�
:

ð4:16Þ

Now the associated Belinfante-Rosenfeld energy-

momentum tensor Tð2Þ
μν is given by
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Tð2Þ
μν ¼ −2

δ

δgμν
S̃2½ψ ;ϕ; gμν� ð4:17Þ

¼−∂μψ∂νϕ−∂νψ∂μϕþgμν∂αψgαβ∂βϕþ1

2
gμνψ2:

ð4:18Þ

Substituting (4.14) in (4.18) therefore gives

Tð2Þ
μν ¼ −∂μ□ϕ∂νϕ − ∂ν□ϕ∂μϕþ gμν∂α□ϕ∂αϕ

þ 1

2
gμνð□ϕÞ2; ð4:19Þ

as the contribution to the energy-momentum tensor of the
Pais-Uhlenbeck theory from the ð□ϕÞ2 term in (4.2). One
may verify that

∇μTð2Þ
μν ¼ −□2ϕ∂νϕ; ð4:20Þ

and so indeed this contribution to Tμν is covariantly
conserved if the field equation □

2ϕ ¼ 0 holds.
Combining the contribution Tð2Þ

μν with the contributions
from the remaining terms in (4.2), which are straightfor-
ward to calculate in the standard way, we find that the total
energy-momentum tensor for this PU theory is given by

Tμν ¼ −∂μ□ϕ∂νϕ − ∂ν□ϕ∂μϕþ gμν∂α□ϕ∂αϕ

þ 1

2
gμνð□ϕÞ2 þ ðm2

1 þm2
2Þ�

∂μϕ∂νϕ −
1

2
gμνgαβ∂αϕ∂βϕ

�

−
1

2
gμνm2

1m
2
2ϕ

2: ð4:21Þ

However, it should be noted that Tμν is different, in its
flat-spacetime limit, from the expression for T̄μν given by
(3.12). In Appendix we discuss a general derivation of the
canonical energy-momentum tensor derived by the Noether
method in flat spacetime and its relation to the energy-
momentum tensor that we obtained in (4.21) by using the
Belinfante-Rosenfeld procedure.
Interestingly, although the flat space limit of (4.21) is not

the same as (3.12), it gives the same expression (3.14) if
one specializes to ϕ ¼ ϕðtÞ.

B. Auxiliary fields

1. Powers of Laplace/d’Alembert operator

Consider now the nth power of the d’Alembert operator
□ ¼ ∇2. By introducing auxiliary fields χk and Lagrange
multipliers ηk, for k ¼ 1;…; n − 1, we can rewrite

ϕ□nϕ → ϕ□χ1 þ η1ð□χ2 − χ1Þ þ η2ð□χ3 − χ2Þ þ � � �
þ ηn−2ð□χn−1 − χn−2Þ þ ηn−1ð□ϕ − χn−1Þ: ð4:22Þ

Indeed, varying with ηk we find

χ1 ¼ □χ2; χ2 ¼ □χ3;

� � � χn−1 ¼ □ϕ ⇒ χ1 ¼ □
n−1ϕ: ð4:23Þ

On the other hand, varying with respect to χk we find that

η1 ¼ □ϕ; η2 ¼ □η1; � � � ηn−1 ¼ □
n−2ϕ: ð4:24Þ

This shows that we may identify

ηk ¼ χn−k; k ¼ 1;…; n − 1: ð4:25Þ

This identification reduces the number of extra fields by 2.
We have, for instance,

ϕ□2ϕ ¼ ϕ□χ þ χ□ϕ − χ2;

ϕ□3ϕ ¼ ϕ□χ1 þ χ2□χ2 þ χ1□ϕ − 2χ2 χ1: ð4:26Þ

If we also define χ0 ≡ 0 and χn ≡ ϕ, then after making the
identifications (4.25) we see that

ϕ□nϕ ¼
Xn−1
k¼0

χn−kð□χkþ1 − χkÞ: ð4:27Þ

Note that combined with the solutions (4.25) for the
auxiliary fields, we have

χk ¼ □
n−k χ; 1 ≤ k ≤ n; χ0 ¼ 0: ð4:28Þ

Consider the Lagrangian

L ¼ ffiffiffiffiffiffi
−g

p �
−
1

2
ϕð−□Þnϕ − V

�
; ð4:29Þ

whose equations of motion are

ð−□Þnϕ ¼ −
∂V
∂ϕ : ð4:30Þ

As established above, this can be written, after integrations
by parts, as

L ¼ 1

2
ð−1Þn ffiffiffiffiffiffi

−g
p Xn−1

k¼0

½∂μ χn−k ∂μ χkþ1 þ χn−k χk� −
ffiffiffiffiffiffi
−g

p
V;

ð4:31Þ

with the auxiliary fields given by

χk ¼ □n−kϕ; 1 ≤ k ≤ n; χ0 ¼ 0: ð4:32Þ

Calculating the energy-momentum tensor Tμν ¼
−ð2= ffiffiffiffiffiffi−gp ÞδL=δgμν, we thus find
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Tμν ¼ ð−1Þn
Xn−1
k¼0

�
−∂μ χn−k ∂ν χkþ1 þ

1

2
gμν ∂ρ χn−k ∂ρ χkþ1

�

þ 1

2
ð−1Þngμν

Xn−1
k¼1

χn−k χk − gμνV; ð4:33Þ

and hence, using (4.32),

Tμν ¼ ð−1Þn
Xn−1
k¼0

�
−∂μ□

kϕ∂ν□
n−k−1ϕ

þ 1

2
gμν ∂ρ□

kϕ∂ρ
□

n−k−1ϕ

�

þ 1

2
ð−1Þngμν

Xn−1
k¼1

□kϕ□n−kϕ − gμνV: ð4:34Þ

(Note that the first term is, in fact, automatically symmetric
in μ and ν, in view of the summation over k.) The first few
examples, for n ¼ 1, 2, and 3, are

n ¼ 1∶ Tμν ¼ ∂μϕ∂νϕ −
1

2
gμν∂ρϕ∂ρϕ − gμνV;

n ¼ 2∶ Tμν ¼ −∂μϕ∂ν□ϕ − ∂νϕ∂μ□ϕþ gμν∂ρ□ϕ∂ρϕ

þ 1

2
gμνð□ϕÞ2 − gμνV;

n ¼ 3∶ Tμν ¼ ∂μϕ∂ν□
2ϕþ ∂μ□ϕ∂ν□ϕþ ∂μ□

2ϕ∂νϕ

− gμν∂ρ□
2ϕ∂ρϕ −

1

2
gμν∂ρ□ϕ∂ρ

□ϕ

− gμν□ϕ□2ϕ − gμνV: ð4:35Þ

2. Auxiliary fields for general higher-order operators

Consider the higher derivative Lagrangian

L ¼ ϕA1A2 � � �Anϕ; ð4:36Þ

where the operators Ai are formally self-adjoint and need
not necessarily be mutually commuting. An example for
which they are mutually commuting is

Ai ¼ □ −m2
i ; □ ¼ ∇2: ð4:37Þ

Paralleling the procedure for introducing auxiliary fields for
the Lagrangian Ln ¼ ϕΔnϕ, consider here

L ¼ ϕA1 χ1 þ η1ðA2 χ2 − χ1Þ þ η2ðA3 χ3 − χ2Þ þ � � �
þ ηn−2ðAn−1 χn−1 − χn−2Þ þ ηn−1ðAnϕ − χn−1Þ:

ð4:38Þ

Varying the ηi fields gives

χ1 ¼ A2 χ2; χ2 ¼ A3 χ3; …; χn−1 ¼ Anϕ;

⇒ χ1 ¼ A2A3 � � �Anϕ: ð4:39Þ

Varying the χi fields gives

η1 ¼ A1ϕ; η2 ¼ A2η1; …; ηn−1 ¼ An−1ηn−2:

ð4:40Þ

Unlike in the case of the pure □
n Lagrangian, we cannot

equate the set of ηi fields with the set of χi fields.
It is easily seen that the Lagrangian (4.38) gives rise to

(4.36) after plugging in the solutions for the χi fields, given
in (4.39). Note that if we define

χ0 ≡ 0; χn ≡ ϕ; η0 ≡ ϕ; ηn ≡ 0; ð4:41Þ

then the Lagrangian (4.38) can be written as

L ¼
Xn−1
k¼0

ηkðAkþ1 χkþ1 − χkÞ: ð4:42Þ

Note that together with the solutions (4.39) and (4.40) for
the auxiliary fields, we have5

χk ¼ Akþ1Akþ2 � � �Anϕ; 1 ≤ k ≤ n; χ0 ¼ 0;

ηk ¼ AkAk−1 � � �A1ϕ; 0 ≤ k ≤ n − 1; ηn ¼ 0:

ð4:43Þ

If we consider the example where Ai is given by (4.37),
the energy-momentum tensor that follows from (4.42) is

Tμν ¼
Xn−1
k¼0

�
∂ðμηk ∂νÞ χkþ1 −

1

2
gμνð∂ρηk ∂ρ χkþ1

þm2
kþ1 ηk χkþ1 þ ηk χkÞ

�
: ð4:44Þ

C. Symplectic current in higher derivative scalar theory

Consider first the Lagrangian 1
2
ϕ□nϕ, whose equation of

motion is

5The discussion we gave in Sec. IV B, where we introduced
auxiliary fields for the Lagrangian ϕ□nϕ, is a special case of our
discussion here, in which Ak ¼ □ for all k. As can be seen from
(4.39) and (4.40), in this special case one can equate ηk ¼ χn−k as
in Sec. IV B. But in the more general case discussed in this
section, one cannot equate the η and χ fields, even in the case that
the operators Ai commute. If, however, the operators Ai take the
form given in (4.37), where the differential operator parts of all
the Ai are the same, then there exist purely algebraic relations
between the set of ηk fields and the set of χk fields, as can be seen
from (4.43). In this case, therefore, one needs only ϕ and either
the set of χk or the set of ηk as auxiliary fields.
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□
nϕ ¼ 0: ð4:45Þ

By extracting derivatives in sequence from

ψ□n ϕ − ϕ□n ψ ; ð4:46Þ

we obtain

ψ□n ϕ − ϕ□n ψ

¼ ∇μðψ∇μ
□

n−1 ϕÞ −∇μ ψ∇μ
□

n−1 ϕ − ðψ ↔ ϕÞ
¼ ∇μðψ∇μ

□
n−1 ϕ −∇μ ψ□n−1 ϕÞ þ□ψ□n−1 ϕ

− ðψ ↔ ϕÞ
¼ � � �

¼
Xn−1
p¼0

Jμð□p ψ ;□n−p−1 ψÞ; ð4:47Þ

where we have defined

JμðA;BÞ≡ A∇μ B − B∇μ A: ð4:48Þ

Thus, if ϕ and ψ are any solutions of □
nϕ ¼ 0 and

□nψ ¼ 0, we have a conserved current

Jμ
□

nðψ ;ϕÞ ¼
Xn−1
p¼0

Jμð□pψ ;□n−p−1ϕÞ: ð4:49Þ

Consider now the Lagrangian, and consequent equations
of motion,

L ¼ 1

2
ϕ
YN
i¼1

ð□ −m2
i Þϕ;

ΔNϕ≡YN
i¼1

ð□ −m2
i Þϕ ¼ 0: ð4:50Þ

If we assume the masses are all unequal, the general
solution is a linear combination of “elementary solutions”
satisfying

ð□ −m2
i Þϕi ¼ 0; ð4:51Þ

for any i in the range 1 ≤ i ≤ N.
We now consider the conserved current JμΔN

for the
operator ΔN defined in (4.50). If we write the operator as

ΔN ¼
XN
n¼0

an□n; ð4:52Þ

then this current is given by

JμΔN
ðψ ;ϕÞ ¼

XN
n¼1

anJ
μ
□

nðψ ;ϕÞ; ð4:53Þ

where Jμ
□

nðψ ;ϕÞ is defined in (4.49).
There are two cases of particular interest to consider. The

first is when ψ and ϕ are two “elementary” solutions ofΔN ,
as defined in (4.51), corresponding to two different m2

i
values. Without loss of generality we may take ψ ¼ ϕ1 and
ϕ ¼ ϕ2; that is to say they satisfy

□ψ ¼ m2
1ψ ; □ϕ ¼ m2

2ϕ: ð4:54Þ

Writing the operator ΔN as

ΔN ¼ ð□ −m2
1Þð□ −m2

2Þfð□Þ; ð4:55Þ

with

fð□Þ ¼
YN
i¼3

ð□ −m2
i Þ ¼

XN−2

k¼0

bk□k; ð4:56Þ

and noting that

Jμð□pψ ;□ðn−p−1ÞϕÞ ¼ m2p
1 m2n−2p−2

2 Jμ
□
ðψ ;ϕÞ; ð4:57Þ

we see that

JμΔN
ðψ ;ϕÞ ¼

XN−2

k¼0

bk

�Xkþ1

p¼0

m2p
1 m2k−2pþ2

2 − ðm2
1 þm2

2Þ

×
Xk
p¼0

m2p
1 m2k−2p

2 þm2
1m

2
2

Xk−1
p¼0

m2p
1 m2k−2p−2

2

�

× Jμ
□
ðψ ;ϕÞ: ð4:58Þ

Collecting the terms in the square brackets as a sum
P

k−1
p¼0

together with the additional terms from the first two
summations, we immediately find that the total vanishes
for each k. Thus we find

JμΔN
ðψ ;ϕÞ ¼ 0; ð4:59Þ

whenever ψ and ϕ are elementary solutions with different
mass values.
The other case of interest is when ψ and ϕ are solutions

with the same mass value. Without loss of generality, we
may consider the case where ψ and ϕ satisfy

□ψ ¼ m2
1ψ ; □ϕ ¼ m2

1ϕ: ð4:60Þ

This means that Jμ
□

nðψ ;ϕÞ ¼ m2n−2
1 Jμ

□
ðψ ;ϕÞ. Writing the

operator ΔN as

HIGHER DERIVATIVE SCALAR QUANTUM FIELD THEORY IN … PHYS. REV. D 100, 105008 (2019)

105008-11



ΔN ¼ ð□ −m2
1Þhð□Þ ð4:61Þ

with

hð□Þ ¼
YN
i¼2

ð□ −m2
i Þ ¼

XN−1

k¼0

ck□k; ð4:62Þ

we find that

JμΔN
ðψ ;ϕÞ ¼

XN−1

k¼0

ck½Jμ□kþ1ðψ ;ϕÞ −m2
1J

μ
□

kðψ ;ϕÞ�

¼
XN−1

k¼0

ck½ðkþ 1Þm2k
1 − km2k

1 �Jμ
□
ðψ ;ϕÞ

¼
XN−1

k¼0

ckm2k
1 Jμ

□
ðψ ;ϕÞ

¼ hðm2
1ÞJμ□ðψ ;ϕÞ

¼
YN
i¼2

ðm2
1 −m2

i ÞJμ□ðψ ;ϕÞ: ð4:63Þ

In other words, when ψ and ϕ are solutions with the same
mass, as in (4.60), the conserved current is given by

JμΔN
ðψ ;ϕÞ ¼

YN
i¼2

ðm2
1 −m2

i ÞJμðψ ;ϕÞ; ð4:64Þ

where Jμðψ ;ϕÞ is the usual current

Jμðψ ;ϕÞ ¼ ψ∇μϕ − ϕ∇μψ : ð4:65Þ

In the general case when □ψ ¼ y2ψ and □ϕ ¼ x2ϕ, we
have

ΔN ¼
YN
i¼1

ð□ −m2
i Þ ¼ Wð□Þ ¼

XN
k¼0

ak□k ð4:66Þ

and

JμΔN
ðψ ;ϕÞ ¼

XN
k¼1

akJ
μ
□

kðψ ;ϕÞ: ð4:67Þ

From (4.49) we therefore have

JμΔN
ðψ ;ϕÞ ¼

XN
k¼1

ak x2k−2
Xk−1
p¼0

�
y
x

�
2p
Jμðψ ;ϕÞ

¼
XN
k¼1

ak x2k−2
�
1 − ðyxÞ2k
1 − ðyxÞ2

�
Jμðψ ;ϕÞ

¼ 1

x2 − y2
XN
k¼1

akðx2k − y2kÞJμðψ ;ϕÞ

¼ 1

x2 − y2
XN
k¼0

akðx2k − y2kÞJμðψ ;ϕÞ

¼ 1

x2 − y2
ðWðx2Þ −Wðy2ÞÞJμðψ ;ϕÞ; ð4:68Þ

and hence we have

JμΔN
ðψ ;ϕÞ ¼

Q
N
i¼1ðy2 −m2

i Þ −
Q

N
i¼1ðx2 −m2

i Þ
y2 − x2

Jμðψ ;ϕÞ:

ð4:69Þ

V. GREEN FUNCTIONS AND EUCLIDEAN
FORMULATION

Pais and Uhlenbeck solved for the time-independent
Green function Gð4ÞðrÞ for the fourth-order operator in flat
space, defined by

ð−∇2 þm2
1Þð−∇2 þm2

2ÞGð4ÞðrÞ ¼ δðrÞ; ð5:1Þ

where r ¼ r1 − r2, by using Fourier transforms. Since

1

ð−∇2 þm2
1Þð−∇2 þm2

2Þ

¼ 1

m2
2 −m2

1

�
1

ð−∇2 þm2
1Þ

−
1

ð−∇2 þm2
2Þ
�
; ð5:2Þ

the formal solution6 is

Gð4ÞðrÞ ¼ ðe−m1r − e−m2rÞ
4πðm2

2 −m2
1Þr

; ð5:3Þ

where r ¼ jrj.Gð4ÞðrÞ goes to a constant value at the origin,
and it admits a Taylor expansion in powers of r. However,
because the expansion includes odd powers of r, it is not
differentiable with respect to the Cartesian coordinates at
the origin r ¼ 0, and indeed for this reason it does, in fact,
satisfy (5.1) with the delta function on the right-hand side.
This may easily be verified by integrating (5.1) over a small
spherical volume centered on the origin, and using the
divergence theorem to turn the derivative terms into surface

6Pais and Uhlenbeck omit the denominator ðm2
2 −m2

1Þ.

GIBBONS, POPE, and SOLODUKHIN PHYS. REV. D 100, 105008 (2019)

105008-12



integrals. Note that Gð4ÞðrÞ is symmetric under the inter-
change of m1 and m2. Both ð−∇2 þm2

1Þ and ð−∇2 þm2
2Þ

are positive operators, and their Green functions e−m1r

4πr and
e−m2r

4πr are both positive. The operator ð−∇2 þm2
1Þð−∇2 þ

m2
2Þ is positive and, as one may check, Gð4ÞðrÞ is also

positive.
The Green function (5.3) is unique, since there are no

nonsingular solutions of the homogeneous equation

∇4ϕ − ðm2
1 þm2

2Þ∇2ϕþm2
1m

2
1ϕ ¼ 0 ð5:4Þ

that fall off sufficiently fast at infinity. This is easily
established by multiplying (5.4) by ϕ and integrating over
E3. Integrating by parts gives

Z
E3

½ð∇2ϕÞ2 þ ðm2
1 þm2

2Þð∇ϕÞ2 þm2
1m

2
2ϕ

2�d3x ¼ 0;

ð5:5Þ

whence ϕ ¼ 0.
Similar conclusions hold in four-dimensional Euclidean

space, but the explicit form of the Green function is more
complicated since it involves Bessel functions. Concretely,
the Euclidean Green function GEðrÞ for the second-order
Klein-Gordon operator, obeying ð−∇2þm2ÞGEðrÞ¼δðrÞ,
is given by

GEðrÞ ¼
mK1ðmrÞ

4π2r
; ð5:6Þ

where KνðxÞ is the modified Bessel function of the second
kind, which has the integral representation

KνðxÞ ¼
ffiffiffi
π

p
xν

2νΓðνþ 1
2
Þ
Z

∞

1

dt e−xtðt2 − 1Þν−1
2: ð5:7Þ

At small r the Green function GEðrÞ has the expansion

GEðrÞ¼
1

4π2r2
þ m2

16π2

�
2γþ2 log

mr
2
−1

�
þ�� � ; ð5:8Þ

where γ is the Euler-Mascheroni constant. For the fourth-
order Pais-Uhlenbeck operator, the corresponding Green

functionGð4Þ
E ðrÞ obeys (5.1) (with∇2 now understood to be

the four-dimensional Euclidean Laplacian) and is given by

Gð4Þ
E ðrÞ ¼ m1K1ðm1rÞ −m2K1ðm2rÞ

4π2ðm2
2 −m2

1Þr
: ð5:9Þ

One may easily verify, for example by using (5.7), that both
(5.8) and (5.9) are positive. [Note that the r−2 singularity in
(5.8) is canceled in (5.9).] Because of the positivity of

Gð4Þ
E ðrÞ, one might be led to believe that the Osterwalder-

Schrader construction of the quantum field theory could be

carried out with no negative norm states. This, however, is
not the case [15], as we shall discuss below.

A. Reflection positivity in the fourth-order case

If we work on a Riemannian manifold, the Euclidean
action functional

I ¼ 1

2

Z
D

ffiffiffi
g

p
d4x½ð∇2ϕÞ2 þ ðm2

1 þm2
2Þðgμν∂μϕ∂νϕÞ

þm2
1m

2
2ϕ

2� ð5:10Þ
is positive definite. Thus the Euclidean functional integrals
should make sense and the associated two-point function or
Green function

GE ¼ 1

m2
2 −m2

1

�
1

ð−∇2 þm2
1Þ

−
1

ð−∇2 þm2
2Þ
�
; ð5:11Þ

being the inverse of the positive operator, will be positive.
In general, given a Riemannian manifold there is no

Lorentzian manifold associated with it by analytic con-
tinuation. If there is, one may analytically continue the
two-point function and ask what, if any, is its physical
significance. In the case of Euclidean space E4 it is well
known that one obtains the Wightman function associated
with the vacuum state. If one periodically identifies one of
the coordinates with period β, one obtains expectation
values in the Gibbs state at temperature T ¼ 1

β. In fact, using
a construction due to Osterwalder and Schrader one need
not depart from Euclidean space in order to construct the
quantum mechanical Hilbert space. This will be possible
as long as the Green function satisfies the requirement of
reflection positivity [20].7 It has been suggested by a
number of authors [28–36] that this construction may be
generalized to a restricted class of Riemannian manifolds,
including globally static spacetimes, which more generally
may be characterized as “real tunneling geometries” [19].
One requires that the Riemann manifold admit a reflec-

tion symmetry θ, an involutive isometry which leaves fixed
a two-sided hypersurface Σ such that

M ¼ M−⊔Σ⊔Mþ; θM� ¼ M∓; ð5:12Þ
where ⊔ denotes the disjoint union. Let V be the space of
complex valued functions that vanish outsideMþ. If jfi ∈ V
and f̄⋆θ ¼ f̄ðθðxÞÞ is the pullback of its complex conjugate
under θ, we define

hfjfi ¼ jjfij2

¼
Z Z

d4x
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
d4y

ffiffiffiffiffiffiffiffiffi
gðyÞ

p
f̄ðθxÞGðx; yÞfðyÞ:

ð5:13Þ

7For a helpful introduction the reader may consult [27].
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If the right-hand side of (5.13) is positive definite, then the
left-hand side provides aHermitian inner product onV which
may be identified with the one-particle Hilbert space.
If

GE ¼ 1

ð−∇2 þm2Þ ; ð5:14Þ

then this reflection positivity condition is satisfied [35].
However, if

Gð4Þ
E ¼ 1

ð−∇2 þm2
2Þð−∇2 þm2

1Þ
ð5:15Þ

¼ 1

m2
1 −m2

2

�
1

ð−∇2 þm2
2Þ

−
1

ð−∇2 þm2
1Þ
�
; ð5:16Þ

then reflection positivity is not satisfied [15]. To see this,
suppose m2

1 > m2
2 and let

f ¼ ð−∇2 þm2
2Þh ð5:17Þ

where h ∈ V. Then

hfjfi ¼ 1

m2
1 −m2

2

Z ffiffiffiffiffiffiffiffiffi
gðxÞ

p
d4x

Z ffiffiffiffiffiffiffiffiffi
gðyÞ

p
d4y

×

�
f̄ðθxÞh − f̄ðθxÞ 1

ð−∇2 þm2
1Þ
fðyÞ

�

¼ −
1

m2
1 −m2

2

Z ffiffiffiffiffiffiffiffiffi
gðxÞ

p
d4x

Z ffiffiffiffiffiffiffiffiffi
gðyÞ

p
d4yf̄ðθxÞ

×
1

ð−∇2 þm2
1Þ
fðyÞ; ð5:18Þ

since f̄ðθxÞ and h have disjoint support. Thus states of the
form jð−∇2 þm2

2Þhi have negative norm squared.

B. 2Nth-order case

For the 2Nth-order operator we have

YN
i¼1

1

ð−∇2 þm2
i Þ

¼
XN
i¼1

1

Ci

1

ð−∇2 þm2
i Þ
; ð5:19Þ

where

Ci ¼
Y
j≠i

ðm2
j −m2

i Þ: ð5:20Þ

Proceeding as before, and considering

fi ¼
Y
j≠i

ð−∇2 þm2
jÞh; ð5:21Þ

we shall have

hfijfii ¼
1

Ci

Z ffiffiffiffiffiffiffiffiffi
gðxÞ

p
d4x

Z ffiffiffiffiffiffiffiffiffi
gðyÞ

p
d4y f̄iðθxÞ

×
1

ð−∇2 þm2
i Þ
fiðyÞ: ð5:22Þ

This can have either sign, depending on the sign of Ci,
and this depends upon the relative values for the massesmi.
For example, if we order the masses so that

m2
1 > m2

2 > m2
3 > … > m2

N; ð5:23Þ

then CN is positive, and the signs of Ci alternate as i
decreases. Thus there will always be states of negative
norm as well as states of positive norm.
It is interesting to note that if we construct the static Green

function Gð2NÞðrÞ generalising (5.3) to the 2Nth-order
operator, we obtain

Gð2NÞðrÞ ¼ 1

4πr

XN
i¼1

e−mir

Ci
; ð5:24Þ

and that this is finite at r ¼ 0 for all N ≥ 2. In fact, one can
see that8

XN
i¼1

m2p
i

Ci
¼ 0; for p ≤ N − 2; ð5:25Þ

and that

XN
i¼1

m2N−2
i

Ci
¼ ð−1ÞN−1: ð5:26Þ

This implies that the Taylor expansion of Gð2NÞðrÞ in (5.24)
has the form

Gð2NÞðrÞ ¼ a0 þ a2 r2 þ a4 r4 þ a6 r6 þ � � �

þ ð−1ÞN−1

4πð2N − 2Þ! r
2N−3 þ a2N−1r2N−1

þ a2Nþ1r2Nþ1 þ � � � ; ð5:27Þ

where the constant ak coefficients depend on the massesmi.
The nonanalyticity of the Green function, as a function of
the Cartesian coordinates, is associated with the occurrence
of odd-integer powers of r in the Taylor expansion (5.27).

8These results can be proved by considering the contour
integrals

I
C
dz zp

YN
i¼1

1

ðz −m2
i Þ

for 0 ≤ p ≤ N − 1, where the contour C is taken to be a circle of
radius R centered on the origin, in the limit where R is sent to
infinity.
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The first such term, for the 2Nth-order operator, occurs at the
order r2N−3.
This softening of the Green function at short distance is

analogous to the softening encountered in Pauli-Villars
regularization [37].
The Euclidean Green function Gð2NÞ

E ðrÞ for the 2Nth-
order Pais-Uhlenbeck operator can also be calculated using
the same formalism as above. From (5.6), we see that

Gð2NÞ
E ðrÞ ¼

XN
i¼1

miK1ðmirÞ
4π2Cir

: ð5:28Þ

The identities (5.25) and (5.26) again imply that the

nonanalytic behavior of Gð2NÞ
E ðrÞ [in the form of the

logðmir=2Þ terms] is deferred to an increasingly higher
order in a small-r expansion as N increases.

C. Higher dimensional green functions

The Green function GEðrÞ in d-dimensional Euclidean
space, obeying ð−∇2 þm2ÞGEðrÞ ¼ δðrÞ, is given by

GEðrÞ ¼
m

d
2
−1Kd

2
−1ðmrÞ

ð2πÞd2rd2−1 : ð5:29Þ

The cases we discussed previously correspond to d ¼ 3, for
the static Green function in four-dimensional spacetime,
and d ¼ 4, for the four-dimensional Euclidean Green
function. The analysis of the Euclidean Green functions
for the higher-order Pais-Uhlenbeck operators proceeds in
the same manner as in the cases we discussed previously.
As in those cases, the onset of nonanalytic behavior in the
Green functions for the higher-order Pais-Uhlenbeck oper-
ators, namely

Gð2NÞ
E ðrÞ ¼

XN
i¼1

m
d
2
−1
i Kd

2
−1ðmirÞ

ð2πÞd2Cir
d
2
−1

; ð5:30Þ

is deferred to increasingly higher powers in the small-r
expansion as N increases.

VI. NO-HAIR THEOREMS FOR STATIC AND
STATIONARY SOLUTIONS

In this section, we address the question of whether there
could exist regular static solutions to certain classes of
higher derivative field theories. First, we consider field
theories of the Pais-Uhlenbeck type. Then, we consider a
class of 2N-order field theories with a general potential
VðϕÞ.

A. Pais-Uhlenbeck field theories

Our discussion here applies rather generally to the
situation where we have a static asymptotically flat

background metric, regular outside a regular event horizon,
in which a scalar field that is also static satisfies the Pais-
Uhlenbeck equations

YN
i¼1

ð□ −m2
i Þϕ ¼ 0: ð6:1Þ

For concreteness, we shall first consider the fourth-order
example (4.1). If we integrate over the domain D obtained
by taking an initial spacelike surface ΣðiÞ extending from
infinity to the horizon, and moving it up the orbits of the
static Killing vector field Kμ that coincides on the horizon
with its null generators, to a final surface ΣðfÞ, and then use
(4.6) with χ ¼ ϕ, we find that

1

2

Z
ðð∇2ϕÞ2þðm2

1þm2
2Þgμν∂μϕ∂νϕþm2

1m
2
2ϕ

2Þ ffiffiffiffiffiffi
−g

p
d4x

¼
Z
∂D
ð−ϕð∇μ∇2ϕþð∇μϕÞð∇2ϕÞþðm2

1þm2
2Þϕ∇μϕÞdΣμ:

ð6:2Þ

Now ∂D has four boundary components: One is at
infinity, ∂D∞; one is on the horizon, ∂DH; one is the initial
surface ∂Di ¼ ΣðiÞ; and the fourth is the final surface
∂Df ¼ ΣðfÞ. The integrals over ∂Di and ∂Df cancel one
another, since, by construction, ΣðfÞ is obtained by carrying
ΣðiÞ along the orbits of the Killing vector Kμ. The integrand
on ∂DH vanishes because dΣμ on H is proportional to Kμ

and Kμ∂μϕ ¼ Kμ∂μ∇2ϕ ¼ 0. The integral over ∂D∞
vanishes by the boundary conditions on ϕ.
Thus the left-hand side of (6.2) vanishes. But, unless

m2
1m

2
2 ¼ 0, the integrand is positive definite. Thus in this

case ϕ ¼ 0. If it happens that m2
1m

2
2 ¼ 0 but m2

1 þm2
2 ≠ 0,

we may only deduce that ϕ ¼ const. If m2
1 þm2

2 ¼ 0, we
deduce that ∇2ϕ ¼ 0 and hence, by a standard argument,
that ϕ ¼ const in this case as well. Thus we have shown
that there can exist no regular, static solutions for the scalar
field ϕ in a static black hole background. A special case of
this result is when there is no black hole, and the spacetime
is just flat Minkowski spacetime.
The above argument generalizes immediately to the

2N-order Pais-Uhlenbeck theory (6.1), since by appropriate
integrations by parts, the analogue of the left-hand side
in (6.2) will consist of a sum of squares with positive
coefficients. The analogue of the surface terms on the right-
hand side will again vanish, by virtue of the assumption of
staticity and the imposition of an appropriate boundary
condition on ϕ at infinity. Thus again, one concludes that
there can be no nontrivial static solutions for ϕ in flat space
or a regular static black hole background.
The result also immediately generalizes to higher space-

time dimensions.
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One may also consider adding a scalar potential VðϕÞ.
If this is such that ϕV 0ðϕÞ is everywhere non-negative, then
one will again be able to show that ϕ must vanish for a
static solution.

B. Higher-order theories with a general potential

In this section, we suppose that ϕ is static and obeys

−ð−□Þnϕ ¼ V 0ðϕÞ ð6:3Þ

in a curved d-dimensional spacetime. Differentiating with
respect to ∂μ and then contracting with ∂μϕ implies

−∂μϕ∂μð−□Þnϕ ¼ V 00gμν∂μϕ∂νϕ: ð6:4Þ

By extracting derivatives sequentially, this can be written in
the form

∇μS
μ
ðnÞ − ð□1

2
ðnþ1ÞϕÞ2 ¼ V 00gμν∂μϕ∂νϕ ð6:5Þ

if n is odd, or as

∇μS
μ
ðnÞ − ð∇μ□

1
2
nϕÞ2 ¼ V00gμν∂μϕ∂νϕ ð6:6Þ

if n is even.
If we assume that the solution ϕ is static, and that the

metric is static, then we can proceed as in Sec. VI A by
integrating (6.5) or (6.6) over a portion of spacetime
bounded by initial and final surfaces ΣðiÞ and ΣðfÞ, a
horizonH, and a boundary at infinity. For the same reasons
as in Sec. VI A, the boundary contributions on ΣðiÞ and ΣðfÞ
will cancel, the term on the horizon will vanish, and the
contribution at infinity will give zero subject to appropriate
falloff conditions for ϕ. We may then conclude that if the
potential is convex, i.e., V 00 ≥ 0 everywhere, then ϕmust be
a constant.
By a straightforward extension of the argument above,

we can similarly conclude that there are no nontrivial static
solutions to the equation

ð−1ÞNþ1Fð□Þϕ ¼ V 0ðϕÞ; ð6:7Þ

where

Fð□Þ ¼
YN
i¼1

ð□ −m2
i Þ: ð6:8Þ

C. Virial theorem

A different technique for ruling out static solutions under
certain assumptions about the potential is to consider the
virial theorem.
Calculating the spatial trace Tii of Tμν, given by (4.34),

in a d-dimensional Minkowski background for a purely
static field, we find that

Tii ¼
1

2
ð2nþ 1 − dÞjYj2 − ðd − 1ÞV þ t:d:; ð6:9Þ

where t.d. denotes total derivatives, and

jYj2 ¼ ð□n=2ϕÞ2; n ¼ even;

jYj2 ¼ ð∂i□
ðn−1Þ=2ϕÞ2; n ¼ odd: ð6:10Þ

(Because of the assumption that ϕ is static, □ is just ∂i∂i
here.) Similarly, the energy density is given by

T00 ¼
1

2
jYj2 þ V þ t:d: ð6:11Þ

Note that the total energy
R
dd−1xT00 is always positive

provided that V is non-negative.
Because, for a general energy-momentum tensor,

∂iTij ¼ 0 for a static field in Minkowski spacetime, we
have ∂iðxjTijÞ ¼ Tii. Integrating this over the (d − 1)-
dimensional space, and assuming that the falloff conditions
for ϕ are such that the surface term gives zero, it follows
that we must have

Z
dd−1xTii ¼ 0; ð6:12Þ

and hence, from (6.9),

Z
dd−1x

�
1

2
ðd − 1 − 2nÞjYj2 þ ðd − 1ÞV

�
¼ 0: ð6:13Þ

(The same result may be obtained by using Derrick’s
scaling argument [38], and demanding that the total energyR
dd−1xT00 be extremized for any static solution.)
We see from (6.13) that if V is positive and d > 2nþ 1,

there can be no static solutions. Similarly, if V is negative
and d < 2nþ 1, there can again be no static solutions.

D. Stationary metrics

The results of Secs. VI A and VI B remain valid for
globally stationary metrics; that is, metrics admitting an
everywhere timelike Killing vector field Kμ. This is
because the condition Kμ∂μϕ ¼ 0 implies that ∂μϕ is
spacelike, or zero, and so gμν∂μϕ∂νϕ ≥ 0. In the case that
Kμ is not everywhere timelike, in other words an ergo-
region is present, the argument just given will not neces-
sarily be valid. However, if the metric is both stationary and
axisymmetric, and ϕ is assumed to be both stationary and
axisymmetric, the argument will go through.

VII. STABILIZATION BY HUBBLE FRICTION

Following the work of [39], we have studied the behavior
of the Pais-Uhlenbeck oscillator in a background de Sitter
universe. We choose coordinates in which the metric is
given by
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ds2 ¼ −dt2 þ e2Htdxidxi; ð7:1Þ
where H ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

and Λ is the cosmological constant.
The nonlinear fourth-order Pais-Uhlenbeck equation of
motion for a spatially homogeneous scalar field ϕðtÞ with
a potential VðϕÞ is
�
d2

dt2
þ 3H

d
dt

þm2
1

��
d2

dt2
þ 3H

d
dt

þm2
2

�
ϕ ¼ −V 0ðϕÞ:

ð7:2Þ
In the absence of the potential, we have two uncoupled
damped simple harmonic oscillators, with the solution

ϕ ¼
X2
i¼1

Aie−
3
2
Ht sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i −
9H2

4

r
tþ αi

�
; ð7:3Þ

as long as m2
i > 9H2=4.

If we first set H ¼ 0 and consider, as an example, a
potential V ¼ 1

4
λϕ4, we can verify Pavšič’s observation [6]

that for given initial data, the solution in Minkowski
spacetime remains bounded provided that λ is sufficiently
small. If we choose a larger value of λ such that the solution
becomes unstable, we can thenverify, by numerical analysis,
that turning on H can render it stable again, and, in fact, ϕ
then decays to zero at large t (i.e., within a fewHubble times).
One may also consider inhomogeneous solutions of

the free fourth-order equation, with wave vector k. The
equation of motion is obtained by replacing m2

i by m2
i þ

k2e−2Ht in (7.2). The additional term decays to zero rapidly,
and so we would expect that our results in the nonlinear
situation will remain valid. A complete treatment would
require further investigation going beyond the ordinary
differential equations we studied here. (See also the
discussion in [40].)
Our results will be qualitatively similar for all the higher-

order Pais-Uhlenbeck oscillators.

VIII. CONCLUSION

In this paper we have studied a scalar field ϕ coupled to a
fixed background metric gμν, for which the scalar equation
of motion contains derivatives of arbitrary order. In all the
examples considered, the equations of motion are linear in
ϕ apart from nonlinearities V 0ðϕÞ introduced by a possible
potential term VðϕÞ. It follows that classically the propa-
gation is causal; that is, the characteristic surfaces across
which discontinuities may propagate are null hypersurfaces
with respect to the metric gμν. This is despite the fact that
the various energy-momentum tensors, such as the canoni-
cal or the Belinfante-Rosenfeld energy-momentum tensor,
do not satisfy the dominant energy condition.
We have obtained general expressions for both the

canonical and the symmetric Belinfante-Rosenfeld energy-
momentum tensors, in the latter case by introducing

auxiliary fields. This formulation greatly simplifies the
calculations, since it eliminates the need to vary the
metrics in high-order covariant derivatives of the scalar
field. The Belinfante-Rosenfeld energy-momentum tensor
is required for a consistent coupling of the scalar field to
the gravitational field. We have also obtained general
expressions for the conserved symplectic current used in
quantizing the scalar field. Both exhibit the well known
difficulty that the energy-momentum tensors will not
satisfy the usual energy conditions, and the sesquilinear
inner product defined using the symplectic current will
not be positive definite.
Thus, if the standard definition of “positive frequency” is

adopted, the quantum mechanical norm on states will be
indefinite. On the other hand, swapping the sign in the
definition of “positive frequency” for the modes carrying
negative energy results in physical states carrying negative
energy.
To investigate this further we have considered Euclidean

formulations of the quantized theory in which the metric
gμν is taken to be positive definite. Assuming that the
Riemannian manifold admits a reflection map decompos-
ing the manifold into two disjoint domains symmetric
about a separating hypersurface, we have investigated
whether Osterwalder and Schrader’s reflection positivity
condition holds. We show that this is never the case for the
theories we study, confirming earlier studies indicating that
the Euclidean approach to these theories leads inevitably to
the presence of “ghosts,” that is, states of negative norm.
Finally, we studied, without assuming spherical sym-

metry, the possible existence of nonsingular finite energy
static solutions of our equations on static or stationary
backgrounds, and were able to rule out such solutions
subject to various assumptions on the potential VðϕÞ. These
results encompass the important cases of soliton solutions
in flat space, bounce solutions inducing the decay of false
vacua, and scalar hair for black holes.
Although the implications of higher derivative theories

for quantum gravity at the microscopic level remain
unclear, the work of [6–9,14] and the cosmological studies
of [39] indicate that there is still much to be understood
about the behavior of such higher derivative theories at the
macroscopic, classical, level. After all, the discoveries of
Slipher, Friedmann, Lemaître, Hubble, and Riess et al.
[41–45] clearly indicate that the universe at the largest scale
is definitely not in a state of static equilibrium. Moreover, as
we illustrated in this paper, the phenomenon of Hubble
friction clearlymitigates against the instability, in the expand-
ing state, of modes that are unstable in a static configuration.
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APPENDIX: CANONICAL NOETHER
ENERGY-MOMENTUM TENSOR

In this Appendix, we discuss the construction of the
canonical conserved energy-momentum tensor for a scalar
field with a higher derivative equation of motion, in a
Minkowski spacetime background. We show also in some
example cases how the canonical energy-momentum tensor
is related to the conventional energy momentum that is
derived by the Belinfante-Rosenfeld procedure of coupling
the scalar to gravity and then varying the action with respect
to the metric. In particular, we show in these examples how
the canonical energy-momentum tensor can be derived by
applying the Belinfante-Rosenfeld procedure to an action
in which an appropriate nonminimal coupling of the scalar
field to gravity has been added.
Consider a scalar field ϕ in Minkowski spacetime,

described by a Lagrangian

L ¼ Lðϕ;ϕν1 ;ϕν1ν2 ;ϕν1ν2ν3 ;…Þ; ðA1Þ

where ϕν1 ¼ ∂ν1ϕ, ϕν1ν2 ¼ ∂ν1∂ν2ϕ, etc. The Euler-
Lagrange equation is

∂L
∂ϕ ¼ ∂ν1

∂L
∂ϕν1

− ∂ν1∂ν2

∂L
∂ϕν1ν2

þ ∂ν1∂ν2∂ν3

∂L
∂ϕν1ν2ν3

þ � � � :

ðA2Þ

Using this to substitute for ∂L=∂ϕ in

∂μL¼ ∂L
∂ϕϕμþ

∂L
∂ϕν1

ϕν1μþ
∂L

∂ϕν1ν2

ϕν1ν2μþ
∂L

∂ϕν1ν2ν3

ϕν1ν2ν3μ

þ�� � ; ðA3Þ

then after some straightforward manipulations one finds
that

∂μL ¼ ∂ν

X
n≥1

WðnÞν
μ ðA4Þ

and hence that Tμ
ν defined by

Tμ
ν ¼ −

X
n≥1

WðnÞν
μ þ δνμL ðA5Þ

is conserved, ∂νTμ
ν ¼ 0, where

Wð1Þν
μ ¼ ∂L

∂ϕν
ϕμ;

Wð2Þν
μ ¼ ∂L

∂ϕα1ν
ϕα1μ − ∂α1

∂L
∂ϕα1ν

ϕμ;

Wð3Þν
μ ¼ ∂L

∂ϕα1α2ν
ϕα1α2μ − ∂α1

∂L
∂ϕα1α2ν

ϕα2μ

þ ∂α1∂α2

∂L
∂ϕα1α2ν

ϕμ;

Wð4Þν
μ ¼ ∂L

∂ϕα1α2α3ν
ϕα1α2α3μ − ∂α1

∂L
∂ϕα1α2α3ν

ϕα2α3μ

þ ∂α1∂α2

∂L
∂ϕα1α2α3ν

ϕα3μ − ∂α1∂α2∂α3

∂L
∂ϕα1α2α3ν

ϕμ;

ðA6Þ

and so on. Note that −WðnÞν
μ gives the contribution to the

canonical energy-momentum tensor associated with the
dependence of the Lagrangian on the nth-order spacetime
derivatives of ϕ. As always with the canonically defined
energy-momentum tensor coming from the Noether sym-
metries of the Lagrangian (i.e., the fact that the Lagrangian
has no explicit dependence on the spacetime coordinates
xμ), Tμ

ν may not necessarily be symmetric in μ and ν after
lowering the ν index. In the event that it is not, one can
construct a conserved symmetric 2-index tensor from it by
making use of the freedom to add a term ∂σψμ

νσ to Tμ
ν,

where ψμ
νσ is any tensor that is antisymmetric in ν and σ,

ψμ
νσ ¼ −ψμ

σν: ðA7Þ
Here we present examples of the canonical energy-

momentum tensors for some simple Lagrangians. For the
standard kinetic term for a scalar field we obtain

L ¼ −
1

2
ð∂ϕÞ2;

Tμ
ν ¼ ∂μϕ∂νϕ −

1

2
δνμð∂ϕÞ2; ðA8Þ

which is the same as the conventional Belinfante-Rosenfeld
energy-momentum tensor that one would obtain from
varying the metric in L ¼ − 1

2

ffiffiffiffiffiffi−gp ð∂ϕÞ2 and then special-
izing to a Minkowski background. If instead we were to
integrate the Lagrangian by parts before the calculation of
the canonical energy-momentum tensor, we would obtain
instead the energy-momentum tensor T̃μν:

L ¼ 1

2
ϕ□ϕ;

T̃μ
ν ¼ −

1

2
ϕ∂μ∂νϕþ 1

2
∂μϕ∂νϕþ 1

2
δνμϕ□ϕ: ðA9Þ
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The difference between the two is

T̃μ
ν − Tμ

ν ¼ 1

4
ðδνμ□ − ∂μ∂νÞϕ2; ðA10Þ

and, in fact, T̃μ
ν is the conventional Belinfante-Rosenfeld

energy-momentum tensor one would obtain by varying the
metric in the nonminimally coupled Lagrangian

L̃ ¼ ffiffiffiffiffiffi
−g

p �
−
1

2
ð∂ϕÞ2 − 1

8
Rϕ2

�
; ðA11Þ

and then specializing to the Minkowski spacetime
background.
If we consider now a fourth-order Lagrangian, we obtain

L ¼ −
1

2
ð□ϕÞ2;

T 0ν
μ ¼ ð□ϕÞ∂μ∂νϕ − ð∂ν

□ϕÞ∂μϕ −
1

2
ð□ϕÞ2δνμ: ðA12Þ

We have denoted this tensor with a prime, because it
is not symmetric in μ and (the lowered) ν indices. We can
obtain a symmetric conserved energy-momentum tensor by
adding a term ∂σψμ

νσ with

ψμ
νσ ¼ ð∂μ∂νϕÞ∂σϕ − ð∂μ∂σϕÞ∂νϕ; ðA13Þ

leading to the energy-momentum tensor Tμ
ν ¼ T 0ν

μ þ
∂σψμ

νσ , where

Tμ
ν ¼ 2ð∂μ∂νϕÞ□ϕ − ð∂μϕÞ□ð∂νϕÞ − ð∂νϕÞ□ð∂μϕÞ

þ ð∂μ∂ν∂αϕÞð∂αϕÞ − ð∂μ∂αϕÞð∂ν∂αϕÞ

−
1

2
δνμð□ϕÞ2: ðA14Þ

The tensors (A9) and (A14) are precisely of the form of the
second-order and fourth-order contributions in the energy-
momentum tensor (3.12) given in [24] for the fourth-order
Pais-Uhlenbeck theory.
The canonical energy-momentum tensor Tμ

ν for the
− 1

2
ð□ϕÞ2 Lagrangian, given by (A14), is different from

the flat-space specialization of the expression (4.19) that we
obtained by the Belinfante-Rosenfeld metric-variation
method. In fact, the difference between the two energy-
momentum tensors can be generated as the metric variation
of a certain nonminimal coupling of the scalar field to
gravity. Specifically, we find that the canonical energy-
momentum tensor in (A14) can be obtained by varying the
metric in the Lagrangian

L̃¼ ffiffiffiffiffiffi
−g

p �
−
1

2
ð□ϕÞ2þ

�
Rμν−

1

4
Rgμν

�
∂μϕ∂νϕ

�
; ðA15Þ

and then specializing to a Minkowski-spacetime back-
ground. The nonminimal coupling term in (A15) is
similar in form to a Horndeski coupling [46] that has been
studied in other contexts in the literature, namely a termffiffiffiffiffiffi−gp ðRμν − 1

2
RgμνÞ∂μϕ∂νϕ.
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