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We review recent developments encompassing the description of quantum chaos in holography. We discuss the characterization
of quantum chaos based on the late time vanishing of out-of-time-order correlators and explain how this is realized in the dual
gravitational description. We also review the connections of chaos with the spreading of quantum entanglement and diffusion
phenomena.

1. Introduction

The characterization of quantum chaos is fairly complicated.
Possible approaches range from semiclassical methods to
random matrix theory: in the first case one studies the
semiclassical limit of a system whose classical dynamics is
chaotic; in the later approach the characterization of quantum
chaos is made by comparing the spectrum of energies of
the system in question to the spectrum of random matrices
[1]. Despite the insights provided by the above-mentioned
approaches, a complete and more satisfactory understanding
of quantum chaos remains elusive.

Surprisingly, new insights into quantum chaos have come
from black holes physics! In the context of so-called gauge-
gravity duality [2–4], black holes in asymptotically AdS
spaces are dual to strongly coupled many-body quantum
systems. It was recently shown that the chaotic nature of
many-body quantum systems can be diagnosed with certain
out-of-time-order correlation (OTOC) functions which, in
the gravitational description, are related to the collision
of shock waves close to the black hole horizon [5–9]. In
addition to being useful for diagnosing chaos in holographic
systems and providing a deeper understanding for the inner-
working mechanisms of gauge-gravity duality, OTOCs have
also proved useful in characterizing chaos in more general

nonholographic systems, including some simple models like
the kicked-rotor [10], the stadium billiard [11], and the Dicke
model [12].

In this paper we review the recent developments in the
holographic description of quantum chaos. We discuss the
characterization of quantum chaos based on the late time
vanishing of OTOCs and explain how this is realized in the
dual gravitational description. We also review the connec-
tions of chaos with spreading of quantum entanglement and
diffusion phenomena.We focus on the case of𝑑−dimensional
gravitational systems with 𝑑 ⩾ 3, which excludes the case
of gravity in 𝐴𝑑𝑆2 and SYK-like models [13–16]. (Another
interesting perspective on the characterization of chaos in the
context of (regularized) 𝐴𝑑𝑆2/𝐶𝐹𝑇1 is provided by [17–19].)
Also, due the lack of the author’s expertise, we did not cover
the recent developments in the direct field theory calculations
of OTOCs. This includes calculations for CFTs [20], weakly
coupled systems [21, 22], random unitary models [23–25],
and spin chains [26–30].

2. A Bird Eye’s View on Classical Chaos

In this section we briefly review some basic aspects of
classical chaos. For definiteness we consider the case of a
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Figure 1: Variation of a trajectory in the phase space under
small modifications of the initial condition. For a chaotic system
the distance between two initially nearby trajectories increases
exponentially with time, i.e., |𝛿𝑞(𝑡)| = |𝛿𝑞(0)|𝑒�휆�푡.

classical thermal system with phase space denoted as X =(q, p), where q and p are multidimensional vectors denoting
the coordinates and momenta of the phase space. We can
quantify whether the system is chaotic or not by measuring
the stability of a trajectory in phase space under small changes
of the initial condition. Let us consider a reference trajectory
in phase space, X(𝑡), with some initial condition X(0) = X0.
A small change in the initial conditionX0 󳨀→ X0 +𝛿X0 leads
to a new trajectoryX(𝑡) 󳨀→ X(𝑡)+𝛿X(𝑡).This is illustrated in
Figure 1. For a chaotic system, the distance between the new
trajectory and the reference one increases exponentially with
time

|𝛿X (𝑡)| ∼ 󵄨󵄨󵄨󵄨𝛿X0󵄨󵄨󵄨󵄨 𝑒�휆�푡
or 𝜕X (𝑡)𝜕X0 ∼ 𝑒�휆�푡, (1)

where 𝜆 is the so-called Lyapunov exponent. This should
be contrasted with the behavior of nonchaotic systems, in
which 𝛿X(𝑡) remains bounded or increases algebraically
[31].

The exponential increase depends on the orientation of𝛿X0 and this leads to a spectrum of Lyapunov exponents,{𝜆1, 𝜆2, . . . , 𝜆�퐾}, where 𝐾 is the dimensionality of the phase
space. A useful parameter characterizing the trajectory insta-
bility is

𝜆max = lim
�푡�㨀→∞

lim
�훿X0�㨀→0

1𝑡 log(𝛿X (𝑡)𝛿X0 ) , (2)

which is called the maximum Lyapunov exponent. When
the above limits exist and 𝜆max > 0, the trajectory shows
sensitivity to initial conditions and the system is said to be
chaotic [31].

The chaotic behavior can be a consequence of either
a complicated Hamiltonian or simply the contact with a
thermal heat bath. This is because chaos is a common
property of thermal systems. For the latter to make contact
with black holes physics, we consider the case of a classical
thermal system with inverse temperature 𝛽. If 𝐹(X) is some

function of the phase space coordinates, we define its classical
expectation value as

⟨𝐹⟩�훽 = ∫𝑑X𝑒−�훽�퐻(X)𝐹 (X)
∫ 𝑑X𝑒−�훽�퐻(X) (3)

where𝐻(X) is the system’s Hamiltonian.
Classical thermal systems have two exponential behaviors

that have analogues in terms of black holes physics: the
Lyapunov behavior, characterizing the sensitive dependence
on initial conditions, and the Ruelle behavior, characterizing
the approach to thermal equilibrium [32, 33].

To quantify the sensitivity to initial conditions in a ther-
mal system we need to consider thermal expectation values.
Note that (1) can have either signs. To avoid cancellations in
a thermal expectation values, we consider the square of this
derivative

𝐹 (𝑡) = ⟨( 𝜕X (𝑡)𝜕X (0))
2⟩

�훽

. (4)

The expected behavior of this quantity is the following [34]

𝐹 (𝑡) ∼ ∑
�푘

𝑐�푘𝑒2�휆𝑘�푡, (5)

where 𝑐�푘 are constants and 𝜆�푘 are the Lyapunov exponents.
At later times the behavior is controlled by the maximum
Lyapunov exponent 𝐹 ∼ 𝑒2�휆max�푡.

The approach to thermal equilibrium or, in other words,
how fast the system forgets its initial condition can be
quantified by two-point functions of the form

𝐺 (𝑡) = ⟨X (𝑡)X (0)⟩�훽 − ⟨X⟩2�훽 , (6)

whose expected behavior is [34]

𝐺 (𝑡) ∼ ∑
�푗

𝑏�푗𝑒−�휇𝑗�푡, (7)

where 𝑏�푗 are constants and 𝜇�푗 are complex parameters called
Ruelle resonances.The late time behavior is controlled by the
smallest Ruelle resonance 𝐺 ∼ 𝑒−�휇min�푡.

3. Some Aspects of Quantum Chaos

In this section we review some aspects of quantum chaos.
For a long time, the characterization of quantum chaos was
made by comparing the spectrum of energies of the system in
question to the spectrum of random matrices or using semi-
classical methods [1]. Here we follow a different approach,
which was first proposed by Larkin and Ovchinnikov [35]
in the context of semiclassical systems, and it was recently
developed by Shenker and Stanford [6–8] and by Kitaev [9].

For simplicity, let us consider the case of a one-
dimensional system, with phase space variables (𝑞, 𝑝). Classi-
cally, we know that 𝜕𝑞(𝑡)/𝜕𝑞(0) grows exponentiallywith time
for a chaotic system.Thequantumversion of this quantity can
be obtained by noting that

𝜕𝑞 (𝑡)𝜕𝑞 (0) = {𝑞 (𝑡) , 𝑝 (0)}P.B. , (8)
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where {𝑞(𝑡), 𝑝(0)}P.B. denotes the Poisson bracket between
the coordinate 𝑞(𝑡) and the momentum 𝑝(0). The quantum
version of 𝜕𝑞(𝑡)/𝜕𝑞(0) can then be obtained by promoting the
Poisson bracket to a commutator

{𝑞 (𝑡) , 𝑝 (0)}P.B. 󳨀→ 1𝑖ℏ [𝑞 (𝑡) , 𝑝 (0)] (9)

where now 𝑞(𝑡) and 𝑝(0) are Heisenberg operators.
We will be interested in thermal systems, so we would

like to calculate the expectation value of [𝑞(𝑡), 𝑝(0)] in a
thermal state. However, this commutator might have either
signs in a thermal expectation value and this might lead to
cancellations. To overcome this problem, we consider the
expectation value of the square of this commutator

𝐶 (𝑡) = ⟨− [𝑞 (𝑡) , 𝑝 (0)]2⟩
�훽
, (10)

where 𝛽 is the system’s inverse temperature and the overall
sign is introduced to make 𝐶(𝑡) positive. More generally,
one might replace 𝑞(𝑡) and 𝑝(0) by two generic Hermitian
operators 𝑉 and 𝑊 and quantify chaos with the double
commutator

𝐶 (𝑡) = ⟨− [𝑊 (𝑡) , 𝑉 (0)]2⟩
�훽
. (11)

This quantity measures how much an early perturbation 𝑉
affects the later measurement of𝑊. As chaos means sensitive
dependence on initial conditions, we expect𝐶(𝑡) to be ‘small’
in nonchaotic system and ‘large’ if the dynamics is chaotic.
In the following we give a precise meaning for the adjectives
‘small’ and ‘large’.

For some class of systems the quantum behavior of𝐶(𝑡) has a lot of similarities with the classical behavior of⟨(𝜕𝑞(𝑡)/𝜕𝑞(0))⟩�훽. However, the analogy between the classical
and quantum quantities is not perfect because there is not
always a good notion of a small perturbation in the quantum
case (remember that classical chaos is characterized by the
fact that a small perturbation in the past has important
consequences in the future). If we start with some reference
state and then perturb it, we easily produce a state that is
orthogonal to the original state, even when we change just
a few quantum numbers. Because of that it seems unnatural
to quantify the perturbation as small. Fortunately, there
are some quantum systems in which the notion of a small
perturbation makes perfect sense. An example is provided by
systems with a large number of degrees of freedom. In this
case a perturbation involving just a few degrees of freedom is
naturally a small perturbation.

For some class of chaotic systems, which include holo-
graphic systems, 𝐶(𝑡) is expected to behave as (see [30, 36]
for a discussion of different possible OTOC growth forms)

𝐶 (𝑡) ∼
{{{{{{{{{

𝑁−1
dof for 𝑡 < 𝑡�푑,

𝑁−1
dof exp (𝜆�퐿𝑡) for 𝑡�푑 ≪ 𝑡 ≪ 𝑡∗

O (1) for 𝑡 > 𝑡∗,
(12)

where𝑁dof is the number of degrees of freedomof the system.
Here, we have assumed𝑉 and𝑊 to be unitary andHermitian
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Figure 2: Schematic form of 𝐶(𝑡). We indicated the regions of
Lyapunov and Ruelle behavior. 𝐶(𝑡) ∼ O(1) at 𝑡 ∼ 𝑡∗.

operators, so that 𝑉𝑉 = 𝑊𝑊 = 1. The exponential growth
of 𝐶(𝑡) is characterized by the Lyapunov exponent (this is
actually the quantum analogue of the classical Lyapunov
exponent; the two quantities are not necessarily the same in
the classical limit [21]; here we stick to the physicists long
standing tradition of using misnomers and just refer to 𝜆�퐿 as
the Lyapunov exponent) 𝜆�퐿 and takes place at intermediate
time scales bounded by the dissipation time 𝑡�푑 and the
scrambling time 𝑡∗. The dissipation time is related to the
classical Ruelle resonances (𝑡�푑 ∼ 𝜇−1) and it characterizes the
exponential decay of two-point correlators, e.g., ⟨𝑉(0)𝑉(𝑡)⟩ ∼𝑒−�푡/�푡𝑑 .Thedissipation time also controls the late time behavior
of 𝐶(𝑡). The scrambling time 𝑡∗ ∼ 𝜆−1�퐿 log𝑁dof is defined as
the time at which 𝐶(𝑡) becomes of order O(1). See Figure 2.
The scrambling time controls how fast the chaotic system
scrambles information. If we perturb the system with an
operator that involves only a few degrees of freedom, the
information about this operator will spread among the other
degrees of freedom of the system. After a scrambling time,
the information will be scrambled among all the degrees of
freedom and the operator will have a large commutator with
almost any other operator.

To understand how the above behavior relates to chaos,
we write the double commutator as

𝐶 (𝑡) = ⟨− [𝑊 (𝑡) , 𝑉 (0)]2⟩
�훽

(13)

= 2 − 2 ⟨𝑊 (𝑡) 𝑉 (0)𝑊 (𝑡) 𝑉 (0)⟩�훽 , (14)

where we made the assumption that𝑊 and 𝑉 are Hermitian
and unitary operators. Note that all the relevant information
about 𝐶(𝑡) is contained in the OTOC:

OTO (𝑡) = ⟨𝑊 (𝑡) 𝑉 (0)𝑊 (𝑡) 𝑉 (0)⟩ . (15)

The fact that 𝐶(𝑡) approaches 2 at later times implies that the
OTO(𝑡) should vanish in that limit. To understand why this
is related to chaos we think of OTO(𝑡) as an inner-product of
two states

OTO (𝑡) = ⟨𝜓2 | 𝜓1⟩ , (16)

where 󵄨󵄨󵄨󵄨𝜓1⟩ = 𝑊 (−𝑡) 𝑉 (0) 󵄨󵄨󵄨󵄨𝛽⟩ ,󵄨󵄨󵄨󵄨𝜓2⟩ = 𝑉 (0)𝑊 (−𝑡) 󵄨󵄨󵄨󵄨𝛽⟩ (17)
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t = 0
V(0)|⟩

−t < 0

eiHtV(0)|⟩

e−iHtW(0)eiHtV(0)|⟩

W(0)eiHtV(0)|⟩

Figure 3: Construction of the state 𝑊(−𝑡)𝑉(0)|𝛽⟩. For a chaotic system the perturbation 𝑉 fails to rematerialize at 𝑡 = 0. In a nonchaotic
system we expect the perturbation 𝑉 to rematerialize at 𝑡 = 0.

t = 0
|⟩

−t < 0

eiHt|⟩

e−iHtW(0)eiHt|⟩ V(0)e−iHtW(0) eiHt|⟩

W(0)eiHt|⟩

Figure 4: Construction of the state 𝑉(0)𝑊(−𝑡)|𝛽⟩. By construction, this state displays the perturbation 𝑉 at 𝑡 = 0.

where |𝛽⟩ is some thermal state and we replace 𝑡 󳨀→ −𝑡 to
make easier the comparison with black holes physics.

If [𝑉(0),𝑊(𝑡)] ≈ 0 for any value of 𝑡, the two states
are approximately the same, and ⟨𝜓1 | 𝜓2⟩ ≈ 1, implying𝐶(𝑡) ≈ 0. That means the system displays no chaos—the early
measurement of 𝑉 has no effect on the later measurement of𝑊. If, on the other hand, [𝑉(0),𝑊(𝑡)] ̸= 0, the states |𝜓1⟩ and|𝜓2⟩ will have a small superposition ⟨𝜓1 | 𝜓2⟩ ≈ 0, implying𝐶(𝑡) ≈ 2. That means that 𝑉 has a large effect on the later
measurement of𝑊.

In Figure 3 we construct the states |𝜓1⟩ and |𝜓2⟩ and
explain why ⟨𝜓1 | 𝜓2⟩ ≈ 0 for large 𝑡 means chaos. Let
us start by constructing the state |𝜓1⟩ = 𝑊(−𝑡)𝑉(0)|𝛽⟩ =𝑒−�푖�퐻�푡𝑊(0)𝑒�푖�퐻�푡𝑉(0)|𝛽⟩. The unperturbed thermal state is rep-
resented by a horizontal line. We initially consider the state𝑉(0)|𝛽⟩, which is the thermal state perturbed by 𝑉. If we
evolve the system backwards in time (applying the operator𝑒�푖�퐻�푡) for some time which is larger than the dissipation time,
the system will thermalize and it will no longer display the
perturbation 𝑉. After that, we apply the operator 𝑊, which
should be thought of as a small perturbation, and then we
evolve the system forwards in time (applying the operator𝑒−�푖�퐻�푡).The final results of this set of operations depend on the
nature of the system. If the system is chaotic, the perturbation𝑊 will have a large effect after a scrambling time, and the
perturbation that was present at 𝑡 = 0 will no longer
rematerialize. This is illustrated in Figure 3. In contrast, for a
nonchaotic system, the perturbation 𝑊 will have little effect

on the system at later times, and the perturbation 𝑉 will (at
least partially) rematerialize at 𝑡 = 0.

We now construct the state |𝜓2⟩ = 𝑉(0)𝑊(−𝑡)|𝛽⟩ =𝑉(0)𝑒−�푖�퐻�푡𝑊(0)𝑒�푖�퐻�푡|𝛽⟩. This is illustrated in Figure 4. We start
with the thermal state |𝛽⟩ and then we evolve this state
backwards in time 𝑒�푖�퐻�푡|𝛽⟩. After that, we apply the operator𝑊 and then we evolve the system forwards in time, obtaining
the state 𝑒−�푖�퐻�푡𝑊(0)𝑒�푖�퐻�푡|𝛽⟩. Finally, we apply the operator 𝑉,
obtaining the state𝑉(0)𝑊(−𝑡)|𝛽⟩. Note that, by construction,
this state displays the perturbation 𝑉 at 𝑡 = 0, while the
state𝑊(−𝑡)𝑉(0)|𝛽⟩does not. As a consequence, the two states
are expected to have a small superposition ⟨𝑊(−𝑡)𝑉(0) |𝑊(−𝑡)𝑉(0)⟩�훽 ≈ 0. This should be contrasted to the case
where the system is not chaotic. In this case the perturbation𝑉 rematerializes at 𝑡 = 0, and the states |𝜓1⟩ and |𝜓2⟩ have a
large superposition, i.e., ⟨𝑊(−𝑡)𝑉(0) | 𝑊(−𝑡)𝑉(0)⟩�훽 ≈ 1.

In this construction we assumed the operators 𝑉(0) and𝑊(−𝑡) to be separated by a scrambling time, i.e., |𝑡| > 𝑡∗.
This is important because, at earlier times, the two operators,
which in general involve different degrees of freedom of
the system, generically commute. The operators manage to
have a nonzero commutator at later times because of the
phenomenon of operation growth that we will describe in the
next section.

3.1. Operator Growth and Scrambling. The operators 𝑉 and𝑊 act generically at different parts of the physical system,
yet they can have a nonzero commutator at later times. This
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is possible because in chaotic systems the time evolution of
an operator makes it more and more complicated, involving
and increasing number of degrees of freedom. As a result, an
operator that initially involves just a few degrees of freedom
becomes delocalized over a region that grows with time. The
growth of the operator 𝑊(𝑡) is maybe more evident from
the point of view of the Baker-Campbell-Hausdorff (BCH)
formula, in terms of which we can write

𝑊(𝑡) = 𝑒�푖�퐻�푡𝑊(0) 𝑒−�푖�퐻�푡
= ∞∑
�푘=0

(−𝑖𝑡)�푘𝑘! [𝐻 [𝐻, . . . [𝐻,𝑊 (0)] . . .]] . (18)

From the above formula it is clear that, at each order in 𝑡,
there is a more complicated contribution to𝑊(𝑡). In chaotic
systems the operator becomes more and more delocalized
as the time evolves, and it eventually becomes delocalized
over the entire system. The time scale at which this occurs
is the so-called scrambling time 𝑡∗. After the scrambling
time the operator𝑊(𝑡)manages to have a nonzero and large
commutator with almost any other operator, even operators
involving only a few degrees of freedom.

This can be clearly illustrated in the case of a spin chain.
Let us follow [7] and consider an Ising-like model with
Hamiltonian

𝐻 = −∑
�푖

(𝑍�푖𝑍�푖+1 + 𝑔𝑋�푖 + ℎ𝑍�푖) , (19)

where 𝑋�푖, 𝑌�푖, and 𝑍�푖 denote Pauli matrices acting on the 𝑖th
site of the spin chain.The above system is integrable if we take𝑔 = 1 and ℎ = 0, but it is strongly chaotic if we choose 𝑔 =−1.05 and ℎ = 0.5.

To illustrate the concept of scrambling, we consider the
time evolution of the operator 𝑍1. Using the BCH formula
we can write the following.

𝑍1 (𝑡) = 𝑍1 − 𝑖𝑡 [𝐻, 𝑍1] − 𝑡22! [𝐻, [𝐻,𝑍1]]
+ 𝑖𝑡33! [𝐻, [𝐻, [𝐻,𝑍1]]] + . . .

(20)

Ignoring multiplicative constants and signs we can write the
above terms (schematically) as follows.

[𝐻, 𝑍1] ∼ 𝑌1
[𝐻, [𝐻,𝑍1]] ∼ 𝑌1 + 𝑋1𝑍2

[𝐻, [𝐻, [𝐻,𝑍1]]] ∼ 𝑌1 + 𝑌2𝑋1 + 𝑌1𝑍2
[𝐻, [𝐻, [𝐻, [𝐻,𝑍1]]]] ∼ 𝑋1 + 𝑌1 + 𝑍1 + 𝑋1𝑋2 + 𝑌1𝑌2

+ 𝑍1𝑍2 + 𝑋1𝑍2 + 𝑍3𝑌1
+ 𝑌1𝑍2𝑌2 + 𝑍1𝑋2𝑋1

+ 𝑋2𝑍3𝑋1

(21)

As the time evolves, higher order terms become important
in series (20), and the operator 𝑍1(𝑡) becomes more and

more complicated, involving terms in an increasing number
of sites. For large enough 𝑡 the operator will involve all
the sites of the spin chain and it will manage to have a
nonzero commutator with a Pauli operator in any other site
of the system. In this situation the information about 𝑍1 is
essentially scramble among all the degrees of freedom of the
system. As discussed before, this occurs after a scrambling
time. Above this time the double commutator 𝐶(𝑡) saturates
to a constant value. This should be contrasted to what
happens for an integrable system. In this case the operator
grows, but it also decreases at later times. In the chaotic case,
the operator remains large at later times [7].

3.2. Probing Chaos with Local Operators. In quantum field
theories we can upgrade (11) to the case where the operators
are separated in space

𝐶 (𝑡, 𝑥) = ⟨− [𝑉 (0, 0) ,𝑊 (𝑡, 𝑥)]2⟩
�훽
. (22)

Strictly speaking, the above expression is generically diver-
gent, but it can be regularized by adding imaginary times to
the time arguments of the operators𝑉 and𝑊. For a large class
of spin chains, higher-dimensional SYK-models, and CFTs,
the above commutator is roughly given by

𝐶 (𝑡, 𝑥) ∼ exp [𝜆�퐿 (𝑡 − 𝑡∗ − |𝑥|
V�퐵

)] , (23)

where V�퐵 is the so-called butterfly velocity. (Actually, V�퐵 rep-
resents the “velocity of the butterfly effect”. Here we continue
to follow the tradition of using misnomers.) This velocity
describes the growth of the operator𝑊 in physical space and
it acts as a low-energy Lieb-Robinson velocity [37], which
sets a bound for the rate of transfer of quantum information.
From the above formula, we can see that there is an additional
delay in scrambling due to the physical separation between
the operators.The butterfly velocity defines an effective light-
cone for commutator (22). Inside the cone, for 𝑡−𝑡∗ ⩾ |𝑥|/V�퐵,
we have 𝐶(𝑡, 𝑥) ∼ O(1), whereas for outside the cone, for𝑡−𝑡∗ < |𝑥|/V�퐵, the commutator is small,𝐶(𝑡, 𝑥) ∼ 1/𝑁dof ≪ 1.
Outside the light-cone the Lorentz invariance implies a zero
commutator. The light-cone and the butterfly effect cone are
illustrated in Figure 5.

4. Chaos and Holography

In this section we review how the chaotic properties of
holographic theories can be described in terms of black holes
physics. Black holes behave as thermal systems and thermal
systems generically display chaos. This implies that black
holes are somehow chaotic. This statement has a precise
realization in the context of the gauge/gravity duality. Accord-
ing to this duality, some strongly coupled nongravitational
systems are dual to higher-dimensional gravitational systems.
In the most known and studied example of this duality the
N = 4 super Yang-Mills (SYM) theory living in 𝑅3,1 is
dual to type IIB supergravity in 𝐴𝑑𝑆5 × 𝑆5. More generically,
a 𝑑−dimensional nongravitational theory living in 𝑅�푑−1,1 is
dual to a gravity theory living in a higher-dimensional space
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C(t, x) ∼ (1)

t∗

t C(t, x) ≈ 0

C(t, x) = 0

x

Figure 5: Light-cone (gray region) and butterfly effect cone (dark
gray region). Inside the butterfly effect cone, for 𝑡 − 𝑡∗ ⩾ |𝑥|/V�퐵, we
have𝐶(𝑡, 𝑥) ∼ O(1), whereas for outside the cone, for 𝑡−𝑡∗ < |𝑥|/V�퐵,
the commutator is small, 𝐶(𝑡, 𝑥) ∼ 1/𝑁dof ≪ 1. Outside the light-
cone the Lorentz invariance implies a zero commutator.

of the form 𝐴𝑑𝑆�푑+1 × M, where M is generically a compact
manifold. The nongravitational theory can be thought of as
living in the boundary of𝐴𝑑𝑆�푑+1 andbecause of that is usually
called the boundary theory. The gravitational theory is also
called the bulk theory.

There is a dictionary relating physical quantities in the
boundary and bulk description [3, 4]. An example is provided
by the operators of the boundary theory, which are related
to bulk fields. The boundary theory at finite temperature
can be described by introducing a black hole in the bulk.
The thermalization properties of the boundary theory have
a nice visualization in terms of black holes physics. By
applying a local operator in the boundary theory we produce
some perturbation that describes a small deviation from the
thermal equilibrium. The information about 𝑉(𝑥) is initially
contained around the point 𝑥, but it gets delocalized over a
region that increases with time, until it completely melts into
the thermal bath. In the bulk theory, the application of the
operator 𝑉(𝑥) produces a particle (field excitation) close to
the boundary of the space, which then falls into the black
hole. The return to the thermal equilibrium in the boundary
theory corresponds to the absorption of the bulk particle by
the black hole. Figure 6 illustrates the bulk description of
thermalization.

The approach to thermal equilibrium is controlled by
the black hole’s quasinormal modes (QNMs). In holographic
theories, the quasinormal modes control the decay of two-
point functions of the boundary theory

⟨𝑉 (𝑡) 𝑉 (0)⟩�훽 ∼ 𝑒−�푡/�푡𝑑 (24)

where the dissipation time 𝑡�푑 is related to the lowest quasinor-
mal mode (Im (𝜔) ∼ 𝑡−1�푑 ). From the point of view of the bulk
theory the QNMs describes how fast a perturbed black hole
returns to equilibrium. Clearly, the black hole’s quasinormal
modes correspond to the classical Ruelle resonances. In

holographic theories the dissipation time is roughly given by𝑡�푑 ∼ 𝛽.
Another important exponential behavior of black holes is

provided by the blue-shift suffered by the in-falling quanta
or, equivalently, the red shift suffered by the quanta escaping
from the black hole. The blue-shift suffered by the in-falling
quanta is determined by the black hole’s temperature. If
the quanta asymptotic energy is 𝐸0, this energy increases
exponentially with time

𝐸 = 𝐸0𝑒(2�휋/�훽)�푡, (25)

where 𝛽 is the Hawking’s inverse temperature. Later we will
see that this exponential increase in the energy of the in-
falling quanta gives rise to the Lyapunov behavior of 𝐶(𝑡, 𝑥)
of holographic theories.

4.1. Holographic Setup

The TFD State & Two-Sided Black Holes. In the study of chaos
it is convenient to consider a thermofield double state made
out of two identical copies of the boundary theory

|TFD⟩ = 1𝑍1/2
∑
�푛

𝑒−�훽�퐸𝑛/2 |𝑛⟩L |𝑛⟩R , (26)

where 𝐿 and 𝑅 label the states of the two copies, which we
call QFTL andQFTR, respectively.The two boundary theories
do not interact and only know about each other through
their entanglement. This state is dual to an eternal (two-
sided) black hole, with two asymptotic boundaries, where the
boundary theories live [38]. This is a wormhole geometry,
with an Einstein-Rosen bridge connecting the two sides of
the geometry. The wormhole is not traversable, which is
consistent with the fact that the two boundary theories do not
interact.

For definiteness we assume a metric of the form

𝑑𝑠2 = −𝐺�푡�푡 (𝑟) 𝑑𝑡2 + 𝐺�푟�푟 (𝑟) 𝑑𝑟2 + 𝐺�푖�푗 (𝑟, 𝑥�푘) 𝑑𝑥�푖𝑑𝑥�푗, (27)

where the boundary is located at 𝑟 = ∞, where the above
metric is assumed to asymptote 𝐴𝑑𝑆�푑+1. We take the horizon
as located at 𝑟 = 𝑟H, where 𝐺�푡�푡 vanishes and 𝐺�푟�푟 has a first
order pole. For future purposes, let𝛽 be theHawking’s inverse
temperature, and 𝑆BH be the Bekenstein-Hawking entropy.

In the study of shock waves it is more convenient to work
with Kruskal-Szekeres coordinates, since these coordinates
cover smoothly the globally extended spacetime. We first
define the tortoise coordinate

𝑑𝑟∗ = √𝐺�푟�푟𝐺�푡�푡 𝑑𝑟, (28)

and then we introduce the Kruskal-Szekeres coordinates𝑈,𝑉
as follows.

𝑈 = +𝑒(2�휋/�훽)(�푟∗−�푡),
𝑉 = −𝑒(2�휋/�훽)(�푟∗+�푡)

(left exterior region)
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Boundary
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t = 0 t = td

V(x)

(x, r)

Figure 6: Bulk picture of thermalization. The figure represents an asymptotically 𝐴𝑑𝑆 black hole geometry. The boundary is at the top edge,
while the black hole horizon is at the bottom edge. The black hole’s interior is shown in gray. The boundary operator 𝑉 is dual to the bulk
field 𝜙. From the point of view of the boundary theory the perturbation produced by 𝑉 is initially localized around the point 𝑥, but it gets
delocalized over a region that increases with time. In the bulk description this is described by a particle (field excitation) that is initially close
to the boundary and then falls into the black hole.

𝑈 = −𝑒(2�휋/�훽)(�푟∗−�푡),
𝑉 = +𝑒(2�휋/�훽)(�푟∗+�푡)

(right exterior region)
𝑈 = +𝑒(2�휋/�훽)(�푟∗−�푡),
𝑉 = +𝑒(2�휋/�훽)(�푟∗+�푡)

(future interior region)
𝑈 = −𝑒(2�휋/�훽)(�푟∗−�푡),
𝑉 = −𝑒(2�휋/�훽)(�푟∗+�푡)

(past interior region)
(29)

In terms of these coordinates the metric reads

𝑑𝑠2 = 2𝐴 (𝑈𝑉) 𝑑𝑈𝑑𝑉 + 𝐺�푖�푗 (𝑈𝑉) 𝑑𝑥�푖𝑑𝑥�푗, (30)

where

𝐴 (𝑈𝑉) = 𝛽28𝜋2 𝐺�푡�푡 (𝑈𝑉)𝑈𝑉 . (31)

In these coordinates the horizon is located at 𝑈 = 0 or at𝑉 = 0. The left and right boundaries are located at 𝑈𝑉 = −1
and the past and future singularities at 𝑈𝑉 = 1. The Penrose
diagram for this metric is shown in Figure 7.

The global extended spacetime can also be described
in terms of complexified coordinates [39]. In this case one
defines the complexified Schwarzschild time

𝑡 = 𝑡L + 𝑖𝑡E, (32)

where 𝑡L and 𝑡E are the Lorentzian and Euclidean times, and
then one describes the time in each of the four patches (left

Future Interior

Past Interior

Left
Exterior

Right
Exterior

U V

r = 0

r = 0

r
=

∞

r
=

∞

= |TFD⟩

Figure 7: Penrose diagram for the two-sided black holes with
two boundaries that asymptote 𝐴𝑑𝑆. This geometry is dual to
a thermofield double state constructed out of two copies of the
boundary theory.

and right exterior regions, and the future and past interior
regions) as having a constant imaginary part.

𝑡E = 0 (right exterior region)
𝑡E = −𝛽4 (future interior region)
𝑡E = −𝛽2 (left exterior region)
𝑡E = +𝛽4 (past interior region)

(33)

The Euclidean time has a period of 𝛽. The Lorentzian time
increases upward (downward) in the right (left) exterior
region, and to the right (left) in the future (past) interior.

Note that, with the complexified time, one can obtain an
operator acting on the left boundary theory by adding (or
subtracting) 𝑖𝛽/2 to the time of an operator acting on the right
boundary theory.

Perturbations of the TFD State & Shock Wave Geometries.We
now turn to the description of states of the form

𝑊(𝑡) |TFD⟩ (34)

where 𝑊 is a thermal scale operator that acts on the right
boundary theory. This state can be describe by a ‘particle’
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W(t)|TFD⟩ =

W(t)

Figure 8: Bulk description of the state𝑊(𝑡)|TFD⟩. In blue is shown
the trajectory of a ‘particle’ that comes out of the past horizon,
reaches the boundary at time 𝑡 producing the perturbation 𝑊, and
then falls into the future horizon. From now on, we will refer to this
bulk excitation as theW-particle.

(field excitation) in the bulk that comes out of the past
horizon, reaches the right boundary at time 𝑡, and then falls
into the future horizon, as illustrated in Figure 8.

If |𝑡| is not too large, the state 𝑊(𝑡)|TFD⟩ will represent
just a small perturbation of theTFD state and the correspond-
ing description in the bulk will be just an eternal two-sided
black hole geometry slightly perturbed by the presence of a
probe particle. This is no longer the case if |𝑡| is large. In this
case there is a nontrivial modification of the geometry. A very
early perturbation, for example, is described in the bulk in
terms of a particle that falls towards the future horizon for
a very long time and gets highly blue-shifted in the process.
If the particle’s energy is 𝐸0 in the asymptotic past, this
energy will be exponentially larger from the point of view
of the 𝑡 = 0 slice of the geometry, i.e., 𝐸 = 𝐸0𝑒(2�휋/�훽)�푡.
Therefore, for large enough |𝑡|, the particle’s energy will be
very large and one needs to include the corresponding back-
reaction.

The back-reaction of a very early (or very late) perturba-
tion is actually very simple—it corresponds to a shock wave
geometry [40, 41]. To understand that, we first need to notice
that, under boundary time evolution, the stress energy of a
generic perturbation 𝑊 gets compressed in the 𝑉−direction
and stretched in the 𝑈−direction. For large enough |𝑡|
we can approximate the stress tensor of the W-particle
as

𝑇�푉�푉 ∼ 𝑃�푈𝛿 (𝑉) 𝑎 (󳨀→𝑥) , (35)

where 𝑃�푈 ∼ 𝛽−1𝑒(2�휋/�훽)�푡 is the momentum of the W-
particle in the𝑈−direction and 𝑎(󳨀→𝑥) is some generic function
that specifies the location of the perturbation in the spatial
directions of the right boundary. Note that 𝑇�푉�푉 is completely
localized at 𝑉 = 0 and homogeneous along the 𝑈−direction.
Besides, even if the W-particle is massive, the exponential
blue-shift will make it follow an almost null trajectory, as
shown in Figure 9.

The shock wave geometry produced by the W-particle is
described by the metric

W(−t) |TFD⟩ =

W(−t)

ℎ(t, →x )

Figure 9: Bulk description of the state 𝑊(−𝑡)|TFD⟩. An early
enough perturbation produces a shock wave geometry. The effect of
the shockwave (shown in blue) is to produce a shift𝑈 󳨀→ 𝑈+ℎ(𝑡, 󳨀→𝑥)
in the trajectory of a probe particle (shown in red) crossing it.

𝑑𝑠2 = 2𝐴 (𝑈𝑉) 𝑑𝑈𝑑𝑉 + 𝐺�푖�푗 (𝑈𝑉) 𝑑𝑥�푖𝑑𝑥�푗
− 2𝐴 (𝑈𝑉) ℎ (𝑡, 󳨀→𝑥) 𝛿 (𝑉) 𝑑𝑉2, (36)

which is completely specified by the shock wave transverse
profile ℎ(𝑡, 󳨀→𝑥). This geometry can be seen as two pieces of an
eternal black hole glued together along 𝑉 = 0 with a shift
of magnitude ℎ(𝑡, 󳨀→𝑥) in the 𝑈−direction. We find it useful
to represent this geometry with the same Penrose diagram
of the unperturbed geometry, but with the prescription that
any trajectory crossing the shock wave gets shifted in the𝑈−direction as 𝑈 󳨀→ 𝑈 + ℎ(𝑡, 󳨀→𝑥). See Figure 9.

The precise form of ℎ(𝑡, 󳨀→𝑥) can be determined by solving
the𝑉𝑉−component of Einstein’s equation. For a local pertur-
bation, i.e., 𝑎(󳨀→𝑥) = 𝛿�푑−1(󳨀→𝑥), the solution reads

ℎ (𝑡, 󳨀→𝑥) ∼ 𝐺N𝑒(2�휋/�훽)�푡−�휇|�㨀→�푥 |,
with 𝜇 = 2𝜋𝛽 √ (𝑑 − 1)𝐺�耠�푖�푖 (𝑟H)𝐺�耠�푡�푡 (𝑟H) , (37)

where, for simplicity,𝐺�푖�푗 has been assumed to be diagonal and
isotropic.

Interestingly, the shock wave profile contains information
about the parameters characterizing the chaotic behavior of
the boundary theory. Indeed, the double commutator has a
region of exponential growth at which 𝐶(𝑡, 󳨀→𝑥) ∼ ℎ(𝑡, 󳨀→𝑥).
From this identification, we can write

ℎ (𝑡, 󳨀→𝑥) ∼ 𝑒(2�휋/�훽)(�푡−�푡∗−|�㨀→�푥 |/V𝐵) (38)

where (the leading order contribution to) the scrambling time
scales logarithmically with the Bekenstein-Hawking entropy

𝑡∗ ∼ 𝛽2𝜋 log 1𝐺N
∼ 𝛽2𝜋 log 𝑆BH, (39)

while the Lyapunov exponent is proportional to the Hawk-
ing’s temperature.

𝜆�퐿 = 2𝜋𝛽 . (40)
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V is produced with
some time delay

h

V(0)|TFD⟩

V(0)

W(−t)
W(−t)V(0)|TFD⟩

Figure 10: Left panel: bulk description of the state𝑉(0)|TFD⟩.TheV-particle comes out of the past horizon, reaches the boundary at time 𝑡 = 0
producing the perturbation 𝑉, and then falls into the future horizon. Right panel: bulk description of the ‘in’ state |𝜓in⟩ = 𝑊(−𝑡)𝑉(0)|TFD⟩.
The W-particle (shown in blue) produces a shock wave along 𝑉 = 0. The trajectory of the V-particle (shown in red) suffers a shift and the
perturbation 𝑉 is produced at the boundary with some time delay.

The butterfly velocity is determined from the near-horizon
geometry. (Here we are assuming isotropy. In the case of
anisotropicmetrics the formula for V�퐵 is a little bit more com-
plicated. See, for instance, Appendix A of [42] or Appendix B
of [43].)

V2�퐵 = 𝐺�耠�푡�푡 (𝑟H)(𝑑 − 1) 𝐺�耠�푖�푖 (𝑟H) . (41)

4.2. Bulk Picture for the Behavior of OTOCs. In this section
we present the bulk perspective for the vanishing of OTOCs
at later times. In order to do that, we write the OTOC as a
superposition of two states

OTO (𝑡) = ⟨TFD|𝑊 (−𝑡) 𝑉 (0)𝑊 (−𝑡) 𝑉 (0) |TFD⟩
= ⟨𝜓out | 𝜓in⟩ , (42)

where the ‘in’ and ‘out’ states are given by the following.
󵄨󵄨󵄨󵄨𝜓in⟩ = 𝑊 (−𝑡) 𝑉 (0) |TFD⟩ ,
󵄨󵄨󵄨󵄨𝜓out⟩ = 𝑉† (0)𝑊† (−𝑡) |TFD⟩ (43)

The interpretation of a vanishing OTOC in terms of the bulk
theory is actually very simple. Let us go step by step and
construct first the state 𝑉(0)|𝛽⟩. This state is described by
a particle that comes out of the past horizon, reaches the
boundary at 𝑡 = 0, and then falls back into the future horizon.
See the left panel of Figure 10.

Now the ‘in’ state can be obtained as󵄨󵄨󵄨󵄨𝜓in⟩ = 𝑊 (−𝑡) 𝑉 (0) |TFD⟩
= 𝑒−�푖�퐻�푡𝑊(0) 𝑒�푖�퐻�푡𝑉 (0) |TFD⟩ . (44)

This amounts to the following: evolving the state 𝑉(0)|TFD⟩
backwards in time, applying the operator 𝑊, and then
evolving the system forwards in time. The corresponding
description in the bulk is shown in the right panel of
Figure 10. From this picture we can see that the perturbation

h

V(0)

W(−t)
V(0)W(−t)|TFD⟩

Figure 11: Bulk description of the ‘out’ state |𝜓out⟩ =𝑉(0)𝑊(−𝑡)|TFD⟩. The W-particle produces the shock wave
geometry. The trajectory of the V-particle is such that, after
suffering the shift 𝑈 󳨀→ 𝑈 + ℎ(𝑡, 󳨀→𝑥), it reaches the boundary at
time 𝑡 = 0, producing the perturbation 𝑉.

𝑊 produces a shock wave that causes a shift in the trajectory
of the V-particle, which no longer reaches the boundary
at time 𝑡 = 0, but rather with some time delay. The
physical interpretation is that a small perturbation in the
asymptotic past (represented by 𝑊) is amplified over time
anddestroys the initial configuration (represented by the state𝑉(0)|TFD⟩).

The bulk description of the ‘out’ state can be obtained in
the same way. As this state displays the perturbation 𝑉 at 𝑡 =0, the V-particle should be produced in the asymptotic past
in such a way that, after its trajectory gets shifted as 𝑈 󳨀→𝑈+ℎ, it reaches the boundary at the time 𝑡 = 0 producing the
perturbation 𝑉.

Comparing the bulk description of the state |𝜓in⟩ (shown
in the right panel of Figure 10) with the description of the
state |𝜓out⟩ (shown in Figure 11) we can see that these states
are indistinguishable when ℎ(𝑡, 󳨀→𝑥) is zero, but they become
more and more different for large values of ℎ(𝑡, 󳨀→𝑥). As a con-
sequence, the overlap𝐶(𝑡) = ⟨𝜓out | 𝜓in⟩ is equal to one whenℎ = 0, but it decreases to zero as we increase the value of ℎ.
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V fails to
materialize

ℎ(t, →x )

W(−t)

Figure 12: Bulk description of the state 𝑊(−𝑡)𝑉(0)|TFD⟩ for the
case where |𝑡| ≳ 𝑡∗. The V-particle’s trajectory undergoes a shift,
and it is captured by the black hole.The perturbation𝑉 never forms,
and the corresponding state has no superposition with the ‘out’ state𝑉(0)𝑊(−𝑡)|TFD⟩, resulting in a vanishing OTOC.

The exponential behavior of ℎ(𝑡, 󳨀→𝑥) implies that an early
enough perturbation can produce a very large shift in the V-
particle’s trajectory, causing it to be captured by the black hole
and preventing the materialization of the 𝑉 perturbation at
the boundary. See Figure 12. This should be compared with
the physical picture given in Figure 3.

The physical picture of the process described in Figure 12
is quite simple. The state 𝑉(0)|TFD⟩ can be represented by
a black hole geometry in which a particle (the V-particle)
escapes from the black holes and reaches the boundary at
time 𝑡 = 0. The state 𝑊(−𝑡)𝑉(0)|TFD⟩ is obtained by
perturbing the state 𝑉(0)|TFD⟩ in the asymptotic past. This
corresponds to the addition of a W-particle to the system in
the asymptotic past. This particle gets highly blue-shifted as
it falls towards the black hole. The black hole captures the
W-particle and becomes bigger.The V-particle fails to escape
from the bigger black hole and never reaches the boundary
to produce the 𝑉 perturbation. This physical picture is
illustrated in Figure 13.

The precise form of the above OTOC can be obtained by
calculating the overlap ⟨𝜓out | 𝜓in⟩ using the Eikonal approx-
imation [8], in which the Eikonal phase 𝛿 is proportional to
the shock wave profile 𝛿 ∼ ℎ(𝑡, 󳨀→𝑥). The OTOC can be written
as an integral of the phase 𝑒�푖�훿 weighted by kinematical factors
which are basically Fourier transforms of bulk-to-boundary
propagators for the 𝑉 and𝑊 operators.

The result for Rindler AdS3 reads (the below result
assumes Δ�푊 ≫ Δ�푉)

⟨𝑉 (𝑖𝜖1)𝑊 (𝑡 + 𝑖𝜖2) 𝑉 (𝑖𝜖3)𝑊 (𝑡 + 𝑖𝜖4)⟩⟨𝑉 (𝑖𝜖1) 𝑉 (𝑖𝜖3)⟩ ⟨𝑊 (𝑖𝜖2)𝑊 (𝑖𝜖4)⟩
= ( 1

1 − (8𝜋𝑖𝐺NΔ�푊/𝜖13𝜖∗24) 𝑒(2�휋/�훽)(�푡−|�㨀→�푥 |/V𝐵))
Δ𝑉

(45)

whereΔ�푉 andΔ�푊 are the scaling dimensions of the operators𝑉 and 𝑊, respectively, and 𝜖�푖�푗 = 𝑖(𝑒�푖�휖𝑖 − 𝑒�푖�휖𝑗). For this system𝛽 = 2𝜋 and V�퐵 = 1. This formula matches the direct
CFT calculation (the CFT perspective for the onset of chaos

has been widely discussed in [44]; other references in this
direction include, for instance, [45–48].) obtained in [20]. It
can also be derived using the geodesic approximation for two-
sided correlators in a shock wave background [5, 20].

Expanding the above result for small values of
𝐺N𝑒(2�휋/�훽)(�푡−|�㨀→�푥 |/V𝐵), we obtain

OTO (𝑡) = 1 − 8𝜋𝑖𝐺N
Δ�푉Δ�푊𝜖13𝜖∗24 𝑒(2�휋/�훽)(�푡−|�㨀→�푥 |/V𝐵), (46)

and, since ℎ(𝑡, 󳨀→𝑥) ∼ 𝐺N𝑒(2�휋/�훽)(�푡−|�㨀→�푥 |/V𝐵), the above result
implies

𝐶 (𝑡, 󳨀→𝑥) ∼ ℎ (𝑡, 󳨀→𝑥) . (47)

The above result is valid for small (in AdS/CFT the Newton
constant is related to the rank of the gauge group of dual CFT
as 𝐺N ∼ 1/𝑁�푎, where 𝑎 is a positive number that depends on
the dimensionality of the bulk space time (cf. section 7.2 of
[49]); our classical gravity calculations are only valid in the
large-𝑁 limit (that suppresses quantum corrections) so it is
natural to consider 𝐺N as a small parameter) values of 𝐺N, or
for any value of 𝐺N, but for times in the range 𝑡�푑 ≪ 𝑡 ≪ 𝑡∗,
where 𝑡∗ = (𝛽/2𝜋) log(1/𝐺N).

Despite being true in the Rindler AdS3 case, the pro-
portionality between the double commutator and the shock
wave profile has not been demonstrated in more general
cases. However, the authors of [8] argued that, in regions
of moderate scattering between the V- and W-particle, the
identification 𝐶(𝑡, 󳨀→𝑥) ∼ ℎ(𝑡, 󳨀→𝑥) is approximately valid.

At very late times, the behavior of the OTO(𝑡) is expected
to be controlled by the black hole quasinormal modes.
Indeed, in the case of a compact space it is possible to show
that

𝐶 (𝑡) ∼ 𝑒−2�푖�휔(�푡−�푡∗−�푅/V𝐵), with Im (𝜔) < 0, (48)

where 𝑅 is the diameter of the compact space and 𝜔 is the
system lowest quasinormal frequency [8].

4.2.1. Stringy Corrections. In this section we briefly discuss
the effects of stringy corrections to the Einstein gravity
results for OTOCs.We start by reviewing the Einstein gravity
results from the perspective of scattering amplitudes. In the
framework of the Eikonal approximation, the phase shift
suffered by the V-particle is given by

𝛿 = −𝑃�푉ℎ (𝑡, 󳨀→𝑥) ∼ 𝐺N𝑠, (49)

where we used the fact that ℎ(𝑡, 󳨀→𝑥) ∼ 𝐺N𝑃�푈 and introduced
a Mandelstam-like variable 𝑠 = 2𝐴(0)𝑃�푈𝑃�푉. In a small-𝐺N
expansion the double commutator 𝐶(𝑡) and the phase shift 𝛿
scale with 𝑠 in the same way, namely,

𝐶 (𝑡) ∼ 𝐺N𝑠, (50)

where 𝑠 ∼ 𝛽−2𝑒(2�휋/�훽)�푡.
The string corrections can be incorporated using the

standard Veneziano formula for the relativistic scattering
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amplitudeA ∼ 𝑠𝛿. The phase shift can then be schematically
written as an infinite sum

𝛿 ∼ ∑
�퐽

𝐺N𝑠�퐽−1, (51)

where each term corresponds to the contribution due to the
exchange of a spin-𝐽 field. In Einstein gravity the dominant
contribution comes from the exchange of a spin-2 field, the
graviton. In string theory, we have to include an infinite
tower of higher spin fields. Naively, it looks like these higher
spin contributions will increase the development of chaos.
However, the resummation of the above sum actually leads to
a decrease in the development of chaos. The string-corrected
phase shift has a milder dependence with 𝑠, namely,

𝛿 ∼ 𝐺N𝑠�퐽eff−1, (52)

with the effective spin given by [8]

𝐽eff = 2 − 𝑑 (𝑑 − 1) ℓ2�푠4ℓ2
�퐴�푑�푆

(53)

where ℓ�푠 is the string length, ℓ�퐴�푑�푆 is the AdS length scale, and𝑑 is the number of dimensions of the boundary theory. As a
result, the string-corrected double commutator grows in time
with an effective smaller Lyapunov exponent

𝐶string (𝑡) ∼ 𝑒(2�휋/�훽)(1−�푑(�푑−1)ℓ2𝑠 /4ℓ2𝐴𝑑𝑆)�푡, (54)

and this leads to a larger scrambling time. (At small scales, the
string-corrected shock wave has a Gaussian profile, and the
concept of butterfly velocity is notmeaningful. It was recently
shown, however, that at larger scales is possible to define a
string-corrected butterfly velocity. The result forN = 4 SYM
theory reads [50] V�퐵 = √2/3(1 + (23𝜁(3)/16)(1/𝜆3/2)), where𝜆 is the ’t Hooft coupling, which can be written in terms of
string length scale as 𝜆 = (ℓ�퐴�푑�푆/ℓ�푠)4.)

𝑡string∗ = 𝑡∗ (1 + 𝑑 (𝑑 − 1) ℓ2�푠4ℓ2
�퐴�푑�푆

) . (55)

The above discussion implies that for a theorywith a finite
number of high-spin fields (𝐽 > 2) chaos would develop faster
than in Einstein gravity. These theories, however, are known
to violate causality [51]. It is then natural to speculate that
the Lyapunov exponent obtained in Einstein gravity has the
maximal possible value allowed by causality. This is indeed
true and this is the topic of the next section.

4.2.2. Bounds on Chaos. One of the remarkable insights that
came from the holographic description of quantum chaos is
the fact that there is a bound on chaos—the quantum Lya-
punov exponent is bounded fromabove,while the scrambling
time is bounded frombelow. A distinct feature of holographic
systems is that they saturate these two bounds.

Let us follow the historical order and start by discussing
the lower bound on the scrambling time. In black holes
physics the scrambling time defines how fast the information
that has fallen into a black holes can be recovered from
the emitted Hawking radiation. (This assumes that half of
the black hole’s initial entropy has been radiated [52].) In
the context of the Hayden-Preskill thought experiment, the
scrambling time is barely compatible with black hole comple-
mentarity [52], since a smaller scrambling time would lead
to a violation of the no-cloning principle. This led Susskind
and Sekino to conjecture that black holes are the fastest
scramblers in nature; i.e., they have the smallest possible
scrambling time [53]. The lower bound on the scrambling
time of a generic many-body quantum system can be written
as

𝑡∗ ⩾ 𝐶 (𝛽) log𝑁dof (56)

where 𝐶(𝛽) is some function of the inverse temperature. In
the case of black holes this function is simply given by𝐶(𝛽) =𝛽/2𝜋.

The scrambling time defines a stronger notion of thermal-
ization and should not be confused with the dissipation time.
In fact, for black holes, one expects the dissipation time to be
given by the black hole quasinormalmodes (this is true in the
case of lowdimension operators) 𝑡�푑 ∼ 𝛽, while the scrambling
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time is parametrically larger 𝑡∗ ∼ 𝛽 log𝑁dof. This brings us
to the second bound on chaos: for systems with such a large
hierarchy between the scrambling and the dissipation, time is
possible to derive an upper bound for the Lyapunov exponent
[54]:

𝜆�퐿 ⩽ 2𝜋𝛽 . (57)

One should emphasize that this bound does not depend
on the existence of a holographic dual. It can be derived
for generic many-body quantum systems under some very
reasonable assumptions.

The fact that black hole always has a maximum Lyapunov
exponent led to the speculation that the saturation of the
chaos bound might be a sufficient condition for a system
to have an Einstein gravity dual [9, 54]. In fact, there have
been many attempts to use the saturation of the chaos bound
as a criterion to discriminate holographic CFTs from the
nonholographic ones [20, 44–48, 55, 56]. It was recently
shown, however, that this criterion, though necessary, is
insufficient to guarantee a dual description purely in terms
of Einstein gravity [57, 58].

Since V�퐵 defines the speed at which information prop-
agates, it is natural to question whether this quantity is
also bounded. From the perspective of the boundary theory,
causality implies

V�퐵 ⩽ 1, (58)

meaning that information should not propagate faster than
the speed of light. Indeed, the above bound can be derived
in the context of Einstein gravity by using Null Energy Con-
dition (NEC) and assuming an asymptotically AdS geometry
(this derivation uses an alternative definition for V�퐵, which is
based on entanglement wedge subregion duality [59]) [60].
This is consistent with the expectation that gravity theories in
asymptotically AdS geometries are dual to relativistic theo-
ries. In contrast, for geometries which are not asymptotically
AdS, the butterfly velocity can surpass the speed of light
[42, 60], which is consistent with the non-Lorentz invariance
of the corresponding boundary theories.

If we further assume isotropy, it is possible to derive a
stronger bound for V�퐵 [61]

V�퐵 ⩽ VSch�퐵 = √ 𝑑2 (𝑑 − 1) , (59)

where VSch�퐵 is the value of the butterfly velocity for an AdS-
Schwarzschild black brane in 𝑑 + 1 dimensions. This is also
the butterfly velocity for a 𝑑-dimensional thermal CFT.

The above formula shows that, for thermal CFTs, V�퐵 does
not depend on the temperature. However, if we deform the
CFT, V�퐵 acquires a temperature dependence as we move
along the corresponding renormalization group (RG) flow.
In fact, by considering deformations that break the rotational
symmetry, it was noticed that the butterfly velocity violates
the above bound, but remains bounded from above by its
value at the infrared (IR) fixed point, never surpassing the
speed of light [62–64]. The above bound can also be violated

by higher curvature corrections, but V�퐵 remains bounded
by the speed of light as long as causality is respected. (For
instance, in 4-dimensional Gauss-Bonnet (GB) gravity, the
butterfly velocity surpasses the speed of light for 𝜆�퐺�퐵 < −3/4,
but causality requires 𝜆�퐺�퐵 > −0.19 [65, 66]. Moreover, it
was recently shown that, unless one adds an infinite tower of
extra higher spin fields, GB gravitymight be inconsistent with
causality for any value of the GB coupling [51].)The violation
of the bound given in (59) by anisotropy or higher curvature
corrections is reminiscent of the well-known violation of the
shear viscosity to entropy density ratio bound [67–72].

4.3. Chaos and Entanglement Spreading. The thermofield
double state displays a very atypical left-right pattern of
entanglement that results from nonzero correlations between
subsystems of QFT�퐿 and QFT�푅 at 𝑡 = 0. The chaotic nature
of the boundary theories is manifested by the fact that small
perturbations added to the system in the asymptotic past
destroy this delicate correlations [5].

The special pattern of entanglement can be efficiently
diagnosed by considering the mutual information 𝐼(𝐴, 𝐵)
between spatial subsystems 𝐴 ⊂ QFT�퐿 and 𝐵 ⊂ QFT�푅,
defined as

𝐼 (𝐴, 𝐵) = 𝑆�퐴 + 𝑆�퐵 − 𝑆�퐴∪�퐵, (60)

where 𝑆A is the entanglement entropy of the subsystem𝐴 and
so on.Themutual information is always positive and provides
an upper bound for correlations between operators O�퐿 and
O�푅 defined on 𝐴 and 𝐵, respectively [73],

𝐼 (𝐴, 𝐵) ⩾ (⟨O�퐿O�푅⟩ − ⟨O�퐿⟩ ⟨O�푅⟩)22 ⟨O2�퐿⟩ ⟨O2�푅⟩ . (61)

The thermofield double state has nonzero mutual infor-
mation between large (for small subsystems, the mutual
information is zero) subsystems of the left and right bound-
ary, signaling the existence of left-right correlations. These
correlations can be destroyed by small perturbations in the
asymptotic past, meaning that initially positive mutual infor-
mation drops to zero when we add a very early perturbation
to the system.

Interestingly, the vanishing of the mutual information
can be connected to the vanishing of the OTOCs discussed
earlier. If, for simplicity, we assume that O�퐿 and O�푅 have zero
thermal one point function, then the disruption of themutual
information implies the vanishing of the following four-point
function

⟨O�퐿O�푅⟩�푊 = ⟨TFD|𝑊†
�푅O�퐿O�푅𝑊�푅 |TFD⟩ = 0, (62)

which is related by analytic continuation to the one-sided
out-of-time-order correlator introduced earlier. (To obtain
an OTOC with operators acting only on the right boundary
theory, one just needs to add 𝑖𝛽/2 to time argument of the
operator O�퐿 in the above formula.)

The disruption of the mutual information has very sim-
ple geometrical realization in the bulk. The entanglement
entropies that appear in the definition of 𝐼(𝐴, 𝐵) can be
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Figure 14: Illustration of the entangling surfaces in the 𝑡 = 0 slice of a two-sided black brane geometry. The U-shaped surfaces (𝛾�퐴 and 𝛾�퐵)
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no longer coincide.

holographically calculated using the HRRT prescription [74,
75]

𝑆�퐴 = Area (𝛾�퐴)4𝐺�푁 , (63)

where 𝛾�퐴 is an extremal surface whose boundary coincides
with the boundary of the region 𝐴. There is an analogous
formula for 𝑆�퐵. Both 𝛾�퐴 and 𝛾�퐵 are U-shaped surfaces lying
outside of the event horizon, in the left and right side of
the geometry, respectively. There are two candidates for the
extremal surface that computes 𝑆�퐴∪�퐵: the surface 𝛾�퐴 ∪ 𝛾�퐵
or the surface 𝛾wormhole that connects the two asymptotic
boundaries of the geometry. See Figure 14. According to the
RT prescription, we should pick the surface with less area. If𝛾�퐴 ∪ 𝛾�퐵 has less area than 𝛾wormhole, then 𝐼(𝐴, 𝐵) = 0, because
Area(𝛾�퐴 ∪ 𝛾�퐵)=Area(𝛾�퐴)+Area(𝛾�퐵). On the other hand, if𝛾wormhole has less area than 𝛾�퐴 ∪ 𝛾�퐵, i.e., Area(𝛾wormhole) <
Area(𝛾�퐴)+Area(𝛾�퐵), then we have a positive mutual informa-
tion
𝐼 (𝐴, 𝐵)

= 14𝐺N
[Area (𝛾�퐴) + Area (𝛾�퐵) − Area (𝛾wormhole)]

> 0.
(64)

Now, an early perturbation of the thermofield double state
gives rise to a shock wave geometry in which the wormhole
becomes longer. As a consequence, the area of the surface𝛾wormhole increases, resulting in a smaller mutual information.
It is then clear that themutual informationwill drop to zero if
the wormhole is longer enough. The length of the wormhole
depends on the strength of the shock wave, which, by its
turn, depends on how early the perturbation is producing
it. Therefore, an early enough perturbation will produce a
very long wormhole in which the mutual information will
be zero. The fact that the shock wave geometry produces a
longer wormhole (along the 𝑡 = 0 slice of the geometry) is
clearly seen if we represent the shock wave geometry with a
tilted Penrose diagram. See, for instance, Figure 3 of [76].

The mutual information 𝐼(𝐴, 𝐵) decreases as a function
of the time 𝑡0 at which we perturbed the system. For 𝑡0 ≳

𝑡∗, the mutual information decreases linearly with behavior
controlled by the so-called entanglement velocity V�퐸 [63]

𝑑𝐼 (𝐴, 𝐵)𝑑𝑡0 = −𝑑𝑆�퐴∪�퐵𝑑𝑡0 = −V�퐸𝑠thArea (𝐴 ∪ 𝐵) , (65)

where 𝑠th is the thermal entropy density and Area(𝐴 ∪𝐵) is the area of 𝐴 ∪ 𝐵 (or the volume of the boundary
of this region). The two-sided black hole geometry with a
shock wave can be thought of as an additional example of a
holographic quench protocol [63], and the time-dependence
of entanglement entropy can be understood in terms of
the so-called ‘entanglement tsunami’ picture. See [77] for
field theory calculations and [78–82] for holographic calcula-
tions. However, it was recently shown that the entanglement
tsunami picture is not very sharp. See [59] for further details.
In [81, 82], the entanglement velocity was conjectured to be
bounded as

V�퐸 ⩽ VSch�퐸 = √𝑑 (𝑑 − 1)1/2−1/�푑
[2 (𝑑 − 1)]1−1/�푑 , (66)

where VSch�퐸 is the entanglement velocity for a (𝑑 + 1)-
dimensional Schwarzschild black brane or, equivalently, the
value of V�퐸 for a 𝑑-dimensional thermal CFT. This bound
can be derived in the context of Einstein gravity assuming
an asymptotically AdS geometry, isotropy, and NEC [61]. Just
like in the case of V�퐵, the entanglement velocity in thermal
CFTs does not depend on the temperature. But V�퐸 acquires
a temperature dependence if we deform the CFT and move
along the corresponding RG flow [63, 64]. In these cases,
V�퐸 violates the above bound, but it remains bounded by its
corresponding value at the IR fixed point, never surpassing
the speed of light.

One can also prove that the entanglement velocity is also
bounded by the speed of light. (See [83, 84] for a discussion
about small subsystems.)This can be done by using positivity
of themutual information [85] or using inequalities involving
the relative entropy [86]. More generally, the authors of [59]
conjecture that V�퐸 ⩽ V�퐵, which implies the bound V�퐸 < 1
in the cases where V�퐵 is bounded. However, both [85, 86]
assumed that the theory is Lorentz invariant. In the case of
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non-Lorentz invariant theories (e.g., noncommutative gauge
theories) the entanglement velocity can surpass the speed of
light. This has been verified both in holography calculations
[42] and in field theory calculations [87].

Finally, wemention that other concepts from information
theory can also be used to diagnose chaos in holography.
It has been shown, for instance, that the relative entropy
is also a useful tool to diagnose chaotic behavior [88]. For
a connection between chaos and computational complexity,
see, for instance [89, 90].

4.4. Chaos and Hydrodynamics. Recently, there has been a
growing interest in the connection between chaos and hydro-
dynamics [91–99]. Here we briefly review some interesting
connection between chaos and diffusion phenomena.

A longstanding goal of quantum condensed matter
physics is to have a deeper understanding of the so-called
‘strange metals’. These are strongly correlated materials that
do not have a description in terms of quasiparticles excita-
tions and whose transport properties display a remarkable
degree of universality. In [100, 101] Sachdev and Damle
proposed that such a universal behavior could be explained
by a fundamental dissipative timescale

𝜏�푃 ∼ ℏ2𝜋𝑘�퐵𝑇, (67)

which would govern the transport in such systems.
Interestingly, the Lyapunov exponent defines a time scale𝜏�퐿 = 1/𝜆�퐿, and the upper bound on 𝜆�퐿 translates into a lower

bound for 𝜏�퐿 that precisely coincides with 𝜏�푃
𝜏�퐿 ⩾ ℏ𝛽2𝜋𝑘�퐵 , (68)

where we reintroduced ℏ and the Boltzmann constant in the
expression for the bound on the Lyapunov exponent. (In
systems of units where ℏ and 𝑘�퐵 are not equal to one, the
bound on the Lyapunov exponent reads 𝜆�퐿 ⩽ 2𝜋𝑘�퐵/ℏ𝛽.)
Holographic systems saturate the above bound, and this
explains the universality observed in the transport properties
of these systems.

A prototypical example of universality is the linear resis-
tivity of strange metals. In [102], Hartnoll proposed that the
linear resistivity could be explained by the existence of a
universal lower bound on the diffusion constants related to
the collective diffusion of charge and energy

𝐷 ≳ ℏV2(𝑘�퐵𝑇) , (69)

where V is some characteristic velocity of the system. As 𝐷
is inversely proportional to the resistivity, systems saturating
the above bound would display linear resistivity behavior.
(See [103] for a recent successful holographic description of
linear resistivity at high temperature.)

One should think of (69) as a reformulation of the
Kovtun-Son-Starinets (KSS) bound [104]

𝜂𝑠 ⩾ 14𝜋 ℏ𝑘�퐵 , (70)

which also relies on the idea of a fundamental dissipative
timescale 𝜏�퐿 ∼ ℏ/(𝑘�퐵𝑇) controlling transport in strongly
interacting systems. Naively, the observed violations of the
KSS bound would seem to indicate the existence of systems
in which the bound (68) is violated.The bound (69) saves the
idea of a fundamental dissipative timescale by introducing an
additional parameter in the game, namely, the characteristic
velocity V. The fact that 𝜂/𝑠 can be made arbitrarily small in
some systems corresponds to the fact that the characteristic
velocity is highly suppressed in those cases. See [91] for
further details.

In [91, 92] Blake proposed that, at least for holographic
systems with particle-hole symmetry, the characteristic
velocity V should be replaced by the butterfly velocity. More
precisely

𝐷�푐 ⩾ 𝐶�푐V2�퐵𝜏�퐿, (71)

where 𝐷�푐 is the electric diffusivity and 𝐶�푐 is a constant that
depends on the universality class of theory.This proposal was
motivated by the fact that both 𝐷�푐 and V�퐵 are determined
by the dynamics close to the black hole horizon in the
aforementioned systems. Despite working well for systems
where energy and charge diffuse independently, this proposal
was shown to fail in more general cases [93, 105–108]. This is
related to the fact that, in more general cases, the diffusion
of energy and charge is coupled, and the corresponding
transport coefficients are not given only in terms of the
geometry close to the black hole horizon. Hence, there is
no reason for these coefficients to be related to the butterfly
velocity, which is always determined solely by the near-
horizon geometry.

There is, however, a universal piece of the diffusivity
matrix that can be related to the chaos parameters at infrared
fixed points. This is the thermal diffusion constant [94]

𝐷6 ⩾ 𝐶6V2�퐵𝜏�퐿, (72)

where 𝐶6 is a universality constant (different from 𝐶�푐). This
proposal was shown to be valid even for systems with spatial
anisotropy [109]. The above relation is not well defined when
the system’s dynamical critical exponent 𝑧 is equal to one, but
it can be extended in this case (we thank Hyun-Sik Jeong for
calling our attention to this) [110].

Finally, we mention that there is an interesting relation
between chaos and hydrodynamics that manifests itself in
the so-called ‘pole-skipping’ phenomenon. See [95–97] for
further details.

5. Closing Remarks

The holographic description of quantum chaos not only has
provided new insights into the inner-workings of gauge-
gravity duality, but also has given insights outside the scope
of holography: some examples include the characterization
of chaos with OTOCs, the definition of a quantum Lyapunov
exponent, and the existence of a bound for chaos.

The success of this new approach to quantum chaos
explains the growing experimental interest that OTOCs
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have been received. Indeed, several protocols for measuring
OTOCs have been proposed, and there are already a few
experimental results. See [111] and references therein.

Finally, one of the remarkable features of quantum chaos
is level statistics described by random matrices. The fact that
this is present in the infrared limit of the SYK model [112–
114] suggests that it should also be present in quantum black
holes (we thank A. M. Garćıa-Garćıa for calling our attention
to this), although this has not yet been verified [115].

Conflicts of Interest

The author declares that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

It is a pleasure to thank A. M. Garćıa-Garćıa, S. Nicolis,
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[88] Y. O. Nakagawa, G. Sárosi, and T. Ugajin, “Chaos and relative
entropy,” Journal of High Energy Physics, vol. 1807, no. 002, 2018.

[89] J. M. Magán, “Black holes, complexity and quantum chaos,”
Journal of High Energy Physics, vol. 1809, no. 043, 2018.

[90] S. A. H. Mansoori and M. M. Qaemmaqami, “Complexity
growth, butterfly velocity and black hole thermodynamics,”
https://arxiv.org/abs/1711.09749.

[91] M. Blake, “Universal charge diffusion and the butterfly effect
in holographic theories,” Physical Review Letters, vol. 117, no. 9,
Article ID 091601, 2016.

[92] M. Blake, “Universal diffusion in incoherent black holes,”
Physical Review D: Particles, Fields, Gravitation and Cosmology,
vol. 94, no. 8, Article ID 086014, 2016.

[93] R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and
S. Sachdev, “Thermoelectric transport in disordered metals
without quasiparticles: The Sachdev-Ye-Kitaev models and
holography,” Physical Review B, vol. 95, no. 15, Article ID 155131,
2017.

[94] M. Blake, R. A. Davison, and S. Sachdev, “Thermal diffusivity
and chaos in metals without quasiparticles,” Physical Review
D: Particles, Fields, Gravitation and Cosmology, vol. 96, no. 10,
Article ID 106008, 2017.

[95] S. Grozdanov, K. Schalm, and V. Scopelliti, “Black hole scram-
bling fromhydrodynamics,”Physical ReviewLetters, vol. 120, no.
23, Article ID 231601, 2018.

[96] M. Blake, H. Lee, and H. Liu, “A quantum hydrodynamical
description for scrambling and many-body chaos,” Journal of
High Energy Physics, vol. 2018, no. 10, 2018.

[97] S. Grozdanov, K. Schalm, and V. Scopelliti, “Kinetic theory for
classical and quantum many-body chaos,” Physical Review E:
Statistical, Nonlinear, and SoftMatter Physics, vol. 99, no. 1, 2019.

[98] M. Blake, R. A. Davison, S. Grozdanov, and H. Liu, “Many-
body chaos and energy dynamics in holography,” Journal ofHigh
Energy Physics, vol. 1810, no. 035, 2018.

[99] F. M. Haehl and M. Rozali, “Effective field theory for chaotic
CFTs,” Journal of High Energy Physics, vol. 1810, no. 118, 2018.

[100] K. Damle and S. Sachdev, “Nonzero-temperature transport near
quantum critical points,” Physical Review B: Condensed Matter
and Materials Physics, vol. 56, no. 14, pp. 8714–8733, 1997.

[101] S. Sachdev, Quantum Phase Transitions, Cambridge University
Press, Cambridge, UK, 1999.

[102] S. A. Hartnoll, “Theory of universal incoherent metallic trans-
port,” Nature Physics, vol. 11, no. 1, pp. 54–61, 2015.

[103] H. Jeong, C. Niu, and K. Kim, “Linear-T resistivity at high
temperature,” Journal of High Energy Physics, vol. 1810, no. 191,
2018.

[104] P. K. Kovtun, D. T. Son, and A. O. Starinets, “Viscosity in
strongly interacting quantum field theories from black hole
physics,”Physical ReviewLetters, vol. 94, no. 11, Article ID 111601,
2005.

[105] A. Lucas and J. Steinberg, “Charge diffusion and the butterfly
effect in striped holographic matter,” Journal of High Energy
Physics, vol. 1610, no. 143, 2016.
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