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Determination of the parton distribution functions requires repeated calculation of

cross sections in the fitting procedure. In the standard method, limited computer time

prevent us from using NLO calculation of QCD final state observables which involves

time-consuming Monte Carlo integration. We describe a technique to circumvent the

problem in Mellin-N space, in which NLO cross sections with arbitrary parton distri-

butions are obtained quickly using the pre-calculated “pseudo moments” of partonic

cross sections by a simple N-space integral.

1 Introduction

The Large Hadron Collider (LHC) explores unprecedentedly high energy regime. Discoveries
and measurements at LHC are expected to clarify the mechanism of electroweak symmetry
breaking and possibly unveil the underlying physics beyond the standard model. As the LHC
is a QCD machine, how far these goals are achieved depends on our understanding of the
QCD dynamics. Especially, precise knowledge of the parton distribution functions (PDFs)
is fundamental for reducing the theoretical uncertainties in all the signal and background
processes. Over the past years, major progress has been made in the determination of the
PDFs, mainly owing to the precision DIS data from HERA. However, there are still relatively
large uncertainties in, e.g., the gluon distribution at large x and therefore continuous update
of the PDF global analysis including the latest experimental data (and the future LHC data
as well) is important.

One of the issues in the PDF global analysis is how to deal with the QCD final state
observables. Since any NLO calculation of the QCD final state observables involves Monte
Carlo integration with a large number of events, it is impractical to use it straightforwardly
in the fitting procedure where the cross sections have to be calculated repeatedly with
varying sets of the PDFs. A conventional way to avoid the problem is to apply the K-
factor approximation; the K-factor, K = dσNLO/dσLO, is calculated for a given set of PDFs
and commonly used to calculate the NLO cross section for all the other sets of the PDFs.
However, the K-factor actually depends on the PDFs and ignoring the dependence obscures
the accuracy of the analysis. Therefore, it is desirable to introduce a more sophisticated way
to calculate NLO cross sections such that the PDF dependence is separated from the phase
space integration. There have been two ways proposed so far for that purpose. One is the
“interpolation method” implemented in fastNLO [1] and ApplGrid [2], where the PDFs
are interpolated and the phase space integration is performed with the PDFs replaced by the
interpolation functions for each grid point in the x-space. Another is the “pseudo-moment
method”formulated in the Mellin-N space [3, 4, 5], where the NLO cross section is given
by a N -integral of the “pseudo moments” of the partonic cross section multiplied by the
ordinary Mellin moments of the PDFs. In both methods, the phase space integration is
performed independently from the PDFs and the result is stored as the pre-calculated data
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with which the NLO cross section can be obtained for each set of the PDFs. In the present
work, we apply the latter method∗ which is convenient for combining with other programs
in N -space. In the next section, we summarize the pseudo-moment method in detail.

2 Pseudo-moment method

The F2 structure function measured in the inclusive DIS is expressed by a convolution
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where C2,a and fa are the coefficient function and parton distribution function for the a-th
flavor, respectively. Hereafter, the renormalization and factorization scales are commonly
taken to be µ for simplicity. Defining the Mellin moments of the PDFs as
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its inverse transform is given by
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where the contour C in the complex-N plane is taken to be right to the rightmost singularity
of fN

a (µ2). Substituting eq.(3) into eq.(1), we obtain the well-known expression
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The convolution becomes a simple product in the Mellin-N space and the structure function
is calculated by a Gaussian quadrature with O(100) evaluation points Ni on the integral
contour. The coefficient functions at N = Ni are calculated and stored in the initialization
subroutine, and fNi

a (µ2) is evaluated for each set of the initial PDFs generated in the fitting
program.

Calculation of the QCD final state observables is more involved. Let us take, as an
example, the inclusive jet cross section in hadronic process,
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∑
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where dσ̂
(k)
ab→jet+X is the partonic cross section calculated by Monte Carlo integration with

experimental cuts. Since eq.(5) is not a simple convolution, it cannot be rewritten in the
form of the inverse Mellin transform. Nonetheless, the PDFs and the partonic cross section
can be separated in the N -space by substituting eq.(3) into eq.(5), as the following [3, 4, 5].
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∗It has already been used in the global analysis for the polarized PDFs by De Florian et al [6].
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where the coefficients are defined by
[
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Note that the coefficients are not same as the (double-) Mellin moments of the partonic cross
section due to the experimental cuts, and therefore we call it “pseudo moments” instead.
Parametrizing the integral contours as N1,2 = c0 + u1,2e

±iφ with π/2 ≤ φ < π, the above
formula can be rewritten as
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where HN1,N2

a is the double Mellin moment of the product of the PDFs for each partonic
channel: Ha(x1, x2; µ

2) = {fg(x1, µ
2)fg(x2, µ

2), · · · }. The pseudo moments (7) are nothing
but the jet cross sections with the PDFs replaced by x−N1,2 . Calculation of the pseudo
moments has to be done for each experimental bin, but once it is done, the cross section for
each set of the PDFs can be evaluated in a very short time. The pseudo-moment method
is a general technique and can be applied to any observables such as the dijet cross section,
heavy quark production, etc, which cannot be written in the form of the Melln convolution.

Now we compare numerically the cross sections calculated directly in x-space as in eq.(5)
and those in N -space by the pseudo-moment method as in eq.(8). In both cases, the evolution
program QCD-PEGASUS [7] was used with its default input PDFs (corresponding to
the 2001/2 Les Houches benchmark tables [8]). Likewise, the integral contour for the N
integration in the pseudo-moment method is taken to be same as the one for the inverse
Mellin transform in QCD-PEGASUS: N = c0 + ue±iφ with c0 = 1.9, φ = 3/4π, and 144
evaluation points in the interval 0 < u < 80.
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Figure 1: Comparison of N -space calculation
and x-space calculation for the inclusive jet
production in ep collision at HERA.

Figure 1 shows the relative error be-
tween those results for the inclusive jet
production cross section in ep collision at
HERA. Each bin corresponds to a set of
(Q2, ET ) and each group of 4 bins (cor-
responding to ET = 7, 11, 30, 50GeV from
left to right) corresponds to the same Q2

bin (= 150GeV2 − 15000GeV2 from left to
right). We see that the error is less than
0.01% over the whole range of the kinemat-
ics.

Figure 2 is same as Fig.1, but for the
inclusive jet production at LHC. The left
and right panel are for the central (0 < y <
0.8) and forward (2.5 < y < 3.2) rapidity
region, respectively. In both regions, the error is less than 0.01% except for the highest Pt

bins, where the cross section is highly suppressed and the statistical errors are supposed to
be large. Hence we confirm that calculation of the inclusive jet cross section in the pseudo-
moment method has enough accuracy when the N -integral contour is commonly taken with
the one for calculation of the PDFs and structure functions.

DIS 2009



P
T
 bins

-0.004

-0.002

0.000

0.002

0.004

y = 0 - 0.8,  P
T 

 = 60 - 4500 GeV

PDF  Les Houches 2001

dσN-space
/dσx-space

 - 1

P
T
 bins

-0.004

-0.002

0.000

0.002

0.004

y = 2.5 - 3.2,  P
T 

 = 60 - 800 GeV

PDF  Les Houches 2001

dσN-space
/dσx-space

 - 1

Figure 2: Same as Fig.1 but for the inclusive jet production in pp collision at LHC in the
central rapidity region: y = 0 − 0.8 (left panel) and forward rapidity region: y = 2.5 − 3.2
(right panel).

3 Charm structure function

Another observable which plays an important role in the determination of the PDFs is charm
structure function F cc̄

2 (x, Q2, m2). Factorization formula for F cc̄
2 up to NLO is given by
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where ec(ei) is the charge of the charm (light) quark and m denotes the charm quark mass.

The coefficient functions c
(0,1)
2,j , c̄

(1)
2,j and d

(1)
2,j , d̄

(1)
2,j are functions of η = ŝ

4m2 − 1 and ξ = Q2

m2

where ŝ is the partonic CM energy. They cannot be written in analytic funtions except the
dominant parts in the threshold and asymptotic regions. The remaining part was tabulated
numerically by Riemersma et al. [9]. However, in order to calculate the charm structure
function in the Mellin-space programs, N -space expressions of the coefficient functions are
necessary. For that purpose, Alekhin and Blümlein [10] performed a polynomial fitting with
the MINIMAX-method,

c
(1)
2,g(z, ξ)(ρ − z)κ =

K
∑

k=0

ak(ρ)zk , (10)

where ρ = ξ
ξ+4 . The Mellin transform of this expression is given in terms of the beta

function,

M [c
(1)
2,g(z, ξ)](N) =

K
∑
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ak(ρ)ρN+k−κB(N + k, 1 − κ) . (11)

The coefficients ak(ρ) are interpolated in ρ space using the tabulated data. In the fitting
procedure, these coefficient functions have to be calculated for each Q2 value of the experi-
mental bin, but are treated in the same way as the massless coefficient functions otherwise.
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Figure 3: Comparison of N -space calcula-
tion and x-space calculation for components
of the charm structure function F cc̄(x, Q2, m2)
at Q2 = 30GeV2.

Figure 3 compares the x-space calcu-
lation using eq.(9) with the parametriza-
tion by Riemersma et al. and the N -space
calculation using the inverse Mellin trans-
form eq.(4) with the N -space expression in
eq.(11). The comparison is made for each
component of F cc̄

2 (x, Q2, m2): the LO, NLO
gluon and NLO quark component, corre-
sponding to the first,second and third line
in eq.(9), respectively. We have taken Q2 =
30GeV2, µ2 = Q2+m2 and the PDFs corre-
sponding to 2001/2 Les Houches benchmark
tables [8]). The figure demonstrates a good
agreement between the results by these two
calculation methods. We note that the rel-
ative error for the sum of all components is
less than 0.1% in the entire range of x.

4 Summery

The pseudo-moment method enables us to perform fast NLO calculation of QCD final state
observables with varying parton distributions which is required in the PDF global analysis.
We demonstrated a good numerical agreement between the N -space calculation and the
x-space calculation for the inclusive jet cross sections and charm structure function. The
techniques described here will be implemented in our PDF global analysis in the future.
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