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Abstract The usual approximation scheme is used to study the solution of the Duffin–Kemmer–Petiau (DKP)
equation for a vector Yukawa potential in the framework of the parametric Nikiforov-Uvarov (NU) method.
The approximate energy eigenvalue equation and the corresponding wave function spinor components are
calculated for any total angular momentum J in closed form. Further, the exact energy equation and wave
function spinor components are also given for the J = 0 case. A set of parameter values is used to obtain the
numerical values for the energy states with various values of quantum levels (n, J ).

1 Introduction

The first-order DKP formalism has been used to analyze relativistic interactions of spin-0 and spin-1 hadrons
with nuclei as an alternative to their conventional second-order Klein-Gordon (KG) and Proca equations [1–6].
The DKP equation is a direct generalization to the Dirac particles of integer spin in which one replaces the
gamma matrices by beta metrics but verifying a more complicated algebra as DKP algebra [7–15]. Fainberg
and Pimentel presented a strict proof of equivalence between DKP and KG theories for physical S-matrix
elements in the case of charged scalar particles interacting in minimal way with an external or quantized elec-
tromagnetic field [16,17]. Boutabia-Chéraitia and Boudjedaa [18] solved the DKP equation in the presence of
Woods–Saxon potential for spin 1 and spin 0 and they also deduced the transmission and reflection coefficients.
Kulikov et al. [19] offered a new oscillator model with different form of the nonminimal substitution within
the framework of the DKP equation. Yaşuk et al. [20] presented an application of the relativistic DKP equation
in the presence of a vector deformed Hulthén potential for spin zero particles by using the Nikiforov-Uvarov
(NU) method. Boztosun et al. [21] presented a simple exact analytical solution of the relativistic DKP equation
within the framework of the asymptotic iteration method and determined exact bound state energy eigenvalues
and corresponding eigenfunctions for the relativistic harmonic oscillator and the Coulomb potentials. Kasri
and Chetouani [22] determined the bound state energy eigenvalues for the relativistic DKP oscillator and DKP
Coulomb potentials by using an exact quantization rule. de Castro [23] explored the problem of spin-0 and
spin-1 bosons subject to a general mixing of minimal and nonminimal vector cusp potentials in a unified way
in the context of the DKP theory. Chargui et al. [24] solved the DKP equation with a pseudoscalar linear plus
Coulomb-like potential in a two-dimensional space–time. Very recently, Hamzavi and Ikhdair [25] obtained
solution of the DKP equation for a vector deformed Woods-Saxon potential by using the Pekeris approximation.
For more review, one can see Refs. [26–30].
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In this work, we study the Yukawa potential or static screening Coulomb potential (SSCP) which is given
by

V (r) = −V0
e−ar

r
, (1)

where V0 = αZ , α = 1/137.037 is the fine-structure constant with Z is the atomic number and a is the
screening parameter. This potential is often used to compute bound-state normalizations and energy levels of
neutral atoms [31–36] which have been studied over the past years. Over the past years, several methods have
been used in solving relativistic and nonrelativistic equations with the Yukawa potential such as the shifted
large-N method [37], perturbative solution of the Riccati equation [38,39], alternative perturbative scheme
[40,41], asymptotic iteration method [42], the quasi-linearization method (QLM) [43] and Nikiforov-Uvarov
method [44].

Therefore, it would be interesting and important to solve the DKP equation for the Yukawa potential since
it has been extensively used to describe the bound and scattering states of the above mentioned interesting
deformed nuclear models. In this paper, we will study the DKP equation with a vector Yukawa potential for
non-zero total angular momentum, i.e. J �= 0. Under these conditions, the DKP equation has no exact solutions
and we use an appropriate approximation.

This work is organized as follows: in Sect. 2, the DKP formalism is given briefly and discussed under a
vector potential. In Sect. 3, the parametric generalization of the NU method is introduced. We solve the DKP
equation with a vector Yukawa potential in Sect. 4. We also obtain numerical energy results for any arbitrary
(n, J ) states. The exact energy equation and wave function spinor components are also given for the J = 0
case in Sect. 4. Finally, Sect. 5 is devoted to our conclusion.

2 A Brief Review to the DKP Formalism

The first order relativistic DKP equation for free spin-0 or spin-1 particles of mass m is

(iβμ∂μ − m)ψDK P = 0, (2)

where βμ (μ = 0, 1, 2, 3) matrices satisfy the commutation relation

βμβνβλ + βλβνβμ = gμνβλ + gνλβμ, (3)

which defines the so-called DKP algebra. The algebra generated by the 4βN ’s has three irreducible represen-
tations: a ten dimensional one that is related to S = 1, a five dimensional one relevant for S = 0 (spinless
particles) and a one dimensional one which is trivial. In the spin-0 representation, βμ are 5×5 matrices defined
as (i = 1, 2, 3)

β0 =
(
θ 0̃
0̄T 0

)
, β i =

(
0̃ ρi

−ρi
T 0

)
, (4)

with 0̃, 0̄, 0 as 2 × 2, 2 × 3, 3 × 3 zero matrices, respectively, and

θ =
(

0 1
1 0

)
, ρ1 =

(−1 0 0
0 0 0

)
, ρ2 =

(
0 −1 0
0 0 0

)
, ρ3 =

(
0 0 −1
0 0 0

)
. (5)

For spin one particle, βμ are 10 × 10 matrices given by

β0 =

⎛
⎜⎜⎝

0 0̄ 0̄ 0̄
0̄T 0 I 0
0̄T I 0 0
0̄T 0 0 0

⎞
⎟⎟⎠ , β i =

⎛
⎜⎜⎝

0 0̄ ei 0̄
0̄T 0 0 −isi

−eT
i 0 0 0

0̄T −isi 0 0

⎞
⎟⎟⎠ (6)

where si are the usual 3 × 3 spin one matrices

0̄ = (
0 0 0

)
, e1 = (

1 0 0
)
, e2 = (

0 1 0
)
, e3 = (

0 0 1
)
, (7)
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I and 0 are the identity and zero matrices, respectively. While the dynamical state ψDK P is a five component
spinor for spin zero particles, it has ten component spinors for S = 1 particles. The solution of the DKP
equation for a particle in a central field needs consideration since earlier work [12]. It is convenient to recall
some general properties of the solution of the DKP equation in a central interaction for spin zero particle. The
central interaction consists of two parts: a Lorentz scalar US and a time-like component of four-dimensional
vector potential, UV depending only on r [20,23]. The stationary states of the DKP particle, in units h̄ = c = 1,
are determined by solving

( �β. �p + m + US + β0UV

)
ψ(�r) = β0 Eψ(�r). (8)

In the spin zero representation, the five component DKP spinor is

ψ(�r) =
(
ψupper
iψlower

)
with ψupper =

(
φ
ϕ

)
and ψlower =

⎛
⎝ A1

A2
A3

⎞
⎠ , (9)

so that for stationary states the DKP equation can be written as

(m + US)φ = (E − U 0
V )φ + �∇. �A, (10)

�∇φ = (m + US) �A, (11)

(m + US)φ = (E − U 0
V )φ, (12)

where �A is the vector (A1, A2, A3). The five-component wave function ψ is simultaneously an eigenfunction
of J 2 and J3

J 2
(
ψupper
ψlower

)
=

(
L2ψupper

( �L + �S)2ψlower

)
= J (J + 1)

(
ψupper
ψlower

)
(13)

J3

(
ψupper
ψlower

)
=

(
L3ψupper
(L3 + S3)ψlower

)
= M

(
ψupper
ψlower

)
, (14)

where the total angular momentum J = L + S which commutes with β0, is a constant of the motion. The
most general solution of Eq. (8) is

ψJ M (r) =
⎛
⎜⎝

fn J (r)YJ M (�)
gn J (r)YJ M (�)

i
∑
L

hn J L(r)Y M
J L1(�)

⎞
⎟⎠ , (15)

where YJ M (�), the spherical harmonics of order J, Y M
J L1(�) are the normalized vector spherical harmonics

and fn J (r), gn J (r) and fn J L(r) are radial wave functions. The insertion of ψJ M (r) defined in Eq. (15) into
Eqs. (10), (11) and (12) by making use of the properties of vector spherical harmonics [2] yields the following
set of first-order coupled relativistic differential radial equations

(E − U 0
V )F(r) = (m + US)G(r), (16a)(

d

dr
− J + 1

r

)
F(r) = − 1

αJ
(m + US)H1(r), (16b)

(
d

dr
+ J

r

)
F(r) = − 1

ςJ
(m + US)H−1(r), (16c)

−αJ

(
d

dr
+ J + 1

r

)
H1(r)+ ς

(
d

dr
− J

r

)
H−1(r) = (m + US)F(r)− (E − U 0

V )G(r), (16d)

where αJ = √
(J + 1)/(2J + 1), ςJ = √

J/(2J + 1), fn J (r) = F(r)/r, gn J (r) = G(r)/r and
hn J J±1(r) = H±1(r)/r . Note that the five radial components in the wave function (14) end up with four com-
ponents {F,G, H+1, H−1} since the fifth component H0 disappears due to the property J 2 HJ = J (J +1)HJ ,
i.e., J 2 H0 = 0H0 and the multiplication process of Eq. (6) with the wave function (15) after using Eq. (8)
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(cf. [23]). For the DKP equation, at the presence of a vector potential and while the scalar potential is taken
zero, the differential equations to be satisfied by the radial wave functions are

(E − U 0
V )F(r) = mG(r), (17a)(

d

dr
− J + 1

r

)
F(r) = − 1

αJ
m H1(r), (17b)

(
d

dr
+ J

r

)
F(r) = − 1

ςJ
m H−1(r), (17c)

−αJ

(
d

dr
+ J + 1

r

)
H1(r)+ ς

(
d

dr
− J

r

)
H−1(r) = m F(r)− (E − U 0

V )G(r). (17d)

Eliminating G(r), H1(r) and H−1(r) in terms of F(r), the following second-order differential equation is
satisfied by the function F(r),

�OKG F(r) = 0, (18)

that represents the radial KG equation for a vector potential with �OKG being the KG operator defined as

�OKG → �∇2 + (E − eV (r))2 − m2, �∇2 → d2

dr2 − J (J + 1)

r2 . (19)

It is remarkable to note that Eq. (18) is equivalent to Eq. (16) of Ref. [18]. Alternatively, we can rewrite (18)
as the radial KG equation:

[
d2

dr2 − J (J + 1)

r2 + (
E − U 0

V

)2 − m2
]

F(r) = 0,U 0
V = −eU0

e−ar

r
, (20)

where J (J + 1)/r2, is the total angular momentum centrifugal term and we take e = 1 [20].
Here, we take the vector potential in Eq. (20) as the Yukawa potential (1). Therefore, the radial DKP

equation for F(r) reduces to[
d2

dr2 − J (J + 1)

r2 + U 2
0 e−2ar

r2 + 2EU0e−ar

r
+ E2 − m2

]
F(r) = 0. (21)

Since Eq. (21) does not admit exact analytical solution due to the presence of the strong singular centrifugal
term r−2, we resort to use a proper approximation to deal with this term. So, we employ the conventional
approximation scheme introduced by Greene and Aldrich [45]:

1

r2 ≈ 4a2 e−2ar

(1 − e−2ar )2
, (22a)

1

r
≈ 2a

e−ar

(1 − e−2ar )
, (22b)

which is valid only for a short-range potential, i.e., ar � 1 and used only to calculate the lowest energy states
as mentioned in [46,47]. Therefore, to see the accuracy of our approximation, we plot the Yukawa potential
(1) and its approximation [48,49]

V (r) = −2aU0
e−2ar

1 − e−2ar
, (23)

with parameters U0 = 1.0 and a = 0.01 f m−1, as shown in Fig. 1. Thus, the approximate analytical solution
of the DKP equation with the Yukawa potential can be obtained by inserting Eq. (22) into Eq. (21) as

[
d2

dr2 − 4a2 J (J + 1)
e−2ar

(1 − e−2ar )2
+4a2U 2

0
e−4ar

(1 − e−2ar )2
+ 4aEU0

e−2ar

1 − e−2ar
− ε2

]
Fn J (r) = 0, (24)

where ε2 = m2 − E2. In the next section, we will introduce the generalized parametric NU method so that
we can find solutions to the above equation.
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Fig. 1 Yukawa potential (1) (red curve) and its approximation (23) (blue dot curve)

3 Parametric NU Method

This powerful mathematical tool solves second order differential equations. Let us consider the following
differential equation [50–58]

ψ ′′
n (s)+ τ̃ (s)

σ (s)
ψ ′

n (s)+ σ̃ (s)

σ 2 (s)
ψn (s) = 0, (25)

where σ (s) and σ̃ (s) are polynomials, at most of second degree, and τ̃ (s) is a first-degree polynomial. The
application of the NU method can be made simpler and direct without need to check the validity of solution.
We present a shortcut for the method. So, at first we write the general form of the Schrödinger-like equation
(25) in a more general form as

ψ ′′
n (s)+

(
c1 − c2s

s (1 − c3s)

)
ψ ′

n (s)+
(−p2s2 + p1s − p0

s2 (1 − c3s)2

)
ψn (s) = 0, (26)

satisfying the wave functions

ψn(s) = φ(s)yn(s). (27)

Comparing (26) with its counterpart (25), we obtain the following identifications:

τ̃ (s) = c1 − c2s, σ (s) = s (1 − c3s) , σ̃ (s) = −p2s2 + p1s − p0, (28)

(1) For the given root k1 and the function π1(s):

k = − (c7 + 2c3c8)− 2
√

c8c9, π(s) = c4 + √
c8 − (√

c9 + c3
√

c8 − c5
)

s,

we follow the NU method [50] to obtain the energy equation [51–58]

nc2 − (2n + 1) c5 + (2n + 1)
(√

c9 + c3
√

c8
) + n (n − 1) c3 + c7 + 2c3c8 + 2

√
c8c9 = 0, (29)

and the wave functions

ρ (s) = sc10 (1 − c3s)c11 , φ (s) = sc12 (1 − c3s)c13 , c12 > 0, c13 > 0,

yn (s) = P(c10,c11)
n (1 − 2c3s) , c10 > −1, c11 > −1,

ψnκ (s) = Nnκsc12 (1 − c3s)c13 P(c10,c11)
n (1 − 2c3s) . (30)
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where P(μ,ν)n (x), μ > −1, ν > −1, and x ∈ [−1, 1] are Jacobi polynomials with the constants being

c4 = 1

2
(1 − c1) , c5 = 1

2
(c2 − 2c3) ,

c6 = c2
5 + p2; c7 = 2c4c5 − p1,

c8 = c2
4 + p0, c9 = c3 (c7 + c3c8)+ c6,

c10 = 2
√

c8 > −1, c11 = 2

c3

√
c9 > −1, c3 �= 0,

c12 = c4 + √
c8 > 0, c13 = −c4 + 1

c3
(
√

c9 − c5) > 0, c3 �= 0, (31)

where c12 > 0, c13 > 0 and s ∈ [0, 1/c3], c3 �= 0.
In the rather more special case of c3 = 0, the wave function (15) becomes

lim
c3→0

P(c10,c11)
n (1 − 2c3s) = Lc10

n

(
2
√

c9s
)
, lim

c3→0
(1 − c3s)c13 = e−(√c9−c5)s,

ψ(s) = Nsc12 e−(√c9−c5)s Lc10
n (2

√
c9s). (32)

(2) For the given root k2 and the function π2(s):

k = − (c7 + 2c3c8)+ 2
√

c8c9, π(s) = c4 − √
c8 − (√

c9 − c3
√

c8 − c5
)

s,

we follow the NU method [41] to obtain the energy equation

nc2 − (2n + 1) c5 + (2n + 1)
(√

c9 − c3
√

c8
) + n (n − 1) c3 + c7 + 2c3c8 − 2

√
c8c9 = 0, (33)

and the wave functions

ρ (s) = sc̃10 (1 − c3s)c̃11 , φ (s) = sc̃12 (1 − c3s)c̃13 , c̃12 > 0, c̃13 > 0,

yn (s) = P(c̃10,c̃11)
n (1 − 2c̃3s) , c̃10 > −1, c̃11 > −1,

ψnκ (s) = Nnκsc̃12 (1 − c3s)c̃13 P(c̃10,c̃11)
n (1 − 2c3s) , (34)

where

c̃10 = −2
√

c8, c̃11 = 2

c3

√
c9, c3 �= 0,

c̃12 = c4 − √
c8 > 0, c̃13 = −c4 + 1

c3
(
√

c9 − c5) > 0, c3 �= 0. (35)

4 Solution of the DKP-Yukawa Problem

Here we want to solve Eq. (24) in the context of the parametric generalization of the NU method. At first we
introduce the change of variables s = e−2ar which maps the interval (0,∞) into (0, 1), to rewrite it as follows:

d2 Fn J (s)

ds2 + 1 − s

s(1 − s)

d Fn J (s)

ds
+ 1

s2(1 − s)2

[
−J (J + 1)s + U 2

0 s2 − En J U0

a
s(1 − s)− ε2

4a2

]
Fn J (s) = 0.

(36)

Next, comparing Eq. (36) with its counterpart Eq. (26) enables us to find parametric coefficients ci (i = 1, 2, 3)
and analytical expressions p j ( j = 1, 2, 3) as follows

c1 = 1, p2 = −U 2
0 + En J U0

a
+ ε2

4a2 ,

c2 = 1, p1 = −J (J + 1)+ En J U0

a
+ 2ε2

4a2 ,

c3 = 1, p0 = ε2

4a2 . (37)
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Table 1 The specific values for the parametric constants necessary for the energy eigenvalues and wave functions

Constant Analytical value

c4 0
c5 − 1

2

c6
1
4 − U 2

0 + En J U0
a + ε2

4a2

c7 J (J + 1)− En J U0
a − 2ε2

4a2

c8
ε2

4a2

c9
(
J + 1

2

)2 − U 2
0

c̃10 −2
√

ε2

4a2

c̃11 2
√(

J + 1
2

)2 − U 2
0

c̃12 −
√

ε2

4a2

c̃13
1
2 +

√(
J + 1

2

)2 − U 2
0

The remaining values of coefficients ci (i = 4, 5, . . . , 9) and c̃k (k = 10, . . . , 13) are found from relations
(31) and (35). All values of these coefficients, i.e., ci (i = 4, 5, . . . , 9) together with c̃k (k = 10, . . . , 13) are
displayed in Table 1. By using Eq. (33), we can obtain, in closed form, the energy eigenvalue equation as

⎡
⎣n + 1

2
+

⎛
⎝

√(
J + 1

2

)2

− U 2
0 −

√
m2 − E2

n J

4a2

⎞
⎠

⎤
⎦

2

= m2

4a2 −
(

En J

2a
− U0

)2

. (38)

To find the energy levels we solve Eq. (38) numerically considering the following values of the parameters
as m = 938.0 MeV, U0 = 67.54 MeV [25] and screening parameter a = (0.005, 0.015) fm−1 [8]. These
numerical results are displayed in Table 2. We considered a reasonable set of potential parameter values for
the physical 208 Pb element in generating the energy spectrum. As shown in Table 2, the binding energy of the
two interacting particles turns to become strongly attractive with increasing quantum numbers n and J. As the
total angular momentum J increasing, the energy shift for two different n states becomes very small. With
increasing the screening parameter αleads to slightly weakly attractive system.

To find corresponding wave functions, referring to Table 1 and relation (34), we get

Fn J (s) = Nn J s
−

√
ε2

4a2
(1 − s)

1
2 +

√(
J+ 1

2

)2−U 2
0 P

(
−2

√
ε2

4a2 ,2

√(
J+ 1

2

)2−U 2
0

)

n (1 − 2s) , s = e−2ar , (39a)

or equivalently

Fn J (r) = Nn J e−εr (
1 − e−2ar ) 1

2 +
√(

J+ 1
2

)2−U 2
0 P

(
− ε

a ,2

√(
J+ 1

2

)2−U 2
0

)

n
(
1 − 2e−2ar ) , (39b)

where Nn J is the normalization constant.
We can express the Jacobi polynomials in terms of the hypergemetric function [44,45]

P(λ,η)n (1 − 2x) = (λ+ 1)n
n! 2 F1 (−n, λ+ η + 1 + n; λ+ 1; x) , (40)

where (y)n = �(y + 1)/�(y − n + 1), is the Pochhammer’s symbol.
The wave function (39b) satisfies the standard asymptotic analysis for r → 0 and r → ∞.
Further, we can take into account the following hypergeometric property [59,60]

d

dx
(2 F1 (b, c; d; x)) =

(
bc

d

)
2 F1 (b + 1, c + 1; d + 1; x) , (41)

Thereby, we seek to find the other spinor components from Eqs. (17a), (17b) and (17c) as
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Table 2 Bound state eigenvalues En J (MeV) of the DKP equation under a vector Yukawa potential for various n, J and screening
parameter a

n J En J
a = 0.005 fm−1 a = 0.015 fm−1

0 0 −871.4020165 −870.7176063
1 −923.6139661 −922.9223014
2 −931.4867386 −930.7744718
3 −934.1933978 −933.4522010
4 −935.4372396 −934.6588482
5 −936.1084061 −935.2845563

1 0 −922.1585762 −921.4679150
1 −931.4201148 −930.7082258
2 −934.1816502 −933.4406736
3 −935.4339333 −934.6556955
4 −936.1071998 −935.2834677
5 −936.5088793 −935.6314014

2 0 −930.9974392 −930.2877285
1 −934.1535673 −933.4131126
2 −935.4279337 −934.6499738
3 −936.1052972 −935.2817504
4 −936.5081276 −935.6307868
5 −936.7655234 −935.8261476

3 0 −933.9779358 −933.2405413
1 −935.4136146 −934.6363132
2 −936.1018465 −935.2786346
3 −936.5069413 −935.6298173
4 −936.7650274 −935.8258091
5 −936.9380488 −935.9285043

4 0 −935.3248226 −934.5514102
1 −936.0936195 −935.2712010
2 −936.5047911 −935.6280589
3 −936.7642455 −935.8252750
4 −936.9377089 −935.9283417
5 −937.0579382 −935.9699520

5 0 −936.0428896 −935.2251697
1 −936.4996693 −935.6238636
2 −936.7628287 −935.8243063
3 −936.9371726 −935.9280848
4 −937.0576990 −935.9699094
5 −937.1430640 −935.2845563

G(r) = Nn J
(1 − ε/α)n

n!
1

m

(
E + U0

e−ar

r

)
e−εr (

1 − e−2ar
) 1

2 +
√(

J+ 1
2

)2−U 2
0

×2 F1

⎛
⎝−n,− ε

a
+ 2

√(
J + 1

2

)2
− U2

0 + 1 + n;− ε
a

+ 1; e−2ar

⎞
⎠ , (42a)

H1(r) = −αJ

m

⎛
⎝1

2
+

√(
J + 1

2

)2
− U2

0
2ae−2ar(

1 − e−2ar
) − ε − J + 1

r

⎞
⎠ F(r)

+Nn J
(1 − ε/α)n

n!
αJ

m 2 F1

⎛
⎝−n + 1,− ε

a
+ 2

√(
J + 1

2

)2
− U2

0 + n + 2; − ε
a

+ 2; e−2ar

⎞
⎠

×
(2αn)

(
2a

√(
J + 1

2

)2 − U2
0 + a + an − ε

)

(ε − a)
e−2ar , (42b)

H−1(r) = −ςJ

m

⎛
⎝1

2
+

√(
J + 1

2

)2
− U2

0
2ae−2ar(

1 − e−2ar
) − ε + J

r

⎞
⎠ F(r)
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+Nn J
(1 − ε/α)n

n!
ςJ

m 2 F1

⎛
⎝−n + 1,− ε

a
+ 2

√(
J + 1

2

)2
− U2

0 + n + 2;− ε
a

+ 2; e−2ar

⎞
⎠

×
(2αn)

(
2a

√(
J + 1

2

)2 − U2
0 + a + an − ε

)

(ε − a)
e−2ar , (42c)

5 J = 0 Case

We consider the special case when the total angular momentum J = 0 (s-wave). Thus, from Eq. (38) we
obtain the following exact energy equation:

[
n + 1

2
+

(√
1

4
− U 2

0 − 1

2α

√
m2 − E2

n0

)]2

= m2

4a2 −
(

En0

2a
− U0

)2

. (43)

where |m| > (En0 − 2αU0), |m| > En0 and 1 > 4U0. In addition, from Eqs. (39b) and (42), we also find the
exact spinor components of the wave function as

G(r) = Nn0
(1 − ε/α)n

n!
1

m

(
E + U0

e−ar

r

)
e−εr (

1 − e−2ar ) 1
2 +

√
1
4 −U 2

0

×2 F1

(
−n,− ε

a
+ 2

√
1

4
− U 2

0 + 1 + n; − ε
a

+ 1; e−2ar

)
, (44a)

H1(r) = −α0

m

(
1

2
+

√
1

4
− U 2

0
2ae−2ar(

1 − e−2ar
) − ε − 1

r

)
F(r)

+Nn0
(1 − ε/α)n

n!
α0

m
2 F1

(
−n + 1,− ε

a
+ 2

√
1

4
− U 2

0 + n + 2;− ε
a

+ 2; e−2ar

)

×
(2αn)

(
2a

√
1
4 − U 2

0 + a + an − ε

)

(ε − a)
e−2ar , (44b)

H−1(r) = −ς0

m

(
1

2
+

√
1

4
− U 2

0
2ae−2ar(

1 − e−2ar
) − ε

)
F(r)

+Nn0
(1 − ε/α)n

n!
ς0

m
2 F1

(
−n + 1,− ε

a
+ 2

√
1

4
− U 2

0 + n + 2;− ε
a

+ 2; e−2ar

)

×
(2αn)

(
2a

√
1
4 − U 2

0 + a + an − ε

)

(ε − a)
e−2ar . (44c)

6 Conclusion

In this paper, we solved the Duffin–Kemmer–Petiau equation under a vector Yukawa potential. We used the con-
ventional approximation scheme to the total angular momentum centrifugal term. The parametric NU method
is used to obtain the energy eigenvalues and the corresponding spinor components of the eigenfunction. The
explicit forms of the spinor components of wave function were calculated. In addition, some numerical results
for bound state energies are given in Table 2 for various values of (n, J ) and screening parameter a.
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