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Abstract. There is great interest in understanding a possible late accelerated ex-
pansion of the universe. Data suggest that the universe was still decelerating around
redshift 1 and started to accelerate more recently at redshift 0.5. In models where
the expansion is driven by a cosmological constant the acceleration should become
increasingly greater with time, thus inflation never ends. This could also be the
case with most models of quintessence or quintessential inflation where the late
accelerated expansion is produced by a monotonically decreasing scalar potential.
Here we would like to explore the possibility that a recent inflation has already or is
about to end. This possibility is not ruled out by existing data and could be testable
with far more, higher accuracy, supernovae on the Hubble diagram. We construct
a two-stage inflationary model which can accommodate early inflation as well as a
second stage of inflation (quintessence) with a single scalar field φ. Using an analogy
from a mechanical problem we propose an inflaton field solution to the equations
of motion which can account for two inflationary epochs. Inflation occurs close to
the maxima of the potential. As a consequence both inflations are necesarilly finite.
A first inflation is produced when fluctuations displace the inflaton field from its
higher maximum rolling down the potential as in new inflation. Instead of rolling
towards a global minimum the inflaton approaches a lower maximum where a se-
cond inflation takes place. The model is not realistic, however, because matter has
not been taken into account at the end of the first inflation where particle produc-
tion should occur as in non-oscillatory models. This is a delicate problem which
will be treated elsewhere.

1 Introduction

The idea that the universe underwent an early inflationary expansion is now
widely accepted [1]. This era of inflation makes plausible certain initial condi-
tions for standard cosmology and provides a mechanism for structure forma-
tion. More speculatively the idea that the universe is at present undergoing
inflation (usually denoted by the term quintessence) is the subject of much
current interest [2]. Several models have been proposed where typically the
potential energy of a scalar field, in general different from the one produ-
cing early inflation, is dominating the dynamics of the universe. Usually the
potential is an inverse power of the field decreasing monotonically towards
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Fig. 1. The potential energy U(x) of a particle in classical mechanics. In the
absence of friction if we leave the particle at the point A with vanishing velocity
it will eventually reach B, with U(A) = U(B), also with vanishing velocity. In the
limit when A → M1 it will take an infinite amount of time for the particle to reach
B → M2.

zero. In the present work we are interested in studying a model which accom-
modates two stages of inflation by the evolution of a single scalar field [3].
Here, however, we look at the possibility that both inflations are produced
when the inflaton is close to the maxima of the potential. The fact that both
inflations occur at the maxima implies that they are necesarilly finite. This
opens the interesting possibility where the second inflation has already or is
about to end. This possibility is not ruled out by existing data and could be
testable with far more, higher accuracy, supernovae on the Hubble diagram
[4]. In what follows we construct a two-stage inflationary model by using
an analogy with a problem from classical mechanics. The resulting potential
could be obtained from supergravity (see Appendix).

Let us consider a potential U(x) as shown in Fig. 1. When there is no
friction the equation of motion for a particle of mass m = 1 is given by

ẍ+ U ′(x) = 0. (1)

We study the problem of a particle that leaves with vanishing velocity some-
where from the left of the minimum, let us say A and reaches B some time
later. If we fix the origin of time at the minimum of U(x) then the particle
leaves A in the past reaching B sometime in the future. As A becomes close
to the maximum at M1 the particle spends longer close to the maxima. In
the limit when A → M1 it takes an infinite amount of time for the particle
to reach M2. The particle would spend most of the time leaving M1 and
trying to reach M2. As a result the kinetic energy is negligible close to the
maxima; the potential energy dominates. We call this the limiting solution.
The maximum at M1 is located at x = 0 thus we require x(t = −∞) = 0 and
x(t = +∞) locates the maximum at M2.
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Fig. 2. The potential energy of the particle of Fig. 1 now as a function of time.
The particle spends most of its time close to the maxima M1, M2 where the kinetic
energy is negligible.

As a concrete example let us consider the potential

U(x) = cos2(x). (2)

It is easy to check that the limiting solution is

x(t) = 2 arctan[tanh(
t√
2
)] +

π

2
, (3)

where x(t = −∞) = 0, x(t = +∞) = π and ẋ(t = −∞) = ẋ(t = +∞) = 0.
The potential U(x) is already illustrated in Fig. 1. As a function of time
the potential is shown in Fig. 2. If we could lower the r.h.s. branch of this
potential we could use this mechanical problem as an analogy to construct
a model with two stages of inflation. Actually this can be done as follows.
Instead of the potential U(x) let us consider a new potential Ū(x) illustrated
in Fig. 3. Now the maximum at M2 is much smaller than the maximum
at M1. If we impose a solution of the type given by (3) it is clear that we
need a friction term in the corresponding (1) to stop the particle precisely
at M2. Thus imposing a limiting solution to the potential Ū(x) determines
the friction term and, as before the particle will spend most of the time close
to M1 and close to M2 with negligible kinetic energy. As a function of time
the potential of Fig. 4 shows the two plateaus at t → −∞ and t → +∞
corresponding to the maxima at M1 and M2 respectively.

In inflationary models of the “new” type one typically starts with a very
flat potential and inflation occurs close to the maximum at φ = 0, where φ is
the inflaton field. There could be a previous “primordial” stage of inflation
probably of the chaotic type setting the initial conditions for new inflation.
For simplicity in what follows we will call this new inflationary epoch a first
stage or simply first inflation (although probably there was inflation before)
characterized by a scale Λ1. This scenario is illustrated in Fig. 5. Here we
study the possibility of a second stage of inflation at a scale Λ2, where Λ2 �
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Fig. 3. A particle leaves the maximum at M1 with vanishing velocity. It will just
reach M2 also with vanishing velocity if there is a friction term which stops the
particle precisely at M2.
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Fig. 4. The potential Ū(x) of Fig. 3 as a function of time. With an appropriate
friction term the particle which leaves M1 with vanishing velocity will just manage
to reach M2 in an infinite time. The particle spends most of its time close to the
maxima with vanishing kinetic energy. Two plateaus appear at different energy
scales.
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Fig. 5. A typical new inflationary potential gives rise to an early epoch of inflation
(which in this work we call first inflation). Note, however, that there could have
been a previous “primordial” stage of inflation providing initial conditions for new
inflation to occur.
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Fig. 6. The scenario studied here requires the presence of a second maximum at
a scale Λ2. There is a solution to the field equations wich makes the inflaton (due
to the expansion of the universe) to evolve very slowly close to both maxima thus
providing an inflationary model with two stages of inflation. In the limiting solution
it takes an infinite amount of time for the scalar field to reach M2 starting to roll
from M1. In a more realistic situation fluctuations displace φ from the maximum
at M1 thus allowing for the possibility of a finite second inflation. The scalar field
ending in oscillations around one of its minima (see Fig. 9).

Λ1. The mechanical analogy indicates that the second inflation will occur also
close to a maximum, we then expect something like Fig. 6.

In Sect. 2 we construct a two-stage inflationary model. Section 3 deals with
the problem of initial conditions and conclude in Sect. 4 with a discussion of
the main results.

2 The Model

The inflaton field and Friedmann’s equations are, as usual, given by

φ̈+ 3Hφ̇+ V ′(φ) = 0, (4)

3H2 = V +
1
2
φ̇2, (5)

where we have set the reduced Planck mass M = 2.44 × 1018GeV to unity.
The equations above can be rewritten as

3H2 + Ḣ = V, (6)

Ḣ = −1
2
φ̇2, (7)

where the dot means derivative w.r.t. cosmic time and a prime denotes a field
derivative. The limiting solution is conveniently written as
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φ(t) =
2b√

6(1− b2)

(
2 arctan[tanh[

√
3a(1− b)

2b
(t+ to)]] +

π

2

)
, (8)

where the parameters a, b, to are determined by imposing physical conditions
on the potential. The peculiar way in which these parameters are introduced
above simplifies the analysis on the resulting potential. The main difference
w.r.t. the mechanical problem is that the limiting solution determines (up
to an integration constant) the “friction” term 3Hφ̇ through (7) and the
potential through (6). Equivalently by providing H(t) we could get φ(t) and
V . The derivative of the Hubble function is

Ḣ = −a2 1− b
1 + b

sech2[
√

3a(1− b)
b

(t+ to)]. (9)

Integrating this expression we get the Hubble function

H(t) =
a√

3(1 + b)

(
1− b tanh[

√
3a(1− b)

b
(t+ to)]

)
, (10)

the arbitray integration constant a/(
√

3(1 + b)) has been chosen this way to
get an overall scale for H(t) and to guarantee a positive Hubble function for
b < 1. This choice also makes the potential very simple when t→ −∞. From
(6) the potential follows

V (t) =
a2

(1 + b)2

(
b− tanh[

√
3a(1− b)

b
(t+ to)]

)2

. (11)

We can invert (8) and from (11) obtain the potential as a function of φ, this
is given by

V (φ) =
a2

(1 + b)2

(
b+ cos[

√
3(1− b2)

2b2
φ]

)2

. (12)

A potential of this type could follow from supergravity (see Appendix). The
parameters are determined from the following conditions. The potential at
t→ −∞ should reach the scale Λ1 of the first inflation, this fixes a

V (t→ −∞) = a2 ≡ Λ4
1, ⇒ a = Λ2

1. (13)

At t→ +∞ the potential reaches the second scale Λ2 of inflation, this fixes b

V (t→ +∞) = a2 (1− b)2
(1 + b)2

≡ Λ4
2, ⇒ b =

1− d
1 + d

; d ≡ (
Λ2

Λ1
)2. (14)

Actually, (14) has two solutions for b but the second solution leads eventually
to a negative Hubble function and thus to a contracting universe. This case
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is not studied here. Inflation ends (or starts) at points where the acceleration
of the scale factor a(t) vanishes

ä(t)
a(t)

= H2 + Ḣ = 0. (15)

This equation has two solutions. The end of the first inflation is taken at
t = 0 thus fixing to

to = − b√
3a(1− b)

arctanh[
√

6(1− b2)− b
3− 2b2

]. (16)

The beginning of the second inflation is given by

ts2 = − ln(49− 20
√

6)
2
√

3
b

a(1− b) , (17)

which, by virtue of (14), can be written as

ts2 = − ln(49− 20
√

6)
4
√

3Λ2
2

(1− (
Λ2

Λ1
)2) ≈ 0.662

Λ2
2
, (18)

the last result follows because Λ2/Λ1 � 1.
Corresponding to ρφ ≈ 0.7ρc with ρφ ≈ V (φ), we take Λ2 = 2.744 ×

10−12
√
hGeV , where h is somewhere between 0.68 and 0.75. Thus, (18) gives

the time when the second inflation starts with respect to the end of the first
inflation at t = 0, which for any practical purpose could be taken as the
Big-Bang. Using the reduced Planck time T = 2.7× 10−43sec, (18) gives

ts2 ≈
4.5× 109

h
years. (19)

This is not, however, a realistic model because particle production at the end
of the first inflation tend1 has not been considered. Shortly after tend1 the
radiation, followed by matter energy density should dominate the inflaton
energy density. Because we want a second stage of inflation to occur at a
second maximum then reheating after the first inflation should be produced
as in non-oscillatory models [5], a delicate problem which will be dealt with
elsewhere.

In Fig. 7 we show the total, potential and kinetic energies, as well as
the acceleration of the scale factor of the universe as functions of time for
the limiting solution given by (8). Finally Fig. 8 shows the equation of state
parameter ω = p/ρ. The example above was developed using the limiting
solution. This is only an approximation to a more general situation where
the scalar field is initially displaced from its maximum at M1.
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Fig. 7. We show the total, potential and kinetic energies, as well as the acceleration
of the scale factor of the universe, ä(t)/a(t), as functions of time for the limiting
solution given by (8). The origin of time has been chosen so that the end of the
first inflation occurs at t = 0. Thus we find that the start of the second inflation
denoted by ts2 is given by ts2 ≈ 4.5 × 109/h years.
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Fig. 8. The equation of state parameter ω = p/ρ as a function of time. For t → ±∞
ω takes the cosmological constant value of −1. Inflation occurs for ω ≤ −1/3.

3 Initial Conditions

In a more realistic situation the inflaton leaves not from the maximum at
M1 but from a slightly displaced position. The potential is shown in Fig. 6.
A mechanism setting the field away from M1 is provided by its fluctuations.
We have that

δφ ≈ H(t→ −∞)
2π

≈ Λ2
1

2π
√

3
. (20)

Depending on the initial conditions the scalar field approaches M2 ending in
oscillations around one of the minima. The time evolution of φ is illustrated in
Fig. 9. Figure 9a corresponds to a field which is unable to reach the maximum
at M2 ending in oscillations around the first minimum while Fig. 9b shows
the time evolution of the field when this is able to overcome the maximum
M2 ending at the second minimum. In both cases the flat part of the figure
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Fig. 9. The inflaton leaves from close to M1 where it has been displaced due to its
fluctuations δφ ≈ H(t → −∞)/2π ≈ Λ2

1/2π
√

3. After some time it approaches the
second maximum at M2 (see Fig. 6) ending in oscillations around the first minimum
Fig. 9a or the second Fig. 9b.

is where the second inflation occurs and its duration clearly depends on the
initial conditions with which the universe was prepared.

The equivalent to Fig. 7 for this case is shown in Fig. 10 where we plot the
total, potential and kinetic energies as well as the acceleration of the scale
factor of the universe. Finally Fig. 11 shows the behaviour of the equation of
state parameter ω = p/ρ. This should be compared with Fig. 8 for the case
of the limiting solution.

4 Conclusions

We have studied a model of inflation which can accommodate two inflationary
eras. Both stages of inflation are drived by the potential energy of a single
scalar field. The new feature is that inflation occurs close to the maxima of
the potential where the kinetic energy is negligible. As a consequence both
inflations are of finite duration. It is then possible that the second inflation
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Fig. 10. Corresponding to Fig. 7 where now the scalar field starts its rolling dis-
placed from the maximum at M1 due to its fluctuations. All the curves are flat to
the left of the figure with the inflaton close to M1. It finally approaches M2 (second
plateau). After some time close to the second maximum at M2 the inflaton rolls to
a minimum (see Fig. 6) with the oscillatory behaviour shown at the far right of the
figure.
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Fig. 11. The equation of state parameter ω = p/ρ as a function of time when
the scalar field has been displaced from the maximum at M1. Note how during the
oscillations of the inflaton there are short periods of inflation.

has already or is about to end which should be testable by substantially
increasing the number and accuracy of supernovae on the Hubble diagram.
In the ideal case, which we call the limiting solution, the scalar field takes an
infinite amount of time to reach the second, smaller, maximum. In a more
realistic case the scalar field is displaced from the higher maximum by its
fluctuations ending in oscillations in one of the minima of the potential. The
origin of time is fixed by the requirement that H2+Ḣ vanishes at t = 0. Thus
the end of the first inflation defines the origin of time which for any practical
purpose could be taken as the Big-Bang. A realistic model should incorporate
an era of radiation followed by matter domination after the end of the first
inflation. Potentially problematic is that the initial conditions are fine-tuned
to avoid the scalar field undershoot or overshoot the second maximum of the
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potential. On the other hand we have been able to show that a potential of
the type (12) could be derived from supergravity. In supergravity the only
natural scale is the Planck scale and we can find arguments to explain the
possible origin of the first scale of inflation [6] while the second could be
understood in terms of the first one by considering friction terms due to the
expansion of the universe and possible interactions of the inflaton with matter
fields.

Appendix

Let us consider the supergravity potential for one chiral superfield with scalar
component z and without D-terms [7]

V = eK
[
F ∗(Kzz∗)−1F − 3|W |2

]
, (21)

where

F ≡ ∂W

∂z
+
(
∂K

∂z

)
W, Kzz∗ ≡ ∂2K

∂z∂z∗ . (22)

The reduced Planck mass M ∼ 2.4×1018 GeV has been set equal to one. The
superpotential and Kähler potential denoted W and K respectively. Here we
are interested in models where W and K are given by polynomial expressions
such as

W =
∞∑
n=0

anz
n, (23)

and

K =
∞∑
n=1

bn(zz∗)n, (24)

where an and bn are real coefficients. In general this structure leads to ex-
pressions that contain cos-form potentials for the angular field φ which is a
real field defined from z in the following way

z = χeiφ . (25)

By using the superpotential and Kähler potential as given by (23) and (24),
it is straightforward to show that the supergravity potential can be written
in the form

V = eK
∞∑
n=0

∞∑
m=0

[
(n+K1)(m+K1)

K2
− 3

]
anamz

nz∗m, (26)

where Ki denote the sums

K1 =
∞∑
n=1

nbn(zz∗)n , (27)
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K2 =
∞∑
n=1

n2bn(zz∗)n . (28)

Notice that for superpotentials and Kähler potentials of the form (23) and
(24), respectively, (26) is entirely equivalent to the supergravity potential
given by (21). Let us now insert the radial and angular fields by writing z in
the way expressed by (25), z = χeiφ. The potential is then given by [8]

V = eK
∞∑
n=0

∞∑
m=0

[
(n+K1)(m+K1)

K2
− 3

]
anamχ

n+m cos[(n−m)φ], (29)

It is easy to show that (29) can give rise to potentials of the type (12). Let
us write the superpotential and Käler potential in the form

W = a0 + a1z + a2z
2, (30)

and
K = zz∗ = χ2, (31)

Assuming that the χ field has relaxed to its v.e.v., χ0 and eliminating e.g.,
a1 we get

V (φ) = c1(c2 + cos[φ])2, (32)

where
c1 = 2eχ

2
0χ0

√
(χ2

0 − 1)a0a2, (33)

and

c2 =
((χ2

0 − 2)a0 + (χ4
0 + 2)a2)

√
(χ2

0 − 3)a2
0 − 2χ2

0(χ
2
0 − 1)a0a2 + χ2

0(χ
4
0 + χ2

0 + 4)a2
2√

(χ2
0 − 2)2a2

0 − 2(χ6
0 − 2χ4

0 + 2χ2
0 + 2)a0a2 + (χ4

0 + 2)2a2
2

.

(34)

It is then not untinkable that a model of the type (12) could arise from a
particle physics model.
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