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The supreme task of the physicist is to arrive at those universal elementary laws from which the
cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition,
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development of physics has shown that at any given moment, out of all conceivable constructions,
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Abstract

The Klebanov-Polyakov Higher-Spin Anti-de Sitter/Conformal Field Theory conjecture

posits that the free O(N) vector model is dual to the type A Vasiliev Higher Spin Gravity

with the bulk scalar field having conformal scaling dimension ∆ = 1. Similarly, the

critical O(N) vector model in 3d is dual to type A Vasilev Higher Spin Gravity with bulk

scalar having ∆ = 2 . This is a weak-weak duality and accordingly allows a setting where

a reconstruction of bulk physics from the boundary CFT is possible. The Jevicki-Sakita

collective field theory provides an explicit realization of such a bulk reconstruction.

In this thesis, we use the collective field theory description of the large-N limit of vector

models to study the O(N) infra-red interacting fixed point. In particular, we compute the

two-point functions for the non-linear sigma model (which is equivalent, in the infra-red,

to the critical O(N) vector model) and the two-time bilocal propagator. The spectrum

for the O(N) vector model is then obtained by looking at the poles of the connected

Green’s function. We then show that this same pole condition can be obtained from the

homogeneous equation for the bilocal fluctuations.

We then discuss the single-time Hamiltonian formalism for the critical O(N) vector

model. We derive a coupled integral equation for the single-time fluctuations. This

coupled integral equations allows us to write down the single-time pole condition. We

show that the two-time pole condition is equivalent to the single-time pole condition.

In addition, we also show that the two-time free bilocal propagator is equivalent to the

single-time free bilocal propagator. A Lagrangian formulation of the single-time descrip-
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tion is given and we write down the single-time propagator.

We then explain a puzzle which is that from our study of the non-linear sigma model

and the the pole structure of both the two-time and the single-time propagators it would

seem that both the ∆ = 1 and ∆ = 2 scalars are present. By studying the quadratic

Hamiltonian determining the spectrum, we demonstrate how in the infra-red limit the

state ∆ = 1 disappears from the spectum.
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Chapter 1

Introduction

If you can’t explain it simply, you don’t understand it well enough.

-Albert Einstein.

One of the most fascinating ideas in theoretical physics is the notion of Duality. In its

basic incarnation, it is the simple idea that a physical system can have two completely

different descriptions.

This concept is fully exploited in Superstring Theory - for more comprehensive details

on Superstring Theory, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

String Theory posits that the world is made of single vibrating one dimensional entities.

There are, however, certain problems with this approach. For example, the fact that

superstring theory is only consistent in 9+1 dimensions or the fact that there are 10500

vacua - this is the so-called string Landscape or multiverse problem. Or the fact that

it is difficult to verify experimentally as the Planck scale is extremely small. (For more

on the debate as to why we can trust a physical theory even if it has not been verified

experimentally, see [16, 17] .) 1

1The second references i.e. [17] are there for a balanced account of superstring theory. They are
largely negative and hostile..
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The theory only started being taken seriously in 1984 when Green and Schwarz showed

that string theory is free from the ugly infinities that plague most of attempts to find a

Quantum Theory of Gravity [15].2

In this chapter, we will focus on one of the key dualities that was discovered during the

so called Second String Revolution. (This being none other than the so called Anti-de

Sitter/Conformal Field Theory Correspondence[22, 23, 24].3)

1.1 Introduction To The AdS/CFT Correspondence

The most striking example of a Duality is the Gauge-String duality. Put simply, a gauge

theory should be the same as some theory of strings. This idea has been around since 1974

[39] but it was not until 1997 when Maldacena gave a solid example of the Gauge-String

Duality.

1.1.1 (Dirichlet) Dp-Branes

String theory is not a theory of strings.

-Robbert Dijkgraff.

To arrive at the AdS/CFT Correspondence, Maldacena looked at a stack of Dirichlet 3

branes.

To understand what is a Dp-brane we need to first look at the simple description of the

open string action.

2For more on the ugly infinities (more technically, Gravity is not renormalizable) that are character-
istic of Quantum Gravity, see [18, 19, 20, 21].

3For excellent textbooks and reviews, see [25, 26, 27, 28, 29, 30, 31, 32, 33].

2



As the string moves in spacetime it sweeps across an area element. The string action

is then given by integrating over this area element. More formally, it is given by the

Nambu-Goto action:

SP = −T
∫
dA

= −T
∫
d2ξ
√
−h. (1.1)

Here, d2ξ = dσdτ and T is the string tension4 and h is the determinant of the induced

metric i.e.

hab = ηµν∂aX
µ∂bX

ν , (1.3)

where µ, ν = 0, 1, · · · , D and a, b = 1, 2.

This action turns out to be difficult to work with because of the appearance of the square

root. A much simpler action – which is, classically, equivalent to the Nambu Goto action

– is the Polyakov action which can be written as5

SP = −T
2

∫
d2ξ
√
−γγabhab

= −T
2

∫
d2ξ
√
−γγab∂aXµ∂bX

νηµν , (1.4)

where γab is a dynamical auxiliary (intrinsic) metric on the worldsheet [7].

4The string tension can be written as

T =
1

2πα′
=

1

2πl2s
, (1.2)

where α′ = l2s is the Regge slope and ls is the intrinsic length.
5The general bosonic string action is S = −T2

∫
d2ξ
√
−γ
(
γabGµν (X) ∂aX

µ∂bX
ν + iεab∂aX

µ∂bX
νBµν (X)

)
−

1
4π

∫
d2ξ
√
−γΦ (X). Here, Gµν (X) is the metric tensor, Bµν (X) is the anti-symmetrical Kalb-Ramond

B field and Φ (X) is the dilaton.

3



To obtain the equations of motion satisfied by the string we vary the Polyakov action

with respect to Xµ and find

0 = δSp

= −T
∫
d2ξδXµ

(
∂2
σ − ∂2

τ

)
Xµ +

T

2

∫
dτ δXµ∂σX

µ|σ=π
σ=0 . (1.5)

The equations of motions - namely, the wave equation - can be satisfied if we require

that the boundary term (that is, the second term in (1.5)) vanishes for the open string.

This means that we can either have

∂σX
µ|σ=0 = ∂σX

µ|σ=π = 0. (1.6)

or

δXµ|σ=0 = δXµ|σ=π = 0. (1.7)

The boundary conditions in (1.6) are called the Neumann boundary conditions and phys-

ically mean that there is no momentum flow at the end-points. The other condition (

i.e. (1.7)) is called the Dirichlet boundary condition.

We can now define, from a technical point of view, what a Dp-brane is. Basically, a

Dp-brane is a p-dimensional hypersurface with Neumann boundary conditions for the

coordinates X0, . . . , Xp (these are the coordinates that are parallel to the brane) and

Dirichlet conditions for the remaining coordinates - i.e. Xp+1, . . . , XD−1 - transverse to

the brane [40, 41].

A more clear cut definition is that a Dp-brane is simply a hypersurface where the end

points of the string are attached - this is visualized in (1.1).

Note that a D0-brane is none other than a point (particle) where an open string can

be attached. A D1-brane can thought of as the usual string. And a D2-brane is a

4



Figure 1.1: A Dp brane with open strings attached and closed strings propagating in
the bulk. Picture credits [9].

membrane. (Obviously, the word p-brane is derived from membrane.)

In a manner similar to the Polyakov action for bosonic string, the action for the Dp-brane

is given, partly, by what is called the (Dirac-Born-Infeld) DBI action:

SDBI = −TDp
∫
dp+1ξe−Φ

√
− detP (gab +Bab + 2πα′Fab), (1.8)

Here, gs is the string coupling, P (gab) is the pullback of the metric onto the worldvolume

of the Dp-brane (similar definitions hold for the Kalb-Ramond 2-form B field and the

field strength F ) i.e.

P (gab) =
∂Xµ

∂ξa
∂Xν

∂ξb
gµν (1.9)

and the brane tension is

TDp =
1

(2π)p α′
p+1
2

. (1.10)

It is useful to expand the DBI action along the flat Minkowski metric (i.e. gµν =
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ηµν ,Bµν = 0) at low energies i.e. α′ → 0.

In addition, we will choose our coordinates such that the first p+ 1 coordinates lie along

(are parallel to) the Dp-brane and the remaining D − p − 1 are transverse to the Dp-

brane [4]. In other words, Xa = ξa with a = 0, 1, · · · , p. The pull back of the metric is

(M = p+ 1, · · · , D)

P (gab) =
∂Xµ

∂ξa
∂Xν

∂ξb
gµν

=
∂Xc

∂ξa
∂Xd

∂ξb
ηcd +

∂XM

∂ξa
∂XN

∂ξb
ηMN

=
∂ξc

∂ξa
∂ξd

∂ξb
ηcd +

∂XM

∂ξa
∂XN

∂ξb
ηMN

= ηab + ∂aX
M∂bXM . (1.11)

To do such an expansion one needs the identity [7]:

detM = exp (Tr lnM) , (1.12)

where M is a general matrix.

6



Putting everything together, we find that the quadratic fields are

2SDBI = −TDp
∫
dp+1ξe−Φ

√
− detP (gab + 2πα′Fab)

= −TDp
∫
dp+1ξe−Φ

[
exp

(
Tr ln

(
ηab + ∂aX

M∂bXM + 2πα′Fab
))]1/2

= −TDp
∫
dp+1ξe−Φ

[
exp

(
Tr

(
∂aX

M∂bXM −
(2πα′)2

2
FabF

ab + · · ·

))]1/2

= −TDp
∫
dp+1ξe−Φ

(
1 + Tr

(
∂aX

M∂bXM −
(2πα′)2

2
FabF

ab

)
+ · · ·

)1/2

= −TDp
∫
dp+1ξe−Φ

(
1 +

1

2

(
Tr

(
∂aX

M∂bXM −
(2πα′)2

2
FabF

ab

)))
+ · · ·

(1.13)

The dependence on the gauge fields is

SDBI ⊃ −
Tp (2πα′)2

4gs

∫
dp+1ξ

(
FabF

ab
)

(1.14)

which is a Yang-Mills term:

SYM = − 1

2g2
YM

∫
dp+1ξ (FµνF

µν) (1.15)

provided we make the simple identification that

Tp (2πα′)2

4gs
=

(2πα′)2

4× (2π)p α′
p+2
2

=
1

2g2
YM

(1.16)

which implies

2gs (2π)p−2 α′
p−3
2 = g2

YM . (1.17)

The Dp-brane also carries R-R charge. To describe this phenomenon, we add to the DBI

7



action the Wess Zumino action defined by

SWZ = µp

∫ ∑
q

PCq ∧ eB̂∧α
′F . (1.18)

Here PCq is the pull-back of the RR potential.

A second description of the Dp-branes is in terms of closed strings. In this picture, the

Dp-brane is identified with what is known as a p brane. In plain terms, a p-brane is a

classical solution to the low energy (i.e. Supergravity) limit of string theory.

To explain what this means let us first consider the simple example of the Reissner-

Nordström solution in 4D.

Recall that, in the presence of charges, the Einstein-Hilbert action can be written as

SEH =
1

16πGN

∫
d4x
√
−g (R−GNFµνF

µν) , (1.19)

where GN is Newton’s Gravitational constant, R is the Ricci scalar. Varying the above

action leads to

Rµν −
1

2
gµνR = 8πTµν , (1.20)

where the energy-momentum tensor is

Tµν =
1

4π

(
gρσFµρFνσ −

1

4
gµνFρσF

ρσ

)
. (1.21)

A solution to the resulting field equations was obtained by Reisnner and Nordström and

8



reads:

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dΩ2
2 (1.22)

F =
Q

r2
dt ∧ dr, (1.23)

where dΩ2
2 = dθ2 + sin2 θdφ2 is the metric on the two-sphere and F is the field strength.

Naively - similarly to the case when we have Schwarzchild blackholes – the Reissner-

Nordström has a horizon at the singularity when grr vanishes:6

r± = M ±
√
M2 −Q2. (1.24)

The size of the horizon is real and hence M ≥ Q which is known as the BPS bound.

It turns out that it is interesting to look at what are called extremal blackholes. These

are defined as those blackholes which saturate the BPS bound and satisfy the condition

r+ = r− = Q.

In general, the Reissner-Nordström blackhole solution can be written as

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dΩ2
2

=
1

r2
(r − r−) (r − r+) dt2 +

r2

(r − r−) (r − r+)
dr2 + r2dΩ2

2. (1.25)

6There is a technical detail which we have ignored [4]. The two cases are not the same and we have
obtained the horizon by looking at the place where the metric is singular i.e. grr = 0. We have to look
at the null hypersurface condition in order to define the horizon.

9



For the extremal blackholes, we obtain [4]:

ds2 = − 1

r2
(r − r−) (r − r+) dt2 +

r2

(r − r−) (r − r+)
dr2 + r2dΩ2

2

= −(r −Q)2

r2
dt2 +

r2

(r −Q)2dr
2 + r2dΩ2

2

= − ρ2

(ρ+Q)2dt
2 +

(ρ+Q)2

ρ2
dρ2 + r2dΩ2

2

= −H (ρ)−2 dt2 +H (ρ)2 dρ2 + r2
(
dθ2 + sin2 θdφ2

)
. (1.26)

with H (ρ) a Harmonic function given by

H (ρ) =

(
1 +

Q

ρ

)
, ρ = r −Q. (1.27)

In summary, the extremal Reissner-Nordström solution to the Einstein field equations

reads:

ds2 = −H (ρ)−2 dt2 +H (ρ)2 dr2 + r2
(
dθ2 + sin2 θdφ2

)
(1.28)

F = dH ∧ dt (1.29)

Black p-branes are generalization to the solution given above.

Let us consider Type IIB string theory. The low energy dynamics is given by an action

of the form [38]

SII =
1

16πGN

[∫
d10x

{
e−2Φ

(
R + 4 (∂Φ)4 − 1

12
H2

3 −
1

2
(∂χ)2 − 1

2
F ′23 −

1

240
F ′25

+

∫
A4 ∧ F3 ∧H3

}]
, (1.30)

where
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H3 = dB2, Fn = dCn−1 (1.31)

F̃3 = F3 + C0 ∧H3, F̃5 = F5 + C2 ∧H3 (1.32)

The Type IIB solution can be written as [4, 38]:

ds2 = Hp (r)−1/2 ηαβdx
αdxβ +Hp (r)1/2 δIJdx

IdxJ (1.33)

eΦ = Hp (r)
3−p
4 (1.34)

Cp+1 =
(
Hp (r)−1 − 1

)
dx0 ∧ dx1 (1.35)

with α, β = 1, 2, . . . , p and I, J = p+ 1, . . . , D and

Hp (r) = 1 +

(
R

r

)7−p

; R7−p =
(
2
√
π
)5−p

Γ

(
2− p

2

)
gsNα

′ 7−p
2 . (1.36)

The Superstring

Pure bosonic string theory lives in 26 dimensions.

However, pure bosonic string theory suffers from certain technical problems. The

primary one is that it is tachyonic. In particular, the mass of the lowest energy state

is

m2 = − 4

α′
, (1.37)

where α′ = l2s is the Regge slope.

One way to deal with the tachyon is to invoke supersymmetry.

In addition, it is obvious that we live in (3 + 1)-dimensions and that the world is
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fairly well described by the Standard Model of Particle Physics which has a gauge

group of the form SU (3)C × SU (2)L × U (1)Y .

A possible way to get realistic physics is to compactify on a Calabi-Yau 3-fold [42].

The presence of solitonic objects, e.g. D-branes , with masses of the form

m ∼ 1

gs
(1.38)

is highly indicative that string perturbation theory is not convergent.

Let us first look at fermions in D = 1 + 1 dimensions.

The Dirac action reads

SD =

∫
d2xψ̄γµ∂µψ. (1.39)

We will choose a particular representation of the Dirac matrices which is

γ0 =

0 −1

1 0

 , γ1 =

0 1

1 0

 . (1.40)

It is straightforward to show that

γ5 = −γ0γ1 =

1 0

0 −1

 (1.41)

The fermions are chosen as

ψ =

χL
χR

 . (1.42)
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The action for the fermions then reads

SD =

∫
d2xψ†

∂0 − ∂1 0

0 ∂0 + ∂1

ψ

=

∫
d2x {χL (∂0 − ∂1)χL + χR (∂0 − ∂1)χR} . (1.43)

After this discussion, we can now supersymmetrize the Polyakov action by writing

SP = − 1

4πα′

∫
d2ξηab (∂aX

µ∂bXµ + iψµγa∂bψ
µ) gµν . (1.44)

The above action is invariant under the SUSY transformations:

δεX
µ = ε̄ψµ (1.45)

δεψ
µ = γa∂aX

µ. (1.46)

Upon taking variations of the fermionic Polyakov action one finds, for the fermionic

boundary term:

δSP =
1

4πα′

∫
dτ
(
χµLδ

(
χLµ
)
− χµRδ

(
χLRµ

))
(1.47)

∼
∫
dτ
{
δ
(
χµLχLµ

)
− δ

(
χµRχLRµ

)}∣∣π
0
. (1.48)

We note that there are two ways for the boundary term to vanish viz.
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Neveu− Schwarz : χµL (τ, 0) = −χµR (τ, π) (1.49)

Ramond, χµL (τ, 0) = χµR (τ, π) .

The periodic (anti periodic) bcs are called the Ramond (Neveu-Schwarz).

We can consider the mode expansion of the fermions in the Ramond (R) sector and

we find

χµR/L (σ, π) =
1√
2

∑
n∈Z

dµne
−inσ∓ (1.50)

with the algebra:

{dµm, dνn} = ηµνδm,n. (1.51)

In the Neveu-Schwarz (NS) sector, we have

χµR/L (σ, π) =
1√
2

∑
r∈Z+1/2

bµr e
−inσ∓ (1.52)

and the oscillators satisfy the algebra:

{bµr , bνs} = ηµνδr,s. (1.53)

Moreover, in the NS sector one has
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bµr |0〉NS = 0 ∀r > 0

This means that bµr with r < 0 are creation operators.

For the Ramond sector, we have

dµm |0〉 = 0. (1.54)

Moreover, one can show that

{dµn, dν0} = 0, ∀n > 0. (1.55)

What this means is that the ground state is degenerate. In particular, we note that

bµ− 1
2

|0〉NS = 0. (1.56)

The mass can be shown to be given by

m2 =
1

α′

(
1

2
− D − 2

16

)
. (1.57)

Accordingly, massless modes will occur only when D = 10.

It turns out that the NS ground state is tachyonic. More precisely, the ground state

mass in the NS sector is

m2 = − 1

2α′
. (1.58)
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In order to get rid of this tachyon we perform a trick known as the GSO projection.

This consists of introducing the operator eiπF = (−1)F and keeping states with only

an odd number of fermions. Since the ground state has zero fermions it is projected

out. The NS ground state has a −1 eigenvalue.

Recall that for the massless fields in D dimensions the little group is SO(D − 2).

Since superstrings live in D = 10 we have to study representations of SO (8) which

are given in the table below:

(−)F SO (8) m2

NS -1 8v 0

NS -1 1 − 1
2α′

R +1 8 0

R +1 8′ 0

Note that we are working in what is called the RNS formalism. The reason for this

is that we have superconformal invarince on the worldsheet. The problem with this

formalism is that we don’t have manifest spacetime supersymmetry. The alterna-

tive approach is the Green-Schwarz (GS) formalism which has manifest spacetime

supersymmetry and an additional spacetime fermionic symmetry called κ symmetry.

Recall that a point-like particle, for example an electron, is charged under Aµ with

field strength F = dA. What we mean by this is that as the point traces out a

worldline in space time there will be a tangent vector to the worldline dxµ (τ) /dτ .

This worldline carries a single index and can thus be multiplied Aµ. Thus, the action

for the point particle reads [5]:

S = −m
∫
ds+ q

∫
dτAµ (xµ (τ))

dxµ (τ)

dτ
− 1

4

∫
dDxFµνF

µν . (1.59)
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where m is the mass of the point-particle and q is what we refer to as the charge.What

should be clear is that the charge is being associated with a point. We want to do

something similar for the string.

Likewise the string is charged under the Kalb-Ramond Bµν field since we can write

S = SNG −
1

2

∫
d2ξ

∂Xµ

∂τ

∂Xν

∂σ
Bµν −

1

6

∫
dDxHµνρH

µνρ. (1.60)

where H = dB.

This idea can be generalized to a Dp-brane in the sense that it will couple to the

Cp+1 potential via

SDp ∼ −
∫
dp+1ξ

∂Xµ

∂τ

∂Xµ1

∂σ
· · · ∂X

µp

∂σ
Cµµ1···µp (1.61)

and the field strength being F = dC .

So far, we have only discussed the open string. Recall that the closed string satisfies

the relation: σ ∼ σ + 2π.

For the closed string the boundary conditions are

χµL (τ, 0) = ±χµL (τ, 2π) (1.62)

χµR (τ, 0) = ±χµR (τ, 2π) . (1.63)

These choices can be written as

χµR/L (τ, 0) = e2πiφχµR/L (τ, 2π) . (1.64)
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The important thing is that the boundary conditions for the closed string can be

chosen independently of each other. (Physically, this is suggestive of the fact that

physical observably are usually given by the mod-square of the fermionic fields.)

In other words, we have four options viz.

(R,R) (NS,NS)

(R,NS) (NS,R)

The various combinations tensor products in the various sectors are

Sector SO (8) m2

(NS+,NS+) 8v ⊗ 8v = 1⊕28⊕35 0

(NS-,NS+) 8⊗ 8 = 1⊕28⊕35 0

(R+,R+) 8′ ⊗ 8′ = 1⊕28⊕35 − 1
2α′

(R-,R-) 8⊗ 8′ = 8v⊕56t 0

(NS+,R+) 8v ⊗ 8 = 8⊕56 0

(NS+,R-) 8v ⊗ 8′ = 8⊕56′ 0

It turns out that we can construct two type of strings depending on whether we

choose our theory to be chiral or non-chiral. The non-chiral (N = 2 supersymmetric)

is called Type IIA and can be constructed by taking the direct sum of the non-chiral

(NS-,NS+) and (NS+,R-) pairs. The Type IIA direct sum is 1⊕ 28⊕ 35⊕ 8⊕ 56t.

The theory which is chiral is called Type IIB and its’ direct sum - obtained by

taking the direct sum of the (NS+,NS+) , (R+,R+) and (NS+,R+) pairs - is

12⊕282⊕35⊕8′2⊕562⊕35+.
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Here the 28, 56 and 35± are two, three, and four-forms respectively. The 56′s are

vector spinors which we call gravitinos.

From this we can see that Type IIB string theory has the potentials: C0, C2, C4, C6

and C8 . The corresponding field strength are F1, F3, F5, F7 and F9. Moreover, since

a Dp-brane couples to a Cp+1this implies that Type IIB string theory has D1, D3,

D5, D7 and D9-branes.

Likewise, Type IIA has the potentials C1 , C3, C5, C7 and C9 with corresponding

field strengths F2, F4, F6, F8 and F10. The Dp -branes in Type IIA are D2, D4, D6,

and D8.

P.S. The material in this box is mostly adopted from one of Prof. Jejalla’s 2016 /2017

lectures.

1.1.2 The Decoupling Limit

We now have all the necessary ingredients to give a heuristic argument for the Maldacena

conjecture [22, 23, 24].

Let us consider a stack of N D3-branes. Then, as we mentioned in the previous section,

the D3-branes can be regarded as black brane solutions to the Type IIB SUGRA.

For p = 3 in (1.33) and (1.36), we have

ds2 = H3 (r)−1/2 (−dt2 + d~x2
)

+H3 (r)1/2 (dr2 + r2dΩ2
8−3

)
(1.65)

H3 (r) = 1 +
R4

r4
, R4 = 4πgsNα

′2. (1.66)

where ~x denotes the coordinates along (parallel to ) the brane.

Let us consider the geometry far away from the D3-branes i.e. r →∞. We see that the
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metric becomes

ds2 = H3 (r)−1/2 (−dt2 + d~x2
)

+H
1/2
3 (r)

(
dr2 + r2dΩ2

5

)
=

(
1 +

R4

r4

)−1/2 (
−dt2 + d~x2

)
+

(
1 +

R4

r4

)1/2 9∑
i=4

dy2
i ·

= −dt2 + d~x2 + d~y2. (1.67)

That is, as expected, far away from the stack of the geometry of the branes is that

(9 + 1)-dimensional Minkowski flat space.

We then consider the near horizon limit i.e. what happens when r → 0. It is straight-

forward to see that as r → 0, we have

ds2 = H3 (r)−1/2 (−dt2 + d~x2
)

+H3 (r)1/2 (dr2 + r2dΩ2
8−3

)
=

(
1 +

R4

r4

)−1/2 (
−dt2 + d~x2

)
+

(
1 +

R4

r4

)1/2 (
dr2 + r2dΩ2

5

)
→ r2

R2

(
−dt2 + d~x2

)
+
R2

r2
dr2 +R2dΩ2

5 . (1.68)

After a little trivial rearranging, we obtain

ds2 =

[
r2

R2

(
−dt2 + d~x2

)
+
R2

r2
dr2

]
+R2dΩ2

5

=
R2

z2

(
dz2 − dt2 + d~x2

)
+R2dΩ2

5

= ds2
AdS5

+ ds2
S5 , (1.69)

where we have set z = R
r
.

Put simply, we have found that, in the closed string picture, a stack of N D3 is described

by 10d SUGRA and type IIB string theory on AdS5×S5- this is illustrated in the cartoon

in figure 1.2.
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Figure 1.2: Cartoon diagram illustrating the geometry close to and far away from a stack
of N D3-branes.

Schematically, we have the equation

S = SAdS5×S5

IIB + S10D
IIB SUGRA. (1.70)

We next look at the open picture description of the stack of D3-branes. In this picture

the action can be written as [31]:

S = Sbulk + Sbrane + Sint, (1.71)

where Sbulk is the action of the closed string in the bulk, Sbrane is the action along the

stack of D3-branes and Sint is the action of the interactions between the modes on the

brane and the one on the bulk.

In the low energy limit the higher massive string excitations will not contribute Sbulk and

is effectively the supergravity action i.e.
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Sbulk ∼
1

16πG

∫ √
−gR ∼

∫
(∂h)2 + κ (∂h)h2. (1.72)

The action along the brane reduces to a super Yang-Mills theory - this is a general

expansion similar to the one that led us to (1.14). In fact, detailed computations show

that the theory along the stack of D3-branes is N = 4 SYM [43].7

The action for the interactions of the bulk and the brane is of the form

Sint → α′2gs (1.73)

We see that in the low energy limit the bulk and brane dynamics are independent of one

another i.e. they decouple and the stack is described by the action

S = SD=4
N=4 SYM + S10D

IIB SUGRA. (1.74)

We now see that in the open string description the stack of D3-branes is described by

10D SUGRA and N = 4 SYM while in the closed string picture the same stack of D3-

branes is described by 10D SUGRA and Type IIB string theory on AdS5 × S5. Given

that the two descriptions are describing the same underlying physics we have to conclude

that N = 4 SYM must be equivalent to Type IIB strings on AdS5 × S5.

Put differently, if we compare the schematic actions appearing in (1.70) and (1.74), we

see that (3 + 1)-dimensional N = 4 SYM is dual to Type IIB string theory on AdS5×S5.

What we have shown is a weak form of the AdS/CFT correspondence in the sense that

we assume that the two theories are the same only at large-N .8

7As an aside, N = 4 SYM also appears in the so called “grand unified theory” of Mathematics known
as the Langlands programme [44], which brings together Number Theory (Galois groups), automorphic
forms and representation theory.

8Since we know that R4 = 4πgsNα
′2, it follows that working in the supergravity regime - which

corresponds to a large radius of curvature - neccesarilly means that we are at large-N .
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Figure 1.3: The fundamental idea behind the AdS/CFT Correspondence is that a Quan-
tum Gravity theory on the bulk is physically equivalent to some CFT on the boundary.

The stronger form of the duality is that N = 4 SYM is equivalent to Type II B strings

at all values of the coupling at at finite N .

Black Hole Thermodynamics

It is a well-known fact that in 1915 Einstein knew of only one solution to his field equa-

tions i.e. flat Minkowski spacetime [67] and that within a year Karl Schwarzschild

had discovered a solution to the vacuum field equations outside an object of mass M

[68]. In particular, the metric that Schwarzschild found is

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (1.75)

Note that the metric has a singularity at r = 2M ( the surface r = 2M is called the

event horizon) and r = 0. The singularity at r = 2M (the event horizon) is actually

a coordinate singularity – i.e. it can be removed by a clever choice of coordinates. In

contrast, there is a physical singularity at r = 0. In other words, there is no choice

of coordinates that can remove the singularity at r = 0.
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The next metric to be considered was the metric for a charged body with charge Q.

This metric was written down in 1916 by Reissner [69] and Nordström (1918) [70].

The Reissner-Nordström metric reads (1.22):

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
.

(1.76)

The metric has a coordinate singularity at

r± = M ±
√
M2 −Q2. (1.77)

Given that the position (size) of the two horizons is a real number, we have to require

that

M ≥ Q (1.78)

RN black holes that saturate the bound - i.e. those for which r+ = r− are called

extremal. The next exact solutions to the field equations were only written in the

1960s. The first of these exact solutions is the Kerr metric which describes a rotating

uncharged object of mass M and angular momentum J [71]. The Kerr metric is

ds2 = −
(

1− 2Mr

r2 + a2 cos2 θ

)
dt2 − 4Mra sin2 θ

r2 + a2 cos2 θ
dtdφ

−
(

r2 + a2 cos2 θ

r2 − 2Mr + a2 cos2 θ

)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
+

(
r2 + a2 cos2 θ − 2Mra2 sin2 θ

r2 + a2 cos2 θ

)
sin2 θdφ2, (1.79)

where a = J/M .

The metric was quickly generalized to include the case when the object is rotating
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and has a charge Q [72]. The Kerr-Newman metric (which, according to the no hair

theorem [73, 74], is the most general asymptotically flat black hole solution to the

Einstein-Maxwell field equations ) reads

ds2 = −
(
dr2

∆
+ dθ2

)
ρ2 +

(
dt− a sin2 θdφ

)2 ∆

ρ2

−
((
r2 + a2

)
dφ− adt

)2 sin2 θ

ρ2
, (1.80)

where

a =
J

M
(1.81)

ρ2 = r2 + a2 (1.82)

∆ = r2 − rsr + a2 + r2
Q (1.83)

Here,

rs = 2M, r2
Q = Q2. (1.84)

Classically nothing can escape from a black hole. This would then seem to imply

that a black hole should not have any temperature whatsoever.

But thanks to Quantum Mechanics this is not the case. In fact, using semi-classical

analysis, Hawking found that a black hole should emit radiation with temperature

given by [76]

TH =
~c3

8πGNMkB
, (1.85)
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where kB is the Boltzmann constant, GN is Newton’s Gravitational Constant and c

is the speed of light.

In addition, black holes have an entropy which is given by [63, 76]:

SBH =
AkBc

3

4GN~
, (1.86)

where A is the area of the black hole. Note that the Bekenstein-Hawking entropy

scales with the area and not, as one would expect from Statistical Mechanics, with

the volume. This is an extremely important notion – often called the Holographic

Principle [64, 65], which states that in a theory of Quantum Gravity the degrees of

freedom should be one degree less than what one would expect.9

It turns out that black holes obey laws which are reminiscent of the usual laws of

Thermodynamics[75].

More specifically, the Zeroth Law of black hole Thermodynamics states that the

surface gravity, denoted by κ, is a constant along the event horizon. This is similar

to the classical Zeroth Law which states that the temperature of a system is constant

at thermal equilibrium.

The First Law of Thermodynamics can be written as

dM =
κ

8π
dA+ ΩdJ + ΦdΩ. (1.87)

where M is the mass of the black hole , J is the angular momentum and Q is the

charge of the black hole.

The Second Law of black hole Thermodynamics is the statement that the area of the
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black hole is a never decreasing function of time:

dA

dt
≥ 0. (1.88)

Recall that the Third Law of Thermodynamics posits that S → 0 as T → 0. Roughly

speaking it is not possible to reach absolute zero in a number of finite steps. Similarly,

the Third Law of black hole Thermodynamics posits that it is not possible to have

κ = 0 [75, 77].

1.1.3 Symmetries And Matching Of Parameters

The first trivial check for the AdS/CFT Correspondence surely has to be the check that

the symmetries on both side of the duality match.

The symmetry of the superconformalN = 4 SYM is the Lie supergroup PSU (2, 2 |4)which

has the bosonic subgroup SU (2, 2)× SU (4) ∼= SO (4, 2)× SO (6).

Lie super algebra

A natural generalization of a Lie algebra is what is known as a graded Lie algebra

or super Lie algebra [34]. This generalization is made by deforming the standard

commutator between the generators as follows [35]:

[ta, tb] = tatb − (−1)ηaηb tbta, (1.89)

where ta, tb are the generators and ηa is either +1 or 0. Elements that have ηa = 1

are odd and are called fermionic. Similarly elements with ηa = 0 are bosonic and

even [35].

Recall that a generic matrix Lie super group can be written as [36, 37]:
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X =

A B

C D

 , (1.90)

where the matrices A and D are even while B and C are odd. We will limit ourselves

to the case where A, B, C and D are 4× 4 complex matrices. The super Lie algebra

gl (4|4,C) is the vector space constructed out of these matrices. The Z2-graded Lie

bracket [·} can be constructed as

[X, Y } = XY − (−1)XY XY (1.91)

and satisfies the super Jacobi identity:

(−1)XZ [[X, Y }, Z}+ (−1)ZY [[Z,X}, Y }+ (−1)XY [[Y, Z}X} (1.92)

Moreover, the identity supermatrix commutes with all the other elements of the super

algebra and can be projected out to form the Lie super algebra pgl (4|4,C) [36].

The generators of the superconformal symmetry of N = 4 SYM are Pµ, KµD, Lµν ,

Q, Q̄,S and S̄. The Lie super algebra psu (2, 2 |4) can then be written as the matrix


L P −iQ

K L̄ −iS

S Q̄ R

 .

Here the SO (4, 2) is the conformal group in D = 4 and the SO (6) is the R symmetry of

the six scalar fields of N = 4 SYM. In the bulk, the SO (6) corresponds to the isometry

group of the S5. Likewise the SO (4, 2) is the isometry AdS5.
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Another identification is the integral five form flux of the five form flux is identified with

the rank of the gauge group of N = 4 SYM. That is,

∫
S5

F5 = N. (1.93)

For p = 3 (1.17) reduces to:

g2
YM = 4πgs (1.94)

From (1.66), we have

R4 = 4πgsα
′2. (1.95)

Therefore,

R4

α′2
= λ, (1.96)

where λ = g2
YMN is the ’t Hooft coupling.

This makes the AdS/CFT Correspondence a strong/weak duality. That is, when the

Field theory side is strongly coupled – in other words, we are unable to make use of

perturbation theory – the Gravity side is simple to deal with as we can make use of

classic supergravity.

This is at the heart of the reason why the AdS/CFT Correspondence is both a powerful

technique to use to study strongly coupled theories and also difficult to prove mathemat-

ically. The strategy is to try to construct a gravitational dual to the strongly coupled

Quantum Field Theory. There are actually a lot of examples where this strategy actually

works. For example, a very small shear to entropy ratio was obtained for the N = 4

SYM plasma [45, 46]. More specifically, we have
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η

s
=

~
4πkB

. (1.97)

It was then later confirmed – through experiments at Relativistic Heavy-Ion Collider

(RHIC) - that the quark gluon plasma does have a value similar to the value obtained for

N = 4 SYM [47]. Note that this value cannot be obtained through perturbation theory.

In addition, the Navier-Stokes equation was also derived using Holography [48]!

As amazing as it sounds that N = 4 SYM has played a huge role in helping us under-

stand real world physics, it still is an unphysical theory. Part of the reason is that it is

superconformal. Another is that all the fields of the maximally supersymmetric N = 4

Yang Mills theory transform in the adjoint representation.

This difficulty can be remedied by, for example, making N = 4 SYM less symmetric

i.e. one can break some of the supersymmetry or even add flavour/matter to the theory.

The latter option has proven quite powerful in the construction of models for QCD

[49, 50, 51, 52, 53].

Other examples include using holography to study strange metals [54, 55, 57, 58], scat-

tering amplitudes [59], High TC superconductors [60, 61, 62] etc.

However, this same strong/weak Duality characteristic of the AdS/CFT Correspondence

makes it extremely difficult to prove the correspondence because when one side is rela-

tively simple, the corresponding side of the duality becomes extremely strenuous to work

with.

Of great consequence is that the theory – besides relating a theory with gravity to one

without gravity – is that it relates a theory living on (3 + 1)−dimensions to a 5d theory.10

This means that the AdS/ CFT Correspondence is holographic.

In simple terms Holography is the statement that, in any theory of quantum gravity,

10The S5 is compact and does not, effectively, play any role in the discussion below.
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the degrees of freedom should have one degree less than what one would have naively

expected.

A simple example – actually, historically, this is the example that led us to the holographic

principle in the first place– is given by looking at a black hole. Recall that the second

law of black hole Thermodynamics states that the area of a blackhole never decrease.

This statement was seen to be analogous of the statement that the entropy is an ever-

increasing quantity. Bekenstein showed that it was possible to associate the entropy of

the black hole with its area [63]. More precisely, the Bekenstein-Hawking entropy of a

blackhole is

SBH =
kBc

3A

4GN~
. (1.98)

where kB is the Boltzmann constant.

Note that the entropy scales with the area -and not the volume! – of the blackhole. This

is suggestive that in order to describe a quantum gravitational we need only look at the

boundary of the system! (In more exotic everyday terminology the world we live in is a

hologram.)

Now for some terminology. The CFTd that lives on the boundary of AdS is obviously

called the theory on the boundary. On the other hand, the gravitational theory on the

AdSd+1 space is referred to as the theory in the bulk.

1.1.4 GKPW Recipe And Correlation functions

In most physical theories one is interested in the computation correlation functions of

operators. To complete the dictionary, we need to know how to relate the bulk fields to

the CFT operators living in the boundary.

Moreover, once we have the bulk fields we can compute – if possible – the partition

function. The operator-field map bluntly says that a bulk field has a CFT operator
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Figure 1.4: A finite temperature CFT is dual to some blackhole living in the bulk.

where the field is evaluated at the boundary. More specifically, we have [78]:

O (x)↔ φ0 = φ (x, z0 → 0) . (1.99)

For example, the bulk fields Aµ and gµν can be mapped to the CFT currents as follows:

Aµ ↔ Jµ (1.100)

gµν ↔ Tµν . (1.101)

The operator O has a scaling dimension and we want to see what physical properties this

will correspond to in the bulk.

The simplest way to to this is to consider the Einstein-Hilbert action with matter added.

The action for such a system can be written as

S =
1

2κ2

∫
ddx (R− Λ + LM) , (1.102)
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where the matter Lagrangian is

LM =
1

2
∂µΦ∂

µΦ− 1

2
m2Φ2. (1.103)

We now study the dynamics of this system in AdSd+1.

By varying the action, it is straightforward to show that the equations of motion are

(
∂2 −m2

)
Φ = 0, (1.104)

where

∂2 =
1√
−g

∂µ
(√
−ggµν∂ν

)
. (1.105)

We will work in Poincarè coodinate and write the metric as

ds2 =
R2

z2
0

(
dz2

0 + d~z2
)
. (1.106)

Accordingly, the equations of motion read

(
z2

0∂
2
z0

+ (1− d) zo∂z0 + z2
0R

2∂i∂i −m2R2
)
Φ = 0. (1.107)

We can write Φ as

Φ (z0, ~z) =

∫
ddk

(2π)d
ei
~k·~zφz0 . (1.108)

Inserting this into (1.107) leads to

33



z2
0

d2φz0
dz2

0

+ (1− d) z0
dφz0
dz
− k2z2

0φz0 −m2R2φz0 = 0. (1.109)

We are interested in the behaviour of the fields close to the boundary i.e. z0 → 0.

Accordingly, we can ignore the term −k2z2
0φz0 and write (1.109) as11

z2
0

d2φz0
d2z2

+ (1− d) z0
dφz0
dz
−m2R2φz0 = 0 (1.110)

which has solutions of the form:

φ (z0 → 0, ~z) = φ0 ∼ z∆0 . (1.111)

Making use of this ansatz in (1.110) yields

z∆
0

(
∆ (∆− 1) + ∆ (1− d)−m2R2

)
= 0 (1.112)

which implies that

∆2 − d∆−m2R2 = 0. (1.113)

The equation above is trivial to solve and we find that

∆± =
d

2
±
√
d2

4
+m2R2. (1.114)

Moreover, since the conformal scaling dimension is real we require that

d2

4
> −m2R2. (1.115)

11It is not difficult to recognize that (1.109) is actually Bessel’s differential equation and the general

solution is φz0 = a1z
(d+1)/2
0 Kν (kz0) + a2z

(d+1)/2
0 Iν (kz0) .
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Let us review how to compute standard correlation functions in any standard Quantum

Field Theory. The correlation function for N = 4 SYM is defined – in the path integral

formalism – as

〈O (x1) · · · O (xn)〉 =

∫
D [SYM fields] eiSN=4SYMO (x1) · · · O (xn) (1.116)

where the O (xi)(i = 1, 2, . . . , N) are composite fields of N = 4 SYM.

To compute the n-point function we first introduce the generating functional:12

ZCFT [φ0] =

∫
D [SYM fields] eiSN=4SYM+

∫
Oφ0 = e−W [φ0] (1.117)

where W [φ0] is the generating functional for connected diagrams.

The n-point correlation function is then obtained by taking successive derivatives of the

generating functional and setting the source to zero at the end. That is,

δ lnZCFT [φ0]

δφ0 (x1) · · · δφ0 (xn)

∣∣∣∣
φ0=0

= 〈O (x1) · · · O (xn)〉 .

The heart of the AdS/CFT correspondence lies in identifying the generating functional

in the CFT with the string theory partition function:

Zstring [φ0] =

〈
exp

(∫
φ0O

)〉
CFT

, (1.118)

with φ0 being identified as the value of the bulk field at the boundary.

In addition, if we are at the strong ’t Hooft coupling limit we can identify the string

theory with classical SUGRA and the above relation simplifies to

12We will denote the source by φ0 and not the customary J .
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〈
exp

(∫
φ0O

)〉
CFT

= e−SSUGRA . (1.119)

To see how what we have set out above actually works in practice we will consider the

simple case of the two-point correlation function.

The bulk-boundary propagator is [24, 79, 133]:

K∆ (z0, ~z, ~x) =
Γ (∆)

πd/2Γ
(
∆− d

2

) ( z0

z2
0 + (~z − ~x)2

)∆

. (1.120)

The bulk-boundary propagator satisfies the boundary condition:

z∆−d
0 K∆ (z0, ~z, ~x) →

z0→0
δ (~z − ~x) . (1.121)

The bulk scalar field can then be written as

φ (z0, ~z) =
Γ (∆)

πd/2Γ
(
∆− d

2

) ∫ dd~x

(
z0

z2
0 + (~z − ~x)2

)∆

φ0 (~x) . (1.122)

Assuming we are in the SUGRA limit, we have

lnZCFT [φ0] = SSUGRA. (1.123)

The gravity action is computed to be [133]:

SSUGRA =
1

2

∫
dd+1x

(√
g (∂µφ0) (∂µ0φ0)−m2φ2

0

)
=

1

2

∫
ddx

∫
dz
(
∂µ (
√
gφ0∂

µφ0)− φ0

(√
g∂µ∂

µ +m2
)
φ0

)
=

1

2

∫
ddx

{
Rd+1

zd+1
0

(
φ0
z2

0

R2
∂0φ0

)}
+

1

2

∫
dd−1x

∫
dz
(√

gφ0∂
jφ0

)
=

1

2

∫
ddx

(
Rd−1

zd−1
0

φ0∂0φ0

)
. (1.124)
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where to move from the first to the second line we integrated by parts.

We note that [133]:

φ0∂0φ0 =
Γ (∆)φ0 (z0, x)

πd/2Γ
(
∆− d

2

) ∂0

(∫
dd~y

(
z0

z2
0 + (~z − ~y)2

)∆+

φ0 (~y)

)

=
Γ (∆) z

∆−
0 φ0 (~x)

πd/2Γ
(
∆− d

2

) ∫ dd~y

(
∆+z

∆+−1
0 φ0 (~y)(

(~z − ~y)2)∆+
+ · · ·

)

=
Γ (∆) ∆+z

d−1
0 φ0 (~x)

πd/2Γ
(
∆− d

2

) ∫
dd~y

(
φ0 (~y)(

(~z − ~y)2)∆+
+ · · ·

)
, (1.125)

where we made use of the fact that ∆+ + ∆− = −d.

Thus,

SSUGRA =
1

2

∫
dd~x

∫
dz0

(
Rd−1

zd−1
0

φ0 (~x) ∂0φ0 (~y)

)
= C∆

∫
dd~x

∫
dz0

(
φ0 (~x)

∫
dd~y

φ0 (~y)(
(~x− ~y)2)∆+

)
. (1.126)

The two point-function is [133]:

〈O (x1)O (x2)〉 =
δ2Ssugra [φ (φ0)]

δφ0 (x1) δφ0 (x2)

=
C∆

(~x− ~y)2∆
. (1.127)

which has the standard form for the two-point function of a CFT.

The three-point action can be written as [133]:

S3 =
λ

3!

∫
dd~zdz0φ

3
0 (z0, ~z)

√
g

=
λ

3!

∫
dd ~x1d

d ~x2d
d ~x3dz0

√
gφ0 (~x1)φ0 (~x2)φ0 (~x3)K∆ (z0, ~z − ~x1)K∆ (z0, ~z − ~x2)K∆ (z0, ~z − ~x3) .

(1.128)
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Figure 1.5: Some examples of Witten diagrams. Picture credits [30].

Likewise, the three-point function is [133]:

〈O (~x1)O (~x2)O (~x3)〉 =
δ3Ssugra [φ (φ0)]

δφ0 (x1) δφ0 (x2) δφ0 (x3)

=

∫
dd~zdz0K∆ (z0, ~z − ~x1)K∆ (z0, ~z − ~x2)K∆ (z0, ~z − ~x3) .

(1.129)

In fact, one can show that13

〈O (~x1)O (~x2)O (~x3)〉 =
a1

|~x1 − ~x2|∆1+∆2−∆3 |~x2 − ~x3|∆2+∆3−∆1 |~x3 − ~x1|∆3+∆1−∆2
.

(1.130)

Most of the correlation functions can be computed using what are known as Witten

diagrams - examples of some of these diagrams are shown in Figure 1.5.

The last part of the AdS/CFT dictionary that we mention has to do with how to interpret

finite temperature of the CFT on the bulk gravity side. This question was answered in

one of the early canonical papers by Witten [80].14

Essentially, the vacuum of the CFT corresponds to pure AdS space. One tries to excite

this CFT vacuum and one of the excited states will correspond to finite-temperature.

There will be two candidates for the thermal dual of the finite CFT. These being a

13The subscript on the constant a1 is there because there are two cubic vertices that were considered
in [79]. We have only chosen the simpler vertex to illustrate how the computation works.

14This interpretation is depicted in (1.4).
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Boundary CFT Bulk Gravity
Operator O dynamical field φ (z0, x) such that φ0 (x) = limz→0 z

∆−φ (z, x)
scaling dimension ∆ mass

global symmetry, PSU (2, 2 | 4) Isometries of AdS5 × S5

g2
YM 4πgs

Rank of gauge group, N Five form flux through the five sphere
Finite temperature CFT Blackhole

Table 1.1: Summary of the AdS/CFT dictionary

thermal gas or a blackhole. The thermal gas is ruled out because it leads to a tachyon

and has a singularity at z → ∞ [78]. This means we need to find a blackhole with the

right symmetry. We can choose an ansatz of the form:

ds2 =
R2

z2

(
−f (z) dt2 + d~x2

)
+
R2

z2
g (z) dz2, (1.131)

where

f (z) =
1

g (z)
=

(
1− z4

z4
0

)
. (1.132)

One can then perform the analogous “cheap” derivation of the Hawking temperature to

the metric given above and find that the black hole temperature is given by

TH =
1

πz0

. (1.133)

1.2 Other Examples

M stands for Magic, Mystery, or Matrix according to taste

-Edward Witten
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We saw when we looked at the closed strings in the superstring section (box) that there

were two consistent ways to choose the boundary conditions. This led us to two consisted

superstrings viz. Type IIA and Type IIB string theories. (Recall that Type IIB is chiral

while Type IIA is non-chiral.)

By the beginning of 1985 another kind of superstring had been constructed by Gross,

Harvey, Martinec and Rohm called the heterotic string which had either the gauge group

SO (32) or E8 × E8 [81].

It turned out that there were five consistent theories. (The Heterotic strings are useful

for phenomenology. That is, they are useful when one wants to reproduce things like the

standard Model of Particle Physics.)

This was an embarrassment of sorts for a physical theory which purported to be a Theory

of Everything.

However, it turned out that all these five theories were related by dualities to one another.

For example, Type IIB and Type IIA are related by T-duality while Type I is related to

heterotic SO(32) by S-duality. These dualities are summarized in Figure 1.6.

What was surprising was that these superstring theories were dual to some all embodying

theory whose low energy effective theory was non other than 11D SUGRA. This theory

was called M-Theory [82].

A particular realization of M-Theory was given to be a matrix model in 0+1 [83] or 0+0

[84] dimensions.

M-theory also has extended solitonic objects viz. the M2-brane and the M5-brane. The

M2-branes solution to 11D SUGRA is [85, 86]

40



ds2 = H (r)−2/3 dx · dx+H (r)1/3 dy · dy (1.134)

H (r) = 1 +
r6

2

r6
, r6

2 = 32π2N2l
6
p. (1.135)

with the electric flux given by

G012r = − ∂

∂r
H (r)−1 , (1.136)

while the M5-brane solution reads [86]:

ds2 = H (r)−1/3 dx · dx+H3 (r)2/3 dy · dy (1.137)

H (r) = 1 +
r6

5

r6
, r3

5 = πN5l
5
p. (1.138)

The natural thing was to try and obtain some AdS/CFT duality by studying a stack of

M2 branes. This is not that trivial as most aspects of M-theory are “mysterious.” In

particular, the first “simple” case to be considered was the worldvolume of a stack of N =

2. This theory, named BLG, was formulated in terms of a three algebra [87, 88, 89, 90].

However, after some effort, Aharony, Bergman, Jafferis and Maldacena, finally found the

worldvolume theory describing a stack of multiple M2-branes on CP4/Zk orbifold [91].15

More specifically, ABJM conjectured that M-theory on AdS4 × S7/Zk is dual to a 3d

N = 6 supersymmetric Chern-Simons matter U (N)k × U (N)−k quiver gauge theory

called ABJM theory.

A few comments are in order. First, the action of the Zk on the coordinates of the CP4

15Some clear expositions of the ABJM duality can be found in Chapter 20 of [26] and also the notes
by Klebanov [92].
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is

Zi → e
2πi
k Zi, (1.139)

and k is an integer called the level.

Second, when k = 2 the supersymmetry is enhanced to N = 8. In particular, if we also

set N = 2 we obtain the BLG theory.

ABJM consists of the following fields: 4 complex scalar fields CI , Weyl fermions and

gauge fields Aµ and the action can be written as16

SABJM =

∫
d3x

[
k

4π
εµνρTr(Aµ∂νAρ +

2i

3
AµAνAρ + Aµ∂νAν)

− Tr
(
DµC

†
ID

µCI
)
− iTr

(
ψI†γµDµψI

)
+

4π2

3k2
Tr
(
CIC†IC

JC†JC
KC†K

+ C†IC
IC†JC

JC†KC
K + 4CIC†JC

KC†IC
JC†K − 6CIC†IC

JC†JC
KC†K

)
+

2πi

k
Tr
(
C†IC

IψJ†ψJ − ψJ†CIC†IψJ − 2C†IC
JψI†ψJ

+ εIJKLψIC
†
JψKC

†
L − εIJKLψ

I†CJψ†KCL
)]
. (1.140)

Compactifying M-theory on S1 gives us Type IIA strings. Accordingly, when when the

radius of the circle is small i.e. k5 � n , we have that Type IIA strings on AdS4 × CP3

are dual to the ABJM theory.

Finally, the theory can be generalized to the case when one has the quiver gauge group

U (N)k × U (M)−k and finds the ABJ duality [93].

To obtain other Gauge/String dualities one can try and look at “deformations” of the

original AdS5 × S5. For example, we could look at the Penrose limit of AdS5 × S5 and

16This is of course only one side of the gauge group. In addition, we are being loose with the groups
as they are meant to be U (N)k × U (N)−k.
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find that strings on the PP-background are dual to the BMN gauge theory [95].

One way that was mentioned in passing to “deform” the correspondence is to try and

break some of the supersymmetries. This was done first by Klebanov and Witten by con-

sidering a stack of D3-branes near a conical singularity. In particular, they conjectured

that Type IIB string theory on AdS5 × T 1,1 is dual to (3 + 1) dimensional N = 1 SCFT

[94].

Other examples of the Gauge/String duality includes lower dimensional versions:

� AdS3/CFT2: string theory on AdS3 × S3 ×M4 with M4 = T4 (or M4 = K3)

is dual to small N = (4, 4) SYM [22, 96]. This duality is arrived at by replacing

the D3-brane set up by the D1-D5 system i.e. one considers a system with N1 D1

branes and N5 D5 branes - for a more comprehensive review of the set up, see [97].

� Recently, the CFT dual of string theory on AdS3 × S3 × S3 × S1 was found to be

the symmetric orbifold Sk [99].

� Pure gravity on AdS3 is dual to a conformal field theory17 with the Monster gauge

group [100] - so called because it is the largest sporadic group with order of

∣∣G∣∣ = 246 × 320 × 59 × 76 × 112 × 132 × 17× 19× 23× 29× 31× 41× 47× 59× 71

= 808, 017, 424, 722, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000,

000 u 8× 1053.

More precisely, the conjecture as stated is true for an extremal CFT with central charge

c = 24. However, Witten posits a stronger statement which holds for c = 24k with k > 1.

17As a historical aside, the AdS3case is often cited as a precursor to the AdS/CFT Correspondence.
This is due to the paper by Brown and Henneaux in 1986 where they found that the asymptotic algebra
of AdS3 consists of two Virasoro algebras with central charges cL = cR = 3l/2G [98].
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� NAdS2/NCFT1: The current melonic revolution has given a candidate for the near

AdS2/ near CFT1 . In particular, the (0 + 1) SYK model [101, 102, 103, 104, 105,

106] (which saturates the Maldacena-Shenker-Stanford chaos bound18 - which is

a signature of blackholes and has an emergent conformal symmetry in the IR) is

supposedly dual to the Jackiw-Tetelbohm dilaton gravity [108, 109, 110, 111]. 19

What most of these dualities (except for the last one) is that they involve matrix-like

fields on the CFT side and rely heavily on supersymmetry.20

In the next Chapter, we will consider a class of simpler AdS/CFT dualities were the dofs

scale like N and not N2 as in the matrix case.

1.3 Outline

In this thesis, we use the collective field theory approach to study the infra-red fixed point

of interacting λ
N

(φaφa)2 theory in terms of the bilocals.21 This theory is equivalent to

the non-linear sigma model. We compute various correlation function in the non-linear

sigma model (and the single-time bilocal approach). We identify a bound state and give

an argument that the ∆ = 1 state is indeed not present in our spectrum. This is in

agreement with the Klebanov-Polyakov HS/CFT conjecture.

This thesis is organized as follows. In Chapter 2, we give an historical review of the

problems that bedazzled early attempts to find a consistent theory of higher spins in

flat Minkowski spacetime. (The problem is as old as Quantum Mechanics, and was only

18Quantum Chaos is characterized by the out of time correlation function:

〈V (t)W (0)V (t)W (0)〉 ∼ 1

N
eλLt (1.141)

where λL is the Lyapunov exponent and satisfies the bound: λL ≤ 2π
β [107].

19The original theory was introduced in [112, 113].
20The Higher-Spin/CFT and AdS/SYK dualities seem to be the exception where supersymmetry is

not needed. On quite general grounds, it seems that supersymmetry is essential for the AdS/CFT
Correspondence [114, 115, 116].

21At present, most work has been done for the UV free fixed point.
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Figure 1.6: The five string theories are related to one another by dualities and to some
theory called 11D M-theory. Picture credits [231].

finally solved in the period 1987-1992.) In particular, we will discuss various No-Go

Theorems that clearly rule out higher spin interactions in flat space. We will first focus

on the free massless higher spin theory of Fronsdal. This will be followed by a discussion

of the fully interaction theory of Vasiliev. We then review the Klebanov-Polyakov Higher-

Spin AdS4/CFT3 conjecture. This will be followed by a brief discussion of some of the

generalizations of the conjecture and some of the main checks that have been done to

test the Higher-Spin/Vector Model Duality.

In Chapter 3, we revisit the Jevick-Sakita collective field theory. In particular, we focus

on rewriting the O(N) vector model in terms of the O(N) invariant bilocals. In section

3.1, we derive the large-N collective field theory Hamiltonian. In section 3.2, we discuss

the covariant path integral two-time bilocals. More precisely, we solve for the large-N

background and obtain the gap equation.

In Chapter 4, we consider the single time collective field theory Hamiltonian. In section
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4.1, we discuss how to obtain the free field theory spectrum and propagator. In section

4.2, we then discuss the collective field theory map. The focus will be largely on the

lightcone gauge map. (However, for completeness, we also mention the time-like map.)

In section 4.3, we give a brief review of the Bethe-Salpeter equation and use it to obtain

the bilocal propagator – which is really a four-point function in the original fields - for

the free case theory.

In Chapter 5, we review the argument that the O(N) critical vector model is equivalent,

in the IR, to the non-linear sigma model.

In Chapter 6, we turn to the covariant two-time non-linear sigma model. We vary the

collective field theory action of the non-linear sigma model. This leads us to a gap

equation. We solve for the large-N background configurations of the bilocals and the

Lagrange multiplier field. This enables us to introduce fluctuations. We shift the bilocal

fluctuations and diagonalize the effective quadratic action. We then compute the position

two-point correlation functions for the bilocal and Lagrange multiplier fluctuations.

In Chapter 7, we present the two-time bilocal description of the O(N) critical (φ2)
2

theory. More specifically, in section 7.1, we find an expression for the bilocal two-point

function which corresponds to the Bethe-Salpeter equation. Section 7.2 is devoted to

finding the spectrum of the O(N) critical (φ2)
2
. This is done by studying the poles of

the two-time collective field theory propagator.

In chapter 8, we give a Hamiltonian (single-time) description of the O(N) critical(φ2)
2

theory. In section 8.1, we make use of Hamilton’s equations to write down a coupled

integral equation for the bilocal fluctuations. In section 8.2, we show the equivalence

between the two-time and single-time bilocal descriptions. In section 8.3, we consider

the single-time Lagrangian and obtain the propagator.

In Chapter 9, we begin by making some comments about the fact that the naive ex-

pectation that the spectrum of the O(N) critical (φ2)
2

theory can be obtained from the
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free theory by replacing ∆ = 1 by ∆ = 2 looks, on the face of it, erroneous. To clarify

this puzzle, we look at the simple scattering through a Dirac Delta potential. This basic

example will allow us to argue that ηxx = 0.

In Appendix A, we expand the effective action to cubic order and extract the three-point

vertices. This allows us to introduce a set of Feynman diagrams.

In Appendix B, we discuss the mode expansion for the free O(N) vector model.

In Appendix C, we reformulate the quantum mechanical problem with a Dirac delta

function potential in the operator language that has been used in this thesis. We invert

the operator and write down the propagator for this system.
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Chapter 2

Higher-Spin Gravity

What is this [higher spin(HS)/Chern Simons duality] good for? I really don’t know.

-Shiraz Minwalla, Strings 2017.

The study of massless fields of spin-1 and spin-2 underlies most of 20th Century Physics.

For example, the spin-1 massless U (1) fields are used to describe what is said to be the

most accurate theory in the history of man-kind i.e. Quantum Electrodynamics.1

The non-Abelian generalities of the spin-1 play a fundamental role in the Standard Model

of Particle Physics.

The spin-2 case should describe gravity.

A natural question to ask is if there are higher spin (s > 2) massless cousins of the photon,

gluons or gravitons.

The higher spin cousins of the photon, graviton etc. have not been ruled out (experi-

mentally) in a phase where higher spin symmetry is spontaneously broken [117, 118].2

1More precisely, we compare the experimental value for
(
g−2

2

)
exp

= (115965218115965230)× 10−11,

where g is the electron g factor, to the theoretical value of
(
g−2

2

)
theory

= 0.5
(
α
π

)
− 0, 32848

(
α
π

)2
+

1, 19
(
α
π

)3
= (115965230± 10)× 10−11.It turns out that the theory is correct to 16 significant figures.

2Note that, however, we have experimentally observed higher spin MASSIVE particles.
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From a theoretical view point, there are various no go theorems that actually rule out

the existence of higher spin fields [119, 120, 121, 122, 123, 124, 125, 126]. (For reviews

on the No-Go theorems, see [127].)

Without going into details we can sketch a simple example of why all higher spin fields

have to be trivial – i.e. there cannot be any interactions.

Recall that the Poincaré group consists of translations, rotations and boosts. The

Poincaré algebra is

[Pµ, Pν ] = 0 (2.1)

[Mµν , Pρ] = i (gνλPµ − gµλPν) (2.2)

[Mµν ,Mρσ] = −i (gµρMνσ − gµσMν% − gνρMµσ + gνσMµρ) . (2.3)

There are two Casimirs viz.3

P 2 = PµP
µ, Wµ =

1

2
εµνρσP

νMρσ (2.4)

where Wµ is called the Pauli-Lubanski four vector.

Under very general but fairly reasonable physical assumptions – e.g. there are a finite

number of particles etc. – the Coleman-Mandula theorem posits that it is impossible to

mix the Poincaré symmetries with the internal symmetries in any but the most trivial

manner i.e. the resulting group can at most be a direct sum of the Poincaré group and

the internally symmetry group.

To see how the Coleman-Mandula theorem rules out higher spin fields one only has to

remember the simple fact that massless fields are gauge fields. So, adding massless higher

spin fields will introduce a bigger symmetry group than the Poincaré group and this is

ruled out by the Coleman-Mandula theorem. (There are other specific theorems that

3A Casimir is defined as a quantity that commutes with all the elements of the Lie algebra.
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also rule out, unambiguously, higher spin gauge fields e.g. the Weinberg soft theorems

and the Weinberg-Witten theorems.)

(In fact, the study of higher spin field theories is as old as Quantum Theory and dates

back to attempts by Dirac to generalize his famous spin 1/2 equation [131] and also by

the likes Majorana [132] and Fierz and Pauli [133].)

No-Go Theorems

Besides the Coleman-Mandula theorem, we also have a theorem due to Weinberg that

also rules out the existence of massless particles with spins s > 2. We consider the

scattering of N particles with momenta pi (i = 1, 2, . . . , N). In this scattering process

we will assume the emission of some massless particle of spin s with momentum q.

In the soft limit (i.e. q → 0), the S-matrix for this scattering process takes the form

[127, 128, 134]:

S (p1, . . . , pN , q, ε) =
N∑
i=1

gi

[
pµ1i · · · p

µs
i εµ1···µs

2pi · q

]
S (p1, . . . , pN) . (2.5)

Here, εµ1···µs is the polarization tensor and the gi are coupling constants. Under

Lorentz transformations, the polarization transforms as [127]:

εµ1···µs (q)→ εµ1···µs (q) + q(µ1ζµ2···µs). (2.6)

In order for the spurious polarizations to decouple, we have to impose the condition

that

N∑
i=1

g
(s)
i pµ1i · · · p

µs−1

i = 0. (2.7)

When s = 1, (2.7) yields
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N∑
i=1

g
(1)
i = 0. (2.8)

This condition expresses the intuitive fact that the total charge (e.g. electric charge)

for the entire scattering process is conserved.

For s = 2, (2.7) implies that

N∑
i=1

g
(2)
i pµi = 0. (2.9)

This condition can easily be satisfied by setting gi = κ and
∑

i p
µ
i = 0. Thus, (2.9)

expresses nothing but the conservation of the four-momentum and the fact that all

particles interact with the same strength with the graviton.

However, for s > 2 we cannot write down a non-trivial solution to (2.7). More

precisely, the only way for (2.7) to be satisfied is by setting g
(s)
i = 0. However,

this does not completely rule out higher spin interactions but only states that these

interactions cannot be long-range [121, 127, 128, 134].

Instead of giving a generic argument, Aragone and Deser tried to explicitly construct

an interacting massless spin-5/2 theory [123]. The action of the spin-5/2 hypergravity
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theory reads

S =

∫
d4x
√
−g

[
−1

2
ψ̄µν��Dψ

µν + 2¯
��ψµ��D��ψ

µ − 1

2
ψ̄′��Dψ

′

+
(
ψ̄∇ ·��ψ − 2¯

��ψµ∇ · ψ
µ − h.c.

) ]
, (2.10)

where ��D = γαDα, ψµν is a rank two tensor spin, ψµ = γαγ
µν and ψ = ψαα [123].

The hypergravity theory is, as expected, redundant. These redundancies can be

eliminated by imposing the gauge invariance:

δψµν = ∇(µεν), γµεµ = 0. (2.11)

However, under these gauge transformations, the actions changes by

δS ∼
∫
d4x
√
−g
(
εµγνψαβR

µανβ
)

(2.12)

which is obviously non-vanishing in a general curved spacetime.

The other powerful No-Go theorems are the two Weinberg-Witten theorems [124].

These theorems states that

i) A theory with a Lorentz covariant, conserved four current J and associated con-

served charge Q =
∫
ddxJ0 does not admit massless particles with spin s > 1

2
with

non-zero charge under Q.

ii) A theory that allows the construction of a conserved Lorentz covariant energy-

momentum tensor Tµν for which
∫
d3xT0ν is the energy-momentum four-vector can-

not contain massless particles of spin s > 1.

It is important to note that the Weinberg-Witten theorem does not cover the General
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Theory Of Relativity as the energy-momentum tensor of GR is not Lorentz covariant.

The theorems are actually simple to prove. Firstly, note that it is possible to trans-

form into a frame where we can write the null four momenta as

p = (|p| , ~p) , p′ = (|p| ,−~p) . (2.13)

It is straightforward to show that

〈p′,±σ |Jµ (x)| p,±σ〉 =
gpµ

(2π)3E
(2.14)

〈p′,±σ |T µν (x)| p,±σ〉 =
fpµpν

(2π)3E
, (2.15)

where s is the spin of the particle and

g =

∫
ddxJ0 (2.16)

fpµ =

∫
ddxT 0µ. (2.17)

Under a rotation by an angle θ, we have

|U (R (θ))| p,±σ〉 = e±iθs |p,±σ〉 , |U (R (θ))| p′,±σ〉 = e∓iθs |p′,±σ〉 . (2.18)

Recall that under rotations the current Jµ and the energy-momentum tensor T µν

transform as
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Jµ → U−1 (R (θ)) JµU (R (θ)) = R (θ)µν J
ν (2.19)

T µν → U−1 (R (θ))T µνU (R (θ)) = R (θ)µρ R (θ)νσ T
ρσ. (2.20)

From (2.18), (2.19) and (2.20) , we obtain

〈p′,±σ |Jµ| p,±σ〉 → e±2iθs 〈p′,±σ |Jµ| p,±σ〉 = R (θ)µν 〈p
′,±σ |Jν | p,±σ〉 (2.21)

〈p′,±σ |T µν | p,±σ〉 → e±2iθs 〈p′,±σ |T µν | p,±σ〉 = R (θ)µρ R (θ)νσ 〈p
′,±σ |Jµ| p,±σ〉 .

(2.22)

The rotation matrix R (θ) only has the Fourier modes 1 and e±iθ. Hence, from (2.21)

we see that the only allowed values for the spin are

2s = 0;±1. (2.23)

or

s ≤ 1

2
. (2.24)

Similarly, (2.22) implies that the allowed values for the spin of a theory that has a

covariant stress-energy tensor are

s ≤ 2. (2.25)

That is, any theory that has a Lorentz covariant stress-energy tensor cannot have
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massless particles with spin greater than two.

2.1 Fronsdal

Let us begin by reviewing the elementary case of the Maxwell theory. This theory is

described in terms of the gauge field Aµ which satisfies the free field equation:

∂µF
µν = 0 = ∂2Aν − ∂ν (∂ · A) (2.26)

where the field strength is given by: Fµν = ∂µAν−∂νAµ. The Maxwell theory is invariant

under the gauge transformations of the form:

Aµ → A′µ = Aµ + ∂µε (2.27)

In other words, the Maxwell theory is invariant under δAµ = ∂µε.

We next look at the linearized Einstein equations. In particular, we consider fluctuations

around the Minkowski background: gµν = ηµν + hµν . One can show that the field

equations then reduce to:

0 = ∂2hµν − ∂µ∂ρhνρ + ∂ν∂
ρhµρ + ∂µνh (2.28)

where h is the determinant of the fluctuations.

The linearized field equations are invariant under transformations of the form:

δhµν = ∂µεν + ∂νεµ (2.29)
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What we want is similar analogous results for free higher spin gauge fields which will be

a symmetric rank s tensor which we denote by φµ1···µs .
4 These equations were obtained

by Fronsdal in 1978.

For simplicity, we will follow the construction in [128, 129]. We first consider the spin-s

Christoffel symbols which is defined as

Γ(1)
ρ;µ1···µs = ∂ρφµ1···µs − s∂(µ1φµ2···µs)ρ. (2.30)

We recursively define

Γ(m)
ρ1···ρs;µ1···µs = ∂ρ1Γ

(m−1)
ρ2···ρs;µ1···µs −

s

m
∂(µ1|Γ

(m−1)
ρ2···ρmρ1|µ2···µs) , (2.31)

where the brackets (µ1 | ρ2 · · · ρmρ1 | µ2 · · ·µs) means we need to symmetrize with respect

to µ1 to µs while leaving indices between the vertical lines alone.

For m = 2 this definition reduces to

Γ(2)
ρ1ρ2;µ1···µs = ∂ρ1Γ

(1)
ρ2;µ1···µs −

s

2
∂(µ1|Γ

(1)
ρ2;ρ1|µ2···µs)

= ∂ρ1
(
∂ρ2φµ1···µs − s∂(µ1φµ2···µs)ρ2

)
− s

2
∂(µ1|∂ρ2φρ1|µ2···µs) +

s

2
× s∂(µ1|∂(ρ1φµ2···µs)ρ2

= ∂ρ1∂ρ2φµ1···µs − s∂ρ1∂(µ1φµ2···µs)ρ2 +
s (s− 1)

2
∂(µ1∂ρ1φµ2···µs)ρ2 . (2.32)

The free Fronsdal equations of motion are

F = Γ(2)ρ
ρ;µ1···µs = ∂2φµ1···µs − s∂ρ∂(µ1φ

ρ
µ2···µs) +

s (s− 1)

2
∂(µ1∂ρ1φµ2···µs)ρ2 = 0 (2.33)

and are invariant under the gauge transformation:

4The rank s tensor should also be doubly traceless i.e. ηµ1µ2φµ1···µs
.
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δφµ1···µs = ∂(µ1εµ2···µs). (2.34)

In addition, the Fronsdal equations can be obtained from the action [133, 134]:

S =

∫
d4x

(
1

2
∂αφµ1···µs∂

αφµ1···µs − s

2
∂αφ

α
µ2···µs∂

βφµ2···µsβ

− s (s− 1)

2
φααµ3···µs∂β∂γφ

βγµ3···µs − s (s− 1)

4
∂βφ

α
αµ3···µs∂

βφγµ3···µsγ

− s (s− 1) (s− 2)

8
∂βφααβµ4···µs∂δφ

γδµ4···µs
γ

)

= −1

2

∫
d4xφµ1···µs

(
Fµ1···µs − 1

2
η(µ1µ2Fαµ3···µs

α

)
, (2.35)

Note that there are still no interactions.

Finally, we mention that the free Fronsdal equations can also be written down in Anti-de

Sitter and de Sitter spaces. To do this we replace the standard derivative by the covariant

derivative: ∂ → ∇. When this is done properly one obtains [128]:

0 =
(
∇2 −m2

)
φµ1···µs − s∇(µ1∇ρφµ2···µs)ρ +

s (s− 1)

4s
g(µ1µ2∇ν1∇ν2φµ1···µs)ν1ν2 (2.36)

In De Donder gauge viz.

∇ρφρµ1···µs = 0 (2.37)

(2.36) reduces to

0 =
(
∇2 −m2

)
φµ1···µs . (2.38)
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To find the Laplacian we first rewrite, as is customary, the Poincaré metric as the La-

grangian:

L =
1

z2

(
ż2 + ηµν ẋ

µẋν
)

(2.39)

The Euler-Lagrange equations are

0 = z̈ − 1

z
ż2 +

1

z
ηµν ẋ

µẋµ (2.40)

0 = ẍν − 2

z
ẋν ż. (2.41)

It then follows that the only non-vanishing Christoffel symbols are [133]:

Γzzz = −1

z
, Γνzµ =

1

z
ηµν , Γνzµ = −1

z
δνµ. (2.42)

Let

Fαµ1···µs = ∇αφµ1···µs (2.43)

Then [170]:

∇αFαµ1···µs =

(
∂z −

d− 1

z

)
Fzµ1···µs + ∂iFiµ1···µs (2.44)

Therefore the Laplacian is [133, 170]:
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∇2φµ1···µs =

(
∂z −

d− 1

z

)(
∂zφµ1···µs − Γz(µ1φµ2···µs)

)
+ ∂i

(
∂zφµ1···µs − Γz(µ1φµ2···µs)

)
=

[
z2

(
∂z +

s− d+ 1

z

)(
∂z +

s

z

)
− z2∂i∂i − s

]
φµ1···µs − 2sz∂(µ1φµ2···µs)z

+ s (s− 1) ηµ1µ2φµ3···µs)zz − s (d+ 2s− 3) δz(µ1φµ2···µs)z + 2sz∂ρδz(µ1φµ1φµ2···µs).

(2.45)

2.2 Vasiliev

Over the decades there have been few ways of going around what happens to be the best

known No-Go theorem in Theoretical Physics.

The simplest way to get away with the Coleman-Mandula theorem is to enlarge the

Poincarè algebra to the conformal algebra. There is no S-matrix in a CFT and so the

theorem need not apply.

The other more familiar way is to consider a graded Lie algebra. This means that we

introduce fermionic generators that satisfy the algebra:

{
Qα, Q̄β̇

}
= 2 (σµ)αβ̇ Pµ (2.46)

where σµ = (−I, σi).

In 1987, Vasiliev and Fradkin found a way of circumventing the Coleman-Mandula the-

orem and all the other various No-Go theorems that ruled out interacting higher spin

gauge theories.

The basic assumption in all the No-Go theorems was that we are working on flat Minkowski

spacetime. What Vasiliev (and Fradkin during the early developmental parts of the the-
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ory) showed was that it was possible to have interacting higher spin cubic vertices in AdS

[135, 136]. Later, between 1990 and 1992, Vasiliev managed to construct a fully-fledged

higher spin theory with an infinite tower of massless higher spin fields [137, 138, 139]. (For

reviews on Vasilievs higher spin gauge theories see [128, 133, 134, 140, 141, 142, 143, 144].)

Let us consider AdS4 with coordinates xµ(µ = 1, . . . , 4). In addition, to the spacetime

coordinates, we will also introduce a set of internal twistor variables Y =
(
yα, ȳα̇

)
and

Z =
(
zα, z̄α̇

)
On this internal twistor space, we introduce the star-product [148]:

f (Y, Z) ? g (Y, Z) = f (Y, Z) exp
[
εαβ
(←−
∂ yα +

←−
∂ zα

)(−→
∂ yβ −

−→
∂ zβ

)
+εα̇β̇

(←−
∂ ȳα̇ +

←−
∂ z̄α̇

)(−→
∂ ȳβ̇ −

−→
∂ z̄β̇

)]
g (Y, Z) . (2.47)

which has an integral representation of the form:

f (Y, Z) ? g (Y, Z) =

∫
d2ud2ūd2vd2v̄e−uv+ūv̄f (y + u, ȳ + ū, z + u, z̄ + ū)

× g (y + v, ȳ + v̄, z − v, z̄ − v̄) . (2.48)

It is not difficult to show that the star-products for the various twistor variables are

yα ? yβ = yαyβ + εαβ (2.49)

zα ? zβ = zαzβ − εαβ (2.50)

yα ? zβ = yαzβ − εαβ. (2.51)

The Vasiliev theory is formulated in terms of a one-form in space-time W (x|Y ;Z), a

scalar field B (x|Y ;Z)and also a 1-form in Z-space S (x|Y ;Z). It is convenient to also
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define

A = W + Sαdz
α + Sα̇dz̄

α (2.52)

and

Â = A− 1

2
zαdz

α − 1

2
z̄α̇dz̄

α̇

= W +

(
Sα −

1

2
zα

)
dzα +

(
Sα̇ −

1

2
z̄α̇

)
dz̄α̇. (2.53)

The exterior derivative is

d = dx + dZ . (2.54)

We also introduce the Kleinian:

K = ey
αzα , K̄ = eȳ

α̇z̄α̇ . (2.55)

This definition can be generalized to define the quantities

K (t) = ety
αzα , K̄ (t) = etȳ

α̇z̄α̇ . (2.56)

By allowing the Kleinian to act on some arbitrary function f, one can show that

K ? f (y, ȳ, z, z̄) ? K̄ = f (−y, ȳ,−z, z̄) . (2.57)

We now have everything we need to write down the equations of motion that for the

infinite tower of massless particles. The Vasiliev equations are
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dÂ+ Â ? Â = f (B ? K) dz2 + f̄
(
B ? K̄

)
dz̄2 (2.58)

0 = dxB + Â ? B −B ? π
(
Â
)

(2.59)

where

πf (y, ȳ, z, z̄, dz, dz̄) = f (−y, ȳ,−z, z̄,−dz, dz̄) . (2.60)

For completeness, we also define π̄ via

π̄f (y, ȳ, z, z̄, dz, dz̄) = f (y,−ȳ, z,−z̄, dz,−dz̄) . (2.61)

The field equations involve an arbitrary function f . It turns out that - by field redefinition

- the function f can be written as

f (X) =
1

4
+Xeiθ(X). (2.62)

It also turns out that by further requiring that the Higher-Spin Gauge Theory be parity

invariant, the function f takes the form:

fA (X) =
1

4
+X, or fB (X) =

1

4
+ iX. (2.63)

Those theories which preserve parity with the function f given by fA are called A-type

Vasiliev. (Similarly, theories that preserve parity with the function f given by fB are

called B-type Vasiliev theories.)

The Vasiliev equations as given in are obviously written in a very compactified form.

However, it is easy to rewrite the field equations in terms of the original master variables

S, W and B. Indeed, one can verify that
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dxW +W ?W = 0 (2.64)

dZW + dxS + {W,S}? = 0 (2.65)

dZS + S ? S = f (B ? K) dz2 + f̄ (B ? K) dz2 (2.66)

dxB +W ? B −B ? π (W ) = 0 (2.67)

dxB + S ? B −B ? π (S) = 0 (2.68)

The above field equations are invariant under the gauge transformation:

δW = dε+ [W, ε]? (2.69)

δS = dZε+ [S, ε]? (2.70)

δB = B ? π (ε)− ε ? B (2.71)

As a possible ansatz for a solution of the Vasiliev equations, we can write

W = W0 (x |Y ) , S = 0, B = 0. (2.72)

From it is easy to see that the the only non-trivial equations that we have is

dW0 +W0 ∗W0 = 0. (2.73)

Suppose that we can write the master field W0 as [128, 139, 148]:

W0 (x | Y ) = (e0)αβ̇ y
αȳβ̇ + (ω0)αβ y

αyβ + (ω0)α̇β̇ ȳ
α̇ȳβ̇, (2.74)

where e0 is the vierbein and ω0 the spin-connection.
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Then, (2.73) implies that

0 =
(
dx (e0)αβ̇

)
yαȳβ̇ +

(
dx (ω0)αβ

)
yαyβ +

(
dx (ω0)α̇β̇

)
ȳα̇ȳβ̇

+ (e0)αβ̇ (e0)γδ̇

(
yαȳβ̇ ∗ yγ ȳδ̇

)
+ (e0)αβ̇ (ω0)γδ

(
yαȳβ̇ ∗ yγyδ

)
+ (e0)αβ̇ (ω0)γ̇δ̇

(
yαȳβ̇ ∗ ȳγ̇ ȳδ̇

)
+ (ω0)αβ (e0)γδ̇

(
yαyβ ∗ yγ ȳδ̇

)
+ (ω0)αβ (ω0)γδ

(
yαyβ ∗ yγyδ

)
+ (ω0)αβ (ω0)γ̇δ̇

(
yαyβ ∗ yγ̇ ȳδ̇

)
+ (ω0)α̇β̇ (e0)γδ̇

(
ȳα̇ȳβ̇ ∗ yγ ȳδ̇

)
+ (ω0)α̇β̇ (ω0)γδ

(
ȳα̇ȳβ̇ ∗ yγyδ

)
+ (ω0)α̇β̇ (ω0)γ̇δ̇

(
ȳα̇ȳβ̇ ∗ ȳγ̇ ȳδ̇

)
. (2.75)
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For the various star products, we obtain [128]:

yαȳβ̇ ∗ yγ ȳδ̇ = yαȳβ̇
(

1 + ερσ
←−
∂yρ
−→
∂yσ + ερ̇σ̇

←−
∂ȳρ̇
−→
∂ȳσ̇ + ερσ

←−
∂yρ
−→
∂yσε

ρ̇σ̇←−∂ȳρ̇
−→
∂ȳσ̇
)
yγ ȳδ̇

= yαȳβ̇ + εαδȳβ̇ ȳδ̇ + εβ̇γ̇yαyγ + εαδεβ̇γ̇ (2.76)

yαȳβ̇ ∗ yγyδ = yαȳβ̇
(

1 + ερσ
←−
∂yρ
−→
∂yσ + ερ̇σ̇

←−
∂ȳρ̇
−→
∂ȳσ̇
)
yγyδ

= yαȳβ̇yγyδ + εαγ ȳβ̇yδ + εαδȳβ̇yγ (2.77)

yαȳβ̇ ∗ ȳγ̇ ȳδ̇ = yαȳβ̇
(

1 + ερσ
←−
∂yρ
−→
∂yσ + ερ̇σ̇

←−
∂ȳρ̇
−→
∂ȳσ̇
)
ȳγ̇ ȳδ̇

= yαȳβ̇ ȳγ̇ ȳδ̇ + εβ̇γ̇yαȳδ̇ + εβ̇δ̇yαȳγ̇ (2.78)

yαyβ ∗ yγ ȳδ̇ = yαyβ
(

1 + ερσ
←−
∂yρ
−→
∂yσ + ερ̇σ̇

←−
∂ȳρ̇
−→
∂ȳσ̇
)
yγ ȳδ̇

= yαyβyγ ȳδ̇ + εαγyβ ȳδ̇ + εβγyαȳδ̇ (2.79)

yαyβ ∗ yγyδ = yαyβ
(

1 + ερσ
←−
∂yρ
−→
∂yσ + ερ̇σ̇

←−
∂ȳρ̇
−→
∂ȳσ̇ +

1

2
ερσ
←−
∂yρ
−→
∂yσε

µν←−∂yµ
−→
∂yν

)
yγyδ

= yαyβyγyδ + εαγyβyδ + εβγyαyδ + εαδyβyγ + εβδyαyγ

+ εαγεβδ + εβγεαδ + εαδεβγ + εβδεαγ (2.80)

yαyβ ∗ yγ̇ ȳδ̇ = yαyβ
(

1 + ερσ
←−
∂yρ
−→
∂yσ + ερ̇σ̇

←−
∂ȳρ̇
−→
∂ȳσ̇
)
yγ̇ ȳδ̇

= yαyβyγ̇ ȳδ̇ (2.81)

ȳα̇ȳβ̇ ∗ yγ ȳδ̇ = ȳα̇ȳβ̇
(

1 + ερσ
←−
∂yρ
−→
∂yσ + ερ̇σ̇

←−
∂ȳρ̇
−→
∂ȳσ̇
)
yγ ȳδ̇

= ȳα̇ȳβ̇yγ ȳδ̇ + εα̇δ̇ȳβ̇yγ + εβ̇δ̇ȳα̇yγ (2.82)

ȳα̇ȳβ̇ ∗ yγyδ = ȳα̇ȳβ̇
(

1 + ερσ
←−
∂yρ
−→
∂yσ + ερ̇σ̇

←−
∂ȳρ̇
−→
∂ȳσ̇
)
yγyδ

= ȳα̇ȳβ̇yγyδ (2.83)

ȳα̇ȳβ̇ ∗ ȳγ̇ ȳδ̇ = ȳα̇ȳβ̇
(

1 + ερσ
←−
∂yρ
−→
∂yσ + ερ̇σ̇

←−
∂ȳρ̇
−→
∂ȳσ̇ +

1

2

(
ερ̇σ̇
←−
∂ȳρ̇
−→
∂ȳσ̇
)(

εµ̇ν̇
←−
∂ȳρ̇
−→
∂ȳσ̇
))

ȳγ̇ ȳδ̇

= ȳα̇ȳβ̇ ȳγ̇ ȳδ̇ + εα̇γ̇ ȳβ̇ ȳδ̇ + εβ̇γ̇ ȳα̇ȳδ̇ + εα̇δ̇ȳβ̇ ȳγ̇ + εβ̇δ̇ȳα̇ȳγ̇ +
1

2
εα̇γ̇εβ̇δ̇

+
1

2
εβ̇γ̇εα̇δ̇ +

1

2
εα̇δ̇εβ̇γ̇ +

1

2
εβ̇δ̇εα̇γ̇. (2.84)

Plugging (2.76), (2.77), (2.78), (2.79), (2.80), (2.81), (2.82), (2.83) and (2.84) back into
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(2.75), we get

0 =
(
dx (e0)αβ̇

)
yαȳβ̇ +

(
dx (ω0)αβ

)
yαyβ +

(
dx (ω0)α̇β̇

)
ȳα̇ȳβ̇

+ (e0)αβ̇ (e0)γδ̇

(
yαȳβ̇ + εαδȳβ̇ ȳδ̇ + εβ̇γ̇yαyγ + εαδεβ̇γ̇

)
+ (e0)αβ̇ (ω0)γδ

(
yαȳβ̇yγyδ + εαγ ȳβ̇yδ + εαδȳβ̇yγ

)
+ (e0)αβ̇ (ω0)γ̇δ̇

(
yαȳβ̇ ȳγ̇ ȳδ̇ + εβ̇γ̇yαȳδ̇ + εβ̇δ̇yαȳγ̇

)
+ (ω0)αβ (e0)γδ̇

(
yαyβyγ ȳδ̇ + εαγyβ ȳδ̇ + εβγyαȳδ̇

)
+ (ω0)αβ (ω0)γδ

(
yαyβyγyδ + εαγyβyδ + εβγyαyδ

εαδyβyγ + εβδyαyγ + εαγεβδ + εβγεαδ + εαδεβγ + εβδεαγ
)

+ (ω0)αβ (ω0)γ̇δ̇

(
yαyβyγ̇ ȳδ̇

)
+ (ω0)α̇β̇ (e0)γδ̇

(
ȳα̇ȳβ̇yγ ȳδ̇ + εα̇δ̇ȳβ̇yγ + εβ̇δ̇ȳα̇yγ

)
+ (ω0)α̇β̇ (ω0)γδ

(
ȳα̇ȳβ̇yγyδ

)
+ (ω0)α̇β̇ (ω0)γ̇δ̇

(
ȳα̇ȳβ̇ ȳγ̇ ȳδ̇ + εα̇γ̇ ȳβ̇ ȳδ̇ + εβ̇γ̇ ȳα̇ȳδ̇ + εα̇δ̇ȳβ̇ ȳγ̇ + εβ̇δ̇ȳα̇ȳγ̇

= +
1

2
εα̇γ̇εβ̇δ̇ + +

1

2
εβ̇γ̇εα̇δ̇ +

1

2
εα̇δ̇εβ̇γ̇ +

1

2
εβ̇δ̇εα̇γ̇

)
. (2.85)

After some straightforward, but tedious, algebra we obtain [148]:

dx (e0)αβ̇ + 4 (e0)γβ̇ ∧ (ω0)αδ̇ ε
γδ − 4 (e0)αγ̇ ∧ (ω0)δ̇β̇ ε

γ̇δ̇ = 0 (2.86)

dx (ω0)αβ + (e0)αγ̇ ∧ (e0)βδ̇ ε
γ̇δ̇ + 4 (ω0)αγ ∧ (ω0)βδ ε

γδ = 0 (2.87)

dx (ω0)α̇β̇ + (e0)γα̇ ∧ (e0)δβ̇ ε
γδ + 4 (ω0)α̇γ̇ ∧ (ω0)β̇δ̇ ε

γ̇δ̇ = 0 (2.88)

Since

(e0)αβ̇ =
1

4
eaσa

αβ̇
, (ω0)αβ =

1

16
ωabσabαβ, (ω0)α̇β̇ =

1

16
ωabσab

α̇β̇
, (2.89)

we can write (2.86), (2.87) and (2.88) as [128]:
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dxea + ωab ∧ eb = 0 (2.90)

dxωab + ωac ∧ ωcb = 6eb ∧ ea. (2.91)

These are the equations that describe the AdS spacetime. More specifically, (2.90) is the

torsion free condition for the AdS4 spacetime and (2.91) is an expression for the AdS4

Ricci tensor in terms the vierbeins [144].

We wish to linearize the field equations about the AdS vacuum solution. This lineariza-

tion can be achieved by writing

W (x | Y ) = W0 + λW̃ , S = 0 + λS̃, B = 0 + λB̃. (2.92)

Accordingly, (2.64) becomes

0 = dxW +W ∗W

(dxW0 +W0 ∗W0) + λ
(
dxW0 +

{
W0, W̃

}
∗

)
+O

(
λ2
)

= D0W̃ , (2.93)

where

D0 = d+ [W0,·] . (2.94)
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Similarly, use of (2.92) in (2.65) yields

0 = dZW0 + λ
(
dZW0 + dxS̃ +

{
W0, S̃

}
∗

)
= dZW0 + λ

(
dZW0 +D0S̃

)
. (2.95)

From (2.66), we obtain

f (B ∗K) dz2 + f̄
(
B ∗ K̄

)
= λdZS̃ + λ2S̃ ∗ S̃. (2.96)

Eq. (2.67) implies that

dxB+W ∗B −B ∗ π (W ) = 0

0 = λ
(
dxB̃ +W0 ∗ B̃ − B̃ ∗ π (W0)

)
+O

(
λ2
)

= λD̃0B̃ +O
(
λ2
)
, (2.97)

where

D̃0 = dx +W0 ∗ · − · ∗ π (W0) . (2.98)

Finally, (2.68) yields

0 = dxB + S ∗B −B ∗ π (S)

= λ
(
dxB̃

)
+O

(
λ2
)

(2.99)

To summarize, the linearized Vasiliev’s field equations read [128, 139]:
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D0W̃ = 0 (2.100)

dZW̃ +D0S = 0 (2.101)

dZS̃ = (B ∗K) dz2 +
(
B ∗ K̄

)
dz̄2 (2.102)

D̃B = 0 (2.103)

dxB̃ = 0 (2.104)

2.3 Vector Models AdS4/CFT3

The AdS/CFT Correspondence is a weak/strong duality. What this means is that when

the gravity side of the duality is computationally under control, the dual CFT is strongly

coupled.

We would like to understand the gauge-string duality in more detail. What we need is a

form of a weak/weak duality.

The simplest CFT is given by the O (N) vector model. The action for the O (N) vector

model can be written as [146]:

S =

∫
d3x

(
1

2
∂µφ

i∂µφi +
1

2
m2
(
φiφi

)
+
λ

4

(
φiφi

)2
)
. (2.105)

The theory has a trivial UV fixed point at g = 0 and another IR fixed point for some

value of the coupling constant. More precisely, the β-function for the O (N) vector model

is [146]:

βλ = −ελ+
N + 8

8π2
λ2 +O

(
λ3
)
. (2.106)

Note that the above β-function was computed in 4− ε dimensions and hence ε = 1 in 3d

[146].
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It is straightforward to see that the IR fixed point will occur at λ = 8π2

N+8
ε.

Note that the O (N) vector model has an infinite amount of conserved currents.

For example, it is easy to show that [146]

Jµ = φ
←→
∂µφ (2.107)

Jµν = Tµν = ∂µφ∂µφ−
1

4 (d− 1)

[
(d− 2) ∂µ∂ν + gµν∂

2
]
φ2 (2.108)

are conserved for the free case.

In general, the conserved currents can be written (schematically) as5

Jµ1···µs = φa∂(µ1 · · · ∂µs)φa + · · · (2.109)

Following Giombi and Yi [147], we can repackage the conserved currents as

Of (~x, ε) = φi (~x) f
(
εµ,
−→
∂ µ,
←−
∂µ

)
φi (~x) , (2.110)

where [147]:

f (~ε, ~u,~v) = e(u−v)·ε cosh
√

2 (u · v) ε2 − 4 (u · ε) (v · ε). (2.111)

Given the identification, which is part of the AdS/CFT dictionary, that

Jµ ↔ Aµ, Tµν ↔ gµν , Jµ1···µs ↔ φµ1···µs . (2.112)

it is understandable that this simple CFT, naively speaking, should be dual to some

gravitational theory that has an infinite tower of massless higher spins. Such a theory

5The correct expression can be found in [146].
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should live on AdS and we do indeed know of one such theory namely Vasiliev’s higher

spin Gauge Theory.

Another way, and this was historically the path followed, to see that the Vasiliev Higher

Spin Gauge Theory could be dual to the free CFTs of matrix-valued fields was to actually

start from the original AdS/CFT Correspondence. There is a particular limit in which

the string tension goes to zero. (String Theory has massive higher spin excitations.)

In this tensionless limit, the massive excitations become massless and decouple from the

spectra. So, it was felt that in this tensionless limit of Type IIB should be related to the

free N = 4 SYM [177, 178, 179, 180, 181].

The duality was finally conjectured in a more precise way by Klebanov and Polyakov in

2002. The Klebanov-Polyakov Higher Spin AdS/CFT Correspondence posits that the

free (critical) O (N) vector model is dual to the minimal type A Vasiliev with the scaling

dimension of the scalar field being equal to one (two) [147]. (For an excellent review on

the Higher Spin AdS/CFT Duality see [148].)

Immediately after Polyakov and Klebanov put forward their conjecture, a similar result

was proposed for the fermionic Gross-Neveu model.

Recall that the Gross-Neveu vector model has an action of the form

S =

∫
d3x

(
ψ̄iγ

µ∂µψ
i +

g

2

(
ψ̄iψ

i
)2
)
. (2.113)

According to [149, 150], it has been conjectured that the singlet sector of the Gross-Neveu

is dual to type B minimal Vasiliev theory.

There is also a formulation of the duality in de-Sitter spaces . More specifically, it has

been postulated that Vasiliev’s Higher Spin Gauge Theory in dS4 is holographically dual
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to the SP (N) model [151] with action of the form:

S =
1

8π

∫
d3x

(
Ωabδ

ij∂iχ
a∂jχ

a + V (χ · χ)
)
, (2.114)

where χa(a = 1, 2, . . . , N) is an N component scalar field and

Ωab =

 0 1N
2
×N

2

−1N
2
×N

2
0

 . (2.115)

Recently, the Higher-Spin dS/CFT duality has been extended to the supersymmetric

case [152]. More precisely, the N = 2 supersymmetric extensions of the SP (N) vector

models are dual to N = 2 Vasiliev Higher-Spin Gauge Theories in de Sitter space [152].

There is also a lower dimensional version of the duality in AdS3 [153]. More pre-

cisely, the Gaberdieli-Gopakumar conjecture posits that the bosonic (truncated) Vasiliev-

Prokushkin Higher Spin Gravity in AdS3 [154, 155] is dual to the WN,k minimal models

[153] which can be represented in terms of the coset:

su (N)k ⊕ su (N)1

su (N)k+1

. (2.116)

The central charge is of the form

c = (N − 1)

[
1− N (N + 1)

(N + k) (N + k + 1)

]
. (2.117)

As is well-known the central charge is a measure of the degrees of freedom of a system.

Therefore, we see that the degrees of freedom for this AdS3/CFT2 scale like N - this is

in contrast to the standard matrix (adjoint) AdS/CFT Dualities where the degrees of

freedom scale like N2.

There are also supersymmetric extensions of the Gaberdieli-Gopakumar conjecture. More
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accurately, the full Vasiliev-Prokushkin Higher Spin Gravity is said to be equivalent to

the N = 2 CPN Kazama-Suzuki coset model [156]:

su(N + 1)k ⊕ so (N)1

su (N)k+1 u (N)N(N+1)(k+N+1)

(2.118)

Chern-Simons theories have found diverse applications in a variety of fields including in

the study of knot invariants [157] and Condensed Matter Physics - e.g. in the fractional

Hall effect [158].

Chern-Simons theories coupled to fermionic or bosonic vector models have been conjec-

tured to be dual to the parity violating Vasiliev’s Higher Spin Gauge Theories [159, 160].

One reason why this particular conjecture is interesting is due to the fact that this

provides a way to embed the Vasiliev’s Higher Spin Gravity into string theory [161, 162].6

In the Gauge-Gravity Duality, a superconformal Chern-Simons-matter theory has been

conjectured to be dual to Type IIA string theory on AdS4 × CP3.

Moreover, Vasiliev’s Higher Spin Gauge Theories allow for boundary conditions that

preserve N = 1, 2, . . . , 6 supersymmetry. Obviously, because of the ABJ model, the

most important case to study is when N = 6 case. In such an instance, we have a triality

linking vector Chern-Simons theories, Type IIA string theory and Vasiliev’s Higher Spin

Gravity [161]. 7 To date, this has been one of the most successful attempts to embed

string theory in higher spin theories.

Recall that one the earliest forms of a duality was discovered by Coleman and Mandelstam

viz. the bosonization duality [164, 165]. This was the duality that states that the Thirring

model and the sine-Gordon model are equivalent in (1 + 1)-dimensions. Recently, as a

6Intuitively, the Higher Spin Gauge Theories can be thought of as the tensionless limit of some string
theory. However, this notion has never been made precise.

7Recently, there is evidence that a deformation of this triality leads to a quadrality involving two N =
5 Vasiliev Higher-Spin theories, string/M-theory and N = 5 ABJ theory with gauge group O (N)2k ×
USp (2N2)−k [163].
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Figure 2.1: The ABJ triality. Picture credits [163].

Figure 2.2: The ABJ quadrality. Picture credits [163].
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result of studying the Chern-Simons vector model dualities, the bose-fermi duality has

been generalized to 3d [160, 166]. More precisely, the free (critical) boson coupled to

Chern-Simons gauge theory is dual to the critical (free) coupled to Chern Simons theory.

Evidence for this 3d bosonization includes the matching of the thermal free energies [167]

and the correlation functions [166, 168]. For example, the fermionic two point function

is

〈
J0
f (−q) J0

f

〉
= −Nf

tan (πλf/2)

4πλf
|q| (2.119)

and the critical bosonic two point function is

〈
J0
b (−q) J0

b

〉
= Nb

4πλb
tan (πλf/2)

|q| . (2.120)

Here, λ = N
k

is the ’t Hooft coupling and k is the level. What is important to note is

that the two correlation functions are the same after some redefinitions [168].

The precise mapping between the parameters is given by:

λf = λb − sign (λb) (2.121)

Nf =
Nb (1− |λ|b)
|λ|b

. (2.122)

At present, the evidence for the Klebanov-Polyakov O (N) /HS correspondence includes

the most striking and constructive derivation of the duality at the UV fixed point [209]8

and the matching of the bulk and boundary three point functions [170, 171]. Furthermore,

the 1-loop correction to the (three-sphere) free-energy has also been computed on both

sides and it was seen that indeed the corrections do match [172, 173, 174].

8There is an alternative exact renormalization constructive derivation of the higher spin bulk gravity
given in by Douglas et al [169].
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Vasiliev Type A Vasiliev Type B
∆ = 1 Free scalar Critical fermion
∆ = 2 Critical scalar Free fermion:

Table 2.1: The original HS/CFT dualities [146].

The value for the tree level contribution to the free O (N) vector model is

F (0) =
N

8

(
2 ln 2− 3ζ (3)

π2

)
(2.123)

while the 1-loop contribution vanishes i.e.

F (1) = 0. (2.124)

In [172], the value for the 1-loop was computed and found to be

F
(1)
∆=1 =

N

8

(
2 ln 2− 3ζ (3)

π2

)
. (2.125)

There is agreement on both sides of the HS AdS/CFT correspondence if we make the

identification:

1

GN

F
(0)
min =

(N − 1)

8

(
2 ln 2− 3ζ (3)

π2

)
. (2.126)

For the critical O (N) vector model such problems do not arise. Indeed, the 1-loop

correction - on both sides of the duality - is

F
(1)
critical = F

(1)
min = −ζ (3)

8π2
. (2.127)

Finally, theO (N) vector/Higher-spin Correspondence is in agreement with the Maldacena-

Zhibodoev theorem [175, 176].
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Chapter 3

Vector Models And Collective Field

Theory

On your way towards becoming a bad theoretician, take your own immature theory, stop

checking it for mistakes, don’t listen to colleagues who do spot weaknesses, and start

admiring your own infallible intelligence.

-Gerard ’t Hooft.

The concept of collective fields has found many applications in diverse fields in physics.

A classic example being in the Bohm-Pines theory of plasma oscillations [182, 183, 184].

In the large-N limit an analogous concept is given by the Jevicki-Sakita Collective Field

Theory [185, 186].

In this Chapter, we will give a review of Collective Field Theory approach. In particular,

we will obtain the large-N collective Hamiltonian for the O(N) vector model and the

gap-equation.
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3.1 Hamiltonian And Single Time Bi-locals

Let us consider a generic theory with a kinetic term of the form

K̂ = −1

2

N∑
a=1

∂

∂Xa

∂

∂Xa

. (3.1)

In general, the original variable Xa might well not be gauge invariant. That is, the

original variable might not be written down in terms of some master field.1

For example, since we will be working with O (N) bilocals, we wish to rewrite our theory

in terms of the gauge invariant variable (the Xas are in the fundamental representation)

denoted schematically by ψA.

It is straightforward to show that, in general

−2K̂ =
N∑
a=1

∂

∂Xa

∂

∂Xa

=

(
N∑
a=1

∂2ψA
∂Xa∂Xa

)
∂

∂ψA
+

(
N∑
a=1

∂ψA
∂Xa

∂ψB
∂Xa

)
∂

∂ψA

∂

∂ψB

= ωA∂A + ΩAB∂A∂B, (3.2)

where

ωA =
N∑
a=1

∂2ψA
∂Xa∂Xa

(3.3)

ΩAB =
N∑
a=1

∂ψA
∂Xa

∂ψB
∂Xa

. (3.4)

To explicitly show the Hermiticity of the kinetic term, we perform a similarity transfor-

mation:

1The concept of the large-N master field is due to Witten [187].
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∂A → ∂A −
1

2
∂A ln J (3.5)

Under this similarity transformation, the kinetic term becomes

−2K̂ = ωA∂A + ΩAB∂A∂B

→ ωA

(
∂A −

1

2
∂A ln J

)
+ ΩAB

(
∂A −

1

2
∂A ln J

)(
∂B −

1

2
∂B ln J

)
= ωA∂A −

1

2
ωA∂A ln J + ΩAB∂A (∂B)− 1

2
ΩAB∂A (∂B ln J)− 1

2
ΩAB∂A ln J∂B +

1

4
∂A ln J∂B ln J

= ωA∂A −
1

2
ωA∂A ln J + ∂A (ΩAB∂B)− (∂AΩAB) ∂B −

1

2
ΩAB (∂A∂B) ln J − 1

2
ΩAB (∂B ln J) ∂A

− 1

2
ΩAB∂A ln J∂B +

1

4
∂A ln J∂B ln J. (3.6)

Using the fact that ΩAB = ΩBA it follows that

(∂AΩAB) ∂B = (∂BΩBA) ∂A. (3.7)

Accordingly, the kinetic term can then be written as

−2K̂ = (ωA − ∂BΩBA − ΩAB (∂B ln J)) ∂A−
1

2
ωA∂A ln J+∂A (ΩAB∂B)+

1

4
ΩAB∂A ln J∂B ln J.

(3.8)

We require that the kinetic term be explicitly Hermitian. This means that the term

multiplying the derivative ∂A should vanish. That is,

ωA − ∂B (ΩBA) = ΩAB (∂B ln J) . (3.9)

In the large-N limit we have ln J ∼ N , ωA ∼ N and Ω ∼ 1 and it is clear that (3.9)

simplifies to
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ωA = ΩAB (∂B ln J) . (3.10)

This is sufficient for obtaining the bilocal ground state and spectra. There are counter-

terms which we do not consider.

Inserting (3.10) into (3.8) yields

−2K̂ = −1

2
ωA∂A ln J + ∂A (ΩAB∂B) +

1

4
ΩAB∂A ln J∂B ln J

= −1

2
ΩAB∂B ln J∂A ln J + ∂A (ΩAB∂B) +

1

4
∂A ln J∂B ln J

= ∂AΩAB∂B −
1

4
∂A ln JΩAB∂B ln J

= ∂AΩAB∂B −
1

4
ωAΩ

−1
ABωB. (3.11)

Thus,

K̂ = −1

2
∂AΩAB∂B +

1

8
ωAΩ

−1
ABωB

= −1

2
∂AΩAB∂B +

1

8
(∂A ln J)ΩAB (∂B ln J) . (3.12)

For the O (N) vector model the set of gauge invariant quantities is given by the bilocals

which are defined via

ψxy =
N∑
a=1

φa (x)φa (y) (3.13)

which is only defined when x < y. More generally, we define

Φxy =


ψxy x < y

ψyx x > y

(3.14)
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Since the bilocals Φxy are symmetric, we have

∂

∂ψxy
Φx′y′ = δxx′δyy′ + δxy′δy′x. (3.15)

In general, the operators will act on functionals of Φxy.

For the “joining” operator ΩAB, we obtain:2

ΩAB =

∫
dz

∂

∂φa (z)

N∑
b=1

φb (x)φb (y)
∂

∂φa (z)

N∑
c=1

φc (x′)φc (y′) = Ωxy,x′y′

= δ (x− x′)Φyy′ + δ (x− y′)Φyx′ + δ (y − x′)Φxy′ + δ (y − y′)Φxx′ (3.16)

with A = (xy).

Let

XAB = Xxy;x′y′ = δ (x− x′)Φyy′ . (3.17)

Then the “joining” operator can be written as

ΩAB = XAB +XAB̄ +XĀB +XĀB̄, (3.18)

where

A = (x, y) , Ā = (y′.x′) (3.19)

B = (x′, y′) , B̄ = (y′, x′) (3.20)

2In the original formulation, in what was called loop space, the operator ΩC used to join loops while
ωC used to split the loops. More schematically, Ω (C,C) =

∑
φC+C′ and ωC =

∑
φCφC′ .
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For the “splitting” operator, we obtain

ωA =

∫
dz

∂

∂φa (z)

∂

∂φa (z)

N∑
b=1

φb (x)φb (y)

= 2Nδxy. (3.21)

In this notation, the equation satisfied by the Jacobian - namely, (3.10) - is

XAB∂B ln J +XAB̄∂B ln J +XĀB∂B ln J +XĀB̄∂B ln J = 2Nδxy. (3.22)

Note that the operator Ω cannot be inverted. However, one can find a solution to (3.22)

provided that:

XAB∂B ln J =
1

4
(2Nδxy) =

N

2
δxy (3.23)

and

XAB̄∂B ln J = XĀB∂B ln J = XĀB̄∂B ln J =
N

2
δxy. (3.24)

A solution to the above conditions is given by

J = [det (Φxy)]
N/2 (3.25)

or

ln J =
N

2
Tr lnΦ. (3.26)
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Indeed, one can check that3

XAB∂B ln J =

∫
dx′
∫
dy′

x′<y′

δ (x− x′)Φyy′
∂

∂ψx′y′

(
N

2
Tr lnΦ

)

=

∫
dx′
∫
dy′

x′<y′

δ (x− x′)Φyy′
N

2
× 2×

(
Φ−1

)
y′x′

=
N

2

∫
dx′
∫
dy′δ (x− x′)Φyy′

(
Φ−1

)
y′x′

=
N

2

∫
dx′
∫
dy′δ (x− x′) δ (y − x′) =

N

2
δ (x− y) . (3.27)

One can easily confirm that the other three terms yield the same result.

Now evaluating the last term appearing in (3.12) yields

−1

4
ωAΩ

−1
ABωB = −1

4

∫
dx

∫
dy

x<y

∫
dx′
∫
dy′

x′<y′

∂

∂ψxy

(
N

2
Tr logΦ

)

×Ωxy;x′y′
∂

∂ψx′y′

(
N

2
Tr logΦ

)
= −1

4

∫
dx

∫
dy

x<y

∫
dx′
∫
dy′

x′<y′

(
N

2

)2

2Φ−1
yxΩxy;x′y′2Φ

−1
y′x′

= −1

4

∫
dx

∫
dy

∫
dx′
∫
dy′

N2

4
Φ−1
yxΩxy;x′y′Φ

−1
y′x′

= −1

4

∫
dx

∫
dy

∫
dx′
∫
dy′

N2

4
Φ−1
yx

(
δ (x− x′)Φyy′ + δ (x− y′)Φyx′

+δ (y − x′)Φxy′ + δ (y − y′)Φxx′
)
Φ−1
y′x′

= −1

4

(
N2

4

)
× 4Tr

(
Φ−1

)
= −N

2

4
Tr
(
Φ−1

)
. (3.28)

3For a precise (discrete) version of the answer below, including subleading corrections to the Jacobian,
see [188].
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Similarly, for the first term in (3.12), we obtain

∂AΩAB∂B =

∫
dx

∫
dy

x<y

∫
dx′
∫
dy′

x′<y′

∂

∂ψxy
Ωxy;x′y′

∂

∂ψx′y′

=

∫
dx

∫
dy

∫
dx′
∫
dy

∂

∂Φxy
Ωxy;x′y′

∂

∂Φx′y′

=4Tr

(
∂

∂Φ
Φ
∂

∂Φ

)
. (3.29)

By making use of (3.28) and (3.29) in (3.12), we get

K̂ = − 2

N
Tr

(
∂

∂Φ
Φ
∂

∂Φ

)
+

1

8
Tr
(
Φ−1

)
. (3.30)

To summarize the leading collective field theory Hamiltonian reads

ĤCol = − 2

N
Tr

(
∂

∂Φ
Φ
∂

∂Φ

)
+

1

8
Tr
(
Φ−1

)
+ V. (3.31)

3.2 Covariant/Path Integral And Two Time Bilocals

The Lagrangian for the O (N) (φ2)
2
vector model is

L =
1

2
∂µφ

a∂µφa − 1

2
m2φaφa − g

4!
(φaφa)2 , (3.32)

where g is the coupling constant and, in this thesis, the signature is given by (+,−, · · · ,−).

It is clear by now the goal of collective field theory is to rewrite a given theory in terms

of (gauge) invariant quantities. For the functional/path integral description of the O (N)

vector model the invariants are given by the two-time bilocals:
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ψ (xµ, yµ) = ψxy

=
N∑
a=1

φa (tx, ~x)φa (ty, ~y) . (3.33)

Note that we have denoted the times as tx and ty. This was done to emphasize the point

that, in general, we work with unequal bilocals. That is, the time at ~x is not necessarily

equal to the time at point ~y.

By changing variables from the O (N) fields φa (a = 1, 2, . . . , N) to the invariant bilocals,

we introduce a non-trivial Jacobian:

∫
Dφ =

∫
DψJ. (3.34)

Using collective field theory, one can show that this Jacobian satisfies the same equation

as that of the previous section, except that the bilocals are two-time bilocals [186, 189,

226]. The log of the Jacobian (to leading order) is given by

ln J =
N

2
Tr lnψ. (3.35)

Accordingly, the partition function becomes

Z =

∫
DφeiS[φ]

=

∫
Dψeln J+iS

=

∫
DψeiSeff . (3.36)

where the effective action is given by
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Seff = −iN
2

Tr lnψ + S. (3.37)

In order to explicitly exhibit the large-N dependence, we rescale the fields as follows:

φ→
√
Nφ, ψ → Nψ (3.38)

With this rescaling, the action becomes

S = N

∫
ddx

(
1

2
∂µφ

a∂µφa − 1

2
m2φaφa − gN

4!
(φaφa)2

)
= N

∫
ddx

[
1

2

(
−
∫
ddyδ (x− y) ∂2

yψxy

)
− 1

2
m2ψxx −

λ

4!
(ψxx)

2

]
, (3.39)

where λ = gN is the ’t Hooft coupling.

As N → ∞, the leading large-N contribution is given by the minimum of the effective

action. This shows the power of the collective field theory approach: the large-N limit

emerges as a semi-classical limit of an effective action which in general is amenable to a

systematic 1/
√
N expansion. This will also be exhibited in the Hamiltonian, where the

large-N configuration is given by the minimum of an effective potential.

Using translational invariance, we write

ψxy =

∫
ddp

(2π)d
eik(x−y)ψp, (3.40)

where kx is short-hand for kµxµ.
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In momentum space, the effective action can be written as

Seff
N

=

∫
ddx

((
−1

2
lim
x→y

∂2
xψxy

)
+

1

2
m2ψxx −

λ

4!
(ψxx)

2

)
− i

2
Tr lnψ

=

∫
ddx

(
−1

2
lim
x→y

∂2
x

(∫
ddk

(2π)d
eik(x−y)ψk

))
+

1

2
m2

∫
ddx

(∫
ddk

(2π)d
eik(x−x)ψk

)

− λ

4!

∫
ddx

∫
ddk1

(2π)d
eik1(x−x)ψk1

∫
ddk2

(2π)d
eik2(x−x)ψk2 −

i

2
Tr lnψ

=
V

2

∫
ddk

(2π)d
k2ψk +

m2V

2

∫
ddk

(2π)d
ψk −

λV

4!

∫
ddk1

(2π)d

∫
ddk2

(2π)d
ψk1ψk2 −

i

2
Tr lnψ.

(3.41)

That is,

Seff
NV

=
1

2

∫
ddk

(2π)d
k2ψk +

m2

2

∫
ddk

(2π)d
ψk−

λ

4!

∫
ddk1

(2π)d

∫
ddk2

(2π)d
ψk1ψk2−

i

2
Tr lnψ (3.42)

The saddle point equations can be obtained by varying the effective action with respect

to ψk:

0 =
δSeff
δψk

=
1

2
k2 +

m2

2
− 2λ

4!

∫
ddk1

(2π)d
ψk1 −

i

2
ψ−1
k ,

which implies

ψ0 (k) =
i

k2 +m2 − λ
6

∫
ddl

(2π)d
ψ0 (l)

. (3.43)

The gap-equation follows by simply integrating both sides of (3.43):
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s =

∫
ddp

(2π)d
i

p2 +m2 − s
. (3.44)

where

s =

∫
ddp

(2π)d
ψ0 (p) . (3.45)

We have assumed that these expressions are regularized, when required.

Other Examples of Gap Equations

In the next chapter, we will show that the single-time large-N background is given

by (see e.g. (4.10))

ψ0
~k

=
1

2

(
~k2 +m2 +

λ

6

∫
dd−1~k

(2π)d−1
ψ~k

)−1/2

. (3.46)

The gap equation in this case is readily obtained to be

∆ =
1

2

∫
dd−1~k

(2π)d−1

1√
~k2 +m2 + λ

6

∫
dd−1~k′

(2π)d−1ψ~k′
. (3.47)

Recall that superconducting materials have a variety of wonderful physical phenom-

ena including their infinite conductivity, the Meissner effect, critical field, flux quanti-

zation, isotope effect and a distinct behaviour for the specific heat [190]. In particular,

close to the critical temperature the superconducting specific heat Cs is initially larger

than the normal metallic specific heat Cn of a metal. It then drops below the normal

specific heat and is given by [190]

Cs ∝ exp

(
− ∆0

kBT

)
(3.48)
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where kB is the Boltzmann constant and ∆0 is the energy difference between the

ground state and the excited states. This energy gap satisfies a relation of the form

[190]:

1

N (0)V
=

1

2

∫ ~ωc

0

tanh
(

1
2
β (ξ2 + ∆2)

1/2
)

(ξ2 + ∆2)1/2
dξ, (3.49)

where β = 1
kBT

, ωc is some critical angular frequency, V is the electron-fermion

coupling potential and N (0) denotes the number density at the fermi level.

A more direct field theoretic gap equation, in contrast to the gap equation in su-

perconductivity, is the QCD gap for the dressed quark propagator S (p) equation

[191]:

S (p) =
1

Z2 (iγαpα +mbare) + Z1

∫ Λ

q
g2Dµν (p− q) λa

2
γµS (q) Γaν (q, p)

(3.50)

Here, Dµν (p− q) is the dressed gluon propagator, mbare the bare mass Γaν (q, p) the

quark-gluon vertex and Z1 and Z2 are wave-renormalization constants [191].
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Chapter 4

Constructing AdS4 At The Free

Bosonic Fixed Point

We know a lot of things, but what we don’t know is a lot more.

- Edward Witten.

We have already mentioned that a formal (mathematical) proof of the AdS/CFT cor-

respondence is lacking. In particular, is the issue of the extra radial dimension. Over

the years various approaches have been proposed to try and tackle these issues. Some

of these approaches actually attempt to reconstruct the bulk gravity operators from the

CFT data [192, 193, 194, 195] or use concepts of Multiscale Entanglement Renormali-

sation Ansatz (MERA) to see how the bulk spacetime emerges [196, 197, 198, 199, 200,

201, 202, 203, 204, 205, 206]. 1 The much more tractable O (N)vector model/HS duality

could give us a glimpse of the inner workings of the AdS/CFT correspondence and the

collective field theory formalism has indeed proven to be a powerful tool to elucidate

these issues [209, 210, 211, 212, 213, 214, 216].2

1The second approach i.e. the “geometry from entanglement” is beyond the scope of this dissertation,
but we recommend the recent book by Takayanagi and Rangamani [207].

2One example that illustrates the power of collective field theory is in the N → N − 1 shift that we
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4.1 Hamiltonian/Collective Field Theory Canonical

Quantization Of The Vector Model

The Lagrangian for the O (N) critical vector model can be written as

L =
1

2
(∂µφ

a) (∂µφa)− 1

2
m2φaφa − g

4!
(φaφa)2 . (4.1)

Hence, the Hamiltonian is

H =
1

2
πaxπ

a
x +

1

2
m2φaφa +

g

4!
(φaφa)2

=
1

2
πaxπ

a
x + V.

As is standard by now, the equal time collective field theory bilocals are

ψ~x,~y (t) =
N∑
a=1

φa (t, ~x)φa (t, ~y) . (4.2)

and the collective field theory Hamiltonian reads

H = 2Tr (ΠψΠ) +
N2

8
Trψ−1 +

∫
dd−1x

(
1

2
m2ψ~x~x +

1

2
lim
~y→~x
−∂2ψ~y~x +

g

4!
ψ2
~x~x

)
. (4.3)

We can rescale the bilocal fields and the conjugate momenta as

ψ → Nψ, Π→ 1

N
Π. (4.4)

It is then not difficult to show that the collective field theory Hamiltonian becomes

mentioned at the end of Chapter 2. In the collective field approach, the shift appears naturally once we
note that the Jacobian has a term of order O

(
N0
)

which after regularization is µ = (detψ)
1
.
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H =
2

N
Tr (ΠψΠ) +NVeff , (4.5)

where the effective potential is

Veff =
1

2
m2ψ~x~x +

1

2
lim
~y→~x
−∂2ψ~y~x +

λ

4!
ψ2
~y~x (4.6)

and λ = gN .

The large-N background configuration can be obtained by varying the effective potential

with respect to the bilocals. The kinetic energy is subleading in N .

In momentum space one can show that the effective potential can be written as

Veff = V

[
1

8

∫
dd−1~k

(2π)d−1

(
ψ~k
)−1

+
1

2

∫
dd−1~k

(2π)d−1
ψ~k

(
m2 + ~k2

)
+
λ

4!

(∫
dd−1~k

(2π)d−1
ψ~k

)]
,

(4.7)

where V =
∫
dd−1x is the volume of the space we are considering and we have used the

translationally invariant ansatz:

ψ~x~y =

∫
dd−1~k

(2π)d−1
ei
~k·(~x−~y)ψ~k. (4.8)

The equations of motion are

0 =
δVeff
δψ~k

= −1

8
ψ−2
~k

+
1

2

(
~k2 +m2

)
+

λ

12

∫
dd−1~k

(2π)d−1
ψ~k

⇒ψ−2
~k

= 4

(
~k2 +m2 +

λ

6

∫
dd−1~k

(2π)d−1
ψ~k

)
. (4.9)
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It follows from (4.9) that

ψ0
~k

=
1

2

(
~k2 +m2 +

λ

6

∫
dd−1~k

(2π)d−1
ψ~k

)−1/2

. (4.10)

Note that the condition that the renormalized mass vanishes is the same in both the

Lagrangian and Hamiltonian formulations. Imposing the condition that the renormalized

mass vanishes - this is to preserve conformal invariance - leads to ( we have in mind d = 3):

ψ0
~k

=
1

2
√
~k2
. (4.11)

Expanding about this large-N background, we have:

ψ~x~y = ψ0
~x~y +

1√
N
η~x~y. (4.12)

Let us now focus solely on the free O(N) vector model.

By expanding (4.5), with Π =
√
Np, the quadratic collective field theory Hamiltonian

can be written as [209]:

H2 = 2Tr (pψ0p) +
1

8
Tr
(
ψ−1

0 ηψ−1
0 ηψ−1

0

)
. (4.13)

Recall that

ψ0
~x~y =

∫
dd−1~k1

(2π)
d−1
2

ei
~k1·~x1ψ0

~k1

(4.14)

and the fluctuations are
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η~x~y =

∫
dd−1~k1

(2π)
d−1
2

∫
dd−1~k2

(2π)
d−1
2

e
−E~k1~k2 tei

~k1·~x1ei
~k2·~x2 . (4.15)

In addition, we have

p~x~y =

∫
dd−1~q

(2π)d−1
ei~q·(~x−~y)p~q. (4.16)

The Large-N background is (4.11):

ψ0
~k

=
1

2
∣∣∣~k∣∣∣ . (4.17)

Using the Hamiltonian equations of motions, we have

ψ̇0
~x~y =

δH2

δp~x~y

= 2
(

(pψ0)~x~y + (ψ0p)~x~y

)
= ψ̇0

~x~y, (4.18)

and

ṗ~x~y = − δH2

δη~x~y

= −1

8

((
ψ−1

0 ηψ−2
0

)
~x~y

+
(
ψ−2

0 ηψ−1
0

)
~x~y

)
= ṗ~x~y. (4.19)

where we have used the symmetry ~x←→ ~y.
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Taking another time derivative of (4.18) leads to

ψ̈~x~y = 2 (ṗψ0 + ψ0ṗ)~x~y

= 2

(
−1

8

)(
ψ−1

0 ηψ−2
0 ψ0 + ψ−2

0 ηψ−1
0 ψ0 + ψ0ψ

−1
0 ηψ−2

0 + ψ0ψ
−2
0 ηψ−1

0

)
= −1

4

(
ψ−1

0 ηψ−1
0 + ψ−2

0 η + ηψ−2
0 + ψ−1

0 ηψ−1
0

)
= −1

4

(
2ψ−1

0 ηψ−1
0 + ψ−2

0 η + ηψ−2
0

)
. (4.20)

By using the expressions given in (4.14) and (4.15) one can easily show that in momentum

space

E2
~k1 ~k2

A ~k1 ~k2
=

1

4

(
ψ0−1

k1
+ ψ0−1

k2

)2

A ~k1 ~k2
= ω2

~k1 ~k2
A ~k1 ~k2

, (4.21)

where

ω ~k1 ~k2
= ±

(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣) . (4.22)

This corresponds to the relativistic energy of two combined massless particles.

Repeating the derivation directly in momentum space, we find that the first term on the

R.H.S. of (4.13) yields

2Tr
(
pψ0p

)
= 2

∫
dd−1~x1

∫
dd−1~x2

∫
dd−1~x3p~x1~x2ψ

0
~x2~x3

p~x3~x1

= 2

∫
dd−1~x1

∫
dd−1~x2

∫
dd−1~x3

∫
dd−1~k1

(2π)
d−1
2

∫
dd−1~k2

(2π)
d−1
2

∫
dd−1~k3

(2π)
d−1
2

∫
dd−1~k4

(2π)
d−1
2

∫
dd−1~p

(2π)d−1

ei
~k1·~x1+i~k2·~x2ei~p·(~x2−~x3)ei

~k3·~x3+i~k4·~x1p~k1~k2ψ
0
~pp~k3~k4

= 2

∫
dd−1~k1

∫
dd−1~k2p~k1~k2ψ

0
~k2
p−~k2,−~k1 (4.23)

95



and for the second term, we obtain

1

8
Tr
(
ψ−1

0 ηψ−1
0 ηψ−1

0

)
=

1

8

∫
dd−1~x1

∫
dd−1~x2

∫
dd−1~x3

∫
dd−1~x4

∫
dd−1~p

(2π)d−1

∫
dd−1~q

(2π)d−1

∫
dd−1~k1

(2π)
d−1
2

×
∫

dd−1~k2

(2π)
d−1
2

∫
dd−1~k3

(2π)
d−1
2

∫
dd−1~k4

(2π)
d−1
2

ei~p·(~x1−~x2)ei
~k1·~x2ei

~k2·~x3ei~q·(~x3−~x4)ei
~k3·~x4ei

~k4·~x1ψ0−2

~p η~k1~k2ψ
0−1

~p η~k3~k4

=

∫
dd−1~k1

(2π)
d−1
2

∫
dd−1~k2

(2π)
d−1
2

∫
dd−1~k3

(2π)
d−1
2

∫
dd−1~k4

(2π)
d−1
2

∫
dd−1~p

(2π)d−1

∫
dd−1~q

(2π)d−1
(2π)4(d−1) δ

(
~p+ ~k4

)
× δ

(
~k1 − ~p

)
δ
(
~k2 + ~q

)
δ
(
~k3 − ~q

)
ψ0−2

~p η~k1~k2ψ
0−1

~p η~k3~k4

=
1

8

∫
dd−1~k1

∫
dd−1~k2ψ

0−2

~k1
η~k1~k2ψ

0−1

~k1
η−~k2,−~k1 . (4.24)

The free effective quadratic collective field Hamiltonian in momentum space then reads

H2 = 2Tr (pψ0p) +
1

8
Trψ−1

0 ηψ−1
0 ηψ−1

0

= 2

∫
dd−1~k1

∫
dd−1~k2p~k1~k2ψ

0
~k2
p−~k2,−~k1 +

1

8

∫
dd−1~k1

∫
dd−1~k2ψ

0−2

~k1
η~k1~k2ψ

0−1

~k1
η−~k2,−~k1 .

(4.25)

In momentum space the equations of motion are

η̇ =
δH2

δp~k1~k2

= 2
(
ψ0
~k2
p−~k2,−~k1 + p−~k2,−~k1ψ

0
~k1

)
= 2

(
ψ0
~k1

+ ψ0
~k2

)
p−~k2,−~k1 , (4.26)
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and

ṗ ~k1 ~k2 = − δH

δη ~k1 ~k2

= −1

8

(
ψ0−1

~k2
ψ0−2

~k1
+ ψ0−2

~k2
ψ0−1

~k1

)
η ~k1 ~k2 . (4.27)

Then,

η̈ ~k1 ~k2 = 2
(
ψ0
~k1

+ ψ0
~k2

)
ṗ−~k2,−~k1

= 2
(
ψ0
~k1

+ ψ0
~k2

){
−1

8

(
ψ0−1

~k2
ψ0−2

~k1
+ ψ0−2

~k2
ψ0−1

~k1

)
η~k1~k2

}
= −1

4

(
ψ0
~k1
ψ0−1

~k2
ψ0−2

~k1
+ ψ0

~k1
ψ0−2

~k2
ψ0−1

~k1
+ ψ0

~k2
ψ0−1

~k2
ψ0−2

~k1
+ ψ0

~k2
ψ0−2

~k2
ψ0−1

~k1

)
η~k1~k2

= −1

4

(
ψ0−1

~k2
ψ0−1

~k1
+ ψ0−2

~k2
+ ψ0−2

~k1
+ ψ0−1

~k2
ψ0−1

~k1

)
η~k1~k2

= −1

4

(
ψ0−1

~k1
+ ψ0−1

~k2

)2

η~k1~k2 = −
(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)2

η ~k1 ~k2 . (4.28)

The Lagrangian density is

L = pẋ−H

=
1

2
(
ψ0
~k1

+ ψ0
~k2

) η̇−~k2,−~k1 η̇~k1~k2 − 2p~k1~k2ψ
0
~k2
p−~k2,−~k1 + V

=
1

2
(
ψ0
~k1

+ ψ0
~k2

) η̇−~k2,−~k1 η̇~k1~k2 − 2

 1

2
(
ψ0
~k1

+ ψ0
~k2

) η̇−~k2,−~k1
ψ0

~k2

 1

2
(
ψ0
~k1

+ ψ0
~k2

) η̇~k1~k2


=
1

2
(
ψ0
~k1

+ ψ0
~k2

) η̇−~k2,−~k1 η̇~k1~k2 − 1

4
(
ψ0
~k1

+ ψ0
~k2

)2 η̇−~k2,−~k1

(
ψ0
~k1

+ ψ0
~k2

)
η̇~k1~k2

=
1

4
(
ψ0
~k1

+ ψ0
~k2

) η̇−~k2,−~k1 η̇~k1~k2 − 1

16
η~k1~k2

(
ψ0−1

~k2
ψ0−2

~k1
+ ψ0−2

~k2
ψ0−1

~k1

)
η~k1~k2 . (4.29)
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That is,

L =
1

4

∫
dd−1~k1

∫
dd−1~k2η̇~k1~k2

1(
ψ0
~k1

+ ψ0
~k2

) η̇−~k2,−~k1 − 1

16

∫
dd−1~k1

×
∫
dd−1~k2η~k1~k2

(
ψ0−1

~k2
ψ0−2

~k1
+ ψ0−2

~k2
ψ0−1

~k1

)
η~k1~k2

=
1

2

∫
dd−1~k1

∫
dd−1~k2η~k1~k2Ôη−~k2,−~k1 , (4.30)

where

Ô~k1~k2;~k3~k4
=

− 1

2
(
ψ0
~k1

+ ψ0
~k2

)∂2
t −

1

8

(
ψ0−1

~k2
ψ0−2

~k1
+ ψ0−2

~k2
ψ0−1

~k1

)
× δ

(
~k1 + ~k4

)
δ
(
~k2 + ~k3

)
. (4.31)

For future reference, we need to find the inverse of the operator Ô~k1~k2;~k3~k4
. The inverse

is formally defined via

∫
dd−1~k3

∫
dd−1~k4Ô~k1~k2;~k3~k4

(t) Ô−1
~k3~k4;~p1~p2

(t− t′) = δ~k1~p1δ~k2~p2δ (t− t′) (4.32)

with

Ô−1
~k1~k2;~p1~p2

=

∫
dE

(2π)
e−iE(t−t′)Ô−1

~k1~k2;~p1~p2;E
. (4.33)

It is clear to see that the inverse is given by

Ô−1
~k3~k4;~p1~p2;E

=
iδ
(
~k3 + ~p2

)
δ
(
~k4 + ~p1

)
E2

2

(
ψ0
~k3

+ψ0
~k4

) − 1
8

(
ψ0−1

~k3
ψ0−2

~k4
+ ψ0−2

~k3
ψ0−1

~k4

) . (4.34)
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After some manipulations, we obtain

O−1
~k3~k4;~p1~p2;E

=
iδ
(
~k3 + ~p2

)
δ
(
~k4 + ~p1

)
E2

2

(
ψ0
~k3

+ψ0
~k4

) − 1
8

(
ψ0−1

~k3
ψ0−2

~k4
+ ψ0−2

~k3
ψ0−1

~k4

)

=
2i
(
ψ0
~k3

+ ψ0
~k4

)
δ
(
~k3 + ~p2

)
δ
(
~k4 + ~p1

)
E2 − 1

4

(
ψ0−1

~k3
ψ0−2

~k4
+ ψ0−2

~k3
ψ0−1

~k4

)(
ψ0
~k3

+ ψ0
~k4

)
=

2i
(
ψ0
~k3

+ ψ0
~k4

)
E2 − 1

4

(
ψ0−1

~k3
+ ψ0−1

~k4

)2 δ
(
~k3 + ~p2

)
δ
(
~k4 + ~p1

)
. (4.35)

Since ψ~k = 1

2|~k| , the inverse can be written as

Ô−1
~k3~k4;~p1~p2;E

=
2i
(
ψ0
~k3

+ ψ0
~k4

)
E2 − 1

4

(
ψ0−1

~k3
+ ψ0−1

~k4

)2 δ
(
~k3 + ~p2

)
δ
(
~k4 + ~p1

)

=

 1∣∣∣~k3

∣∣∣ +
1∣∣∣~k4

∣∣∣
 iδ

(
~k3 + ~p2

)
δ
(
~k4 + ~p1

)
E2 −

(∣∣∣~k3

∣∣∣+
∣∣∣~k4

∣∣∣)2 . (4.36)

As expected, the poles of the propagator correspond to the dispersion relation (4.22).

4.2 The Map

The collective field map between the bilocal coordinates and the AdS4 space where

Vasiliev’s higher spin gauge theory lives was first obtained by the comparison of the

generators on both sides of the correspondence in the light-cone gauge with equal x+
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quantization. The AdS generators had been computed in Metsaevs’s paper [217] and are

p̂− = −p
xpx + pzpz

2p+
(4.37)

p̂+ = p+ (4.38)

m̂+− = x+p̂− − x−p+ (4.39)

m̂+x = x+px − xp+ (4.40)

m̂−x = x−px − xp− +
pθpz

p+
(4.41)

d̂ =
(
x+p− + x−p+ + xpx + zpz + da

)
(4.42)

k̂− = −1

2

(
x2 + z2

)
p̂− + x−

(
x−p+ + xpx + zpz + da

)
(4.43)

k̂+ = x+p̂− + x+ (xpx + zpz + da)−
1

2

(
x2 − z2

)
px

+ x
(
x−p+ + zpz + da

)
+ zpθ (4.44)

where p̂, m̂AB(A,B = +,−, x), d̂ and k̂A are the generators of momentum, Lorentz rota-

tions, dilations and the special conformal transformations respectively.

Starting from the O (N) vector model, the 3d conformal generators were computed and
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found to be [209]:

p̂− = p̂−1 + p̂−2 (4.45)

p̂+ = p̂+
1 + p̂+

2 (4.46)

p̂i = p̂i1 + p̂i2 (4.47)

m̂+i = x+pi − xi1p+
1 − xi2p+

2 (4.48)

m̂−i = x+pi − xi1p−1 − xi2p−2 (4.49)

d̂ = x+p− + x−1 p
+ + x2p

−
2 + xi1p

i
1

+ xi2p
i
2 + 2dφ (4.50)

k̂− = xi1x
i
1

pj1p
j
1

4p+
1

+ xi2x
i
2

pj2p
j
2

4p+
2

+ x−1
(
x−1 p

+
1 + xi1p

i
1 + dφ

)
+ x−2

(
x−2 p

+
2 + xi2p

i
2 + dφ

)
(4.51)

k̂+ = x+p+ x+
(
xi1p

i
1 + xi2p

i
2 + 2dφ

)
− 1

2
xi1x

i
1p

+
1 −

1

2
xi2x

i
2p

+
2 (4.52)

k̂i = −x+

(
xi1
pj1p

j
1

2p+
1

+ xi1
pj1p

j
1

2p+
1

+ xi1p
i
1 + xi2p

i
2

)

− 1

2
xj1x

j
1p
i
1 −

1

2
xj2x

j
2p
i
2

+ xi1
(
x−1 p

+
1 + xj1p

j
1 + dφ

)
+ xi2

(
x−2 p

−
2 + aqxj1p

j
1 + dφ

)
(4.53)

where the labels ~x1 ( ~p1) and ~x2 ( ~p2) are the coordinates (momenta) of the bilocals. In

other words, the bilocals are

ψ~x1~x2 =
N∑
i=1

φi (t, ~x1)φi (t, ~x2) . (4.54)

The map can then be obtained by comparing the generators. For example, if one compares

(4.38) and (4.46), one has
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p+ = p+
1 + p+

2 . (4.55)

Similarly, comparing (4.40) with (4.48) leads to

xp+ = xi1p
+
1 − xi2p+

2 (4.56)

or

x =
xi1p

+
1 − xi2p+

2

p+
1 + p+

2

. (4.57)

The light-cone map – which results from carrying all the other comparisons – can then

be written as [209]:

x− =
x−1 p

+
1 + x−2 p

+
2

p+
1 + p+

2

(4.58)

p+ = p+
1 + p+

2 (4.59)

x =
x1p

+
1 + x2p

+
2

p+
1 + p+

2

(4.60)

px = p1 + p2 (4.61)

z =
(x1 − x2)

√
p+

1 p
+
2

p+
1 + p+

2

(4.62)

pz =

√
p+

2

p+
1

p1 −

√
p+

2

p+
2

p2 (4.63)

pθ =
√
p+

1 p
+
2

(
x−1 − x−2

)
+
x1 − x2

2

(√
p+

2

p+
1

p1 +

√
p+

1

p+
2

pz

)
(4.64)

θ = 2 arctan

(√
p+

2

p+
1

)
(4.65)
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Of great significance is the equation for z i.e. (4.62). As mentioned previously it is

important to understand where the extra radial dimension comes from. (Traditionally, it

has been interpreted as a renormalization group flow [218, 219, 220].) What the equation

for z allows us to do is to give this extra dimension a physical interpretation as the

distance between the poles of a dipole. A similar picture also arises in QCD [221].

To explain what θ is, we need first to consider mixed representations of the Lorentz group.

This can be done effectively by considering the construction by Bengtsson et al [222].

More precisely, the mixed representations of the Lorentz group are built from creation

operators. These creation operators can be repackaged into a ket |Φ〉 in the Fock space

defined as [222]:

|Φ〉 =
∞∑
s=1

Φµ1···µsa†µ1 · · · a
†
µs |0〉 , (4.66)

where µ = (0, 1, . . . , z, d− 1) and the creation and annihilation operators satisfy the

commutation relations [209]:

[
aI , aJ†

]
= δIJ ,

[
aI , aJ

]
=
[
aI†, aJ†

]
= 0. (4.67)

Here I, J refer to the transverse directions and also the bulk AdSd+1 z direction.

We require all traces to vanish in order for the representations to be irreducible. This

means that we need to impose the condition that

T |Φ〉 = 0, T = aIaI . (4.68)

More intuitively, this means that we impose the constraint that only two components

will survive.

On physical grounds, in four dimensions, it is convenient to complexify the oscillators
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and write3

α =
1√
2

(a1 + ia2) , α† =
1√
2

(
a†1 + ia†2

)
(4.69)

ᾱ =
1√
2

(a1 − ia2) , ᾱ† =
1√
2

(
a†1 − ia

†
2

)
. (4.70)

It turns out that the ket |Φ〉 can be expanded as [209, 222]:

|Φ〉 =
∞∑
λ=1

(
Φ(λ)

(
ᾱ†
)λ

+ Φ̄(λ)

(
α†
)λ) |0〉 . (4.71)

In addition, the ket |Φ〉 satisfies the new constraint that [222]:

T |Φ〉 = 0, T = ᾱα. (4.72)

In terms of the complexified oscillators, the spin matrix can be written as

M IJ = αI†ᾱJ − ᾱJ†αI . (4.73)

In four dimensions, the only non-vanishing component of the spin matrix is Mxz with

the complex oscillators being given by α = eiθ and ᾱ = e−iθ.

3This has to do with the fact that in four dimensions any spin-s field only has two physical degrees
of freedom viz. the two helicitiesλ = ±s [222].
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The light-cone map allows us to map the bilocals to the higher-spin fields via

Ĥ
(
p+, p, pz, θ

)
=

∫
dp+

1 dp1dp
+
2 dp2J

(
p+

1 , p1, p
+
2 , p2

)
δ
(
p+

1 + p+
2 − p+

)
δ (p1 + p2 − p) δ

(√
p+

2

p+
1

p1 −

√
p+

2

p+
2

p2 − pz
)

δ

(
2 arctan

(√
p+

2

p+
1

)
− θ

)
Ψ̃
(
p+

1 , p1, p
+
2 , p2

)
. (4.74)

where all the transformations are point-like in momentum space and the Jacobian is

J
(
p+

1 , p1, p
+
2 , p2

)
=

1

p+
1

+
1

p+
2

. (4.75)

The inverse map is given by

Ψ̃
(
p+

1 , p1, p
+
1 , p1

)
=

∫
dp+dpdpzdθJ −1

(
p+, p, pz, θ

)
δ

(
p+

1 − p+ cos2 θ

2

)
× δ

(
p+

2 − p+ sin2 θ

2

)
δ

(
p1 −

(1 + cos θ) + p sin θ

2

)
× δ

(
p2 −

(1 + cos θ) + p sin θ

2

)
Ĥ
(
p+, p, pz, θ

)
. (4.76)

The above light-cone map has been generalized to the case when we have a time-like

gauge and reads (E = E1 + E2) [215]:

~p = ~p1 + ~p2 (4.77)

pz = 2
√
|~p1| |~p2| sin

(
ϕ2 − ϕ1

2

)
(4.78)

θ = arctan

(
2~p2 × ~p1

(|~p1| − |~p2|) p

)
. (4.79)

The angles ϕ1 and ϕ2 are defined via [215]:
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~p1 = (|~p1| cosϕ1, |~p1| sinϕ1, ) , ~p2 = (|~p2| cosϕ2, |~p2| sinϕ2) . (4.80)

In time-like gauge, the map between the bilocals and the higher spin field can be written

as

Ĥ ( ~p1, ~p2, θ) =

∫
d~p1d~p2J (~p1, ~p2) δ (~p1 + ~p2 − ~p) δ

(
arctan

(
2~p2 × ~p1

(|~p1| − |~p2|) p

)
− θ
)

× δ
(√

2 |~p1| |~p1| − 2~p1 · ~p2 − θ
)
Ψ̃ (~p1, ~p2) , (4.81)

where the Jacobian is given by

J (~p1, ~p2) =
1

|~p1|
+

1

|~p2|
. (4.82)

4.3 The Two Time Free Bilocal Collective Field Prop-

agator/ Bethe Salpeter

The Bethe-Salpeter equation [223] is an important result that plays a huge role in the

analysis of the four-point function for bound systems.4 It arises naturally when the four-

point function has a rung added to it at each level in perturbation. The resulting ladder

diagrams can be added together to give an effective vertex.

The four point function is defined via [225]:

G (x1, x2, x3, x4) =
〈
0
∣∣T [φ (x1)φ (x2)φ† (x3)φ† (x4)

]∣∣ 0〉 . (4.83)

where T denotes the usual time ordering from QFT and we consider complex scalar fields.

4In fact, the Bethe-Salpeter equation was first written down by Nambu in 1950 [224].
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Figure 4.1: Schematic representation of the Bethe-Saltpeter equation in momentum
space. Picture credits [225].

The framework for solving the Bethe-Salpeter equation can be set up for a theory with

quartic interactions.

Generally, the Bethe-Saltpeter equation for the four-point, in coordinate space, can be

written as [225]:

G (x1, x2, y1, y2) = G (x1 − y1)G (x2 − y2) +

∫
dz1

∫
dz2

∫
dz
′

1

∫
dz
′

2

×G (x1 − z1)G (x2 − z2) I (z1, z2; z′1, z
′
2)G (z′1, z

′
2; y1, y2) , (4.84)

where I (z1, z2; z′1, z
′
2) represents the sum over all the two-particle irreducible Feynman

diagrams.

In momentum space this reads

[G (ηaP + p)G (ηbP − p)]−1G (p, q;P ) = δ (p− q)

+

∫
dq′I (p, q′;P )G (q′, q;P ) , (4.85)

where ηa, ηb are arbitrary parameters such that ηa + ηb = 1. A diagrammatic represen-

tation of the above equation is given in Figure 4.1.

For the free O (N) vector model the action, in terms of bilocals, reads
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S = N

∫
ddx

(
−
∫
ddyδ (x− y) ∂2

yψxy

)
− iN

2
Tr lnψ. (4.86)

By expanding the action – or the log of the Jacobian - to second order one can extract

the quadratic part of the action:

Seff2 =
i

4
Trψ−1

0 ηψ−1
0 η. (4.87)

In momentum space, the effective quadratic action is

Seff2 =
i

4
Trηψ−1

0 ηψ−1
0

=
i

4

∫
ddx1d

dx2d
dx3d

dx4

(
ηx1x2ψ

0−1

x2x3
ηx3x4ψ

0−1

x3x4

)
=
i

4

∫
ddx1d

dx2d
dx3d

dx4

∫
ddk1

(2π)d

∫
ddk2

(2π)d
ηk1k2e

−ik1x1−ik2x2

×
∫

ddp1

(2π)d
ψ−1

0p1
eip1(x1−x2)

∫
ddk3

(2π)d

∫
ddk4

(2π)d
ηk3k4e

−ik3x3−ik4x4
∫

ddp1

(2π)d
ψ−1

0p1
eip1(x1−x2)

=
i

2

∫
ddk1d

dk2d
dk3d

4k4

(2π)d
ηk1k2Ôk1k2;k3k4ηk3k4 , (4.88)

where

Ôk1k2;k3k4 =
i

2
ψ−1
k1
ψ−1
k2
δ (−k2 − k3) δ (−k1 − k3) . (4.89)

The propagator - which is the inverse of Ô - is defined through

∫
ddk3

∫
ddk4Ôk1k2;k3k4Ô

−1
k3k4;p1p2

= iδ (k1 + p1) δ (k2 + p2) . (4.90)

We will assume that the inverse is of the form [226]:

Ô−1
k3k4;p1p2

= A (k3, k4) δ (k3 − p2) δ (k4 − p1) . (4.91)
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We plug this ansatz into (4.90) and find

∫
ddk3

∫
ddk4Ôk1k2;k3k4Ô

−1
k3k4;p1p2

=

∫
ddk3

∫
ddk4

[
1

2
ψ−1
k3
ψ−1
k4

δ (−k1 − k3) δ (−k2 − k4)

]
×A (k3, k4) δ (k3 − p2) δ (k4 − p1)

=
1

2
ψ−1
−k1ψ

−1
−k2A (−k1,−k2) δ (k1 + p2) δ (k2 + p2) . (4.92)

Comparing of (4.90) and (4.92) implies that

1 =
1

2
ψ−1
−k1ψ

−1
−k2A (−k1,−k2) (4.93)

or

A (k1, k2) = 2ψk1ψk2 . (4.94)

Thus, the free propagator is given by

Ô−1
k3k4;p1p2

= 2ψk3ψk4δ (k3 − p2) δ (k4 − p1) . (4.95)

which is illustrated in Figure 4.2.

In coordinate space, we have

∂2
x∂

2
yηxy = 0. (4.96)
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Figure 4.2: The bilocal propagator for the free O(N) vector model.
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Chapter 5

(
φ2
)2

and the Zinn-Justin Argument

Science is beautiful when it makes simple explanations of phenomena or connections

between different observations.

-Stephen Hawking.

The Lagrangian for the O (N) (φ2)
2

model can be written as

L =
1

2
∂µφ

a∂µφa +
1

2
m2φaφa +

λ

4!N
(φaφa)2 . (5.1)

Note that this is the same Lagrangian that is used in [227, 228, 229] once we have made

the trivial identification that m2 = r and λ
N

= u.

Moreover, recall that the Hubbard-Stratonovich transformation is useful when we wish

to decouple a quartic interaction through the introduction of an auxialiary field. More

precisely, it is the simple identity - which follows from trivial manipulation of a Gaussian

integral - that states:

exp (−ρ̂mKmnρ̂n) =

∫
Dσ exp

(
−1

4
σmK

−1
mnσn − σmρ̂n

)
, (5.2)
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where, as is traditional, we work in Euclidean space and ρ̂ = φaφa for bosons.

By using the Hubbard-Stratonovich transformation, we obtain1

exp

(
−
(

1

2
m2φaφa +

λ

4!N
(φaφa)2

))
=

∫
Dσ exp

(
− 3

2λ
σ2 − 3m2

λ
σ − 1

2
σ (φaφa)

)
.

(5.3)

This approach is also called the auxiliary field method.

There is, however a more elementary way to see that is correct. Suppose the Lagrangian

of the O(N) vector model can be written as

L =
1

2
(∂µφ

a∂µφa) + aσ2 + bσ +
1

2
σ (φaφa) . (5.4)

The coefficients a and b are determined by considering the classical equations of motion.

It is simple to see that the equations of motion for the Lagrangian in (5.4) are

0 =
δL
δσ

= 2aσ + b+
1

2
(φaφa) . (5.5)

Therefore, the auxiliary field σ is explicitly given by

σ = − 1

2a

(
b+

1

2
(φaφa)

)
. (5.6)

Substituting the expression that we have found for the auxiliary field back into (5.4), we

1The same result can be obtained by making use of the equations of motion. We will illustrate how
this is done when we introduce the collective field theory approach below.

112



get

L =
1

2
(∂µφ

a∂µφa) + a

(
− 1

2a

(
b+

1

2
(φaφa)

))2

+ b

(
− 1

2a

(
b+

1

2
(φaφa)

))
+

1

2
(φaφa)

(
− 1

2a

(
b+

1

2
(φaφa)

))
=

1

2
(∂µφ

a∂µφa) +
b2

4a
+

1

16a
(φaφa)2 +

b

4a
(φaφa)

− b2

2a
− b

4a
(φaφa)− b

4a
(φaφa)− 1

8a
(φaφa)2

=
1

2
(∂µφ

a∂µφa)− b

4a
(φaφa)− 1

16a
(φaφa)2 + Const. (5.7)

Now, by simply comparing (5.1) with (5.7), we obtain

b

4a
= −1

2
m2,

1

16a
= − λ

4!N
. (5.8)

Therefore,

a = −3N

2λ
, b =

3m2N

λ
. (5.9)

Thus, the path integral for the O (N) (φ2)
2

vector model can be written as [227, 228, 229]:

Z =

∫
Dφe−S[φ]

=

∫
DφDσ exp

(
−N

∫
ddx

(
1

2
∂µφ

a∂µφa − 3

2λ
σ2 +

3m2

λ
σ +

1

2
σ (φaφa)

))
. (5.10)

We now have to determine the (mass) dimension of the auxiliary field σ. This can be

done easily by noting that
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[
σ2
]

=
[
m2σ

]
. (5.11)

That is,

2 [σ] = 2 + [σ] (5.12)

or [σ] = 2. (This result holds in all dimensions.)

In general, an operator O with classical (mass) dimension ∆ will be irrelevant if ∆−d > 0

[230]. This can be seen by writing down the perturbative expansion of the effective action

[231]:

Leff [φ] = Ll [φ] +
∑
i

ci
O∆i

M∆i−d
. (5.13)

Here Ll [φ] is the renormalizable part of the effective action, and the cis are dimensionless

constants [231].2 It is thus clear that operators with dimensions ∆i > d will dominate

in the UV and become negligible as we flow to the the IR i.e. operators with dimension

larger than the space-time dimension are irrelevant.

In particular, the operator O = σ2 has (mass) dimension four and will be irrelevant for

d < 4. Thus, we can drop the term that is quadratic in the auxiliary field in (5.10).

Therefore, in the critical domain, the path integral for the (φ2)
2

takes the form:

Z =

∫
DφDσ exp

(
−N

∫
ddx

(
1

2
∂µφ

a∂µφa + σ (x)

(
3m2

λ
+

1

2
(φaφa)

)))
= Const.

∫
Dφδ

(
3m2

λ
+

1

2
(φaφa)

)
exp

(
−N

∫
ddx

(
1

2
∂µφ

a∂µφa
))

, (5.14)

2We consider heavy particles with mass M > Λ with Λ being the cutoff. At low energies, E < Λ, the
contribution of the operator O∆ is proportional to (E/M)

∆−d
[231].
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where in the last line we have made use of the functional integral representation of the

Dirac delta function:

δ (x− y) = Const.

∫
Dλeiλ(x−y). (5.15)

Note that (5.14) is the path integral for the O (N) non-linear σ-model.

A few comments are in order. First, the argument given in this Chapter does not consti-

tute a proof that the critical O(N) vector model is equivalent to the non-linear σ-model.

One of the reason for this is that we could add an operator of the form (φaφa)3 in (5.1).3

This operator is marginal in d = 3 and relevant in d < 3. One would then have to

show that the β-function, for the (φaφa)3 operator, is positive and the operator is thus

marginally irrelevant. Second, away from the free fixed point not much is known about

how the dimensions actually flow. Accordingly, we might have other relevant operators

appearing in our Lagrangian. Finally, when d = 2 there are many fixed points and the

motivation may be found wanting.

In summary, we have given a motivation (not a rigorous mathematical proof) that, in

the large-N , the non-linear σ-model and the (φ2)
2

vector model are equivalent.

3The authors in [159, 166] include the marginal operator (φaφa)
3

in the bosonic part of their action.
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Chapter 6

Non-linear Sigma Model And The

Two Time Bilocal Description

God does not care about our mathematical difficulties. He integrates empirically.

Albert Einstein.

In the previous chapter, we showed that the critical (φ2)
2

vector model is equivalent

to the non-linear sigma model. This provides us with another scheme with which to

compute observables on the CFT side. We will use the non-linear sigma model, in the

collective field theory language, to compute the bilocal two-point functions.

Let us consider the O (N) sigma model with action given by

Z =

∫
D~S

∫
Dα exp

[
−N
g

∫
ddx

(
1

2
∂µ~S∂

µ~S +
1

2
α (x)

(
~S2 − 1

))]
. (6.1)

where α (x) is a Lagrange multiplier which is there to make sure that the constraint

~S2 = 1 is satisfied.

We rescale the action and the coupling as follows:
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~S → g~S, g → λ. (6.2)

The action can then be written as

S = N

∫
ddx

(
1

2
∂µ~S∂

µ~S +
α (x)

2

(
~S2 − 1

λ

))
. (6.3)

Using the Jacobian obtained from previous chapters, we have

Z =

∫
D~S

∫
Dαe−N

∫
ddx( 1

2
∂µ ~S∂µ ~S+

α(x)
2 (~S2− 1

λ))

=

∫
Dψ

∫
Dαe−Seff . (6.4)

where ψxy = ~S (x) · ~S (y) and the effective action is

Seff = N

{
−1

2
Tr lnψ +

∫
ddx

(
−1

2
lim
y→x

∂2ψxy +
1

2
αψxx −

1

2λ
α (x)

)}
. (6.5)

The large-N background follows from varying the effective action with respect to the

bilocals. It follows that the saddle point equation, obtained by performing this variation,

is

ψxy =

∫
ddk

(2π)d
eik(x−y)

k2 + α
. (6.6)

Similarly, when we vary the effective action with respect to the Lagrange multiplier α,

we obtain

ψxx =
1

λ
(6.7)
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or

∫
ddk

(2π)d
1

k2 + α
=

1

λ
. (6.8)

Using simple cut-off regularization we see that, for d = 3, the integral above is linearly

divergent.

However, we could opt for dimensional interpolation and analytic continuation methods

to make sense of the linear divergence.

More precisely, one can show that for arbitrary d [170, 232]:

∫
ddk

(2π)d
1

k2 + α
=

1

(4π)d/2
Γ

(
1− d

2

)
α
d−2
2 . (6.9)

For d = 3, this leads to

1

(4π)d/2
Γ

(
1− d

2

)
α
d−2
2 =

1

(4π)3/2
Γ

(
1− 3

2

)
α

3−2
2

=
1

8π3/2

(
−2
√
π
)
α1/2

= − 1

4π2
α1/2. (6.10)

Using (6.9) in the gap equation – i.e. (6.8) – yields

1

(4π)d/2
Γ

(
1− d

2

)
α
d−2
2 =

1

λ
(6.11)

which implies that

α =

[
(4π)d/2

Γ
(
1− d

2

)] 2
d−2

1

λ
2
d−2

. (6.12)

This means that when d > 2 and λ → ∞, the Lagrange multiplier α, which plays the

role of a mass, goes to zero.
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For d = 3 (6.12) becomes

α =

[
(4π)3/2

Γ
(
1− 3

2

)] 2
3−2

1

λ
2

3−2

=
64π2

λ2
. (6.13)

Consequently, in the strong coupling limit we can write

ψ0 (k) =
1

k2
. (6.14)

The fluctuations for the two fields are

α = 0 +
i√
N
α̃ (x) (6.15)

ψxy = ψ0
xy +

1√
N
ηxy. (6.16)

The conventions for the α field are the same as those used by Ruhl but differ from

Giombi and Yi. The convention used here has the advantage that it will turn α into a

real Lagrange multiplier.

Since

Tr lnψ = . . .− 1

2
Tr
(
ψ−1

0 ηψ−1
0 η
)
. (6.17)

We can then write the quadratic effective action as

Seff2 = −1

2

(
−1

2

)
Tr
(
ψ−1

0 ηψ−1
0 η
)

+
i

2
Tr (α̃η) . (6.18)

Furthermore, we will assume that we have written the Lagrange multiplier in the form

of a diagonal matrix. That is,
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α̃xy = α̃xδ (x− y) . (6.19)

The effective quadratic action then takes the form

Seff2 =
1

4
Tr
(
ψ−1

0 ηψ−1
0 η
)

+
i

2
Tr (α̃η) . (6.20)

We vary the effective quadratic action with respect to α̃x and find that ηxx = 0. To

remedy this problem, we will have to “shift”” the η fluctuations or colloquially speaking

complete the square. More specifically, when we vary with respect to ηxy, we find

0 =
δSeff2

δηxy

=
1

2

(
ψ−1

0 ηψ−1
0

)
yx

+
i

2
α̃δ (x− y) . (6.21)

This suggests that we write

η = −i (ψ0α̃ψ0) + η̃. (6.22)

The effective quadratic action then becomes

Seff2 =
1

4
Tr
(
ψ−1

0 ηψ−1
0 η
)

+
i

2
Tr (α̃η)

=
1

4
Tr
(
ψ−1

0 (−i (ψ0α̃ψ0) + η̃)ψ−1
0 (−i (ψ0α̃ψ0) + η̃)

)
+
i

2
Tr (α̃ (−i (ψ0α̃ψ0) + η̃))

=
1

4
Tr
(
ψ−1

0 η̃ψ−1
0 η̃
)

+
1

4
Tr (α̃ψ0α̃ψ0) , (6.23)

which after a trivial relabeling reads
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Seff2 =
1

4
Tr
(
ψ−1

0 ηψ−1
0 η
)

+
1

4
Tr (α̃ψ0α̃ψ0) . (6.24)

Let us now move to momentum space and write

η̃xy =

∫
ddk1

(2π)d

∫
ddk2

(2π)d
eik1xeik2yη̃k1k2 (6.25)

α̃x =

∫
ddk

(2π)d/2
eikxα̃k. (6.26)

Accordingly,

1

4
Tr
(
ψ−1

0 ηψ−1
0 η
)

=
1

4

∫
ddx1

∫
ddx2

∫
ddx3

∫
ddx4

(
ψ−1

0x1x2
ηx2x3ψ

−1
0x3x4

ηx4x1
)

=
1

4

∫
ddx1

∫
ddx2

∫
ddx3

∫
ddx4

∫
ddp1

(2π)d
ψ−1

0x1x2
eip1(x1−x2)

∫
ddk1

(2π)d

∫
ddk2

(2π)d
eik1x2eik2x3 η̃k1k2∫

ddp2

(2π)d
ψ−1

0x3x4
eip2(x3−x4)

∫
ddk3

(2π)d

∫
ddk4

(2π)d
eik3x4eik4x1 η̃k3k4 =

1

4

∫
ddk1

∫
ddk2

×η̃k1k2
(
ψ−1

0

)
k1

(
ψ−1

0

)
k2
η̃−k2,−k1 . (6.27)

and

1

4
Tr (α̃ψ0α̃ψ0) =

1

4

∫
ddx1

∫
ddx2α̃x1ψ

0
x1x2

α̃x2ψ
0
x2x1

=
1

4

∫
ddx1

∫
ddx2

∫
ddk1

(2π)d/2
eik1x1α̃k1

∫
ddp1

(2π)d
eip1(x1−x2)ψ0

p1

∫
ddk2

(2π)d/2
eik1x2α̃k2

×
∫

ddp2

(2π)d
eip2(x2−x1)ψ0

p1
=

1

4

∫
ddk1α̃k1

(∫
ddp1

(2π)d
ψ0
p1
ψ0
k1+p1

)
α̃−k1 . (6.28)
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Thus, the effective quadratic action – in momentum space – is

Seff2 =
1

4

∫
ddk1

∫
ddk2η̃k1k2

(
ψ−1

0

)
k1

(
ψ−1

0

)
k2
η̃−k2,−k1

+
1

4

∫
ddk1α̃k1

(∫
ddp

(2π)d
ψ0
pψ

0
k1+p

)
α̃−k1 .

Moreover, we have

∫
ddp

(2π)d
1

p2

1

(k − p)2 = −
(k2)

d
2
−2
πΓ
(
d
2
− 1
)

(4π)d/2 sin
(
πd
2

)
Γ (d− 2)

(6.29)

=
1

8 |k|
, d = 3. (6.30)

The 3d effective quadratic action can then be written as

Seff2 =
1

4

∫
ddk1

∫
ddk2η̃k1k2k

2
1k

2
2 η̃−k2,−k1 +

1

4

∫
ddk1α̃k1

(
1

8 |k|

)
α̃−k1 . (6.31)

The propagators can be read off from the above effective quadratic action. Indeed, we

have

〈η̃k1k2 η̃p1p2〉 =
2

k2
1k

2
2

δ (k2 + p2) δ (k1 + p1)

=
1

k2
1k

2
2

(δ (k2 + p2) δ (k1 + p1) + δ (k2 + p2) δ (k1 + p1)) . (6.32)

and
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〈α̃k1α̃k2〉 = 2

[
−

(k2
1)

d
2
−2
πΓ
(
d
2
− 1
)
δ (k1 + k2)

(4π)d/2 sin
(
πd
2

)
Γ (d− 2)

]

= 16 |k1| δ (k1 + k2) , d = 3. (6.33)

This is in agreement with the results obtained in [232].

Let us now consider the space time correlators. In particular, in position space we have

〈ηx1x2ηx3x4〉 = 2

∫
ddk1

(2π)d
eik1(x1−x4)

k2
1

∫
ddk2

(2π)d
eik2(x2−x3)

k2
2

=

∫
ddk1

(2π)d
eik1(x1−x4)

k2
1

∫
ddk2

(2π)d
eik2(x2−x3)

k2
2

+ (x3 ↔ x4) . (6.34)

We make use of the result that

∫
ddp
(
p2
)α
eipx = γdα

(
x2
)− d

2
−α
, (6.35)

where

γd = πd/2α2α+dΓ
(
α + d

2

)
Γ (−α)

. (6.36)

For the special case α = −1, we obtain

∫
ddp

(2π)d
eipx

p2
=

2d−2

(4π)d/2
Γ

(
d

2
− 1

)(
x2
)1− d

2 . (6.37)

=
1

4π

1

|x|
, d = 3. (6.38)
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This enables us to write

〈ηx1x2ηx3x4〉 =

(
2d−2

(4π)d/2
Γ

(
d

2
− 1

))2 ((
x2

13

)1− d
2
(
x2

24

)1− d
2 +

(
x2

14

)1− d
2
(
x2

23

)1− d
2

)
→
(

1

4π

)2
(

1

(x2
13)

1/2

1

(x2
24)

1/2
+

1

(x2
14)

1/2

1

(x2
23)

1/2

)
. (6.39)

Next, using the fact that

∫
ddp

(2π)d
eipx

(
p2
)2− d

2 =
24−d

(π)d/2
(x2)

−2

Γ
(
d
2
− 2
)

→ − 1

π2

1

(x2)2 , d = 3. (6.40)

we find

〈α̃x1α̃x2〉 = 2

[
−

(4π)d/2 sin
(
πd
2

)
Γ (d− 2)

πΓ
(
d
2
− 1
) ] ∫

ddk

(2π)d
eik(x1−x2)

(
k2
)2− d

2

= −25

(
sin
(
πd
2

)
π

)
Γ (d− 2)

Γ
(
d
2
− 1
)

Γ
(
d
2
− 2
) 1

(x2
12)

2

→ −16

π2

1

(x2
12)

2 d = 3. (6.41)

Note that as expected ∆ = 2.

A few comments are in order. First, the correlation function appearing in (6.39) is the

same for both the free and critical (φ2)
2
O(N) vector model. In addition, if we set x1 = x2

and x3 = x4 in (6.39), we obtain

〈ηx1x1ηx3x3〉 =

(
1

4π

)2
(

1

(x2
13)

1/2

1

(x2
13)

1/2
+

1

(x2
13)

1/2

1

(x2
13)

1/2

)

=
1

8π2

1

(x2
13)
. (6.42)
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From this expression we can easily read off the conformal dimension is ∆ = 1. Second,

we have learnt that the critical O(N) vector model, which we are describing here with

the non-linear sigma model, is not simply described by the scaling dimension being two.

What we are seeing is that the critical theory consists of a state which is identical to the

free theory plus an additional state. We will return to these issues in later chapters.
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Chapter 7

(
φ2
)2

Two-time Bilocal Description

The best way to understand something is to first start out confused.

-Ahmed Almheiri.

We begin by making a simple observation. Let us consider the free scalar field theory

with a Lagrangian of the form:

L =
1

2
∂µφ∂

µφ+
m2

2
φ2. (7.1)

The Euler-Lagrange equations are

0 = −∂µ
(

∂L
∂∂µφ

)
+
∂L
∂φ

=
(
−∂2 +m2

)
φ. (7.2)

which is the Klein-Gordon equation.
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The action for the free scalar field can be written as

S =
1

2

∫
ddxφ

(
−∂2 +m2

)
φ

=
1

2

∫
ddxφÔφ, (7.3)

where Ô = −∂2 +m2.

In addition, the propagator for the free scalar field is

G (p) =
1

p2 +m2
. (7.4)

The observation we make is that the classical equations of motion can be obtained by

requiring that

Ôφ =
(
−∂2 +m2

)
φ = 0. (7.5)

Moreover, note that the on-shell condition - i.e. p2 = m2 - can be obtained by looking

at the poles of the propagator.

In this chapter, we will make analogous statements for the O (N) critical vector model.

7.1 Collective Field Propagator

In this section, we obtain the bilocal propagator for the critical O (N) vector model.

The effective action for the critical O(N) vector model reads

Seff = N

∫
ddx

[
1

2

(
−
∫
ddyδ (x− y) ∂2

yψxy

)
− 1

2
m2ψxx −

λ

4!
(ψxx)

2

]
− Ni

2
Tr lnψ.

(7.6)
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The saddle-point equation gave us an expression for the background field (3.43):

ψ0
k =

i

k2
. (7.7)

Our intention now is to expand the bilocals about this large-N background configuration,

and extract the effective quadratic action. More specifically, we write

ψxy = ψ0
xy +

1√
N
ηxy. (7.8)

The log term in the effective action can be expanded as1

Tr ln

(
ψ0 +

1√
N
η

)
= Tr ln

[
ψ0

(
1 +

1√
N

(
ψ0
)−1

η

)]
= Tr lnψ0 + Tr

(
1√
N

(
ψ0
)−1

η

)
+ Tr

[
− 1

2N

(
ψ0
)−1

η
(
ψ0
)−1

η

]
+ · · · (7.9)

Thus, the quadratic effective action reads

Seff2 =
i

4
Tr
((
ψ0
)−1

η
(
ψ0
)−1

η
)
− λ

4!

∫
ddxη2

xx

=
i

4

∫
ddx1d

dx2d
dx3d

dx4

(
ψ0
)−1

x1x2
ηx2x3

(
ψ0
)−1

x3x4
ηx4x1 −

λ

4!

∫
ddxη2

xx. (7.10)

We move into momentum space and write the fluctuations as (recall that our signature

is (+,−, · · · ,−)):

ηxy =

∫
ddk1

(2π)d/2

∫
ddk2

(2π)d/2
e−ik1x−ik2yηk1k2 . (7.11)

and the translationally invariant background bilocal as

ψ−1
0xy =

∫
ddk1

(2π)d
eik1(x−y)ψ−1

0k1
. (7.12)

1We use the trivial fact that ln (1 + x) = x− x2

2 + ....
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Plugging (7.11) and (7.12) back into (7.10), we get

Seff2 =
i

4

∫
ddx1d

dx2d
dx3d

dx4

(
ψ0
)−1

x1x2
ηx2x3

(
ψ0
)−1

x3x4
ηx4x1 −

λ

4!

∫
ddxη2

xx

=
i

4

∫
ddx1d

dx2d
dx3d

dx4

∫
ddk1

(2π)d
eik1(x1−x2)ψ0−1

k1

∫
ddk2

(2π)d/2

∫
ddk3

(2π)d/2
e−ik2x2−ik3x3ηk2k3

×
∫

ddk4

(2π)d
eik4(x3−x4)ψ0−1

k4

∫
ddk5

(2π)d/2

∫
ddk6

(2π)d/2
e−ik5x4−ik6x1ηk5k6 −

λ

4!

∫
ddx

×
∫

ddk1

(2π)d/2

∫
ddk2

(2π)d/2
e−ik1x−ik2xηk1k2

∫
ddk3

(2π)d/2

∫
ddk4

(2π)d/2
e−ik3x−ik4xηk3k4 (7.13)

After some simple manipulations, the quadratic action simplifies to

Seff2 =
i

4

∫
ddk1

(2π)2d

∫
ddk2

∫
ddk3

∫
ddk4ηk2k3ψ

0−1

k1
ψ0−1

k4

× δ (−k1 − k2) δ (−k3 − k4) ηk4k1 −
λ

4!

∫
ddk1

(2π)d

∫
ddk2

∫
ddk3

∫
ddk4ηk2k3ηk1k2

× δ (k1 + k2 + k3 + k4) ηk3k4

=
1

2

∫
ddk1

∫
ddk2

∫
ddk3

∫
ddk4ηk1k2Ôk1k2;k3k4ηk3k4 . (7.14)

where in order to arrive at the last line we have interchanged k1 ↔ k3 in the first term

on the RHS of the quadratic action and the operator Ôk1k2;k3k4 is defined as

Ôk1k2;k3k4 =
i

2
ψ0−1

k3
ψ0−1

k4
δ (k2 + k3) δ (k1 + k4)− 2λ

4!

1

(2π)d
δ (k1 + k2 + k3 + k4) . (7.15)

Our goal is to invert the operator Ôk1k2;k3k4 . More specifically, we need to find some

operator Ô−1
k3k4;p1p2

such that

∫
ddk3

∫
ddk4Ôk1k2;k3k4Ô

−1
k3k4;p1p2

= iδ (k1 − p1) δ (k2 − p2) . (7.16)

129



For our ansatz, we will take:2

Ô−1
p1p2;p3p4

= A (p1, p2) δ (p1 + p4) δ (p2 + p3)

+G (p1, p2, p3, p4) δ (p1 + p2 + p3 + p4) . (7.17)

When we plug this ansatz into (7.16), we get

∫
ddk3

∫
ddk4Ôk1k2;k3k4Ô

−1
k3k4;p1p2

=

∫
ddk3

∫
ddk4

[
i

2
ψ0−1

k3
ψ0−1

k4
× δ (k3 + k2) δ (k1 + k4)

− 2λ

4!

1

(2π)d
δ (k1 + k2 + k3 + k4)

]
×

[
A (k3, k4) δ (k3 + p2) δ (k4 + p1)

+G (k3, k4, p1, p2) δ (k3 + k4 + p1 + p2)

]
= −2λ

4!

1

(2π)d
δ (k1 + k2 − p2 − p1)A (−p2,−p1)

− 2λ

4!

1

(2π)d
δ (k1 + k2 − p2 − p1)

∫
ddk3G (k3,−k1 − k2 − k3, p1, p2)

+
i

2
ψ0−1

−k1ψ
0−1

−k2A (−k2,−k1) δ (p1 − k1) δ (p2 − k2)

+
i

2
ψ0−1

−k1ψ
0−1

−k2G (−k2,−k1, p1, p2) δ (−k1 − k2 + p2 + p1) . (7.18)

By comparing (7.16) and (7.18), one can conclude that

A (−k2,−k1) = 2ψ0
−k2ψ

0
−k1 , (7.19)

and

G (−k2,−k1, p1, p2) = −8λi

4!

1

(2π)d
ψ0
−k1ψ

0
−k2ψ

0
−p1ψ

0
−p2

− 4λi

4!

1

(2π)d
ψ0
−k1ψ

0
−k2

∫
ddk3G (k3,−k1 − k2 − k3, p1, p2) (7.20)

where the whole equation sits inside the delta function: δ (−k1 − k2 + p2 + p1).

2This has been explained in [226].
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We can make use of the standard technique of iteration, which underlies the Bethe-

Salpeter equation, in order to solve the integral equation given in (7.20). However, we

will opt for the simpler method where we first attempt to turn (7.20) into an algebraic

equation.

First, define

∫
ddk3G (k3,−k1 − k2 − k3, p1, p2) =

∫
ddk3

∫
ddk4G (k3, k4, p1, p2)

× δ (k3 + k4 + p2 + p1)
def
= α (p2, p1) . (7.21)

It then becomes clear that we first need to multiply (7.20) through by δ (k1 + k2 + p1 + p2)

and then integrate over k1 and k2. In fact, when we do this we find that

α (p2, p1) = −8λi

4!

1

(2π)d
α (p2, p1)

∫
ddk1

∫
ddk2δ (k1 + k2 − p1 − p2)ψ0

−k1ψ
0
−k2

− 4λi

4!

1

(2π)d
α (p2, p1)

∫
ddk1

∫
ddk2δ (k1 + k2 − p1 − p2)ψ0

−k1ψ
0
−k2 . (7.22)

The equation above is trivial to solve and we obtain:

α (p2, p1) =
−8λi

4!
1

(2π)d
ψ0
−p1ψ

0
−p2

∫
ddk1

∫
ddk2δ (k1 + k2 − p1 − p2)ψ0

−k1ψ
0
−k2

1 + 4λi
4!

1

(2π)d

∫
ddk1

∫
ddk2δ (k1 + k2 − p1 − p2)ψ0

−k1ψ
0
−k2

. (7.23)

Inserting this back into (7.20) yields:

G (−k2,−k1, p1, p2) = −8λi

4!

1

(2π)d
ψ0
−k1ψ

0
−k2ψ

0
−p1ψ

0
−p2 −

4λi

4!

1

(2π)d
ψ0
−k1ψ

0
−k2α (p2, p1)

×
−8λi

4!
1

(2π)d
ψ0
−p1ψ

0
−p2

∫
ddk1

∫
ddk2δ (k1 − k2 + p1 − p2)ψ0

−k1ψ
0
−k2

1 + 4λi
4!

1

(2π)d

∫
ddk1

∫
ddk2δ (k1 + k2 − p1 − p2)ψ0

−k1ψ
0
−k2

=
−8λi

4!
(2π)−d ψ0

−k1ψ
0
−k2ψ

0
−p1ψ

0
−p2

1 + 4λi
4!

1

(2π)d

∫
ddk1

∫
ddk2δ (k1 + k2 − p1 − p2)ψ0

−k1ψ
0
−k2

. (7.24)
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Therefore, the effective propagator is given by

Ô−1
k1k2;p1p2

= 2ψ0
−p1ψ

0
−p2δ (k1 + p2) δ (k2 + p1)

+
−8λi

4!
1

(2π)d
ψ0
−k1ψ

0
−k2ψ

0
−p1ψ

0
−p2

1 + 4λi
4!

1

(2π)d

∫
ddk1

∫
ddk2δ (k1 + k2 − p1 − p2)ψ0

k1
ψ0
k2

δ (k1 + k2 + p1 + p2) . (7.25)

The integral appearing in the denominator, when d = 3, yields [208]:

iI =
i

(2π)d

∫
ddk1ψ

0
k1
ψ0
k1−p1−p2

=
1

(2π)3

∫
d3k1E

1

k2
1E

1

(k1 − p1 − p2)2
E

=
1

8

1

|p1 + p2|
. (7.26)

Hence,

Ô−1
k1k2;p1p2

= 2ψ0
−p1ψ

0
−p2δ (k1 + p2) δ (k2 + p1)

+
−8λi

4!
1

(2π)3
ψ0
−k1ψ

0
−k2ψ

0
−p1ψ

0
−p2

1 + 4λ
4!

1
8|p1+p2|

δ (k1 + k2 + p1 + p2) . (7.27)

Therefore, at the critical point - i.e. when we take the limit λ→∞ - the connected part

of (7.27) becomes:

Gconn (k2k1; p1p2) ∼
|p1 + p2|

(2π)3 , (7.28)

and
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Ô−1
k1k2;p1p2

= −2
1

p2
1

1

p2
2

δ (k1 + p2) δ (k2 + p1)

−16i |p1 + p2|
(2π)3

1

k2
1

1

k2
2

1

p2
1

1

p2
2

δ (k1 + k2 + p1 + p2) . (7.29)

This agrees with (6.32) and (6.33) up to leg factors in the ∆ = 2 channel.

Accordingly, in 3d coordinate space:

G (x− y) = −
∫

d3p

(2π)3 e
ip(x−y)

(
p2
)1/2

= −
23+1π3/2Γ

(
1
2

+ 3
2

)
Γ
(
−1

2

) (x− y)−2× 1
2
−3

=
C

(x− y)2·2 . (7.30)

i.e. ∆ = 2 which is the same result as the one obtained for the non-linear sigma model.

Note that the two-time bilocal propagator is made up of two parts viz. the part that we

obtain in the free case and a bound state with scaling dimension of two.

For finite λ, the pole condition is:

1 = −4iλ

4!

1

(2π)d

∫
ddk1ψ

0
k1
ψ0
k1−p1−p2 . (7.31)

Note that the integral appearing in (7.31) is written in Minkowski space. We need to

express the integral in terms of an integral in Euclidean space. This is easily done by

putting EM = iEE. Then the integral above yields
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∫
ddk

(2π)d
ψ0
k1
ψ0
k1−p1−p2 =

∫
ddk

(2π)d
i

k2
M

i

(k − p1 − p2)2
M

= −i
∫
dEE

∫
dd−1kE

1

(−k2
E)

1(
− (k − p1 − p2)2

E

)
= −i

∫
dEE

∫
dd−1kE

1

k2
E

1

(k − p1 − p2)2
E

, (7.32)

where we have made use of the fact that k2
M = −k2

E.

Since

∫
ddkE

(2π)d
1

k2
E

1

(k − p1 − p2)2
E

=
πd/2

(2π)d
Γ (2− d/2)

Γ (d− 2)
(p1 + p2)d/2−1

→ 1

8

1

|p1 + p2|
, d = 3. (7.33)

Then it follows that in 3d (7.31) becomes

1 = −4iλ

4!

(
−i
∫

ddk

(2π)d
1

k2
E

1

(k − p1 − p2)2
E

)

= − λ

48

1

|p1 + p2|
. (7.34)

That is,

|p1 + p2| = −
λ

48
. (7.35)

or
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E2 − (~p1 + ~p2)2 = − λ2

482
. (7.36)

This signals the appearance of a tachyon on the CFT side of the duality.

Note that on the bulk gravity side masses can be negative due to the fact that this does

not lead to any instabilities. This effect arises because the gravitational contribution will

stabilize the negative mass squared particle in AdS. In fact, the Breitenlohner-Freedman

bound [233, 234] states that in Anti-de Sitter spaces

m2R2 ≥ −d
2

4
. (7.37)

The tachyon can be seen as a hint that our large-N configuration is not stable.

7.2 Equations Of Motion And Pole Condition

In the previous subsection, we found that the connected Green’s function is given by

G (−k2,−k1, p1, p2) =
−8λi

4!
1

(2π)d
ψ0
−k1ψ

0
−k2ψ

0
−p1ψ

0
−p2

1 + 4λi
4!

1

(2π)d

∫
ddk1

∫
ddk2δ (k1 + k2 − p1 − p2)ψ0

k1
ψ0
k2

, (7.38)

where the large-N background configuration is given by

ψ0
k =

i

k2
. (7.39)

We obtained the spectrum by looking at the poles of the two-point function. In other

words, the spectrum for the O (N) vector model follows from

0 = 1 +
4λi

4!

1

(2π)d

∫
ddk1

∫
ddk2δ (k1 + k2 − p1 − p2)ψ0

k1
ψ0
k2

(7.40)
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or

1 =
4iλ

4!

1

(2π)d

∫
ddk1

1

k2

1

(k − p1 − p2)2 . (7.41)

We now confirm that this pole/mass condition for the bound state follows also follows

from the homogeneous condition:

0 =

∫
ddk3

∫
ddk4Ôk1k2;k3k4ηk3k4 , (7.42)

where

Ôk1k2;k3k4 =
i

2
ψ0−1

k3
ψ0−1

k4
δ (k3 + k2) δ (k1 + k4)− 2λ

4!

1

(2π)d
δ (k1 + k2 + k3 + k4) (7.43)

As usual we write

ηxy =

∫
ddk1

(2π)d/2

∫
ddk2

(2π)d/2
e−ik1xe−ik2yηk1k2 . (7.44)

Hence,

0 =
i

2

∫
ddk3

∫
ddk4ψ

0−1

k3
ψ0−1

k4
δ (k3 + k2) δ (k1 + k4) ηk3k4 −

2λ

4!

1

(2π)d

×
∫
ddk3

∫
ddk4δ (k1 + k2 + k3 + k4) ηk3k4

=
i

2
ψ0−1

−k2ψ
0−1

−k1η−k2,−k1 −
2λ

4!

1

(2π)d

∫
ddk3

∫
ddk4δ (k1 + k2 + k3 + k4) ηk3k4 , (7.45)
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which implies that

η−k2,−k1 = −4iλ

4!

1

(2π)d
ψ0
−k2ψ

0
−k1

∫
ddk3

∫
ddk4δ (k1 + k2 + k3 + k4) ηk3k4 .

= −4iλ

4!

1

(2π)d
ψ0
−k2ψ

0
−k1

∫
ddkηk,−k1−k2−k (7.46)

or equivalently

ηk1k2 = −4iλ

4!

1

(2π)d
ψ0
k1
ψ0
k2

∫
ddkηk,k1+k2−k. (7.47)

Multiplying 7.47 by δ (k2 + k1 − p2 − p1) and integrating over k1 and k2 yields

∫
ddk1

∫
ddk2δ (k2 + k1 − p2 − p1) ηk1k2 = −4iλ

4!

1

(2π)d

×
∫
ddk1

∫
ddk2δ (k2 + k1 − p2 − p1)ψ0

k2
ψ0
k1

∫
ddk3

∫
ddk4δ (k1 + k2 − k3 − k4) ηk3k4

= −4iλ

4!

1

(2π)d

∫
ddk1ψ

0
−k1ψ

0
k1−p1−p2

∫
ddk3

∫
ddk4δ (k3 + k4 − p2 − p1) ηk3k4 . (7.48)

Define

A (p1, p2) =

∫
ddk1

∫
ddk2δ (k2 + k1 − p2 − p1) ηk1k2 (7.49)

Then (7.48) becomes

A (p1, p2) = −4iλ

4!

1

(2π)d

∫
ddk1ψ

0
k1
ψ0
k1−p1−p2A (p1, p2) (7.50)

or
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1 = −4iλ

4!

1

(2π)d

∫
ddk1ψ

0
k1
ψ0
k1−p1−p2 . (7.51)

This is the pole condition for the bound state that we found previously in (7.34).

The solution to (7.47) is given by

ηk1k2 =
b (k1 + k2)

k2
1k

2
2

, (7.52)

where b is an arbitrary constant. Indeed, when we plug this into the R.H.S. of (7.47) we

obtain:

− 4iλ

4!

1

(2π)d
ψ0
k2
ψ0
k1

∫
ddk3

∫
ddk4δ (k1 + k2 − k3 − k4) ηk3k4 = −4iλ

4!

× 1

(2π)d
ψ0
k2
ψ0
k1

∫
ddk3

∫
ddk4δ (k1 + k2 − k3 − k4)

(
b (k3 + k4)

k2
3k

2
4

)
= −4iλ

4!

i

k2
2

i

k2
1

b (k1 + k2)

1
× i

8

1(
(k1 + k2)2)1/2

= − λ

48
(
(k1 + k2)2)1/2

b |k1 + k2|
k2

1k
2
2

=
b |k1 + k2|
k2

1k
2
2

= ηk1,k2 . (7.53)

where in order to arrive at the last line we had to make use of the pole condition i.e.

(7.34).

In summary, we have obtained the two-time bilocal propagator. The propagator consists

of a term identical to that of the free theory plus a bound state term that has a scaling

dimension of two in the IR limit. In this limit, it is similar to that of the non-linear sigma

model. Moreover, we showed that the bound state spectrum can be obtained by looking

at the poles of the connected propagator. This same pole condition was then shown to
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arise from the homogeneous equation.
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Chapter 8

(
φ2
)2

Single-Time Bilocal

Description

If you really want to contribute to our theoretical understanding of physical laws - and it

is an exciting experience if you succeed! - there are many things you need to know.

First of all, be serious about it!

-Gerard ’t Hooft.

8.1 Hamiltonian Equations Of Motion

The collective field theory Hamiltonian can be written as (4.5):

H = 2Tr (ΠψΠ) +
N2

8
Trψ−1 +

∫
dd−1x

((
−1

2
lim
x→y

∂2ψxy

)
− 1

2
m2ψxx −

g

4!
(ψxx)

2

)
.

(8.1)

We then introduce fluctuations via
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ψ = ψ0 +
1√
N
η. (8.2)

In addition, it is clear that

ψ−1 = ψ−1
0

(
1 +

1√
N
ψ−1

0 η

)−1

= ψ−1
0

(
1− 1√

N
ψ−1

0 η +
1

N
ψ−1

0 ηψ−1
0 η + · · ·

)
. (8.3)

The quadratic Hamiltonian then reads:

H(2) = 2Tr
(
pψ0p

)
+

1

8
Tr
(
ψ−1

0 ηψ−1
0 ηψ−1

0

)
+
λ

4!

∫
dd−1xη2

xx. (8.4)

The trace appearing in the Hamiltonian is defined in the functional sense. More precisely,

Tr (A) =

∫
dd−1xA (x, x) . (8.5)

We can then write the quadratic Hamiltonian as

H(2) = 2Tr
(
pψ0p

)
+

1

8
Tr
(
ψ−1

0 ηψ−1
0 ηψ−1

0

)
+
λ

4!

∫
dd−1xη2

xx

= 2

∫
dd−1x1

∫
dd−1x2

∫
dd−1x3

∫
dd−1x4px1x2ψ

0
x2x3

px3x1

+ +
1

8

∫
dd−1x1

∫
dd−1x2

∫
dd−1x3

∫
dd−1x4

×
∫
dd−1x5ψ

0−1

x1x2
ηx2x3ψ

0−1

x3x4
ηx4x5ψ

0−1

x5x1
+
λ

4!

∫
dd−1xη2

xx. (8.6)
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Recall that Hamilton’s equations are given by

ṗi = −δH
δqi

(8.7)

q̇i =
δH

δpi
. (8.8)

Accordingly, the equations of motion for our system are

η̇xy =
δH

δpxy

= 2

∫
dd−1x1

∫
dd−1x2

∫
dd−1x3ψ

0
x2x3

px3x1δ (x− x1)

× δ (y − x2) + 2

∫
dd−1x1

∫
dd−1x2

∫
dd−1x3px1x2ψ

0
x2x3

× δ (x− x3) δ (x− x1)

= 2

∫
dd−1x′

(
ψ0
yx′px′x + pyx′ψ

0
x′x

)
, (8.9)

and

ṗxy = − δH

δηxy

= −1

8

∫
dd−1x1

∫
dd−1x2

∫
dd−1x3

∫
dd−1x4

∫
dd−1x5ψ

0−1

x1x2
ψ0−1

x3x4
ηx4x5ψ

0−1

x5x1
δ (x− x2) δ (y − x3)

−1

8

∫
dd−1x1

∫
dd−1x2

∫
dd−1x3

∫
dd−1x4

∫
dd−1x5ψ

0−1

x1x2
ηx2x3ψ

0−1

x3x4
ψ0−1

x5x1
δ (x− x4) δ (y − x5)

+
λ

12
ηxxδ (x− y)

= −1

8

∫
dd−1x1

∫
dd−1x2

∫
dd−1x3

[
ψ0−1

yx1
ηx1x2ψ

0−1

x2x3
ψ0−1

x3x
+ ψ0−1

yx1
ψ0−1

x1x2
ηx2x3ψ

0−1

x3x

]

+
λ

12
ηxxδ (x− y) (8.10)

where we have used the x↔ y symmetry.
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To summarize, the equations of motion are:

η̇xy = 2

∫
dd−1x′

(
ψ0
yx′px′x + pyx′ψ

0
x′x

)
ṗxy = −1

8

∫
dd−1x1

∫
dd−1x2

∫
dd−1x3

[
ψ0−1

yx1
ηx1x2ψ

0−1

x2x3
ψ0−1

x3x
+ ψ0−1

yx1
ψ0−1

x1x2
ηx2x3ψ

0−1

x3x

]

+
λ

12
ηxxδ (x− y) . (8.11)

Schematically, the equations of motion can be written as:

η̇ = 2
(
ψ0p+ pψ0

)
(8.12)

ṗ = −1

8

(
ψ0−1

ηψ0−1

ψ0−1

+ ψ0−1

ψ0−1

ηψ0−1
)

+
λ

12
ηδ. (8.13)

Once the equations have been written in this form, it becomes clear what the strategy to

decouple the set of differential equations is. More specifically, we will need to differentiate

(8.12) with respect to time. This will then introduce terms involving ṗ into (8.12). These

terms can then be eliminated by making use of (8.13). The final expression will be an

equation involving only η. That is,

η̈ = 2
(
ψ0ṗ+ ṗψ0

)
= −1

4

[
ψ0ψ0−1

ηψ0−1

ψ0−1

+ ψ0ψ0−1

ψ0−1

ηψ0−1

]
+
λ

6

(
ψ0ηδ

)
− 1

4

[
ψ0−1

ηψ0−1

ψ0−1

ψ0 + ψ0−1

ψ0−1

ηψ0−1

ψ0

]

+
λ

6

(
ηδψ0

)
. (8.14)
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which can be simplified to:

η̈ = −1

4

[
ηψ0−1

ψ0−1

+ ψ0−1

ηψ0−1

+ ψ0−1

ηψ0−1

+ ψ0−1

ψ0−1

η

]

+
λ

6

(
ηδψ0

)
+
λ

6

(
ψ0ηδ

)
. (8.15)

The fluctuations, in terms of the Fourier transform, can be written as

ηxy =

∫
dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

e−iEteik1x1−ik2x2ηk1k2 (8.16)

Therefore, the second order homogeneous equation for the fluctuations reads:

−
∫

dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

e−iEteik1x1−ik2x2ηk1k2E
2 = η̈xy

= −1

4

∫
dd−1x1

∫
dd−1x2

[
ηyx1ψ

0−1

x1x2
ψ0−1

x2x
+ ψ0−1

yx1
ηx1x2ψ

0−1

x2x

+ ψ0−1

yx1
ηx1x2ψ

0−1

x2x
+ ψ0−1

yx1
ψ0−1

x1x2
ηx2x

]

+
λ

6

∫
dd−1x1

(
ηx1x1δ (y − x)ψ0

x1x
+ ψ0

yx1
ηx1x1δ (x1 − x)

)
= −1

4

∫
dd−1x1

∫
dd−1x2

[
ηyx1ψ

0−1

x1x2
ψ0−1

x2x
+ ψ0−1

yx1
ηx1x2ψ

0−1

x2x

+ ψ0−1

yx1
ηx1x2ψ

0−1

x2x
+ ψ0−1

yx1
ψ0−1

x1x2
ηx2x

]

+
λ

6
ηyyψ

0
yx +

λ

6
ψ0
yxηxx. (8.17)

Recall that the translationally invariant transform of the background bilocal is given by

ψ0
xy =

∫
dd−1k1

(2π)d−1
eik(x−y)ψ0

k. (8.18)

and for the fluctuations:
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ηxy =

∫
dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

e−iEteik1x−ik2yηk1k2 . (8.19)

First, let us consider the term that is quadratic in ψ0−1
. In momentum space, this term

yields:

− 1

4

∫
dd−1x1

∫
dd−1x2

[
ηyx1ψ

0−1

x1x2
ψ0−1

x2x
+ψ0−1

yx1
ηx1x2ψ

0−1

x2x
+ψ0−1

yx1
ηx1x2ψ

0−1

x2x
+ψ0−1

yx1
ψ0−1

x1x2
ηx2x

]

= −1

4

∫
dd−1x1

∫
dd−1x2

∫
dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

eik1y−ik2x1e−iEtηk1k2

∫
dd−1k3

(2π)d−1
eik3(x1−x2)ψ0−1

k3

×
∫

dd−1k4

(2π)d−1
eik4(x2−x)ψ0−1

k4

−1

4

∫
dd−1x1

∫
dd−1x2

∫
dd−1k1

(2π)d−1
eik1(y−x1)ψ0−1

k1

∫
dd−1k2

(2π)
d−1
2

∫
dd−1k3

(2π)
d−1
2

eik2x1−ik3x2e−iEtηk2k3

×
∫

dd−1k4

(2π)d−1
eik4(x2−x)ψ0−1

k4

∫
dd−1k4

(2π)d−1
eik4(x2−x)ψ0−1

k4

− 1

4

∫
dd−1x1

∫
dd−1x2

∫
dd−1k1

(2π)d−1
eik1(y−x1)ψ0−1

k1

∫
dd−1k2

(2π)
d−1
2

∫
dd−1k3

(2π)
d−1
2

eik2x1−ik3x2ηk2k3

× e−iEt
∫

dd−1k4

(2π)d−1
eik4(x2−x)ψ0−1

k4

− 1

4

∫
dd−1x1

∫
dd−1x2

∫
dd−1k1

(2π)d−1
eik1(y−x1)ψ0−1

k1

∫
dd−1k2

(2π)d−1
eik2(x1−x2)ψ0−1

k2

∫
dd−1k3

(2π)
d−1
2

×
∫

dd−1k4

(2π)
d−1
2

eik3x2−ik4x1e−iEtηk3k4

= −1

4

∫
dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

e−iEteik1y−ik2x
(
ψ0−1

k1
ψ0−1

k1
+ ψ0−1

k2
ψ0−1

k2
+ 2ψ0−1

k1
ψ0−1

k2

)
× ηk1k2 . (8.20)
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Similarly, the term linear in the bilocals yields:

λ

6
ηyyψ

0
yx =

λ

6

∫
dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

∫
dd−1k3

(2π)d−1
ei(k1−k2)yeik3(y−x)e−iEtηk1k2ψ

0−1

k3

+
λ

6

∫
dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

∫
dd−1k3

(2π)d−1
ei(k2−k3)yeik1(y−x)e−iEtηk2k3ψ

0−1

k1

=
λ

6

∫
dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

∫
dd−1k3

(2π)d−1
ei(k1−k2+k3)ye−ik3xe−iEtηk1k2ψ

0−1

k3
. (8.21)

Let

q =
1

2
(k1 − k2 + k3) ; p =

1

2
(k1 + k2 + k3) . (8.22)

Then (8.21) becomes

λ

6

∫
dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

∫
dd−1k3

(2π)d−1
ei(k1−k2+k3)ye−ik3xe−iEtηk1k2ψ

0−1

k3

=
λ

6

∫
dd−1k3

(2π)
d−1
2

∫
dd−1q

(2π)
d−1
2

ψ0−1

k3
e−ik3xeiqye−iEt

∫
ddp

(2π)d−1
ηp+q−k3,p−q−k3

=
λ

6

∫
dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

ψ0−1

k2
e−ik2xeik1ye−iEt

∫
dd−1k3

(2π)d−1
ηk3+k1−k2,k3−k1−k2 . (8.23)

Likewise,

146



λ

6
ψ0
yxηxx =

λ

6

∫
dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

∫
dd−1k3

(2π)d−1
eik3(y−x)eix(k1−k2)e−iEtηk1k2ψk3

=
λ

6

∫
dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

∫
dd−1k3

(2π)d−1
eiyk3e−ix(k2−k1+k3)e−iEtψk3ηk1k2

=
λ

6

∫
dd−1l

(2π)
d−1
2

∫
dd−1p

(2π)
d−1
2

∫
dd−1k3

(2π)d−1
eiyk3e−ixle−iEtψk3ηp−l−k3,p+l−k3

=
λ

6

∫
dd−1k3

(2π)
d−1
2

∫
dd−1l

(2π)
d−1
2

eiyk3e−ixle−iEtψk3

∫
dd−1p

(2π)d−1
ηp−l−k3,p+l−k3

=
λ

6

∫
dd−1k1

(2π)
d−1
2

∫
dd−1k2

(2π)
d−1
2

eiyk1e−ixk2e−iEtψk3

∫
dd−1k3

(2π)d−1
ηk3−k2−k1,k3+k2−k1 .

(8.24)

Plugging (8.20), (8.23)and (8.24) back into (8.17), we obtain

E2
k1k2

ηk1k2 =
1

4

(
ψ0−1

k1
+ ψ0−1

k2

)2

ηk1k2 +
λ

6

(
ψ0
k1

+ ψ0
k2

) ∫ dd−1l

(2π)d−1
ηk1+k2−l,l, (8.25)

or equivalently

ηk1k2 =
λ
6

(
ψ0
k1

+ ψ0
k2

)
E2
k1k2
− 1

4

(
ψ0−1

k1
+ ψ0−1

k2

)2

∫
dd−1l

(2π)d−1
ηk1+k2−l,l. (8.26)

Multiplying (8.26) by δ (k1 + k2 − p1 − p2) and then integrating over k1 and k2 leads us

to the single-time pole condition:

1 =
λ

12

∫
dd−1~k

(2π)d−1

1

E2
p −

(∣∣∣~k∣∣∣+
∣∣∣~p− ~k∣∣∣)2

 1∣∣∣~k∣∣∣ +
1∣∣∣~p− ~k∣∣∣

 . (8.27)

The integral equation for the fluctuations given in (8.26) is the single-time analogue

version of (7.47). However, (8.26) is much more difficult to solve. In the two-time
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description, the resulting equation was solved by making use of the pole condition.

We can rewrite (8.25) as

E2
k1k2

ηk1k2 =

∫
dk
′

1

∫
dk
′

2K
(
k1, k2; k

′

1, k
′

2

)
ηk′1k

′
2

(8.28)

where the kernel is given by

K
(
k1, k2; k

′

1, k
′

2

)
=

1

4
δ
(
k1 − k

′

1

)
δ
(
k2 − k

′

2

)
+
λ

6
δ
(
k1 + k2 − k

′

1 − k
′

2

) (
ψ0
k1

+ ψ0
k2

)
.

(8.29)

8.2 From The Two-Time To The Single Time Equa-

tions Of Motion And The Spectrum

In this section, we will show that the various quantities of interest that were related in

the single time picture are equivalent to the same quantities that were obtained in the

other alternative description.

We begin with the equations of motion or colloquially speaking the pole conditions.

Recall that the two-time pole condition is

1 =
iλ

6

1

(2π)d

∫
ddk

1

k2

1

(k − p1 − p2)2

=
iλ

6

∫
ddk

(2π)d−1

∫
dE

2π

1

E2 − ~k2 + iε

1

(E − Ep)2 −
(
~k − ~p

)2

+ iε
, (8.30)

where we have introduced the usual Feynman iε prescription which has the effect of

shifting the poles that lie along the real axis upwards or downwards from the axis.
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Moreover, note that the pole in the integrand occur at E = ±
(∣∣∣~k∣∣∣− iε) and E =

Ep±
(∣∣∣~k − ~p∣∣∣− iε). We choose to close the contour on the LHP. Evaluating the residues,

we obtain

∫
dE

2π

1

E2 − ~k2 + iε

1

(E − Ep)2 −
(
~k − ~p

)2

+ iε
=

∫
dE

(2π)
f1 (E) , (8.31)

where

f1 (E) =
1

E2 − ~k2 + iε

1

(E − Ep)2 −
(
~k − ~p

)2

+ iε
. (8.32)

The residue at E =
∣∣∣~k∣∣∣ is

Res
[
f1

(∣∣∣~k∣∣∣)] = lim
E→|~k|

(
E −

∣∣∣~k∣∣∣) f1 (E)

= lim
E→|~k|

(
E −

∣∣∣~k∣∣∣) 1

(E − Ep)2 −
(
~k − ~p

)2

1(
E −

∣∣∣~k∣∣∣) 1(
E +

∣∣∣~k∣∣∣)
=

1

2
∣∣∣~k∣∣∣ 1(∣∣∣~k∣∣∣− Ep)2

−
(
~k − ~p

)2 =
1

2
∣∣∣~k∣∣∣ 1∣∣∣~k∣∣∣− Ep − ∣∣∣~k − ~p∣∣∣

1∣∣∣~k∣∣∣− Ep + ~k − ~p
. (8.33)

Likewise, the other residue gives us

Res
[
f1

(
Ep +

∣∣∣~k − ~p∣∣∣)] = lim
E→Ep+|~k−~p|

(
E − Ep −

∣∣∣~k − ~p∣∣∣) f1 (E)

= lim
E→Ep+|~k−~p|

(
E − Ep −

∣∣∣~k − ~p∣∣∣) 1

E2 − ~k2

1

E − Ep +
∣∣∣~k − ~p∣∣∣ 1

E − Ep −
∣∣∣~k − ~p∣∣∣

=
1

2
∣∣∣~k − ~p∣∣∣ 1(

Ep +
∣∣∣~k − ~p∣∣∣)2

− ~k2

=
1

2
∣∣∣~k − ~p∣∣∣ 1

Ep +
∣∣∣~k − ~p∣∣∣− ∣∣∣~k∣∣∣ 1

Ep +
∣∣∣~k − ~p∣∣∣+

∣∣∣~k∣∣∣ .
(8.34)
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The residue theorem then allows us to write the integral in (8.31) as

∫
dE

(2π)
f1 (E) = −i

[
1

2
∣∣∣~k∣∣∣ 1∣∣∣~k∣∣∣− Ep − ∣∣∣~k − ~p∣∣∣

1∣∣∣~k∣∣∣− Ep + ~k − ~p

+
1

2
∣∣∣~k − ~p∣∣∣ 1

Ep +
∣∣∣~k − ~p∣∣∣− ∣∣∣~k∣∣∣ 1

Ep +
∣∣∣~k − ~p∣∣∣+

∣∣∣~k∣∣∣
]
. (8.35)

Let ~k → ~k1 and ~p− ~k = ~k2. In terms of the new variables, we have

∫
dE

(2π)
f1 (E) = − i

2

[
1∣∣∣~k1

∣∣∣ 1∣∣∣~k1

∣∣∣− Ep − ∣∣∣~k2

∣∣∣ 1∣∣∣~k1

∣∣∣− Ep +
∣∣∣~k2

∣∣∣
+

1∣∣∣~k1

∣∣∣ 1∣∣∣~k1

∣∣∣− Ep − ∣∣∣~k2

∣∣∣ 1∣∣∣~k1

∣∣∣− Ep +
∣∣∣~k2

∣∣∣
]
. (8.36)

It is more convenient to symmetrize and write

∫
dE

(2π)
f1 (E) = − i

4

[
1∣∣∣~k1

∣∣∣ 1∣∣∣~k1

∣∣∣− Ep − ∣∣∣~k2

∣∣∣ 1∣∣∣~k1

∣∣∣− Ep +
∣∣∣~k2

∣∣∣
+

1∣∣∣~k2

∣∣∣ 1∣∣∣~k2

∣∣∣+ Ep −
∣∣∣~k1

∣∣∣ 1∣∣∣~k2

∣∣∣+ Ep +
∣∣∣~k1

∣∣∣
+

1∣∣∣~k2

∣∣∣ 1∣∣∣~k1

∣∣∣+ Ep −
∣∣∣~k2

∣∣∣ 1∣∣∣~k1

∣∣∣+ Ep +
∣∣∣~k2

∣∣∣ +
1∣∣∣~k1

∣∣∣ 1∣∣∣~k1

∣∣∣+ Ep −
∣∣∣~k2

∣∣∣ 1∣∣∣~k1

∣∣∣+ Ep +
∣∣∣~k2

∣∣∣
]
. (8.37)

150



For the sum of the two terms with a prefactor of
∣∣∣~k1

∣∣∣−1

, we obtain

1∣∣∣~k1

∣∣∣ 1∣∣∣~k1

∣∣∣− Ep − ∣∣∣~k2

∣∣∣ 1∣∣∣~k1

∣∣∣− Ep +
∣∣∣~k2

∣∣∣ +
1∣∣∣~k1

∣∣∣ 1∣∣∣~k1

∣∣∣+ Ep −
∣∣∣~k2

∣∣∣ 1∣∣∣~k1

∣∣∣+ Ep +
∣∣∣~k2

∣∣∣
=

1∣∣∣~k1

∣∣∣
(
Ep +

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))Ep +
(∣∣∣~k1

∣∣∣+
∣∣∣~k1

∣∣∣)+
(
Ep −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))Ep − (∣∣∣~k1

∣∣∣+
∣∣∣~k1

∣∣∣)(
Ep −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep − (∣∣∣~k1

∣∣∣+
∣∣∣~k1

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣+
∣∣∣~k1

∣∣∣))
+

1∣∣∣~k1

∣∣∣
(
Ep +

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣))+
(
Ep −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))Ep − (∣∣∣~k1

∣∣∣+
∣∣∣~k1

∣∣∣)(
Ep −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep − (∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)) .
(8.38)

Likewise, the two terms with the
∣∣∣~k2

∣∣∣−1

yield

1∣∣∣~k2

∣∣∣ 1∣∣∣~k1

∣∣∣+ Ep −
∣∣∣~k2

∣∣∣ 1∣∣∣~k1

∣∣∣+ Ep +
∣∣∣~k2

∣∣∣ +
1∣∣∣~k2

∣∣∣ 1∣∣∣~k1

∣∣∣+ Ep −
∣∣∣~k2

∣∣∣ 1

Ep −
∣∣∣~k2

∣∣∣− ∣∣∣~k1

∣∣∣
=

1∣∣∣~k2

∣∣∣
(
Ep +

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣))+
(
Ep −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep − (∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(
Ep −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep − (∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)) .

(8.39)
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Hence,

∫
dE

(2π)
f1 (E) =

1∣∣∣~k1

∣∣∣
×

(
Ep +

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣))+
(
Ep −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))Ep − (∣∣∣~k1

∣∣∣+
∣∣∣~k1

∣∣∣)(
Ep −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep − (∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣))
+

1∣∣∣~k2

∣∣∣
(
Ep +

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣))+
(
Ep −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep − (∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(
Ep −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣))(Ep +
(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣))(Ep − (∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣))
= − i

4

1(
E2
p −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣)2
)(

E2
p +

(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)2
){ 1∣∣∣~k1

∣∣∣
[(

E2
p +

∣∣∣~k1

∣∣∣2 − ∣∣∣~k2

∣∣∣2 + 2Ep

∣∣∣~k2

∣∣∣)

+

((
E2
p −

∣∣∣~k1

∣∣∣2 +
∣∣∣~k2

∣∣∣2 − 2Ep

∣∣∣~k1

∣∣∣))]+
1∣∣∣~k2

∣∣∣
[(

E2
p +

∣∣∣~k2

∣∣∣2 − ∣∣∣~k1

∣∣∣2 + 2Ep

∣∣∣~k2

∣∣∣)

+

((
E2
p +

∣∣∣~k2

∣∣∣2 − ∣∣∣~k2

∣∣∣2 − 2Ep

∣∣∣~k2

∣∣∣))]}.
(8.40)
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Some of the terms cancel out and we are then left with

∫
dE

(2π)
f1 (E) = − i

4

1(
E2
p −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣)2
)(

E2
p −

(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)2
)

×

 2∣∣∣~k1

∣∣∣
(
E2
p +

∣∣∣~k1

∣∣∣2 − ∣∣∣~k2

∣∣∣2)+
2∣∣∣~k2

∣∣∣
(
E2
p +

∣∣∣~k2

∣∣∣2 − ∣∣∣~k1

∣∣∣2)


= − i
2

1(
E2
p −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣)2
)(

E2
p +

(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)2
)

×

E2
p

 1∣∣∣~k1

∣∣∣ +
1∣∣∣~k2

∣∣∣
− (∣∣∣~k2

∣∣∣2 − ∣∣∣~k1

∣∣∣2)
 1∣∣∣~k1

∣∣∣ − 1∣∣∣~k2

∣∣∣


= − i
2

1(
E2
p −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣)2
)(

E2
p −

(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)2
)

×

 E2
p∣∣∣~k1

∣∣∣ ∣∣∣~k2

∣∣∣
(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)−
(∣∣∣~k2

∣∣∣2 − ∣∣∣~k1

∣∣∣2)(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣)∣∣∣~k1

∣∣∣ ∣∣∣~k2

∣∣∣


= − i
2

1(
E2
p −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣)2
)(

E2
p −

(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)2
)

×

(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)∣∣∣~k1

∣∣∣ ∣∣∣~k2

∣∣∣
[
E2
p −

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣)2
]

= − i
2

1

E2
p −

(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)2

 1∣∣∣~k1

∣∣∣ +
1∣∣∣~k2

∣∣∣
 . (8.41)

The above result is of great significance, as we discuss in the following.
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To summarize, we have then

∫
dE

2π

1

E2 − ~k2 + iε

1

(E − Ep)2 −
(
~k − ~p

)2

+ iε
= − i

2

× 1

E2
p −

(∣∣∣~k∣∣∣+
∣∣∣~k − ~p∣∣∣)2

 1∣∣∣~k∣∣∣ +
1∣∣∣~k − ~p∣∣∣

 . (8.42)

Therefore,

1 =
iλ

6

1

(2π)d

∫
ddk1

1

k2

1

(k − p1 − p2)2

=
iλ

6

(
− i

2

)∫
dd−1k1d

d−1k2

(2π)d−1

δ
(
~p− ~k1 + ~k2

)
E2
p −

(∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)2

 1∣∣∣~k1

∣∣∣ +
1∣∣∣~k2

∣∣∣
 , (8.43)

or

1 =
λ

12

∫
dd−1~k

(2π)d−1

1

E2
p −

(∣∣∣~k∣∣∣+
∣∣∣~p− ~k∣∣∣)2

 1∣∣∣~k∣∣∣ +
1∣∣∣~p− ~k∣∣∣

 . (8.44)

This is the pole condition that we found in the Hamiltonian approach (8.27).

We have thus demonstrated that the equations of motions in the two descriptions are

equivalent.

For completeness, we carry out the same analysis for the free part of the propagator.

The free O (N) vector model propagator is

Ô−1
k3k4;p1p2 = 2ψ0

k3
ψ0
k4
δ (k4 + p1) δ (k3 + p2) , (8.45)

where all the momenta are 4 vectors.

The large-N background has already been obtained. In Minkowski space it is given by
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ψ0
k =

i

k2
. (8.46)

Therefore, the free O (N) propagator can be written as

Ô−1
k1k2;p1p2 = 2ψ0

k3
ψ0
k4
δ (k4 + p1) δ (k4 + p1)

= −2
1

E2
1 − ~k1

2
+ iε

δ (k4 + p1) δ (k3 + p2)

E2
2 − ~k2

2 + iε
. (8.47)

It turns out that its more convenient to change variables and work with

E = E1 + E2, ω = E1 − E2 (8.48)

or

E1 =
1

2
(E + ω) , E2 =

1

2
(E − ω) . (8.49)

We can make use of this to write

−2

E2
1 − ~k1

2
+ iε

1

E2
2 − ~k2

2 + iε
=

−2

1
4

(E + ω)2 − ~k1

2
+ iε

1
1
4

(E − ω)2 − ~k2
2 + iε

=
32

(E + ω)2 − 4~k1

2
+ iε

1

(E − ω)2 − 4~k2

2
+ iε

. (8.50)

It is clear that we need to perform the integral

− 32

∫
dω

2π

32

(E + ω)2 − 4~k1

2
+ iε

1

(E − ω)2 − 4~k2

2
+ iε

= −
∫
dω

2π
f (ω) , (8.51)
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where

32

(ω + E)2 − 4~k1

2
+ iε

1

(ω − E)2 − 4~k2

2
+ iε

=
iλ

6

∫
ddk1

(2π)d−1

×
∫
dE

2π

1

E2 − ~k2 + iε

1

(E − Ep)2 −
(
~k − ~p

)2

+ iε
. (8.52)

The poles of the function f (ω) are at ω = −E±
(

2
∣∣∣~k1

∣∣∣∓ iε) and ω = E±
(

2
∣∣∣~k2

∣∣∣∓ iε).

We will choose to close our counter on the UHP - see Figure 8.1. The residue at ω =

E − 2
∣∣∣~k2

∣∣∣ is

Res
[
f
(
E − 2

∣∣∣~k1

∣∣∣)] = lim
ω→E−2| ~k2|

(
ω − E + 2

∣∣∣~k2

∣∣∣) f (ω)

= lim
ω→E−2| ~k2|

(
ω − E + 2

∣∣∣~k2

∣∣∣) 32

(ω + E)2 − 4~k1

2
+ iε

1(
ω − E − 2

∣∣∣~k2

∣∣∣) (ω − E + 2
∣∣∣~k2

∣∣∣)
=

32(
2E − 2

∣∣∣~k2

∣∣∣)2

− 4~k1

2

1(
−4
∣∣∣~k2

∣∣∣) . (8.53)

Likewise, the residue at ω = −E − 2
∣∣∣~k1

∣∣∣ yields

Res
[
f
(
−E − 2

∣∣∣~k1

∣∣∣)] = lim
ω→−E−2| ~k1|

(
ω + E + 2

∣∣∣~k2

∣∣∣) f (ω)

lim
ω→−E−2| ~k1|

(
ω + E + 2

∣∣∣~k1

∣∣∣) 1(
ω + E + 2

∣∣∣~k1

∣∣∣) (ω + E − 2
∣∣∣~k1

∣∣∣) 1

(E − ω)2 − 4~k2

2
+ i

=
1(

−4
∣∣∣~k1

∣∣∣) 1(
2E + 2

∣∣∣~k1

∣∣∣)2

− 4~k2

2
. (8.54)
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By making use of (8.53) and (8.54) the integral in (8.47) becomes

∫
dω

2π
f (ω) = 2πi

∑
k

Resf (zk)

=
2πi

2π

 32(
2E − 2

∣∣∣~k2

∣∣∣)2

− 4~k1

2

1(
−4
∣∣∣~k2

∣∣∣) +
1(

−4
∣∣∣~k1

∣∣∣) 1(
2E + 2

∣∣∣~k1

∣∣∣)2

− 4~k2

2


= − i

2

 1(
E −

∣∣∣~k2

∣∣∣)2

− ~k1

2

1(∣∣∣~k2

∣∣∣) +
1(

E +
∣∣∣~k1

∣∣∣)2

− ~k2

2

1(∣∣∣~k1

∣∣∣)
 . (8.55)

The term inside the brackets yields

1(
E −

∣∣∣~k2

∣∣∣)2

− ~k1

2

1(
−
∣∣∣~k2

∣∣∣) +
1(

E +
∣∣∣~k1

∣∣∣)2

− ~k2

2

1(
−
∣∣∣~k1

∣∣∣)

=

((
E +

∣∣∣~k1

∣∣∣)2

− ~k2

2
) ∣∣∣~k1

∣∣∣+

((
E −

∣∣∣~k2

∣∣∣)2

− ~k1

2
) ∣∣∣~k2

∣∣∣((
E −

∣∣∣~k2

∣∣∣)2

− ~k1

2
)((

E +
∣∣∣~k1

∣∣∣)2

− ~k2

2
) ∣∣∣~k1

∣∣∣ ∣∣∣~k2

∣∣∣
=

(
E2 + ~k1

2
+ 2E

∣∣∣~k1

∣∣∣− ~k2

2
) ∣∣∣~k1

∣∣∣+
(
E2 + ~k2

2
− 2E

∣∣∣~k2

∣∣∣− ~k1

2
) ∣∣∣~k2

∣∣∣∣∣∣~k1

∣∣∣ ∣∣∣~k2

∣∣∣ (E − ∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣) (E − ∣∣∣~k2

∣∣∣+
∣∣∣~k1

∣∣∣) (E +
∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣) (E +
∣∣∣~k2

∣∣∣+
∣∣∣~k1

∣∣∣) .
(8.56)

Note that

(
E −

∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣) (E − ∣∣∣~k2

∣∣∣+
∣∣∣~k1

∣∣∣) (E +
∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣) (E +
∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣)
=
(
E −

∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣) (E +
∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣) (E − ∣∣∣~k2

∣∣∣+
∣∣∣~k1

∣∣∣) (E +
∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣)
=

(
E2 −

(∣∣∣~k2

∣∣∣+
∣∣∣~k1

∣∣∣)2
)(

E2 −
(∣∣∣~k2

∣∣∣− ∣∣∣~k1

∣∣∣)2
)
. (8.57)
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Thus,

(
E2 + ~k1

2
+ 2E

∣∣∣~k1

∣∣∣− ~k2

2
) ∣∣∣~k1

∣∣∣+
(
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2
− 2E
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2
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2
∣∣∣~k2

∣∣∣∣∣∣~k1

∣∣∣ ∣∣∣~k2
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(∣∣∣~k2

∣∣∣+
∣∣∣~k1

∣∣∣)2
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∣∣∣− ∣∣∣~k1
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)
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E2
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∣∣∣− ∣∣∣~k2

∣∣∣)+ ~k3
1 + ~k3

1 − ~k2

2
∣∣∣~k1
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∣∣∣+
∣∣∣~k1

∣∣∣)2
)(

E2 −
(∣∣∣~k2
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)

=

E2
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∣∣∣+
∣∣∣~k2

∣∣∣)+ 2E
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∣∣∣− ∣∣∣~k2

∣∣∣)+

(∣∣∣~k1
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∣∣∣ (E2 −
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∣∣∣)2
)(
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∣∣∣− ∣∣∣~k1

∣∣∣)2
)

=

∣∣∣~k1

∣∣∣+
∣∣∣~k2

∣∣∣∣∣∣~k1

∣∣∣ ∣∣∣~k2

∣∣∣
E2 − 2E

(∣∣∣~k1

∣∣∣− ∣∣∣~k2

∣∣∣)+
(∣∣∣~k1

∣∣∣− ∣∣∣~k2
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E2 −

(∣∣∣~k2

∣∣∣+
∣∣∣~k1

∣∣∣)2
)(

E2 −
(∣∣∣~k2

∣∣∣− ∣∣∣~k1

∣∣∣)2
)

=

 1∣∣∣~k1

∣∣∣ +
1∣∣∣~k2

∣∣∣
 1(

E2 −
(∣∣∣~k2

∣∣∣+
∣∣∣~k1

∣∣∣)2
) . (8.58)

Consequently, we have

−
∫
dω

2π
f (ω) =

i

2

 1∣∣∣~k1

∣∣∣ +
1∣∣∣~k2

∣∣∣
 1(

E2 −
(∣∣∣~k2

∣∣∣+
∣∣∣~k1

∣∣∣)2
) . (8.59)

which is - up to some constant factors - the single-time equation of motion that we found

in (4.36).
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Figure 8.1: The contour chosen for the evaluation of the integral in (8.52).
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8.3 Single-Time Lagrangian

But each new paper from him [Witten] gave me the joy of reading, and the question,

“why am I needed?”

-Joseph Polchinski, Memories of a Theoretical Physicist.

For completeness, in this section we will discuss the single-time Lagrangian formalism.

The large-N collective field theory Hamiltonian can be written as (8.4):

H2 = 2Tr (pψ0p) +
1

8
Tr
(
ψ−1

0 ηψ−1
0 ηψ−1

0

)
+
λ

4!

∫
dd−1xη2

xx. (8.60)

The fluctuations are

ηxy =

∫
d2k1

(2π)

∫
d2k2

(2π)
ei
~k1·~x1ei

~k2·~x2η ~k1~k2 . (8.61)

while the momentum can be written in terms of the Fourier transform as

pxy =

∫
d2k1

(2π)

∫
d2k2

(2π)
ei
~k1·~x1ei

~k2·~x2p ~k1~k2 (8.62)

In momentum space, one can show that the quadratic Hamiltonian becomes

H2 = 2

∫
dk1

∫
dk2pk1k2ψ

0
k2
p−k2,−k1 +

1

8

∫
dk1

∫
dk2ψ

0−2

k1
ηk1k2ψ

0−1

−k2,−k1 (8.63)

+
λ

4!

∫
dk1dk2dp1dp2

(2π)2 δ
(
~k1 + ~k2 + ~p1 + ~p2

)
η~k1 ~k2η ~p1 ~p2 . (8.64)

The equations of motion (i.e. (8.12)) lead us to conclude that

pk1k2 =
1

2
(
ψ0
k1

+ ψ0
k2

) η̇−k2,−k1 . (8.65)
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We now perform the standard Legendre transformation and write the single time La-

grangian as

L2 =
1

4

∫
dk1

∫
dk2η̇k1k2

1(
ψ0
k1

+ ψ0
k2

) η̇k1k2 − 1

16

∫
dk1

∫
dk2ηk1k2

×
(
ψ−2
k1
ψ−1
k2

+ ψ−2
k2
ψ−1
k1

)
η̇−k2,−k1 −

λ

4!

∫
dk1dk2dp1dp2

(2π)2 δ
(
~k1 + ~k2 + ~p1 + ~p2

)
η~k1 ~k2η ~p1 ~p2 .

(8.66)

We then Fourier transform to the energy description. The action in this language reads

S2 =

∫
dk1

∫
dk2

∫
dEηk1k2E

(
E2

4
(
ψ0
k1

+ ψ0
k2

) − 1

16

(
ψ−2
k1
ψ−1
k2

+ ψ−2
k2
ψ−1
k1

))

η−k2,−k1 −
λ

4!

∫
dEdk1dk2dp1dp2η~k1 ~k2,E

δ
(
~k1 + ~k2 + ~p1 + ~p2

)
(2π)2 η~p1 ~p2,E (8.67)

The partition function, schematically, is

Z ∼ eiS2 ∼ e−
1
2
ηOη. (8.68)

More formally, we have

eiS2 = exp−1

2

∫
dk1

∫
dE1

∫
dk2

∫
dE2ηk1k2,E1Ôk1k2,E;p1p2,E2 . (8.69)
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with

Ôk1k2,E;p1p2,E2 = −i

[
E2

2
(
ψ0
k1

+ ψ0
k2

) − 1

8

(
ψ−2
k1
ψ−1
k2

+ ψ−2
k2
ψ−1
k1

)
×δ
(
~k1 + ~p2

)
δ
(
~k2 + ~p1

)
δ (E1 + E2) +

2iλ

4!

1

(2π)2 δ
(
~k1 + ~k2 + ~p1 + ~p2

)
δ (E1 + E2)

]
.

(8.70)

We want to find the inverse of the operator O. More precisely, we must find O−1 such

that

∫
dk3

∫
dk4

∫
dEÔk1k2,E1;k3k4,E2Ô

−1
k3k4,E2;p1p2,E3

= δ (k1 − p1)

×δ (k2 − p1) δ (k2 − p1) δ (E1 − E2) . (8.71)

Our ansatz for the inverse reads

Ôk3k4,E2;p1p2,E3 = iG0−1
(
~k3, ~k4

)
δ
(
~k3 + ~p2

)
δ
(
~k4 + ~p1

)
δ (E2 + E3)

+ δ
(
~k3 + ~k4 + ~p1 + ~p2

)
Gk3k4;p1p2δ (E2 + E3) . (8.72)

We insert this ansatz into (8.71) and obtain

∫
dk3

∫
dk4

∫
dE2Ôk1k2,E1;k3k4,E2Ô

−1
k3k4,E2;p1p2,E3

=

∫
dk3

∫
dk4

∫
dE[

E2

2
(
ψ0
k1

+ ψ0
k2

) − 1

8

(
ψ−2
k1
ψ−1
k2

+ ψ−2
k2
ψ−1
k1

)
δ
(
~k1 + ~p2

)
×δ
(
~k2 + ~p1

)
δ (E1 + E2) +

2iλ

4!

1

(2π)2 δ
(
~k1 + ~k2 + ~p1 + ~p2

)
δ (E1 + E2)

]

×

[
iG0−1

(
~k3, ~k4

)
δ
(
~k3 + ~p2

)
δ
(
~k4 + ~p1

)
δ (E2 + E3) + δ

(
~k3 + ~k4 + ~p1 + ~p2

)
Gk3k4;p1p2δ (E2 + E3)

]

= A+B + C +D. (8.73)
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The first term in (8.73) yields

A = −
∫
dk3

∫
dk4

∫
dEG0 (k1, k2)G−1 (k3, k4) δ (k1 + k4) δ (k3 + k2)

×δ (k3 + p2) δ (E1 + E2) δ (E2 + E1) = G0 (k1, k2)G0−1

(−k2,−k1) δ (−k2 + p2)

×δ (−k1 + p1) δ (−E1 + E3) . (8.74)

For the second term in (8.73), we obtain

B = −i
∫
dk3

∫
dk4

∫
dE2G

0 (k1, k2) δ (k1 + k4) δ (k3 + k3) δ (E1 + E2)

×δ (k3 + k4 + p1 + p2) δ (E2 + E3)Gk3k4;p1p2 = −iG0 (k1, k2) δ (−k2 − k1 + p1 + p2)

δ (−E1 + E3)G−k2,−k1;p1p2 = −iG0 (k1, k2) δ (p1 + p2 − k1 − k2) δ (E3 − E1)G−k2,−k1;p1p2 .

(8.75)

Likewise, the third term in (8.73) leads to

C =
2iλ

4!

1

(2π)2

∫
dk3

∫
dk4

∫
dE2δ (k1 + k2 + k3 + k4) δ (E1 + E2)

×iG0−1

(k3, k4) δ (k3 + p2) δ (k4 + p1) δ (E2 + E3) =
2iλ

4!

1

(2π)2

×δ (k1 + k2 + k3 + k4) δ (E1 − E3) iG0−1

(−p2,−p1) . (8.76)

Finally, the last term in (8.73) gives

D =
2iλ

4!

1

(2π)2

∫
dk3

∫
dk4

∫
dE2δ (k1 + k2 + p1 + p2)Gk3k4;p1p2

×δ (E1 + E2) δ (k3 + k4 + p1 + p2) =
2iλ

4!

1

(2π)2 δ (p1 + p2 − k1 − k2)

δ (E3 − E1)

∫
dk3

∫
dk4δ (k3 + k4 + p1 + p2)Gk3k4;p1p2 . (8.77)
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Substituting (8.74), (8.75), (8.76) and (8.77) in (8.73), we have

0 = −iG0 (k1, k2)G−k2,−k1;p1p2 +
2iλ

4!

1

(2π)2 iG
−1
0 (−p2,−p1)

+
2iλ

4!

1

(2π)2

∫
dk3

∫
dk4δ (k3 + k4 + p1 + p2)Gk3k4;p1p2 (8.78)

or

2iλ

4!

1

(2π)2 iG
−1
0 (−p2,−p1) = iG0 (k1, k2)G−k2−k1;p1p2 −

2iλ

4!

1

(2π)2

∫
dk3

∫
dk4

×δ (k3 + k4 + p1 + p2)Gk3k4;p1p2 . (8.79)

Since Gk1k2;p1p2 is symmetric under the interchange (k1, k2)→ (−k2,−k1) , we can rewrite

(8.79) as

2λ

4!

1

(2π)2 iG
−1
0 (p1, p2) = iG0 (k1, k2)Gk1k2;p1p2 −

2λ

4!

1

(2π)2

∫
dk3

∫
dk4

δ (k3 + k4 + p1 + p2)Gk3k4;p1p2 . (8.80)

Solving for Gk1k2;p1p2 , we obtain

Gk1k2;p1p2 =
2λ

4!

1

(2π)2G
−1
0 (k1, k2)G−1

0 (p1, p2) +
2λ

4!

1

(2π)2G
−1
0 (k1, k2)∫

dk3

∫
dk4δ (k3 + k1 + p1 + p2)Gk3k4;p1p2 . (8.81)

We define

αp1p2 =

∫
dk1dk2δ (k1 + k2 + p1 + p2)Gk1k2;p1p2 . (8.82)

We can rewrite (8.81) as
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Gk1k2;p1p2 =
2λ

4!

1

(2π)2G
−1
0 (k1, k2)G−1

0 (p1, p2) +
2λ

4!

1

(2π)2G
−1
0 (k1, k2)αp1p2 . (8.83)

In addition, if we multiplier (8.81) by δ (k1 + k2 + p1 + p2) and integrate over k1 and k2,

(8.81) becomes:

αp1p2 =
2λ

4!

1

(2π)2

∫
dk1dk2δ (k1 + k2 + p1 + p2)G−1

0 (p1p2)

+
2λ

4!

1

(2π)2

∫
dk1dk2δ (k1 + k2 + p1 + p2)G−1

0 (k1k2)

×
∫
dk3

∫
dk4δ (k3 + k4 + p1 + p2)Gk3k4;p1p2

=
2λ

4!

1

(2π)2βp1p2G
−1
0 (p1, p2) +

2λ

4!
βp1p2

1

(2π)2αp1p2 , (8.84)

where

βp1p2 =

∫
dk3dk4δ (k3 + k4 + p1 + p2)Gk3k4;p1p2 . (8.85)

Solving (8.84) for αp1p2 , we obtain

αp1p2 =
2λ
4!
βp1p2G

−1
0 (p1, p2)

1− 2λ
4!

1
(2π)2

βp1p2
. (8.86)
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Plugging this solution for αp1p2 into (8.84) yields

Gk1k2;p1p2 =
2λ

4!

1

(2π)2G
−1
0 (k1, k2)G−1

0 (p1, p2) +
2λ

4!

1

(2π)2G
−1
0 (k1, k2)αp1p2

=
2λ

4!

1

(2π)2G
−1
0 (k1, k2)

[
G−1

0 (p1, p2) +

2λ
4!
βp1p2

1
(2π)2

G−1
0 (p1, p2)

1− 2λ
4!

1
(2π)2

βp1p2

]

=
2λ

4!

1

(2π)2G
−1
0 (k1, k2)

[
1− 2λ

4!
1

(2π)2
βp1p2 + 2λ

4!
1

(2π)2
βp1p2

1− 2λ
4!

1
(2π)2

βp1p2

]
G−1

0 (p1, p2)

=
2λ

4!

1

(2π)2G
−1
0 (k1, k2)G−1

0 (p1, p2)

[
1

1− 2λ
4!

1
(2π)2

βp1p2

]
. (8.87)

That is,

Gk1k2;p1p2 =
2λ

4!

1

(2π)2G
−1
0 (k1, k2)G−1

0 (p1, p2)

[
1

1− 2λ
4!

1
(2π)2

βp1p2

]
. (8.88)

Putting everything together, the full Green’s function is

Ô−1
k3k4,E2;p1p2,E3

= iG0−1
(
~k3, ~k4

)
δ
(
~k3 + ~p2

)
δ
(
~k4 + ~p1

)
δ (E2 + E3)

+ δ
(
~k3 + ~k4 + ~p1 + ~p2

) 2λ

4!

1

(2π)2G
−1
0 (k1, k2)G−1

0 (p1, p2)

[
1

1− 2λ
4!

1
(2π)2

βp1p2

]
.

(8.89)

In the strong ‘t Hooft limit (λ→∞), this simplifies to:

Ô−1
k3k4,E2;p1p2,E3

= iG0−1
(
~k3, ~k4

)
δ
(
~k3 + ~p2

)
δ
(
~k4 + ~p1

)
δ (E2 + E3)

+ δ
(
~k3 + ~k4 + ~p1 + ~p2

)
G−1

0 (k1, k2)G−1
0 (p1, p2)

1

βp1p2
. (8.90)

We find, once more, that the propagator consists of a part which is identical to the free

theory and a bound state.
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Chapter 9

Collective Field Canonical

Quantization, Spectrum And Map

Three Rules of Work: Out of clutter find simplicity. From discord find harmony. In the

middle of difficulty lies opportunity.

-Albert Einstein.

According to the Klebanov-Polyakov conjecture [147], adding the “double-trace” operator

δSCFT =
λ

4!

∫
d3x

(
φiφi

)2
(9.1)

to the free theory on the CFT side corresponds to merely changing the boundary condi-

tions of the bulk scalar field. In other words, one expects that the results for the critical

(φ2)
2

theory can, in principle, be obtained from the free theory when one replaces ∆ = 1

by ∆ = 2.

We have, however, stumbled upon a puzzle. The puzzle is that our simple expectation

seems to be invalid. This puzzle was already clear when we considered the non-linear
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sigma model and the pole structure of both the two-time and the single-time propagator.

The results that we obtain seem to indicate or suggest that one has the previous degrees

of freedom of the free case plus the degrees of freedom associated with some bound state.

A similar (related) puzzle is that the homogeneous equation (or equations of motion)

only give us a mass condition for the bound state. Naturally, one can ask where are the

“free modes” in this instance?

To understand this better, we return to the two-time equations of motion in coordinate

space.

Recall that the quadratic effective action is

Seff2 =
i

4
Tr
(
ψ−1

0 ηψ−1
0 η
)
− λ

4!

∫
ddxη2

xx. (9.2)

and the equations of motion are

(
ψ−1

0 ηψ−1
0

)
xy

= −iλ
6
δ (x− y) ηxx. (9.3)

Since p̂ = −i∂, it is straightforward to see that 〈x |∂| y〉 = i 〈x |p̂| y〉. For the matrix

element, we obtain

i 〈x |p̂| y〉 = i

∫
dp1

∫
dp2 〈x |p1 〉 〈p1 |p̂| p2〉 〈p2 |y 〉

= i

∫
dp1

∫
dp2

eip1x√
2π
δ (p1 − p2) p1

e−ip2y√
2π

= i

∫
dp

2π
eip(x−y)p

= i

(
−i ∂
∂x

)
δ (x− y) =

∂

∂x
δ (x− y) . (9.4)

That is,
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〈x |∂| y〉 =
∂

∂x
δ (x− y) . (9.5)

Similarly, one can show that

〈
x
∣∣∂2
∣∣ y〉 =

∂2

∂x2
δ (x− y) . (9.6)

The large-N background is

ψ0
k =

i

k2
. (9.7)

Therefore,

〈
x
∣∣∣ψ0−1

k

∣∣∣ y〉 = −i∂2
xδ (x− y) . (9.8)

The L.H.S. of (9.3) becomes

(
ψ−1

0 ηψ−1
0

)
xy

=

∫
dx1

∫
dx2

(
ψ−1

0

)
xx1

ηx1x2
(
ψ−1

0

)
x2y

=

∫
dx1

∫
dx2

(
−i∂2

xδ (x− x1)
)
ηx1x2

(
−i∂2

x2
δ (x2 − y)

)
= −∂2

x∂
2
yηxy. (9.9)

Accordingly, the equations of motion - i.e. (9.3) - can be written as

∂2
x∂

2
yηxy = −iλ

6
δ (x− y) ηxx. (9.10)
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We observe the presence of a Dirac delta function in terms of the relative coordinates

x− y.

In order to understand the problem at hand we will consider a very simple example that

will give us a hint as to how to proceed.

Let us focus on an extremely simple 1d problem that involves scattering from a Dirac

delta-function potential. This is described by the equation

(
− ~2

2m

d2

dx2
+ v0δ (x)

)
ψ (x) = Eψ (x) . (9.11)

This equation is easy to solve using potential scattering methods. One finds - when one

moves to momentum space - that the most general solution is given by [235]:

ψ (x) = ψinc (x) +

∫
dk

(2π)

eikx

E − ~2k2
2m

v0ψ (0) (9.12)

where ψinc (x) = eik0x is the incident wave and satisfies the free Schrodinger equation:

− ~2

2m

d2

dx2
ψinc = Eψinc (9.13)

For x > 0, we close the contour in the LHP and perform the integral using the residue

theorem. Since the integrand only has a single pole at k0 =
√

2mE/~2 in the LHP, we

get

∫
dk

(2π)

eikx

E − ~2k2
2m

=
mei
√

2mE/~2x

i~
√

2mE
. (9.14)

Taking x < 0 yields

∫
dk

(2π)

eikx

E − ~2k2
2m

=
me−i

√
2mE/~x

i~
√

2mE
. (9.15)
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Therefore, the solution can be written as

ψ (x) = ψinc (x) +
meik0|x|

i~2k0

v0ψ (0) . (9.16)

When x = 0 the solution simplifies to

ψ (0) = ψinc (0) +
m

i~2k0

v0ψ (0) (9.17)

or

ψ (0) =
i~2k0

i~2k0 −mv0

ψinc (0) . (9.18)

Accordingly, the wavefunction can be written as

ψ (x) = ψinc (x) +
meik0|x|

i~2k0 −mv0

v0ψinc (0) . (9.19)

What we have done may seem elementary but there are few physical things that one can

learn from this. Namely, that the total wave will consist of a superposition of the “free”

incident wave and the scattered wave. This heuristic argument, if formalized properly,

can assist us in resolving the above puzzle with the free modes still being present even

when we add the “double trace” operator to the free O(N) theory.

Recall that the IR theory corresponds to taking λ → ∞ [208]. What this translates to

in our simple toy model is looking at how the wavefunction behaves as we take v0 →∞.

It is straightforward to see that
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lim
v0→∞

(ψ (0)) = lim
v0→∞

(
ψinc (0) +

m

i~2k0 −mv0

v0ψinc (0)

)
= ψinc (0)− ψinc (0) = 0. (9.20)

This reasoning is already suggestive that a similar argument may lead to the conclusion

that ηxx = 0.

To obtain the bound state we can look at the poles of (9.19). It is clear that (9.19) has

a pole when i~2k0 = mv0 . Thus,

k0 = −imv0

~2
(9.21)

which is purely imaginary. Accordingly, 2mE = ~2k2
0 is negative. That is, E < 0 and we

have a bound state. Since E < 0 and k0 = i
√

2m |E| , it follows from (9.21) that v0 is

negative [235].

We can arrive at the same conclusion by looking at the homogeneous equation i.e. (9.16)

without the incident wave. The homogeneous equation is

ψ (x) =
meik0|x|

i~2k0

v0ψ (0) . (9.22)

The consistency condition at x = 0 leads to

1 =
m

i~2k0

v0 (9.23)

which is exactly what we had previously in (9.21).

To make the analogue with our problem much more clearer, let us move to momentum

space. The wavefunction can be written as
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ψ (x) =

∫
dk√
2π
eikxAk (9.24)

and the incident wavefunction reads

ψinc (x)
.
= ϕ (x) =

∫
dk√
2π
eikxϕk. (9.25)

Since ψinc (x) = eik0x, we have

ϕk =

∫
dx√
2π
e−ikxϕ (x) ,

=
√

2π

∫
dk

2π
ei(k0−k)x

=
√

2πδ (k − k0) . (9.26)

where k0 is the wavenumber of the incident wave.

In momentum space (9.12) becomes

Ak = ϕk +
v0

E − ~2k2
2m

∫
dk′Ak′ . (9.27)

Integrating the equation above yields:

∫
dkAk =

∫
dkϕk + v0

∫
dk

1

E − ~2k2
2m

∫
dk′Ak′ (9.28)

which implies that

∫
dkAk

(
1− v0

∫
dk′

1

E − ~2k′2
2m

)
=

∫
dkϕk. (9.29)

That is,
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∫
dkAk =

1

1− v0

∫
dk′ 1

E− ~2k′2
2m

∫
dkϕk (9.30)

Substituting this back into (9.27), we obtain

Ak = ϕk +
v0

E − ~2k2
2m

∫
dk′Ak′

= ϕk +
v0

E − ~2k2
2m

1

1− v0

∫
dk′ 1

E− ~2k′2
2m

∫
dkϕk. (9.31)

Integrating the final result leads to

∫
dkAk =

∫
dkϕk +

∫
dk̄

1

E − ~2k̄2
2m

v0
1

1− v0

∫
dk′ 1

E− ~2k′2
2m

∫
dkϕk (9.32)

Taking the limit v0 →∞, we obtain:

∫
dkAk =

∫
dkϕk +

∫
dk̄

1

E − ~2k̄2
2m

v0
1

−v0

∫
dk′ 1

E− ~2k′2
2m

∫
dkϕk

=

∫
dkϕk −

∫
dkϕk = 0. (9.33)

The above intimations provide us with a way of tackling our original problem. In direct

analogue to (9.27), the full solution to the scattering potential problem i.e. (8.25):

E2
k1k2

ηk1k2 =
1

4

(
ψ0−1

k1
+ ψ0−1

k2

)2

ηk1k2 +
λ

6

(
ψ0
k1

+ ψ0
k2

) ∫ dd−1l

(2π)d−1
ηk1+k2−l,l, (9.34)

can be written as

ηk1k2 = ϕk1k2 +
λ
(

1
|k1| + 1

|k2|

)
E2 − (|k1|+ |k2|)2

∫
d3k

(2π)2ηk.k1+k2−k, (9.35)
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where1

E2 = (|p1|+ |p2|)2 , ϕk1k2 ∼ δ (k1 − p1) δ (k2 − p2) (9.36)

and ϕk1k2 solves the free equation of motion.

Integrating both sides of (9.35), and using the results (7.33) and (8.42), yields2

∫
d2kηk,k1+k2−k =

∫
d2kϕk,k1+k2−k + λ

(
1

4 (−pµpµ)1/2

)∫
d2kηk,k1+k2−k. (9.37)

Hence,

(
1− λ

4 (−pµpµ)1/2

)∫
d2kηk,k1+k2−k =

∫
d2kϕk,k1+k2−k (9.38)

or

∫
d2kηk,k1+k2−k =

1

1− λ

4(−pµpµ)1/2

∫
d2kϕk,k1+k2−k. (9.39)

Plugging (9.39) into (9.35), we get

ηk,k1+k2−k = ϕk,k1+k2−k +
λ
(

1
|k| + 1

|k1+k2−k|

)
E2 −

(
|k|2 + |k1 + k2 − k|2

)2

∫
d2k

(2π)2ηk.k1+k2−k

= ϕk,k1+k2−k +

(
1
|k| + 1

|k1+k2−k|

)
λ

E2 −
(
|k|2 + |k1 + k2 − k|2

)2

1

1− λ

4(−pµpµ)1/2

∫
d2kϕk,k1+k2−k.

(9.40)

1The energy E , in analogue to the 1d quantum mechanical problem involving a Dirac delta potential,
only depends on the momenta of the incident wave and is thus fixed.

2Here, pµ =
(
E, ~k1 + ~k2

)
.
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We integrate the above equation and find that

∫
d2kηk,k1+k2−k =

∫
d2kϕk,k1+k2−k +

∫
d2k′

(
1
|k′| + 1

|k1+k2−k′|

)
λ

E2 −
(
|k′|2 + |k1 + k2 − k′|2

)2

× 1

1− λ

4(−pµpµ)1/2

∫
d2kϕk,k1+k2−k. (9.41)

In IR λ→∞ and accordingly (9.41) simplifies to:

∫
d2kηk,k1+k2−k =

∫
d2kϕk,k1+k2−k +

∫
d2k′

(
1
|k′| + 1

|k1+k2−k′|

)
λ

E2 −
(
|k′|2 + |k1 + k2 − k′|2

)2

× 1

− λ

4(−pµpµ)1/2

∫
d2kϕk,k1+k2−k.

=

∫
d2kϕk,k1+k2−k +

λ

4 (−pµpµ)1/2
× 1

− λ

4(−pµpµ)1/2

∫
d2kϕk,k1+k2−k

=

∫
d2kϕk,k1+k2−k −

∫
d2kϕk,k1+k2−k = 0. (9.42)

That is,

ηxx ∼
∫
d2kηk,k1+k2−k = 0. (9.43)

To summarize, we have demonstrated that ηxx = 0.
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Chapter 10

Conclusions And Outlook

Those who will finish the course will do so only because they did not, as fatigue sets in,

convince themselves that the road ahead is still too long, that the inclines are too steep,

that the loneliness is impossible to bear and that the prize itself is of doubtful value.

- Thabo Mvuyelwa Mbeki, 1999.

The conjecture by Klebanov and Polyakov, which states that the Vasiliev higher spin

gauge theory in AdS4 is dual to the O(N) vector model, provides us with a tractable

form of the AdS/CFT correspondence. (The fact that the duality is tractable, however,

is a qualified statement. In particular, the CFT side of the duality is relatively not too

complicated. However, the gravity side suffers from the fact that, at present, the Vasiliev

field equations cannot be obtained from an action.1 This is reminiscent, for example,

of the 6d (2, 0) SCFT which also doesn’t have an action. More boldly, it has been

suggested that these examples, and others, show that we need to have other formulations

of Quantum Field Theories that are independent of a Lagrangian formalism [238]. For

the Vasiliev higher spin gravity, however, there is the so-called unfolded formalism [239].

1For attempts at finding a Lagrangian for Vasiliev higher spin gravity, see [236, 237].
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Nonetheless, much progress in higher spin holography is made to be challenging because

of a lack of a Lagrangian.)

In this thesis, we generalized the standard results, obtained for the free critical point, to

the infra-red interacting fixed point. In particular, the collective field theory provides a

way to reconstruct the bulk gravity side from the O(N) vector model.

The first two chapters of the dissertation were largely didactic or of an introductory na-

ture. In particular, in the first chapter we reviewed the original Maldacena conjecture i.e.

the AdS/CFT correspondence. In Chapter 2, we discussed the problem of constructing

a consistent interacting higher spin theory in flat space. We discussed how the No-Go

theorems were evaded by Vasiliev. We then discussed the Klebanov-Polyakov conjecture.

In Chapter 3, we reviewed the Jevicki-Sakita collective field theory. In particular, we

wrote down the Large-N collective field theory for the O(N) vector model. We then

introduced the two-time bilocals. The collective field theory approach allowed us to

write down an effective action. By varying the effective action, we obtained the large-N

background field. Moreover, the form of the saddle-point equations enabled us to write

down the gap equation.

In Chapter 4, we reviewed the collective theory bulk reconstruction of AdS4. More

precisely, we gave the map from 3d to AdS4 × S1 in both the lightcone and timelike

gauges. We then discussed the canonical or path integral formulation. We extracted the

quadratic Hamiltonian and obtain the spectrum for the free O(N) vector model. We

then considered the single time Lagrangian. At the quadratic level, this could be written

in terms of an operator. We inverted the operator and found the single-time propagator.

After a brief discussion of the Bethe-Salpeter equation, we obtained the two-time free

bilocal propagator.

In Chapter 5, we reviewed the argument that the critical O(N) vector model – in the IR

– is equivalent to the non-linear sigma model.
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In Chapter 6, we looked at the non-linear sigma model. The non-linear sigma model

was written in terms of the bilocals and a Lagrange multiplier. Using the collective field

Jacobian, we found an effective action. We varied the effective action with respect to the

bilocals. The resulting gap equation allowed us to solve for the Lagrange multiplier field.

In the IR we require the Lagrange multiplier field to vanish. This requirement means

that we have to take the large ‘t Hooft limit. The other equation of motion follows when

we vary the effective action with respect to the Lagrange multiplier field. The resulting

equation of motion forces us to shift the fluctuations. After we shift the fluctuations

the action decouples. That is, the effective actions consist of the free part that we had

previously in Chapter 5 and an extra state involving the Lagrange multiplier field. We

commented on how this was slightly puzzling as the näıve guess would be that we simply

replace the scaling dimension of one by two. We moved into momentum space and

obtained the two-point functions for the bilocal fluctuations and the Lagrange multiplier

field. The correlation functions were then written out in coordinate space.

In Chaper 7, we began by giving a simple discussion of how one can obtain the spectrum,

of the scalar field theory, by looking at the poles of the propagator. In particular, we

consider the critical O(N) vector model. We write down the effective quadratic action

in terms of an operator. We inverted this operator to obtain the two-time bilocal prop-

agator for the critical O(N) vector model. We then checked that the scaling dimension

for the propagator was indeed two.We then looked at the poles of the propagator. We

then showed how the pole condition can also be obtained by looking at the homogeneous

equation. The pole condition was in terms of the standard loop integral over the mo-

menta. We found that the spectrum was tachyonic unless we made the ’t Hooft coupling

to be negative. We proceeded to write the solution to the equation that the fluctuations

satisfied.

In Chapter 8, we revisited the Hamiltonian single-time formalism. This time we added

the quartic interaction (quartic in the original O(N) fields). We obtained a coupled
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integral equation for the spectra. This coupled integral equation was then written in

terms of a kernel. We then showed that the pole condition in the two-time description

is equivalent to the single-time pole condition. Furthermore, starting from the two-

time bilocal propagator, we managed to demonstrate that we can obtain the single-time

propagator. We then considered the single-time Lagrangian formalism for the critical

O(N) vector model. As is standard, we obtained the Green’s function.

In Chapter 9, we revisited the puzzle of the fact that we seem to obtain the free part plus

an additional state. We considered the simple case of scattering from a Dirac potential.

This allowed us to argue that when the parameter in front of the Dirac delta function

goes to infinity, the wavefunction vanishes. Using this observation, we demonstrated

that ηxx = 0. For completeness, we also rewrote the quantum mechanical problem in a

formalism closer to the one we have been using in this thesis.2

In this thesis, we mainly focused on pure O(N) vector models. Of immediate value would

be to obtain the general mode expansion, which is beyond the scope of this thesis. It is

likely that the map to AdS4 will provide the coordinates in which this can be implemented

in a natural way.

Future works will include finding a stable large-N configuration, or elucidate on the

meaning of the bound state. In particular, it might be the case that the fluctuations

about another background yields the spectrum of the dual higher spin theory.

As mentioned in Chapter 2, vector models coupled to Chern-Simons gauge theory are

dual to parity violating Vasiliev theory. The action for these models can be written as

[160]:

2This will be contained in an appendix.
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S = Sfermion + SCS

=

∫
d3xψ̄γµDµψ +

ik

4π

∫
d3xTr

(
εµνρ

(
Aµ∂νAρ +

2

3
AµAνAρ

))
. (10.1)

where the covariant derivative is

(Dµ)ij = ∂µδij + AaµTij (10.2)

Here Tij are the usual U(N) generators.

It is convenient to work in lightcone coordinates defined via

A± =
1√
2

(
A1 + iA3

)
(10.3)

The action then reads [160]:

S =

∫
d3xψ̄ (γµDµ)ψ +

k

8π

∫
d3x

(
Aa3∂−A

a
+ − Aa+∂−Aa3

)
. (10.4)

The collective bilocals are

σαβ (x, y) = ψ̄iα (x)ψiβ (y) (10.5)

At present, using collective field theory, we have managed to reproduce the free energy

and the gap equation found in the literature i.e. [160]:

Σ (q) = −2πiλ

∫
d3k

(2π)3

1

(k − q)−
γ[3| 1

(γµ (ikµ) + Σ (k))
γ|+], (10.6)

where
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γ[3|Aγ|+] = γ3Aγ+ − γ+Aγ3. (10.7)

In addition, we can extract the effective quadratic action. The operator that we still

need to invert is

Ôα1α2 (k1k2; k3k4)α3α4
= −δ (k1 − k4) δ (k2 − k3)σ−1

0,α4α1
(k1)σ−1

0,α2α3
(k3)

+
4πiλ

(2π)3

δ (k1 + k3 − k2 − k4)

(k2 − k3)−

(
γ3T
)
α4α1

(
γ+T

)
α2α3

. (10.8)

In the ABJ triality, an important part of the dictionary is the relation between the

Vasiliev parity breaking phase and the ‘t Hooft coupling viz.

θ0 (λ) =
π

2
λ. (10.9)

It would be useful to see how such a relation would arise in the collective field theory

approach.

Another objective would be to try and see how the bulk (at least at the linearized level)

can be derived using collective fields.

Finally, recall that the extra AdSd+1 radial direction, in the context of stochastic quanti-

zation, is interpreted as the extra fictitious time [240]. In [241, 242], the Wilson-Polchinski

exact renormalization description of higher spin holography was revisited.3 In particular,

starting from 2 + 1 free Majorana fermions, the authors of [241] were able to derive a

set of non-linear equations that resemble the standard Vasiliev higher spin equations.

A natural question to ask is how this renormalization picture related to the stochastic

collective field description [189].

3This is a continuation of the bulk reconstruction using the renormalization group that was mentioned
in Chapter 2.
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Appendix A

Three-Point Function Vertices

If you don’t make mistakes, you’re not working on hard enough problems. And that’s a

big mistake.

-Frank Wilczek.

In this appendix, we will continue the analysis that we started in Chapter 6. In particular,

we will consider cubic vertices.

Since

ln (1 + x) = x− 1

2
x2 +

1

3
x3 + · · · (A.1)

we can write the effective cubic action as

Seff3 = −N
2

(
1

3
Tr
(
ψ−1

0 ηψ−1
0 ηψ−1

0 η
)) 1(√

N
)3 (A.2)

or

Seff3 = − 1

6
√
N

Tr
(
ψ−1

0 ηψ−1
0 ηψ−1

0 η
)
. (A.3)
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We then shift the fluctuations as follows

η = η̃ − i (ψ0α̃ψ0) . (A.4)

Thus,

Seff3 = − 1

6
√
N

Tr
(
ψ−1

0 ηψ−1
0 ηψ−1

0 η
)

= − 1

6
√
N

Tr
{
ψ−1

0 [η̃ − i (ψ0α̃ψ0)]ψ−1
0 [η̃ − i (ψ0α̃ψ0)]ψ−1

0 [η̃ − i (ψ0α̃ψ0)]
}
. (A.5)

Multiplying everything out leads to a term cubic in η̃, i.e.,

Seff3 ⊃ − 1

6
√
N

Tr
(
ψ−1

0 η̃ψ−1
0 η̃ψ−1

0 η̃
)
. (A.6)

We also find a term cubic in the α̃:

Seff3 ⊃ − 1

6
√
N

(−i)3 Tr
[
ψ−1

0 (ψ0α̃ψ0)ψ−1
0 (ψ0α̃ψ0)ψ−1

0 (ψ0α̃ψ0)
]

= − i

6
√
N

Tr (α̃ψ0α̃ψ0α̃ψ0) , (A.7)

a term quadratic in α̃ an linear in η̃:

Seff3 ⊃ − 1

6
√
N
× 3 (−i)2 Tr (η̃α̃ψ0α̃)

=
1

2
√
N

Tr (η̃α̃ψ0α̃) . (A.8)
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and a term linear in α̃ and quadratic in η̃:

Seff3 ⊃ − 1

6
√
N

Tr
((
α̃η̃ψ−1

0 η̃
))

=
i

2
√
N

Tr
(
α̃η̃ψ−1

0 η̃
)
. (A.9)

Thus, the effective cubic action is

Seff3 = − 1

6
√
N

Tr
(
ψ−1

0 η̃ψ−1
0 η̃ψ−1

0 η̃
)

+
i

2
√
N

Tr
(
α̃η̃ψ−1

0 η̃
)

+
1

2
√
N

Tr (η̃α̃ψ0α̃)− i

6
√
N

Tr (α̃ψ0α̃ψ0α̃ψ0) . (A.10)

In momentum space, the cubic vertex which is cubic in the η̃ is

− 1

6
√
N

Tr
(
ψ−1

0 η̃ψ−1
0 η̃ψ−1

0 η̃
)

= − 1

6
√
N

∫
ddk1d

dk2d
dk3

ηk1k2η−k2,k3η−k3,−k1ψ
0
k1
ψ0
k2
ψ0
k3

=
1

6
√
N

∫
ddk1d

dk2d
dk3k

2
1k

2
2k

2
3ηk1k2η−k2,k3η−k3,−k1 . (A.11)

Similarly, the cubic vertex which is cubic in α̃ is

− i

6
√
N

Tr (α̃ψ0α̃ψ0α̃ψ0) = − i

6
√
N

∫
ddp1d

dp2α̃p1α̃p2α̃−p1−p2

×
∫

ddk

(2π)
3d
2

ψ0
kψ

0
k−pψ

0
k−p1−p2 = − i

6
√
N

∫
ddp1d

dp2

(2π)d/2
α̃p1α̃p2α̃−p1−p2

∫
ddk

(2π)d
1

k2

1

(k − p1)2

× 1

(k − p1 − p2)2 = − i

6
√
N

∫
ddp1d

dp2

(2π)d/2
α̃p1α̃p2α̃−p1−p2

∫
ddk

(2π)d

× 1

(k + p1)2

1

k2

1

(k − p2)2 . (A.12)
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Figure A.1: The Tr
(
α̃η̃ψ−1

0 η̃
)

vertex.

For the vertex that is quadratic in α̃ and linear in η̃, we obtain

1

2
√
N

Tr (η̃α̃ψ0α̃) =
1

2
√
N

∫
ddk1d

dk2d
dk3

(2π)d
ηk1k2α̃−k2−k1ψ

0
k3
α̃−k3−k1

=
1

2
√
N

∫
ddk1d

dk2d
dk3

(2π)d
ηk1k2

α̃−k2−k3α̃k3−k1
k2

3

. (A.13)

Finally, the vertex which linear in α̃ and quadratic in η̃ is

i

2
√
N

Tr
(
α̃η̃ψ−1

0 η̃
)

=
i

2
√
N

∫
ddk1d

dk2d
dk3

(2π)d/2
ηk1k2ψ

−1
k2
η−k2,k3α̃−k1−k3

=
i

2
√
N

∫
ddk1d

dk2d
dk3

(2π)d/2
ηk1k2k

2
1η−k2,k3α̃−k1−k3 . (A.14)
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Figure A.2: The Tr (η̃α̃ψ0α̃) vertex.

Figure A.3: The Tr (α̃ψ0α̃ψ0α̃ψ0) vertex.
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Appendix B

Mode Expansion

The career of a young theoretical physicist consists of treating the harmonic oscillator in

ever-increasing levels of abstraction.

-Sidney Coleman.

Recall that the quadratic effective action is

H2 = 2Trpψ0p+
1

8
Tr
(
ψ−1

0 ηψ−1
0 ηψ−1

0

)
, (B.1)

and the equations of motion are

η̇xy =
δH2

δpxy

= 2 (pψ0)yx + 2 (ψ0p)yx (B.2)

and

ṗxy = − δH2

δηxy

= −1

8

((
ψ−1

0 ηψ−2
0

)
yx

+
(
ψ−2

0 ηψ−1
0

)
yx

)
. (B.3)
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Suppose we have oscillator expansions of the form

ηxy = e−iωteik1xeik2yAk1k2 (B.4)

pxy = e−iωteik1xeik2yBk1k2 . (B.5)

Then using this in (B.2), we obtain

2 (ψk1 + ψk2)Bk1k2 = −iωAk1k2 . (B.6)

Or

Bk1k2 = − iω

2 (ψk1 + ψk2)
Ak1k2 , (B.7)

where

ω =
(
ψ−1
k1

+ ψ−1
k2

)
. (B.8)

Then

ηxy =

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

(
e−i(ωk1+ωk2)teik1xeik2yαk1k2Ak1k2

+ ei(ωk1+ωk2)te−ik1xe−ik2yα∗k1k2A
†
k1k2

)
, (B.9)
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and

pxy =

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

(
e−i(ωk1+ωk2)teik1xeik2y

(
− i (ωk1 + ωk2)

2 (ψk1 + ψk2)

)
αk1k2Ak1k2

+ ei(ωk1+ωk2)te−ik1xe−ik2y
(
i (ωk1 + ωk2)

2 (ψk1 + ψk2)

)
α∗k1k2A

†
k1k2

)
. (B.10)

We will fix αk1k2 such that ηxy and pxy are conjugates of each other. That is, we require

that

[pxy, ηx′y′ ] = −iδ (x− x′) δ (y − y′) . (B.11)

The commutator of ηxy and pxy is

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

∫
dk′1(√
2π
)d−1

∫
dk′2(√
2π
)d−1

{
e−i(ωk1+ωk2)teik1xeik2y

(
− i (ωk1 + ωk2)

2 (ψk1 + ψk2)

)
αk1k2

×ei
(
ωk′1

+ωk′2

)
t
e−ik

′
1xe−ik

′
2yα∗k′1k′2

[
Ak1k2 , A

†
k′1k
′
2

]
+ei(ωk1+ωk2)te−ik1xe−ik2y

(
i (ωk1 + ωk2)

2 (ψk1 + ψk2)

)
α∗k1k2

× e−i
(
ωk′1

+ωk′2

)
t
eik
′
1xeik

′
2yαk′1k′2

[
A†k1k2 , Ak′1k′2

]
=

∫
dk1

(2π)d−1

∫
dk2

(2π)d−1

(
eik1(x−x′)eik2(y−y′)

(
− i (ωk1 + ωk2)

2 (ψk1 + ψk2)

)
αk1k2α

∗
k1k2

+ e−ik1(x−x′)e−ik2(y−y′)
(
− i (ωk1 + ωk2)

2 (ψk1 + ψk2)

)
αk1k2α

∗
k1k2

)
. (B.12)

In order for (B.11) to hold we require that

(
1 (ωk1 + ωk2)

2 (ψk1 + ψk2)

)
αk1k2α

∗
k1k2

=
1

2
(B.13)

or
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αk1k2 =

√
ψk1 + ψk2
ωk1 + ωk2

. (B.14)

Recall that

ωk =
√
k2 =

1

2ψk
. (B.15)

Hence,

αk1k2 =

√
ψk1 + ψk2
ωk1 + ωk2

=

√
ψk1 + ψk2
1

2ψk1
+ 1

2ψk2

=
√

2ψk1ψk2 =
1√

2ωk1ωk2
(B.16)

and

1 (ωk1 + ωk2)

2 (ψk1 + ψk2)
αk1k2 =

1 (ωk1 + ωk2)

2 (ψk1 + ψk2)

√
ψk1 + ψk2
ωk1 + ωk2

=
1

2

√
ωk1 + ωk2
ψk1 + ψk2

=
1

2
α−1
k1k2

=

√
ωk1ωk2

2
. (B.17)

Therefore, the mode expansion for the fluctuations becomes

ηxy =

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

1√
2ωk1ωk2

(
e−i(ωk1+ωk2)teik1xeik2yAk1k2

+ ei(ωk1+ωk2)te−ik1xe−ik2yA†k1k2

)
. (B.18)
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Likewise, the mode expansion of the momentum

pxy =

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

(
−i
√
ωk1ωk2

2

)(
e−i(ωk1+ωk2)teik1xeik2yAk1k2

+ ei(ωk1+ωk2)te−ik1xe−ik2yA†k1k2

)
. (B.19)

Now that we have the mode expansions, the next thing one can do is to look at the

expansion for the effective quadratic action.

Recall that

H2 = 2Trpψ0p+
1

8
Tr
(
ψ−1

0 ηψ−1
0 ηψ−1

0

)
. (B.20)

Using the mode expansions, we can write the first term of the effective quadratic action

as

2Trpψ0p = 2

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

∫
dk

(2π)d−1

∫
dk′1(√
2π
)d−1

∫
dk′2(√
2π
)d−1

∫
dx

×
∫
dy

∫
dz

(
−i
√
ωk1ωk2

2

)(
e−i(ωk1+ωk2)teik1xeik2yAk1k2 + ei(ωk1+ωk2)te−ik1xe−ik2yA†k1k2

)
eik(y−z)

× ψk

(
−i
√
ωk′1ωk′2

2

)(
e
−i
(
ωk′1

+ωk′2

)
t
eik
′
1zeik

′
2xAk′1k′2 + e

i
(
ωk′1

+ωk′2

)
t
e−ik

′
1ze−ik

′
2xA†k′1k′2

)
.

(B.21)
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The AA† term yields

2

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

∫
dk

(2π)d−1

∫
dk′1(√
2π
)d−1

∫
dk′2(√
2π
)d−1

∫
dx

∫
dy

∫
dz

×
(
−i
√
ωk1ωk2

2

)(
−i
√
ωk′1ωk′2

2

)
eik(y−z)e−i(ωk1+ωk2)teik1xeik2yAk1k2e

i
(
ωk′1

+ωk′2

)
t
e−ik

′
1ze−ik

′
2xA†k′1k′2

ψk

= 2

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

∫
dk

(2π)d−1

∫
dk′1(√
2π
)d−1

∫
dk′2(√
2π
)d−1

(2π)3(d−1)

× δ (k1 − k′2) δ (k2 + k) δ (k′1 + k)

×
(
−i
√
ωk1ωk2

2

)(
−i
√
ωk′1ωk′2

2

)
Ak1k2A

†
k′1k
′
2
ψke

−i(ωk1+ωk2)te
i
(
ωk′1

+ωk′2

)
t
ψk

= 2

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

(
−i
√
ωk1ωk2

2

)(
−i
√
ωk1ωk2

2

)
Ak1k2A

†
k2k1

= 2

∫
dk1

∫
dk2

(ωk1ωk2
2

)
ψk2Ak1k2A

†
k2k1

. (B.22)

For the A†A term, we obtain

2

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

∫
dk

(2π)d−1

∫
dk′1(√
2π
)d−1

∫
dk′2(√
2π
)d−1

∫
dx

∫
dy

∫
dz

(
−i
√
ωk1ωk2

2

)(
−i
√
ωk′1ωk′2

2

)
ei(ωk1+ωk2)teik(y−z)e−ik1xe−ik2yA†k1k2e

−i
(
ωk′1

+ωk′2

)
t
eik
′
1zeik

′
2xAk′1k′2ψk

= 2

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

∫
dk

(2π)d−1

∫
dk′1(√
2π
)d−1

∫
dk′2(√
2π
)d−1

(2π)3(d−1)

× δ
(
k
′

2 − k1

)
δ (k − k2) δ

(
k
′

1 − k
)

× ei(ωk1+ωk2)te
−i
(
ωk′1

+ωk′2

)
t

(
−i
√
ωk1ωk2

2

)(
−i
√
ωk′1ωk′2

2

)
A†k1k2Ak′1k′2ψk

= 2

∫
dk1

∫
dk2

(ωk1ωk2
2

)
ψk2A

†
k1k2

Ak2k1 . (B.23)
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The AA term is

2

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

∫
dk

(2π)d−1

∫
dk′1(√
2π
)d−1

∫
dk′2(√
2π
)d−1

∫
dx

∫
dy

∫
dz

×
(
−i
√
ωk1ωk2

2

)(
−i
√
ωk′1ωk′2

2

)
e−i(ωk1+ωk2)teik(y−z)eik1xeik2yAk1k2e

−i
(
ωk′1

+ωk′2

)
t
eik
′
1zeik

′
2xAk′1k′2

= 2

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

∫
dk

(2π)d−1

∫
dk′1(√
2π
)d−1

∫
dk′2(√
2π
)d−1

(2π)3(d−1)

× δ (k1 + k′2) δ (k2 + k) δ (k′1 − k)

×
(
−i
√
ωk1ωk2

2

)(
−i
√
ωk′1ωk′2

2

)
e−i(ωk1+ωk2)te

−i
(
ωk′1

+ωk′2

)
t
Ak1k2Ak′1k′2

= −2

∫
dk1

∫
dk2

(ωk1ωk2
2

)
e−2i(ωk1+ωk2)tAk1k2A−k2,−k1ψk2 . (B.24)

Finally, the A†A† yields

2

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

∫
dk

(2π)d−1

∫
dk′1(√
2π
)d−1

∫
dk′2(√
2π
)d−1

∫
dx

∫
dy

∫
dz

×
(
−i
√
ωk1ωk2

2

)(
−i
√
ωk′1ωk′2

2

)
ei(ωk1+ωk2)te−ik1xe−ik2yA†k1k2e

ik(y−z)e
i
(
ωk′1

+ωk′2

)
t
e−ik

′
1ze−ik

′
2xA†k′1k′2

= 2

∫
dk1(√
2π
)d−1

∫
dk2(√
2π
)d−1

∫
dk

(2π)d−1

∫
dk′1(√
2π
)d−1

∫
dk′2(√
2π
)d−1

(2π)3(d−1)

× δ (−k1 − k2) δ (−k2 + k) δ (−k − k′1)

×
(
−i
√
ωk1ωk2

2

)(
−i
√
ωk′1ωk′2

2

)
ei(ωk1+ωk2)te

i
(
ωk′1

+ωk′2

)
t
A†k1k2A

†
k′1k
′
2

= −2

∫
dk1

∫
dk2

(ωk1ωk2
2

)
e2i(ωk1+ωk2)tψk2A

†
k1k2

A−k2,−k1 . (B.25)

Next, we consider the second term on the RHS of B.1. Writing out the trace and using
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the mode expansion for the fluctuations, we obtain

1

8
Tr
(
ψ−1

0 ηψ−1
0 ηψ−1

0

)
=

1

8

∫
dx1 · · ·

∫
dx4ηx1x2ψ

−1
0x2x3

ηx3x4ψ
−2
x4x1

=

∫
dk1

(2π)d−1
· · ·
∫

dk4

(2π)d−1

∫
dk

(2π)

∫
dl

(2π)

∫
dx1 · · ·

∫
dx4ψ

−1
k ψ−2

l eik(x2−x3)eil(x4−x1)

× 1√
2ωk1ωk2

(
e−i(ωk1+ωk2)teik1x1eik2x2Ak1k2 + ei(ωk1+ωk2)te−ik1x1e−ik2x2A†k1k2

)
× 1√

2ωk3ωk4

(
e−i(ωk3+ωk4)teik3x3eik4x4Ak3k4 + ei(ωk3+ωk4)te−ik3x3e−ik4x4A†k3k4

)
. (B.26)

We multiply everything out and find the AA† term is

1

8

∫
dk1(√
2π
)d−1

· · ·
∫

dk4(√
2π
)d−1

∫
dk

(2π)d−1

∫
dl

(2π)d−1

∫
dx1 · · ·

∫
dx4ψ

−1
k ψ−2

l eik(x2−x3)eil(x4−x1)

× 1√
2ωk1ωk2

1√
2ωk3ωk4

e−i(ωk1+ωk2)teik1x1eik2x2Ak1k2e
i(ωk3+ωk4)te−ik3x3e−ik4x4A†k3k4

=
1

8

∫
dk1(√
2π
)d−1

· · ·
∫

dk4(√
2π
)d−1

∫
dk

(2π)d−1

∫
dl

(2π)d−1
(2π)4(d−1) δ (k1 − l)

× δ (k2 + k) δ (k3 − k) δ (k4 − l)

× ψ−1
k ψ−2

l√
2ωk1ωk2

1√
2ωk3ωk4

e−i(ωk1+ωk2)tAk1k2e
i(ωk3+ωk4)tA†k3k4

=
1

8

∫
dk1

∫
dk2

1

2ωk1ωk2
ψ−1
k ψ−2

l A†k1k2Ak2k1 . (B.27)
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For the A†A term, we have

1

8

∫
dk1(√
2π
)d−1

· · ·
∫

dk4(√
2π
)d−1

∫
dk

(2π)d−1

∫
dl

(2π)d−1

∫
dx1 · · ·

∫
dx4ψ

−1
k ψ−2

l eik(x2−x3)eil(x4−x1)

× 1√
2ωk1ωk2

1√
2ωk3ωk4

ei(ωk1+ωk2)te−ik1x1e−ik2x2A†k1k2e
−i(ωk3+ωk4)teik3x3eik4x4Ak3k4

=
1

8

∫
dk1(√
2π
)d−1

· · ·
∫

dk4(√
2π
)d−1

∫
dk

(2π)d−1

∫
dl

(2π)d−1

∫
dx1 · · ·

∫
dx4ψ

−1
k ψ−2

l (2π)4(d−1) δ (l + k1)

× δ (k − k2) δ (k3 − k) δ (k4 + l)
1√

2ωk1ωk2

1√
2ωk3ωk4

ei(ωk1+ωk2)tA†k1k2e
−i(ωk3+ωk4)tAk3k4

=
1

8

∫
dk1

∫
dk2ψ

−2
k2
ψ−1
k1

1

2ωk1ωk2
ψ−1
k ψ−2

l A†k1k2Ak2k1 . (B.28)

The AA term is found to be

1

8

∫
dk1(√
2π
)d−1

· · ·
∫

dk4(√
2π
)d−1

∫
dk

(2π)d−1

∫
dl

(2π)d−1

∫
dx1 · · ·

∫
dx4ψ

−1
k ψ−2

l eik(x2−x3)eil(x4−x1)

× 1√
2ωk1ωk2

1√
2ωk3ωk4

e−i(ωk1+ωk2)teik1x1eik2x2Ak1k2e
−i(ωk3+ωk4)teik3x3eik4x4Ak3k4

=
1

8

∫
dk1(√
2π
)d−1

· · ·
∫

dk4(√
2π
)d−1

∫
dk

(2π)d−1

∫
dl

(2π)d−1

∫
dx1 · · ·

∫
dx4ψ

−1
k ψ−2

l (2π)4(d−1) δ (k1 − l)

× δ (k + k2) δ (k3 − k) δ (k4 + l)
1√

2ωk1ωk2

1√
2ωk3ωk4

e−i(ωk1+ωk2)tAk1k2Ak3k4

=
1

8

∫
dk1

∫
dk2

1

2ωk1ωk2
ψ−1
k2
ψ−2
k1
e−2i(ωk1+ωk2)tAk1k2A−k2,−k1 . (B.29)
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The final term that we will evaluate is the A†A† term and we find

1

8

∫
dk1(√
2π
)d−1

· · ·
∫

dk4(√
2π
)d−1

∫
dk

(2π)d−1

∫
dl

(2π)d−1

∫
dx1 · · ·

∫
dx4ψ

−1
k ψ−2

l eik(x2−x3)eil(x4−x1)

× 1√
2ωk1ωk2

1√
2ωk3ωk4

ei(ωk1+ωk2)te−ik1x1e−ik2x2A†k1k2e
i(ωk3+ωk4)te−ik3x3e−ik4x4A†k3k4

=
1

8

∫
dk1(√
2π
)d−1

· · ·
∫

dk4(√
2π
)d−1

∫
dk

(2π)d−1

∫
dl

(2π)d−1

∫
dx1 · · ·

∫
dx4 (2π)4(d−1) δ (−l − k1)

× δ (k − k2) δ (−k − k3) δ (−k4 + l)
1√

2ωk1ωk2

1√
2ωk3ωk4

ei(ωk1+ωk2)tA†k1k2e
i(ωk3+ωk4)tA†k3k4

=
1

8

∫
dk1

∫
dk2

1

2ωk1ωk2
ψ−2
k2
ψ−1
k1
e2i(ωk1+ωk2)tA†k1k2A

†
k3k4

. (B.30)

Putting everything together, we have

H2 =

∫
dk1

∫
dk2

(
ωk1ωk2ψk2 +

1

16ωk1ωk2
ψ−1
k2
ψ−2
k1

)
Ak1k2A

†
k2k1

+

∫
dk1

∫
dk2

(
ωk1ωk2ψk2 +

1

16ωk1ωk2
ψ−1
k2
ψ−2
k1

)
A†k1k2Ak2k1

+

∫
dk1

∫
dk2

(
−ωk1ωk2ψk2 +

1

16ωk1ωk2
ψ−1
k2
ψ−2
k1

)
e2i(ωk1+ωk2)tAk1k2A−k2,,−k1

+

∫
dk1

∫
dk2

(
−ωk1ωk2ψk2 +

1

16ωk1ωk2
ψ−1
k2
ψ−2
k1

)
e−2i(ωk1+ωk2)tA†k1k2A

†
−k2,,−k1 .

(B.31)

We symmetrize the term appearing in the brackets i.e. we write

−ωk1ωk2ψk2+
1

16ωk1ωk2
ψ−1
k2
ψ−2
k1

= −1

2
ωk1ωk2 (ψk1 + ψk2)+

1

32ωk1ωk2

(
ψ−1
k2
ψ−2
k1

+ ψ−1
k1
ψ−2
k2

)
= −1

2
ωk1ωk2

(
1

2ωk1
+

1

2ωk2

)
+

1

32ωk1ωk2

(
2ωk2 × 4ω2

k1
+ 2ωk1 × 4ω1

k2

)
= −1

4
(ωk2 + ωk1) +

1

4
(ωk1 + ωk2)

= 0 (B.32)
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and

ωk1ωk2ψk2 +
1

16ωk1ωk2
ψ−1
k2
ψ−2
k1

=
1

4
(ωk2 + ωk1) +

1

4
(ωk1 + ωk2)

=
1

2
(ωk1 + ωk2) . (B.33)

Therefore,

H2 =

∫
dk1

∫
dk2

(
ωk1ωk2ψk2 +

1

16ωk1ωk2
ψ−1
k2
ψ−2
k1

)
Ak1k2A

†
k2k1

+

∫
dk1

∫
dk2

(
ωk1ωk2ψk2 +

1

16ωk1ωk2
ψ−1
k2
ψ−2
k1

)
A†k1k2Ak2k1

=

∫
dk1

∫
dk2

1

2
(ωk1 + ωk2)

(
Ak1k2A

†
k2k1

+ A†k1k2Ak2k1

)
=

∫
dk1

∫
dk2

1

2
(ωk1 + ωk2)

(
Ak1k2A

†
k1k2

+ A†k1k2Ak1k2

)
. (B.34)

The cubic Hamiltonian is

H3 = 2Tr (pηp)− 1

8
Tr
(
ψ−1

0 ηψ−1
0 ηψ−1

0 ηψ−1
0

)
= −
√

2

3

∫
dk1

∫
dk2

∫
dk3 (ωk1 + ωk2 + ωk3)Ak1k2A−k2,k3A−k3,−k1

− 1√
2

∫
dk1

∫
dk2

∫
dk3ωk2Ak1k2A−k2,k3A

†
k3k1

. (B.35)
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Appendix C

The Propagator For Scattering from

a Dirac Delta Potential

In this appendix, we compute the propagator for the quantum mechanical problem with

the Dirac delta function potential.

Recall that the quantum mechanical system that we wish to consider is (9.11):

(
− ~2

2m

d2

dx2
+ v0δ (x)

)
ψ (x) = Eψ (x) (C.1)

By finding the propagator for this system we mean that we wish to rewrite the above

problem as

∫
dyÔ (x, y)G (y, x′) = δ (x− x′) , (C.2)

where
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Ô (x, y) = δ (x− y)

[
E − ~2

2m

d2

dy2
− v0δ (y)

]
. (C.3)

and G (y, x′) in momentum space can be written as

G (y, x′) =

∫
dk2√

2π

∫
dk3√

2π
eik2yeik3x

′
Gk2k3 . (C.4)

Inserting this into the L.H.S. (C.2), we obtain

∫
dyÔ (x, y)G (y, x′) =

∫
dyδ (x− y)

[
E − ~2

2m

d2

dy2
− v0δ (y)

]
×
∫

dk2√
2π

∫
dk3√

2π
eik2yeik3x

′
Gk2k3 =

∫
dyδ (x− y)

(
E − ~2

2m

d2

dy2

)∫
dk2√

2π

∫
dk3√

2π
eik2yeik3x

′
Gk2k3

− v0

∫
dyδ (x− y) δ (y)

∫
dk2√

2π

∫
dk3√

2π
eik2yeik3x

′
Gk2k3 . (C.5)

For the last term, we have

−v0

∫
dyδ (x− y) δ (y)

∫
dk2√

2π

∫
dk3√

2π
eik2yeik3x

′
Gk2k3 = −v0δ (x)

∫
dk2√

2π

∫
dk3√

2π
eik2xeik3x

′
Gk2k3

= −v0

∫
dp

2π
eipx

∫
dk2√

2π

∫
dk3√

2π
eik2xeik3x

′
Gk2k3

= −v0

∫
dp

2π

∫
dk2√

2π

∫
dk3√

2π
ei(p+k2)xeik3x

′
Gk2k3

= −v0

∫
dk2√

2π

∫
dk3√

2π
eik2yeik3x

′
∫

dp

2π
Gp,k3 . (C.6)

The term involving the kinetic (second derivative) term yields
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∫
dyδ (x− y)

(
E − ~2

2m

d2

dy2

)∫
dk2√

2π

∫
dk3√

2π
eik2yeik3x

′
Gk2k3 =

∫
dk2√

2π

∫
dk3√

2π
eik2yeik3x

′

×
(
E − ~2

2m
k2

2

)
Gk2k3 .

(C.7)

Therefore,

(
E − ~2k2

1

2m

)
Gk1k2 − v0

∫
dk2

2π
Gk2k1 = δ (k1 + k3) , (C.8)

which implies that

Ôk1k2 =

(
E − ~2k2

1

2m

)
δ (k1 − k2)− v0

2π
. (C.9)

We will take our propagator to be of the form

Gk1k2 =
1

E − ~2k21
2m

δ (k1 + k2) +Bk2k3 . (C.10)

To determine Bk2k3 we plug our ansatz for the propagator into

∫
dk2Ôk1k2Gk2k3 = δ (k2 + k3) . (C.11)

We note that

201



∫
dk2Ôk1k2Gk2k3 =

∫
dk2

[(
E − ~2k2

1

2m

)
δ (k1 − k2)− v0

2π

]
(

1

E − ~2k22
2m

δ (k2 + k3) +Bk2k3

)
=

∫
dk2

(
E − ~2k2

1

2m

)
δ (k1 − k2)

1

E − ~2k22
2m

δ (k2 + k3)

+

∫
dk2

(
E − ~2k2

1

2m

)
δ (k1 − k2)Bk2k3 −

v0

2π

∫
dk2

1

E − ~2k22
2m

δ (k2 + k3)

− v0

2π

∫
dk2Bk2k3

= δ (k1 + k3) +

(
E − ~2k2

1

2m

)
Bk1k3 −

v0

2π

1

E − ~2k23
2m

1

E − ~2k22
2m

− v0

2π

∫
dk2Bk2k3 . (C.12)

Thus,

0 =

(
E − ~2k2

1

2m

)
Bk1k3 −

v0

2π

1

E − ~2k23
2m

− v0

2π

∫
dk2Bk2k3 . (C.13)

or upon trivial rearranging:

Bk1k3 =
v0

2π

1

E − ~2k23
2m

1

E − ~2k21
2m

+
v0

2π

1

E − ~2k21
2m

∫
dpBp1k3 . (C.14)

We integrate the equation above and find

βk3

(
1− v0

2π
α
)

= v0
1

E − ~2k23
2m

α, (C.15)

where

α =
1

2π

∫
dp

E − ~2p2
2m

, βk3 =

∫
dpβpk3 . (C.16)
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Solving for βk3 in (C.15), we obtain

βk3 = v0
1

E − ~2k23
2m

α

1− v0α
. (C.17)

Substituting this back on the R.H.S of (C.14) leads to

Bk1k2 =
1

E − ~2k21
2m

1

E − ~2k22
2m

v0

2π

1

1− v0

∫
dp
2π

1

E− ~2p2
2m

. (C.18)

Therefore,

Gk1k2 =
1

E − ~2k21
2m

δ (k1 + k2) +
1

E − ~2k21
2m

1

E − ~2k22
2m

v0

2π

1

1− v0

∫
dp
2π

1

E− ~2p2
2m

. (C.19)
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[134] R. Rahman and M. Taronna, From Higher Spins to Strings: A Primer,

arXiv:1512.07932.

216

http://arxiv.org/abs/0804.4672
https://arxiv.org/abs/1209.4876
https://arxiv.org/abs/1007.0435
https://arxiv.org/abs/1307.3199
https://arxiv.org/abs/1512.07932


[135] E. S. Fradkin and M. A. Vasiliev, On the Gravitational Interaction of Massless

Higher Spin Fields, Phys. Lett. B189 (1987) 89-95.

[136] E. S. Fradkin and M. A. Vasiliev, Cubic Interaction in Extended Theories of Mass-

less Higher Spin Fields, Nucl. Phys. B291 (1987) 141.

[137] M. A. Vasiliev, Consistent equation for interacting gauge elds of all spins in (3+1)-

dimensions, Phys. Lett. B243 (1990) 378-382.

[138] M. A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-

dimensions, Phys. Lett. B243 (1990) 378-382.

[139] M. A. Vasiliev, More on equations of motion for interacting massless fields of all

spins in (3+1)- dimensions, Phys. Lett. B285 (1992) 225-234.

[140] M. A. Vasiliev, Higher-Spin Gauge Theories in Four, Three and Two Dimen-

sions,arXiv:hep-th/9611024v2.

[141] M.A. Vasiliev, Higher spin gauge theories: star product and AdS space TheMany

Faces of the Superworld ed Y Golfand and M.A Shifman (Singapore: World Scien-

tic) p 533, arXiv:hep-th/9910096.

[142] M. A. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys.

52 (2004) 702.

[143] M. A. Vasiliev, Higher spin gauge theories in any dimension, Comptes Rendus

Physique 5 (2004) 1101,arXiv:0409260 .

[144] X. Bekaert, S. Cnockaert, C. Iazeolla, and M. A. Vasiliev, Nonlinear higher spin

theories in various dimensions, in First Solvay Workshop on Higher Spin Gauge

Theories, G. Barnich and G. Bonelli, eds. International Solvay Institutes, 2005.

Lectures given by M. A. Vasiliev at the first Solvay Workshop on Higher Spin

Gauge Theories, Brussels, Belgium, 12-14 May 2004.

217

http://dx.doi.org/10.1016/0370-2693(87)91275-5
https://arxiv.org/abs/hep-th/9611024v2
https://arxiv.org/abs/hep-th/9910096
https://arxiv.org/abs/0409260


[145] V.E. Didenko, E.D. Skvortsov, Elements of Vasiliev theory,arXiv1401.2975.

[146] S. Giombi, TASI Lectures on the Higher Spin - CFT duality,arXiv1607.02967.

[147] I. R. Klebanov and A. M. Polyakov, AdS dual of the critical O(N) vector model,

Phys. Lett. B 550, 213 (2002) arXiv:hep-th/0210114.

[148] S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J.Phys. A46 (2013)

214003, [arXiv:1208.4036].

[149] R. G. Leigh and A. C. Petkou, Holography of the N=1 higher spin theory on AdS(4),

JHEP 0306, 011 (2003) arXiv:hep-th/0304217.

[150] E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test

via cubic scalar couplings, JHEP 0507, 044 (2005) arXiv:0305040.

[151] D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT

Correspondence, arXiv:1108.5735.

[152] T. Hertog, G. Tartaglino-Mazzucchelli, T. Van Riet, G. Venken, Supersymmetric

dS/CFT, arXiv:1709.06024 [hep-th].

[153] M. R. Gaberdiel and R. Gopakumar, An AdS3 Dual for Minimal Model CFTs,

Phys. Rev. D 83, 066007 (2011) arXiv:1011.2986.

[154] S. Prokushkin and M. A. Vasiliev, Higher spin gauge interactions for massive matter

fields in 3-D AdS space-time, Nucl.Phys. B545 (1999) 385, arXiv:hep-th/9806236.

[155] S. Prokushkin and M. A. Vasiliev, 3-d higher spin gauge theories with matter,

arXiv:hep-th/9812242.

[156] T. Creutzig, Y. Hikida, and P. B. Ronne, Higher spin AdS3 supergravity and its

dual CFT, JHEP 1202 (2012) 109, arXiv:1111.2139.

218

https://arxiv.org/abs/1401.2975
https://arxiv.org/abs/1607.02967
https://arxiv.org/abs/hep-th/0210114
https://arxiv.org/abs/1208.4036
https://arxiv.org/abs/hep-th/0304217
https://arxiv.org/abs/0305040
https://arxiv.org/abs/1108.5735
https://arxiv.org/abs/1709.06024
https://arxiv.org/abs/1011.2986
https://arxiv.org/abs/hep-th/9806236
https://arxiv.org/abs/hep-th/9812242
https://arxiv.org/abs/1111.2139


[157] E. Witten, Quantum field theory and the Jones polynomial, Nucl. Phys. B322 (1989)

629 and B330 (1990) 285.

[158] J. Frohlich, T. Kerler, Universality in quantum Hall systems, Nucl. Phys. B354,

369-417 (1991); J. Frohlich, A. Zee, Large scale physics of the quantum Hall fluid,

Nucl. Phys. B364, 517-540 (1991).

[159] O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 bosonic vector models coupled to

Chern-Simons gauge theories, JHEP 03 (2012) 037 arXiv:1110.4382

[160] S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia and X. Yin, Chern-

Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72, 2112 (2012)

arXiv:1110.4386.

[161] C.M. Chang, S. Minwalla, T. Sharma and X. Yin ABJ triality: from higher spin

fields to strings J. Phys. A: Math. Theor. 46 214009 arXiv:1207.4485.

[162] M.R. Gaberdiel and R. Gopakumar, Higher spins & strings, arXiv:1406.6103.

[163] M. Honda, Y. Pang, Y. Zhu, ABJ Quadrality, arXiv:1708.08472 [hep-th].

[164] S. R. Coleman, Quantum sine-Gordon equation as the massive Thirring model,

Phys. Rev. D 11, 2088 (1975).

[165] S. Mandelstam, Soliton operators for the quantized sine-Gordon equation, Phys.

Rev. D 11, 3026 (1975).

[166] O. Aharony, G. Gur-Ari, and R. Yacoby, Correlation Functions of Large N Chern-

Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 1212 (2012)

028, 1207.4593 .

[167] O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena, and R. Yacoby , The Thermal

Free Energy in Large N Chern-Simons-Matter Theories, JHEP 1303 (2013) 121,

1211.4843 .

219

https://doi.org/10.1007/BF01217730
https://doi.org/10.1007/BF01217730
https://doi.org/10.1016/0550-3213(91)90360-A
https://doi.org/10.1016/0550-3213(91)90360-A
https://doi.org/10.1016/0550-3213(91)90275-3
https://arxiv.org/abs/1110.4382
https://arxiv.org/abs/1110.4386
https://arxiv.org/abs/1207.4485
https://arxiv.org/abs/1406.6103
https://arxiv.org/abs/1708.08472


[168] A. Bedhotiya and S. Prakash, A test of bosonization at the level of four-point

functions in Chern-Simons vector models, JHEP 12 (2015) 032 arXiv:1506.05412

[hep-th].

[169] M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field the-

ory, Phys. Rev.D 83 (2011) 071701 arXiv:1011.4926 [hep-th].

[170] S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-

Point Functions, JHEP 1009 (2010) 115, arXiv:0912.3462.

[171] S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 1104

(2011) 086, arXiv:hep-th/1004.3736.

[172] S. Giombi and I. R. Klebanov, One Loop Tests of Higher Spin AdS/CFT, JHEP

1312, 068 (2013) arXiv:1308.2337.

[173] S. Giombi, I. R. Klebanov and B. R. Safdi, Higher Spin AdSd+1/CFTd at One

Loop, Phys. Rev. D 89 , 084004 (2014) arXiv:1401.0825.

[174] S. Giombi, I.R. Klebanov and A.A. Tseytlin, Partition functions and Casimir ener-

gies in higher spin AdSd+1/CFTd , Phys. Rev. D 90 (2014) 024048 arXiv:1402.5396.

[175] J. Maldacena and A. Zhiboedov Constraining conformal eld theories with a slightly

broken higher spin symmetry arXiv:1204.3882.

[176] J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher

spin symmetry J. Phys. A: Math. Theor. 46 214011 arXiv:1112.1016.

[177] P. Haggi-Mani and B. Sundborg, Free large N supersymmetric Yang-Mills theory

as a string theory, JHEP. 0004, 031 (2000) arXiv:hep-th/0002189 .

[178] B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher

spins, Nucl. Phys. Proc. Suppl. arXiv:hep-th/0103247.

220

https://arxiv.org/abs/1506.05412
https://arxiv.org/abs/1506.05412
https://arxiv.org/abs/1011.4926
https://arxiv.org/abs/0912.3462
https://arxiv.org/abs/1004.3736
https://arxiv.org/abs/1308.2337
https://arxiv.org/abs/1401.0825
https://arxiv.org/abs/1402.5396
https://arxiv.org/abs/1204.3882
https://arxiv.org/abs/1112.1016
https://arxiv.org/abs/hep-th/0002189
https://arxiv.org/abs/hep-th/0103247


[179] E. Witten, Talk at the John Schwarz 60th Birthday Symposium,

http://theory.caltech.edu/jhs60/witten/1.html .

[180] E. Sezgin and P. Sundell, Doubletons and 5-D higher spin gauge theory, JHEP.

0109, 036 (2001) hep-th/0105001.

[181] E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl.Phys. B644,

303-370 (2002) arXiv:hep-th/0205131.

[182] D. Bohm and D. Pines: A Collective Description of Electron Interactions. I. Mag-

netic Interactions, Phys. Rev. 82, 625–634 (1951).

[183] D. Pines and D. Bohm: A Collective Description of Electron Interactions: II.

Collective vs Individual Particle Aspects of the Interactions, Phys. Rev. 85, 338–353

(1952).

[184] D. Bohm and D. Pines: A Collective Description of Electron Interactions: III.

Coulomb Interactions in a Degenerate Electron Gas, Phys. Rev. 92, 609–625 (1953)

[185] A. Jevicki and B. Sakita, The Quantum Collective Field Method And Its Application

To The Planar Limit, Nucl. Phys. B 165, 511 (1980).

[186] A. Jevicki and B. Sakita, Collective Field Approach to the Large N Limit: Euclidean

Field Theories, Nucl. Phys. B 185 , 89 (1981).

[187] E. Witten, 1979 Cargese Lectures, recent developments in gauge theories, ed. G. ’t

Hooft (Plenum Press, 1980).

[188] J. P. Rodrigues and A. Welte, A Vector - like large N approach to zero-dimensional

SU(2) matrix models, Int. J. Mod. Phys. A 8, 4175 (1993).

[189] A. Jevicki and J.P. Rodrigues, Loop space Hamiltonians and field theory of non-

critical strings , Nucl. Phys. B 421 (1994) 278 [ hep-th/9312118 ].

221

http://arxiv.org/abs/hep-th/0105001
https://arxiv.org/abs/hep-th/0205131
https://doi.org/10.1103/PhysRev.82.625
https://doi.org/10.1103/PhysRev.85.338
https://doi.org/10.1103/PhysRev.85.338
https://doi.org/10.1103/PhysRev.92.609
https://doi.org/10.1016/0550-3213(80)90046-2
https://doi.org/10.1016/0550-3213(81)90365-5


[190] A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-

Hill, New York, 1971); M. Tinkham, Introduction to Superconductivity , 2nd ed.

(Dover Publications, Inc., 1996); J. F. Annett, Superconductivity, Superfluids and

Condensates (Oxford University Press, Oxford, 2004).

[191] R. Alkofer and L. von Smekal, The infrared behaviour of QCD Green’s functions:

Confinement, dynamical symmetry breaking, and hadrons as relativistic bound

states, Phys. Rept. 353 (2001) 281, hep-ph/0007355 ; P. Maris and C. D. Roberts,

Dyson–Schwinger equations: a tool for hadron physics, Int. J. Mod. Phys. E12

(2003) 297–365, nucl-th/0301049.

[192] V. Balasubramanian, P. Kraus, A. E. Lawrence, S. P. Trivedi, Holographic probes

of anti-de Sitter space-times, Phys. Rev. D59, 104021 (1999)arXiv:hep-th/9808017.

[193] J. Polchinski, L. Susskind and N. Toumbas, Negative energy, superluminosity and

holography, Phys. Rev. D 60, 084006 (1999) arXiv:hep-th/9903228.

[194] I. Bena, On the construction of local fields in the bulk of AdS(5) and other spaces,

Phys. Rev. D62, 066007 (2000) arXiv:hep-th/9905186.

[195] A. Hamilton, D. N. Kabat, G. Lifschytz and D. A. Lowe, Holographic representation

of local bulk operators, Phys. Rev. D 74, 066009 (2006) [arXiv:hep-th/0606141].

[196] B. Swingle, Entanglement Renormalization and Holography, arXiv:0905.1317 [cond-

mat.str-el].

[197] M. Van Raamsdonk, Comments on quantum gravity and entan glement, arXiv:/

0907.2939 [hep-th]; Building up spacetime with quantum entanglement, Gen. Rel.

Grav. 42 (2010) 2323 [Int. J. Mod. Phys. D 19 (2010) 2429] arXiv:/1005.3035

[hep-th].

222

https://arxiv.org/abs/hep-th/9808017
https://arxiv.org/abs/hep-th/9903228
https://arxiv.org/abs/hep-th/9905186
https://arxiv.org/abs/hep-th/0606141
https://arxiv.org/abs/0905.1317
https://arxiv.org/abs/0905.1317
https://arxiv.org/abs/hep-th/0907.2939
https://arxiv.org/abs/hep-th/0907.2939
https://arxiv.org/abs/hep-th/1005.3035
https://arxiv.org/abs/hep-th/1005.3035


[198] B. Swingle, Mutual information and the structure of entanglement in quantum field

theory, arXiv:1010.4038 [quant-ph].

[199] J. Molina-Vilaplana and P. Sodano, Holographic View on Quantum Correlations

and Mutual Information between Disjoint Blocks of a Quantum Critical System,

JHEP 1110 (2011) 011 arXiv:1108.1277 [quant-ph]; J. Molina-Vilaplana, Connect-

ing Entanglement Renormaliza- tion and Gauge/Gravity dualities, arXiv:1109.5592

[quant-ph].

[200] V. Balasubramanian, M. B. McDermott and M. Van Raamsdonk, Momentum-space

entanglement and renormalization in quantum field theory, arXiv:1108.3568 [hep-

th].

[201] H. Matsueda, Scaling of entanglement entropy and hyperbolic geometry,

arXiv:1112.5566 [cond-mat.stat-mech.

[202] M. Ishihara, F. -L. Lin and B. Ning, Refined Holographic Entanglement Entropy

for the AdS Solitons and AdS black Holes, arXiv:1203.6153 [hep-th].

[203] H. Matsueda, M. Ishihara and Y. Hashizume, Tensor Network and Black Hole,,

arXiv:1208.1645 [hep-th].

[204] K. Okunishi, Wilson’s numerical renormalization group and AdS 3 geometry,

arXiv:1208.1645 [hep-th].

[205] H. Matsueda, Multiscale Entanglement Renormalizati on Ansatz for Kondo Prob-

lem, arXiv:1208.2872 [cond-mat.stat-mech].

[206] M. Nozaki, S. Ryu and T. Takayanagi, Holographic Geometry of Entanglement

Renormalization in Quantum Field Theories, https://arxiv.org/abs/1208.3469.

[207] Mukund Rangamani, Tadashi Takayanagi, Holographic Entanglement Entropy,

arXiv:1609.01287 [hep-th]

223

https://arxiv.org/abs/1010.4038
https://arxiv.org/abs/1108.1277
https://arxiv.org/abs/1109.5592
https://arxiv.org/abs/1109.5592
https://arxiv.org/abs/hep-th/1108.3568 
https://arxiv.org/abs/hep-th/1108.3568 
https://arxiv.org/abs/1112.5566
https://arxiv.org/abs/1112.5566
https://arxiv.org/abs/hep-th/1203.6153
https://arxiv.org/abs/hep-th/1208.1645
https://arxiv.org/abs/hep-th/1208.1645
https://arxiv.org/abs/hep-th/1208.1645
https://arxiv.org/abs/hep-th/1208.1645
https://arxiv.org/abs/1208.2872
https://arxiv.org/abs/1208.3469
https://arxiv.org/abs/1609.01287
https://arxiv.org/abs/1609.01287


[208] S. R. Das and A. Jevicki, Large N collective fields and holography, Phys. Rev. D 68

, 044011 (2003) 0304093 0304093 0304093 arXiv:hep-th/0304093 .

[209] R. d. M. Koch, A. Jevicki, K. Jin and J. P. Rodrigues, AdS4/CFT3 Construction

from Collective Fields, Phys. Rev. D 83, 025006 (2011) arXiv:1008.0633 [hep-th].

[210] A. Jevicki, K. Jin and Q. Ye, Collective Dipole Model of AdS/CFT and Higher Spin

Gravity, J. Phys. A 44, 465402 (2011) arXiv:1106.3983.

[211] R. de Mello Koch, A. Jevicki, K. Jin, J. P. Rodrigues and Q. Ye, S=1 in O(N)/HS

duality, Class. Quant. Grav. 30, 104005 (2013) arXiv:1205.4117 [hep-th] .

[212] A. Jevicki and J. Yoon, Field Theory of Primaries in WN Minimal Models,” JHEP

1311, 060 (2013) arXiv:1302.3851.

[213] A. Jevicki , K. Jin and J. Yoon 1/N and Loop Corrections in Higher Spin AdS 4

/CFT 3 Duality Phys. Rev. D 89 085039 arXiv:1401.3318.

[214] R. de Mello Koch, A. Jevicki , J.P. Rodrigues and J. Yoon Holography as a Gauge

Phenomenon in Higher Spin Duality arXiv:1408.1255.

[215] R. de Mello Koch, A. Jevicki, J.P. Rodrigues, J. Yoon, Canonical Formulation of

O (N) Vector/Higher Spin Correspondence arXiv:1408.4800.

[216] E. Mintun and J. Polchinski, Higher spin holography, RG and the light cone,

arXiv:1411.3151.

[217] R. R. Metsaev, Light-cone form of field dynamics in anti-de Sitter space-time and

AdS/CFT correspondence, Nucl. Phys. B 563 , 295 (1999) arXiv:hep-th/9906217.

[218] J. de Boer, E. P. Verlinde, and H. L. Verlinde, On the holographic renormalization

group, JHEP 0008 (2000) 003, arXiv:/9912012 [hep-th].

224

http://arxiv.org/abs/hep-th/0304093
https://arxiv.org/abs/1008.0633
https://arxiv.org/abs/1008.0633
http://arxiv.org/abs/arXiv:1205.4117
https://arxiv.org/abs/1302.3851
https://arxiv.org/abs/1401.3318
https://arxiv.org/abs/1408.1255
https://arxiv.org/abs/1408.4800
https://arxiv.org/abs/1411.3151
https://arxiv.org/abs/hep-th/https://arxiv.org/abs/hep-th/9906217
https://arxiv.org/abs/hep-th/9912012 


[219] J. de Boer, The Holographic renormalization group, Fortsch.Phys. 49 (2001)

339–358,arXiv:0101026 [hep-th].

[220] E. T. Akhmedov, A Remark on the AdS / CFT correspondence and the renor-

malization group flow, Phys.Lett. B442 (1998) 152–158, arXiv:/0101026 [hep-th]

.

[221] R. C. Brower, J. Polchinski, M. J. Strassler, and C.-I. Tan, The Pomeron and

Gauge / String Duality, arXiv:0603115 .

[222] A. K. H.Bengtsson, I. Bengtsson and N. Linden, Interacting higher-spin gauge fields

on the light front Class. Quantum Grav. 4 (1987) 1333.

[223] H. Bethe, E. Salpeter, A Relativistic Equation for Bound-State Problems, Physical

Review. 84 (6): 1232.

[224] Y Nambu, Force Potentials in Quantum Field Theory, Prog. Theor. Phys. 5 614

(1950).

[225] N. Nakanishi, A general survey of the theory of the Bethe–Salpeter equation,

Progress of Theoretical Physics Supplement (1969) 43: 1–81; Z.K. Silagadze,

Wick–Cutkosky model: An introduction, arXiv:hep-ph/9803307.

[226] R. de Mello Koch and J. P. Rodrigues, Systematic 1/N corrections for bosonic

and fermionic vector models without auxiliary fields, Phys. Rev. D 54, 7794

(1996)arXiv:hep-th/9605079.

[227] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press

(Oxford 1989, fourth ed. 2002).

[228] J. Zinn-Justin,Vector models in the large N limit: a few applications arXiv:hep-

th/9810198 .

225

https://arxiv.org/abs/hep-th/0101026
https://arxiv.org/abs/hep-th/0101026
https://arxiv.org/abs/hep-th/0603115
https://doi.org/10.1103/PhysRev.84.1232
https://doi.org/10.1103/PhysRev.84.1232
https://arxiv.org/abs/hep-ph/9803307
https://arxiv.org/abs/hep-th/9605079
https://arxiv.org/abs/hep-th/9810198
https://arxiv.org/abs/hep-th/9810198


[229] M. Moshe, J. Zinn-Justin, Quantum field theory in the large N limit: A Review,

Phys. Rept. 385 (2003) 69-228.arXiv:hep-th/0306133.

[230] M. D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge Uni-

versity Press, 2013.

[231] Baumann and L. McAllister, Inflation and String Theory, Cambridge University

Press, 2015.

[232] K. Lang and W. Ruhl, Field algebra for critical O(N) vector nonlinear sigma models

at 2 < d < 4, Z. Phys. C 50, 285 (1991).

[233] P. Breitenlohner and D. Z. Freedman, Positive Energy in Anti-De Sitter Back-

grounds and Gauged Extended Supergravity, Phys. Lett. 115B (1982) 197.

[234] P. Breitenlohner and D. Z. Freedman, Stability in Gauged Extended Supergravity,

Ann. Phys. 144 (1982) 249.

[235] G. Baym, Lectures on Quantum Mechanics, (Westview Press, Boulder, 1990).

[236] N. Doroud and L. Smolin, An Action for higher spin gauge theory in four dimen-

sions, arXiv:1102.3297 [hep-th].

[237] N. Boulanger and P. Sundell, An action principle for Vasiliev’s four-dimensional

higher-spin gravity, J.Phys. A44 (2011) 495402, arXiv:1102.2219 [hep-th].

[238] Y. Tachikawa, talk given at the IPMU 10th anniversary conference, November 2017

http://indico.ipmu.jp/indico/event/134/contribution/17/material/slides/0.pdf;

D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, Generalized Global

Symmetries, JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].

[239] M. A. Vasiliev, Holography, Unfolding and Higher-Spin Theory, J. Phys. A 46

(2013) 214013 arXiv:1203.5554 [hep-th].

226

https://arxiv.org/abs/hep-th/0306133
http://dx.doi.org/10.1007/BF01474081
https://arxiv.org/abs/1102.3297
https://arxiv.org/abs/1102.2219
http://indico.ipmu.jp/indico/event/134/contribution/17/material/slides/0.pdf
https://arxiv.org/abs/1412.5148
https://arxiv.org/abs/1203.5554


[240] G. Lifschytz and V. Periwal, Schwinger-Dyson = Wheeler-DeWitt: gauge theory

observables as bulk operators, JHEP 0004, 026 (2000) arXiv:hep-th/0003179;D.

Polyakov, AdS/CFT Correspondence, Critical Strings and Stochastic, Quantiza-

tionClass. Quant. Grav. 18, 1979 (2001) arXiv:hep-th/0005094;Diego S. Mansi,

Andrea Mauri, Anastasios C. Petkou,Stochastic Quantization and AdS/CFT,

Phys.Lett.B685:215-221 (2010), arXiv:0912.2105 [hep-th].

[241] R. G. Leigh, O. Parrikar and A. B. Weiss, The Holographic Geometry of the Renor-

malization Group and Higher Spin Symmetries, Phys. Rev. D 89, 106012 (2014)

arXiv:1402.1430 [hep-th].

[242] R. G. Leigh, O. Parrikar and A. B.Weiss, The Exact Renormalization Group and

Higher-spin Holography arXiv:1407.4574 [hep-th].

227

https://arxiv.org/abs/hep-th/0003179
https://arxiv.org/abs/hep-th/0005094
https://arxiv.org/abs/0912.2105
https://arxiv.org/abs/1402.1430
https://arxiv.org/abs/1402.1430
https://arxiv.org/abs/1407.4574

	1 Introduction
	1.1 Introduction To The AdS/CFT Correspondence
	1.1.1 (Dirichlet) Dp-Branes
	1.1.2 The Decoupling Limit
	1.1.3 Symmetries And Matching Of Parameters
	1.1.4 GKPW Recipe And Correlation functions

	1.2 Other Examples
	1.3 Outline

	2 Higher-Spin Gravity
	2.1 Fronsdal
	2.2 Vasiliev 
	2.3 Vector Models AdS4/CFT3

	3 Vector Models And Collective Field Theory
	3.1 Hamiltonian And Single Time Bi-locals
	3.2 Covariant/Path Integral And Two Time Bilocals 

	4 Constructing AdS4 At The Free Bosonic Fixed Point
	4.1 Hamiltonian/Collective Field Theory Canonical Quantization Of The Vector Model
	4.2 The Map
	4.3 The Two Time Free Bilocal Collective Field Propagator/ Bethe Salpeter

	5 (2)2 and the Zinn-Justin Argument
	6 Non-linear Sigma Model And The Two Time Bilocal Description
	7 (2)2 Two-time Bilocal Description 
	7.1 Collective Field Propagator
	7.2 Equations Of Motion And Pole Condition

	8 (2)2 Single-Time Bilocal Description
	8.1 Hamiltonian Equations Of Motion
	8.2 From The Two-Time To The Single Time Equations Of Motion And The Spectrum
	8.3 Single-Time Lagrangian

	9 Collective Field Canonical Quantization, Spectrum And Map
	10 Conclusions And Outlook
	A Three-Point Function Vertices 
	B Mode Expansion
	C The Propagator For Scattering from a Dirac Delta Potential

