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Abstract 
We present the outline of a new and efficient technique for the calculation of loop am- 

plitudes in a gauge theory. The technique is based on the technology of four-dimensional 
beterotic strings. We display here the application to the calculation of the one-loop correc- 
tions to @on-gluon scattering, in ordinary dimensional reguiarization. We find complete 
agreement with the previous Feynman diagram calculation of Ellis and Sexton. 
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Perturbative calculations lie at the foundation of OUT understanding of physics at short dis- 

tances. Of special importance are perturbative calculations in quantum chromodynamics, because 

of the present and likely future importance of hadron collider experiments to our understanding of 

the standard model and to our hope of uncovering what lies beyond. 

Even at tree level, such calculations are quite difficult using the traditional techniques of 

Feynman diagrams. (The calculation of the amplitude for the scattering of two to six gluons, for 

example, would involve nearly 35000 Feynman diagrams and on the order of half a billion terms.) 

In recent years, however, several advances have made possible a variety of multi-jet calculations 

[I]. These include the decomposition of amplitudes into sums of gauge-invariant partial amplitudes 

multiplied by color trace factors; the use of the spinor h&city basis [z]; and the Berends-Giele 

recurrence relations [3]. The tree level color decomposition [4] and recurrence relations [5] emerge 

quite naturally from string theories. 

In this letter, we present the outline of a new technique, based on string theory, for calculating 

loop amplitudes in massless gauge theories, and the results for some of the h&city amplitudes for 

the four-point amplitude. The details of the method as well as a discussion of certain technical 

issues will be given elsewhere. The h&city amplitudes presented below can be used to compute 

the O(a~) corrections to unpolarized gg -+ gg scattering, first computed by Ellis and Sexton (61; 

we find complete agreement for this quantity. In addition, the helicity amplitudes could be used 

to compute the i?(a:) corrections to polarized gg -+ gg scattering which have not been computed 

previously. 

There are several aspects of the method which indicate its advantages over the conventional 

diagrammatic technology. In essence, the starting point - the string amplitude for n-gluon scat- 

tering - already sums up all Feynman diagrams, organizes them in a color decomposition, and 

performs all momentum integrals, leaving only integrals analogous to Feynman parameter integrals 

to be done. This bypasses all algebra associated with the large number of terms generated by the 

nonabelian gauge vertex factors. Furthermore, as the initial expression is a function solely of the 

external momenta, polarization vectors, and color indices (as well as Feynman parameters), it is 

very well suited to use of the spinor-helicity basis [Z] which reduces the complexity of t~he amplitude 

UWtlOUSl~. 

The color decomposition, which emerges from the string amplitude, organizes the full ampli- 

t,ude into a sum over certain permutations of color factors times partial amplitudes. Each partial 

amplitude is gauge-invariant (under on-shell gauge transformations) and contains contributions 

from many Feynman diagrams eliminating most of the large cancellations typical of Feynman dia- 
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gram computations. Another aspect of the reorganization is the absence of extra Faddeev-Popov 

ghost diagrams, even though the string formalism is completely covariant. 

The new formalism also lends itself to a richer set of consistency checks than does the con- 

ventional one. One has the usual checks: on gauge invariance; on unitarity; and on cancellation of 

infrared divergences against the soft and collinear divergences of (n t I)-point tree cross sections. 

In addition, the various gauge theory partial amplitudes are related via decoupling equations [7]; 

these are the one-loop version of the tree-level ‘twist’ or ‘subcyclic’ identities [4]. (Alternatively, 

these identities could be used to reduce the number of partial amplitudes that need be computed.) 

Although the use of a string-like reorganization of the amplitude is by now standard in tree- 

level gauge theory computations, a number of technical complications might appear to impede the 

application of such a formalism to loop computations. 

The most obvious issue is that of the massless spectrum of the string theory. All string states 

which couple to gauge bosons can circulate in loops; thus one needs control of the massless spectrum 

of the string model in order to obtain QCD amplitudes simply by taking the infinite-tension limit 

of the corresponding string amplitudes. The technologies for controlling the spectrum are precisely 

the four-dimensional string constructions [S,9]. With the Kawai-Lewellen-Tye (KLT) version of this 

technology, we have constructed examples of modular-invariant four-dimensional h&erotic string 

theories [lo] which contain a pure nonabelian gauge theory in the infinite-tension limit [ll]. In fact, 

a consistent string is not really needed for practical computations, but it does serve as a guarantee 

that no extraneous problems enter to affect the results. 

A related issue is the decoupling of massive states and unwanted massless states such as the 

graviton and dilaton. Aside from the d&ton, which requires a more subtle argument. the decoupling 

of unwanted states is automatic and straightforward. 

Relativistic quantum-mechanical theories in four dimensions with massless particles display 

infrared divergences in on-shell amplitudes with fixed particle number [12]. This is of course true 

of string theories as well, since these divergences have a physical origin. As a consequence, four- 

dimensional strings are ill-defined (even before taking the infinite-tension limit). For practical 

computations. we require a regularization scheme that has a known connection with the standard 

field-theory regularization of both infrared and ultraviolet divergences. For this purpose. we have 

developed a string version of ordinary dimensional reguiarization [13] and of dimensional redur- 

lion [ 141, based on the work of Brink, Green, and Schwarz [15]. At the four-point level. t,he use of 

dimensional regularization allows for a direct comparison to t~he results of Ellis and Sexton [6]. 

In order to compute a physical S-matrix element from a Green function, one must multiply by 

a factor of the square root of the wavefunction renormalization Z.k for each external leg. In field the- 
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ory, one would simply compute the value of the two-point function. In the string-based formalism, 

this issue appears subtle because the formulation is on shell; and in the on-shell Polyakov formula- 

tion the two-point function vanishes identically. Furthermore, higher-point Polyakov amplitudest 

are ill-defined as they contain factors of O/O when loops are isolated on external legs. We have 

performed a detailed analysis of these issues [16] and have shown the consistency of a particular 

prescription [17] for handling them. We may also note that the string ambiguities are ultimately 

irrelevant to practical calculations using a dimensional regularization scheme for all divergences, 

since the ultraviolet and infrared divergences cancel, leaving a vanishing result for loops on external 

legs. (The same cancellation is also used as a prescription in field theory computations [la]; in the 

new formalism, it is straightfoward to prove its consistency by demanding gauge invariance of the 

amplitude.) 

While knowledge of string theory is important in resolving the technical issues outlined above, 

for practical computations one can rely on a set of rules presupposing ignorance of string theory. 

The starting point of the computation of 99 + 99 is the one-loop N-gluon string amplitude, 

as given in refs. [lti]. Schematically it has the form 

-Of.+ { Xk; kj, thki E~YE~ E!} { GF(Siij), bB(Vij)} t St,.Ei Ej eB((iTij) 1 
where r is the complex modular parameter describing the torus which is the one-loop world-sheet 

of the string, the vi are the Koba-Nielsen variables [19] describing the locations of the external 

gluon vertex operators on the world sheet (v;j = V; - uj), and the pi are the ordinary gluon 

polarization vectors. The vectors of rational numbers ci and p’ describe the choices of world-sheet 

boundary conditions for the world-sheet fermions. One must sum over these boundary conditions 

with the KLT coefficients C$. The fermionic Green functions G,v (and fermionic contributions 

to the partition function Z;(T)) depend on the choices of these world-sheet boundary conditions, 

while the bosonic Green functions GB (and bosonic contributions to the partition function) are 

independent of the the boundary conditions (in the fermionic formulation of superst,rings [s]). 

Performing the integrations over the Grassmann parameters Bi,, leads to a result which is 

multilinear in the polarization vectors. It immediately gives a color-decomposed form [7]: a sum 

f With Iaver than maximal number of apacetime supersymmetries 
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of terms, where each term consists of three pieces: a color factor - one or two traces of products 

of color charge matrices T” (times left-mover Green functions), a kinematic tensor - a product 

of dot products of polarization vectors and momenta (times right-mover Green functions), and a 

kinematic core (consisting of the exponentiated bosonic Green functions exp(C Xki. kjGB(v<j))), 

It is convenient, and possible, to integrate by parts with respect to the ?i so as to remove all 

appearances of double derivatives of the bosonic Green’s functions. The amplitude then has a 

uniform positive power of the inverse string tension X sitting in front. 

The field theory limit is simply the limit X - 0. In the case of the four-point function, the 

amplitude contains an over-all factor of A’; thus in order to extract a non-vanishing contribution we 

must extract two poles in A. There are two sources of such poles. One is a pinch of Koba-Nielsen 

variables vi - “j + 0. In this limit we obtain contributions of the form 

I 
dZ”,v,-2-Aki.ki,n 2x2 c-- 

Xki. kj 

The other is the large Imr region where we obtain 

/ 
dhnr (Im7)Pe-AA~mr - J--k + 1) 

(XA)p+’ 

where the power of p depends on how many unpinched Koba-Nielsen variables remain. It is only 

in these limits that we need the expansions of the Green function and partition function. Here we 

shall not display the explicit form of these expansions, but will instead give the behavior of typical 

combinations of Green functions which occur in the amplitude. 

Consider first the color-charge factors (described by the left-movers). For each ordering of the 

Im vi there is a distinct contribution, each one of which is trivial. For example, with the ordering 

Im VI 5 Imvz < Irn~ 5 Imv4 = Irn~ one finds in the gauge theory limit 

ZLGF(~Z,)GF(~~Z)GF(Y,~)GF(Y~~) - -No ZLGF(~?I)GF(V~~)GF(V~~)GF(~Z~) -- 0 (4) 

where N, is the number of colors and ZL is the left-mover partition function. 

The kinematic tensor (described by the right-movers) has a slightly richer structure but also 

simplifies in the gauge theory limit. For example. with the same ordering of Im v’s given above one 

finds that 

znG”(i72,)GB(V,2)GF(U.,3)GF(V~,) --- ;(I~ - 22*,)* 

ZRGB(V~~)GB(~~~)GB(U~~)GB(V,~) - $(2 - Jre)(l - 2+z1)(1 - 2%2)(1 - 2%)(1 - ‘ht) 

(5) 



where 6~ = 1 for ordinary dimensional regularization and 6~ = 0 for dimensional reduction. 

(The sum over world-sheet boundary conditions with appropriate coefficients is included in these 

simplifications.) With zi E Imvi/ Irn~, the zij G zi - zj are standard Feynman parameters. 

The kinematic core results in an expression of the form 

/ 
dImr (Imr)~-'/2 ~*P[~I~~(J(GB(VL*)+GB(Y~~))+~(GD(O,O+GB(V~~))+~~(GB(OI~)+GB(VI~)))] 

-- q2 - c/2)( -A( .92,1* t tz213 t uz1z3 t tz{ - tlZ) >- 

a++ 

(6) 

and is the same in both dimensional regularization and reduction. 

Combining the color factor (4), the kinematic tensor factors (5), the kinematic core (ti), and 

summing over the various terms then yields a Feynman parameterized form of the full amplitude. 

The evaluation of these linal Feynman parameter integrals can then be done by standard methods. 

In the four-point amplitude, there are 43 formally independent terms, the number of multilinear 

functions of the polarization vectors. Physically, however, they are redundant, because they are 

related by constraints of gauge invariance. The entire physical content is contained in the three 

h&city amplitudes A( + + + + ), A( - f + t ), and A( - - + + ). (Note that we use the convention 

that all momenta are outgoing, that is &y,2 < 0.) The spinor-h&city basis [2] chooses E,, (+‘(k;q) = 

(q-hulk-)l&-lk+) and E;(kq) = M~ulk+)ld%+Iq-), where k is the gluon momentum, q 

is an arbitrary reference momentum such that p ’ = 0, k q # 0, and Ik*) is a Weyl spinor. I\ 

judicious choice of the reference momenta allows us to extract the physical information efficiently, 

by forcing many terms to vanish and by combining others. In the new formalism, the spinar h&city 

basis can be used immediately in the starting formula, equation (I). 

Attreelevel,d(tt+t)andA(-+++) vanish. Furthermore, only the amplitude associated 

with a single trace term in the color decomposition is needed for computing the O(a:) corrections. 

In computing these corrections in either dimensional reduction or the original ‘t Hooft-Veltman 

dimensional regularization scheme (in which only internal gluons are continued to D = 4 - e 

dimensions), one needs only the dispersive (real) parts of the partial amplitudes in the physical 
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region, 

(12)’ 
DispA1-,,,,(1-,2-,3’,4’) = i(12)(23)(34)(41) 

P(1 - e/z)r(l+ E/2) 

wr(l- e) 

( 
8 x -- t? - ; + +(py + z (IQ(S) + [Q(t)) - lQ(S) IQ(t) t +&) t ; - ; - % > 

2 + 
Disp Al-~..,(l-,2+,3-,4+) = i(12)(2~)~~4)(41) rz(l i-$$)lr”eTe’2) ($) 

x 
! 

-$ - z f ++L) + ; (IQ(S) t IQ(t)) - (“22-$)2 (k?(s) + ‘Q(4Y 

+ qg (Ii(s) t I;(t)) - ““;,, 3st (tlQ(s) + slQ(t)) 

(7) 

where (i j) = jk;-)kj+), s, t and u are the usual Mandelstam invariants, fiz is the renormalization 

scale, QZ is the factorization scale, lq(z) = In lr/Q’I, G(z: > 0) = 1, G(z <0) = 0, and we have used 

the MS renormalization prescription. The other relevant partial amplitudes can be obtained from 

these by a relabeling of external legs. The one-loop correction to the color-summed cross-section is 

then given by 

2g6(~2) (P’)’ N:(Nz - 1) c A:,,,(u)DisPA1--lOOp(~). 

::I::!,:! 

(8) 

Ellis and Sexton (61 used a form of dimensional regularieation where the externai polarizations were 

also continued to D-dimensions; in order to compare our results we need to include the additional 

c-h&city states [20] that arise in this case. We have computed these additional helicity amplitudes, 

and with them, find exact agreement with the results of ref. [6]: equation (2.25). This agreement 

provides the first independent complete check on the latter calculation, in addition to verifying our 

understanding of regularization and renormalization within the string-derived formalism. 

The inclusion of massless ferrnions at one-loop in the new formalism is straightforward. Al- 

though the technology has not yet been extended to higher loops or to massive ferrnions, we expect 

that such an extension can be devised. 

We thank R. K. Ellis and A. H. Mueller for helpful discussions on QCD, and D. C. Dunbar 

for discussions on some of the string aspects of this work. 11-e are grat,eful for the hospit,nlitv of thr 

I heory group at Los Alamos where much of this work was done. This work was supported in part, 

by the National Science 12oundation, grant PHY-87-20221. 
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