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Observables which would indicate a modified vacuum dispersion relations, possibly caused by quantum 
gravity effects, are a four momentum dependence of the cosmological redshift and the existence of a 
so called lateshift effect for massless or very light particles. Existence or non-existence of the latter is 
currently analyzed on the basis of the available observational data from gamma-ray bursts and compared 
to predictions of specific modified dispersion relation models. We consider the most general perturbation 
of the general relativistic dispersion relation of freely falling particles on homogeneous and isotropic 
spacetimes and derive the red- and lateshift to first order in the perturbation. Our result generalizes 
the existing formulae in the literature and we find that there exist modified dispersion relations causing 
both, one or none of the two effects to first order.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Most information about the properties of gravity are obtained 
by probing the geometry of spacetime through the observation 
of freely falling particles. In order to observe traces of the ex-
pected quantum nature of the gravitational interaction, one option 
is to look for their manifestation in the propagation of particles 
through spacetime, which we observe with telescopes. The theo-
retical prediction of such effects is one branch of quantum gravity 
phenomenology [1]. The pictorial idea why quantum gravity ef-
fects may become visible in this way is the following. Test particles 
probe spacetime on length scales which are inverse proportional 
to their energy. Thus the higher the energy of the particles, the 
smaller the length scale probed. Quantum gravity effects are ex-
pected to become relevant at the Planck scale and hence parti-
cles with energies closer to the Planck energy E pl should interact 
stronger with the quantum nature of gravity than lower energetic 
ones. Therefore, the propagation of high energetic particles through 
spacetime may deviate from their predicted behavior by classical 
general relativity. Since the energy of a particle is observer depen-
dent this pictorial idea needs to be formulated more precisely in 
terms of the particle’s four momentum, instead of its energy, what 
we will do during the derivations of this letter.

As long as a fundamental theory of quantum gravity is not 
available to predict this effect from the scattering between gravi-
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tons and the probe particles such quantum gravity effects can be 
modeled phenomenologically by a modification of the relativistic 
dispersion relation of freely falling point particles, see [2–12] and 
references therein.

Even though the particles we observer have energies below 
the Planck energy, the small effect may accumulate over a long 
particle travel time and become detectable. In particular observa-
tions from high redshift gamma-ray bursts (GRBs) are candidates 
to find traces of Planck scale induced modified dispersion rela-
tions (MDR) [13–16]. One most prominent signature would be a 
so called lateshift observation [17], i.e. an advance or a delay in 
the expected time of arrival of high energetic photons and neutri-
nos from the same source compared to low energetic ones emitted 
at the same time. Recently a preliminary analysis of the ICECUBE 
data for such a lateshift has been performed in [18] as well as an 
analysis of GRBs detected with the Fermi Gamma-Ray Space Tele-
scope [19–21].

To deduce a MDR from the measured time of arrival data of 
neutrinos and photons from GRBs a derivation of the lateshift ef-
fect from a most general modification of the general relativistic 
dispersion relation is required. Usually specific models are as-
sumed and the lateshift is derived for these classes of MDRs [1,
14,15,22–24].

In this letter we derive the redshift and lateshift from an arbi-
trary perturbation of the general relativistic dispersion relation to 
first order in the perturbation. Observation or not-observation of a 
modified redshift or a lateshift effect then directly leads to condi-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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tions the perturbation of the dispersion relation must satisfy to be 
viable. As an interesting insight from the general red- and lateshift 
formula we findMDRs which predict both aforementioned effects, 
only one of them or even none to first order.

2. Dispersion relations as Hamilton functions on spacetime

To derive the lateshift from the dispersion relation of point par-
ticles on spacetime we interpret a dispersion relation as level sets 
of a Hamilton function on the spacetime’s cotangent bundle, as it 
turned out to be a very useful framework to treat MDRs on curved 
spacetimes covariantly [25–27].

The four momentum of a particle is a 1-form P on spacetime 
which can be expanded in local coordinates around a point x as 
P = padxa . The tuple (x, p) denotes the particle’s momentum p at 
the spacetime position x. A dispersion relation is a level set of a 
Hamilton function H(x, p) which determines the particle’s motion. 
This covariant formulation of dispersion relations on curved space-
times has the advantage that it allows to study dispersion relations 
on the basis of the particle’s four momentum without referring to 
the observer dependent notion of a particle’s energy or spatial mo-
mentum.

Homogeneous and isotropic dispersion relations are character-
ized by Hamilton functions with a specific dependence on the 
particle’s positions and momenta. As shown in [26] the most gen-
eral homogeneous and isotropic dispersion relation is given by the 
level sets of the Hamiltonian

H(x, p) = H(t, pt, w), w2 = p2
r χ

2 + p2
θ

r2
+ p2

φ

r2 sin2 θ
, (1)

where χ = √
1 − kr2. Due to the high symmetry the Hamilton 

equations of motion, which determine the propagation of the par-
ticle through spacetime, can partly be solved and reduce to

ṗt = −∂t H, pr = K1

χ
, pθ = 0, pφ = 0,

ṫ = ∂pt H, ṙ = ∂w H
1

w
χ K1, θ = π

2
, φ = 0 ,

(2)

where K 2
1 = w2 is a constant of motion.

3. The perturbed dispersion relation

The most general perturbation of the homogeneous and isotro-
pic general relativistic dispersion relation is given by the level sets 
of

H(t, pt, w) = −pt
2 + a(t)−2 w2 + εh(t, pt, w) . (3)

The perturbation h(t, pt , w) can be an arbitrary function of t , pt

and w , and ε is an arbitrary perturbation parameter. In the con-
text of quantum gravity or Planck scale induced perturbations it 
may be identified with the Planck scale, while other sources of a 
modification of the dispersion relation may require a different per-
turbation parameter. For the calculations below we do not fix the 
origin of the perturbation.

To derive the redshift and lateshift from (3) we use the Hamil-
ton equations of motion

ṫ = −2pt + ε∂pt h , ṙ = χ

(
2w

a2
+ ε∂wh

)
, (4)

and the dispersion relation

−pt
2 + a−2 w2 + εh(t, pt, w) = −m2 . (5)

The time dependence of the scale factor a will from now on only 
be displayed when necessary.
3.1. Redshift

The dispersion relation (5) determines pt as function of t, r and 
w without solving any equation of motion. From the ansatz pt =
p0

t + εp1
t one easily finds

pt(t, w,m) = −
√

m2 + w2

a2
+ ε

h(t, p0
t (t, w,m), w)

2p0
t (t, w,m)

, (6)

and thus for massless particles

pt(t, w,0) = − w

a
− ε

a

2w
h(t, p0

t (t, w,0), w) . (7)

The redshift of a photon which is emitted at time ti with a coordi-
nate time-momentum pt(ti, w) = pt(ti, w, 0) and observed at time 
t f with coordinate momentum pt(t f , w) = pt(t f , w, 0), subject to 
the dispersion relation in consideration then is

z(ti, t f ) = pt(ti, w)

pt(t f , w)
− 1

=
(

a(t f )

a(ti)
− 1

)
− ε

2w2

a(t f )

a(ti)

(
a(t f )

2h(t f , p0
t (t f , w), w)

− a(ti)
2h(ti, p0

t (ti, w), w)

)
. (8)

To zeroth order, as expected, the redshift formula from general 
relativity is recovered, while the first order is determined by the 
perturbation h. In particular the perturbation depends in gen-
eral on the particles spatial coordinate momentum w , which can 
be expressed in terms of the initial coordinate time-momentum 
of the photon pt(ti), since equation (7) can be inverted for 
w(pt , t). Thus photons starting with different initial coordinate 
time-momentum p0

t (ti, w) experience a different redshift. Hence 
a detection of a photon redshift dependent on the initial coor-
dinate time-momentum is a clear signal for a modification of 
the dispersion relation while its absence puts constraints on the 
perturbation. First analyses of possible evidences for an energy de-
pendent redshift have been performed [28,29].

We use the term coordinate time-momentum of a photon here 
instead of energy of a photon to distinguish between the observer 
dependent notion of energy of a particle and the observer inde-
pendent choice of coordinates to describe the particle’s four mo-
mentum.

3.2. Lateshift

To derive the lateshift we use again the Hamilton equations of 
motion (4), to solve for r parametrized in terms of the coordinate 
time

dr

dt
= ṙ

ṫ
= χ w

a
√

a2 m2 + w2

(
1 − ε

1

2(p0
t )2

[
h(t, p0

t , w)

− p0
t ∂pt h(t, p0

t , w) − w∂wh(t, p0
t , w)

])

≡ χ w

a
√

a2 m2 + w2
(1 − ε f (t, p0

t , w)) . (9)

The momentum corresponding to the time coordinate is consid-
ered as function pt = pt(t, w, m) as displayed in (6). Employing 
separation of variables and the perturbative ansatz r = r0 +εr1 the 
following solution can easily be found
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r(t, w,m)

= 1√
k

sin

(√
kC + √

k

t∫
ti

dτ
w

a
√

a2 m2 + w2

)

− ε cos

(√
kC + √

k

t∫
ti

dτ
w

a
√

a2 m2 + w2

) t∫
ti

dτ
w f (τ , p0

t , w)

a
√

a2 m2 + w2
.

(10)

Observe, that for massive particles even the zeroth order depends 
on the spatial momentum w , respectively on the particles initial 
coordinate time-momentum in case one considers the spatial mo-
mentum as function of the initial momentum by solving equation 
(6) for w(pt , t). For massless particles this dependence vanishes 
and only appears in the first order correction.

The search for lateshift effects focuses on neutrinos and pho-
tons, i.e. particles of light or zero mass [18,19]. To derive the 
lateshift for both we expand (10) for small masses and find the 
first non-vanishing order, neglecting the order εm2 and higher or-
ders in ε or m2,

r(t, w,m)

= 1√
k

sin

(√
kC + √

k

t∫
ti

dτ
1

a

)

− m2 cos

(√
kC + √

k

t∫
ti

dτ
1

a

) t∫
ti

dτ
a

2w

− ε cos

(√
kC + √

k

t∫
ti

dτ
1

a

) t∫
ti

dτ
f (τ , p0

t , w)

a

∣∣∣∣
p0

t =p0
t (t,w,0)

+O(ε2, εm2,m4) . (11)

Consider two radially freely falling particles of in general dif-
ferent masses m1 and m2 of same order, with different momenta 
w1 and w2. They shall be emitted at the same initial time ti
at the origin of the coordinate system. We call their trajecto-
ries r(t1, w1, m1) and r(t2, w2, m2) respectively. Thus the condition 
that they reach the same radial coordinate distance R in spacetime 
is r(t1, w1, m1) = r(t2, w2, m2).

Introducing the mass lateshift 	tm and the lateshift due to the 
MDR 	tε we make the ansatz t2 = t1 + α	tm + ε	tε for the time 
of arrival of the second particle at R , where α is an order pa-
rameter which counts the order of the masses. Solving the equal 
position condition order by order yields the lateshift formulas

	tm = m2
2 w1 − m2

1 w2

2w1 w2
a(t1)

t1∫
ti

dτ a(τ ) (12)

and

	tε = a(t1)

t1∫
ti

dτ
f (τ , p0

t (τ , w2), w2) − f (τ , p0
t (τ , w1), w1)

a(τ )
.

(13)

Since f (t, p0
t , w) may depend arbitrarily on t and not only through 

a(t) it is in general not possible to rewrite this equation in terms 
of the zeroth order redshift of the particles z(t) = z(t, t f ) at their 
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ission time. Only if z(t) is solvable for t or, if the time de-
ndence of the perturbation f (t, p0

t , w) can be expressed as a 
nction of the scale factor a(t), one may express the lateshift in 
rms of a redshift integral, the Hubble parameter H and the cos-
ological density parameters �� , �k and �M

tε =
z∫

0

dz′ f (z′, w2) − f (z′, w1)

H(z′)

=
z∫

0

dz′ f (z′, w2) − f (z′, w1)

H(0)
√

�� + �k(1 + z)2 + �M(1 + z)3
.

(14)

 this form the lateshift derived from the general dispersion re-
ion (5) can be recognized as generalization of the expression 
rived in [22,23], which is employed in the data analyses [18–21].
For the derivation of the lateshift effect we assumed the si-

ultaneous emission of particles with different momenta here, to 
monstrate how the effect is predicted from the MDR (3). In GRBs 
is assumption is not necessarily realized and one has to take into 
count that the observed lateshift 	tobs = 	tm + 	tε + 	tint is 
mposed of an arrival delay due to the particles mass 	tm , the 
eshift caused by the MDR 	tε , and, in addition, a difference in 
e emission time of particle of different momentum due to the 
echanism of the GRB itself 	tint [30]. The latter may be derived 
m a fundamental model of the GRB and must be subtracted 
m the observed value to identify the lateshift effect due to the 

DR which we discussed. In the future it may be possible to de-
e an additional modification of the MDR (3) from a GRB model 

hich implements a difference in the emission time of particles of 
fferent energies directly in the calculation done here.

We conclude that the measurement of a lateshift effect for 
assless particles which are emitted at the same time would be a 
ar indication of a MDR. A detection of a lateshift effect for light 

assive particles due to a MDR may be more difficult to identify 
e to the additional effect coming from the mass lateshift. For 
 kinds of detections of a lateshift effect it is necessary to anal-
e possible uncertainties in the emission time of the particles of 
fferent momenta.

Examples

The general first order redshift and lateshift formulae (8) and 
3) enable us to determine if a MDR yields an energy dependent 
dshift and a lateshift, only one of both effects or none. In the 
llowing we give examples for each case.

For perturbations h(t, pt , w) which are homogeneous of de-
ee r in the variables pt and w , i.e. which satisfy h(t, λpt , λw) =
h(t, pt , w), the function f (t, p0

t , w) which causes the lateshift 
3) simplifies to

t, p0
t , w) = 1

2(p0
t )2

(1 − r)h(t, p0
t , w)

= wr

2(p0
t )2

(1 − r)h(t,
p0

t
w ,1) , (15)

 its definition in (9) and Euler’s theorem for homogeneous func-
ns. Calculating the lateshift for a generic third order polynomial 

b(t)pt
3 + c(t)pt

2 w + d(t)pt w2 + e(t)w3, i.e. r = 3, thus yields

tε = a(t1)(w1 − w2)

2
×

t1∫
dτ

1

a(τ )

(
a(τ )2e(τ ) − a(τ )d(τ ) + c(τ ) − b(τ )

a(τ )

)
, (16)
ti
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while the first order perturbation in the redshift becomes linear 
in w

1−(z(ti, t1) + 1)
a(ti)

a(t1)

= ε

2
w

(
a(t1)

2e(t1) − a(t1)d(t1) + c(t1) − b(t1)

a(t1)
− a(ti)

2e(ti)

+ a(ti)d(ti) − c(ti) + b(ti)

a(ti)

)
. (17)

Hence in particular if the integrand in (16) vanishes, which means 
h(t, p0

t , w) = 0 in this case, the lateshift of the MDR vanishes 
and the redshift is as on Friedmann–Lemaître–Robertson–Walker 
spacetimes, independent of the particles four momentum. Other 
examples for perturbations which share this properties are h =
(−pt

2 + a(t)−2 w2)Q (t, pt , w) for arbitrary Q (t, pt , w).
Another class of perturbations, the ones of the form h =

pt
n Q t(t, X) + wn Q w(t, X) with X = w

pt
, Q t and Q w being arbitrary 

functions of their arguments and n = 1, 2, do not induce a lateshift. 
For n = 1 the redshift becomes four momentum dependent while 
for n = 2 it only picks up a four momentum independent correc-
tion.

In the context of quantum gravity phenomenology a most in-
tensively studied MDR is the κ-Poincaré dispersion relation [31,
32]. To first order in the Planck length it is of the polynomial type 
discussed above with b(t) = c(t) = e(t) = 0 and d(t) = a(t)−2. Em-
ploying this identification in (16) and (17) reproduces the lateshift 
and redshift results known in the literature [24,26,33].

5. Beyond homogeneous and isotropic dispersion relations

In this letter we considered perturbations of the homogeneous 
and isotropic general relativistic dispersion relation, which are 
themselves again homogeneous and isotropic. For upcoming stud-
ies we aim to investigate the observable effects of more general 
perturbations. The necessary change to do so is to consider general 
perturbation functions h(x, p) in the Hamiltonian (3) and not only 
those which depend on (t, pt , w(r, θ, φ, pr, pθ , pφ)). How to treat 
general non-homogeneous modified dispersion relations in terms 
of Hamilton functions on curved spacetime has been developed in 
[25,27].

A general ansatz for a perturbation can for example be ex-
pressed as power series in the momenta

h(x, p) =
∞∑

i=0

f a1a2...ai (x)pa1 pa2 ...paN , (18)

where the coefficient functions f a1a2...ai (x) specify the support and 
the type of the perturbation. Depending on the phenomenon one 
seeks to describe in terms of MDRs these functions may have dif-
ferent origins.

In the context of GRBs such terms may be added to the homo-
geneous and isotropic one in (3) to describe the motion of particles 
derived from a fundamental GRB model, as already mentioned at 
the end of section 3.2.

Further interesting models to investigate are MDRs which de-
pend on the local standard model matter and dark matter distri-
bution on spacetime as well as the zeroth order redshift. In the 
context of string theory [34] as well as in the study of the inter-
action of light with the matter content of the universe [35] such 
dispersion relations emerge.

One way to realize such models is the following. Let z be the 
zeroth order redshift, ρS M(x) be the matter density of standard 
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odel particles in the universe and ρDM (x) be the dark matter 
nsity in the universe. A general power law model which real-

es a MDR depending on these quantities would be given by the 
nctions

a1a2...ai (x) = ca1a2...ai

∞∑
j=−∞

∞∑
k=−∞

∞∑
l=−∞

C jkl z j ρS M(x)k ρDM(x)l

(19)

r constants ca1a2...ai and C jkl whose value can either be predicted 
 fundamental theories which cause the MDR or be obtained from 
servations.
The algorithm we outlined here is not restricted to study ob-

rvable consequences of MDRs in cosmology but can be applied 
 any spacetime of interest by starting instead of from (3) from a 
neral perturbation of a metric Hamiltonian

(x, p) = gab(x)pa pb + εh(x, p) . (20)

 Conclusion

Starting from a general first order perturbation of the gen-
al relativistic homogeneous and isotropic dispersion relation of 
eely falling point particles (3) we derived the observables red-
ift (8) and lateshift (13). Compared to general relativity the 
dshift generically becomes energy dependent and the lateshift 
r simultaneously emitted photons emerges. With help of the 
w general first order formulae obtained here it was possible to 
monstrate that there exist particular MDRs in which only one or 
ne of the effects appear.
Observation or non-observations of a four momentum depen-

nt redshift or lateshift of particles from the same source emitted 
 the same time now directly leads to bounds, which the first 
der perturbation of the dispersion relation must satisfy. The in-
rpretation of a lateshift observation must however be done with 
re due to uncertainties in the simultaneity of the emission time 
 the particles. To identify the effects coming from a quantum 
avity induced MDR it is necessary to take such emission delays 
to account.

For future studies the methods we applied here to study MDRs 
 curved spacetimes can be applied to systematically compare ob-
rvational results with predictions from MDRs, not only in the 
ntext of cosmology but for all kinds of physical systems of inter-
t such as for example black hole and gravitational wave space-

mes.
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