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Abstract. We show that there is an entire gauge symmetry of a novel kind which interpolates
between an infinity of formulations of the laws of gravity, ranging from Einsteins pure curvature
formulation to a pure torsion formulation in a teleparallel geometry. As a consequence, torsion
and curvature are not independent and that torsion is an alternative description of curvature
in gravity.

1. It is well known that the solutions of Einstein equations can equally well be obtained in
a Riemann-Cartan spacetime with torsion, in which the Cartan curvature vanishes identically.
This teleparallel formulation of gravity has been proposed by Einstein as an alternative to
his famous theory of relativity in Riemannian spacetime, and its properties have been studied
in many publications [1, 2]. In this formulation, the Einstein-Hilbert action is equal to a
combination of scalars formed from torsion tensors [2]. In this contribution to the special
volume on analog models of gravitational theories I would like to point out that there is an
entire family of theories in which a combination of curvature and torsion provide us with an
alternative description of the same gravitational forces [3, 4, 5]. This result, obtained first in
Ref. [5], was reached on the basis of the close analogy of spaces with gravity and torsion to
crystals with defects [6, 7].

2. A nontrivial extension of Einsteins theory in curved spacetime to Riemann-Cartan
spacetime was advanced since 1959 [7, 8, 9]. It has the appealing feature that it can be rewritten
as a gauge theory that is invariant under local Poincaré transformations, i.e., under both local
translations and local Lorentz transformations. This brings the geometric theory of gravity to
a similar form as the gauge theories of weak, electromagnetic, and strong interactions. In the
gauge formulation, torsion is treated as an independent field which couples only to the intrinsic
spin of the elementary particles.

The extension has, however, several unsatisfactory features. First, it has the same problem
as Einstein’s theory that it cannot be quantized and is necessarily classical. But spin carries a
power of h, and this is zero in the classical limit. So there exists, strictly speaking, no classical
source of torsion. Moreover, since torsion is assumed to couple to spin with the universal
gravitational coupling strength, its smallness implies that spin cannot play any sizable role in
the forces between celestial bodies. For example, even if the earth consisted only of polarized
atoms, its total intrinsic spin would be 10 times smaller than the rotational spin around the
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axis.

A second argument against a gravitational theory with torsion was brought forward by
Weinberg !. Since torsion is a tensor there is really no need for it to ensure general coordinate
invariance.

A third argument is that the coupling of spinning particles to torsion would make the photon
massive. To avoid this, the authors of [8] forbid the direct coupling to photons. They ignore the
fact that by the allowing spin-1 p mesons to couple to torsion, their electromagnetic coupling
will make photons massive after all.

Until the recent results of the satellite experiment Gravity Probe B [11] some people had
hoped that the observed Lense-Thirring effect would deviate from Einstein’s prediction. But it
did not. Thus a simple possibility of discovering torsion experimentally has faded [12].

These problems make it doubtful that the generalization of gravity to Riemann-Cartan
spacetime proposed in the papers [7, 8, 9] has a chance of being true. In this note we want
to give a symmetry argument for this. It is inspired by a simple analog model of gravity, a world
crystal with defects [9, 13] 2 whose lattice constant is of the order of a Planck length. Some
consequences of such a world crystal were pointed out in a recent study of black holes in such a
scenario [19].

In the world crystal, there exists a new type of extra gauge symmetry in which zero torsion is
merely a special gauge. A completely equivalent gauge is the absence of Cartan curvature, which
is found in Einstein’s teleparallel universe. And there exists an infinite number of intermediate
gauges.

3. To prepare the grounds for the argument, recall that a crystal can have two different types
of topological line-like defects [7, 9], which in a four-dimensional world crystal are world surfaces
(which may be the objects of string theory).

First, there are translational defects called dislocations (Fig. 1). These are produced by a

Figure 1. Formation of a dislocation line (of the edge type) by a Volterra process. The Burgers
vector b characterizes the missing layer. There exist two more types where b points in orthogonal
directions.

cutting process due to Volterra: a single-atom layer is removed from the crystal, allowing the
remaining atoms to relax to equilibrium under the elastic forces. A second type of topological
defects is of the rotation type, the so-called disclinations (Fig. 2). They arise by removing an
entire wedge from the crystal and re-gluing the free surfaces.

The defects cause a failure of derivatives to commute in front of the displacement field wu;(x).
In three dimensions, the dislocation density is given by the tensor

@ij(x) = €k ViViui(x). (1)

If w; = 3e;8[Vjur(x) — Viu;(x)] denotes the local rotation field, the disclination density is
defined by

! See the letter exchanges in the 2006 issue Physics Today 60, 10, 16 following Weinberg’s article [10].

2 The gravitational action in this model is obtained by integrating out the lattice vibrations. It is thus a
consequence of their entropy. This mechanism has recently been emphasized by Verlinde [14]. The same
mechanism had been used a long time ago to generate stiffness of strings [15, 16] This is of course just reformulation
of good-old Sakharov’s idea [17, 18].
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Figure 2. Three different possibilities of constructing disclinations: wedge, splay, and twist
disclinations. They are characterized by the Frank vector €.

0:5(x) = €ir1 Vi Viw;(x). (2)

The defect densities satisfy the conservation laws
Vilij =0, Vaij = —€pibp- (3)

These are fulfilled as Bianchi identities if we express 6;;(x), a;;(x) in terms of plastic gauge
fields ﬂﬁl,qﬁfj, setting 0;; = eiklvkgbfj, oy = eijkvjﬁﬁl + 5Z~l¢£k—¢ﬁ-. The defect densities are
invariant under the gauge transformations g%, — B¢, + Viul — eppw?, ¢f, — ¢f, + w?, where
wf = %eijkvjuﬁ. Thus h;; = ,ij + eijkwﬁ and A, = ﬁjejkl are translational and rotational
defect gauge fields in the crystal.

4. In order to appreciate the strategy of the paper, let us discuss a simple analog field theoretic
model. Instead of Einstein’s theory, we consider a model of a simple real field p with an Euclidean
Lagrangian £ = (9,p)? — p® + p* and a partition function Z = [Dp e~ J 4L The field p plays
the role of the real metric tensor field g,,,. We may extend the above model trivially by an extra
gauge field A, that has no physical consequences. This is done by re-expressing the Lagrangian
in terms of a complex field 9 = €?p and the gauge field A, as £ = |(0, — iA,)¥|? — [¥[> + ||

Now we form the partition function Z = [DyDy*DA,P e Jdat , where ® is an arbitrary
gauge-fixing functional multiplied by the associated Faddeev-Popov determinant.

It is easy to verify that the classical field equations following from the new Z are exactly the
same as those of the original Z.

The same thing holds for the flcutuating theory. The gauge field A, possesses two different
spin contents. Omne is of spin zero, a pure gauge field 4, = J,A which possesses no
electromagnetic field strength and leaves the physical content of the field system completely
invariant. The second content has spin 1, where A" is orthogonal to the spin-zero part. This
does possess an electromagnetic field ¥, = d,A, — 0,4,. . Since the action is independent
of F),, this spin-1 content does not contribute to the partition function Z either. If an action
term of the Maxwell type F),, F** were present in the exponent of 7, the theory would be only
invariant under ordinary gauge transformations with single-valued scalar fields A(z). Without
such a Maxwell term, it is invariant under all gauge transformations with single and multi-valued
[9] scalar fields A(z), and thus to fluctuation of electromagnetic fields.

There is, obviously, no way of observing A,. In the gravitational theory to be discussed,
the partition function Z of the p field plays the role of Einstein’s theory formulated in terms
of the metric field g,,. The reformulation Z in terms of a gauge field will be the gauge field
reformulation of Einstein’s theory. The decomposition

p =199 = (pe™)(e”p) (4)
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will be the analog of the analog of this decomposition made for the metric rather than the real
field p. The local phase @ may be any arbitrary function, single- as well as multivalued.

5. The Volterra processes can be represented mathematically by multivalued transformations
from an Euclidean crystal with coordinates Z% to a crystal with defects and coordinates z*, as
illustrated in Figs. 3 and 4 for two-dimensional crystals.

H mapping

Figure 3. Multivalued mapping of the perfect crystal to an edge dislocation with a Burgers
vector b pointing in the 2-direction.
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Figure 4. Multivalued mapping of the perfect crystal to a wedge disclination of Frank vector
Q in the third direction.

For an edge dislocation the mapping is z' = z!', 2 = 22 + (b/27)¢(z), where ¢(z) =
(1/27) arctan(z?/z'). Initially, this function has a cut from the origin towards left infinity. In a
second step, the cut is removed and the multivalued version of the arctan is taken. This makes
¢(x) the Green function of the commutator [0, ds]: (8102 — 3281)p(z) = §? (x). For a wedge
disclination, the mapping is dz* = §°,, [z + (/27)e" 2" $(z)].

A combination of the two

1ij(x) = 035 (%) = 5 Vm[eminajn (%) + {ij} + €ijnctmn] (5)
forms the defect tensor

15 (X) = €i1€jmn Vi Vimul, (x), up, = 3(8], + Bay)- (6)

It is a symmetric tensor due to the conservation laws (3), and represents the Einstein tensor
Gij = Rz‘j - %ginkk of the geometry of the world crystal 3.

The expressions can easily be defined on a simple-cubic world crystal if we replace V; by lat-
tice derivatives, as shown in [7, 9]. There it is also shown that, in three spacetime dimensions,

the disclination density 6;;(x) represents the Einstein tensor Gzcj associated with the Cartan

ch kl of the Riemann-Cartan geometry of the world crystal. The relation is

Gﬁ(x) = Giklvkvle (X) = 929(){) (7)
The dislocation density o;;(x) represents the torsion Sy; = 3(Ik; —I'xs;) of the Riemann-Cartan
geometry. Here the relation is

curvature tensor R

Qij = €kl Sik;- (8)

6. The standard form of a defect with Burgers vector b, and Frank vector ); has a
displacement field
w(x) = =0(x, V)b + €1 Qq(27 — 7)), (9)

3 Geometric objects formed from Christoffel symbols are denoted by a bar. Otherwise the full affine connection
is used.
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where €4, is the antisymmetric unit tensor, Z, the axis of rotation of the disclination part, and
d(x; V) is the delta function on the volume V, i.e., in three dimensions:

i(x;V) = / s’ 53 (x — x'). (10)
1%
Its derivative is the delta function on the Volterra surface S of V:
_Vi(x;V) = 6(x; S) = / ds' 53 (x — x/). (1)
S

For the new gauge symmetry, the crucial observation is that as a simple consequence of (9), a
dislocation line in the world crystal can either be obtained by a Volterra process of cutting out a
thin slice of material of thickness b, or alternatively by cutting out a wedge of Frank vector €2,
and reinserting it at distance b from the cut. Thus the dislocation line is indistinguishable from
a pair of disclination lines with opposite Frank vector 2 whose axes of rotation are separated
by a distance b (Fig. 5a). Conversely, a disclination line is equivalent to a stack of dislocation
lines with fixed Burgers vector b (Fig. 5b).

®-0.O-O

Figure 5. Equivalence between a) dislocation and pair of disclination lines, b) disclination and
stack of dislocation lines.

Analytically, this is most easily seen in the two-dimensional version of the relation (5):
N33 = 633 + €3mn Vmaan. (12)

Each term is invariant under the plastic gauge transformations g, — B + Viul — egw?,
qﬁ’ — ¢f + Ojwh. The general defect has a displacement field

U = —5(‘/2)[171 - 96317«(.’17r - .i‘r)] (13)
The first term is a dislocation, the second term a disclination. According to Fig. 5, the latter
can be read as a superposition of dislocations with the same Burgers vector b; = — [7 dz/.Qes,.

The former may be viewed as a dipole of disclinations: —V;[— by €3rmleser (Tr — T7)-
7. Generalizing the defect relations (5) and (12) to D > 4 spacetime dimensions and allowing
for large deviations from Fuclidean space, we find the defect relation

G/w =Gu — %D*A (S/w,/\ — St S/\/t,V) (14)

where GW is the Einstein tensor and G, its Cartan version, while S,.’" is the Palatini tensor
related to the torsion field S,.;" by

%Sunﬂ— = S[UCT + 5uT n)\/\ - 5nT [L/\)\' (15)

The symbol D,, denotes the covariant derivative defined by D v, = 9,v, — FW)‘U,\, Duv)‘ =
v + T v” and D}, = Dy, + 28,". The defect conservation laws (3) read

DG 3+ 25"G ) — 15" F Ry = 0, (16)

D*usz\n,u = G)\n - Gm\- (17)

They are Bianchi identities ensuring the single-valuedness of observables, connection 1",“,)‘ and
metric g,,, via the integrability conditions [8,, 97T ,,* = 0 and [0,, 8;]guw = 0.

In a four-dimensional Riemann-Cartan spacetime, the geometry is described by the di-
rect generalizations of translational and rotational defect gauge fields h;; and A;ji, which
are here the vierbein field A%,, and the spin connection Aua . The square of the former
is the metric g,, = h% hay. The latter is defined by the covariant derivative Dyhght =
Orhgt — AxgVhyH + nyuhﬂv = DLhgt + T\ *hg". The field strength of A,,” = (4,)0”
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Fu” = {04y — 0,A, — (A, A1, (18)
determines the Cartan curvature R, " = hB AP, F,57. The field strength of A7, is the torsion:
Sap” = thahg"[DERY), — (u > V). (19)

The relations (14), (16), and (17) follow from this.

8. The theory is gauge invariant under local Lorentz transformations as a direct consequence
of the fact that the metric can alternatively be written as [compare (4)]

Juv = h’yuAa'yAa/Bhﬂua (20)
where A,? is an arbitrary local Lorentz transformation (single- as well as multi-valued), and

that the Hilbert-Einstein Lagrangian Lry = —(1/2k)R is independent of A%,. The extra A,”
transforms the gauge field Auaﬁ as

Aue® = A® + AALLP, AALP = ALPO,A,. (21)

At this point are ready to introduce the new gauge invariance announced in the title: we
allow A,? in Eq. (20) to be a multivalued Lorentz transformation. This is not integrable, so that
AAWfB is a nontrivial gauge field. Indeed, the rotational field strength F},,,” can be expressed as
Fuva” = A0y, 0,]A%, # 0 and yields a nonzero Cartan curvature R, )" # 0. The important
observation is that a multivalued A%, is able to change the geometry *. The right-hand side
of (14) is independent of the vector field A,,”. This allows us to move torsion into Cartan
curvature and back, fully or partially, by complete analogy with the defect transformations
in two-dimensional crystals in Fig. 21. We can choose for Auaﬁ any function we like. For
example we may choose it to make the torsion vanish, and A“aﬂ reduces to the usual spin
connection of Einstein’s gravity, the well-known combination of the objects of anholonomity
Q> = 1[ha*0,h%, — (u <> v)]. In the opposite extreme A,,” = 0, the Cartan curvature is
zero, spacetime is teleparallel, and the Lagrangian is equal to the combination of torsion tensors:
Ls = —(1/2k)(—4D,S* + S,nS** +28,,AS# — 45+ S,,), where S, = S,,,”. In any of the new
gauges, the field equations follow from the Hilbert-Einstein Lagrangian

Lrn = —(1/26)R + Ls, (22)

where AMO/B is fixed by any some convenient gauge-fixing functional. It does not follow any field
equation.

9. Adding matter fields of masses m to the Einstein Lagrangian, and varying with respect
to h*,, we find in the zero-torsion gauge the Einstein equation

G = KT, (23)

where T}, is the sum over the symmetric energy-momentum tensors of all matter fields. Each

contains the canonical energy-momentum tensor mGNV and the spin current densities mEW’)‘ in
the combination due to Belinfante [20] °,

m m

Thv= O _%D*N (mznu,p_

m

Suunt " Sps, v); (24)

which is the matter analog of the defect relation (14).

* The new freedom brought about by multivalued gauge transformations in many areas of physics is explained in
the textbook [9]. For instance, we can derive the physical laws in a magnetic field from those in field-free space,
thus finding the minimal coupling rule of the magnetic vector potential. Similarly, we can derive the physical
laws in curved space from those in flat space.

® For more details see Sect. 17.7 in the textbook [9].
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The new gauge invariance of (14) has the physical consequence that the external gravitational
field in the far-zone of a celestial body does not care whether angular momentum comes from
rotation of matter or from internal spins. The off-diagonal elements of the metric in the far-
zone, and thus the Lense-Thirring effect measured in [11], depend only on the total angular
momentum JM = [ d3z(z*TH0 — £#TAY), which by the Belinfante relation (24) is the sum of
orbital angular momentum LM = [ d3z(z*O*0 — £#OA0) and spin SM = [d3zZ MO0, A star
consisting of polarized matter has the same external gravitational field in the far-zone as a star
rotating with the corresponding orbital angular momentum. This is the universality of orbital
momentum and intrinsic angular momentum in gravitational physics observed in Ref. [21].

Since torsion is merely a new-gauge degree of freedom in describing a gravitational field,
it cannot be detected experimentally, not even by spinning particles. A field with arbitrary
spin may be coupled to gravity via the covariant derivative D, = 0,1 + %Ayaﬂ ¥%g, where
¥%g are the generators of the Lorentz group, in the Dirac case Yop = jz[y*, vs]. But
since the torsion is a tensor, we may equally well use an infinity of alternative covariant
derivatives D% = 8,1 + A%, /5%, where A%,° = A, — K0P, and K, = ho"hg? Ky =
ha”hg’\(SW)\ — Suau + Sxuw)- Any coupling constant ¢ is permitted by covariance. In order to
see which ¢ is physically correct we come back to the above-discussed photon mass problem,
and consider the covariant electromagnetic field tensor Ff, = Dl A, — D}A,. Working out
the covariant derivative we find 0,4, — 0,4, — 2(1 — q)SW)‘A)\, which shows that Maxwell
Lagrangian —3 F, F1 " acquires a mass term, unless we fix the coupling strength to the value
qg=1.

For this value of g, a little algebra [7, 9] shows that the torsion drops out from the gauge
field Azaﬂ. This reduces to the good-old Fock-Ivanenko spin connection that has been used in
Einstein gravity without torsion:

Al = A = ha" PPN Qur — Doy + Qo) (25)

Having ensured that the photon does not couple to torsion, this choice also prevents all all
other spinning baryonic matter to do so, thus avoiding that a photon mass arises via virtual
processes.

10. In summary, we have shown that if the Hilbert-Einstein Lagrangian is expressed in
terms of the translational and rotational gauge fields A%, and A}w/j , the Cartan curvature
can be converted to torsion and back, totally or partially, by a new type of multivalued gauge
transformation in Riemann-Cartan spacetime. In this general formulation, Einstein’s original
theory is obtained by going to the zero-torsion gauge, while his teleparallel theory is in the gauge
in which the Cartan curvature tensor vanishes. But any intermediate choice of the field Auaﬁ is
allowed.

Higher gradient terms in the elastic energy of the world crystal are capable of generating an
action of the gauge field 6 Auaﬂ . These would break the above gauge symmetry and give the
gauge field a life of its own. The coupling to spin, however, must go only via the torsion-free
soin connection A}LO/B to avoid a photon mass.
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