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INTRODUCTION 

 

 
In recent years the study of the structure and the reaction mechanisms involving light 

exotic nuclei has given a new interesting scenario of the nuclear physics, leading to the 
development of new theoretical models and experimental techniques. Various unexpected 
phenomena have been observed at the drip lines which cannot be explained within the 
traditional models used for the stable nuclei, indicating a shift away from the mean field 
dynamics towards a new type of dynamics in which the many-body correlations play a 
fundamental role. 

The systematic comparison of data for light neutron-rich nuclei with slightly different 
neutron emission thresholds may provide important information on the evolution of their 
structural properties and related phenomena when more and more extreme conditions of 
charge asymmetry and low density are reached. An interesting case is the 15C nucleus because 
its characteristics seem to be intermediate between those of well-bound nuclei, such as 12C, 
and more exotic isotopes. Indeed, 15C exhibits in the same time properties typical of both 
stable and drip-line nuclei. This contradictory behaviour, together with the uncertain presence 
of a halo in the 15C ground state, make this nucleus particularly intriguing. 

The aim of the present work is the investigation of weakly-bound neutron-rich nuclei, 
such as 15C, from both experimental and theoretical point of views. In particular, 15C was 
studied via the (7Li,7Be) Charge EXchange (CEX) reaction at 55 MeV incident energy. This 
experiment, performed at the IPN-Orsay (France), is part of a research program which will be 
continued with the large-acceptance magnetic spectrometer MAGNEX at the LNS-INFN, 
Catania (Italy). The purpose is the systematic exploration of both structural properties and 
CEX mechanism in light neutron-rich nuclei where three external neutrons are coupled with 
an integer number of � particles. Particular attention is paid to experimental signatures of the 
core excitations, such as the Bound States Embedded in the Continuum (BSEC), which are 
expected to be an important phenomenon in the low-energy continuum of such nuclei due to 
the easily polarizable core. 

The first two Chapters of this thesis give an overview of the physical background of 
interest, constituted by the drip-line phenomena and the experimental studies of 15C. Next, 
various questions concerning the dynamics of the (7Li,7Be) CEX reaction and the interesting 
information that can be extracted from this reaction are discussed. The two following 
Chapters are devoted to the experimental phases. A high-purity 15N gas target was designed 
and constructed on purpose at the LNS-INFN; it was crucial to overcome the difficulties that 
originated from a 15N enriched solid target in a previous experiment. The use of a high-
resolution magnetic spectrometer to detect 7Be make the measurement in coincidence of the 
deexcitation �-rays not necessary. The experimental results are presented and discussed. In 



Introduction   
 

- 2 - 

particular, an interference effect is experimentally observed for the first time in a CEX 
reaction (see Sections 5.2.3).  

The last three Chapters describe the theoretical analysis. The 15N(7Li,7Be)15C reaction is 
analyzed in the CEX-Quasiparticle Random Phase Approximation (CEX-QRPA) theoretical 
framework, where the 15C bound states are described in terms of correlated one particle-one 
hole (1p-1h) excitations with respect to the 15N ground state. Microscopic CEX-QRPA 
calculations are performed. The results of the structure calculations are compared to the 
experimental spectra and used to calculate the cross sections and G-factor (defined in Section 
3.4.1) distributions, to compare to the measured angular distributions and G-factor values. 
Important information is obtained on the nuclear structure and reaction dynamics. 

The Dynamical Core Polarization (DCP) effects have to be taken into account in order 
to give a proper description of the 15C continuum. QRPA-DCP calculations are performed 
according to the Quasiparticle-Core Coupling (QPC) model. In this model the dynamical 
many-body correlations in odd-mass nuclei are described by coupling a quasiparticle to 
configurations with excitation of the even-even core, given by the QRPA theory. The results 
obtained allow a better understanding of the structure of the 15C nucleus. 

The line shape calculations presented in the last Chapter, which are also based on the 
QPC model, take their origin from the new experimental observation discussed in Chapter 5. 
The effects of the BSEC phenomenon in weakly-bound neutron-rich nuclei are considered for 
the first time. With the purpose of a systematic study of such effects in the C-isotopes, results 
for the 15C, 17C and 19C nuclei are presented. In particular, the results obtained for 15C are 
compared with the experimental spectra, showing a very good qualitative agreement. 
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CHAPTER 1 

 

NUCLEAR PHYSICS AT THE DRIP LINES 

 

 
The phenomena observed when approaching the drip lines constitute the new frontier of 

the modern nuclear physics. This new and interesting field has become accessible through the 
development of appropriate experimental techniques and theoretical models. A pictorial 
overview of the physics phenomena appearing at the drip lines is given in Figure 1.1 [Naz96]. 

Very peculiar conditions affect the structure and the reaction mechanisms involving 
light exotic nuclei: the large charge asymmetry and the low separation energy of the valence 
nucleon (or nucleons). In such a picture, even the small energy contribution of residual 
interactions strongly influences the properties of the nuclei far off stability. Unusual 
phenomena can be observed, especially for light neutron-rich nuclei, such as the formation of 
a thick superficial layer of neutron (skin) or the development of a low density region (halo) 
with increasing of the neutron excess ([Tan90, Tan91, Rii92, Han95] and refs. therein), the 
latter corresponding to narrower momentum distribution [Kob88]. 

The nuclei at the drip lines are characterized by large isospin and weak binding. A 
strong enhancement of the isospin effects makes the density distributions of neutrons and 
protons very different in such nuclei. In fact, the nucleon-nucleon isovector interactions are 
strongly repulsive for the excess neutrons, reducing their separation energy and pushing them 
towards the continuum threshold [Len98b, Len01]. On the contrary, such interactions are 
attractive for the missing nucleons, giving them a stronger binding. For example, in the 
neutron-rich 15C nucleus the last neutron is bound by only 1.218 MeV, while the last proton is 
bound by 21.080 MeV. This situation is schematised in Figure 1.2, compared to those in the 
stable 15N nucleus, where the separation energies of the last proton and neutron are very close. 

The dynamics of weakly-bound nuclei shows new features not observed in the stable 
nuclei [Len98b, Len01]. The decrease of binding energy enhances considerably the coupling 
between bound and unbound configurations. As a result, nuclei change gradually from well-
bound to open quantum systems. The enhanced role of the isovector interactions and the 
coupling with the continuum lead to the dissolution of shell structures in these systems. In fact 
there is evidence of correlation effects, for which the mean field dynamics is no longer 
appropriate. The single particle energies and residual interactions act on comparable scales 
resulting in a strong mutual influence. Thus the structure of such nuclei cannot be explained 
within the traditional models based on the mean field assumption and more detailed 
descriptions within the general framework of the many-body theory are needed. 
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Figure 1.1. Chart of nuclides or Segré plot. The black squares in the central region (stability valley) represent the 

stable nuclei, while the external lines denote the nuclear drip lines. The phenomena expected or experimentally 

observed near the proton and neutron drip lines are indicated schematically [Naz96]. 

 

 
Figure 1.2. Schematic picture of the potential and single particle levels in the stable 15N and neutron-rich 15C 

nuclei. The separation energies of the last neutron and proton are also indicated. 

 
Nuclear astrophysics is closely related to the physics of the exotic systems. 

Nucleosynthesis consists mainly of reactions involving exotic nuclei. The cross sections of 
these processes are fundamental parameters for the stellar models and at present are almost 
completely unmeasured. The neutron-rich elements to be explored are an essential part: in this 
region the formation of the heavier elements has occurred during the r-process (rapid neutron 
capture in the (n,�) reactions before �-decay back to the stable region [Cla68, Rol88]). 

This Chapter is organized as follow: the experimental evidence which led to the 
discovery of the halo structure are described in Section 1.1. Section 1.2 concerns the 
properties of the transfer reactions involving exotic nuclei. Finally, Section 1.3 discusses the 
effects of the pairing correlations (1.3.1) and the dynamical core polarization (1.3.2). 

 15C 15N 
Sn =   1.218 MeV 
Sp = 21.080 MeV 

Sn = 10.833 MeV 
Sp = 10.207 MeV 
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Figure 1.3. Rm
rms matter radii in function of the a) mass number A [Tan85] and b) neutron number N [Tan88]. 

1.1 Halo nuclei 
The experimental studies carried out in the last twenty years have lead to the discovery 

of unexpected and intriguing phenomena. In particular, for light drip-line nuclei, low angular 
momenta states characterized by very extended density profile distribution (halo) have been 
observed in the ground and states at very low excitation energy. Here we consider especially 
experimental observations concerning the neutron-rich region of the mass table. However, the 
major difference between the neutron and proton halos is the presence of the Coulomb barrier, 
which makes the proton wave function less extended than the neutron one.  

The first “exotic”  effects were observed in 11Be. In 1970 the inversion between the 1p1/2 
and 2s1/2 levels was observed experimentally in the first two states of 11Be by Auton [Aut70] 
(see Section 2.3.1 for the shell inversion phenomenon). In 1983 Millener et al. measured the 
E1 transition probability connecting the first excited state of 11Be (Ex = 0.32 MeV, J� = 1/2–) 
and the ground (J� = 1/2+) [Mil83]. This is the fastest E1 transition known, corresponding to 
0.36 � 0.03 Weisskopf units. Although initially not interpreted in this sense, such a strong 
transition may be explained only by assuming an unusual spatial extension of the wave 
function of the last neutron in both states, in a similar manner as the matrix element of the 
dipole operator gives contribution also for larger radii. 

These two observations in 11Be cannot be reproduced by using a mean field approach 
and they represent the starting point for the development of a new branch of the nuclear 
physics: the exotic physics. In its first years, the study was limited essentially to the ground 
state properties (masses, spin, charge radii) and some information about the low lying excited 
states were obtained by studying the decays. A new era has been started by the advent of the 
Radioactive Ion Beams (RIBs) produced in the new facilities. New kinds of investigations 
have been extensively performed in order to study the structural properties and reaction 
mechanisms in unstable nuclei. 

A first signature of the halo states was observed by Tanihata and al. [Tan85]. The RIBs 
produced by projectile fragmentation in high-energy heavy-ion reactions were used to 
measure the interaction cross section �I in light drip-line nuclei by bombarding thick targets  

 a)  b) 
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Figure 1.4. Interaction radii RI for light nuclei determined from the measured interaction cross sections. The data 

are taken from refs. [Tan88, Tan88b, Tan92, Oza94]. 

 
at Einc = 790 MeV/u. The root mean square (rms) interaction radii Rrms were extracted from �I 
by a Glauber model analysis with the assumption of a static density distribution. It was a 
surprising result to observe significantly larger matter radii in nuclei like 6,8He and, above all, 
11Li (Rm

rms = 3.27 � 0.24 fm) (see Fig. 1.3a) in comparison with the matter radii for the 
standard p-shell nuclei (Rm

rms ~ 2.5 fm). These results suggested a large deformation and/or a 
long tail (halo) in the matter distribution owing to the weakly-bound nucleons of 11Li. In 
subsequent experiments (see, e.g., refs. [Mit87, Tan88, Sai89]) the interaction radii were 
measured for other light nuclei. High matter radii were found for 11Be and 14Be also [Tan88] 
(see Fig. 1.3b). The interaction radii measured for several light nuclei are shown in Figure 1.4; 
considerable increases are seen for a number of nuclei near the neutron drip line. The lines in 
Figs. 1.3 and 1.4 are only guides for the eye. 

A measurement of the magnetic moment of 11Li suggested that 11Li is a spherical 
nucleus [Arn86] (see also ref. [Tan90]). In 1987 Arnold et al. [Arn87] showed that the charge 
distribution inside 11Li is almost identical to the charge distributions in 9Li. Thus the large 
matter radius was not due to the existence of deformations, but to some unexpected behaviour 
of the last two neutrons in 11Li, in agreement with the hypothesis of a two-neutron halo 
structure around the 9Li core. 

Another important halo probe has come from dissociation experiments at high energies, 
in which the valence neutron is removed from the projectile and the momentum of the 
recoiling core is measured. In the sudden (or Serber) approximation [Ser47], the Momentum 
Distribution (MD) of the core fragments from one-neutron removal reactions reflects the 
momentum distribution of the removed nucleon [Kob88]. Thus it provides a direct 
measurement of the square of the Fourier transform of the internal wave function. 
Qualitatively, from the uncertainty principle it is expected that the width of the distribution of 
the valence neutron in momentum space is inversely proportional to its width in spatial 
coordinates. Thus narrow MD of the core fragments are signatures of the large spatial 
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Figure 1.5. Transverse longitudinal momentum distribution of the core fragments after one-neutron removal 

from a) 11Li [Kob88] and b) 11Be [Tan90] on a carbon target. The lines correspond to Gaussian fit of the 

observed broad and narrow components. 

 
extension of the valence nucleons in halo nuclei. However, this is a simplified picture, 
actually the reaction mechanism and final state interactions have to be taken into account. 

The Transverse MD (TMD) of the 9Li fragments from breakup of 11Li on a carbon 
target was measured at Einc = 790 MeV/u by Kobayashi et al [Kob88]. As shown in Figure 
1.5a, a structure with two components was found: a broad bump (� = 95 � 12 MeV/c, 
obtained by Gaussian fit), similar to the results from 12C fragmentation, and a narrow peak (� 
= 23 � 5 MeV/c), which reflects the removal of the valence nucleons. This observation 
indicates the existence of a long neutron tail in 11Li. Analogous results were found for the 
breakup of 11Be on C at Einc = 800 MeV/u [Tan90], with � = 109 � 7 and 25 � 4 MeV/c for 
the large and the narrow component, respectively (see Fig. 1.5b).  

Also in atomic physics the MD is used in a similar way to probe the wave function of 
valence electrons [Loh81]. However, in heavier nuclei the simple picture previously discussed 
is modified because of the strongly absorbing nuclear core. This happens most strongly for 
the transverse component of the neutron momentum, which essentially reflects diffraction 
dissociation [Ann90]. The Longitudinal MD (LMD) of the charged fragment (and  
presumably the neutron) is expected to be less affected [Ber92]. Later, many experiments 
were devoted to the measurement of the LMD (see for instance refs. [Orr92, Kel96, Baz95]). 
In particular, the LMD of the 9Li fragments from breakup of 11Li on different target was 
measured by Orr et al. [Orr92]. By assuming a Lorentzian function for the shape of the 
distribution, they extracted a width of only 37 MeV/c, confirming the large spatial extension 
of the valence neutrons. Many complementary and more recent experiments are reviewed in 
refs. [Han93, Jon95, Han95, Tan96]. Other experiments concerning measurements of 
interaction radii and LMD for 15C will be discussed in the next Chapter. 

As already seen for the E1 transition between the first two 11Be states, strong 
electromagnetic transitions may reflect states with extended wave functions. In particular, the 
higher order electric transitions are expected to be effective probes mainly for the proton halo, 
while the magnetic transition operators are less affected by the tail of the wave function than 
the electric ones because of the r� – 1 factor [Rii92]. 
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Figure 1.6. a) EMD cross sections (after normalization by projectile Z) versus the neutron separation energy 

[Tan90]. b) Schematic picture of the soft and hard E1 modes in halo nuclei (taken from ref. [Tan96]). 

 
Further experimental probes are available for the halo states. Among these, the 

ElectroMagnetic Dissociation (EMD) provides important information. The EMD cross section 
depends on the electromagnetic transition probability B(E�). The large separation between the 
external neutron and the core in halo nuclei implies a large electric dipole polarizability, 
which corresponds to an enhanced EMD cross section. The increase of �EMD, already 
predicted by Hansen and Jonson in their di-neutron model of 11Li [Han87], was 
experimentally observed in various neutron-rich nuclei (see Figure 1.6a, taken from ref. 
[Tan90]) by Coulomb breakup with one-neutron removal. 

The existence of large electric dipole strength at low excitation energy is related to the 
increased �EMD. Ikeda [Ike92] suggested that the normal Giant Dipole Resonance (GDR) 
could split into two components, the first one (hard mode) corresponding to the oscillation of 
the core protons against the core neutrons and the second one (soft mode) to the oscillation of 
the halo neutron (or neutrons) with respect to the core, as schematized in Figure 1.6b. 

The same effects may be seen in photodisintegration, where the virtual photons of the 
Coulomb field are replaced by real photons, and in the inverse process, the radiative capture. 
From the experimental point of view, the Coulomb dissociation is the favoured method 
[Bau86], but it can be applied only for ground state halos, whereas the radiative capture also 
can provide information on the excited states. Finally, without exhausting the list of all the 
possible probes for nuclear structure, in addition the processes that simply depend on the 
spatial overlap between the initial and final states can be useful tools. This is the case for �-
decay and charge exchange reactions. 

As knowledge of the nuclei far from stability deepened, it became more evident that the 
nuclear halos are a general feature of loosely bound nuclei. These systems in general can be 
represented as one or two weakly bound nucleons interacting with both an inert or excited 
core. A first simple theoretical model of halo nuclei was described in ref. [Han87]; it is 
essentially a two-body model where the two valence neutrons of 11Li are treated as an unique 
particle without considering their intrinsic degree of freedoms. The weak binding leads to a  

b)  a)
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Figure 1.7. a) Pictorial illustration of the two-neutron halo in 11Li. b) Schematic comparison between a halo 

nucleus (left) and a nucleus with a neutron skin (right). Taken from ref. [Hey99]. 

 
low density region: the valence nucleons tunnel out of the central potential, enhancing the 
diffuseness of the nuclear surface. Eventually, this leads to a delocalization of the valence 
nucleons, which can be pictured as a halo surrounding the core of the nucleus (see Figure 
1.7a). The appearance of the halo is determined by the height of the potential barrier, which 
itself depends on the binding energy, momentum and, for protons, the Coulomb potential. A 
schematic comparison between the halo and skin phenomena is shown in Fig. 1.7b. The main 
difference is in the radial extension of the neutron distribution. The neutron skin appears for 
separation energies higher than in neutron halo: e.g., in 8He (S2n = 2.137 MeV, RI = 2.48 fm). 

Extensive discussions of halo nuclei are given, e.g., in refs. [Han93, Jon95, Han95, 
Tan96]. Further in-depth theoretical studies were carried out [Rii92, Fed93, Rii00, Jen00]. For 
a two-body system, consisting of core plus a valence particle, a loose definition of a halo state 
was given in ref. [Rii92] such as a state where the probability that the valence nucleons is in 
the classical forbidden region is more than 50 %. The influence of a long-range repulsive 
potential on the halo state was examined also [Rii92], both for neutron and proton halos. 

Conditions for the halo occurrence were given [Rii92, Fed93, Jen00]. A reasonable 
estimate in terms of the radial extension is that <r2

cn>/R2 	~  2, where <r2
cn> is the average 

distance between the neutron and the core and R is the range of the particle-core potential. 
This corresponds to an upper limit of the binding energy S around 5-10 MeV.fm2. More 
precisely, two-body halos only may appear for single particle states with l = 0, 1 and 
S.A2/3
~ 2 MeV. In particular, the appearance of the proton halo is possible for small charge of 
the core (Zc < 10). Three-body halos (i.e., two-neutron halos) can only occur for similarly 
small binding energies and hyperspherical quantum number K = 0, 1. Again, single particle s- 
or p-states are needed to construct the K = 0, 1 states. The ratio <r2>/R2 is shown in Figure 1.8 
versus the scaled separation energy; the radial extent of the halo is found by subtracting the 
core contribution from the total mean-square radius [Rii00]. The well established s-wave 
halos 11BeGS and deuteron lie on the l = 0 curve. According to the previous relation, 15CGS (Sn 
= 1.218 MeV) might be an s-wave halo. However, such theoretical constraints are obtained 
from average properties and thus the detailed picture for a given nucleus might be different.  

  a)   b) 
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Figure 1.8. Scaling plot for two-body halo systems [Rii00]. The solid lines are results for s-, p- and d-wave in a 

square-well potential. The thin horizontal line indicates where the 50% of the wave function is outside the 

potential. The dash-dotted lines are results for r–2 potential. Filled symbols are derived from experimental data 

[Fed94, Jen00, Tan85]; open symbols are from theoretical calculation [Nie98, Cob97, Rid97] and are plotted at 

the calculated binding energy. For 19C the two given points corresponds to spin equal to 1/2 and 3/2. 

 

          
 

Figure 1.9. Nuclear mass table for light nuclei [Alk02]. Two- and one-neutron halo nuclei and candidates for the 

proton halo are indicated. 

 
Besides, any realistic mean field model may account for the single particle states, but essential 
uncertainties remain in the extrapolation towards the drip lines, which are model dependent. 
The known halo nuclei are shown in the nuclear mass table of Figure 1.9. 



Chapter 1  Nuclear physics at the drip lines 

- 11 - 

1.2 Transfer  reactions with exotic nuclei  

In the past, transfer reactions with light and heavy ions have given much spectroscopic 
information concerning stable nuclei: e.g., spin and parity assignments to the nuclear levels, 
occupation probabilities and wave functions and so on (see, e.g., [Sat83]). The recent 
developments of exotic beam facilities open new perspectives. The use of the low-energy 
single nucleon transfer reactions to investigate the structure of drip-lines nuclei is discussed in 
detail in ref. [Len98]. In fact, the peculiar structural properties of the exotic nuclei (e.g., the 
low continuum threshold and the extended valence wave function) influence the excitation 
functions and angular distributions.  

The energy-momentum dependence is closely related to the special properties of the 
wave function of weakly bound states. A new important feature is the prevalence of small 
momentum components in the form factor. In general, for a transfer reaction from an incident 
channel � = (b+x, B) to the exit channel � = (b, B+x) the form factor in momentum space is: 
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where ��,� and k�,� are, respectively, wave functions and momenta in the center of mass 
system (CM) in the entrance and exit channel, U�� is the interaction and p is the recoil 
momentum. In the post (prior) representation the weight factors are s = 1 (s = 0) and t = 0 (t = 
1). By using a zero-range approximation, as, e.g., usually done for (d,p) reactions, equation 
(1.1) becomes proportional to the Fourier transform of the wave function of the final state 
B+x. The Fourier transform of a bound state in general is peaked at momenta around the 
inverse of the rms radius of the populated state. Considering a halo state in the final system 
B+x, its larger rms radius leads to a narrower momentum distribution peaked at smaller 
momenta than for stable nuclei. Thus far off stability the properties of the final state �� wil l 
determine the momentum dependence of the transfer form factor and, as a consequence, the 
energy dependence of the cross section.��� reacts strongly on small variations of the incident 
energy (i.e., k�) and the momentum transfer. The momentum structure of �� implies a 
maximum in the cross section at low bombarding energies. 

Calculations were performed for the 18-36Mg and 100-140Sn isotopes by Lenske and 
Schrieder [Len98]. The theoretical total transfer cross sections for the (36Mg,37MgGS) reaction 
on different targets are shown in Figure 1.10a. A different dependence on the incident energy 
is seen for the different targets. In particular, a small cross section is obtained for the 12C and 
24Mg targets. In general, for heavier targets the combined effect of the increased absorption 
and Coulomb barrier leads to a smaller cross section. However, also the Q-value mismatching 
has an important role. Indeed, in reactions involving stable nuclei in both the incident and exit 
channel, the large separation energies compensate them selves giving an overall low Q-value. 
On the contrary, if the reaction involves an exotic nucleus and a very bound target such as 
12C, such a cancellation does not occur and the high Q-value obtained (typically from –14 to –
16 MeV) leads to a small cross section. Instead, for a weakly-bound target the overall Q-value 
becomes small. Moreover, the damping effects due to the Coulomb force and absorption are 
reduced.  
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Figure 1.10. a) Dependence on the incident energy of the total transfer cross sections for the (36Mg,37MgGS) 

reaction on different targets [Len98]. b) Angular distribution for the 9Be(32Mg,33MgGS) reaction at Einc = 2 

MeV/u [Len98]. 

 
This explains why weakly-bound targets such as, e.g., deuterium and 9Be are preferential to 
perform transfer reaction involving exotic nuclei. 

In these conditions |k�| � |k�| � [ECM/N]1/2, the transfer of low momenta is no longer 
hindered and the cross section has a maximum at small incident energies. In Figure 1.10a the 
maximum is observed at Einc ~ 1.8 MeV/u for the 9Be target and at Einc ~ 3 MeV/u for the 
deuterium one. Thus the cross section maximum is predicted by calculations at energies much 
lower than for stable nuclei where, e.g., the maximum is at Einc ~ 15-20 MeV/u for (d,p) 
reaction [Sat83]. Since the momentum transfer varies from |k� – k�| at 0° to |k� + k�| at 180°, a 
good momentum matching is obtained only at small angles and thus the angular distributions 
are peaked at forward angles (see, e.g., Figure 1.10b). 

From an experimental point of view, the main differences for reactions performed with 
exotic beams are the use of inverse kinematics and the low beam intensities. Indeed, since the 
exotic beams are produced as secondary beams, their intensities are reduced by several orders 
of magnitude with respect to those of the primary beam. As a consequence, only transfer 
reactions with a rather large cross section may be studied. The cross sections obtained by 
calculations are from about 10 to 100 mb. 

1.3 Correlation effects at the dr ip lines 
In nuclear theory the separation between single particle and many-body degrees of 

freedom is a very successful concept. In first approximation, the nucleus is described as a self-
bound system in which the nucleons move as independent particles in a static mean field. The 
independent particle model in its various formulations accounts quite well for average 

 a)  b) 
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variations of the nuclear properties over the mass table. However, the limits of such a model 
are evident in describing the details of the spectra. This is seen clearly in drip-line nuclei, in 
which many-body correlations play a fundamental role. 

1.3.1 Pair ing cor relations 
The pairing force usually is not important to describe the bulk properties of the stable 

nuclei and may be treated perturbatively for nucleons close to the Fermi surface. However, 
approaching the drip lines the situation is different. In fact, let us consider the approximate 
Hartree-Fock-Bogoliubov (HFB) relation S � – � – �. It connects the particle separation 
energy S with the Fermi-level energy � and the pairing-gap energy �, where the values � and 
� are determined by the particle-hole and particle-particle components of the effective 
interaction, respectively. In absence of pairing correlations S � – �, thus the separation energy 
would be equal to the Fermi-energy of the removed nucleon, characterizing mean field 
properties. The effect of the pairing field is to increase (decrease) this number by an amount � 
for even-even (odd-mass) nuclei. For drip-line nuclei S � 0, thus the single particle and the 
pairing field are almost equal and � cannot longer be considered a perturbation [Dob96]. 

In particular, the existence of nuclei such as 6He and 11Li as bound systems is strongly 
related to the pairing correlations. Indeed, the removal of one neutron from these two-neutron 
halo nuclei leads to the particle unstable 5He and 10Li nuclei, respectively. The binding of 6He 
and 11Li comes mainly from the paring interactions of the last two neutrons among 
themselves. The strong correlation in the Singlet Even particle-particle channel (S = 0, L = 0, 
T = 1) favours the formation of neutron pairs in the 1S0 configuration. The di-neutron is very 
close to forming a bound state (only 100 keV away). This quasi-bound state does not exist in 
the free two-neutron system, thus the interactions between neutrons and core are also 
important [Len98b]. To describe well a 3-body system such as 11Li it is necessary to take into 
account the correlations both between the valence neutrons and between each of them and the 
core. 

A mean field description of the 11Li, not accounting for pairing, leads to an unbound 
system with the last two neutrons arranged in a sharp 1/2– resonance (p-wave) at around 250 
keV. The conventional approaches, such as the Bardeen-Cooper-Schrieffer (BCS) or the 
Hartree-Fock-Bogoliubov (HFB) ones, are not appropriate for a detailed description of the 
11Li continuum because both methods neglect important high order contributions to its 
valence wave function [Len98b]. The direct solution of the Gorkov equations 

 
(h – e+)�+ –  ��–  = 0   (h – e–)�– –  �†�+  = 0   (1.2) 

 
as a coupled channel problem for the particle �+ and hole �– components [Len98b, Len01] 
gives good results. In equations (1.2) h and � denote the mean field Hamiltonian and the 
pairing field, respectively. The 11Li ground state wave function, calculated by solving system 
(1.2) with a density dependent pairing interaction [Hof98], is mainly made by s- and p-wave 
components with occupation probabilities of 12 % and 80 %, respectively [Len98b]. 

The low excitation energy response function of 11Li was measured at GSI, obtaining 
two prominent structures at Ex = 1.3 and 2.2 MeV [Zin97, Eml98]. The QRPA dipole (1–) 
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Figure 1.11. a) Dipole response function for 11Li obtained by QRPA calculations [Len98b]. The energy is taken 

with respect to the continuum threshold of 11Li. b) Single-particle spectral function for s- and p-wave neutron 

states in 11Li [Len01]. The finite width of the states is due to continuum coupling. The partial occupation 

numbers N(J�) are also shown, including the d-wave contributions. 

 
response function for 11Li [Len98b] is given in Figure 1.11a, showing the same features. A 
close agreement is obtained by comparing the sum rules: both the data and the calculations 
predict that only the 10 % of the Thomas-Reiche-Kuhn (TRK) sum rule is contained in the 
measured energy interval. This value does not support an interpretation in terms of a 
collective soft dipole resonance. The low-energy dipole strength is produced by non-
collective states, predominantly given by excitations of the weakly bound s- and p-wave holes 
into the p- and s-wave continua, respectively. The structure around 4.5 MeV is due to core 
excitations into the 5/2+ continuum. 

In Figure 1.11b the theoretical single particle spectral function for s- and p-wave 
neutron states in 11Li is shown [Len01]. Besides the expected s- and p-wave components, also 
the d5/2 and d3/2 strengths are lowered into the bound state region. The mean field supports 
neither bound 2s1/2 nor 1d5/2 and 1d3/2 single particle levels; their appearance is only because 
of pairing. The presence of the admixture of the (2s1/2)

2 and (1p1/2)
2 configurations in the 

ground state wave function of 11Li was experimentally obtained at the GSI by using a 287 
MeV/u 11Li beam [Sim99]. 

The proton and neutron ground state densities for 11Li are shown in Figure 1.12a 
[Len01]. The strong neutron halo component formed by s-, p- and d-states is clearly visible. 

1.3.2 Dynamical core polar ization 
Deviations from the shell model results for odd-mass nuclei may be interpreted in terms 

of Dynamical Core Polarization (DCP). These nuclei can be described as a single nucleon 
moving outside an even-mass core; the system may gain energy by exciting the core. The 
DCP is a well known effect in the stable even-odd nuclei [Eck89, Eck90] and it becomes 
particularly important for drip-line nuclei [Len98b]. In fact, far off stability the core is rather  
 

 a)  b) 
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Figure 1.12. a) Proton and neutron ground state density distributions (weighted by r2) for 11Li [Len01]. b) DCP 

self-energies [Len01] for the low-energy 2s1/2 and 1d5/2 states in 19C (see section 1.3.2). Only the local part (r = r1 

= r2) is shown. 

 
soft because of the isovector repulsion enhanced by the charge asymmetry. Thus the core is 
more easily polarizable and the DCP effects are expected to be strongly enhanced. In 
particular, one-nucleon halo nuclei such as 8B, 11Be and 19C are well suited to study the 
interaction of a weakly-bound valence nucleon with the core nucleus. Here the binding is not 
longer obtained from pairing such as in 11Li, simply because of the lack of the second valence 
particle, but from dynamical valence-core interactions [Len01]. The particle-core coupling 
leads to fragmentation of the single particle strength over many eigenstates, reflecting the 
importance of the residual interaction (i.e., of the many body correlations).  

19C is the heaviest halo nucleus discovered so far. However, its halo structure is less 
prominent than in 11Be [Bau98]. A narrow longitudinal momentum distribution of the 18C 
fragments was measured from the breakup of the 19C nucleus on a Be target at 100 MeV/u 
incident energy [Baz98]. Concerning 17C, shell model calculations predict a very close 
proximity between the s- and d-orbital in this nucleus. Relativistic mean field calculations for 
the carbon isotopes [Zho97] foresee the ground state spin and parity equals to 1/2+, 3/2+ and 
1/2+ for 15C, 17C and 19C, respectively. The dipole polarizability does not change very much 
over the 10-22C isotopic chain (10 % only), while the quadrupole polarizability is maximum for 
16C and 18C, which have low-lying 2+ states. The energy of the 2+ states decreases in the 
carbon isotopes with increasing mass. 

The existence of 2+ core states at low excitation energy is a good indicator of systems in 
which sizeable DCP effects are expected [Len98b]. The systematics of the 2+ states is well 
reproduced by continuum QRPA calculations with a residual interaction derived in the 
Landau-Fermi liquid theory from the D3Y in-medium interaction. This shows that such states 
are prevalently of vibrational nature, rather than due to static deformation as assumed, e.g., in 
ref. [Nun96]. In the DCP approach used in refs. [Len87, Len98b, Len01] the valence particle 
obeys a non-static Schrödinger equation 

 
[HMF + �pol(�) – �]� = 0       (1.3) 

 
where HMF is the static mean field Hamiltonian and �pol(�) is the non-local and energy 
dependent polarization self-energy. The latter describes the rescattering of the nucleon by  
 

 a)  b) 



Chapter 1  Nuclear physics at the drip lines 

- 16 - 

             
Figure 1.13. a) Radial wave function obtained in the DCP calculation for 19C [Len98b]. The solid and dashed 

curves represent, respectively, the 18CGS(0
+) � 2s1/2 (ground state) and 18C(2+) � 1d5/2 configurations. 

b) Continuum strength functions for the 19C 1/2+ (upper panel) and 5/2+ (lower panel) channels [Len01].  
 
interaction with the core which, after being excited into states of various multipolarities and 
energies, deexcites back to the ground state. During these processes the particle can be 
scattered virtually into high-lying orbitals, with the only constraint that the global J� are 
conserved in the intermediate 2p-1h or 1p-2h configurations. The dynamical single particle 
self-energy �pol affects the separation energies and wave functions. This model will be 
discussed in detail in Chapter 7, where it is applied to the 15C nucleus. 

In the DCP calculations for 19C [Len98b, Len01] the density dependent G-matrix 
interaction of ref. [Hof98] is used, which has been applied in the 11Li calculations described in 
Section 1.3.1 also. The core excitations are calculated with the QRPA theory. �pol is found to 
be state-dependent in drip-line nuclei, as shown in Figure 1.12b for the lowest 1/2+ and 5/2+ 
19C states. The 1/2+ component experiences an additional attractive self-energy at the surface, 
which is the main source of binding for the 19C ground state (J� = 1/2+). The 5/2+ strength is 
small and the lowest state is predicted at about 300 keV, just above the particle threshold. The 
theoretical separation energy is Sn = 183 keV, against the experimental value Sn = 160 � 110 
keV [Aud97]. However, other experiments give different values (see, e.g., refs. [Mar96, 
Mad01]), showing that this is still an open question. 

Core polarization is important in order to explain the ground state wave function of 19C. 
Indeed, a spectroscopic factor of only 0.4 is obtained for the 18CGS(0

+) � 2s1/2 configuration, 
while the major part of the remaining 60 % is given by the 5/2+ and 3/2+ neutron state coupled 
to the first 2+ core-excited state [Len98b]. The 19C wave functions calculated for the 18CGS(0

+) 
� 2s1/2 and 18C(2+) � 1d5/2 configurations are shown in Figure 1.13a. The s-wave function 
shows an extended tail compatible with a halo state. By contrast, d-wave decays more rapidly. 

Corresponding calculations for 11Be also results in a 1/2+ ground state but with a much 
larger spectroscopic factor (S = 0.74), explaining the more developed halo with respect to 19C 
[Len01]. Moreover, the core polarization explains the inversion of the 1/2+ and 1/2– states in 
11Be as due to an additional attractive self-energy in the 1/2+ channel [Len01]. 

 a)  
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The DCP also affects the low-energy continuum of drip-line nuclei. The continuum 
strength functions for the 1/2+ and 5/2+ components in 19C are shown in Figure 1.13b. Narrow 
resonances in the continuum are observed. They correspond to core-excited configurations 
where neither of the involved nucleons is in a state above the threshold although the total 
energy is well above the particle threshold. Such states are called Bound States Embedded in 
the Continuum (BSEC) and will discussed in Section 2.2. 
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CHAPTER 2 

 

INVESTIGATIONS OF THE 
NEUTRON-RICH 15C NUCLEUS 

 

 
Important information on the evolution of the phenomena involving drip-line nuclei 

(described in Chapter 1) going towards more extreme conditions of charge asymmetry and 
low density may be obtained by the systematic comparison of data for neutron-rich nuclei 
with slightly different neutron separation energy Sn. In particular, an interesting case is 15C 
which, with the small separation energy of the valence neutron (Sn = 1.218 MeV), is 
intermediate between the well-bound 12,13,14C nuclei and the more exotic 17C (Sn = 0.73 MeV) 
and 19C (Sn = 0.16 MeV). The present Chapter focuses attention on the 15C nucleus. 

Over the last few years the interest in 15C has been manyfold and different kinds of 
experiments have been performed in order to explore its various properties (see Sections 2.1 
and 2.3). As discussed in Section 2.3, an intriguing characteristic of this nucleus has been the 
uncertain presence of a halo in its ground state. In fact, for a long time there have been 
contrasting results. Even though the measured matter radius of 15C (Rm

rms = 2.40 � 0.05 fm) 
does not differ much from those of the near stable nuclei [Aud93, Oza96, Oza01], 
nevertheless some “exotic”  features have been found, such as: the inversion between the 1d5/2 
and 2s1/2 neutron orbitals [Ajz86] and the narrow longitudinal momentum distribution of the 
14C core fragments, observed in one-neutron removal experiments, which suggests a strong 
spatial delocalization of the valence neutron [Baz98, Par00, Sau00, Mad01]. However, other 
recent results seem to deny the existence of a halo state in 15CGS [Chu00]. 

The spectroscopic investigation of 15C via the (7Li,7Be) Charge EXchange (CEX) 
reaction, which is the object of the present work, should be regarded into a more general 
context. Indeed, this experiment is inserted in a research program which will be performed by 
the use of the large-acceptance magnetic spectrometer MAGNEX at the LNS-INFN 
laboratories, Catania (Italy) [Cun02a, b, c]. As described in Section 2.2, the purpose is the 
systematic study of both the CEX mechanism and the structural properties of the light 
neutron-rich nuclei with structure given by an integer number n of � particles coupled with a 
system of three neutrons. Since the � clusters may be considered rather compact, most likely 
they form an inert core. Thus similar features are expected both in structure and reaction 
mechanism for nuclei which differs by n � particles. In Sect. 2.2 particular attention is paid to 
the presence in the energy spectra of narrow resonances well beyond the neutron emission 
threshold Sn, which is also expected in 15C, in connection with the BSEC phenomenon. 
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2.1 Spectroscopy of the 15C nucleus 
The 15C nucleus (Sn = 1.218 MeV) possesses only two weakly-bound states, the 1/2+ 

ground state and the 5/2+ first excited one at Ex = 0.74 MeV. The spin and parity of the 15C 
ground state have been assigned to be J�GS = 1/2+ by neutron stripping reactions, which were 
the first experiments devoted to the spectroscopic study of 15C (see Section 2.1.1). All these 
experiments agree on the J� values of the 15C ground and first excited state. The ground state 
wave function is given mainly by the 14CGS(0

+) � (2s1/2) configuration with a spectroscopic 
factor S = 0.88, while the wave function of the 0.74 MeV excited state is given by 14CGS(0

+) 
� (1d5/2) with S = 0.69 [Gos75]. However, relevant contributions from the excited states of 
the 14C core were found by nuclear breakup of 15C [Baz98]. In 15C the 1d5/2 and 2s1/2 neutron 
orbitals are inverted with respect to the independent-particle model levels (see Sect. 2.3.1). 

The simplest levels possible for the 15C nucleus are the one particle-two hole (1p-2h) 
states, obtained by coupling a (sd)-shell neutron to the ground state of the 14C core. These 
states have positive parity and the predicted J� values are 1/2+, 3/2+ and 5/2+. The 15C ground 
and first excited state are almost entirely 1p-2h states ([Mur94] and refs. therein). Next in 
complexity are the negative-parity 2p-3h states, with J� from 1/2– to 9/2–, which consist of 
two (sd)-shell neutrons coupled to three p-shell holes. Single-neutron transfer reactions can 
populate the 1p-2h 15C states, but not the 2p-3h ones, except via core-excited components of 
the 14CGS. On the contrary, two-neutron transfers can populate 2p-3h states. 

The main reactions used in the various years to study 15C and the results obtained are 
described in the present Section. 

2.1.1 The 14C(d,p)15C str ipping reaction 
The 14C(d,p)15C stripping reaction was first studied in 1959 by Moore and Mc Gruer 

[Moo59] in the angular range between 2° and 90°, populating the 15C ground and excited 
states at Ex = 0.75, 3.09, 4.21, 5.94, 6.38 and 7.32 MeV. In 1973 Goss et al. [Gos73] studied 
the same reaction at 12, 13 and 14 MeV incident energies and �lab = 60°, 90° and 120°. A 
magnetic spectrograph was used, allowing for a high experimental resolution (~ 14 keV). In 
Figure 2.1 a proton spectrum, measured at the bombarding energy of 14 MeV and 60°, is 
shown, where the excitation energy of the populated 15C states are indicated. Nine excited 
states were found, starting from the ground to the 7.35 MeV state, with a better determination 
of the excitation energies. Two wider levels were found at 3.1053 MeV (� ~ 42 keV) and 
6.4281 MeV (� ~ 61 keV). The presence of a large continuum background in the spectrum 
made it impossible to observe weakly populated states with � > 100 keV. 

A second experiment was performed by the same authors [Gos75] using a polarized 
deuteron beam at Einc = 14 MeV. The angular distributions were obtained for 10 final states 
up to Ex ~ 7 MeV. Vector Analyzing Powers (VAP) were measured for deuteron elastic 
scattering and for the (d,p) reaction leading to the two 15C bound states. Distorted Wave Born 
Approximation (DWBA) calculations were performed with two different set of optical-model 
parameters, in order to test the sensitivity of the results to the used parameterisation. The 
deuteron parameters of the first set were obtained by fitting the cross section of the   
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Figure 2.1. Proton spectrum from the 14C(d,p)15C reaction measured at 14 MeV bombarding energy and �lab = 

60° [Gos73]. Proton groups leading to the 15C states are labeled with the excitation energy. The contaminants 

groups are also labeled with the symbol for the residual nucleus and related excitation energy. 

 
4C( d

�
,d)14C reaction and then slightly varied according to the VAP results for the two bound 

state. The DWBA analysis of angular distributions allowed to assign spin and parity to the 15C 
ground and first excited state together with the related spectroscopic factors S = 0.88 and 
0.69, respectively. These were obtained from the set of optical parameters giving the best fit 
to the respective angular distributions, as shown in Figure 2.2. While the single particle d5/2 

state was located at Ex = 6.428 MeV, no evidence for the 3/2+ state was found. Besides, many 
states with high spin (from 7/2+ to 13/2+) were found in the region between 6 and 7 MeV 
excitation energy, however the authors underlined that these assignments may be erroneous if 
indeed the state are populated predominantly by two-step processes.  

Ten years after, another (d,p) experiment was performed with a 16 MeV polarized 
deuteron beam [Dar85] in order to search for the d3/2 strength in the particle-unbound region 
of 15C, where the 1p-2h J� = 3/2+ state is expected to lie. Proton spectra were obtained over 
the angular range �lab = 15° to 110° in 5° steps. The experimental results are shown in Figure 
2.3. Two 3/2+ levels (indicated by arrows in Fig. 2.3a), one broad (� = 1.74 � 0.40 MeV) and 
one relatively narrow (� ~ 64 keV), were observed at Ex = 4.78 and 5.81 MeV, respectively. 
The J� value of the broad state was proposed on the basis of DWBA calculations (see Figs. 
2.3b and 2.3c) as in ref. [Gos75]. Since this state interferes with the narrow one, they must 
have the same spin and parity. The authors identified these states with the 1p-2h and 3p-4h 
3/2+ levels predicted by shell model calculations. The two states exhaust approximately the 50 
% of the single particle strength. However, considerable fluctuations were present in the data 
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Figure 2.2. Cross sections and analyzing powers for the two bound states of 15C [Gos75]. The lines are the 

results of DWBA calculations with two different sets of optical-model parameters. 

 
 
 
 

   
 

Figure 2.3. Results for the 14C(d,p)15C reaction at 16 MeV incident energy [Dar85]. a) Neutron-unbound portion 

of the proton spectrum measured at �lab = 50°. Dashed curves are drawn through proton groups corresponding to 

the known levels of 15C. The arrows indicate the levels that are candidates to have J� = 3/2+. The smooth dashed 

curve shows the phase-space contribution due to the deuteron breakup. The solid curve represents a fit to the 

spectrum. b) Angular distribution and c) VAP results for the broad state at 4.78 MeV. The solid curves are the 

DWBA predictions for J� = 3/2+, while the dashed one corresponds to J� = 5/2+. 

 

 a)  b) c) 



Chapter 2  Investigations of the neutron-rich 15C nucleus 

- 22 - 

 
 
Figure 2.4. Results for the 14C(d,p)15C reaction at 16 MeV incident energy [Mur94]. Cross sections and vector 

analyzing powers for a) the two bound states of 15C and b) the unbound states of 15C at Ex = 3.103, 4.22 and 4.78 

MeV. The solid and dashed curves represent the results of DWBA and CRC calculations, respectively.  

 
due to background from the 12C(d,p)13C reaction. The interference observed between the two 
3/2+ overlapping resonances is visible at all but the largest angles and lead to an asymmetric 
line shape in the proton spectra. Similar phenomena were before observed in refs. [Bau75, 
Bau77] (see Section 8.1) and are connected with the BSEC states (Section 2.2). 

Subsequently, the same authors [Mur94] analyzed the angular distributions and the 
VAP data for various 15C states by DWBA calculations for bound and unbound states. The 
importance of two-step processes was investigated via Coupled Reaction Channels (CRC) 
calculations. The results are shown in Figure 2.4. The ground and the states at Ex = 0.74, 
3.103 and 4.78 MeV appear populated primarily by a one-step process, with a small two-step 
contribution in the case of the 3.103 MeV state. On the contrary, the 4.22 MeV state seems 
populated predominantly by two-step processes. 

2.1.2 The 9Be(7Li,p)15C compound nuclear  reaction  
In the past, the 14C(d,p) and 9Be(7Li,p) reactions were widely used in order to 

investigate 15C, because they are the most easily realizable in terms of available target and 
material. However, the 9Be(7Li,p)15C reaction (see ref. [Gar74] and refs. therein) proceeds 
through an intermediate compound system and therefore is less selective than the 14C(d,p)15C 
stripping reaction. 

In ref. [Gar74] the 9Be(7Li,p)15C reaction was studied at 20 MeV bombarding energy. 
The authors identified 27 states in 15C: all the levels reported from the 14C(d,p) reaction plus 
five additional states at Ex = 4.55, 5.84, 5.86 and 6.64 MeV. A proton spectrum measured  

 a)  b)   
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Figure 2.5. a) Proton spectrum from the 9Be(7Li,p)15C reaction at Einc = 20 MeV and �lab = 11.25°. The numbers 

identify the peaks corresponding to the populated 15C states (see Table I in ref. [Gar74]), among which 0 and 1 

are the two 15C bound states (ground and first excited at Ex = 0.74 MeV, respectively). b) Angular distributions 

for the 15C unbound states at Ex = 7.35, 8.50 and 8.56 MeV [Gar74]. 

 
at �lab = 11.25° is shown in Figure 2.5a. Several narrow resonances in the continuum were 
observed. Angular distributions were measured for many of the 15C levels. Consistent with the 
compound reaction mechanism, they are almost shapeless and approximately symmetric at 
90°, except for the two narrow levels (� ~ 40 keV) at Ex = 8.50 and 8.56 MeV (see Fig. 2.5b).  

For a compound system populated at sufficient excitation energy and with a distribution 
of large angular momenta, the total cross section is proportional to (2 Jf + 1), where Jf is the 
angular momentum of the final state. According to this statistical assumption, the total cross 
sections extracted from the angular distributions were used to suggest spin and parity for 
many of the populated states (see Table III in ref. [Gar74]). High spins were proposed for 
some of the 15C resonances lying in the single particle continuum (see the values in Table 
5.2). Their narrow widths indicate hindrance for the neutron emission, for which either a 
reduced penetrability due to the high angular momentum of the decaying system, or a nuclear 
wave function with small overlap with a single particle configuration (n � 14CGS) may be 
responsible. The authors incline for the first hypothesis. 

Both the 15C and 17O nuclei have nine neutrons and ground state configurations with an 
unpaired neutron outside the filled p-shell. However, the neutron emission threshold is 
considerably lower in 15C than in 17O (Sn = 4.143 MeV). According to the shell model, 
configurations with the valence neutron in the s1/2, d5/2 and d3/2 orbitals are expected in the 
low-lying spectra of both nuclei. Such states should be populated strongly in the 14C(d,p) and 
16O(d,p) reactions. A comparison between the low-lying levels of 15C and 17O is shown in 
Figure 2.6. The states for which a similar configuration is suggested are connected by dashed 
lines. It is seen that in 15C the 5/2+ and 1/2+ levels are reversed with respect those of 17O. The 
authors explained the different number of states observed above Ex = 5 MeV as due to the 
presence of levels based on three unpaired particles, which should be different for 15C and 
17O. Besides, some states that are narrow in 17O may be broad in 15C and thus may have been 
escaped detection. 

 a)  b) 
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Figure 2.6. Comparison of the low-lying level schemes of the 15C and 17O nuclei. 

 

2.1.3 The transfer  reactions 
The main features of the transfer reactions involving exotic nuclei are described in 

Section 1.2. Here we discuss some transfer reactions specifically used in order to study 15C. 
While one-neutron transfer reactions, such as the 14C(d,p) described in Section 2.1.1, excite 
mainly the 1p-2h strength, two-neutron transfers may excite both the 1p-2h and 2p-3h ones. 

In 1978 Jahn et al. studied the (�,2He) reaction at 55 and 65 MeV bombarding energies 
on several targets, among which 13C, in the angular range �lab from 12° to 35° [Jah78]. The 
unbound reaction product 2He can be identified by measuring its two breakup protons in 
coincidence. In general, preferential population of two-neutron states with dominant (d5/2)

2
4, 

(d3/2 f7/2)5 and (f7/2)
2
6 configurations was found. In particular, the 13C(�,2He)15C reaction 

allowed the observation of the 0.74 MeV state (J� = 5/2+) and two levels at Ex = 6.74 and 7.35 
MeV, which the authors interpreted as the (d5/2)

2
4+ two-neutron configuration coupled with a 

13CGS (J
� = 1/2–) core, suggesting for such states J� = 7/2– and 9/2–, respectively. 

Later, Truong and Fortune [Tru83] used the 13C(t,p)15C reaction at 18 MeV incident 
energy in order to study the 1p-2h and 2p-3h states in 15C up to Ex = 7.5 MeV. A proton 
spectrum measured at 11.25° is shown in Figure 2.7. The energy resolution was about 15 keV. 
All the (sd)2(1p)–3 states expected to be strongly populated in the (t,p) reaction were observed, 
together with two of the three (sd)(1p)–2 states. The 1p-2h 3/2+ state was missing. 

The three-neutron transfer reaction 12C(12C,9C)15C at Einc = 230.7 MeV was studied 
recently by Bohlen et al. [Boh03]. The detected 9C ejectile is particle stable only in its ground 
states, all the excited states being unstable against proton emission (Sp = 1.296 MeV). Thus 
the measured 15C spectrum (see Fig. 2.8) shows only states in combination with 9CGS. The 15C 
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Figure 2.7. Proton spectrum from the 13C(t,p)15C reaction measured at Einc = 18 MeV and �lab = 11.25° [Tru83]. 

The 15C states are labeled with their excitation energies. The peaks from 12C and hydrogen impurities present in 

the target are also indicated. 

 
 
 

        
 

Figure 2.8. Excitation energy spectrum from the 12C(12C,9C)15C reaction measured at Einc = 230.7 MeV [Boh03].  

 
 

excited state at Ex = 6.84 MeV is the strongest observed state in that spectrum. The d3/2 single 
particle resonance at Ex = 4.8 MeV is presumably too weak and broad to be seen. The spins 
and parities of the 15C states measured at Ex = 6.84, 7.39 MeV were proposed to be J� = 9/2– 
and 7/2–, respectively, on the basis of a comparison with the particle-hole structure of the 
related 14C states. Precisely, this doublet was considered due to a dominant 2p-1h structure 
with a 1p1/2 neutron-hole, which couples to a 14C4+ core. It was further discussed that the 
above mentioned 15C states may be populated, starting from 14C, in two different ways: either 
to add a 1d5/2 neutron to the particle component of the 1p-1h doublet of 14C (Ex(J

�) = 6.73(3–) 
and 7.34(2–) MeV) or to fill a hole in the 1p1/2 shell of the 2p-2h positive-parity multiplet, i.e., 
in the 4+ state at Ex = 10.74 MeV, obtaining in both cases the 4+�1/2– coupling. 
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Figure 2.9. Results from the 15N(n,p)15C reaction at Einc = 288 MeV [Cel91]. a) Comparison between the 

experimental spectra at different angles and the corresponding theoretical strength distributions (shared areas) for 

excitation of positive-parity states. The calculated cross sections are folded with gaussian functions and scaled 

by a factor 0.7. b) Multipole decomposition analysis for excitation energies above 2 MeV and �L = 0, 1, 2 and 3 

components. 

 

2.1.4 The 15N(n,p)15C CEX reaction 
Compared with the transfer reactions, which mainly transfer neutrons into open shells, 

the (n,p)-like CEX reactions excite the one-neutron-particle–one-proton-hole strength of the 
nucleus considered. Thus only a partial overlap is expected with the states excited in the 
transfer reactions. The (n,p)-like CEX reactions proceed with isospin transfer �Tz = + 1. The 
response of the 15C nucleus to such an isovector probe was, until recently, little known 
primarily because of difficulties to realize a high-purity 15N target. 

The only previous data in this field were the 15N(n,p)15C reaction, studied using a 288 
MeV neutron beam and a high-pressure 15N gas target at the TRIUMF facility [Cel91]. The 
protons were analysed by the TRIUMF medium-resolution spectrometer. Proton spectra were 
measured at different angles in the range �lab from 0° to 20°. The overall resolution was about 
1.4 MeV at 0° and this value increases at larger angles. In Figure 2.9a the experimental 
spectra are shown in comparison with the calculated ones. 

The authors were interested in the study of the strength distribution of the Spin Dipole 
(SD) transitions (�L = 1,��S = 1), in connection with the problem of the missing Gamow-
Teller (GT) strength (�L = 0,��S = 1). An attempt to estimate the SD contributions was made 
by a multipole decomposition analysis (Fig. 2.9b). 

 a)  b) 
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Figure 2.10.  15C energy levels, experimental [Ajz86] and from shell model calculations [Cel91]. 

 
As a check of the reliability of such calculations, it is important to have experimental 

data in cases where the �L = 1 transitions can be clearly resolved and the nuclear structure is 
simple enough to permit realistic model calculations. Since for the 15N(n,p)15C reaction from 
15NGS (J

� = 1/2–) to the first two 15C states, the ground (J� = 1/2+) and first excited state at 0.74 
MeV (J� = 5/2+), the �L = 0 GT transitions are forbidden in first order, the �L = 1 strength 
can be measured for these two states. The energy resolution does not allow to separate them 
(see Fig. 2.9a), however, they are separated by more than 2 MeV from the 15C states at higher 
excitation energy. Thus the authors divided the spectra in three different energy ranges, 
integrating each of them separately and obtaining the respective angular distributions. In the 
first region only the two lowest 15C states are included. 

In Figure 2.10 the 15C energy levels obtained from shell model calculations [Cel91] are 
compared with the experimental ones taken from ref. [Ajz86]. The 15N ground state is 
described by the shell model mainly as a single-hole (1p1/2)

–1 state coupled to an inert 16O 
core, while the two 15C bound states can be described as  (2s1/2 1d5/2)

1��(1p1/2)
–2 (levels 

predicted by the model A in Fig. 2.10). More complicated configurations are included in the 
model B by allowing two holes anywhere in the full 1p-shell and one particle anywhere in the 
full 2s1d-shell: (sd)1(p)–2. This allows a description of low-lying positive-parity states with 
spin J from 1/2 to 9/2 (model B levels in Fig. 2.10). This model predicts, starting from 15NGS, 
transitions involving �J ! 4 with a change of parity, which can be excited by spin-flip 
transitions with �L = 1 and 3. Finally, the 15C negative-parity states with Ex < 5 MeV may be 
described in terms of 2p-3h configurations. The GT transitions to these states are forbidden in 
the approximation that 15NGS is a pure one-proton-hole state. However, the results of 15N(e,e’) 
experiments [Sin83, Dev88] indicate substantial admixture of 1h and 2p-3h states in the 
ground state wave function of 15N. 

The theoretical spectra (shaded areas in Fig.2.9a) were calculated for transitions to the 
states with J� ! 9/2+ predicted by the model B. For each state, the theoretical cross section was 
then folded with a Gaussian distributions of assumed Full Width at Half Maximum (FWHM) 
�FWHM = 1.5 MeV and renormalized by a factor 0.7 in order to describe the magnitude of the 
experimental SD cross section, which is maximum at around 7°. However, significant 
discrepancies were found between the predicted SD angular distribution for the two 15C bound 
states and the data extracted from the corresponding energy region. Since the GT strength 
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depends sensitively on the detailed shape of the spectrum, the fit to the angular distribution is 
not sufficient to determine it. The multipole decomposition analysis (Fig. 2.9b) was made 
assuming contributions from the �L = 0, 1, 2 and 3 transitions, also accounting for transitions 
to negative-parity states in 15C. At small angles the main contribution to the cross section 
below Ex = 20 MeV is given by the �L = 1 SD excitations, in agreement with the shell model 
predictions concerning several excited states in this energy region. The �L = 2 component 
appears above Ex = 15 MeV at 2.1° and becomes dominant at larger angles. A considerable 
�L = 3 component is found at angles above 15°. 

The CEX reactions are discussed in more detail in Chapter 3. The main advantage of the 
(n,p) reactions is the relative simplicity of the n-p vertex, however, the production of the 
neutron beam leads to a poor energy resolution. The (7Li,7Be) CEX reaction, which we have 
used to study 15C, has different advantages in comparison with the (n,p) one (see Section 3.3). 

2.2 Explor ing the structure of the light neutron-r ich 
nuclei: the BSEC phenomenon 

A systematic investigation of the light neutron-rich nuclei via the (7Li,7Be) CEX 
reaction has been started by our Group (MAGNEX), in order to study both the structural 
properties of the nuclei under consideration and the CEX mechanism. In this Section the 
attention is concentrated on the aspects involving nuclear structure, postponing unto Chapter 
3 the motivations for the choice of this particular CEX reaction and the important information 
obtainable by analysing the reaction dynamics. In particular, we are interested in a systematic 
exploration of nuclei for which an integer number n of � particles is coupled to three extra 
neutrons, such as: 7He, 11Be, 15C, 19O, 23Ne, 27Mg and heavier systems. For these nuclei one 
can assume that the single particle excitations at low energy are mainly due to the three 
valence neutrons, while the � particles form a rather compact core. Thus, if the transition 
operators have a large overlap with the single particle wave functions (as, e.g., for CEX 
reactions), the measured energy spectra give information on the three neutron dynamics in the 
nuclear medium.  

Experimental signatures of the DCP correlations (see Section 1.3.2) may be obtained by 
studying transfer or CEX reactions involving weakly-bound nuclei. In fact, close to the 
neutron drip line, the core system itself is already neutron-rich and thus more easily 
polarizable. For the (n� � 3n) nuclei, the pairing of two of the three neutrons to the inner core 
gives an softer core, which can be dynamically polarized by the interaction with the remaining 
neutron even at low excitation energy. Consequently, the energy available in the reaction can 
be directly transferred to the core, which becomes excited, while the valence neutron is 
weakly influenced. The important observable connected with the core excitations is the 
presence of Bound States Embedded in the Continuum (BSEC) in the experimental spectra. 
These states appear as very narrow resonances lying at energies well beyond the neutron 
emission threshold. For these structures the mean-field dynamics is no longer appropriate. A 
natural explanation [Bau77, Len01, Cor01] is that they are quasi-bound core-excited 
configurations, where the weakly-bound valence nucleon couples to the excited states of the 
core, as described, e.g., by the DCP model. 
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Figure 2.11. Excitation energy spectrum from the 11B(7Li,7Be)11Be reaction at Einc = 57 MeV and �lab = 9° 

[Cap01]. Peaks marked with an asterisk are associated to the excitation of 7Be at 0.429 MeV. The shaded 

histogram represents the normalized background from the 12C(7Li,7Be)12B reaction. The dashed line represents 

the 11B(7Li,n7Be)10Be 3-body phase space. 

 
The BSEC phenomenon was predicted theoretically some time ago by Mahaux and 

Weidenmüller [Mah69]. In ref. [Bau77] it was investigated theoretically in stable nuclei. A 
BSEC was observed for the first time in the stable 13C nucleus: the excited state at Ex = 7.677 
MeV (J� = 3/2+) [Fuc80]. Here, we consider the BSEC excitations in loosely-bound neutron-
rich systems. In such nuclei an enhancement of the BSEC phenomenon is expected due to the 
larger polarizability of the neutron-rich core. The increased polarizability of the system is 
related, e.g., to the presence of low-energy 2+ core states, whose energy decreases with 
increasing mass. A good example is given by the carbon isotopes, which show this feature 
with increasing neutron number and for which the BSEC structures might be an important 
phenomenon in the low-energy continuum [Len01, Cor01]. In addition, the weak binding of 
the valence particles in the exotic nuclei increases the interactions among bound and unbound 
configurations, thus giving such nuclei the characteristics of an open quantum system. 
Altogether, we expect a strong enhancement of the BSEC excitations in the low-energy 
continuum of the neutron-rich nuclei. 

The first (7Li,7Be) experiments, involving the study of the 7He, 11Be [Cap01, Cap04b] 
and 15C (see Chapters 4 and 5) nuclei and a preliminary test concerning 19O, have been 
performed at the Tandem facility of the IPN-Orsay laboratory, while the next ones will be 
done at the LNS-INFN laboratories by using the large-acceptance magnetic spectrometer 
MAGNEX. While the analysis of the 7He data is at the beginning, interesting results has been 
found in the 11Be spectrum, shown in Figure 2.11. Two weakly-bound states, the ground and 
first excited at Ex = 0.32 MeV, are populated, together with several narrow resonances in the 
continuum (Sn = 0.504 MeV in 11Be) and a structure at Ex = 9.4 MeV with �FWHM ~ 7 MeV 
compatible with the Spin Dipole Resonance (SDR) (not shown in Fig. 2.11, see ref. [Cap04b] 
for further details). QRPA calculations reproduce only the two bound states, thus the sharp 
resonances seen at Ex > Sn cannot be simply connected to single particle excitations, which 
supports the BSEC interpretation. A microscopic treatment of the DCP effects is considered 
crucial in order to describe correctly the 11Be spectrum above Ex = 2 MeV [Cap04b].  
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Considering the 11Be results (indeed, 15C differs from 11Be only by an � particle) and 
the previous discussions, the 15C nucleus seems a good candidate to observe BSEC 
excitations. We made a first attempt to study 15C in 2001 but, due to various difficulties (see 
Chapter 4), it was only possible to observe the two 15C bound states and a narrow state at Ex = 
8.5 MeV [Noc03]. However, the presence of this state is encouraging. Moreover, microscopic 
calculations in the framework of the DCP model foresee a strong fragmentation of the 15C 
strength between 8 and 14 MeV excitation energy [Noc03], thus narrow resonances above the 
particle threshold are indeed expected in the energy spectrum of 15C. 

2.3 Probing the existence of the halo in 15CGS 
Until now, the presence of halo states has been clearly seen in experiments involving 

some light nuclei, such as 11Be, 11Li, 14Be, 17B and 19C, which represent the last bound nuclei 
in the N = 7, 8, 10, 12 and 13 isotones, respectively [Zho97]. In ref. [Zho97] it is predicted 
that also the last bound isotones with N = 9, 14B and 15C, are halo nuclei (see 2.3.1) and it is 
suggested to study the neutron halo as a common phenomenon along the chain of the isotones 
at the drip lines. However, as we will see, the experimental evidence concerning the 15C 
nucleus are contrasting and a definitive conclusion about the existence of the one-neutron halo 
in its ground state has not been achieved. Other spectroscopic tools for 15C and their contrary 
results are described in the present Section, which is devoted to the investigation of the halo 
phenomenon in 15CGS. 

2.3.1 The shell inversion in 15C 

A well-known “exotic”  characteristic in 15C is the inversion between the 1d5/2 and 2s1/2 
neutron levels with respect to the standard shell model prediction, giving J� = 1/2+ in the 
ground state [Ajz86]. This phenomenon, usually called “shell inversion” , is typical of weakly-
bound light neutron rich nuclei. In fact, the 2s1/2 orbital is known to lower in excitation for 
lighter nuclei [Boh69]. In the well known one-neutron halo nucleus 11Be (Sn = 0.504 MeV) 
the 2s1/2 neutron level is even below the 1p1/2 shell model orbit [Ajz68, Aut70]. Another 
example is 14B, where the 1d5/2–2s1/2 inversion is found [Ajz86], strengthening the analogy 
with 15C. The neutron shell structure of 14BGS(J

� = 2–) is similar to that of 15CGS:  (2s1/2)
1 

�(1p3/2)
–1 with spectroscopic factor S = 0.95. Besides, the neutron separation energy is about 1 

MeV in both nuclei (Sn = 0.97 MeV in 14B) and 14B has only two bound states: the ground and 
the first excited state at 0.74 MeV, as in 15C. However, the main difference is that 14B is an 
odd-odd nucleus. It has been already studied by the (7Li,7Be) reaction [Bal73, Orr01], but new 
spectroscopic studies would be useful in order to extend the knowledge of the its structure. 

The level inversion may be caused by both the isospin dependence of the mean field and 
the decrease of the neutron spin-orbit splitting with increasing neutron excess [Zho97]. On the 
contrary, average quantities such as binding energies and nuclear radii are not significantly 
influenced because they arise from contributions of all the nucleons. The inversion of the 
orbitals in 15C is reproduced by shell model calculations in which the WBP interaction is used 
[War92]; they give mainly a 14CGS(0

+) � (2s1/2) configuration for the ground state wave 
function. Nevertheless, the contributions from the core-excited states are important [Baz98]. 
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Figure 2.12. Density distributions [fm–3] for the ground state of 15C and 14B [Zho97]. Solid, long-dashed, short-

dashed and dotted curves are, respectively, the density distributions of proton, neutron, matter and last neutron. 

 
The ground state properties of the N = 9 isotones were studied in ref. [Zho97] with the 

non-linear Relativistic Mean Field (RMF) theory. The energy difference calculated between 
the 1d5/2 and 2s1/2 levels in the N = 9 isotones decreases with increasing neutron excess from 
17C to 13Be. In particular, the inversion is reproduced for the ground state of 15C and 14B. The 
density distributions calculated for these states are shown in Figure 2.12. In both nuclei a 
large spatial extension is predicted for the neutron wave function (halo). The inclusion of the 
tensor coupling produced by the " meson in the RMF calculations improves the 2s1/2–1d5/2 
spacing: e.g., from 10 to 540 keV for 15C, against the experimental value of 740 keV. 

2.3.2 Results from one-neutron removal exper iments 

A characteristic halo signature is the Longitudinal Momentum Distribution (LMD) of 
the core fragments (see Sect. 1.1), which is measured in one-neutron removal experiments. 
The first experimental results concerning 15C are reported in ref. [Baz98]. The 83 MeV/u 
secondary beam of 15C was produced by fragmentation of a primary 18O beam on a thick (790 
mg/cm2) Be target at Einc = 100 MeV/u. The LMD of the 14C fragments are shown in Figure 
2.13a and b, respectively for breakup of 15C on Be and Ta target. 

When the breakup happens on light target, such as Be, it is due mainly to the nuclear 
interaction. The nuclear breakup data were compared with a Hankel function calculation   
with l = 0 (last neutron in 2s1/2) and the inclusion of the localization effect (Fig. 2.13a). 
Discrepancies were found with the predicted shape, mainly in the tails of the LMD 
(corresponding to smaller radii in spatial coordinates). On the contrary, no discrepancies were 
observed in the 11Be case between the LMD data and the calculations performed by the same 
approach [Han96]. A calculation with a Woods-Saxon potential gives a distribution very 
similar to the Hankel one and a radius Rrms = 5.62 fm for 15C. The authors attributed the 
disagreement to contributions from the core. As the binding energy increases, the size of the 
halo decreases and breakup reactions where the core gets excited become possible. The LMD 
data related to the 15C nuclear breakup were fitted by a modified Lorentzian shape, giving a 
width �FWHM = 67 � 3 MeV/c. This narrow LMD indicates a spatial delocalisation of the 
valence neutron, similar to the 11Be case. The one-neutron removal cross section, obtained by 
integrating the LMD, is �-1n = 33 mb for 15C, against the theoretical value of 120 mb. 
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Figure 2.13. Longitudinal momentum distributions of 14C after the breakup of 15C [Baz98]. a) Breakup on a Be 

target. The dashed line corresponds to an l = 0 Hankel function calculation accounting for the localization effect. 

b) Breakup on a Ta target. The solid line comes from a Coulomb breakup calculation with a Yukawa potential.  

 
The LMD data from 15C breakup on Ta give �FWHM = 67 � 1 MeV/c. Since for heavy 

targets the Coulomb process is dominant, these data are compared to a Coulomb breakup 
calculation (Fig. 2.13b). The observed discrepancies again suggest that reactions removing a 
neutron from the core rather than the valence one account for a significant part of the cross 
section. The integration of the LMD gives a Coulomb dissociation cross section �EMD = 75 
mb. This value is considerably smaller than the calculated values with Yukawa and Woods-
Saxon potentials, 447 and 676 mb, respectively, while the agreement was very good for the 
11Be case. The authors considered that this may be in part due to the neglected nuclear 
dissociation, which clearly must contribute also for the Ta target. Besides, they supposed that 
the smaller �EMD primarily reflects the quenching of the low-energy E1 strength with 
increasing separation energy of the last neutron. This indicates a return towards the normal 
nuclei, for which the major part of the electric dipole strength is shifted to the region of the 
Giant Dipole Resonance (GDR). However, a possible experimental problem due to the 
restricted angular acceptance of the A1200 spectrometer was acknowledged. 

The narrow LMD is typical of spatially extended wave functions, nevertheless low 
values are obtained for �-1n and �EMD, which instead should enhance for halo states. The 15C 
results indicate that a possible neutron halo is not as prominent in this nucleus as in 11Be (for 
which �FWHM = 47.5 � 0.6 MeV/c and �-1n = 203 � 31 mb [Aum00]), and that core excitations 
start playing a role in the breakup mechanism. Similar results are obtained in the same work 
for 14B [Baz98]. 

The removal of the s-wave valence neutron from 15C leads to production of core 
fragments in their ground state (J� = 0+), while the removal of a p-wave neutron produces core 
fragments in the 1– and 0– excited states [Par00]. Since the p-wave neutrons are more bound 
and thus more localised, their removal corresponds to enhance the high-momentum region of 
the LMD. The 14CGS contributions to the LMD can be separated from the components due to 
core-excited states by measuring the deexcitation �-rays in coincidence with the 14C 
fragments. In ref. [Nav99] the 9Be(15C,14C + �) reaction at Einc = 65 MeV/u was performed to 
measure the LMD for removal of p-wave neutrons. It was concluded that the removal of core 
neutrons can give significant yields and affect the momentum distribution. 

 a)   b) 
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Figure 2.14. Longitudinal momentum distribution of 14C fragments from one-neutron removal. Dots are the 

experimental data from ref. [Baz98] without identification of the 14C state. Open circles correspond to excited 

fragment states [Nav99]. The solid lines are calculated LMD [Par00] for 2s1/2 neutron removal with production 

of fragments in the ground state. In a) the dashed and dotted lines are LMD for 1p1/2 neutron removal (with 

production of fragments in 1– and 0– states) obtained, respectively, with black disk and realistic profile function 

approximations. In b) the dashed and dotted lines are LMD from removal of neutron with production of 

fragments in all the final states obtained, respectively, with black disk and realistic profile functions. 

 
In Figure 2.14 the LMD data from refs. [Baz98, Nav99] are compared to theoretical 

calculations [Par00] of the neutron removal cross section for s-wave, p-wave (assuming 
excitation of the core in the 1– and 0– states) and total. Agreement between the theoretical 
results and the experimental data is found, especially in the central region of the LMD (Fig. 
2.14a). The agreement improves by including the one-neutron removal from the core (Fig. 
2.14b), but the calculations are sensitive to the type of profile function, which corresponds to 
the nucleon and core interaction with the target. According to the data from ref. [Baz98], the 
cross section leading to 14C excited states is ~ 25 % of the total one-neutron removal cross 
section. 

A systematic study of one-neutron removal reactions on 23 neutron-rich (psd)-shell 
nuclei was carried out by Sauvan et al. [Sau00]. The core LMD obtained for reactions on a 
carbon target are shown in Figure 2.15a, in comparison with theoretical distributions. These 
are calculated by the Glauber model with spectroscopic factors extracted by the shell model, 
and are normalized to the peak number of counts to facilitate the comparison among different 
isotopes. A marked reduction of the LMD width is found after the sub-shell closures at N = 8 
and N = 14. In particular, the reduction is more pronounced for 15C (�FWHM = 63.5 � 0.7 
MeV/c) and 14B (�FWHM = 56.5 � 0.5 MeV/c). Moreover, these two nuclei exhibit enhanced 
one-neutron removal cross section:��-1n = 159 � 15 mb for 15C and �-1n = 153 � 15 mb for 14B. 
The enhancement of �-1n for 15C with respect to the other C isotopes is evident in Fig. 2.15b. 
While the measured �FWHM agrees with the value of ref. [Baz98], �-1n is considerably bigger, 
supporting the supposition that the previous low value was because of the limited acceptance. 

Recently, the 9Be(15C,14C + �) reaction was studied at Einc = 54 MeV/u [Mad01]. The �-
ray spectrum, detected in coincidence, suggests important contributions from the core states at 
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Figure 2.15. a) Longitudinal momentum distribution from one-neutron removal on a C target [Sau00]. The solid 

lines correspond to Glauber model calculations. b) Measured (solid points and lines) and calculated (open points 

and dashed lines) one-neutron removal cross-sections for carbon isotopes [Sau00]. 

 
 
 

               
 

Figure 2.16. Experimental LMD from the 9Be(15C,14C+�) reaction [Mad01] with the residues of 14C in the a) 

ground state and b) excited states. Solid and dashed lines are for l = 0 and l = 1 calculations, respectively. 

 
 

Ex = 6.09 MeV (J� = 1–), which decays directly to the ground state, and Ex = 6.90 MeV (0–), 
decaying through the 1– with two �-rays in cascade. The 7.01 MeV (2+) state is also included 
in the fit, although its predicted spectroscopic is very small; note that the 6.73 MeV (3–) state 
is forbidden by selection rules. In Figures 2.16a and b the experimental LMD are shown 
relatively to 14CGS and 14C excited fragments, respectively. The comparison with calculated 
eikonal model curves for l = 0 and 1 indicates the s-wave character of the ground state 
distribution and the p-wave one of the excited states. A good agreement is found in the l = 1 
case, while small deviations are present in the shape of the ground state LMD, especially at 
low energy. In fact, the eikonal model does not reproduce the observed asymmetry of the 
LMD, which instead is well reproduced by Coupled Discretized Continuum Channels 
(CDCC) calculations [Tos02]. The measured one-neutron removal cross sections for 15C are 
137 � 16 mb (total) and 109 � 14 mb (for 14CGS fragments). 

 a) LMD 

b)��-1n 



Chapter 2  Investigations of the neutron-rich 15C nucleus 

- 35 - 

 
 

Figure 2.17.  Interaction cross sections for the carbon isotopes. The full circles are data taken from ref. [Oza01], 

the open circles are from ref. [Oza06]. The solid line is calculated as described in the text.  

2.3.3 Measurements of interaction cross sections and radii  
The 15C nucleus has not been recognized as halo nucleus until now, mainly because its 

matter radium (Rm
rms = 2.40 � 0.05 fm) does not show a considerable deviation from the 

systematic increase with mass number, R = r0 A
1/3, which is valid for stable nuclei [Aud93]. 

However, the situation is unclear, with measurements of the total cross section exhibiting no 
effect and others with small enhancements (see ref. [Sau00] and refs. therein). 

The interaction cross sections �I and radii of several weakly-bound nuclei, among 
which 15C, were measured at Einc = 730 and 950 MeV/u by Ozawa et al. [Oza96, Oza01] by 
means of a transmission method with Be, C and Al targets. The interaction cross sections 
obtained for the carbon isotopes are shown in Fig. 2.17. The solid line represents a calculation 
of �I according to the formula for the stable nuclei, �I = � [RI(

12C) + r0 A
1/3]2, where r0 is 

chosen in order to reproduce �I(
12C). The 15C point (N = 9, �I = 945 � 10 mb for a carbon 

target) lies close to this line, showing that the formula r0 A
1/3 gives a reasonable prediction for 

the 15C radius. �I increase with increasing neutron number, with a maximum for 19C. 
The effective rms radii were deduced from the �I by Glauber model calculations. The 

dependences of the radii on the mass number A and on the isospin are shown in Figures 2.18a 
and b, respectively. The data are compared with the matter radii deduced from the measured 
charge radii [Dev87] and with results of Relativistic Mean Field (RMF) calculations, which 
reproduce qualitatively the global tendency. From Fig. 2.18a it is noted that the 12C radius is 
larger than the neighbours, this is due to the �-cluster formation and occours also for 16O (see 
ref. [Oza96]), which is a known �-cluster nucleus. The observed 15C radius deviates from the 
calculated one, but, since the radii of the neighbour nuclei are not well known this is not 
enough to conclude that this nucleus has an anomalous structure. Concerning the isospin 
dependence (Fig. 2.18b), nuclei with larger isospin show larger radii. The 15C radius is 
smaller than the calculated one, but it is consistent with the observed radii for 15O and 15N. 

A comparison of the radii obtained at relativistic energies with those at intermediate 
ones provides information about the existence of tail component in the density distributions. 
Indeed, great discrepancies have been found. The Glauber model calculation, as those of ref. 
[Ozw96], underestimate systematically the cross section at intermediate energies. This 
difference varies particularly between the stable and halo nuclei (e.g., between 12C and 

�I [mb] 

N 

 C-isotopes 
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Figure 2.18. Rms matter radius a) for carbon isotopes versus the mass number and b) for A = 15 versus the 

isospin. The closed circles are data from ref. [Oza96], the open circles from ref. [Tan88] and the open rhombus 

from ref. [Oza95]. The open triangles are the radii calculated from the observed rms charge radii [Dev87]. The 

solid lines are from RMF calculations. 

 
 
 

  
 

Figure 2.19. Neutron excess dependences of the difference factor d for carbon isotopes. The solid (open) 

triangles are data from ref. [Oza96] calculated with the Glauber model (BUU model). The solid (open) circles 

are data from ref. [Fan00] obtained by Glauber calculation (BUU calculation). 

 
 

11Be) and an its enhancement likely reflects an enhancement of the tail component in the 
density distribution. A difference factor d is defined as d = [�I(int) – �I(Gla)]/�I(Gla), where 
�I(int)�is the experimental reaction cross section at intermediate energy and �I(Gla) is the 
Glauber calculated one at the same energy by fitting the experimental �I at relativistic energy. 
The d value is about from 10 to 20 % for stable nuclei and from 30 to 40 % for nuclei with 
anomalous structure; e.g., for 11Be d > 30 % (see ref. [Oza96]). The isospin dependence of the 
difference d is shown in Figure 2.19 for the C isotopes. High-energy data [Oza96] are 
compared with data at intermediate energy [Fan00]. The results of Glauber calculations (full 
circles) and Boltzmann-Uehling-Uhlenbeck (BUU) calculations (open circles) are also shown; 
the latter reproduce �I at intermediate energy better than the former. The d value for 15C is 
considerably larger than for the other isotopes; the same happens for 14B. This suggests that 
also 15C and 14B should have an anomalous neutron density distribution, of halo- or skin-type. 
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Figure 2.20. a) Experimental charge-changing (filled circles) [Chu00] and interaction (open circles) [Oza96] 

cross sections for C isotopes, in comparison with theoretical calculations [Chu00]. The solid line is the result of 

the IntraNuclear-Cascade (INC) model. The dotted line is �I calculated by the Kox semiempirical formulae. The 

dashed line is �CC from the INC calculation. b) One-neutron removal cross sections for C isotopes (�I – �CC). 

The solid line is the INC calculation with fragment deexcitation [Chu00]. 

 
 
Nevertheless, other recent results seem to deny an extended neutron distribution in 15C 

[Chu00]. The measured charge-changing cross sections �CC for carbon isotopes [Chu00] are 
shown in Figure 2.20a, together with the �I data [Oza01]. For 15C the measured value is �CC = 
830 � 26 mb. The one-neutron removal cross sections �-1n, obtained from the difference 
between �I and �CC, are shown in Fig. 2.20b. Since no peculiarity is found in �-1n for 15C, the 
authors conclude that no evidence can be seen for a one-neutron halo structure in this nucleus. 

2.3.4 Concluding remarks 
The various results discussed from Section 2.3.1 to 2.3.3 indicate that the 15C nucleus 

exhibits contradictory behaviours: its properties seem intermediate between those of the stable 
and drip line nuclei, showing characteristics typical of both normal and exotic nuclei. The 
global picture suggests a quite extended density distribution of the valence neutron, although 
the higher Sn ~ 1 MeV suppresses the development of a distribution as large as that found in 
the more weakly-bound 11Be, 19C and 11Li halo nuclei. Entering into further details is beyond 
the aim of this thesis, however for a conclusive statement further experiments and more 
sophisticated theoretical approaches appear to be necessary. 
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CHAPTER 3 

 

THE (7LI ,7BE) CHARGE 
EXCHANGE REACTION 

 

 
Direct reactions constitute, in general, an important source of information on the nuclear 

structure. In particular, heavy-ion Charge EXchange reactions (CEX) are a powerful tool for 
spectroscopic studies, especially in exotic nuclei, in which they may populate states not easily 
excited by elementary projectiles (nucleon and light ions), such as high spin states. By an 
appropriate choice of the projectile-target system and incident energy, the heavy-ion reactions 
can be used as a very precise probe of specific charge exchange excitations modes of nuclei 
[Oer88]. Single CEX reactions – (n,p) and (p,n) type transitions – allow one to investigate the 
isovector response of nuclei because of their selectivity [Ost92, Alf98]. New spectroscopic 
information can be expected from heavy-ion CEX reactions, e.g., concerning the interesting 
and still-open question of the quenching of the Gamow-Teller strength distributions in nuclei. 
Besides the interest in spectroscopic work, CEX reactions makes it possible to study the 
contributions of the spin and isovector interactions to heavy-ion scattering [Len88]. 
Moreover, the existing models of the nuclear forces may be tested under the extreme 
conditions of high charge asymmetry, low nuclear density and low binding energy through 
CEX reactions involving exotic nuclei. 

In particular, the (7Li,7Be) reaction has been widely used [Coo84, Dod85, Etc88, 
Nak90, Sak93, Win96, Jän96, Orr01, Cap01] to extract information about nuclear structure 
and the CEX mechanism. In refs. [Cap01, Cap04b] we used the same technique as present to 
explore the 11Be spectrum up to 15 MeV excitation energy. The good resolution obtained 
(about 50 keV) allowed identification of the single particle excitations below 2 MeV and 
several narrow resonances in the continuum. The aim of the work here described is to apply a 
similar technique to 15C, using the (7Li,7Be) CEX reaction. In fact, 15C differs from 11Be only 
by an � particle and so similar features are expected in structure and the reaction mechanism.  

3.1 The CEX reaction mechanism 
CEX scattering has become a very useful spectroscopic tool to investigate both (n,p) 

and (p,n) type transitions in nuclei. The reaction mechanism is simpler compared to other 
reaction channels because only effective isovector interactions are allowed, however some 
complication arises into the interpretation of the experimental data due to the presence of  two 
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Figure 3.1. Scheme of the one- and two-step processes in the 15N(7Li,7Be)15C CEX reaction. 

 
competitive processes. In fact, CEX reactions can proceed via two fundamental processes, 
which populate the same final channel and which we call direct and transfer charge exchange. 
In the direct process the final states are excited by the one-step exchange of charged mesons 
as described by the isovector nucleon-nucleon (NN) interaction. The transfer charge exchange 
mechanism is at least a second order process in which the same final states are populated by 
sequential proton-pickup neutron-stripping, or vice versa (see the scheme of Figure 3.1). 

These two reaction mechanisms have an quite different origin: the first one is a typical 
NN-collision process leading to mutual excitation of projectile and target, while the second 
one corresponds to mean field processes. The two mechanisms contribute coherently to the 
cross section. Since the desired nuclear structure information is most directly available from 
the direct process because no intermediate channels are involved, it is of particular importance 
to know under which experimental conditions the direct mechanism is dominant. As we will 
see, the dominance of the first or second process depends on incident energy, scattering angle 
and on nuclear structure effects. In particular, as discussed in Section 3.1.3 in relation to the 
analysis of the reaction 12C(12C,12N)12B, the very different dependence on the incident energy 
gives the possibility to study the transition from the mean field dynamics to the NN-collision 
regime in correspondence of the passage from the two-step to the direct mechanism. 

The theory of the CEX reactions presented in the following Sections is taken from refs. 
[Len88, Len89, Len89b] and it is valid for a range of incident energy between 10 and 100 
MeV/u. A generic CEX reaction A(a,b)B can be schematised as: 

 
a(Na, Za)   +   A(NA, ZA)    �    b(Na � 1, Za � 1)   +   B(NA � 1, ZA � 1)  (3.1) 

 
����               � 

where � and � represent the entrance and exit channels, respectively, while N and Z indicate 
the number of neutrons and protons. The reaction happens with a transfer of the third isospin 
component �Tz = � 1. 

7Li + 15N Direct exchange 

p pick-up 

p pick-up 

n stripping 

n stripping 

7Be + 15C 

6Li + 16N 

8Be + 14C 
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3.1.1 The one-step process 
The direct charge exchange is in the lowest order a one-step process, mediated by the 

exchange of virtual isovector mesons. The relation to nuclear structure is very transparent. 
The matrix element of the transition operator between the states�� = (a, A) and � = (b, B) can 
be written in the first order Distorted Wave Born Approximation (DWBA) as: 

 
# $ # $ Rd� F ��F�(one)T )(�

�
� �)(�)(�

�
� �)(�DWBA� � � ���� ��    (3.2) 

 
where %�

(+)(k�,r) and %�
(–)(k�,r) represent the distorted waves in the incident and final 

channels, respectively, and R is the coordinate of the center of mass. The CEX form factor 
 

# $ # $ aAVbBF
��

� � �      (3.3) 

 
is obtained in the double-folding model by folding the charge exchange transition densities 
with the isovector component of the effective NN-interaction V(&): 

 
# $ # $�� )

�
(�   )

�
 ,

�
 ,(V  )

�
(�  

�
d 

�
d  F AABAa

�
aabAa

�
�	� R    (3.4) 

 
Nuclear structure enters into the form factor via the CEX transition densities "ab and 

"AB, describing the projectile (a � b) and target (A � B) transitions, respectively. These 
quantities contain the information on the structural overlap between the nuclei in the entrance 
and exit channels. They depend on the internal nuclear coordinates ', which include spatial, 
spin and isospin degrees of freedom. The transition densities can be expressed in terms of the 
proton and neutron single particle wave functions �p, �n. For example, for a �Tz = + 1 
transition (e.g., 12C � 12B or 7Li � 7Be) with orbital, spin and total angular momentum 
transfer (L, S, J), we obtain: 

 

( ) ( )
LSJnp

np
LSJpn

)(
LSJ  a aa  b
 ��� *�� +     (3.5) 

 
where a+ and a are creation and annihilation operators for a single nucleon. Corresponding 
expressions are obtained for �Tz = –1 transitions. The �-decay matrix elements depend on the 
same transition densities, so these last can be tested independently in other processes, too. 
When exotic nuclei such as 15C are involved, the transition densities are calculated in a more 
complex way (see Section 6.2.2). 

In the direct form factors the proton and neutron creation and annihilation operators are 
coupled: 

n'p'pn aa aa ��       (3.6) 

 
This leads to a discontinuous evolution of the charge distribution, that may be interpreted as a 
mean field fluctuation originating from NN-collisions, which in this case are due to V(&). 
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The isovector NN-interaction V(&), which induces the direct isospin-flip in the one-step 
process, is given by: 

 
# $ # $ Aa12�TAa����
� �

  
�

  SV� �VVV ,�,��      (3.7) 
 

where the spin scalar V& and vector V�& central parts and the rank-2 tensor interaction VT& are 
included and S12 is the tensor operator 
 

# $# $ AaAAaa
2

12
�  �      �    � r3S ,�,�,� rr     (3.8) 

 
As we will see, in general the one-step process is dominant at high incident energies 

(Einc ~ 100 MeV/u) and forward angles. 

3.1.2 The two-step process 
In the two-step process the same final states as the one-step process are populated by 

transfer reactions. This mechanism includes intermediate transitions to neighbouring (A � 1)-
systems. The sequential proton-pickup neutron-stripping and neutron-stripping proton-pickup 
contribute coherently to the two-step process, which generally dominate at low incident 
energies (Einc ~ 10 MeV/u) and large angles. The T-matrix element of the CEX transfer 
process can be written in the second order Exact Finite Range (EFR) DWBA as: 

 
# $+ ����

�
)(�� ��� �)(�DWBA� � �FGF�(two)T     (3.9) 

 
where the summation is restricted to intermediate transfer channels � = (c�, C�) in which either 
the particle or the hole component of the final configurations are populated. The optical model 
Green’s function G�

(+) describes the propagation in the intermediate channels. The EFR form 
factors are determined by the overlap of the initial and final nuclear wave function at each 
step and, e.g., for a neutron-stripping single process, can be expressed in terms of 
spectroscopic amplitudes and pure single particle form factors as: 

 

)r ,(rF  A a  C a a  C )r ,(rF 	
sj
 	
sj

j
s
	

 	 nn

nn

nn+ ��   (3.10) 

 
The need for a finite range approximation, such as EFR, is because the elementary transfer 
processes in general occur at several fm of distance. 

The two-step transition densities have a microscopic structure 
 

pp'n'n aa aa ��      (3.11) 

in which, for each single step, the  proton and neutron creation and annihilation operators are 
decoupled. This corresponds to a continuous evolution of the charge density and thus of the 
mean field.  
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3.1.3 The CEX cross section: the 12C(12C,12N)12B reaction 
From an experimental point of view, it is not possible to distinguish whether a given 

event is due to a one-step process or to a two-step one. Therefore, the cross section for a 
charge exchange reaction is determined by the coherent superposition of the direct and 
transfer contributions: 

������ ~ |T��(one) + T��(two)|2     (3.12) 

However, the analysis of the excitation functions and angular distributions gives more 
information about the processes considered. In fact the two mechanisms depend in a different 
way on the incident energy due to the very different physical origins. The direct amplitude 
depends mainly on the momentum transfer of the reaction, i.e., on excitation energy and 
scattering angle. Instead, the transfer amplitudes for each step depend mainly on the linear 
momenta (i.e., kinetic energy) of the transferred nucleons, which have to be absorbed by the 
binding mean field. Since the high momentum components are strongly suppressed in the 
mean field dynamics, the transfer cross section will decrease with the incident energy. On the 
contrary, in general the one-step contribution to the cross section increases with the incident 
energy, dominating at higher energies. This different behaviour gives the possibility to 
observe the transition from mean field interactions at low incident energies to NN-reaction 
mechanisms in the Fermi-energy regime. 

This was done in particular for the 12C(12C,12N)12B reaction [Len89, Len89b], which 
was among the first studied heavy-ion CEX reactions, giving a quite complete impression of 
the CEX mechanism. Since only the 12N ground state (J� = 1+) is bound and the 12C ground 
state has J� = 0+, this reaction is well suited to study vector-isovector transitions in the target. 
In Figure 3.2 the calculated excitation functions and angular distributions are compared to the 
experimental data of refs. [Boh88, Win86]. The two-step process dominate clearly at low 
incident energies, being maximum at about 30 MeV/u and then decreasing. At Einc = 70 
MeV/u the data at small scattering angles are quite well described by the one-step 
calculations, but the transfer contributions at larger angles are still of comparable strength. In 
fact, at small angles the direct components are dominant but they decrease steeply, so that the 
cross sections at the larger angles are determined almost completely by the transfer 
contributions. 

Thus at intermediate energies (10 MeV/u ! Einc ! 100 MeV/u) a transition from the two-
step to the one-step processes is observed. For the reaction considered, the direct mechanism 
begins to dominate only for energies well above 50 MeV/u. However, nuclear structure 
effects make the precise transition point depending on the populated final states (see Fig. 
3.2b). This dependence is mainly due to the different angular and linear momentum transfers 
involved. 

Another interesting question concerns the role of the tensor interaction. In Figure 3.3 the 
one-step calculation at Einc = 70 MeV/u is shown, with the contributions of the central and 
rank-2 tensor isovector interactions plotted separately. The central part gives a strongly 
oscillatory angular pattern (pure L = 0) in disagreement with the data. The experimental 
angular distribution can be described by including the tensor contribution, which allows L = 2 
transfer. 
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Figure 3.2. a) Angular distributions for the 12C(12C,12N)12BGS reaction as a function of the incident energy. b) 

Incident energy dependence of the maximum differential cross section (left) and total cross section (right) for the 
12C(12C,12N)12B reaction. In both a) and b) the direct (dashed-dotted) and transfer (dashed) contributions and 

their coherent sum (full) are shown [Len89, Len89b], in comparison with the experimental data at Einc = 30 and 

70 MeV/u [Boh88] and Einc = 35 MeV/u [Win86].  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3. Angular distributions for the 12C(12C,12N)12BGS reaction at Einc = 70 MeV/u. Direct charge exchange 

central (dashed) and tensor (dashed-dotted) contributions and their coherent sum (full) are shown [Len89, 

Len89b] in comparison with experimental data [Boh88].  

a) b) 
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3.2 Analogy with the inelastic scatter ing 
In CEX reactions the same excitation operators as inelastic scattering are involved. 

A general analogy can be established between the isospin-flip (i.e., one-step CEX), spin-flip 
and inelastic scattering transition amplitudes [Oer88]. This analogy is defined only in the  
NN-collision regime, in which the previously-mentioned processes may be interpreted as 
single nucleon excitation produced by exchange of different mesons. The connection among 
the effective potentials of the three processes derives from the symmetry properties of the 
NN-interaction, essentially from the separation of the spin and isospin degrees of freedom 
from the spatial ones. Thus, under certain conditions, also the spin-flip and isospin-flip  
potentials may be expanded in terms of multipole operators and to excite collective modes. 
However, the analogy is no longer valid if multi-step processes are involved in the reaction. 
Besides, the inelastic scattering is characterized by a �T = 0 transfer, while the spin-flip and 
isospin-flip by �S = 1 and �T = 1, respectively. Thus CEX reactions have the propriety of 
probing selectively the isovector nuclear response. 

Independent of the reaction mechanism, in a CEX reaction the momentum transfer due 
to the (asymptotic) incoming and outgoing momenta k� and k� is: 

 
q = k� – k�      (3.13) 

 
For all the inelastic processes without nucleon transfer the momentum transfer at 0° 

(minimum transfer) is given mainly by the Q-value of the reaction: 
 

/AE

Q
11.0]fm[ q

inc

1 ��              (3.14) 

 
Formula (3.14) will be valid also for a direct CEX reaction because there is not nucleon 
transfer. Inserting the values for the 15N(7Li,7Be)15C reaction, we obtain q = 0.42 fm–1. If q is 
transferred to the whole nucleus, the maximum angular momentum transfer is: 
 

Lmax = q . Rint      (3.15) 
 
and, with an interaction radius Rint = r0 

. (AP
1/3 + AT

1/3) ~ 5 fm for r0 = 1.2 fm and AP, AT the 
mass number of projectile and target, Lmax = 2. Really, a distributions of L-values ! Lmax is 
transferred because the transfer happens in a diffuse region around the nuclear surface. 

The momentum transfer q increases with the scattering angle. Higher q values give 
larger L - 0 contributions, as also the influence of the tensor component of the interaction 
(which results in strong L = 2 contributions). Besides, as q increases, the one-step cross 
section decreases. Thus the direct CEX process, directly related to the nuclear structure 
information, may be observed only at very forward angles. This explain the necessity to 
measure at forward angles. Especially the measurements around 0° are very important in 
order to minimize the momentum transfer. In the case of the (7Li,7Be) CEX reaction, as we 
will see in Section 3.4, there are also other reasons which makes fundamental to measure at 
�lab = 0°. 
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3.3 The (7Li,7Be) reaction 
In this Section, particular attention is paid to the (7Li,7Be) CEX reaction, which was 

used in the present work in order to explore the 15C excitation energy spectrum. 
Among the CEX reactions with isospin transfer �Tz = + 1, the (n,p) and (7Li,7Be) 

reactions are well suited for the study of isovector transitions because they have strong 
overlaps between the involved states and thus large cross sections. Advantages of (7Li,7Be) 
over (n,p) are the high beam intensity (7Li is an easy beam from both Tandem and Cyclotron) 
and the better energy resolution with respect to the neutron (secondary) beam.The selective 
character of (7Li,7Be) with respect to isospin has long been recognized and used in 
experiments [Coo84, Dod85, Etc88, Nak90, Nak90b, Sak93, Nak99, Win96, Jän96, Orr01, 
Cap01, Cap04b]. In contrast to the nucleon reactions, where the transferred angular 
momentum is small (L = 0, 1), (7Li,7Be) can excite states with higher multipolarity.  

The (7Li,7Be) reaction populates the two bound 7Be states, the 3/2� ground state and the 
1/2� first excited state at 0.429 MeV, which we will indicate as 7BeGS and 7Beexc, respectively. 
In relation to this, the measured spectra will show a doublet of states for each target transition, 
corresponding to 7BeGS and 7Beexc. The two contributions may be separated either by 
detecting the �-rays due to the in-flight decay of 7Beexc, or by using a high resolution magnetic 
spectrometer (present case). Since the 7Li ground state has J� = 3/2�, the (7LiGS,

7BeGS) reaction 
proceeds via �J� = 0+, 1+, 2+ and 3+ couplings, while the (7LiGS,

7Beexc) via �J� = 1+, 2+. 
Because of the number of possible spin transfers, the interpretation of the angular 
distributions is more difficult than, for example, for (12C,12N). Nevertheless, as discussed in 
the next Section, the existence of such a doublet gives the possibility to measure both spin 
transfer and not spin transfer transitions.  

In principle, at low bombarding energy the (7Li,7Be) reaction includes contributions 
from both the sequential transfer and direct charge exchange. It is important to know in which 
energy range the one-step mechanism dominates. Generally, this happens for high incident 
energies, however it depends on the reaction considered very much. In fact, the final state 
interaction may substantially change the limiting energy value: as we will see, this value 
varies even in the same (7Li,7Be) reaction depending on the target. Besides, if the final 
nucleus is exotic, such as 15C, the one-step threshold is expected to be lower than for a well-
bound nucleus. Indeed, for direct reaction involving a weakly-bound nucleus in the exit 
channel, the momentum dependence of the transfer form factor is due principally to the wave 
function of the final channel ([Len98], Section 1.2). The larger extension of the halo wave 
function corresponds to a narrower momentum distribution, peaked at smaller momenta than 
usually. Therefore the transfer excitation functions are peaked at lower energy and fall off 
rapidly thereafter, thus the one-step dominance is expected at a lower energy with respect to 
CEX reactions involving stable nuclei. 

In particular for (7Li,7Be) other reasons makes one expect the direct mechanism to 
dominate at low energy. 7Li and 7Be are mirror nuclei, thus the necessary minor 
rearrangement could make the meson exchange preferable with respect to the sequential 
transfer. Besides, the Q-values of the (7Li,7Be) reactions are usually smaller than other CEX 
reactions, such as, e.g., (12C,12N), leading to a minor momentum transfer. Finally, the transfer 
process is strongly suppressed in (7Li,7Be), even at low bombarding energy, because the most 
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Figure 3.4. Cross sections for different transitions induced by the 12C(7Li,7Be)12B reaction at �lab = 0° [Nak90b]. 

The results of one-step calculations (solid and dotted lines), normalized by a factor N, are compared to 

experimental data taken at Einc = 14, 21 and 26 MeV/u. The result of a two-step calculation (dashed line) is 

shown for the 0+ � 1+ ground state transition. 

 
important intermediate routes of the two-step process – populating the 8Be states – are 
hindered from the weak single particle components of 8Be states at low excitation energy 
[Etc88]. In any case, the angular distributions of the one- and two-step processes are expected 
to have rather different shapes even at low incident energy and, thus, separable at forward 
angles [Sak93]. A useful consequence of all this is that for (7Li,7Be) we can have a one-step 
process also at very low incident energies, while normally for other CEX reactions Einc ~ 50 
MeV/u. 

The 12C(7Li,7Be)12B reaction was studied in detail at different incident energies by 
Nakayama et al. [Nak90, Nak90b, Nak99]. In Figure 3.4 the �lab = 0. cross sections measured 
at Einc = 14, 21 and 26 MeV/u are shown, in comparison with microscopic DWBA 
calculations for the direct process. Two-step calculations were performed only for the 0+ � 1+ 
transition to 12BGS. The cross sections increase with the bombarding energy, except in the 3–

and 4– transitions. This is because of the reduced momentum transfer which, decreasing with 
the energy, hinders the transfer of high angular momenta. Normalization coefficients N, 
different for each 12B state, were used to scale the one-step cross sections in order to 
reproduce the measured values at 21 MeV/u. After this scaling, the experimental data taken at 
Einc = 21 and 26 MeV/u lie on the one-step curves, while the point at 14 MeV/u is 
systematically underestimated. This indicates not negligible transfer contributions at the 
energy considered. Besides, the two-step calculation fails to reproduce the rise of the cross 
section observed between 21 and 26 MeV/u. Therefore the authors concluded that at �lab = 0° 
the one-step mechanism is dominant for Einc / 21 MeV/u. 

However, in the previous analysis the use of scaling factors, together with the presence 
of only three measured points, does not allow to give a clear conclusion. An interesting result 
is shown in Figure 3.5, where the point at 8.1 MeV/u, recently obtained by the 
12C(7Li,7Be)12B at 57 MeV [Cap01], is added to the previous ones. For transition to the 
unnatural parity states 1+ and 2–, these new points lie close to the low energy extrapolation of  
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Figure 3.5. Cross sections for different transitions induced by the 12C(7Li,7Be)12B reaction at �lab = 0°. The full 

circles are data taken from ref. [Nak90b], the squares from [Cap01] and the triangle from [Nak99]. The black 

curves are the results of one-step calculations, while the red one of a two-step calculation (performed only for the 

1+ state). The dashed parts represent the extrapolation of the curves at low energies. 

 
the one-step curves. Considering the transitions to natural parity states, the one-step 
calculations underestimate the new point in the case of the 2+ state and, on the contrary, 
overestimate it for the 3– state. The further point measured at 65 MeV/u for the 1+ transition 
[Nak99] is in clear disagreement with the one-step predictions. Thus, due to the uncertainty in 
absolute normalization of the calculated cross sections, the energy threshold of the direct 
mechanism in the 12C(7Li,7Be)12B reaction is a still open question. 

A dominance of the one-step process has been reported in the (7Li,7Be) reaction also at 
lower incident energy; e.g., in the 28Si(7Li,7Be)28Al reaction at Einc = 10 MeV/u [Dod85] and 
in the 6Li(7Li,7Be)6He at Einc = 11 MeV/u [Sak93], although in the last case the approximation 
of vanishing tensor contributions to calculate the cross sections is questionable. 

In another experiment [Etc88] the 10B(7Li,7Be)10Be reaction was studied at 5.6 MeV/u. 
As already said, in ref. [Etc88] it was speculated that the two-step routes are strongly hindered 
due to kinematical reasons. Indeed, e.g., the 2+ excited states of 8Be, (which constitute the 
most important intermediate routes) are blocked by the isospin-mixing effects and Q-optimum 

mismatching for all the 10Be final states. However, the authors remark that it had been not 
proved that the two-step mechanism is not important for the reaction considered. 

The extracted angular distributions were analysed in the DWBA approach, performing 
one-step microscopic calculations in the One Body Transition Density (OBTD) 
approximation. The results obtained using four different find of residual interactions were 
compared. For a satisfactory description of the measured cross sections, the necessity to 
include in the calculations both the central and tensor interactions is emphasized. In Figure  
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Figure 3.6. Comparison between the experimental and calculated cross sections for the 10B(7Li,7Be)10Be reaction 

[Etc88]. The theoretical cross section was microscopically calculated for the direct process in the DWBA 

approach. In the lower part, the contributions of the central and tensor interactions are separately shown for the 

transition to the 10Be ground state. In the upper part, the spin-dependent and independent components of the 

interaction are shown for the 10Be excited state at Ex = 3.37 MeV. 

 
3.6 (lower part) the central and tensor components are separately shown for the cross section 
corresponding to the 10Be ground state (J� = 0+). The sum of the two contributions reproduces 
the experimental angular distribution, except at very large angles, where the transfer process 
is not negligible. In the upper part of Fig. 3.6 the partial contribution of the spin-dependent 
and spin-independent forces are also displayed for the 10Be excited state at Ex = 3.37 MeV 
(J� = 2+). The spin-independent component does not give appreciable contributions. This 
indicates a dominance of spin transfer processes in the transition considered. The suppression 
of the two-step mechanism is supported by the agreement between the calculated one-step 
cross sections and the data. The authors conclude that the role of one-step process is 
considerable even at Einc = 5.6 MeV/u. The importance of this result is enhanced by the fact 
that in this case the normalization coefficients used are close to one. 

More recently, the 11B(7Li,7Be)11Be reaction was studied at Einc = 8.1 MeV/u [Cap01, 
Cap04b], using the IPN-Orsay Split-Pole magnetic spectrometer to detect 7Be. The high 
resolution obtained (~ 50 keV) allowed to separate the 7BeGS and 7Beexc doublet, without the 
need to use a coincidence technique to measure the �-rays emitted from 7Beexc. Theoretical 
angular distributions were calculated for the 11Be ground and first excited state in the DWBA 
approach. The one-step microscopic calculations performed include both the central and 
tensor component of the NN-interaction. The comparison with the data shows that the 
11B(7Li,7Be)11Be reaction preferentially proceeds via direct dynamics at the incident energy 
considered and at very forward angles. Indeed, the experimental cross sections are well 
reproduced especially at small angles, while at backward scattering angles – as observed also 
in the 10B(7Li,7Be)10Be reaction [Etc88] – the systematic underestimate of the strength 
indicates the importance of transfer dynamics. 
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Figure 3.7. a) Calculated  �#q00)/B(GT) for the 37Cl(p,n)37Ar reaction with �J=1, with and without the inclusion 

of the L = 2 component [Aus94]. The full lines represent the mean values obtained considering the five strongest 

�-decay transitions. b) Calculated  �#q00) cross section for 37Cl(p,n)37Ar, considering only the central forces (C) 

and including also the tensor contribution (C + T) [Aus94]. The dashed and dot-dashed lines represent the L = 0 

and L = 2 components, respectively, and the solid one their coherent sum.  

 

3.4 Analogy with the ����-decay 
A general and very important characteristic of the CEX reactions is that, assuming the 

same initial and final nuclear systems, the form factor of the direct process has a mathematical 
structure very similar to the �-decay one. This leads to establish a further analogy: between 
the one-step mechanisms and the �-decay. However, substantial differences exist between the 
two processes. The main difference is that the �-decay is mediated by the electro-weak 
coupling constants, while the direct CEX reaction is mediated by the isovector meson-nucleon 
coupling constants. Besides, the �-decay happens with lepton emission (e– and the coupled  e 
for �–-decay, e+ and  e for �+-decay), thus the recoil of the emitting system is very small and, 
due to this, the linear and angular momentum transfers are very low. Oppositely, there is not 
lepton emission in a CEX process, so the linear and angular momentum transfers may also be 
rather high. Nevertheless, the analogy between the two processes is valid when the effects of 
the lepton emission are neglected and if only low momentum transfers are considered. 

To test the validity of this assumption, the CEX cross section obtained for low 
momentum transfer, �CEX(q ~ 0), has to be compared with the reduced transition probability B 
for �-decay, as done in ref. [Aus94] for the 37Cl(p,n)37Ar CEX reaction. The spin-flip (�S = 1) 
and non spin-flip (�S = 0) transitions of the CEX reaction have to be separately compared 
with the corresponding �-decay transitions: the Gamow-Teller (�L = 0, �S = 1) and Fermi 

a) b) 
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Figure 3.8. Cross section measured at 0° for the (p,n) reaction at 160 MeV on different target [Tad87]. a) Mixed 

Gamow-Teller and Fermi transitions (data taken from Table 4 of ref. [Tad87]). The full circle corresponds to the 
7Li target. b) Pure Fermi transitions (from Table 5 of ref. [Tad87]). 

 
(�L = 0, �S = 0) transitions, respectively. In Figure 3.7a the ratio R 1 �CEX(q ~ 0) / B(GT) is 
shown for the spin-flip CEX transition [Aus94]. The DWBA cross section was calculated at 
very forward angles to minimize the momentum transfer and compared with the tabulated 
B(GT) values for the 37Cl � 37Ar �-decay. The considered �S = 1, �J = 1 transition may 
transfer �L = 0, 1, 2. While for an allowed �-decay only the �L = 0 transfer is important, in 
general for a CEX reaction the L = 0 and 2 amplitudes can contribute. Since for this reaction 
L = 1 is negligible at 0°, the calculations were performed only for L = 0, 2 (see Fig. 3.7a). If 
the ratio assumes a constant value, the CEX reaction provides an accurate measurement of the 
Gamow-Teller strength. For B(GT) > 0.4 the ratio R stays almost constant both with and 
without taking into account the L = 2 contributions. For less favourite transitions (B(GT) 
< 0.4) deviations of also a factor 2 are observed between the calculations with and without 
L = 2. Thus for the strong transitions the L = 2 amplitude is negligible, while for the weak 
ones L = 2 contributes significantly to the cross section. 

A multipolar decomposition to isolate the L = 0 contribution is possible when only 
central forces are involved. Indeed, the tensor forces induce an interference between the L = 0 
and L = 2 amplitudes, which cannot be isolated, and causes the deviation of R from a constant 
value. The contribution of the tensor interaction is evidenced in Figure 3.7b. Its effects are 
negligible at small angles, but become stronger at larger angles, where the tensor components 
have to be considered even for more favoured transitions. 

The important conclusion is that at very forward angles, for small momentum transfer 
and for super-allowed transitions (high B strength) the analogy between the one-step CEX 
dynamics and the �-decay keeps its validity. 

The existence of a proportionality relationship between the cross section of the (p,n) 
CEX reaction at 0° and the corresponding Gamow-Teller and Fermi transition strengths B of 
�-decay was examined in details in ref. [Tad87]. Figure 3.8 shows the 0° cross sections 
measured for the (p,n) reaction at 160 MeV on different target. The data corresponding to 

  a) �CEX(0°) [mb/sr]             b) �CEX(0°) [mb/sr] 
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mixed (GT and F) transitions and to pure F transitions are shown separately (Fig. 3.8a and b) 
versus the B(GT) and B(F) strengths, respectively. The authors found a good correspondence 
between �-decay strengths and (p,n) cross sections for transition carrying as little as 3 % of 
single particle strength. A single proportionality constant can serve to relate all the GT 
transitions originating from the same target nucleus. Besides, an empirical and model-
independent relationship relates the GT and F cross sections at 0°. However, the target 
dependence is considerable. The extrapolation or interpolation of the proportionality constants 
from one target nucleus to another has an uncertainty of about 20 % - 50 %. In general, 
proportionality holds only if the previously-mentioned conditions are satisfied. 

3.4.1 Spin transfer  in the (7Li,7Be) reaction: the G factor  
In connection with the analogy with �-decay, the measurement of the (7Li,7Be) cross 

section at 0° supplies important information on the spin transfer dynamics. In the past it was 
already noted that the two cross sections related to 7BeGS and 7Beexc depends in a different 
way on the V& and V�& components of the effective NN-interaction [And70]. This feature 
provides a very interesting opportunity to extract information on the nuclear spin-isospin 
response function, and probably on the role of tensor interaction in the CEX dynamics. 

The relative strength (�S = 1)/[(�S = 0) + (�S = 1)] of the spin transfer excitations is 
defined as [Nak91]: 
 

# $
# $ # $1S�    0S�

1S�

NPsf �����
��

�     (3.16) 

 
where �(�S = 0) and �(�S = 1) denote the cross sections resulting from �S = 0 and �S = 1  
spin transfers in nuclei, respectively. The factor N indicates the probability that a spin transfer 
process will produce spin-flip in the nuclear system. In fact, spin-flip and spin transfer are 
slightly different: the latter is a necessary, but not sufficient, condition for the former. 
Measurements of Psf provide information on the contribution of the spin-vector component of 
the interaction from the selection of the Fermi and Gamow-Teller transitions. Psf is related to 
the spin-flip probability SNN [Gla87]: 

Psf = SNN/�        (3.17) 
 
where � represents the spin-flip probability for �S = 1 transitions. In the case of isovector 
excitations, Psf has been investigated through SNN, measured by using polarized protons 
especially in the# $n,p

��
 reaction [Tad84]. The last reaction has been a good spectroscopic tool 

with �Tz = �1 for well resolved states and isolated resonances, however it is not so adapted 
when high energy resolution is required in order to separate overlapping resonances. In this 
case, the (7Li,7Be) reaction is superior, providing the relative strength Psf also for the 
continuum and overlapping resonances by �-coincidence technique [Nak91]. 

The two routes of the the (7Li,7Be) reaction turns out to be an important aspect of this 
CEX process. In fact, the (7Li,7BeGS) and (7Li,7Beexc) branches are characterized by different 
nucleonic spin transfer. Indeed, in the (7Li,7BeGS) transition the 3/2– � 3/2– angular 
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momentum coupling selects the �J� = 0+, 1+, 2+ and 3+ transfers, with �L = 0, 2 and �S = 0, 1. 
Instead, for the (7Li,7Beexc) transition the angular momentum coupling is 3/2– � 1/2–, 
selecting �J� = 1+, 2+ with �L = 0, 2 and �S = 0, 1. For �L = 0, the �S = 0 and 1 are related, 
respectively, to the well known Fermi and Gamow-Teller transitions of the �-decay involving 
the target and projectile nuclei. The relative importance of the �L = 2 transfer depends on the 
rank-2 tensor strength of the CEX operator and on the momentum transfer. 

Both the transitions (7Li,7BeGS) and (7Li,7Beexc) correspond to super-allowed �-decay 
with log(ft) = 3.3 and 3.53, respectively [Cho93]. As a consequence, at very forward angles 
the tensor strength vanishes [Aus94, Etc88] and thus, at least in this limit, it is possible to 
correlate the CEX and �-decay dynamics. In such conditions the �J� = 0+, 1+ (with �L = 0 and 
�S = 0, 1) components accounts for the major part of the (7Li,7BeGS) reaction, while �J� = 1+ 
(with �L = 0 and �S = 1) for (7Li,7Beexc). Therefore, the first reaction is constituted by mixed 
Fermi and Gamow-Teller transitions, while the second one consists of pure Gamow-Teller 
transition. In detail, the cross sections for the above transition can be written as [Nak91]: 

 
# $ # $ # $1S

��  q)(GT,B    0S
��  q)(F,B�Be�

000GS
7 ���21   (3.18a) 

 
 

# $ # $1S
��  q)(GT,B�Be�

11exc
7 �21      (3.18b) 

 
where q is the linear momentum transfer, B0(F,q) and B0(GT,q) are the nuclear structure 
factors for non spin-flip and spin-flip transitions in (7Li,7BeGS), respectively, and B1(GT,q) is 
the nuclear structure factor for spin-flip transition in (7Li,7Beexc). In particular, in (3.18a) the 
cross section �0 is expressed as an incoherent sum of the �S = 0 and 1 cross sections for the 
transition to 7BeGS. Extracting the ratio �(�S = 1)/�(�S = 0) from (3.18) and substituting it in 
(3.16) one obtains: 
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In the limit of negligible momentum transfer (q ~ 0), the structure factors are given by 

the reduced probabilities B0
�(F), B0

�(GT) and B1
�(GT) for the analogous �-decay transitions 

and we can set N = 1 in (3.19). In this limit the B-ratios of (3.19) are given by: 
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where the values of the ratios come from �-decay data [Cho93], and (3.19) becomes: 
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Thus, under the assumption of dominance of the one-step process, the relative strength 

of the isovector �S = 1 and �S = 0 excitations can be directly connected to the cross section 
ratio �(7Beexc)/�(7BeGS) 1 �8/�0. So this important spin observable can be determined 
independently on the nuclear structure models by a measurement of the two cross sections at 
very forward angles. In practice, it is useful to define the ratio G, which is equal to zero for 
pure �S = 0 transitions and to 0.46 for pure �S = 1 transitions [Jän96]: 
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Of course, the physical meaning of G and Psf is very similar. The G factor provides 

important information on the reaction dynamics, both on the spin transfer contribution and on 
the validity of the analogy with the �-decay. The value of G is expected to remain constant in 
the conditions in which the analogy is valid, i.e., for prevalence of the one-step mechanism, 
low momentum transfer and negligible contribution of the tensor component of the NN-
interaction. In other words, a flat angular distribution of the G factor is a good indication of 
the validity of these hypotheses. They are typically true at very forward angles, but are less 
reliable for backward angles. Thus the assignments of �S = 0 or 1 to a given transition may be 
based on the measured G factor and cross section ratios at �lab ~ 0° [Nak91, Jän96]. Besides, 
the measurement of the cross sections at larger angles gives information about the influence 
of the tensor forces, whose strength may be empirically adjust to fit the data. 

3.4.2 Some results 
In this Section some results for the strength Psf of the spin transfer excitations and for 

the G factor are discussed. The cross section ratios �8/�0 obtained by Nakayama et al. 
[Nak90b] for the 12C(7Li,7Be)12B reaction are reported in Figure 3.9a as a function of the 
incident energy and for different transitions. A different behaviour is observed for natural (1–, 
2+) and unnatural (1+, 2–) parity states. The ratios for the unnatural parity transitions are nearly 
independent on the incident energy because in this case both �0 and �8 involve the spin 
transfer component (�S = 1) only, thus the cross section ratio cancels out every energy 
dependence of the spin transfer parts in the effective NN-interaction. On the other hand, the 
ratios for the natural parity transitions vary with the incident energy, reflecting an energy 
dependence of the ratio of spin transfer to not spin transfer parts of the effective NN-
interaction. As observed in Section 3.3, the point at 14 MeV/u systematically deviates from 
the one-step predictions. 
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Figure 3.9. a) Cross section ratios for different transitions induced by 12C(7Li,7Be)12B at �lab = 0° [Nak90b]. The 

measured quantities refer to Einc = 14, 21 and 26 MeV/u. Solid lines denote the calculations for the one-step 

process, while the dashed line corresponds to a two-step calculation for the 0+ � 1+ ground state transition. 

b) Angular dependence of the ratio �8/�0 for the 1+ transition to 12BGS at Einc = 65 MeV/u [Nak99]. 

 
The angular dependence of the ratio �8/�0 for the 1+ Gamow-Teller transition to 12BGS at 

Einc = 65 MeV/u is shown in Fig. 3.9b [Nak99]. This ratio is found to be independent on the 
scattering angle, indicating that the reaction proceeds via direct mechanism. The mean value 
(hatched area) obtained for the ratio is 0.80 � 0.05, or equivalently G = 0.44 � 0.05. However 
the ratio corresponding to the �-decay of 7Be�is 0.89. This slight discrepancy may be due to a 
linear momentum transfer different from zero. On the basis of the shape of the tensor 
component obtained in the same angular range of Fig. 3.9b, the author considered the ratio 
independent from the tensor contribution. 

The relative strength of the isovector spin excitations Psf at Einc = 26 MeV/u is shown in 
Figure 3.10 [Nak91]. Psf was derived up to 18 MeV of 12B excitation energy by measuring 
separately the (7Li,7BeGS) and (7Li,7Beexc) reaction channels at �lab = 0° with the 7Be-� 
coincidence technique [Nak91]. Under these conditions the linear momentum transfer is q ~ 
0.3 fm–1. Psf was normalized to 1 using the ratio �8/�0 for the 1+ and 2– transitions to 12B 
ground and 1.76 MeV excited state, finding N ~ 1.3. Also here a different behaviour between 
natural and unnatural parity transitions is observed. For unnatural parity states Psf ~ 1, 
corresponding to G = 0.41. This is in agreement with the result obtained at 65 MeV/u for G of 
the 1+ transition (Fig. 3.9b), confirming the prevalence of the one-step mechanism in these 
cases. In contrast, for natural parity states and for the continuum (Ex / 6 MeV) Psf ~ 0.5 and G 
= 0.26. This suggests that the �S = 0 and �S = 1 isovector excitations have similar 
magnitudes for natural parity states and for Ex between about 6 and 18 MeV. 

The results obtained by Winfield et al. [Win96] for the same reaction at Einc = 70 
MeV/u, reported in Fig. 3.11, agree with those of Fig. 3.10 [Nak91]. However, deviations  
  

a) b) 
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Figure 3.10. Excitation energy spectra for a) 12C(7Li,7BeGS)
12B and b) 12C(7Li,7Beexc)

12B reactions at �lab = 0° 

and Einc = 26 MeV/u  [Nak91]. c) Relative strength of spin excitations Psf  and cross section ratio R = �8/�0 (solid 

circles). Psf and R are connected by an empirical relation. The open circles correspond to the isovector dipole 

resonance. The dashed line represents the average value observed for R in the 1+ and 2– transitions. [Nak91]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11. Excitation energy spectra for the 12C(7Li,7Be)12B reaction at �lab = 0° and Einc = 70 MeV/u for 

a) �S = 0 and b) �S = 1 channels  [Win96]. c) Relative strength of spin excitations Psf  and cross section ratio R 

= �8/�0 [Win96]. 
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Figure 3.12. Excitation energy spectra for the a) 11B(7Li,7Be)11Be and b) 12C(7Li,7Be)12B reactions at �lab = 0° 

and Einc = 8.1 MeV/u  [Cap01, Cap04b]. Only 1/5 of the full statistics is shown. The asterisks indicates the peaks 

associated with the excitation of 7Be. c) Values of the G factor at �lab = 0° for the populated 11Be (full circles) 

and 12B (full triangles) states [Cap01, Cap04b]. 

 
 

from these behaviours are present at lower energy, as observed by Cappuzzello et al. [Cap01, 
Cap04b] at Einc = 8.1 MeV/u. In particular, in Fig. 3.12 the values of the G factor at �lab = 0° 
for various 11Be states are compared to those associated with the most excited transitions to 
12B: the 1+ and 2+ transitions to the ground and first excited (Ex = 0.95 MeV) state, 
respectively. These values, also reported in Table 3.1, were measured during the same 
experiment, devoted to the study of the 11B(7Li,7Be)11Be reaction, in which a 12C target was 
used in order to subtract the background from the 12C(7Li,7Be)12B reaction. 

 
 

Table 3.1. G factor values measured at �lab = 0° and Einc = 8.1 MeV/u for the 11B(7Li,7Be)11Be and 
12C(7Li,7Be)12B reactions [Cap01, Cap04b].  

 

 11Be 12B 

Ex [MeV] g.s. 0.32 1.77 2.67 3.89 3.96 6.05 g.s. 0.95 1.67 2.62 4.50 

G 0.38 0.35 0.46 0.35 0.47 0.40 0.56 0.15 0.17 0.40 0.33 0.34 

����G 0.04 0.03 0.04 0.04 0.04 0.07 0.03 0.03 0.03 0.06 0.07 0.03 
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It is interesting to note that some of the G values obtained for the 12B states deviate 
from the behaviour observed at higher bombarding energies. In particular, the 1+ transition at 
higher energy is prevalently Gamow-Teller, while the 2+ one shows a minor spin transfer 
contribution. On the contrary, at Einc = 8.1 MeV/u the G factors of the two transitions 
considered are nearly the same and exhibit a very small value. This indicates an increased role 
of the two-step mechanisms for the transition to the well bound 12B states. Thus at Einc = 8.1 
MeV/u the sequential mechanisms turns out to be important even at small angles (~ 0°). 

Contrarily, concerning the transitions to all the 11Be states, the values of the G factor are 
definitely different from 0 and close to the 0.46 limit of the Gamow-Teller transitions in the 
projectile. This indicate clearly a one-step dynamics. Moreover, the 11Be angular distributions 
at forward angles are well reproduced by one-step DWBA calculations [Cap04b]. It is found 
that the unnatural parity transitions account for the major part of the observed cross sections. 
In order to describe correctly the angular distributions, a significant role of the tensor force is 
required, however this tensor component has a minor effect on the G factor at 0°. Therefore 
the results of ref. [Cap04b] indicate the dominance of spin transfer even though the projectile 
transitions are not pure Gamow-Teller. Only at larger angles the contribution of the two-step 
process cannot be neglected. 

The experiments of Nakayama et al. [Nak91, Nak99], as also those described, e.g., in 
refs. [Jän96, Win96], used 7Li Cyclotron beams. In these cases the energy resolution did not 
allow the separation of the 7Be doublet, so a 7Be-� coincidence technique was employed to 
isolate the transition to the excited 7Be state and to separate the �S = 0 and 1 contributions. 
The �-detection efficiency was the main source of uncertainty in the G measurement. At low 
incident energy, as in refs. [Etc88, Nak90b, Cap01] and in the present experiment (see Section 
4.2 and refs. [Orr03, Cap04]), the separation of the doublet is obtained detecting the 7Be 
ejectiles by a high-resolution magnetic spectrometer. This makes also possible to measure at 
very forward angles, including 0°. 

On the basis of the actual knowledge, it is not possible to draw certain conclusions on 
the dynamics of the (7Li,7Be) CEX reactions. The interest in the comprehension of the 
reaction mechanism and the richness of information that can be extracted from (7Li,7Be), 
especially when exotic nuclei are involved, make necessary further investigations. Systematic 
measurements of high resolution energy spectra, cross sections and G factors at very forward 
angles, together with the development of a sophisticated theoretical model, are needed.  
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CHAPTER 4 

 

THE 15N(7Li,7Be)15C REACTION: 

EXPERIMENTAL SET-UP 
AND MEASUREMENTS 

 

 
This Chapter describes the experimental set-up and measurement strategy for the 

15N(7Li,7Be)15C CEX reaction at 55 MeV incident energy. The purpose of the experiment was 
to study the spectroscopy of the 15C nucleus and the CEX mechanism. The experiment was 
performed at the Tandem laboratory of IPN-Orsay (France) on June 2002, using a 55 MeV 
7Li+++ beam and a high-purity (99.8 %) 15N gas target, designed and constructed on purpose at 
the LNS-INFN (Catania) [Orr03, Cap04]. The 7Be ejectiles were detected by the IPN-Orsay 
Split-Pole magnetic spectrometer. 

The goal of this experiment was to obtain clearer data on 15C and explore a wider 
angular range – especially forward angles – compared to our previous experiment, which was 
performed at the IPN-Orsay on February 2001 in order to explore the 15C [Noc03] and 14B 
[Orr01] spectra. In that occasion a major damage to the Split-Pole focal plane detector forced 
us to use a silicon �E-E telescope and measure at �lab = 10° only. 

The gas target (described in Section 4.1) was a crucial factor to overcome the 
difficulties came up in the analysis of the data taken in the previous experiment with a 15N 
enriched melamine solid target [Noc03]. The experimental set-up is described in Section 4.2, 
while Section 4.3 concerns with the realization of the measurements. 

4.1 The gas target 
15N is a rare nitrogen isotope, which only constitutes the 0.37 % of the whole nitrogen 

present on the Earth. Nevertheless, highly pure stocks of such a gas can be found in the 
market. More difficult is to design an efficient shape for the container, which minimizes the 
energy straggling while maximizing the effective target thickness. 

The choice of a gas target, fundamental for the experiment success, was stimulated by 
the incomplete results obtained in the previous experiment [Noc03] with a 15N enriched 
melamine C3H6N6 (supported by 30 9g/cm2 12C backing) solid target, which gave a large 
background produced by the 12C impurity in the target. This background, together with the 
low yield of the 15C peaks, did not allow to draw safe conclusions about 15C. 
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Figure 4.1. Design of the gas target. 1) Beam entry window (nickel). 2) Beam exit window (nickel). 3) Lateral 

window for monitor (mylar). 4) Optical center. 

 
We used a confined high-purity (0.2 % 14N) 15N gas target (schematised in Figure 4.1), 

which was designed and constructed at the LNS-INFN (Catania). This target guarantees a 
high gas purity and may work at high density – dependent on the gas pressure – to increase 
the effective target thickness, in order to achieve a good statistic amount of data. However the 
necessity to have simultaneously a good experimental resolution imposes some limitation to 
the pressure value, especially at forward angles. 

In general, the best compromise between different parameters has to be chosen. Unlike 
a differential pumped gas target, a confined gas target must include appropriate windows for 
beam inlet and reaction products outlet. These windows have to be thin as much as possible to 
not straggle the particle energies, but at the same time they have to support the pressure 
difference with the scattering chamber under vacuum (greater the gas pressure and greater the 
mechanical force on the windows). 

The shape of the gas target is a parallelepiped (011 cm long) with the beam entry and 
exit windows made from nickel (0.6 9m thick) to withstand the beam heating; the lateral 
window for a monitor telescope is made from mylar (1.5 9m thick). The size of the exit 
window (2 cm large) allows the Split-Pole to explore an angular range between 0° and 16° 
(limit angle). The nickel is an appropriate material for the beam windows, because it is a good 
conductor with a high melting point; besides a thin (0.6 9m) nickel foil may support a 
differential pressure of 100 mbar. The energy straggling of a 7Li beam (55 MeV) through a Ni 
window 0.6 9m thick is about 44 keV, as calculated by the TRIM code [Sri00], with an 
average energy loss of 160 keV, tolerable for our purposes. 

The target shape is designed in order to reduce scattering background from the window 
(see Fig. 4.1). The particles produced in the entry window will be stopped on the target walls, 
while a collimator located at the entrance of the Split-Pole (see Fig. 4.4) reduces the 
background from the exit window. However these precautions have no effect for the 0° 
measurements, in which therefore a considerable Ni background is expected. 

The window thickness traversed by the outgoing particles varies with the detection 
angle (teff = t / cos�); thus the exit window has an oblique closure to mediate the thickness 
differences. 
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Figure 4.2. Scheme of the detector-target system. The tick line represents the gas target (l = 111 mm). The beam 

direction is indicated by the arrow. 

4.1.1 Calculation of the geometr ical factor  g(����) 
The collimator at the entrance of the Split-Pole was also used to define the explored 

collision zone. In fact, another problem which arises when one uses a gas target is that the size 
of the collision region, the solid angle of detection and the angular spread are defined by the 
collimating system and vary with the angle of detection. 

Let us consider the definition of the yield of a certain nuclear process: 
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where NINC is the number of incident particles, N Vol

TAR  is the number of target nuclei/cm3, 
�(�,z) is the laboratory differential cross section and z = z(�) represents a generic point of the 
target, which is supposed to be mono-dimensional for simplicity. 

If �(�,z) 1 �(�), i.e., the cross section variation with z may be neglected, we obtain: 
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Formula (4.3) defines the detection geometrical factor g(�), it accounts for the effective 

target thickness l(�) and solid angle :(z(�)) which are seen from the detector and are 
determined by the peculiar geometry of the whole system (target, collimator and detector). 

For the measurements at 0° and 2.5°, performed without the collimator (see Sect. 4.3), 
g(�)/sin� may be calculated simply integrating the solid angle element d:(z) on the target 
length because in this case the detector sees the whole target length l(�) 1 l = 111 mm. Thus: 
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Figure 4.3. Schematic diagram showing the case of a vertical front slit and a rectangular rear aperture, taken 

from the original paper by Silverstein [Sil59]. It shows the geometric relations between a point on the beam axis 

from which scattered particles originate, and an area element d' d< of the rear aperture, through which they pass 

after being scattered through an angle �. The vector diagram applies to all cases. 

 
 

where S is the detector sensitive area, determined by the slits span and assumed to be point-
like to integrate; (d� – z) and d; are the components of the vector distance d(z) between target 
and detector (d; = 0 at 0°), as shown in Figure 4.2. 

At larger angles the calculation of g(�) is more complex due to the presence of the two 
rectangular apertures of the collimator, used to define the collision zone and reduce the 
background from the exit window. The geometrical factor will also depend on the derivatives 
of the cross section with respect to the angle, since the effect of the variation of the cross 
section over the small angular range accepted by the rear aperture cannot always be neglected. 
In this case g(�) was calculated following the Silverstein method [Sil59]. Silverstein’s 
calculations concern geometrical effects only, without taking into account effects due to slit 
edge or multiple scattering. He treats different types of aperture boundaries, integrating on the 
area elements d' d< of the rear aperture and considering the contribution from the total length 
of beam seen by each element.  

We are interested in the case of a vertical front slit and a rectangular rear aperture, as 
schematised in Figure 4.3, and therefore we used the relative formulae of ref. [Sil59] to 
calculate g(�), in which the beam is considered a line beam, i.e., the effects arising from the 
finite diameter of a real beam are neglected. It is noticed that the Silverstein’s formulae are 
not applicable without a collimator and/or at 0° because some parameters become undefined; 
besides in every case they give g(�), but the needed g(�)/sin� value diverges at � = 0°. Thus 
in these cases we have to use formula (4.4). 

The calculated geometrical factor values, obtained for the different angles of 
measurement, are reported in Table 4.1. 
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Table 4.1. Calculated geometrical factor g(�)/sin� at different angles. Formula (4.4) was used for �lab = 0°, 2.5°. 

For �lab = 8°, 10°, 14° we used the formulae of ref. [Sil59].  

 

��(.)��(.)��(.)��(.) 0 2.5 8 10 14 

g(����)/sin��������[mm . sr] 0.182 0.026 0.027 0.021 0.015 

 

4.2 Exper imental set-up 
A picture of the adopted experimental set-up is shown in Figure 4.4, where the 

scattering chamber is visible, together with the gas target at the center, the collimator at the 
entrance of the Split-Pole and the monitor detector located at �mon = 20°. The beam direction 
is also indicated. The details of the devices are discussed in this Section.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4. Photograph of the scattering chamber. The beam enters from right and goes into the gas target, at the 

center of the chamber. On the left , we can see the Split-Pole collimator and the monitor detector at �mon = 20°. 

 

4.2.1 The beam 
The 7Li+++ beam was produced and accelerated at 55 MeV at the Tandem Van de Graaff 

facility of the IPN-Orsay laboratory, and send to the Split-Pole magnetic spectrometer, 
located at the end of one beam line. The energy definition of the IPN Tandem is quite good 
(�E/E ~ 2 .10–4), giving a good matching with the optical properties of the spectrometer. The 
beam, focused by various optical elements, enters in the scattering chamber and, passing 
through the gas target, is trapped into a Faraday cup. The beam intensity ranges from 2 nA for 
the 0° measurements, to 15 nA for the larger angles ones. 

  

monitor 

target 

collimator 

beam 
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4.2.2 The scatter ing chamber  and monitor  detector  
The reaction takes place into the cylindrical scattering chamber shown in Figure 4.4, 

with the axis normal to the beam direction and a radius of 20 cm. The chamber is provided 
with a sliding seal, it allows that the spectrometer rotates under vacuum (~10–6 torr), 
exploring the angular range from –12° to +150° with respect to the beam direction. The gas 
target is placed at the center of the chamber. The wall of the chamber has a lateral aperture, 
equipped with movable horizontal and vertical slits, to which the collimator may be 
connected. The aperture gives a direct connection to the Split-Pole spectrometer.  

A �E-E telescope composed by two silicon detectors (100 9m and 1000 9m thick, 
respectively) was used to monitor, e.g., possible gas pressure and beam intensity variations. 
Disposing the monitor detector at �mon = 30. and more is usually necessary to discriminate the 
various elastic peaks due to the impurities present in the target. In this case we did not expect 
to have background from impurities (as, e.g., 12C) owing to the use of a high-purity (0.2 % 
14N) 15N gas target. Therefore the monitor was mounted in the scattering chamber at �mon = 
20. to increase the number of counts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5. Photograph of the Split-Pole magnetic spectrometer. The beam enters from left and goes into the 

scattering chamber. The reaction products are selected by the magnetic elements (in red) of the spectrometer and 

identified on the focal plane detector (big silver box). 

4.2.3 The Split-Pole magnetic spectrometer  
The 7Be ejectiles were detected by the IPN-Orsay Split-Pole magnetic spectrometer 

[Spe67], shown in Figure 4.5, in order to measure at forward angles and with high energy 
resolution (�E/E ~ 1/2000). The optical elements of the spectrometer consist of two magnetic 
dipoles – as schematised in Figure 4.6 – which assure an efficient selection of the reaction 
products. The first dipole focuses on the vertical plane while the second one focuses on the 
horizontal plane and both disperse the particles on the focal plane according to their magnetic 
rigidity B" = p/q.  
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Figure 4.6. Scheme of the Split-Pole magnetic spectrometer. The first dipole focuses on the vertical plane while 

the second focuses on the horizontal one; they both disperse the particles on the focal plane according to their 

magnetic rigidity B" = p/q. 

 
 
The associated focal plane detector (FPD), shown in Fig. 4.7, consists of a proportional 

counter with cathode strips read by a delay line, used to measure the energy loss �E and the 
position of the particle, and a stopping Ne102 plastic scintillator foil, which measures the 
residual energy Er. The FPD is filled by pure propane gas at a pressure of about 330 mbar. 

A particle entering the FPD detector creates a track of ions and electrons drifting at 
constant velocity along the uniform electric field lines. When the drifting electrons reach the 
active region (0 50 9m from the anodic wire), they start a quick and very localised 
multiplication process, giving an amplified signal only on the underlying cathode strips, 
which allows to measure the horizontal coordinate by the delay line readout technique. The 
electron drift times determines the vertical coordinate; the start signal for the drift time 
measurement is given by the scintillator. Besides, the anodic wire collects the charge 
produced by the particle, related to the energy loss �E. Particles reaching the plastic 
scintillator produce a signal read by a couple of photo-multipliers positioned on the left and 
right sides. The sum of the left and right signals is used to reconstruct the residual energy Er 
of incident particle. The acquisition system was triggered by the AND logical signal between 
the left and right fast signals of the plastic scintillator. 

As all the optical systems, a spectrometer is affected by optical aberrations. E.g., 
particles with same B" but emitted with different angles may be focused on FPD in different 
positions. Besides, both the vertical and horizontal extensions of the gas target enhances these 
effects. The collimator at the entrance of the Split-Pole serves to reduce them also, by limiting 
the angular acceptance and defining more precisely the collision region.  
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       Figure 4.7. Photograph of the focal plane detector. 

 

4.3 Measurements 
Preliminary to the measurements, a delicate first step consists of the alignment of the 

gas target with the beam direction and Split-Pole entrance. The target was lined up using two 
collimators appositely constructed on its top, by means of an external video camera 
visualizing the spot beam on a fluorescent material mounted on the top of the gas target. 

Caution was used in doing the vacuum into the scattering chamber and in pumping the 
gas into the target, because the thin target windows might be broken by a high pressure 
difference. The gas pressure was constantly monitored by a differential manometer between 
target and chamber, letting us intervene to compensate light leaks varying the aperture of the 
gas cylinder. In this way there were no relevant pressure variations during several hours of 
measurements, 1.5 mbar being the maximum bearable variation in order to have the desired 
experimental resolution. The gas pressure was set to 14 mbar for the 0° and 2.5° runs and to 
values from 55 mbar to 63 mbar for the larger angle runs.  

Another fundamental step of the measurement consists of the search for the optimal 
matching between the reaction kinematics and the magnetic field setting. In the case of the 
Split-Pole spectrometer this operation is easy due to the large momentum acceptance 
pmax/pmin 0 2.8. In fact considering that 

 

87.0
p

p
1

E

EE
2

max

min

max

minmax 2��



�
��
�

�
��

�
    (4.5) 

 
if the magnetic field is set so that the higher kinetic energy particles associated with a given 
transition exit at the largest radius side from the second dipole, one can measure 
simultaneously almost all (87 %) the excitation energy spectrum of the nucleus of interest. 
 

photo-multipliers 
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The angular range explored was �lab = 0°, 2.5°, 8°, 10°, 14°. Especially the 0° 
measurements were delicate. Because the Faraday cup was utilizable for �lab > 2° only, during 
the 0° measurements particular care was given to stop the beam: the magnetic field was set to 
stop the beam inside the second dipole. The collimator was not used during the 0° and 2.5° 
measurements because useless in the first case (at 0° the detector equally sees the whole target 
length) and banging with the Faraday cup in the second case. Supplementary runs with an 
empty target were performed at 0° and 2.5° in order to measure the background coming from 
the nickel windows, which is important at forward angles. 

To check the accumulated yield during the measurements it is important to be able to 
identify on-line the 7Be ejectiles. To do this the two peaks associated with the p(7Li,7Be)n 
reaction were used. These peaks represent the two solutions of the inverse kinematics 
equation of this process and, although the hydrogen was present in the target only as an 
impurity (i.e., in small quantity), they are characterised by a very intense large cross section 
and result dominant in the spectrum. An important property of the 15N(7Li,7Be)15C energy 
spectra is that the peak associated to the transition to the 15CGS lies in an intermediate position 
between the two previously-mentioned peaks. This, together with their simultaneous presence 
in the energy spectra at angles lower than 7.2. in the laboratory reference frame, makes these 
peaks a very useful reference to locate the region of the 15C peaks. In particular, the two peaks 
disappear for kinematical reasons at angles larger than 7.2°. 

However, a simple plot of �E versus B" is not enough to identify the 7Be region 
because of a superposition between the positions occupied by the 7Be and 7Li detected ions. 
To solve this problem the plastic scintillator (left, right and sum of them) residual energy 
spectra were considered. Putting various graphical cut conditions in the 7Be-7Li region of the 
�E-B" and Er-B" matrices, as explained in Section 5.1.1, it is possible to separate the two 
ions and 7Be may be clearly identified. 
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CHAPTER 5 

 

THE 15N(7Li,7Be)15C REACTION: 

DATA ANALYSIS AND 
EXPERIMENTAL RESULTS 

 

 
The present Chapter concerns the data analysis of the 15N(7Li,7Be)15C CEX reaction and 

the experimental results obtained. Together with the realization of the experiment, the data 
reduction constitutes a fundamental and critical phase of an experimental work. 

The various steps of data analysis, necessary to obtain the 15C excitation energy spectra 
from the raw data, are described in Section 5.1. The experimental results are shown in the 
subsequent Sections. In Section 5.2 the 15C final spectra and populated states are shown, from 
which a new important observation emerges: the interference effect in the peak corresponding 
to the 8.5 MeV state (see 5.2.3). The measured 15N(7Li,7Be)15C experimental cross sections 
and angular distributions are presented in Section 5.3, while in Section 5.4 the distributions of 
the G factor – related to the spin-flip probability, see 3.4.1 – are reported. 

5.1 Data analysis 
We discuss in detail the data reduction procedure used to extract the 15C excitation 

energy spectra, which consists of several precise steps: the first is the identification and 
selection of the 7Be ions, then the energy calibration, the background subtraction and so on. 

5.1.1 7Be identification and selection 
The first step consists of the identification and selection of the 7Be ejectiles. The 

reaction products were identified using the energy loss �E of the particle in the gas-filled 
FPD, the energy signal Er from the scintillator behind it and the B" obtained from position 
measurement of the delay line readout of the proportional counter, i.e., both in the �E-B" and 
Er-B" matrices, on the basis of energy loss and kinematical calculations. The identification of 
7Be is confirmed by the presence of the strong peak associated to the second kinematical 
solution of the (7Li,7Be) reaction on hydrogen (the peak related to the first solution was out of 
the spectrometer acceptance). The procedure of Section 4.3 for the on-line 7Be identification 
was improved in the off-line analysis, in order to achieve the same discrimination confidence 
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Figure 5.1. �E-B" matrix at �lab = 0°. The 7Be, 7Li and 6Li ions lie in the large central region, while � particles 

lie lower down. The intense peak on the left corresponds to the (7Li,7Be) reaction on protons. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2. Er-B" matrix at �lab = 0°. The 7Be region is overlapped to the 6Li and � ones, while the 7Li ions are 

separated. Still the strong peak on the left corresponding to the p(7Li,7Be)n reaction is indicated. 
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even in absence of the p(7Li,7Be)n transition peaks, i.e., for the spectra at laboratory angles 
bigger than 7.2.. In these cases the identification was based on the detailed knowledge of the 
matrices and 7Be spectrum, also determined by the previous experiment analysis [Noc03]. 

Graphical cut conditions were used to select the 7Be ions. Because of the superposition 
between the 7Be and 7Li regions in the �E-B" matrix (see Figure 5.1), we had to use a self-
consistent procedure to separate 7Be from 7Li, which consists of many graphical cut 
conditions imposed on the �E-B" and Er-B" matrices. In fact, in the �E-B" matrix the 
positions of the detected 7Be and 7Li are superimposed, together with the 6Li ions, while the � 
particles are clearly isolated (Fig. 5.1). On the contrary, in the Er-B" matrix 7Be and 7Li are 
separated, but the 7Be region is mixed with 6Li and �. 

 
 

FIRST STEP 

      

 
Figure 5.3. a) Coarse graphical cut $1 on the �E-B" matrix to exclude � particles. b) Er-B" matrix plotted using 

$1 condition: 7Be is separated from the � particles. 2.105 events are used. 

 
Thus, for each run we used the following iterative procedure, which allowed a visible 

improvement of the graphical conditions applied to the matrices. A first coarse graphical cut 
$1 is drawn on the �E-B" matrix to exclude the � particles, only including the region of the 
7Be-7Li superposition (Fig. 5.3a). This region is clearly identified by the presence of 
p(7Li,7Be)n transition peak for the spectra at �lab < 7.2° and by similarity between the �E-B" 
matrices for laboratory angles bigger than 7.2.. Then the Er-B" matrix is plotted with this first 
condition $1: 7Be is found to be separated from the � particles, besides 7Li is easily separable 
by cutting, but 6Li is still partially mixed (Fig. 5.3b). 

In the second step of the cut procedure a coarse graphical cut $2 is drawn on the last 
matrix in the 7Be corresponding line, excluding the 7Li ions (Fig. 5.4a). Now the �E-B" 
matrix is plotted again with both the defined graphical conditions $1 and $2: this matrix 
contains 7Be principally and some remaining 6Li (Fig. 5.4b). 
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SECOND STEP 

      

 
Figure 5.4. a) Second coarse graphical cut $2 on the Er-B" matrix to select 7Be excluding 7Li. b) �E-B" matrix 

plotted with $1 and $2 conditions. 2.105 events are used. 

 
 

THIRD STEP 

      

 
Figure 5.5. a) Fine graphical cut $3 on the �E-B" matrix to exclude the remaining 6Li. b) Er-B" matrix plotted 

with $3 condition. 5.105 events are used. 

 
At this point the whole procedure is repeated starting from the last matrix and using 

finer cuts, in order to achieve a greater rejection of unwanted events. A fine graphical cut $3 
was drawn on the �E-B" matrix of Fig. 5.4b, excluding 6Li as well as � particles (Fig. 5.5a). 
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FOURTH STEP 

       
  

Figure 5.6. a) Fine graphical cut $4 on the Er-B" matrix to select 7Be excluding 7Li. b) �E-B" matrix plotted 

with $3 and $4 conditions. The 7Be ions are accurately selected. 5.105 events are used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7.  Example of raw spectrum, extracted projecting the matrix of Fig. 5.6b on the B" axis with the fine 

conditions $3 and $4. The strong peak on the left corresponds to the second kinematical solution of p(7Li,7Be)n. 

 
Again the Er-B" matrix is plotted with the fine condition $3 (Fig. 5.5b) and a last fine 

cut $4 is imposed on it to separate 7Be from 7Li (Fig. 5.6a). In the end, the �E-B" matrix is 
plotted using the two fine conditions $3 and $4 (Fig. 5.6b). In this way the 7Be ions may be 
selected accurately. The raw spectra were extracted projecting the last matrix on the B" axis 
with the fine conditions $3 and $4 (an example with all the full statistics is shown in Fig. 5.7).  
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5.1.2 Excitation energy calibration 
The detected ejectile 7Be is particle stable only in his ground state and first excited state. 

Therefore the (7Li,7Be) CEX reaction may populate two bound 7Be states: the 3/2� GS and the 
1/2� first excited state at Ex = 0.429 MeV (see Section 3.3), indicated as 7BeGS and 7Beexc, 
respectively. Thus the measured spectra show doublets of peaks for each state of the recoil 
nucleus 15C. At low incident energy, as in the present experiment, these doublets are resolved 
by detecting the 7Be ejectiles in a high-resolution magnetic spectrometer. In our case, indeed, 
the energy resolution obtained (on average ~ 250 keV) allows an easy separation of the two 
7Be states. 

Starting from the raw position spectra (B" in channels), the kinetic energy calibration 
was done by a fit of five well identified peaks of the 7Be spectrum: the four peaks associated 
to the transitions to the 15C ground state and the known Ex = 0.74 MeV first excited and the 
peak associated to the second solution of the p(7Li,7Be)n reaction. For a magnetic 
spectrometer the relation between kinetic energy T and channel Ch derives from B" = p/q 
= 2mT /q, thus the fit was done using a quadratic function: T = p1 + p2 Ch + p3 Ch2. In 
addition, since the ion mass is involved in the B"-formula, the energy-channel 
correspondence is dependent on the relevant ion. Therefore the focal plane calibration has to 
be done for mass 7. 

The calibration was done separately for each spectrum measured at different angles. The 
peak parameters – peak centroid in channels obtained via the gaussian fit and the kinetic 
energy calculated by the Catkin code [Cat02] – used for doing the quadratic fit are reported in 
Table 5.1, concerning, e.g., the �lab = 0° spectrum. In the 0° case the fit is shown in Figure 
5.8. The parabola obtained is almost linear: T = [30.4 + 3.10–3 Ch – 6.10–9 Ch2] MeV.  

 
Table 5.1. Parameters of the peaks used for the 0° focal plane calibration from magnetic rigidity in channels to 

kinetic energy. The peak centroids (second column) were obtained through gaussian fits; the kinetic energies in 

the third column were calculated by the Catkin kinematical code.  

 

Peak Channel T [MeV] 
15CGS + 7BeGS 4747 44.08 
15CGS + 7Beexc 4638 43.63 
15C0.74 + 7BeGS 4441 43.30 
15C0.74 + 7Beexc 4354 42.84 

2nd sol. p(7Li,7Be)n 738 32.50 

 
 
The next step concerns with the transformation of the 7Be spectra, which actually are in 

kinetic energy, into 15C excitation energy. The advantage of this procedure consists of the fact 
that the same 15C excitation fall at the same channel in spectra at different angles. On the 
contrary, peaks associated to transitions not involving 15C excitation (i.e., produced by 
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Figure 5.8.  Focal plane calibration line at �lab = 0°: kinetic energy in MeV vs focal plane position in channels. 

The errors are contained inside the marker key. 

 
 

target impurities) will have different positions at different angles, because of the different 
kinematics. By adding spectra at different angles, these latter transitions will produce broad 
structures, while the 15C peaks will remain sharp. This improves the signal to background 
ratio and facilitates the identification of the 15C peaks. 

The excitation energy transformation was done using the non-relativistic kinematical 
formula which gives the excitation energy Ex of the residual nucleus, knowing the Q-value of 
the relevant two body reaction: 
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where: Q = –10.633 MeV for the 15N(7Li,7Be)15C reaction; m1, m2, m3 and m4, are the mass of 
projectile, target, ejectile and residual nucleus, respectively; T and �lab are the 7Be kinetic 
energy and outgoing angle; Einc is the bombarding energy (55 MeV in this case). 

The use of kinematical energy values in the calibration does not take into account the 
energy losses into the gas target and detector. These are compensated by doing a final 
recalibration, via a linear fit between the peak centroids of the excitation energy spectra and 
the corresponding known values [Ajz91]. A simulation with the TRIM code [Sri00] confirms 
that the non-linearity of the energy losses with varying of the 7Be kinetic energy is negligible 
(a few keV). The complete calibration procedure gives an overall error on the excitation 
energy estimated less than 50 keV for each spectrum. 

At this point the runs from equal angles may be merged in order to reduce the statistical 
fluctuations. 

T
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Figure 5.9. Superposition of the 15C spectrum at �lab = 0° and the corresponding normalized background 

spectrum (shaded histogram) measured with the empty target. The main background contribution comes from the 

reaction on the nickel windows. A structure corresponding to the unresolved first four levels of 16N is also 

present, probably coming from the oxidation of the windows. The strong peak on the right is from the second 

kinematic solution of the p(7Li,7Be)n reaction. 15C peaks are also indicated. 

 

5.1.3 Background subtraction 
The use of the high-purity gas target was fundamental to avoid the presence of the 12C 

contaminant. As expected (Section 4.3) the main source of background in the 0° and 2.5° 
spectra was the 58Ni(7Li,7Be)58Co reaction on the target windows. This background was 
subtracted using normalized spectra measured in runs with an empty target. The background 
spectra were calibrated with the same curve used for the 15C spectra at the corresponding 
angle. However, the absence of the gas in the target causes different conditions for the 7Be 
ions, because of course they do not lose energy in the gas. The 7Be energy loss in the gas was 
estimated equal to 300 keV by a TRIM [Sri00] calculation, therefore the background spectra 
were shifted by this quantity. Then, they were normalized using the following procedure: the 
same portion of spectrum on the left with respect to the 15C ground state was integrated both 
in the 15C spectrum (let us call the integral value N15

C) and in the background spectrum 
(NBack), giving a normalization coefficient K = N15

C / NBack. The result of the normalization at 
�lab = 0° is shown in Figure 5.9. The continuous background is due to the fact that the reaction 
on nickel populates the 58Co continuum; the fluctuations in the background spectrum are 
owing to the low number of counts. Finally the background spectrum, appropriately smoothed 
to minimize statistical fluctuations, was subtracted from the corresponding 15C spectrum. 
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In these background spectra, a structure corresponding to the unresolved first four levels 
(ground and excited states at 0.12, 0.297, 0.397 MeV) of 16N populated in the 16O(7Li,7Be)16N 
reaction was found. Probably, the 16O impurity was present from oxidation of the nickel 
windows. At forward angles (�lab �! 7.2.) there is a strong contribution from the p(7Li,7Be)n 
reaction. Its subtraction is not effective because, since the high cross section of the (7Li,7Be) 
reaction on protons, it introduces large errors. Fortunately the peak corresponding to the 
hydrogen impurity is separated from most of the 15C peaks. 

A continuous background is present in the spectra from three-body reactions. For the 
spectra at �lab = 8°, 10° and 14° the background associated to 15N(7Li,n7Be)14C was modelled 
assuming a non-resonant 3-body phase space in the exit channel [Ohl65]. This assumption is 
justified from the kinematical selectivity of the (7Li,7Be) reaction and because the most 
important intermediate routes of the two-step process – populating 8Be – are hindered from 
the weak single particle components of  8Be states at low excitation energy [Etc88]. The phase 
space function "lab(T) dT d: was calculated analytically in the laboratory frame on the basis 
of the formulae of ref. [Ohl65]. Then a variable transformation was applied in order to obtain 
a function of the 15C excitation energy. Finally, a scaling factor was obtained empirically, by 
normalizing the phase space function to fit the high excitation energy region of each 
spectrum. 

5.2 15C final spectra 
A fit procedure based on the MINUIT [Min92] routines was adopted in order to achieve 

a correct integration of the 15C peaks. The precision obtainable using a simple gaussian 
function to fit the peak is limited by the presence of overlapping structures. 

5.2.1 The fit procedure 
The integration of the 15C peaks was based on a minimization procedure by the 

MINUIT routines, which allows a use of multigaussian functions. All the fits were done on 
spectra where the normalized background was subtracted. The fitted gaussian functions were 
then added to this background and the free parameters (centroid, standard deviation and 
height) were varied in order to fit the shapes of the peaks. As a general rule the centroids and 
widths of known transitions were forced to vary in narrow ranges around the values accepted 
in literature and, at the end of the procedure, they were strongly constrained, allowing only 
the heights to be free parameters. 

To improve the fit, the doublet related to 7BeGS and 7Beexc was contemporary fitted, 
generating for each 15C peak a second gaussian having the centroid shifted of 0.43MeV with 
respect to the centroid of the first one. For the peak associated to 7Beexc, the Döppler 
broadening due to the in-flight decay 7Beexc � 7BeGS + � has to be taken into account. The 
maximum spread from the recoil-broadening is given by the base width 

 
=E� = 2�E�      (5.2) 
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Figure 5.10. Example of the fit procedure. The fit involves two doublets at the same time, precisely: two 15C 

peaks (the ground and 0.74 MeV state, fitted by the black gaussians) and the correlated partners, associated to 
7Be excitation (indicated by an asterisk and fitted using red gaussians). The latter are fitted by strictly adding 

0.429 MeV to the centroids obtained from the fit of the former. The calculated Döppler broadening is added to 

the width (see text for more details). 

 
 
where � = v/c is the average 7Be velocity and E� = 0.429 MeV. Assuming for simplicity an 
isotropic angular distribution of the emitted �-rays [Win97, Win01]: 
 

�Döppler = 2/3 =E�� � 7� �Döppler = (2/3 =E�)/2.35  (5.3) 
 

Thus the width of the second gaussian is fixed to: 
  

�Second = [�First
2 + �Döppler

2]1/2     (5.4) 
 
where �First represents the width of the first gaussian. A full treatment of the Döppler 
broadening effect when the angular distribution of �-emission is known is given in ref. 
[Boh78]. The contemporary fit of the two peaks strongly reduced the uncertainties on the 
procedure itself. For close peaks which are not completely resolved, as are sometimes the 15C 
ground and first excited state, the fit involves four peaks at the same time: the two 15C peaks 
and the respective doublet partners. An example of this is shown in Figure 5.10. 

5.2.2 The 15C spectra  
The 15C experimental spectra were obtained at �lab = 0°, 2.5°, 8°, 10°, 14°. In Figure 

5.11 the 15C spectra measured in the two limit cases �lab = 0° and 14° are shown; the small 
inset shows a detail of the 8° spectrum (see Section 5.2.3). 
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Figure 5.11. Excitation energy spectra for the 15N(7Li,7Be)15C reaction. Peaks marked with an asterisk are 

associated to the excitation of 7Be at 0.429 MeV. a) Spectrum measured at 0.. The shaded histogram represents a 

smooth of the background measured with the empty target. The continuous line is the sum of the background and 

the fitted peaks (dark gaussians). b) Spectrum taken at 14.. The shaded histogram represents the non-resonant 
15N(7Li,n7Be)14C 3-body phase space. The continuous line is the sum of the latter with the fitted gaussians. 

c) Detail of the spectrum at 8° (see Section 5.2.3). 
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Table 5.2. States populated in the 15N(7Li,7Be)15C reaction at 55 MeV in the present experiment. Values from 

refs. a)=[Ajz91], c)=[Gar74], d)=[Gos75] are given for comparison; b)=present work. 

 

Ex [MeV] ���� [keV] Ex [MeV]  (a) J���� Structure (d) 

0.00�0.03  GS 1/2+ (a,b 14C(0+)�(s1/2)  S=0.88 

0.77�0.03  0.7400�0.0015 5/2+ (a,b 14C(0+)�(d5/2)  S=0.69 

6.77�0.06 <160 6.841�0.004 (11/2,13/2)(c,d  

7.30�0.06 <  70 7.352�0.006 (9/2,11/2) (c  

8.50�0.06 <140 
8.470�0.015 
8.559�0.015 

(9/2�13/2) (c 
(7/2�13/2) (c 

 

 
The observed energy resolution �int � 250 keV was obtained by evaluating at each angle 

the best width of the fits of the two bound states. This resolution is poorer than in ref. 
[Cap01], where the same experimental devices were used, because in this case the ions 
originate in a long angle-dependant segment (the gas target), thus they are generated at 
different incident energies and have different energy losses in the gas, besides they are 
detected with ���� �1° giving kinematical broadening, which is not completely compensated 
by the spectrometer. However, the resolution obtained is enough to separate the 7Be states. 

In the present experiment, the 15C ground and excited states at Ex = 0.77, 6.77, 7.30, 
8.50 MeV were observed, as shown in Fig. 5.11. In the spectra a structure at Ex = 6.4 MeV is 
also evident that could include contributions from several closely spaced 15C levels (see ref. 
[Ajz91] for more details). In Table 5.2 the values of the centroids and the upper limits of the 
natural widths of the 15C resonances populated, obtained from gaussian fits of the peaks, are 
presented. For each angle, the natural width � was calculated as: 

 
� = [�exp

2 – �int
2 – �Döppler

2]1/2     (5.5) 
 
where �exp represents the fitted width of the peak, �int is the energy resolution and �Döppler,  
given by formula (5.3), accounts for the broadening effect from the in-flight �-ray emission 
for transitions associated to 7Beexc. For each state, the centroid and width were obtained from 
the mean value and standard deviation for the independent evaluations made at different 
angles. The error introduced by the fit procedure was negligible. The uncertainties on the 
excitation energies are dominated by systematic errors, mainly associated to the calibration 
procedure. In particular a systematic error of � 30 keV for the peaks corresponding to bound 
15C states and � 60 keV for that in the neutron continuum was assumed. The excitation 
energies deduced are in agreement with those obtained in the previous experiment [Noc03]. 

Besides the two 15C bound states, the ground and the first excited (which is the most 
prominent), three narrow resonances (Ex = 6.77, 7.30, 8.50 MeV) beyond the neutron 
emission threshold are evident. The observation of narrow states in the continuum confirms 
our expectations about the 15C nucleus, based on the arguments discussed in Chapter 2. As we 
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will see in Chapter 7, these states may be interpreted as BSEC excitations (see Sect. 2.2), 
described in terms of quasi-bound core-excited configurations. The 15C spectra show a 
parallelism with the 11Be ones ([Cap01], also shown in Sect. 2.2): in both nuclei the (7Li,7Be) 
reaction populates two weakly-bound states (g.s. and first excited), between which there is 
inversion of the neutron orbitals with respect to the single particle shell model ones, and 
various narrow resonances in the continuum. The (7Li,7Be) reaction is confirmed to be very 
useful for spectroscopic studies in exotic nuclei. 

The 15C structure will be analyzed in detail in the next Chapters, where microscopic 
calculations based on different theoretical models succeed to explain the full 15C spectrum. 
The experimental data on the 15C spectroscopy have been published in refs. [Orr03, Cap04]. 

5.2.3 The inter ference effect 
The 8.5 MeV state was observed also in the previous experiment [Noc03]. Here, a new 

important feature, not observed before because of the strong 12B background, is the 
suppression of counts immediately before the 8.5 MeV peak (see Fig. 5.11 and the zoom in 
the inset). This “hole”  is clearly seen in the 0°, 8°, 14° spectra (all the spectra in which the 
peak is not obscured by background), moving, as expected from the kinematic, to different 
channels, i.e., to different positions on the spectrometer’s focal plane proving that it is not 
caused by an anomalous behaviour of the focal plane detector. In analogy with the (p,p’) 
inelastic scattering on nuclei, where isolated resonances arising from the coupling of a single 
particle continuum to a BSEC were found [Bau77], we suggest that this could be an 
interference between the non-resonant 3-body phase space and the 8.5 MeV BSEC. 

In general, the interference effects gives rise to typically asymmetric peaks in the 
spectra, where the resonant part has a Breit-Wigner form but the total line shape has a more 
complicated energy dependence [Bau77]. Here we have used a simple model of a gaussian 
function and the non resonant 3-body phase space of ref. [Ohl65] to fit the 8.5 MeV peak. 
However, this is incorrect because the peak is asymmetric and the 3-body continuum is 
deformed by the interference. In order to check the evolution of the line shape as a function of 
the scattering angle, a qualitative parameter defined as the ratio between the areas of the hole 
and the peak can be used. We found that this ratio varies with the scattering angle, being 
12 � 2 % at 0°, 7 � 3 % at 8° and 3 � 2 % at 14°. This result strengthens our interference 
hypothesis, because a dependence from the angle is expected in such phenomena. 

In Chapter 8 the resonance line shape will be investigated in detail by theoretical 
calculations, similar to those developed in ref. [Bau77] to describe the interference effect in 
the spectra of the (p,p’) inelastic scattering. 

5.3 Cross section and angular  distr ibutions 
Given a certain nuclear transition, the differential cross section is defined as: 
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where N(�) represents the number of counts measured at the angle � for the relevant 
transition, NINC is the number of incident particles, NTAR is the number of target nuclei per 
unit surface, �: is the solid angle and K is the dead time coefficient. The last equality in 
formula (5.6) allows an expression of the cross section in terms of the geometrical factor g(�) 
(see Section 4.1.1). The direct measurements of these parameters usually are not very 
accurate, giving an error ~ � 10 % on the cross section value in absolute units (9b/sr). The use 
of a monitor detector placed at a fixed position �M allows a comparison of data acquired in 
different experimental conditions, as, e.g., measurements at different angles in order to 
determinate the angular distributions. Let us consider the measurements at two different 
angles: 
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The direct comparison between the two cross sections is meaningless because their value 
depend on the parameters in the denominator. The independent measurements of a monitor 
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obtained during the same runs, allow to measure the ratio between the two differential cross 
sections (5.7) without the need to know the on denominator quantities. In fact, for a given 
transition, the monitor cross section is the same in all the runs and the monitor solid angle is 
fixed. Thus, combining the (5.7) and (5.8): 
 

# $ # $
# $

# $ # $ # $
# $

# $M
2M2

M2
2M

1M1

M1
1

�
�

d

�d
  

 
�

N    
�

  

�
    

�
N�

�
d

�d
            

�
�

d

�d
  

 
�

N    
�

  

�
    

�
N�

�
d

�d

�

�
�

�

�
�  (5.9) 

 
and finally we have: 

# $

# $

# $
# $

# $
# $2

2M2

1M1

1

2

1

�
N

�
N 

���

 
 

�
N 

���
  

�
N

�

d
�

d	
 

�

d
�

d	

�    (5.10) 

 
where the only necessary measurements are the integrated counts in the two runs by the 
spectrometer and monitor, together with the knowledge of the Split-Pole solid angles. From 
(5.10) the cross sections at different angles are obtained in arbitrary unit (a.u.). The next step 
is to transform the angular distributions obtained into the center of mass (CM) reference 
system. Then the absolute normalization of the cross section (9b/sr) is calculated. 

Unfortunately, for the runs at �lab = 8°, 10°, 14° there are no monitor measurements due 
to damage to the �E detector, thus the monitor technique cannot be applied and the cross 
section has to be calculated directly in absolute units. In particular, for each peak the 
integrated counts N(�) were obtained by integration on the best-fit gaussian function. Besides 
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the statistic error, the error due to the background subtraction was taken into account at 0° and 
2.5°. The number of target nuclei/cm3 N Vol

TAR was calculated using the equation of state for an 
ideal gas, applicable given the low pressure values of the gas in the target. This gave a 
precision on the N Vol

TAR value (~ 1 %) better then the one obtainable using a solid target. The 
solid angle covered was calculated in terms of the geometrical factor g(�) following the 
Silverstein method (see 4.1.1); the high precision on the measurements of the distances 
involved in the calculation gave a negligible error on the g(�) value. The statistic error on the 
coefficient K is found to be negligible also. The main source of error (~ 10 %) came from the 
determination of NINC = nbeam t (beam integration), because of uncertainties in the Faraday cup 
efficiency. The error on the cross section is due to the combined effect of the different error 
sources, according to the propagation of errors law: 
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As an example, the error on the cross section associated to the transition to the 15C first 

excited state is 22 % at 0°, 19 % at 2.5°, 21 % at 10° and 13 % at 14°. The coordinate 
transformation from the �lab to the �CM reference system was obtained multiplying the 
normalized counts N(�) by the Jacobian determinant of the transformation, calculated at each 
angle and energy of interest. The error on the �CM angles was calculated applying the same 
coordinate transformation on the total angular range accepted by the spectrometer. 

The angular distributions for the cross sections associated to the observed 15C states are 
presented in Figure 5.12a and 5.12b for transition involving 7BeGS and 7Beexc, respectively. In 
general they are forward peaked and show no strongly oscillatory patterns, as typical for the 
CEX reactions involving light nuclei [Coo84, Etc88]. This behaviour is due both to the 
various angular momenta transferred in the reaction and to the superposition between the one-
step process (dominant at forward angles) and the flat two-step contribution at larger angles. 
Unfortunately we have only few points, however a good agreement with the point of the 
previous experiment (the 15C first excited state at 10°) is found: the measured cross section 
values are 110 � 24 9b/sr (present) and 90 � 27 9b/sr [Noc03]. 

In Chapter 6 theoretical angular distributions of the 15N(7Li,7Be)15C reaction are 
obtained for the two 15C bound states by dynamical DWBA calculations, which take into 
account the effects of the CEX transition operator and the optical potential. The experimental 
angular distributions were published in ref. [Orr03]. 

5.4 G factor  distr ibutions 
The angular distributions for the factor G = �(7Beexc) / [�(7BeGS) +��(7Beexc)], defined 

in Section 3.4.1, were obtained for each 15C state by dividing the cross sections associated to 
7BeGS and 7Beexc. By definition, the error on the G value arises from the error on the integrated 
counts only. Concerning the error on the center of mass angle, the small shift because of the 
different coordinate transformation was neglected compared to the error estimated in the 
angular distributions. 
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Figure 5.12. Angular distributions for the cross sections associated to the transitions to the 15C ground and the 

excited states at Ex = 0.77, 6.77, 7.30, 8.50 MeV. a) Transition involving the 7Be ground state. For the 0.77 MeV 

state a good agreement with the value measured in a previous experiment is obtained. b) Transition involving the 
7Be first excited state. 

 
 
 

Table 5.3. Values of the G factor measured for the 15N(7Li,7Be)15C reaction at �lab = 0°. 

 
15C state g.s. 0.77 6.77 7.30 8.50 

G 0.30�0.05 0.31�0.02 0.24�0.13 0.39�0.08 0.25�0.08 

 
 
In Table 5.3 the G-ratios measured at �lab = 0° are presented, while in Figure 5.13 the 

extracted angular distributions for G are showed. The values of G at 0. indicate the 
prominence of nucleonic spin transfer dynamics. The CEX-QRPA calculations of Chapter 6 
will give theoretical distributions of G to compare with the experimental ones for the two 15C 
bound states. 
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Figure 5.13. Angular distributions for the G-ratios. 

 

5.5 Summary 
The 15N(7Li,7Be)15C charge exchange reaction at 55 MeV incident energy was studied at 

forward angles in order to explore the 15C excitation energy spectrum. This reaction is 
confirmed to be extremely useful for spectroscopic studies in exotic nuclei. The gas target was 
a crucial factor to overcome the previous difficulties with the solid melamine target. The 15C 
ground and the states at Ex = 0.77, 6.77, 7.30, 8.50 MeV were populated. The energy 
resolution (0250 keV) allowed the identification of these transitions each for 7Be ground and 
first excited state at Ex = 0.429 MeV. 

The 15C structure will be analyzed in detail in the following Chapters by microscopic 
calculations. Besides the remarkable observation of three narrow resonances above the 
particle threshold, another new and important observation is represented by the interference 
effect between the 8.5 MeV state and the underlying non-resonant 3-body phase space, which 
will be investigated in Chapter 8.  

The angular distributions were measured for the observed transition together with the 
angular distributions of the G factor, which shows a general trend to spin transfer dynamics. 
For the two 15C bound states, in Chapter 6 the angular distributions of the cross section and G 
factor will be compared with the theoretical ones calculated by one-step dynamical 
calculations. 
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CHAPTER 6 

 

THE 15N(7Li,7Be)15C REACTION: 

THEORETICAL ANALYSIS 
IN THE CEX-QRPA APPROACH 

 

 
The theoretical analysis of the 15N(7Li,7Be)15C CEX reaction is discussed in detail in the 

present Chapter. An approach based on the Charge EXchange Quasiparticle Random Phase 
Approximation (CEX-QRPA) theoretical framework [Row70, Bre88, Len88] was employed 
to describe the structure of the observed 15C strength distribution and the angular distributions 
of the 15N(7Li,7Be)15C reaction. Spectroscopic information is derived assuming a simple one-
step reaction mechanism mediated by the isovector component of the effective NN-interaction 
V(&), which includes the tensor contribution (see Section 3.1.1). One-step microscopic 
calculations were performed, following the CEX-QRPA theory such as developed in refs. 
[Bak97, Cap04b] to describe the inelastic scattering (p,p’) and (d,d’) and the (7Li,7Be) CEX 
reaction on 11B, respectively. This approach takes into account in a realistic way the state-
dependent pairing field felt by the quasiparticles and an average treatment of the 2p-2h 
configurations, normally not considered neither in the QRPA problem nor in CEX dynamics.  

The 15C bound states are described in terms of correlated 1p-1h excitations with respect 
to the ground state of the parent nucleus 15N. The results of nuclear structure calculations are 
directly inserted into the scattering equations to calculate the cross sections. Consistency 
between structure and reaction mechanism calculations is achieved through the use of the 
same effective NN-interaction in every step of calculations. In fact, following the semi-
phenomenological approach of refs. [Bak97, Hof98], both the static mean and pairing fields 
derive from the residual interaction of Hofmann and Lenske [Hof98], which is also used in 
the QRPA and DWBA calculations. This approach, already applied to the 11Be nucleus 
[Cap01, Cap04b], is confirmed to be well suited for light neutron-rich nuclei. In fact it 
succeeds in describing both 11Be and 15C without change of the basic parameters. 

The Chapter is organized as follows: Sections 6.1 is devoted to the QRPA formalism. 
Sect. 6.2 gives the details of the structure calculations, with the determination of the response 
functions based on the RPA-Green’s function method [Bak97]. The residual NN-interaction 
[Hof98] is described in Sect. 6.3. The results of the QRPA calculations are shown in Sect. 6.4. 
The dynamical DWBA calculations are described in Sect. 6.5 and their results are given in 
Sect. 6.6. The results of Sect. 6.4 and 6.6 are compared with the experimental data of Chapter 
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5. Important information is obtained on both the nuclear structure and dynamics involved in 
the reaction. Finally, our conclusions are stated in Sect. 6.7. 

6.1 The QRPA formalism 
Independent single particle models, such as the shell or Hartree-Fock (HF) ones, 

describe the low-energy excited states of the even-even nuclei as 1p-1h or two-quasiparticle 
(2-QP) excitations. The Random Phase Approximation (RPA) theory [Rin80], introducing 
correlations between particles and holes, constitutes the next step with respect to the mean 
field approaches. In this theory, a more careful description of the nuclear states is achieved in 
terms of correlated 1p-1h excitations, a description which also stays valid for the highly 
excited states. The basic idea is that a strong attractive residual interaction between particle-
hole pairs will strongly lower the energy of a highly correlated state, while a repulsive 
interaction will have the opposite effect. This energy shift constitutes the real part of a 
complex quantity, called self-energy, and depends on the strength of the residual interaction 
and correlations. The imaginary part of the self-energy accounts for the possible broadening 
of the state due to the energy shift, since the decay width may change. This model practically 
includes weak perturbations of the mean field in the continuum. 

 

 

Figure 6.1. Scheme of the occupation probabilities for a) well-bound and b) weakly-bound nuclei. 

 
The weak binding of the valence particles and the coupling with the continuum are of  

crucial importance for a correct description of a drip-line nucleus, such as 15C. In fact (as 
schematized in Fig. 6.1), while for a well-bound nucleus all the states until the Fermi energy � 
are occupied, for weakly-bound nuclei the Fermi surface has a significant diffuseness. This 
softness corresponds to an occupation probability which, for �k > �, increases for the particle 
states and decreases for the hole ones. For these systems the equations of motion become 
complicated because of a more complex formalism which distinguishes between particles and 
holes both above and under the Fermi surface. The Quasiparticle RPA (QRPA) theory allows 
a treatment of the weakly-bound systems in an equivalent way. As we will see, by applying 
the linear Bogoliubov-Valatin transformation from the single particle to quasiparticle states, it 
is possible to explain the states of the weakly-bound nuclei as correlated 2-QP excitations, 
including at the same time both particle and hole excitations. Moreover, the QRPA theory, 
together with an appropriate residual interaction, allows the taking into account of the pairing 
correlations, which play a fundamental role in drip-line nuclei. 

An RPA problem is defined by specifying the ground state system (or vacuum state) 
and the residual interaction. In the RPA model the Hilbert space of the excited states is 
truncated to include only 1p-1h excitations on the (correlated) ground state. The latter may be 

 
  a)   b) 
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described by the following Hamiltonian: 
 

HA = T + V = T + U + (V – U) = H0 + Vres       (6.1) 
 
where A is the nucleus mass number, T represents the kinetic energy and V the NN-
interaction. A static mean field potential U is introduced in order to separate H in two parts: 
the residual particle-hole interaction Vres = (V – U) and the mean field Hamiltonian H0: 
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The vacuum state 15NGS is defined as: 

pCGS ; Z,N0 GS
14

00 �1�                (6.3) 

where the levels of a single proton in the 14CGS are calculated assuming the proton at infinite 
distance (see Section 6.2.4). Starting from the single particle fermion operators a+

jm(p,n) and 
ãjm(p,n) = (–1)j+m aj–m(p,n), the one-quasiparticle annihilation �jm and creation �+

jm operators 
are obtained through the linear Bogoliubov-Valatin transformation: 
 

mjj
mj

jmjjm av1)(au�

�
��� ���              (6.4a) 

�
�

���� mjj
mj

jmjjm av1)(au�              (6.4b) 

 
where uj and vj are the emptiness and occupation amplitudes, respectively, for the orbital with 
total angular momentum j, with uj

2 + vj
2 = 1. These amplitudes are determined starting from 

the pairing correlations in a state-dependent pairing field (see Section 6.2.5). The effects of 
the pairing field will be the first correlations introduced to the ground state eq. (6.3). 

The 2-QP excitation operators are then constructed in the second quantisation formalism 
in terms of the 1-QP �jm and �+

jm operators: 
 

��� +�
ppnn

pn

mjmj
m,m

ppnnpnJM
�  �  JMmjmj)j,(jQ           (6.5) 

 
A similar formula gives the 2-QP destruction operators QJM. In eq. (6.5) the �+

jm operators 
describe the creation of a quasi-neutron and a quasi-proton with angular momentum jn and jp 
and magnetic quantum number mn and mp, respectively. Since the QJM and Q+

JM operators 
describe charge exchange transitions in which a proton is transformed into a neutron or vice 
versa, they depends on the Clebsch-Gordan coefficients giving the angular momentum 
coupling, which have to satisfy the conditions jn + jp = J and mn + mp = M. The CEX-QRPA 
states are obtained by applying the operator of eq. (6.5) to the vacuum eq. (6.3): 

pC )j,(jQJMC, GS
14

pnJM
15 �� �     (6.6) 
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The complete operator for the CEX excitations @+
JM is finally obtained in the QRPA 

formalism considering the superposition of the Q+
JM operator and its time reversal: 

 

( )+ �
��� ��1

pn

pnpn
jj

pnMJ
MJJ

jjpnJM
J

jjJM )j,(jQ1)(Y)j,(jQX�    (6.7) 

 
In an analogue way the destruction CEX operator @JM is constructed. The quantities XJ and YJ 
represent the QRPA amplitudes for direct and time reversed exchange of such quasiparticles. 
These amplitudes are simply related to the emptiness uj and occupation vj ones and thus will 
be calculated from them, i.e., from the state-dependent pairing field of Sect. 6.2.5. 

In the quasiparticle representation there is isospin mixing: the & +- and & –-type 
excitations (were & indicates the isospin operator) are mixed as much as the softness of the 
Fermi surfaces increases. Therefore the action of the CEX operator @+

JM on the vacuum state 
eq. (6.3) leads to:  

OC, JM; 1 Z,1N JM;pC� 1515
00g.s.

14
JM ����� �    (6.8) 

 
However, projecting on the & + subspace it is always possible to separate the two contributions 
in the matrix elements. 

The CEX operator @+
JM takes into account only the 2-QP excitations. In reality, also 

higher order configurations (4-QP and so on) contribute to the eigenstates of the 15C nucleus. 
Separating all these contributions from the 2-QP component and assembling them in the 
operator <+

JM (orthogonal to @+
JM), the state operator which generates the true eigenstates is 

written as:  

# $ # $ # $ # $ �� a� Ez��

JM
a

JM�
J
aJM

��� ��+              (6.9) 

 
where the summation represents the mixing of the 2-QP configurations. The spectroscopic 
amplitudes zJ

a(E�) determine the probability to find the model states @+
JM(a) with eigenvalue 

Ea distributed over the eigenstates :+
JM(a), which in general have excitation energy E� - Ea.  

6.2 The CEX-QRPA structure calculations 
The QRPA equations may be found in a similar way as in the RPA theory [Rin80]. 

They have identical form to the RPA ones but with more sophisticated A and B matrices 
[Rin80]. Nevertheless, the conventional RPA approach, namely to solve the eigenvalue 
problem by matrix diagonalization [Rin80], becomes impracticable for huge configuration 
spaces. When it is not required to determine with high precision features of individual states, 
as in the present case, a method that allows calculating reliably the energy averaged response 
functions is the RPA-Green’s function method [Fet71]. 

In the approach introduced by Lenske [Len87] to the RPA-Green’s function method, the 
RPA problem is reduced to the solution of a generalized dispersion equation of matrix form 
with dimension independent of size of the configuration space and determined by the number 
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of spin-isospin interaction channels and the dimensionality of the basis. The response 
functions for the one-body operators are directly calculated by solving the Dyson equation 
(see Section 6.2.2), without solving explicitly the RPA eigenvalue problem. The particle-hole 
RPA phonon vertex can be represented in separable form if the RPA transition densities are 
expanded into an appropriate basis. An important advantage of this method is that arbitrary 
particle-hole interaction of finite range can be used [Len87]. 

6.2.1 The nuclear  response function 
Starting from this Section we follow the approach of ref. [Bak97], based on the RPA-

Green’s function method as in ref. [Len87], to calculate the response functions via solving the 
Dyson equation. The transition densities for the target transitions 15N � 15C are then 
obtained. The treatment of ref. [Bak97], based on a mean field approach like the usual RPA 
theory, includes an average contributions of the 4-QP excitations (see Section 6.2.3) and a 
state-dependent pairing field (Sect. 6.2.5), usually not considered.

A practical definition of “response”  of a nucleus [Bak97] is essentially the measured 
differential cross section for inelastic scattering normalized by the free scattering one. 
Assuming that all effects not directly related to intrinsic nuclear structure are negligible or 
have been removed from measured cross section: �PT = F��PN, where �PT is the differential 
cross section for the reaction between projectile P and target T, while �PN for the 
corresponding process in free projectile-nucleon (PN) scattering. The so defined quantity F is 
closely related to the nuclear response. Since F effectively represents a sum over nuclear 
responses in different spin-isospin channels (weighted depending on the probe), it has no 
meaning until the operator is specified. In this way the nuclear response depends only on 
nuclear structure and, once the particular channel is specified also, it is probe independent. 
This means that the nuclear response in a specific channel (S,T) 1 � should be the same for 
different probes (represented by the same operator and with an appropriate normalization). 

In general, the probe is defined by a function P�(�:1,����,&&&&,����&&&&,…) [Bak97], characterized 
by a precise structure (S,T), which contains the effects of the NN-interaction and distorted 
wave potential. For a CEX reaction, the probe function contains only isovector operators: 
P�(�:&&&&,����&&&&,…). The basic hypothesis of the following discussions is that the cross section can 
be written as: 

q) ,�(R q) ,�(Tq) ,�� ( �
2

�
�+�      (6.10) 

 
where @ and q indicate the transferred energy and momentum, respectively. Eq. (6.10) means 
that it is possible to separate the structure part from the dynamics one, which are represented 
respectively by the response function R�(@,q) and free scattering T-matrix. The total value of 
the integral of the strength function R�(@) is determined by the sum rules, depending on the 
specific operator P�: 
 

�� )P� ,(R �  �d)(PS ��
n

�n        (6.11) 
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where n = 0, 1 represent the Non-Energy (NEWSR) and Energy (EWSR) Weighted Sum 
Rules, respectively. The sum rules are of great practical importance. In particular, the 
difference of the NEWSR for �± transitions lead to the well known Ikeda sum rules [Ike64], 
which relate the response of a nucleus to ground state properties. 

The RPA nuclear response function to incoming probe P� is precisely defined in terms 
of the transition matrix elements of P�, which acts on the vacuum state |0A: 

 

)��(
�

0PNq) ,�(R N

2

0N

�
RPA

� �1+
-

     (6.12) 

 
Eq. (6.12) gives the total transition probability between the ground state |0A and the excited 
states |NA of energy @N, for a transition induced by an external field P�. The latter, being 
integrated over the projectile coordinate, acts as a one-body operator in the space of the target 
nucleons. The EWSR, conserved in the RPA theory, relates the integral of the strength 
R�

RPA(@) to the ground state expectation value of the double commutator of P� with the full 
Hamiltonian HA of eq. (6.1): 

 

( )( ) 0  P ,H ,P 0
2

1
)P� ,(R � �d �A�

0
�

RPA
� ��

B
    (6.13) 

6.2.2 The RPA-Green’s function method: the Dyson equation 
Rather than solving the RPA equations as an eigenvalue problem, the Dyson equation 

can be used to evaluate the response function R�
RPA(@,q). Introducing the many-body Green 

function GRPA(@) of the target Hamiltonian HA of eq. (6.1) 
 

GRPA(@) = (HA – @ – i<)–1 + (HA + @ – i<)–1   (6.14) 
 
eq. (6.12) may be rewritten as a ground state expectation value: 
 

0P � )(G P0Im �

1
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��    (6.15) 

 
Inserting a complete set of eigenstates |NA yields: 
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from which, for positive @ and < � 0, eq. (6.12) is obtained. The Green function GRPA is 
calculated from the Dyson equation: 

 
GRPA =  G0 + G0 Vres GRPA    (6.17) 

 
where 
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G0(@) = (H0 – @ – i<)–1 + (H0 + @ – i<)–1   (6.18) 
 
represents the Green function for the independent particle model – eq. (6.2) – which describes 
the uncorrelated 2-QP excitations. The solution of the Dyson equation is based on the 
knowledge of the G0 propagator and the particle-hole interaction Vres, for which the 
interaction of ref. [Hof98], described in Section 6.3, is used. G0 can be expressed in the 
coordinate space representation in a way suited for the description of the continuum [Shl75]: 

 

# $ # $( ) )(� O i ���H i ���H O )(�)�,,(G h
'
ST

1
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1
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h
h

ST
0 r 'rr 'r �� ��������� +    (6.19) 

 
where: 

O00 = 1,    O10 = ����,    O01 = &&&&,    O11 = ����&&&&     (6.20) 
 
The sum of eq. (6.19) is over the hole states Dh, which correspond to all the occupied orbitals 
in the ground state given by single particle model. The single particle Green function (the 
middle factor in eq. (6.19)) may be calculated by summing over the unoccupied states Dp of 
single particle excitation: 
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In coordinate space the Dyson equation (eq. (6.17)) becomes an integral equation: 
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In this representation the response function is written as: 
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Finally, the transition densities which will be used in the DWBA calculations are 

obtained for the transition in the target  (15N � 15C): 
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where M� denotes an auxiliary external field, used only for a computational necessity and 
chosen such that it accounts for the essential (S,T) properties of the probe function P�. Indeed, 
since also R�

RPA(@) in the denominator of eq. (6.24) is calculated using the same field, the 
dependence of the transition densities on M� is only superficial.  
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6.2.3 The 4-QP excitations 
The 4-QP excitations, not included in the 1p-1h RPA theory, are crucial for a correct 

description of the decay width of giant resonances. In fact the theoretical values obtained by 
RPA underestimate systematically the measured width, especially for heavy systems. To 
account for this “collisional broadening”  of the RPA modes, the Hilbert space has to be 
extended to include both 1p-1h and 2p-2h excitations. The latter physically describe the 
collisions between the 1p-1h couples [Yan83, Ber83]. 

Because of the large number of 2p-2h excitations, a complete treatment in the enlarged 
4-QP space is extremely difficult, if not numerically impossible in most cases. Therefore a 
number of semiempirical approximations have been developed appositely for the description 
of the excitation energy continuum, obtaining an average 2p-2h contribution [Bak97]. It is 
important to note that the equations formulated in the extended space are projected on the 1p-
1h subspace, where the 2p-2h contributions are described by the matrix elements of a complex 
energy-dependent effective potential. In this way, the effect of the 2p-2h excitations appears 
as additional 1p-1h self-energy, producing an energy dependent shift and broadening of the 
RPA response functions and transition densities. The real and imaginary part of the matrix 
elements are related by a general dispersion relation [Bak97], accounting for the larger 
broadening effect on the more shifted structures. 

It is seen that this approach does not introduce further ground state correlations. In fact, 
no extra strength is associated to the enlarged space, so that the final result is a state-
dependent redistribution of the strength and the EWSR eq. (6.13) remains valid. 

In the present case, an empirical formula was derived for the imaginary part of the 2p-
2h self-energy by imposing that the broadening is zero on the 15C ground state and 0.6 MeV at 
the energy typical for the Giant Dipole Resonance (GDR). The real part is then deduced from 
the dispersion relation of ref. [Bak97]. 

6.2.4 The mean field 
To solve the Dyson equation in coordinate space, eq. (6.22), the propagator G0 of 

independent particle model has to be evaluated. For this purpose, a basic description of single 
particle orbitals is needed. The single particle wave functions D were obtained as 
eigenfunctions of a Woods-Saxon potential with nuclear, spin-orbit and Coulomb terms: 
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and VC is the Coulomb potential of a uniform sphere of radius RC = R0 A

–1/3, R0 being the 
radius of the central part of the potential. 

The parameters of the mean field were calculated by fitting the Hartree-Fock-
Bogoliubov (HFB) potential obtained for the 14C nucleus. The HFB potential was derived 
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Table 6.1. Mean field parameters obtained by fitting the 14C HFB potential. These parameters were used for the 

calculation of the single particle orbitals, done for protons and neutrons separately. 

 

Protons Neutrons  

U0 [MeV] r0 [fm] a [fm] U0 [MeV] r0 [fm] a [fm] 

(1) -37.16 1.506 0.438 -31.39 1.479 0.424 
V0 

(2) -23.15 0.331 0.392 -17.35 0.487 0.462 

(1) 59.66 1.015 0.733 33.54 1.035 0.664 
VLS 

(2) -46.57 1.001 0.815 -24.18 0.984 0.781 

 
using a G-matrix NN-interaction [Hof98] in the Local Density Approximation (LDA), adding 
3-body terms to reproduce correctly the nuclear matter properties. For a more accurate fit, two 
Woods-Saxon functions were used both for the central V0 and spin-orbit VLS parts of the 
mean field, eq. (6.26). To describe carefully the CEX reactions, a separate calculation was 
done for neutrons and protons. The parameters obtained from the fit are shown in Table 6.1.  

The single particle wave functions were calculated solving the eigenvalue problem in 
the mean field for excitation energies Ex ! 100 MeV and angular momenta L ! 6. The levels 
of single proton |14CGS + pA and single neutron |14CGS + nA in the field of an inert 14C core were 
determined separately, assuming the nucleon was at infinite distance from the core. The single 
particle continuum was discretized by enclosing the system in a spherical box (radius Rbox = 
40 fm). With this special technique, RPA calculations with large configurations spaces can be 
performed easily [Len88]. For a large Rbox value the results are almost independent of Rbox 
and the density of the states is high enough to describe possible resonances in the continuum. 

6.2.5 The state-dependent pair ing field 
In the QRPA theory the effective particle-hole correlations are described in terms of 

quasiparticles interactions, which may be taken into account by a state-dependent pairing 
field. As advanced in Section 6.1, the emptiness and occupation amplitudes uj and vj 
– necessary to construct the 1-QP operators – are determined by pairing correlations between 
nucleons. In the pairing theories, like that of Bardeen-Cooper-Schieffer (BCS) describing 
superconductivity, these amplitudes provide the probability that a singlet even pair of particles 
occupies the orbital j. However the BCS pairing field is independent of the state and thus not 
suitable for nucleons, especially when the pairing interaction is expected to be not negligible, 
as in weakly-bound nuclei. 

In the present model, a state-dependent pairing field is calculated with a density 
dependent interaction, obtained by projection of the NN-interaction of ref. [Hof98] (described 
in Section 6.3) to the Singlet Even particle-particle channel (S = 0, L = 0, T = 1). The strength 
of the pairing field used as input is G = 17.5 MeV. The occupation probabilities |vj|

2 and 
energy shifts EBCS produced by the pairing on different orbitals are shown in Table 6.2 for 
protons and neutrons. The dependence of EBCS on the state is seen. 
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Table 6.2. Parameters obtained from a state-dependent pairing field with input strength G = 17.5 MeV. |vj|
2 

represent the occupation probabilities and EBCS [MeV] the energy shifts produced by the pairing on different 

proton and neutron states. 

 

 Protons Neutrons 

n l j  1s1/2 1p3/2 1p1/2 1d5/2 2s1/2 1s1/2 1p3/2 1p1/2 1d5/2 2s1/2 

|vj|
2 1 1 0.707 0.032 0.015 1 1 1 0.008 0.004 

EBCS 20.023 10.007 0.639 7.671 9.486 24.235 10.179 3.542 3.917 4.009 

   

6.3 The residual interaction 
A realistic NN-interaction, including the tensor contribution, is used in both structure 

and dynamics calculations, as well as in the determination of the mean and pairing fields. In 
detail, it is the isovector part of the D3Y G-matrix interaction of Hofmann and Lenske 
[Hof98], which consists of direct and exchange terms with central (scalar and vector), rank-2 
tensor and spin-orbit components. The latter has a small effect only, thus was neglected in the 
calculations. This interaction, dependent on the nuclear density and the charge asymmetry, is 
found to be well suited for light neutron-rich nuclei such as 11Li and 19C [Len98b, Len01] and 
11Be [Cap01, Cap04b]. 

A proper treatment of the medium effects is essential for a fully microscopic description 
of finite nuclei. A well proven approach to derive in-medium NN-interactions starting from 
the NN-interaction in free space is the Brueckner theory [Bru68]. The Brueckner G-matrix for 
infinite nuclear matter is then applied in the Local Density Approximation (LDA) to finite 
nuclei [Bru68]. However, in this way the empirical saturation properties of the nuclear matter 
are generally missed, at least when only 2-body correlations are included. Especially when 
exotic nuclei are investigated, a semi-phenomenological approach based on a microscopically 
derived interaction is of great advantage [Hof98]. 

The solutions of the Dirac-Brueckner (DB) integral equations for asymmetric matter are 
parametrized in terms of appropriate meson-nucleon coupling constants acting at each vertex 
of the in-medium NN-interaction [Len98b]. For finite nuclei, a phenomenological density 
dependence is supplemented to avoid the collapse of the nuclear matter at high densities 
[Hof98]. Density dependent vertex functions are introduced: 

 

# $ ��
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where z =�"/"0, the base exponent � =1/3 and � = 0, & indicates isoscalar and isovector vertex 
functions, respectively. The scaling factors s� and the coefficients a�n are fitted to the 
saturation properties of infinite symmetric nuclear matter. These allow a first (N& = 1) and 
third (N0 = 3) order approximation for f& and f0, respectively. The vertices f�(") are used to 
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calibrate the strength of the effective potential obtained from the DB coupling constants, 
leaving the intrinsic momentum structure unchanged. The latter is defined by a 
parametrization of the M3Y G-matrix with three Yukawa functions. Their ranges are chosen 
to represent the long-range tail (1.414 fm) of the One Pion Exchange Potential (OPEP) and 
medium and short-range parts, which corresponds to � (0.40 fm) and @, ", = (0.25 fm) meson 
exchange, respectively. The meson = appears to be important in nuclear asymmetric matter 
because it introduces an increased isovector strength at low density [Len98b]. 

Let us discuss in detail the approach of ref. [Hof98]. The total HF energy of a nucleus A 
is given by: 

V
2

1
TE ��          (6.28) 

 
with kinetic and potential energy given respectively by: 
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where V is a 2-body interaction, |kA represents single particle states and tq(r) is the kinetic 
energy density (where q = p, n denotes protons and neutrons). V may be expressed in terms of 
the interactions for identical (q = q') and different (q - q') particles, with direct (Hartree) and 
exchange (Fock) contributions shown separately (r12 = r1 – r2 1 – s is the relative coordinate): 
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The density matrices are defined in terms of the single particle wave functions �k: 
 

+ ��� *

�k 
2k1k21q q),�,(  q),�,( ),(� rrrr          (6.32a) 

 
),(�)(�

qq rrr �      (6.32b) 

 
Due to the Pauli principle, the exchange term is non local. Its exact treatment in the HF 

functional leads to a coupled system of integrodifferential equations. A convenient approach, 
especially for large charge asymmetry and variable density, is the Density Matrix Expansion 
(DME), invented by Negele and Vautherin [Neg72]. This method provide a systematic 
expansion of the non local exchange parts of any given finite range effective NN-interaction. 
The basic features of the interaction are retained, but results will obviously depend on the 
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expansion order. After a coordinate transformation into the center of mass reference system, 
the density matrix is expanded in Taylor series in terms of the one-body local density: 
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where the two first terms of the series are shown. Here "SL is the Slater density, qF the average 
relative momentum between the two interacting particles, jn the spherical Bessel function of 
order n, r  and s are CM and relative coordinates, respectively. The variable separation is 
achieved with this method. If q2

F is chosen as [Hof98]: 
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the second term of eq. (6.33) is cancelled and the DME reduces to the Slater approximation  
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but with a modified Fermi momentum which accounts for surface corrections. Separating the  
r  and s coordinates and integrating on s, the exchange part becomes simply: 
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where );q,(qV
~

q'FqF
e
qq' r  is the interaction strength. 

Once the pairing interaction (calculated as in Section 6.2.5) is introduced, to which the 
DME method can be equally well applied, the so obtained D3Y G-matrix interaction is 
renormalized by the in-medium vertex functions of eq. (6.27). Thus, the density dependent in-
medium interaction is given by: 
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where g�(r) = g�["(r)] and g�

2 = f�(") with � = 0, & for isoscalar and isovector components, 
respectively. Vd and Ve represent “bare”  interactions, i.e., without in-medium effects. This 
approach ensures a reliable treatment of the density dependence also in the surface region 
(where the vertices vary rapidly), i.e., for finite nuclei. The ground state properties of the 
stable nuclei are well reproduced [Hof98]. 
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Figure 6.2. QRPA level densities for CEX transitions from 15NGS to excited states of 15C. These quantities 

represent for each multipolarity the ratio between each response function and the respective sum rule at each 

energy. The bin size is 50 keV, thus the ordinate has to be divided by 20 to get the integral (6.39). a) Natural 

parity transitions. b) Unnatural parity transitions. 

6.4 Results of the CEX-QRPA calculations 
The 15N ground state was calculated in the framework of the Hartree-Fock-Bogoliubov 

theory using the D3Y G-matrix residual interaction of ref. [Hof98]. The 15C states are then 
described as correlated 2-QP excitations with respect to 15NGS. The allowed energy range for 
the 2-QP excitations is up to 80 MeV. A state dependent pairing field (see Section 6.2.5) and 
an average treatment of the 4-QP correlations (Sect. 6.2.3) are included in the calculations. 
The QRPA level density distributions (per MeV) for charge exchange transitions from 15NGS 
to excited states of 15C, calculated for Ex ! 15 MeV and multipolarities from 0+, 0�  to 4+, 4�, 
are shown in Figure 6.2. These quantities are obtained by normalizing the QRPA multipole 
response functions to the NEWSR of the same operator: 
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Transitions to two discrete levels of 15C are observed. A first state at Ex ~ 0 MeV is 

excited by the 0� and 1� transitions; considering that the 15N ground state has J� = 1/2�, this is 
only compatible with a final J� = 1/2+, which agrees with the known 15C ground state J�. The 
second state observed is populated by the 2� and 3� transitions, thus it corresponds to the J� = 
5/2+ first excited state of 15C. This result is in agreement with the known inversion between 
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the 1d5/2 and 2s1/2 neutron orbitals in 15C (see Section 2.3.1). It is pointed out that no 
conditions were imposed to adjust the energies of such levels. In fact, HFB calculations 
without energy conditions cannot account for the inversion of single particle orbitals, which 
instead is reproduced by calculating the QRPA correlations. For excitation energies higher 
than 1.5 MeV no sharp structures are evident in the level density, rather it becomes a smooth 
function of the energy. The large bump at Ex ~ 10 MeV in the 1�, 2�, 3�, 4� transitions arises 
from spurious 15NGS components with J� = 3/2+. 

The results obtained by the CEX-QRPA model – based on particle-hole degrees of 
freedom, not accounting for core polarization – show that this kind of approach reproduces 
correctly the 15C level structure below 1.5 MeV excitation energy, characterized by strong 
single particle components, but it fails at higher excitation energies. These results (published 
in refs. [Orr03, Cap04]) are similar to those found in the CEX-QRPA calculations for 11Be 
[Cap01, Cap04b], where the level structure is reproduced only up to Ex = 2 MeV. 

It is concluded that the sharp resonances experimentally seen beyond the neutron 
emission threshold (see Section 5.2.2) cannot be simply connected to 1p-1h excitations and, 
according to the predictions of ref. [Noc03], the observed fragmentation of the strength in the 
15C experimental spectra is very likely produced by core-excited components of 15C. As we 
shall see, the theoretical calculations of Chapters 7 and 8, based on the Dynamical Core 
Polarization (DCP) framework, will confirm these expectations, reproducing the narrow 
resonances seen in the continuum and achieving a deeper comprehension of the 15C spectrum. 

6.5 The DWBA dynamics calculations 
The dynamics calculations performed for the 15N(7Li,7Be)15C reaction are described in 

this Section. DWBA calculations, based on the CEX-QRPA transition densities, give the 
cross sections for the transitions to the 15C single particle states that are well reproduced by 
the QRPA calculations. The nuclear structure results are applied to the analysis of scattering 
data without further adjustment of parameters. 

6.5.1 The T-matr ix interaction 
The effective NN-interaction used to calculate the charge exchange form factors is taken 

from the isovector part of the D3Y G-matrix interaction of Hofmann and Lenske [Hof98]. The 
full T-matrix in momentum space can be obtained at low incident energy by extrapolating the 
density dependent G-matrix interaction, as, e.g., in ref. [Kho93]. As in formula (3.7), the T-
matrix isovector interaction consists of central (scalar and vector), spin-orbit (neglected in our 
case) and tensor components, each of them including direct and exchange terms:  
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It is remarked that we use the same interaction as in the HFB ground state and QRPA 

correlated excitations calculations. This assures the consistency of structure and reaction  
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Figure 6.3. a) Central scalar, b) central vector and c) rank-2 tensor components of the isovector effective NN-

interaction of eq. (6.40). The direct (D) and exchange (E) terms are separately shown, together with their sum. 

 
calculations. The density dependence of the D3Y G-matrix gives rise to a density dependent 
T-matrix. The numerical calculations are simplified by using a separable LDA [Kho93, 
Hof98] to express this dependence. The global properties of the T-matrix interaction obtained 
in the various (S,T) channels are given in Table 6.3. The spin-orbit NN-interactions are 
neglected. For the isovector channel (S,T = 1), the central (without and with spin dependence) 
and tensor components are shown in momentum space in Figure 6.3, separating the direct and 
exchange terms. Since peripheral collisions are involved, the reaction takes place principally 
for linear momentum transfer q from 1 to 2 fm–1. From Fig. 6.3 it is seen that, in the window 
of q-values considered, the tensor force cannot be neglected. The exchange terms are also 
important for a correct description of the interaction, especially for the central S = 1 
component. However, from Table 6.3 we can see that they are more influential for isoscalar 
than for isovector interactions. 

 
 

Table 6.3. Volume integrals for the T-matrix interaction in the various (S,T) channels at vanishing density, 

calculated in the (A,B) rest frame. The interaction used in the CEX form factor calculations is given by the 

isovector components (S, T=1). 

 

Central (S,T) interactions [MeV . fm3] 

(S,T) (0,0) (0,1) (1,0) (1,1) 

Direct 130.1 239.3 154.1 205.2 

Exchange -838.1 62.6 -13.6 -7.1 

Tensor (S,T) interactions [MeV . fm5] 

(S,T) (0,0) (0,1) (1,0) (1,1) 

Direct   -17.8 -150.2 

Exchange   92.6 -31.4 

a) central (S = 0) b) central (S = 1) c) tensor  (·q2) 
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6.5.2 The CEX form factors 
The CEX form factor are calculated microscopically by double folding of the transition 

densities of the target and the projectile with the effective NN-interaction of Section 6.5.1: 
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Eq. (6.41) is the equivalent of eq. (3.4) in momentum space. The CEX-QRPA transition 
densities given by eq. (6.24) are used for the target transitions (15N � 15C). For the transitions 
in the projectile (7Li � 7Be) we use the shell model One Body Transition Densities (OBTD), 
calculated in ref. [Etc88] with the Cohen-Kurath [Coh65] wave functions, which are 
appropriate for well-bound p-shell nuclei. In fact, in our calculations the OBTD of ref. [Etc88] 
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are renormalized by [(2 J + 1)(2 &0 + 1)]1/2. In eq. (6.42) |Ia&aA and |Ib&bA are the single particle 
states respectively for 7LiGS(J

� = 3/2�) and 7Be ground or first excited state; "k represents all 
the possible single particle states; J and &0 are spin and isospin transferred in the transition. 
We consider the transition to 7BeGS(J

� = 3/2�) and 7Beexc(J
� = 1/2�), for which the selection 

rules allow a transfer J� = 0+, 1+, 2+, 3+ and J� = 1+, 2+, respectively. The energy distribution 
of the form factor is calculated in energy steps of 50 keV and for Ex ! 15 MeV. Separate 
calculations are performed for each multipolarity � resulting from the projectile and target 
transitions.  

6.5.3 The optical potential 
For the calculation of the scattering amplitudes in the DWBA framework (eq. (3.2)), the 

form factors (eq. (6.41)) and the distorted waves %�
(+)(k�,r) and %�

(–)(k�,r) in the incident 
� = (a, A) and exit � = (b, B) channels are needed. The choice of the optical potentials to use 
in the initial and final channels is important, especially because of the presence of unstable 
nuclei in the exit channel. For the stable 7Li nucleus, low-energy optical potentials are known 
for elastic scattering on stable target nuclei (see, e.g., ref. [Win96]). However, empirical 
optical potentials for the 7Be + 15C channel are not known. 

Therefore a double folding approach was used – for consistency also in the incident 
channel 7Li + 15N – in order to describe the elastic scattering in both channels. Since the 
density dependence of the elastic scattering at forward angles is small, the free NN-interaction 
obtained by Franey and Love at Einc / 50 MeV/u [Lov81, Fra85] is used to derive the optical 
potential (both real and imaginary part). The isoscalar and isovector projectile and target 
ground state densities are folded with a complex T-matrix, which is obtained at the 
appropriate incident energy by spline extrapolation of the phenomenological Franey and Love 
potential using the value of the D3Y G-matrix of ref. [Hof98] at 0 MeV as reference. The 
folding is made in momentum space using the Fourier transforms of the ground state densities 
(with (a,A) = (7Li,15N) and (7Be,15C) in ingoing and outgoing channel, respectively): 
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To account for the long range contributions to the optical potential due to the coupling 

of the halo wave functions to the breakup channels, for 15C we added a breakup term 
following Bonaccorso and Carstoiu [Bon02]. This reflects the larger extension into space of 
the 15C density distribution with respect to the 15N one. In the semi-classical model of ref. 
[Bon02], the imaginary part of the breakup potential is simply related to the properties of the 
halo wave function via the breakup probability. The real part is derived from the imaginary 
one by a dispersion relation and represents an extra polarization induced by the halo at long 
range. The use of the breakup term has been found to improve the agreement with the 11Be 
experimental data [Cap04b]. Both the imaginary and real parts of this potential contribute to 
the calculated CEX cross sections. The properties of the full optical potential, including the 
breakup term in the outgoing channel, are given in Table 6.4.  

 
Table 6.4. Total elastic cross sections �E [mb], volume integrals JU,W [MeV . fm3] and root-mean-square radii 

<RU,W> [fm] for the optical potential in the incident (7Li + 15N) and exit (7Be + 15C) channels. The symbols U 

and W indicate respectively the real and imaginary part of the potential. 

 
7Li + 15N (in) 7Be + 15C (out) 

����E JU JW <RU> <RW> ����E JU JW <RU> <RW> 

1574.6 -401 -334 4.03 3.79 2067.6 -386 -338 4.04 3.84 

6.5.4 The CEX cross sections 
The CEX cross sections of the 15N(7Li,7Be)15C reaction are obtained by DWBA 

calculations, performed with the HIDEX code [Len03]. The form factors of eq. (6.41) are 
used as input to solve the scattering equations. The one-step scattering amplitudes  
 

# $ Rd� F �(one)T )(
�

�
� �

)(�DWBA� � � ���       (6.44) 

 
are calculated for the transitions to 15C ground and first excited state. Finally, the double 
differential direct CEX cross sections are constructed 
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where the sum extends over all the transition multipolarities �(aA) and each reduced DWBA 
cross section d��(aA)/d: is weighted by the target response function per energy S�A(E). The 
angular distributions have been obtained by adding the double differential cross section (6.45) 
at each energy step. 
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Figure 6.4. Angular distributions for the 15N(7Li,7Be)15CGS reaction. Transition to the 15C ground state a) without 

and b) with excitation of 7Be, compared to the experimental data at �lab = 0°, 2.5°, 10° and 14°. The components 

from the different target transitions JT
� = 0� and 1� are shown separately, together with their incoherent sum. The 

calculated cross sections are not scaled. 

6.6 Results of the DWBA calculations 
The DWBA calculations were performed for the two bound states of 15C. The angular 

distributions for the transition to the 15C  ground state are shown in Figure 6.4, for transitions 
without (Fig. 6.4a) and with (Fig. 6.4b) excitation of the ejectile 7Be. The angular 
distributions for the 15C first excited state are presented in Figures 6.5a and 6.5b for 
transitions involving 7BeGS and 7Beexc, respectively. In each plot, the components of the 
angular distribution from the different angular momentum JT

� transferred in the target 
transition are shown separately, together with their incoherent sum.  

The CEX cross sections for reactions involving light nuclei are, in general, not strongly 
oscillatory. Even though the experimental points are few, we can see from the Figures that the 
behaviour of the angular distributions is quite well described and, more important, the order 
of magnitude of the measured cross sections is reproduced by numerical calculations without 
the need to introduce large renormalization. This is a noticeable result because usually large 
scaling factors (also of one order of magnitude) in the calculated cross sections have been 
used to reproduce the experimental data from the (7Li,7Be) reactions [Ban84, Coo84, 
Nak90b]. The close agreement is likely due to the interaction [Hof98] used in the form factor 
calculations, which is appropriate for light neutron-rich nuclei at low energy [Len98b, Len01, 
Cap04b]. This also confirms the reliability of a one-step approach, as in ref. [Cap04b]. 

The agreement is especially good for the 15C first excited state, which is also the state 
more strongly populated by the (7Li,7Be) CEX reaction. This state is populated by the JT

� = 2� 
and 3� target transitions. Among them, from Fig. 6.5 we can see that the 2� unnatural parity 
transition is dominant, both for the 7BeGS and 7Beexc cases. The different angular momentum 
  

___  T ot al  
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Figure 6.5. Angular distributions for the 15N(7Li,7Be)15C* (5/2+) reaction. Transition to the 15C first excited state a) 

without and b) with excitation of 7Be, compared to the experimental data at �lab = 0°, 2.5°, 10° and 14°. The 

components from the different target transitions JT
� = 2� and 3� are shown separately, together with their 

incoherent sum. The calculated cross sections are not scaled. 

 
 

couplings JB
� in the projectile transition 7Li � 7Be are shown in Figure 6.7 (a and b 

corresponding to 7BeGS and 7Beexc, respectively) for the dominant target transition JT
� = 2�. 

Also for the projectile the unnatural parity transitions (1+ and 3+) are prevalent, indicating a 
prominence of the nucleonic spin transfer process. 

Concerning the excitation of the 15C ground state (Fig. 6.4), this comes from the JT
� = 0� 

and 1� target transitions. Among them, the 1� natural parity is dominant, also because of the 
weakness of the highly selective 0� transition. The different couplings JB

� in the projectile in 
correspondence with the 1� transition are plotted in Figure 6.6 (a and b for 7BeGS and 7Beexc, 
respectively), showing that in the projectile JB

� = 1+ is prevalent at small angles. 
We performed two further calculations to investigate the spin transfer contribution in 

the 1� transition to the 15C ground state. The first calculation, shown in Figure 6.8a, accounts 
for the contribution of the spin-scalar components of the NN-interaction to the cross sections 
(i.e., all the spin-vector components are set to zero). This contribution is found to be about 
4 % of the total value at 0°. Moreover the second calculation, including only the spin-vector 
components, is enough to reproduce the cross sections (see Fig. 6.8b). Thus the spin transfer 
components dominate also for transitions to the 15C ground state. 

Therefore we can conclude that, at the incident energy considered, there is dominance 
of the nucleonic spin transfer dynamics in the 15N(7Li,7Be)15C reaction. For this reason is 
fundamental to use an isovector NN-interaction mainly characterized by the spin dependent 
component in order to reproduce correctly the experimental data. The prevalence of spin 
transfer transitions at only 8 MeV/u is quite a surprising result because it is opposite to the 
predictions concerning the spin-isospin dependence of the free NN-interaction at low energy, 
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Figure 6.6. Angular distributions for the 1� transition to the 15C ground state, involving a) 7BeGS and b) 7Beexc. 

The 1� target transition is decomposed in terms of the different angular momentum JB
� transferred in the 

projectile. Nth = 1 is the overall scaling factor. 

 
 

 
 

Figure 6.7. Angular distributions for the 2� transition to the 15C first excited state, involving a) 7BeGS and b) 
7Beexc. The 2� target transition is decomposed in terms of the different angular momentum JB

� transferred in the 

projectile. Nth = 1 is the overall scaling factor. 

 
 

for which the (S,T) = (0,1) component should dominate on the (1,1) one [Tad87]. However, 
the predictions are about the NN-interaction in the free space, while our results concern the 
in-medium interaction. What we can affirm is that at about 8 MeV/u the in-medium NN-
interaction depends principally on the spin component. 

 

 a)   b) 

   a)    b) 
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Figure 6.8. Angular distributions for the 1� target transition to the 15CGS + 7BeGS channel. a) Calculation made 

with all the spin-vector (S = 1) components of the NN-interaction set to zero, showing the contribution of the 

spin-scalar (S = 0) components. b) Contribution of the spin-vector (S=1) components of the NN-interaction. The 

transferred JB
� of the various transitions in the projectile are separately shown. Nth = 1 is the scaling factor. 

 
 

 
 

Figure 6.9. Angular distributions for the G factor relative to the 15C a) ground and b) first excited state. The 

components due to the different target transitions JT
� are separately shown. 

 
 
The dominance of the spin transfer transitions is confirmed by the results for the factor 

G (defined in Section 3.4.1), whose angular distribution are plotted in Figure 6.9a and 6.9b 
relatively to the 15C ground and first excited state, respectively. Being a ratio between cross 
sections calculated with the same optical potential, G is almost independent on the optical 
model and provides a test of the microscopic theory of the transition densities. 

 a)   b) 

   a)      G factor for 15CGS     b)       G factor for 15C* 5/2+ 
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Figure 6.10. Angular distribution for the G factor relative to the 15C first excited state, calculated in absence of 

the tensor force and imposing no momentum transfer following the method develop in refs. [Tad84, Alf98]. 

 
A not so bad agreement with the data is found for the excited state, while the few points 

with large errors available in the ground state case do not allow an effective comparison. 
However, in every case the G-value is almost constant and clearly different from zero, 
approaching the value of 0.46 correspondent to pure spin transfer at 0°. This indicates 
dominance of spin transfer dynamics. 

The G-values are meaningful if the analogy between the (7Li,7Be) CEX reaction and the 
�-decay is valid. To test the reliability of the G factor in the present case, we performed a 
calculation in the conditions for the validity of such an analogy: the tensor component of the 
NN-interaction was set to zero and no momentum transfer was imposed. Following the 
method of refs. [Tad84, Alf98], these conditions were achieved by scaling the DWBA cross 
sections at �lab = 0° – calculated without tensor force – with the corresponding ones obtained 
by a Plane Wave (PWBA) calculation (again, without tensor force). The result is shown in 
Figure 6.10. The G-value at �lab = 0° is 0.42, very close to the value 0.45 of the full DWBA 
calculation. This supports the theoretical assumptions on the validity of the �-decay analogy 
and one-step process. 

The approach here described was first applied to the one-neutron halo nucleus 11Be 
[Cap01, Cap04b], giving similar results: the 11Be angular distributions were described without 
the need to introduce large scaling factors; a dominance of unnatural parity transitions was 
found; the G-values at �lab = 0° indicated a spin transfer dynamics. We have consistency 
between the calculations in 11Be and 15C, in fact no parameters but the trivial (masses, charges 
and so on) were changed from the case of 11Be. 

The force of this approach consists of the use of interaction potentials determined not 
phenomenologically but from first principles and therefore completely general, which make 
the structure and reaction calculations fully consistent. For this reason the calculations 
reproduce well the data related both to 15C and 11Be without change the basic parameters. 

The theoretical results shown in the present Section were published in ref. [Orr03]. 

 G factor for 15C* 5/2+ (VT = 0, q = 0) 



Chapter 6                                      The 15N(7Li,7Be)15C reaction: Theoretical analysis in the CEX-QRPA approach 

- 106 - 

6.7 Conclusions 
A microscopic many-body theory for heavy-ion charge exchange reaction was 

presented. The approach includes direct CEX processes via the isovector NN-interaction. 
Nuclear structure is described microscopically calculating the CEX excitations by QRPA 
methods. A realistic NN-interaction [Hof98], including the tensor force, is used in every step 
of the calculations, assuring consistency between the structure and reaction mechanism 
calculations. Consistency between the calculations in 11Be [Cap01, Cap04b] and 15C is 
achieved through the use of the same parameters. Similar results are obtained in both nuclei; 
this strengthen our conclusions. 

The CEX-QRPA approach describes very well the 15C single particle strength – the 
ground and first excited state – and helps in extracting useful information about spin and 
parity for these states. The calculations reproduce also the known inversion between the 1/2+ 
and 5/2+ neutron orbitals. This is remarkable since no parameters were “a priori”  adjusted to 
obtain this shell inversion. Nevertheless, the observed fragmentation of the strength at higher 
excitation energies cannot be explained in terms of 2-QP configurations in which the 14C core 
is simply an inert spectator. It is clear that a more sophisticated theoretical approach is 
necessary, in which the quasi-particle states are coupled with the core excitations. As we will 
see, the DCP calculations of Chapters 7 and 8 will explain the observed fragmentation of the 
strength at high excitation energies. In the end, a comprehension of the 15C experimental 
spectrum will be achieved (see Section 8.3.2). 

One-step DWBA calculations based on the microscopic QRPA transition densities were 
performed for the two 15C single particle states. A good agreement with the measured angular 
distributions is found. In particular, the order of magnitude of the measured cross sections for 
the 15N(7Li,7Be)15C reaction is reproduced without renormalization, confirming the reliability 
of the approach. Therefore the one-step mechanism is appropriate to describe the (7Li,7Be) 
CEX reaction at about 8 MeV/u of incident energy and for weakly bound nuclei. This is 
reasonable because the two-step route is strongly hindered in the (7Li,7Be) reaction even at 
low bombarding energy, due to the small overlap in the momentum space between the narrow 
wave functions of weakly bound states and the broad distributions of transfer operators, and 
due to the kinematic mismatch of the sequential transfer reaction proceeding via 8Be states, 
which have a poor overlap in the nucleon transfer wave functions [Etc88]. 

A dominance of unnatural parity transitions is found and explained in terms of the spin 
transfer behaviour of the NN-isovector interaction at low bombarding energy. The prevalence 
of the unnatural parity transitions in the 15N(7Li,7Be)15C reaction and the G-values measured, 
together with the results concerning the 11B(7Li,7Be)11Be reaction [Cap01, Cap04], indicate a 
spin transfer dynamics in the low-energy charge exchange reactions. This quite surprising 
result is opposite to the predictions on the free NN-interaction at low energy. 

Concluding, the force of the CEX-QRPA approach comes from the density dependent 
in-medium interaction of Hofmann and Lenske [Hof98] which, deriving from first principles, 
allows to treat satisfactorily the correlated 1p-1h states in different light neutron-rich nuclei 
without change the basic parameters.  
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CHAPTER 7 

 

ANALYSIS OF THE 15C STRUCTURE 
IN THE QRPA-DCP APPROACH 

 

 
As seen in Chapter 6, theoretical calculations performed using a QRPA approach 

reproduce the 15C single particle levels but they do not allow to explain the fragmentation of 
the strength observed at higher excitation energies. In the RPA-like theories the 2p-2h 
excitations are usually not considered or, as in Section 6.2.3, only an average treatment is 
included. In general, a microscopic treatment of the full 2p-2h space is not yet possible 
because of the very large phase space. In order to describe correctly the 15C spectrum above 
1.5 MeV excitation energy, it is necessary to take into account the Dynamical Core 
Polarization (DCP) effects. In the DCP approach, which is the subsequent step with respect to 
QRPA, a 2p-2h truncated space is microscopically treated: the subspace is given by the 
vibrational core excitations.  

QRPA-DCP calculations were performed for the 15C nucleus according to the 
Quasiparticle-Core Coupling (QPC) model [Len87]. In this model the dynamical many-body 
correlations in the odd-mass nuclei are described by coupling a quasiparticle to the core-
excited configurations. These last are represented by correlated one particle-one hole (2-QP) 
core excitations and are described by the QRPA theory. The residual interaction between the 
one quasiparticle and core-excited configurations leads to the fragmentation of single particle 
or hole strengths over many eigenstates. 

Some generalities about DCP are given in Section 7.1. The formulation of the QPC 
model is described in detail in Section 7.2. The results of the QRPA-DCP calculations for 15C 
are shown in Section 7.3. 

7.1 The core polar ization 
In general, the nuclear structure theories are formulated for truncated configuration 

spaces. In practice these truncated spaces are then projected into more limited model spaces, 
including the degrees of freedom of few nucleons. Usually only the valence nucleons may be 
excited while the more internal ones constitute an inert core, whose degrees of freedom are 
supposed to be frozen. The model wave functions obtained with these assumptions are not 
actually eigenfunctions of the true Hamiltonian and thus corrections are necessary in order to 
achieve a more realistic description. The core polarization represents the excitations of the 
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nucleons of the core owing to the motion of the active nucleons. Since the effects obtained by 
including states outside the model space are similar to polarization ones, the core polarization 
may account for the states outside the valence space. The more the initial space is enlarged, 
the less polarization corrections will be needed [Sat83]. 

Most of the work concerning DCP has been devoted to the study of odd-mass systems. 
In particular, as discussed in Section 1.3.2, one-nucleon halo nuclei are well suited to study 
the interaction between the weakly-bound valence nucleon and the even-mass core. Indeed, 
close to the drip lines the dynamical core polarization becomes particularly important because 
the core nucleus by itself may be already far off stability and thus easily polarizable. The 
study of these two-body systems is important also in order to describe three-body systems 
such as, e.g., the two-neutron halo nuclei. 

There are mainly two types of theoretical approaches to describe the core polarization in 
one-neutron halo nuclei. The first one is based on a static deformation of the mean field, while 
the second considers a dynamical polarization of vibrational nature. An example of the first 
kind of approach is given in ref. [Nun96]. Nunes et al. used a rotational model for the core 
structure of the 11Be, 13C and 10Li nuclei, in which the nuclear interaction is assumed to be the 
same for different states of the core (static rotor approximation). A deformed Woods-Saxon 
potential is used for the neutron-core interaction, where the quadrupole deformation 
parameter � was estimated by fitting the measured transition strengths B(E2) of the core. The 
calculated levels are in good agreement with the experimental ones but only in the case of 
low-energy states with positive parity, while the negative parity states are not well reproduced. 

We will concentrate on the vibrational approach to the DCP. Bohr and Mottelson 
[Boh69] first investigated the single particle configurations with respect to a vibrating core by 
using the particle-vibration model. The odd-mass nuclear wave functions are separated into 
single particle and core-excited components, which are described by the collective model. The 
quasiparticle-phonon coupling model, introduced subsequently by Soloviev [Sol78], is a 
semi-microscopic approach that allows to treat also open-shell nuclei. The core excitations are 
calculated by QRPA methods with a schematic separable multipole-multipole interaction. 
Fully microscopic models using the many-body Green function theory [Fet71] were 
formulated by several authors and applied to describe the damping of the single particle 
motion [Bro63, Ham76, Ben80] and giant resonances [Jeu76, Wam82, Som83]. 

The above cited works study the single particle strength distributions close to the 
ground state (at only few MeV of excitation energy), assuming that the single particle 
components are given by the unperturbed eigenfunctions of a static shell model potential. This 
assumption corresponds to an approximation of the single particle self-energy operator by its 
diagonal parts only. This it is not enough if one wants to describe the strength distribution at 
higher excitation energies, as in the present case for 15C. 

The microscopic formulation of the QPC model introduced by Lenske [Len87], which 
will be discussed in detail in the next Section, allows a treatment also of the non-diagonal 
parts of the self-energy operator. The particle-core interaction will lead to an energy 
dependent contribution in the single particle self-energy operator, responsible for the mixing 
of the states with different radial quantum number n into which the single quasiparticle wave 
functions are expanded. The particular feature of this model is just the treatment of the 1-QP 
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Figure 7.1. Diagramatic structure of a) mean field and b) core polarization interactions of a nucleon in a single 

particle state j. The interactions (meson exchange) are represented by dashed lines. 

 
component. Recently this approach, well suited for light neutron-rich nuclei, has given 
interesting results [Len98b, Len01] (see Section 1.3.2 also). 

7.2 The QPC model 
In the various microscopic formulations [Ber83, Kre80, Sol87, Len87] of the QPC-

model, the core-excited components are given by 2p-1h or 1p-2h (i.e., 3-QP) excitations. 
Using the QRPA formalism (Section 6.1), the 3-QP states in odd-mass nuclei are described by 
1-QP states coupled to vibrational 2-QP (i.e., 1p-1h) QRPA excitations of the even-even core.  

The dynamical correlations in odd-mass nuclei are treated in ref. [Len87] with a 
formulation of the QPC-model which accounts consistently for ground states correlations in 
all the steps of the theory. Particle- and hole-like excitations are treated symmetrically by 
including systematically the time-reversed components in QRPA notation (ãjm = (–1)j+m aj–m 
as in Sect. 6.1). Single particle strength distributions and effective self-energies are studied 
with the Green function theory [Fet71]. The static self-energy (or mass operator) �0 is 
obtained by using a basis of single particle states derived from a HFB mean field, with in 
addition long range particle-particle pairing correlations, as in the previous Chapter. In our 
case, the most important effect of pairing (introduced both in the single nucleon and core-
excited parts of the odd-particle wave function) is the softening of the Fermi surface (see 
Figure 6.1), which influences the low-energy spectrum of the odd-mass systems. The static �0 
operator is supplemented by a non-static part M(@), dependent on the frequency @ and 
responsible for the mixing of the single particle states from different major shells n. 

The dynamical core polarization process for a nucleon in a single particle state j is 
shown schematically in Figure 7.1b, while Fig. 7.1a shows the corresponding mean field 
interaction. The dashed lines indicate the interactions (meson exchange). Core polarization 
leads to intermediate states (j' JC), with a 2-QP core-excited state JC (described by QRPA) and 
an 1-QP state j'. During these processes the particle may be scattered virtually into high lying 
orbitals with various multipolarities and excitation energies, with subsequent deexcitation 
back to the ground state. Assuming a spherical core nucleus, the only constraints on these 
3-QP configurations are that total spin j and parity �j must be conserved:  

 

CJj'jC ���      ;Jj'j ,���      (7.1) 

   a)    b) 
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7.2.1 The QPC effective Hamiltonian and odd-mass wave functions 
The QPC effective Hamiltonian of an odd-mass nucleus is given by: 
 

H = H11 + V22 + V13         (7.2) 
 

where H11 is the 1-QP term, which includes the static mean field and pairing interaction and is 
diagonal in the 1-QP creation �+

jm and annihilation �jm state operators of eq. (6.4), with 
eigenvalues � E9�, respectively. Here 9 = (n, l, j, m) denotes radial, orbital, total angular 
momenta and magnetic quantum numbers in the 1-QP channel. The residual interaction of eq. 
(7.2) consists of the two terms V22 and V13. The first one acts on the 2-QP channel, giving the 
correlated 1p-1h core excitations which are described by the operators 
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jj

Cjj
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        (7.3) 

 
where the summation extends independently over the generic quasiparticle couple (j1 j2), 
which is corrected by the factor 1/2. The :+

C operator is defined in terms of the 2-QP QRPA 
operators Q and Q+ of eq. (6.5). The quasi-boson commutator relations valid for Q and Q+ are 
assumed also for :+

C. The QRPA amplitudes X and Y are state-dependent and satisfy 
symmetry relations. The QRPA states are solution of the equation of motion: 
 

[H11 + V22 , :
+

C] = EC :+
C               (7.4) 

 
The residual interaction V13 acts only in the odd-mass system coupling the 1-QP states 

| A = �+
  |0A to the 3-QP core-excited configurations |(9 c)jA = [�+

9 :
+

C] j |0A, where c indicates 
the core quantum numbers. According to eq. (7.1), (9�c) 1 (j' JC) are coupled to angular 
momentum j and carry parity �(9 c)j = �(9) . �(c). The 3-QP states are due to elementary 
excitations with energy given by the sum of the energies of 1-QP and of the unperturbed core: 

M9c = E9 + EC              (7.5) 

The definition of the core excitation operator :+
C of eq. (7.3) is formally identical to 

those of the CEX operator @+
JM of eq. (6.8). The difference is represented by the choice of the 

QRPA vacuum state. Indeed, the vacuum used to calculate the CEX excitations was defined 
in eq. (6.3) as |15NGSA = |14CGS � pA. However, in the QPC model the 15C nucleus is differently 
described in terms of |14C � nA configurations. Thus the QRPA vacuum, above which :+

C 
constructs correlated 2-QP core excitations, is the even-mass ground state: 

|0A 1 |14CGSA           (7.6) 

The 3-QP configurations are given by the action of the [�+
9 :

+
C] j operator on the vacuum 

(7.6): 1-QP (neutron) is created and coupled to the 14C core. 
A first formula for the wave function of a generic odd mass nucleus, including in a non-

trivial way many-body effects, is obtained by expanding the odd-mass wave function into the 
1-QP and 3-QP configurations: 



Chapter 7  Analysis of the 15C structure in the QRPA-DCP approach  

- 111 - 

j
c � c�j�j c) �( )

�
(z� )�

(z
�

+��     (7.7) 

 
where � = (E j, �j) represents the excitation energy and parity of the odd-mass states. The 
1-QP and 3-QP configurations are exactly orthogonal: 
 

( ) 00 
�
 �  � 0

jC�j�j ���      (7.8) 

 
This orthogonality condition is broken by the particle-core interaction V13, which couples the 
1-QP and 3-QP states. The orthogonality between the 3-QP states, valid up to order O(|x|2), 
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 0
C'C

2��             (7.9) 

 
is obtained with the quasi-boson approximation, in which the dynamics (and statistics) of the 
quasiparticle coupled to the excited core is assumed to be the same as in the ground state. 
Deviations from the ground state occupation probabilities are less than 10 % and become 
important only at high excitation energy (Ex / 20 MeV) [Len87]. 

7.2.2 Single par ticle mixing and QPC wave functions 
The odd-mass wave functions of eq. (7.7) account already for important many-body 

aspects, but in this way the spectra may be described only at low excitation energy. A broader 
description of the correlation effects is obtained by including the mixing of 1-QP states from 
different major shells n. The major shell or energy mixing allows a study of the strength 
function also at higher excitation energies and, in principle, to describe the spectra over the 
whole energy range. The QPC-model wave functions are given by [Len87]: 

 

j
c � c�j

n
nj c) 
( )

�
(zn )

�
(z

�
++ ��     (7.10) 

 
New and interesting aspects of the single particle dynamics in an interacting many-body 

system are taken into account in eq. (7.10). The 1-QP component is expanded into a set of 
unperturbed single particle states of fixed orbital and total angular momentum (l, j) but 
different radial quantum number n. The sum over n represents the single particle mixing (i.e., 
the mixing of states with different n) induced by the frequency dependent part M(@) of the 
mass operator. Since the particle-core interaction V13 does not conserve the single particle 
energy, the quantum number n is no longer good and the initial and final single particle states 
of the nucleon may be quite different (but with �E = � 2�@ to preserve parity). To account 
for these differences the core excitation process must provide a sufficiently large amount of 
linear momentum transfer. Therefore the energy mixing depends sensitively on the high-
momentum (i.e., short-range) component of interaction. 

The correlated odd-quasiparticle states of eq. (7.10) are defined in terms of the QPC 
excitation operators: 
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|�jA = �+
�(j,m) |0A      (7.11) 
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The �+

� operators act on the correlated QRPA ground state |0A of eq. (7.6). This assures 
consistency in the description of the core and odd-mass system. In fact, if only the core 
excitations are described by the use of QRPA methods and the odd-particle states are taken 
from uncorrelated |BCSA states, theoretical difficulties are found [Len87]. The difference 
between the QRPA and |BCSA vacuum states is given by admixtures of at least 4-QP 
configurations. Moreover, �+

� contains in general contributions from the time-reversed 
operators of the 1-QP and 3-QP states, n

�~  and [:C��9] j, respectively. Thus the final 
configuration can also be excited by annihilating 1-QP (indeed, |0A is no longer the vacuum 
for n

�~ ); besides excitations in the even-mass nucleus may also be created by annihilating 
virtual higher order ground state configurations. The correlated |�jA states are orthogonal to 
the ground state |0A. By analogy with the RPA theory, the stronger condition 

 
�� |0A = 0        (7.13) 

 
may be imposed. Since eq. (7.13) implies C0| �+

� = 0, the orthogonality condition for the |�jA 
states is expressed as: 

 

( ) jj'����� 	 	0 (j)



),(j'



 0j
�

j'� �� �
�    (7.14) 

 
where the subscript + in the commutation brackets indicates anti-commutator relations. The 
important result of eq. (7.14) is that the �+

� operators obey approximately the fermion anti-
commutator rules. These will be assumed valid in the subsequent discussion. However, 
similar to the quasi-boson assumption for the QRPA phonons, this approximation is fulfilled 
only on the level of expectation values. The different components are then obtained from the 
state operator �+

�: 
 

( ) )
�
(z



,


n
�

n ��
� ;          ( ) )

�
(z~



,
~ *

n
�

n ��
��                               (7.15a) 

 

( ) � )(z
�
 ,

�
 �

C��
C� �EF

G
HI
J

�

���� ;  ( )( ) )�(z~
�
 ,�~ �~ *� C

��C ��
��

      (7.15b) 

 
The normalization condition is written as:  
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where the summation over n is restricted to 1-QP states with different energy but same j and 
�j. The completeness relations, respectively for the 1-QP and 3-QP components, are: 

 (7.12) 
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where the sum includes eigenstates � with only positive (or negative) energy E�, because E� is 
positive (negative) for the positive (negative) time components. 

7.2.3 Eigenvalue equation and mass operator  
The stationary solutions of the eigenvalue problem defined by the Hamiltonian (7.2) 
 

( ) 0
�
 E

�
 H, ��� �� �          (7.18) 

 
have to be found using the QPC wave functions of eq. (7.10). In the equation of motion (7.18) 
E� represents the excitation energy with respect to |0A. By applying the anti-commutators of 
eq. (7.15) to eq. (7.18), a linear system of four equations is derived [Boh70]. Formally the 
system is equivalent to an effective Schrödinger equation for the 1-QP components, given by 
two coupled equations which describe completely the dynamics of the model: 
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where M(E) is the 1-QP energy-dependent mass operator (or dynamical self-energy) and the 
time reversed states are indicated by a bar. Because of the time reversal symmetry of the state 
operator �+

�, only two of the four matrix elements of M(E) in eq. (7.19) are independent: 
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thus the theory treats the dynamics symmetrically for both directions of propagation in time. 
Since M(E) vanishes at E = 0, the QPC theory guarantees that particle- and hole-type spectra 
are separated by an energy gap. 

If the mass operator is purely diagonal the deviation of the quasiparticle strength from 
unity is simply given by the derivative of �0 with respect to the energy, taken at the 
eigenvalue E� [Fet71]. The dynamical effects of the non-diagonal self-energy M(E) on the 
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1-QP motion are taken into account by this extended QPC description and can be worked out 
by the Green function theory. The quasiparticle strength functions are derived as in Section 
6.2.2 by solving the Dyson equation for the correlated 1-QP Green function. Processes of the 
following type are included: the quasiparticle 9 is scattered on an initial core excitation vertex 
“off the energy shell”  into an energy state   -�9; it propagates and interacts repeatedly with 
the core until it is finally scattered back into the initial state 9. 

7.2.4 Spectroscopic factors and single par ticle/hole wave functions 
The quasiparticle approach describes in an unified way the particle and hole-type 

excitations, nevertheless to describe physical systems it is necessary to project the theoretical 
results into the hole or particle components. 

The correlated single particle or hole wave functions are defined in coordinate space as: 
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where S� and C  are the spectroscopic factors and amplitudes, respectively, of the particle (+) 
and hole (–) wave functions��� in a basis of physical nucleon states defined by the eigenstates 
of the static mean-field D . The summation extends only over radial states n . 

In order to calculate the wave functions ��, the spectroscopic factors  
 

+ �� � � 2)(�)(� )
�
(CS        (7.22) 

 
and the C  amplitudes have to be determined. In the quasiparticle representation and using the 
anti-commutator relations of eq. (7.15), the spectroscopic amplitudes for particle and hole 
channels, respectively, are evaluated as: 
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where |u9|

2 and |v9|
2 are the emptiness and occupation probabilities of the generic state 9.Nhe 

eigenvalues M = � E�j and the configuration amplitudes z9 are obtained from the solution of 
the eigenvalue problem comprised by the DCP equation (7.19). 

The sum rules are not satisfied separately in the particle and hole channels but, from the 
completeness relation (7.17a), a total sum rule is found to be valid for the spectroscopic 
factors: 

# $ # $++ ��� �� � 2�2�
�

)(�)(� vuSS              (7.24) 

 
where the right side corresponds to the number of basis states used in the 1-QP expansion. 
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7.3 Results of the QRPA-DCP calculations 
QRPA-DCP calculations were performed for 15C. The 15C states are described 

microscopically by coupling the single neutron states |1-QPA = |14CGS � nA to the core-excited 
configurations |3-QPA = |14Cexc � nA, as in eq. (7.10). The core excitations are described by the 
QRPA theory as 2-QP excitations starting from the even-mass ground state |14CGSA. 

A good description of the 1-QP spectra may be obtained only by using a realistic NN-
interaction and working with large configuration spaces. The D3Y G-matrix interaction of 
Hofmann and Lenske [Hof98] (see Section 6.3) was used in every step of the calculations; 
both the isoscalar and isovector parts were included. The calculations mainly consist of three 
steps. In the first, exactly as in Section 6.2.4, the single particle wave functions of 14C were 
calculated in a mean field given by a superposition of two Woods-Saxon potentials, whose 
parameters were derived by fitting the 14C HFB potential. The calculation was performed in a 
box with Rbox = 40 fm and for Ex ! 100 MeV and L ! 6 (see Sect. 6.4.2 for the details). 

Then, the 14C single particle wave functions were used as input for QRPA calculations, 
which allow a study of the distributions of the collective excitations. The 0+ ground state of 
the even-even 14C nucleus is characterized mainly by the closure of the neutron 1p shell, with 
small admixture of (sd)2 components: ~ 8 % for (1d5/2)

2 and ~ 1 % for (2s1/2)
2 [Cec75]. In the 

QRPA picture, 1p-1h excitations with respect to 14CGS are considered. Thus, e.g., low-lying 
negative-parity states are obtained with (sd)1(1p)–1 configurations, i.e., when one neutron is 
excited from the 1p shell to the (sd) shell. For example, the J� = 3–, 2– doublet at Ex = 6.73 and 
7.34 MeV [Ajz91], respectively, is explainable by assuming a (1d5/2)

1(1p1/2)
–1 configuration. 

The 14C QRPA response functions were obtained with the Green’s function method for  
Ex ! 40 MeV and different multipolarities (from 0 to 4). The core excitations were calculated 
allowing 2-QP excitations up to 100 MeV. The quasiparticle energies and occupation 
amplitudes for 14C were obtained using a BCS pairing field, dependent only on the quantum 
numbers transferred in the excitation of the 2-QP pair and not on the particular QRPA state, 
with constant strength Gp = 23 MeV and Gn = 17.5 MeV for protons and neutrons states, 
respectively. State dependent pairing correlations were introduced in the calculations for the 
2s1/2 neutron state by redistributing the related strength between two energy levels: 90 % of 
the strength at the usual HFB energy (–0.626 MeV) and 10 % at a new level at –4.0 MeV. 

The QRPA electromagnetic response functions are shown in Figures 7.2 and 7.3 for 
natural and unnatural parity states of 14C, respectively. The low-lying excited states of 14C 
(with Ex between 6 and 8 MeV [Ajz91]) in general give rise to peaks with very low intensity: 
e.g., the 14C first excited state (J� = 1–) at Ex = 6.09 MeV is found in the 1– QRPA spectrum as 
an extremely weak peak at 6.04 MeV, corresponding to (2s1/2)

1(1p1/2)
–1 and (1d5/2)

1(1p3/2)
–1 

configurations. The major part of the 2-QP strength is found at higher excitation energy and 
corresponds to more excited 2-QP configurations, which might be associated to higher energy 
14C states [Ajz91]. However, it is pointed out that the QRPA strength distributions do not 
include all the possible collective states. In fact, the QRPA approach can reproduce only 1p-
1h configurations, thus highly collective states are not expected in the QRPA spectra. 

The last step regards the DCP calculations, whose input is the calculated single particle 
and core-excited wave functions. The occupation probabilities |vj|

2 of the single proton and 
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Figure 7.2. QRPA electromagnetic response functions for 14C natural parity states. 
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Figure 7.3. QRPA electromagnetic response functions for 14C unnatural parity states. 

 
single neutron states Ej in the 14C core are shown in Table 7.1. They were calculated by use of 
a state dependent pairing field with G = 30 MeV, obtained as in Section 6.2.5. The DCP 
eigenvalues and eigenfunctions |�jA were calculated by solving the effective 1-QP Scrödinger 
equation (7.19). The 1-QP response functions for 15C were obtained from the resolution of the 
Dyson equation (see Section 6.2.2). Finally, the spectroscopic factors (eq. (7.22)) may be 
determined and it is possible to pass from the quasiparticle to the single particle or hole 
representations, corresponding to 15C and 13C, respectively. 

14C Excitation energy [MeV]  
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Table 7.1. Occupation probabilities |vj|
2 for the single particle states Ej in 14C, calculated with a state dependent 

pairing field (see Section 6.2.5). 

 

 Protons Neutrons 

n l j  Ej [MeV] |vj|
2 Ej [MeV] |vj|

2 

1s1/2 -27.020 1 -24.902 1 

1p3/2 -20.831 1 -14.814 1 

1p1/2 -10.848 0.018 -8.176 1 

1d5/2 -3.193 0.005 -0.719 0.016 

2s1/2 -1.367 0.003 -0.626 0.008 

 
 

Table 7.2. Range of values of the radial quantum number n which, for each state (l,j), are included in the 1-QP 

expansion into major shell components. 

 

l j  s1/2 d5/2 d3/2 p3/2 p1/2 f7/2 f5/2 g9/2 g7/2 

ni 1 1 1 1 1 1 1 1 1 

nf 10 10 6 4 4 3 3 3 3 

   
The DCP response functions were calculated for the s, d, p, f and g 15C strengths, as 

listed in Table 7.2, and for 1-QP energies up to 15 MeV. The major shells which, for each 
state (l,j), contributes to the 1-QP expansion are those with radial quantum number n from ni 
to nf (see Table 7.2). The 1-QP states of Table 7.2 are coupled to the core excitations to 
construct the 3-QP states. The 3-QP components are fully taken into account by allowing 
QRPA core excitations up to 25 MeV and including core states with JC

� from 0+, 1�  to 4+, 4�. 
The 15C response functions are shown in Figure 7.4 with the 15C excitation energy scale, 
which is obtained from the 1-QP energy scale by subtracting the ground state energy.  

The intense peaks at Ex ~ 0 MeV in Figures 7.4a and b correspond to the 2s1/2 ground 
and 1d5/2 first excited 15C state, respectively. Strong fragmentation of the 15C strength is found 
in the s1/2 (Fig. 7.4a), d5/2 (Fig. 7.4b) and d3/2 (red line in Fig. 7.4c) strengths, in the energy 
region Ex ~ from 5 to 11 MeV. Large bumps are observed in the remaining strength functions 
(Fig. 7.4c and d), where the f7/2 and f5/2 strengths are found to be identical and the same occurs 
for the g9/2 and g7/2 ones. 

The results of the QRPA-DCP calculations foresee fragmentation of the s1/2, d5/2 and d3/2 
15C strengths. Therefore the fragmentation of the 15C strength observed in the experimental 
spectra in the region Ex ~ from 6 to 9 MeV (see Section 5.2.2.) may be explained in terms of 
dynamical core polarization. In the light of these results, the narrow resonances seen in the 
15C continuum may be interpreted as BSEC (Sect. 2.2) with low spin (possible J�: 1/2+, 3/2+ 
or 5/2+). The present results confirm the predictions obtained by similar calculations [Noc03].  



Chapter 7  Analysis of the 15C structure in the QRPA-DCP approach  

- 119 - 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7.4. DCP response functions for 15C, calculated according to the QPC-model, for the a) s1/2; b) d5/2; c) 

d3/2, f7/2, f5/2; d) p3/2, p1/2, g9/2 and g7/2 strengths. The bin size is 100 keV. 
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The strength fragmentation over various eigenstates is a consequence of dynamical 
many-body effects, included in the adopted microscopic formulation of the QPC model 
[Len87]. This approach, in which the quasiparticle states are coupled with the QRPA core 
excitations by the residual interaction, allows a description of the single particle strength 
distributions also at high excitation energies. 

Moreover, it is confirmed to be suitable for light neutron-rich nuclei, where the 
dynamical core polarization is expected to be enhanced owing to the softer core. Once it was 
established that the 15C narrow continuum states may be described as BSEC excitations, line 
shape calculations based on the QPC-model could be performed, as described in Chapter 8, 
where we consider for the first time the effects of the BSEC phenomenon in unstable neutron-
rich nuclei. 
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CHAPTER 8 

 

RESONANCE LINE SHAPE IN 
LIGHT NEUTRON-RICH NUCLEI  

 

 
The work presented in this Chapter takes its origin from the new experimental 

observation discussed in Chapter 5, concerning the possible interference between the 3-body 
phase space continuum and the 8.5 MeV BSEC (see Sections 5.2.3 and 7.3). This work gets 
inspiration from the Baur and Lenske article [Bau77], in which the Fano interference [Fan61] 
is analysed in the case of the (p,p’) inelastic scattering of nucleons on nuclei. 

In a preliminary step, in Sect. 5.2 the 8.5 MeV peak has been fitted by simply assuming 
a Gaussian shape, but in general interference phenomena give rise to typically asymmetric 
structures in the spectra with a non-trivial energy dependence. Besides, rather than the 
position of the unperturbed level, a “modified”  resonance energy is experimentally accessible. 
In fact the position, width and shape of a resonance may be affected by the presence of other 
resonances or continuous backgrounds. This is due to the configuration interactions shifting 
the position of the peak and/or altering the shape, which then might deviate considerably from 
the Gaussian or Breit-Wigner forms, often used to fit the data. Configuration interaction may 
be regarded as a core effect, which takes place in the outer region of the core [Fan61]. 

To show the generality of this subject and the interest of various fields of the physics in 
it, in Section 8.1 a historical background about the Fano interference is given, together with 
the basic points of the Fano’s original approach. The theoretical model used to investigate the 
resonance line shape in light neutron-rich nuclei is described in Section 8.2. The results of 
calculations are reported and discussed in Section 8.3. The 15C results are compared with the 
experimental spectra of Chapter 5 (see 8.3.2). With the purpose of a systematic study of the 
interference effects in the C-isotopes, results for 17C and 19C are presented (see 8.3.4). A 
summary is given in Section 8.4. This work will be object of next publications. 

8.1 Fano inter ference 
The first theory of these interference effects was developed by Fano in the 1960’s when 

studying the inelastic scattering of electrons on atoms exciting autoionized states [Fan61]. 
Fano interference consists of the quantum-mechanical interaction between discrete and 
continuous states, leading to characteristically asymmetric peaks in the spectra. In the original 
work of Fano [Fan61] explicit results were derived for the following cases: one resonance 
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interacting with one continuum, one discrete level interacting with two or more continua, and 
a set of discrete levels coupled with one continuum. In particular, Fano found that the 
coupling of a discrete autoionized state with a continuum leads to an asymmetric line shape in 
the spectra of the electrons, which may be characterized by one real parameter q (the Fano’s 
parameter). Fano applied his theory to the perturbation of a Rydberg series of discrete levels, 
giving the position and intensity shifts produced in the series by the interaction with a level of 
another configuration. Also the possible connection with the nuclear theory of resonance 
scattering was indicated. 

Fano interference is an universal phenomenon, which has been observed in many 
different areas of physics. A theoretical framework was developed in a series of papers by 
Feshbach [Fes58, Fes62, Fes67], giving an unified description of the nuclear reaction theory 
and considering also overlapping resonances. Several authors have extended Fano’s model to 
include the case of many resonances coupled to many continua, principally regarding atomic 
physics phenomena. In detail, Mies [Mie68] included the inelastic couplings between the 
continuum states and examined the effects of overlapping resonances for the atomic 
photoabsorption and electron diatomic molecule scattering. Starace [Sta72] enlarged the 
theory for the photoabsorption, showing how to construct the prediagonalized states which 
Fano and Mies assumed at the outset and deriving the total photoabsorption cross section as a 
sum of the partial ones. Later, Bhatia and Themkin [Bha84] unified the Fano and Feshbach 
approaches and gave a derivation of Fano’s results using the projection-operator formalism. 
They also included the interaction between discrete resonances, leading to energy-dependent 
line shape parameters. Connerade and Lane [Con88] extended the work of Mies, analysing 
many interesting effects associated with interactions between the resonances.  

Recently, Ligterink considered the case of many resonances and one continuum, 
applying the Fano theory to the analysis of the hadronic resonances of the "-meson in the 
two-pion decay of the &-lepton. The resonance shape is described through the coupling of the 
"-meson resonance to the pionic continuum; the matrix elements of the Hamiltonian are fitted 
by the data [Lig02]. Finally, in solid-state physics, Glutsch derived a compact formula for the 
optical absorption coefficient of the Fano model in the general case of many resonances 
coupled with many continua. His calculations [Glu02] are entirely based upon a simple matrix 
algebra, without the need to involve the scattering theory. 

8.1.1 Fano’s or iginal approach 
Fano developed [Fan61] an analysis for atomic resonances based on a general 

Hamiltonian for such systems. This Hamiltonian can be diagonalized exactly, therefore 
yielding direct relations between its parameters and the data. 

Let us examine the simplest case of a discrete configuration D  interacting with a 
continuum of states ' E

� . Assuming that D  and ' E
�  diagonalize separate submatrices of 

the total Hamiltonian H, 

DDD EH �       (8.1) 
  

)E' '
�
(E' E'�H�

' E'' E ��      (8.2) 
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the task is to introduce the off-diagonal terms which couple the two configurations: 

 ' E' E VH� �D      (8.3) 

Each energy value E within the range of E’  is an eigenvalue of the energy matrix (8.1, 
8.2, 8.3) to be diagonalized. The exact total wave function E

�
, eigenvector of the full 

Hamiltonian H, is a linear combination of the two sets D  and ' E
� : 

��� ' E' EE
�bdE'a

�
D      (8.4) 

where the coefficients a and bE’, which are functions of E, are determined as solutions of the 
system of equations pertaining to the energy matrix: 
 

a Eb V dE'a E ' E
*

' E �� �D           (8.5) 

 

' E' E' E b Eb E'a V ��       (8.6) 
 

The diagonalization of the matrix is achieved by solving system (8.5, 8.6). This system 
is exactly solved using the Dirac’s procedure of introducing into eq. (8.5) the formal solution 
[eq. (8.7)] of eq. (8.6):   

 a V)E'(E
�

z(E)
E'E

1
b ' E' E EF

G
HI

J ��
�

�            (8.7) 

 
thus, from eq. (8.5), it is possible to determine z(E) as: 
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E
E
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�
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' E     (8.9) 

 
and P indicates the principal part of the integral. The phase shift due to configuration 
interaction of the continuum ' E

�  with the single discrete state D  is defined as: 

� = – arctan[�/z(E)]          (8.10) 

and it varies swiftly by ~� as E traverses an interval ~|VE|2 (index of the configuration 
interaction strength) about the “resonance”  at E = ED + F. The quantity F represents thus a 
shift of the resonance position with respect to the unperturbed resonance energy ED�. 

The coefficient a, which factors out from (8.5), is determined by normalization as: 

( ) 4

E
22

2

E2

V�F(E)EE

V
a(E)

���
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D

            (8.11) 
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Figure 8.1. General line shape of isolated autoionizing resonance in a flat continuum for different values of the 

Fano’s parameter q, according to the formula (8.12) taken from the classic paper of Fano [Fan61]. 

 
This result shows that the discrete state D  is “diluted” by the configuration interaction 

throughout a band of actual stationary states E

�
, whose profile is represented by a 

resonance curve with half-width �/2 = �|VE|2 which reduces to a Breit-Wigner form if the 
coupling function VE is a constant. 

A study of the excitation probability of the stationary state E

�
 is interesting. 

Independently from the excitation mechanism, this probability may be represented as the 
squared matrix element of a suitable transition operator T between E

�
 and an initial state 

i . The ratio of the transition probability                  to the probability                   of transition 
to the unperturbed continuum is represented by a single family of curves, according to the 
Fano’s famous result: 

2

2

2
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2

E
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�                    (8.12) 

 
which is valid for an isolated line in a “ flat”  continuum, that is a background with a constant 
phase shift =. Eq. (8.12) is a function of the reduced energy � and of the Fano’s parameter 
q = cot=: 

F(E)EE

V��
cot�

2

E

��
���

D

        (8.13) 
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�
q
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*
E

�      (8.14) 

where 	  indicates the state D  modified by an admixture of continuum states: 

    EF

G
HI

J
�

�� � E'E


V
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The shape of the resonance depends on the mode of excitation because q involves the 
probability of excitation to the continuum, therefore depending also on the initial state i . 
Thus the profile q can be varied by varying the initial state, while the resonance width remains 
constant. 

In Figure 8.1 the curve (8.12) is plotted as function of � and for different q values. The 
two contributions to iT

�

E , iT
�

 and iT�
E , interfere with opposite phase on the 

two sides of the resonance, giving the characteristic line shapes of Figure 8.1. In particular, 
the asymmetric peak lies adjacent to a minimum in the cross section, indicating that the 
transition probability vanishes on one side of the resonance. The profile shape is perfectly 
symmetric only for q = 0, while for q � � B the quasi-Lorentzian limit is recovered. 

When two or more continua are present, Fano showed that one should expect to observe 
an excitation spectrum of the type in Figure 8.1 superposed on a smooth background, thus the 
cross section should not drop to zero, even with ideal resolution. 

8.1.2 Fano inter ference in nuclear  physics 
In nuclear physics Fano interference is often described in terms of the interaction of 

open and closed channels. Using the projection-operator formalism it is possible to obtain a 
Schrödinger equation for the open channel part, eliminating the closed channel configurations 
[Fes58, Fes62, Fes67]. By analysing the structure of the effective Hamiltonian for the open 
channels, Feshbach obtained the various aspects of reaction theory. The effective Hamiltonian 
consists of a part which varies slowly with energy – responsible for the direct reactions, for 
potential scattering and “single particle”  giant resonances – and a rapidly varying part which 
gives rise to the narrow compound nuclear resonances of Breit-Wigner form, closely 
associated with the bound state wave functions of the closed channels. 

The Fano model is exactly solvable, but the calculation, which is based on an 
eigenvalue problem, sometimes may be intricate. The typical approach in atomic physics is to 
expand the BSEC wave functions into a basis of electron Hartree-Fock (HF) wave functions, 
to put the matrix elements calculated in that basis together with the continuum ones into a 
large matrix and to solve the resulting eigenvalue problem, using matrix algebra without 
involving the scattering theory. Instead we used a different, but equivalent, method which 
follows and extends the approach of refs. [Bau75, Bau77] developed in the 1970’s, namely to 
solve directly the coupled channels problem in the coordinate space. This coupled channels 
model gives rise to a interfering resonance through the coupling of the single particle 
continuum to a BSEC. 

In detail, in ref. [Bau75] this method was applied to the study of the resonance line 
shape in the (d,p) stripping reactions into the continuum, while in ref. [Bau77] it was 
employed to study the line shape in the (p,p’) inelastic scattering. Different assumptions about 
the radial shape of the coupling term have been made, the main are: a constant Volume 
Coupling potential in the interior region (model VC); a Surface peaked Coupling in the form 
of a =-interaction (model SC); or both cases. Analytical solutions can be obtained for the 
coupled channels problem. The wave functions obtained with the models VC and SC, 
although identical in the exterior region (r > R0 = potential radius) by definition, differ 
considerably in the interior region, as shown in Fig. 8.2. 
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Figure 8.2. Comparison of the neutron wave functions of model VC (dashed lines) and model SC (continuous 

line) for three different neutron energies [Bau75]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.3. Calculation for the 15N(d,p)16N continuum stripping spectrum. Three different curves are shown: 

model VC (dashed line), model SC (continuous line) and a calculation with a cut-off for r < R0 (dashed-dotted 

line) [Bau75]. 

 
This means that the resonance energy, width and background phase shift are not 

sensitive to the inner part of the wave function. An obvious improvement might be to use 
Woods-Saxon type potentials. However, in that case it is expected that the strong model 
dependence persists [Bau75]. With the general assumption of a Breit-Wigner shape for the 
unperturbed resonance, the typical interference pattern shown in Figure 8.3 was found by 
calculations for the 15N(d,p)16N stripping reaction. The resonance shape tends to become 
symmetric with increasing proton scattering angle, especially in the case of the model SC. 
The difference between the model VC and the calculation with a cut-off for r < R0 becomes 
larger with increasing proton scattering angle because the influence of the interior region 
increases. However, for 208Pb(d,p)209Pb (unbound) at an energy close to the Coulomb barrier, 
the contributions from the interior are modest: the interior wave functions of the resonance for 
the different models have the same shape and are nearly equal [Bau75]. 
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Figure 8.4. Comparison of the line shapes with real and complex line shape parameter q. Left: The shape for 

different real values of q. Right: The line shape for complex q = |q| eiD with |q| = 1 and various phase D [Bau77]. 

 
In the case of the (p,p’) inelastic scattering [Bau77], the asymmetric resonances arising 

from the coupling of the single particle continuum to the BSEC of Breit-Wigner form have a 
characteristic interference pattern with an energy dependence more complicated than a simple 
Breit-Wigner function. Assuming a direct excitation process and including the distortion for 
the projectile wave function (DWBA), the simple Fano formula (8.12) has to be generalized, 
named replaced by one with a complex Fano’s parameter. In Fig. 8.4 the comparison of the 
line shapes with real and complex q is shown [Bau77]. The main consequence of a complex q 
is the prediction of a specific evolution of the line shape as a function of the scattering angle. 

8.2 Theoretical approach 
A theoretical model to investigate the resonances and their line shapes in the low-energy 

continuum has been developed, on the basis of the Quasiparticle-Core Coupling (QPC) model 
(see Sect. 7.2 and ref. [Len87]). The model extends the previous work of refs. [Bau77, 
Fuc80], by incorporating information from HFB and QRPA calculations for potentials, single 
particle and excitation energies and transition probabilities, respectively. Two components are 
considered: the single particle continuum and the resonances, which in absence of a 
continuum are discrete eigenstates. A general Hamiltonian couples the continuum to the set of 
discrete states that are orthogonal with respect to each other. 

Let us recall some general concepts already discussed in Section 7.2. In our model we 
consider the QPC effective Hamiltonian, which has the form: 

 

��
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��
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3331

1311

HV

VH
H       (8.16) 

 
where H11 represents the Hamiltonian operator acting on the one-quasiparticle (1-QP) 
components, describing the single particle motion of the valence neutron with respect to the 
inert core, and defines the basis of single particle states. H33 acts on the 3-QP components, 
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chosen as correlated one particle-one hole (i.e., 2-QP) core excitations – described below in 
terms of quasi-particle RPA (QRPA) theory – to which 1-QP states are coupled. The residual 
interaction V13, acting between the two above-mentioned channels, leads to the coupling 
between the 1-QP states and the 3-QP core-excited configurations. The eigenstates J

�
 of the 

full Hamiltonian H, i.e., (H – E) J

�
 = 0, will be therefore a superposition of the two 

components of 1-QP Jn  and 3-QP JC )J (j' , respectively without and with core excitation: 

++ ����
C

C
J  j'

JCJ j'
n

JnJ )J (j'znz  
�

    (8.17) 

where the total spin J and parity �J must be conserved:                            and 
               indicate the spin of the 1-QP valence and the 2-QP core-excited state, respectively. 
The first term includes a superposition of radial wave functions with nodes n because in an 
interacting system the radial quantum numbers n are no longer conserved. The  core 
excitations in the second term are described by QRPA states with energy EC. 

Projecting the Schrödinger equation onto the 1-QP and 3-QP channels and integrating 
out the core degrees of freedom, the following set of coupled equations is obtained:  

 
# $ 0 )J (j'Vnzz �h

C

Cj
J  j'

JC13JJ j'n1n ��� +    (8.18a) 

# $ 0 nV)J (j'zz �h
n

J13JCnJ j'2J j' CC
��� +    (8.18b) 

describing the change of single particle motion under the influence of the particle-core 
interaction V13 which induces (inelastic) rescattering of a nucleon on the core nucleus. In 
equations (8.18), hnj and hj’ Jc are the effective single particle Hamiltonians with respect to the 
ground state and the core excited states, respectively. The single particle energies are related 
by �2 = �1 – EC, where �1 = E – E0 is the ground state single particle (HFB) energy and EC is 
the excitation energy of the core state. Negative �1 values correspond to the bound single 
particle states, while �1 > 0 corresponds to the 1-QP continuum. The BSEC (see Sect. 2.2), 
considered bound core-excited states, are represented by negative �2 values although their 
total energy E3 is positive, i.e., they are immersed into the single particle continuum. 

8.2.1 Two channels model 
For our purposes, we prefer to work out a set of coupled differential equations, which 

give directly the radial wave function and the scattering phase shifts as a function of the 
energy. Here, we use a simplified but realistic model, chosen for the sake of a transparent 
presentation of the essential aspects of bound-continuum interactions. We consider only two 
channels, the first representing the single particle continuum (�1 > 0) and the second 
corresponding to a bound core-excited configuration (�2 < 0). As done in refs. [Bau75, Bau77] 
we use square well potentials for the channel potentials U1 and U2: 
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where R0 is the model nuclear radius. A similar choice is made for the coupling form factors 
FJc(r) = C0|V13|JCA within the core, which are assumed to be constant following the VC model: 

4
5
6

	

!	
�

0

00c
J Rr

Rr
    

        0

0F
    (r)F

C
     (8.20)  

that is, for r > R0 the radial equations are decoupled. The depths U1,2 and the radius R0 are 
determined from HFB calculations [Len04]. 

The choice of step-potentials (U1, U2) for both channels and also for the coupling 
potential V13 between them leads to a spherically symmetric problem with known analytic 
solutions. The radial coupled equations in matrix form for the single particle wave functions 
with respect to the ground and the core excited state, respectively, are obtained with the 
assumptions (8.19) and (8.20) from equations (8.18): 
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where ui,l(r) are the radial wave functions for the two channels (i = 1, 2). We treat the case 
where the BSEC and the scattering channel carry the same angular momentum l. 

Posing Ki
2 = 2m(�i + Ui)/�

2 in the internal region (r < R0), Ki
2 = 2m�i/ �

2 1 ki
2 in the 

external region (r > R0) and W = 2mV13/�
2, m being the reduced mass between neutron and 

core, we can rewrite the system of coupled equations as: 
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As known from Potential Scattering Theory (see, e.g., [Joa75]) in the particular case of 
square well potentials the solutions for r < R0, regular at the origin, are expressed in terms of 
spherical Bessel functions jl(kr), while for r > R0 in terms of spherical Hankel functions hl(kr).  

For r < R0 we find, respectively, for the open and closed channel wave functions: 

( ) ( )r)(Qja br)(Qja b(r)u 122111 1, �� �� lll     (8.23a) 

( ) ( )r)(Qja br)(Qja b(r)u 222211 2, �� �� lll    (8.23b) 

The energy matrix of system (8.22) constitute a 2x2 square matrix. Solving the related 
eigenvalue problem 
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we can determine the eigenvalues 2Q�  and the eigenvectors with coefficients aij as: 
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# $/WQK/aa 22
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where the aij have to be normalized:                    for j = 1, 2. It is possible to show that in the 
absence of interaction (W = 0) we obtain: Q+ = K1, Q– = K2 and 
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thus the wave functions are simply the decoupled Bessel functions of the two channels: 
 

r)(Kj b(r)u 11 1, ll �       (8.28a) 

r)(Kj b(r)u 22 2, ll �       (8.28b)  

 
Now let us consider the external region r > R0. The corresponding solutions are: 

 
r)(kh Cr)(kj(r)u 1111 1, lll ��      (8.29a) 

r)(kh C(r)u 212 2, ll �       (8.29b) 

 
where the hl(k2r) of the second channel reduces is exponentially decaying because k2 = iO2 is 
purely imaginary due to the negative value of �2. From equations (8.23) and (8.29) we have 
the four unknowns b1, b2, C11 and C12 to determinate; obviously they – and the coefficients ai j 
also – are all functions of the energy, this dependence is not indicated explicitly for brevity. 
Imposing the matching conditions, that is the boundary conditions that both ui,l(r) and 
dui,l(r)/dr be continuous at r = R0, allows to determine the coefficients b1, b2, C11 and C12 and 
thus the wave functions. 

Moreover the knowledge of the elements of the scattering matrix S 

Sij = (k)� i 2
ij

(k)
�
 i 2 i ji j e �e �      (8.30) 

where the elastic scattering phase shifts =ij(k) = �ij(k) + i �ij(k) and <ij(k) = e–2�ij(k), defined by 
the asymptotic form (8.29) of the radial wave functions 
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enables one to obtain and the partial wave elastic cross sections �i(k) (for a spin-less particle): 
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Figure 8.5. Example of the results of the HFB calculations for a 14C core. The HFB potential is separately 

calculated for proton (p) and neutron (n). Then it is fitted using a Woods-Saxon (W.S.) potential. The parameters 

of this fit give the square well potential, which is used in the line shape calculations. 

8.3 Model calculations  
Our main purpose in the calculations is to study the effects which can occur when 

resonance and continuum overlap. Here, we need in particular the scattering matrix elements 
in the open channel. One could in principle develop a formula which clarifies the cross 
section dependence on the interaction V13. However, it would be so complicated and 
absolutely not trivial to derive and exhibit, due to the fact that this dependence is contained in 
the internal radial wave functions through both �Q  and the coefficients aij of equations (8.23). 
Thus it is more convenient to calculate numerically the cross section in the open channel, �11, 
and then to assess the quantitative importance of such a dependence by comparing the results 
in the two cases V13 - 0 and V13 = 0. This is done in Section 8.3.1 in the case of the 15C 
nucleus, considering one core-excited state. 

To perform the calculations, the potentials U1, U2 and the potential range R0 have been 
taken from Hartree-Fock-Bogoliubov (HFB) calculations by adjusting their values such that 
single particle energies and root-mean-square radii of the single neutron states in the various 
core systems (14C, 16C and 18C, respectively for 15C, 17C and 19C) are reproduced. Precisely, 
U1, representing the ground state potential, has been made state dependent by fitting 
independently the experimental (if available) or HFB single particle energies �HFB. On the 
contrary, U2 is taken to be state independent by fixing strength and radius from the HFB 
mean-field potential as described in Figure 8.5. In order to have a consistent description, R0 
has been optimised with the purpose to reduce to only few MeV the variation of U1 for a same 
HFB state in the different core nuclei. The parameters utilized for the HFB fit and the so 
determined potentials and radii are reported in Table 8.1. Finally, the particle-core 
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Table 8.1. Adopted HFB radii R0 [fm] and potentials U1, U2 [MeV]. For each core nucleus the HFB energies 

�HFB [MeV] used for the fit of U1 are reported together with the obtained U1 values. When available, the 

experimental values – taken from refs. (a)=[Ajz91], (b)=[Til93], (c)=[Til95] – are used; they account, e.g., for the 

known shell inversion in the 15C ground state. 

 

 n + 14C n + 16C n + 18C 

HFB values R0 U2 R0 U2 R0 U2 

 3.1332 -45 3.1498 -46 3.1449 -46 

HFB level ����HFB U1 ����HFB U1 ����HFB U1 

1s1/2 -31.867 -46.538 -32.798 -47.299 -33.709 -48.228 

1p3/2 -15.365 -44.257 -15.748 -44.232 -16.336 -44.847 

1p1/2 -8.939 -36.236 -9.854 -36.953 -10.923 -38.225 

1d5/2 -0.478(a)  -46.498 -0.728(b) -46.033 -1.845 -47.589 

2s1/2 -1.218(a) -54.747 -0.433(b) -51.706 -0.160(c) -50.506 

 
 

interaction strength F0c ~ V13 has been left as a free parameter but using constraints from 
experimental or QRPA transition probabilities. 

Subsequently, for the calculation of �11 for the different core-excited states, the 
interaction V13 has been fixed to 15 MeV and it has been weighted for each core state EC. In 
detail, to weight the interaction V13 in the case of a 14C core, the experimental collective 
deformation amplitudes � from the scalar-isoscalar (S=0, T=0) transitions in 14C(�,�’ ) 
[Ajz91] have been used. For 16C [Til93] and 18C [Til95], however, no experimental 
amplitudes are available, thus theoretical amplitudes �QRPA have been calculated for the (S=0, 
T=0) transitions using a QRPA code. The �QRPA are determined from the QRPA transition 
probabilities, representing the response for excitations due to the microscopic QRPA fields. 
Precisely, �QRPA is deduced from the reduced transition probability B(T�

S,T) as: 
 

2
�

TS,�
2�

r

)B(T�

	

�           (8.33) 

 
where T�

S,T is the multipolar transition operator and�� indicates the multipolarity. 
The energies EC of the core states included in the calculations and the corresponding �-

amplitudes are reported in Table 8.2. Only natural parity core states are considered due to the 
nature of the (S=0, T=0) transitions. Core states with low � (~ 10-3) have been neglected 
because they gives only a shapeless background. For 18C only the first excited state at EC = 
1.620 MeV is known [Til95], the other reported levels have been calculated with the QRPA 
code. An example of a calculation of the �QRPA amplitudes for the 16C states is shown in  
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Figure 8.6. Density �QRPA amplitude (S = 0, T = 0) for the 16C states, calculated by the QRPA code. Main plot: 

�QRPA for the 2+ states. Inset: Detail of the 2+ and 4+ components, which constitute the values used in the line 

shape calculations with a 16C core. 

 
 
 
Table 8.2. Characteristics of the core-excited states included in the calculation of �11: spin and parity J�, energies 

EC in [MeV] and �-amplitudes. The experimental values are taken from refs. (a)=[Ajz91], (b)=[Til93] and 

(c)=[Til95]. (* ) indicates theoretical values obtained from QRPA calculations. 

 
14C (a) 16C (b) 18C (*) 

J���� EC ���� J���� EC ���� J���� EC ���� 

1– 6.094 0.224 2+ 1.766 0.502(*) 2+(c) 1.620(c) 0.420 

3– 6.728 0.397 2+ 3.986 0.080(*) 4+ 2.967 0.123 

2+ 7.012 0.293 4+ 4.142 0.145(*) 2+ 3.313 0.058 

2+ 8.317 0.221    1– 5.502 0.055 

 
 

Figure 8.6. In the main plot �QRPA (S=0, T=0) of the 2+ states is reported with respect to the 

16C excitation energy. The first two lines give the �QRPA values adopted for the two 2+ states at 
EC = 1.766, 3.986 MeV (see Table 8.2). Indeed, we are interested in core-excited states at low 
excitation energy, corresponding to the low energy BSEC, while the strength in the region 
 EC ~ from 20 to 25 MeV corresponds to the giant resonances. In the inset the region between 
0 and 5 MeV is shown in detail, together with �QRPA for the 4+ component (adopted value for 
the 4+ state at EC = 4.142 MeV). 

 
 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0 5 10 15 20 25 30 35 40 

|b
et

a(
S

,T
)|

 

Ex [MeV] 

16C(2+) - QRPA Response 

           S=0,T=0 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

1 2 3 4 5 

4+

2+



Chapter 8  Resonance line shape in light neutron-rich nuclei 

- 134 - 

8.3.1 Results of the line shape calculations 
The results of the line shape calculations are given in this Section, considering for 

example the 15C nucleus. The results concerning one core-excited state, the 14C state at EC = 
8.317 MeV, are shown in detail for each step of the calculations, comparing them in the two 
cases V13 - 0 and V13 = 0. All the plots of this Section refer to the EC = 8.317 MeV core state. 

The wave functions of the two channel u1,l(r) and u2,l(r) are reported, respectively, in 
Figures 8.7 and 8.8 for l = 0, in Fig. 8.9 and 8.10 for l = 1, in Fig. 8.11 and 8.12 for l = 2. For 
each channel, the real and imaginary parts of the wave function are plotted separately, 
comparing them with the corresponding ones in absence of interaction (V13 = 0). The wave 
functions are determined with continuity. The absence of discontinuities between the internal 
(r < R0) and external (r > R0) regions is an useful test of the goodness of the matching. 
Comparing the V13 - 0 and V13 = 0 (decoupled Bessel function) cases for channel 1 and l = 0, 
we can see from Figure 8.7 that there are only small differences in the internal region, while 
for r > R0 the two wave functions are almost the same. For l = 1 (Fig. 8.9) the wave functions 
are practically identical, so no resonances are expected in the p-wave. The influence of the 
interaction is evident in the d-wave (l = 2, Fig. 8.11), where the wave function is slightly 
shifted for r > R0 with respect to the one with V13 = 0. 

Regarding the second channel (Fig. 8.8, 8.10, 8.12), the wave functions u2,l(r) have the 
correct behaviour, that is the exponential decay for r > R0 due to the negative �2 value. 
Besides, u2,l(r) is always zero when V13 = 0 (from the matching in this case b2 = 0 and C12 = 
0). This is due to the fact that equations (8.22) are solved under the boundary condition that 
the ground state channel (channel 1) is the one with incoming plane waves, i.e., the one which 
is populated initially, independently of the interaction V13. The core-excited channel is 
populated only through the residual interaction, which diverts part of the flux into the 
(asymptotically) closed BSEC channel before scattering back into the open elastic channel. 
Thus, all that is observed in channel 2 for V13 - 0 is caused by the presence of the interaction. 
A second class of solutions, corresponding to �2 > 0 and not considered in the present case, 
describes the opposite situation in which the incoming flux is carried by the core-excited 
channel and the ground state channel has only outgoing waves.  

In general [Joa75] for reaction processes (absorption without emission) together with 
the elastic scattering (always present) the phase shift = is complex with Im [=] = � > 0 and 
thus 0 ! <�< 1, while for pure elastic scattering = is a real quantity and�< = e–2� = 1. The 
partial wave amplitudes Cij are directly related to the T-matrix elements: Cij = Tij/(2i). The 
|C11| calculated in the open channel in the two cases with and without interaction are shown in 
Fig. 8.13 and 8.14, respectively. Some small effect is present in the s-wave component (Fig. 
8.13a), while the p-wave one remains practically unaffected (Fig. 8.13b). Strong interference 
effects are present in the d-wave (Fig. 8.14a). The real and imaginary parts of C11 for l = 2 are 
separately shown in Fig. 8.14b; the imaginary part is found to be correctly positive, as 
expected for 0 ! <11 ! 1. The elements of the scattering matrix S are given by Si j = Tij + 1 = 2i 
Cij + 1. As long as the second channel is closed, the S-matrix S11 is unitary with inelasticity 
<11 = |S11| = 1. In Fig. 8.15 the modulus <11 is plotted for s-, p- and d-waves, in comparison 
with the V13 = 0 case in which <11 = 1 always. The V13 - 0 term is responsible for the strong 
deviations of <11 from the constant value 1, producing a very narrow peak in the d-wave.  
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Figure 8.7. Calculated 15C wave function of the first channel for l = 0. Imaginary and real parts are compared in 

the two cases with and without interaction V13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.8. Calculated 15C wave function of the second channel for l = 0. The imaginary and real parts are zero 

in the case without interaction (V13 = 0). 

 
 
 

 

-3 

-2 

-1 

0 

1 

-1 

0 

1 

0 5 10 15 20 25 30 

u 1
,l 

= 
0 

(r
) 

r [fm] 

Wave Function Channel 1, l = 0 

Re [u1,l = 0 (r)], V13 - 0 

Re [u1,l = 0 (r)], V13 = 0 

Im [u1,l = 0 (r)], V13 = 0 

Im [u1,l = 0 (r)], V13 - 0 

 

1e-05 

0.0001 

0.001 

0.01 

0.1 

1 

0 5 10 15 20 25 30 

u 2
,l 

= 
0 

(r
) 

r [fm] 

Wave Function Channel 2, l = 0 

Re [u2,l = 0 (r)], V13 - 0 

Im [u2,l = 0 (r)], V13 - 0 



Chapter 8  Resonance line shape in light neutron-rich nuclei 

- 136 - 

 
 
 

 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 8.9. Calculated 15C wave function of the first channel for l = 1. The wave functions (both imaginary and 

real part) are identical in the two cases with and without interaction V13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.10. Calculated 15C wave function of the second channel for l = 1. The imaginary and real parts are zero 

in the case without interaction (V13 = 0). 
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Figure 8.11. Calculated 15C wave function of the first channel for l = 2. Imaginary and real parts are compared in 

the two cases with and without interaction V13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.12. Calculated 15C wave function of the second channel for l = 2. The imaginary and real parts are zero 

in the case without interaction (V13 = 0). 
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Figure 8.13. Calculated partial wave amplitude |C11| in the two cases with and without interaction V13. 

a) s-wave (l = 0). b) p-wave (l = 1).  

 
 
The phase shift = displays the influence of the interaction. Usually a positive = indicates 

an attractive interaction; conversely a negative = corresponds to a repulsive one [Joa75]. 
= = =(�), i.e., it is a function of the energy and may change sign as the energy is changed: for 
example, in the NN-interaction case = is positive at low energy and becomes negative at high 
energy. This behaviour reflects the existence of a repulsive core in the nuclear force. 
Nevertheless V13 is a non-diagonal interaction and then the simple rules of the Potential 
Scattering Theory do not apply to it. In fact, the sign of V13 is not influential because it enters 
quadratically into the eigenmomenta Q+ and Q– of eq. (8.25). 

In our case the phase shift is real because the flux of particles is a conserved quantity. 
Indeed, even though the residual interaction diverts part of the flux into the core-excited 
channel, afterwards this flux scatters back into the open elastic channel. In general, a sharp 
variation of the phase shift is index of the presence of a resonance. The calculated phase shift 
=11 is shown in Figure 8.16 for s-, p- and d-waves in the two cases V13 - 0 and V13 = 0. No 
large difference is seen in the s-wave and =11 for the p-wave remains unchanged. On the 
contrary, a very prominent variation is observed in the d-wave. Thus this confirms that we can 
expect a resonance for l = 2. 
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Figure 8.14. Calculated partial wave amplitude |C11| for the d-wave (l = 2). a) Comparison between the 

calculations with and without interaction V13. b) Real and imaginary parts of C11 for l = 2 and V13 - 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.15. Calculated scattering matrix element |S11| for s-, p- and d-waves. Also the V13 = 0 case is plotted for 

comparison: for each l-value |S11| = 1 always. 
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Figure 8.16. Calculated phase shift =11: a) s- (l = 0) and p- (l = 1) waves. b) d-wave (l = 2). For each l-value, =11 

is plotted in the two cases V13 - 0 and V13 = 0.  

 
 
The partial wave cross sections �11 of elastic scattering between neutron and core have 

been calculated for a range between 0 and 30 MeV of excitation energy. In Figure 8.17a the 
interference pattern related to the core-excited state EC = 8.317 MeV is shown in detail for s-, 
p- and d-waves. Whereas the s- and p-wave cross sections are smooth functions of the energy, 
constituting only a continuous background, a narrow and asymmetric peak is evident in the d-
wave cross section. The appearance of this peak illustrates how a discrete level may be 
modified by the interference with a continuous background.  

In Figure 8.17b a calculation is shown for the same 14C state at EC = 8.317 MeV with 
exactly the same parameters of the previous one of Fig. 8.17a, but in which the interaction V13 
is set to zero. While the shape of the s- and p-wave cross sections is almost unchanged, here 
the d-wave cross section appears without any structure. This comparison between Figures 
8.17a and 8.17b confirms that the peculiar resonance line shape seen in the d-wave arises 
from the interference term due to V13 which couples the 1-QP and 3-QP channels, that is 
producing a resonant state by coupling the single particle continuum to the closed core-
excited channel. The two contributions interfere with opposite relative phase on the two sides 
of the resonance, changing from destructive interference on the low-energy side to  
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Figure 8.17. a) Calculated 15C elastic cross section �11 related to the core-excited state EC = 8.317 MeV for s-, p- 

and d-waves. b) As above but with interaction V13 = 0. 

 
 
constructive interference on the high-energy side of the resonance. Practically, the interaction 
V13 acts by shifting part of the low-energy strength to the BSEC, the cross section vanishes on 
the left side of the peak and is maximal on the right side. Instead, for energies away from the 
resonance, the non resonant background is the only significant contribution to the cross 
section. Of course, from an experimental point of view, a complete cancellation of the cross 
section may be not observed because of insufficient resolution or additional background 
contributions. However, the observed asymmetry of the 8.5 MeV peak in the 15C spectra of 
Chapter 5 shows that the effect of the interference is not altogether obscured in the data. 

These results, obtained for the core-excited state EC = 8.317 MeV, are an example of the 
interference effects predicted by the coupled channels model, which give rise to a resonance 
through the coupling of the single particle continuum to a BSEC. The coupling is due to a 
non-diagonal interaction. Similar results are obtained for other core-excited states (as shown 
in Section 8.3.2) and the 17C and 19C nuclei (see Section 8.3.4). 

 

0 

2 

4 

6 

8 

10 

12 

0 5 10 15 20 25 30 
15C excitation energy [MeV] 

�11 [mb] 

s-wave 
p-wave 
d-wave 

 

0 

2 

4 

6 

8 

10 

12 

0 5 10 15 20 25 30 
15C excitation energy [MeV] 

�11 [mb] 

s-wave 
p-wave 
d-wave 

a)  V13 - 0 

b)  V13 = 0 



Chapter 8  Resonance line shape in light neutron-rich nuclei 

- 142 - 

8.3.2 Final results for  15C 
The main interest is to reproduce the 15C spectrum in the region between about 6 and 10 

MeV, where three narrow resonances in the continuum have been experimentally observed 
(see Sect. 5.2, also published in refs. [Orr03, Cap04]). On the basis of the results of the 
microscopic DCP calculations of Chapter 7 and ref. [Noc03], these resonances are interpreted 
as BSEC, therefore the present approach may be applied. 

The final results of the calculations for 15C are presented in this Section. Whereas 
obviously the experimental results include all the (incoherent) background contributions due 
to all the other l-values, here we only consider the results of calculations for the resonant l-
value because the other contributions are only slowly varying in the resonance region (see, 
e.g., Fig. 8.17). Besides, we consider all the different core-excited states reported in Table 8.2. 

In Figure 8.18a the calculated elastic cross section �11 for the d-wave – the one 
contributing to the resonance – is plotted with respect to the 15C excitation energy. For 
comparison, the experimental spectrum in counts taken at �lab = 14° is plotted in the region of 
interest in Figure 8.18b. The core states included in the calculations are: EC (J�) = 6.094 (1–), 
6.728 (3–), 7.012 (2+), 8.317 (2+) MeV, and the coupling to each of them was determined by 
weighting the form factors F13 according to the experimental �-values reported in Table 8.2. 
An interference pattern similar to that in Figure 8.17a is obtained for every �11 calculated for 
the 14C states. The total �11 has been then calulated by summing the individual contributions 
of all the above-mentioned core excitations. In the theoretical cross section (Fig. 8.18a) three 
narrow resonances are evident in the energy region between 6 and 10 MeV of 15C excitation 
energy, with the noticeable result that the three BSEC structures seen experimentally (Fig. 
8.18b and Chapter 5) are reproduced in the observed energy region. The theoretical levels are 
observed at Ex = 7.15, 8.48, 9.26 MeV, while the experimental ones are at Ex = (6.77 � 0.06, 
7.30 � 0.06, 8.50 � 0.06) MeV. In our calculations the “energy-shift”  term E0 has been not 
included, which has been used in other works to shift a resonance to the desired position 
[Bau77, Bau75]. Introducing an additional average shift E0 = 0.77 MeV, the theoretical peaks 
are shifted to Ex = 6.38, 7.71, 8.49 MeV. Without overemphasizing the results of our 
schematic model calculations, the qualitative agreement between these values and the 
experimental ones is surprisingly good. Some differences may arise from the not easy 
determination of the centroids because of the asymmetry induced by the interference.  

Moreover, it is important to underline that we are calculating elastic scattering cross 
sections, while the experimental data were obtained using the (7Li,7Be) CEX reaction. The 
present calculations simulate the rescattering of the neutron after production on the residual 
target nucleus, but reaction dynamics are not included. Since the population of the states 
depends on the reaction dynamics, we cannot compare the magnitudes directly with the 
experimental CEX cross sections of Sect. 5.3 and ref. [Orr03], or the peak intensities between 
Figs. 8.18a and 8.18b. However, we can compare on a qualitative level the results of our 
structure calculations and the experimental spectra. Keeping in mind these constraints and the 
schematic nature of the calculations, the global agreement with the data is very good. In fact, 
with our simple model it is possible to reproduce the interference pattern seen in the line 
shape and we are able to explain the existence of the three experimental measured narrow 
resonances in the continuum, even lying in the observed energy region. Hence, the model  
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Figure 8.18. a) Calculated elastic cross section �11 for the d-wave plotted with respect to the 15C excitation 

energy. Core states included in the calculations: EC (J�) = 6.094 (1–), 6.728 (3–), 7.012 (2+), 8.317 (2+) MeV.  

b) Measured excitation energy spectrum for the 15N(7Li,7Be)15C reaction at Einc = 55 MeV and �lab = 14°. Peaks 

marked with an asterisk are associated to the excitation of 7Be at 0.429 MeV. The continuous line is the sum of 

the background (the 15N(7Li,n7Be)14C 3-body phase space) and the Gaussians used to fit the peaks (see Sect. 5.2). 

 
does account for the essential physics aspects contained in the observed data. In order to 
compare quantitatively with the measured cross sections, dynamical DWBA calculations are 
under development, on the basis of the CEX-QRPA calculations of Chapter 6. The DCP wave 
functions obtained with the present model will be the starting point for the CEX-DCP 
calculations, in which the effects of the CEX transition operator and the optical potential wil l 
be included. This will ultimately allow to determine a theoretical CEX cross section to be 
compared with the experimental one of ref. [Orr03] and Sect. 5.3. 
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8.3.3 Discussion 
As discussed in Section 2.1.2, the 15C narrow resonances were also observed in the 

9Be(7Li,p)15C reaction [Gar74], which proceeds through an intermediate compound system 
and therefore is less selective than the 14C(d,p) stripping reaction [Gos75] or than the present 
(7Li,7Be) CEX reaction. In ref. [Gar74] the narrow widths of the 15C unbound states were 
considered as indication of hindrance for neutron emission. It was further speculated that this 
may result either from a reduced penetrability, because of the high angular momentum of the 
neutron in the n + 14CGS configuration, or from structure configurations having a small 
overlap with n + 14CGS (i.e., core-excited configurations). Following the first hypothesis, they 
suggested high spins J� for the 15C unbound states (see Table 5.2). Also in ref. [Boh03] high 
J� values are proposed for two among such states, on the basis of a comparison with the 
particle-hole structure of the related 14C states (see Section 2.1.3). 

Nevertheless, the hypothesis of high spin has not been definitively proved and in both 
cases it was based on qualitative arguments only. On the contrary, microscopic calculations 
based on the QRPA-DCP approach (see Chapter 7 and ref. [Noc03]) show dominant core 
excited configurations for the s1/2, d3/2 and d5/2 strengths in the energy region of interest. These 
results strongly support the interpretation based on DCP states with low angular momentum. 
Besides, the results of the line shape calculations indicate that the interference between the 
BSEC structures and the single particle continuum happens for l = 2, i.e., when the neutron is 
in the d-wave with respect to the core. This is perfectly compatible with the low J� values 
obtained by DCP calculations. 

Moreover, in our case the 15C BSEC are obtained by the CEX reaction (see Chapter 3) 
and thus how the high spin states are populated remains to be explained. In fact, the transfer 
of a large amount of angular momentum by the CEX mechanism is improbable, especially at 
forward angles [Alf98, Cap04b]. The more detailed CEX-DCP calculations will permit to 
investigate spin and parity of the 15C BSEC.  

8.3.4 Results for  17C and 19C 
An enhancement of BSEC structures is expected close to the neutron drip line due to the 

softer core and the increased polarizability of the system. The quadrupole polarizability 
increases, related to the presence of low-energy 2+ core states, whose energy decreases with 
increasing mass. In particular, a strong enhancement of BSEC excitations is predicted in the 
low-energy continuum of the carbon isotopes with increasing the neutron number, in 
connection with the decrease of the first 2+ core state from Ex = 4.44 MeV in 12C to Ex = 1.77 
MeV in 16C and Ex = 1.62 MeV in 18C [Cor01, Len01]. These arguments show the importance 
of a systematic study of such effects for carbon isotopes. Thus the calculations have been 
performed not only for 15C (Sn = 1.218 MeV) but also for the more exotic 17C (Sn = 0.73 
MeV) and 19C (Sn = 0.16 MeV) nuclei. 

The partial wave elastic cross sections �11 have been calculated for a range between 0 
and 30 MeV of excitation energy. The calculated �11 (s-, p- and d-waves) for 17C – 
considering, e.g., the core-excited state at EC = 3.986 MeV –  are shown in Fig. 8.19. The �11  
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Figure 8.19. Calculated 17C elastic cross section �11 related to the core-excited state EC = 3.986 MeV for s-, p- 

and d-waves. A pronounced resonance line shape is evident in the d-wave. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.20. Calculated 19C elastic cross section �11 related to the core-excited state EC = 2.967 MeV for s-, p- 

and d-waves. A pronounced resonance line shape appears in the d-wave. 

 

of Figure 8.20 are calculated for 19C and the core state EC = 2.967 MeV. Similar to the case of 
15C, for 17C and 19C the interference pattern also develops in the d-wave. 

The final results of the calculations for the 17C and 19C nuclei are shown in Figures 8.21  
and 8.22, respectively. These results have been obtained using the potential parameters given 
in Table 8.1. For the 17C calculations the core-excited states which contribute are: 
EC (J�) = 1.766 (2+), 3.986 (2+), 4.142 (4+) MeV. The core states included in the calculations 
for 19C are: EC (J�) = 1.620 (2+), 2.967 (4+), 3.313 (2+), 5.502 (1–) MeV; among them EC = 
1.620 MeV is the only experimentally known excitation, and the others are taken from QRPA 
calculations. Each core state has been weighted according to the �QRPA-values (see Table 8.2). 
As already mentioned, we consider only natural parity core states with the � order of 
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Figure 8.21. 17C: calculated elastic cross section �11 for the d-wave plotted with respect to the 17C excitation 

energy. Core states included in the calculations: EC (J�) = 1.766 (2+), 3.986 (2+), 4.142 (4+) MeV. 

 
 
 

 

 
Figure 8.22. 19C: calculated elastic cross section �11 for the d-wave plotted with respect to the 19C excitation 

energy. Core states included in the calculations: EC (J�) = 1.620 (2+), 2.967 (4+), 3.313 (2+), 5.502 (1–) MeV. 
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in Section 8.3.2. Regarding 17C, three BSEC are obtained at Ex = 3.44, 3.85, 4.59 MeV (Fig. 
8.21). For 19C (Fig. 8.22) three states in the continuum are evident at Ex = 2.55, 3.46, 4.86 
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MeV. Unfortunately, at the moment for the 17C and 19C nuclei experimental spectra are not 
available to compare with our theoretical results.  

By analysing systematically the interference effect in 15C (Fig. 8.18a), 17C and 19C, we 
can see that the interference shape is similar: all the individual peaks are asymmetric, 
interfering destructively on their low energy side. The energy EC of the core state influences 
the position of the BSEC, while the intensity of the coupling (� V13) acts on the strength of 
the peak. In fact, a clear correlation between the value of EC and the position of the related 
BSEC is observed. This is obvious by comparing states in a given nucleus, e.g., in 16C with 
EC = 3.986, 4.142 MeV leading to the BSEC Ex = 3.44, 3.85 MeV respectively in 17C. 
Correspondingly, from a comparison of different nuclei we find, for example, from 18C with 
EC = 5.502 MeV a state at Ex = 4.86 MeV in 19C, while EC = 6.094 MeV in 14C gives rise to a 
15C state at Ex = 7.15 MeV. Altogether, we observe a progressive lowering of the BSEC 
energies going from 15C to 17C and 19C due to the decreasing energies of the respective core 
spectra. Therefore, we expect to observe the BSEC at progressively lower energies with 
increasing neutron excess. Concerning the interaction, core states with greater � – and thus 
greater coupling strength (� V13) – correspond to more intense BSEC.  

However, there is some exception to these findings. As an illustration, let us consider 
the following case, a BSEC, obtained from the core states with the strongest interaction (see 
Table 8.2) in the various nuclei: in 15C from EC = 6.728 MeV (� = 0.397), in 17C from EC = 
1.766 MeV (� = 0.502) and in 19C from EC = 1.620 MeV (� = 0.420). We see from Figure 
8.18 to Fig. 8.21 and 8.22 that, over the chain of nuclei, the state considered becomes broader 
and appears at higher energy than the other BSEC which are originated from core states with 
higher EC. Thus, when the interaction becomes too strong the peak tends to be broaden and to 
shift to higher excitation energy. 

The relation between EC and the peak position is independent on spin and parity of the 
involved core state because the model calculations are insensitive to the JC

�c values, which 
enter only indirectly because of the determination of the �-amplitudes from the QRPA 
calculations. Besides, the cross sections are independent of the j of the valence neutron. 
Indeed, in general for a particle with spin s = 1/2 the cross sections are weighted by a factor 
(2j + 1)/(2s + 1) rather than (2l + 1) as in formula (8.32). However, since for the moment we 
do not include spin-orbit potentials in the calculations, the C-matrix elements C(l,j) 1 C(l) and 
therefore the cross sections only depend on the orbital l. Hence, our cross section should be 
considered as representing averages over j = l + 1/2 and j = l – 1/2.  

8.4 Summary 
The theoretical approach here described provides an explanation of the resonance line 

shape in the light neutron-rich nuclei as an effect of the interference between the 1-QP and 
3-QP components. A simple model was chosen in order to allow analytic solutions. Results of 
model calculations for the 15C, 17C and 19C nuclei show a pronounced interference pattern in 
the d-wave elastic cross section, which is due to the coupling term V13 between the single 
particle continuum and the resonant state. The interference of the two contributions cancels 
the cross section on the left side of the resonance producing a typically asymmetric line shape. 
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The results for 15C are compared with the experimental spectra of Section 5.2. The 
global agreement is very good, in fact the present model reproduces qualitatively both the 
interference pattern seen in the line shape and all the experimentally observed narrow 
continuum states in 15C. The theoretical resonance energies are very close to the measured 
ones. In the light of these results, together with those of the QRPA-DCP calculations (see 
Chapter 7), these resonances are described as BSEC with low angular momentum (possible J� 
values: 1/2+, 3/2+ or 5/2+) and interference in the d-wave. 

Interfering BSEC are theoretically obtained in the 15C, 17C and 19C nuclei and described 
as the result of interactions between the ground state and core-excited configurations. From 
the systematic comparison of the results, the energy EC of the core state influences the 
position of the BSEC, giving a lower position for lower EC. Moreover, a greater coupling 
strength (� V13) corresponds to a more intense BSEC. However, if the interaction is too strong 
the peak appears at higher excitation energy with a larger width. 

Therefore going towards the neutron drip line a progressive decrease of the BSEC 
energies is expected, owing to the lowering of the corresponding EC from 15C to 17C and 19C. 
An interesting aspect, also of astrophysical importance, is that the BSEC phenomena leads to 
a change of the level density close to the continuum threshold. Hence, neutron capture 
processes will be affected which, in turn, might influence astrophysical reaction rates and 
nuclear life times. The increase of the level density beyond the typically assumed level of 
states in a potential will also affect  the thermodynamical properties of exotic nuclei. 

The interference effect, hypothesized starting from the experimental observation in the 
15C peak at Ex = 8.5 MeV, turns out to be a rather general phenomenon. Indeed, the results of 
the calculations foresee such an effect (more o less marked) for the states in the continuum of 
different carbon isotopes. However, from an experimental point of view, the interference is 
not easily observable if the resonance is not well isolated as the 8.5 MeV peak. Although 
similar interferences have been previously seen (see, e.g., refs. [Bau75, Bau77] and refs. 
therein), it is underlined that this is the first time that such an effect is experimentally 
observed in a CEX reaction. Such an observation is very important also because the 
interference pattern is a strong experimental signature of the existence of BSEC. Moreover, 
the theoretical model presented in this Chapter is the first which explores the interference 
effects due to the BSEC in unstable neutron-rich nuclei. 

Further improvements are in progress in order to extend the model, such as to develop 
multi-channel calculations including at the same time the different core-excited states, in this 
way reproducing the interaction of a set of discrete levels with a single continuous 
background. In addition, the DCP wave functions obtained constitutes the starting point for 
the development of dynamical CEX-DCP calculations, which will allow to determine a 
theoretical CEX cross section to be compared with the experimental one (Sect. 5.3 and ref. 
[Orr03]) and to investigate J� of the 15C BSEC.  
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CONCLUSIONS 

 

 
A general discussion of the physical scenario involving light drip-line nuclei has been 

given in the first Chapters, considering both the theoretical and experimental aspects. My 
main interest was in the structural properties and reaction mechanisms of light neutron-rich 
nuclei, concerning in particular the 15C nucleus. 

The 15N(7Li,7Be)15C charge exchange reaction at 55 MeV incident energy was used to 
investigate the 15C energy levels. Experimental spectra were measured at �lab = 0°, 2.5°, 8°, 
10°, 14°. The gas target was crucial to overcome the difficulties encountered previously with 
a solid melamine target. The energy resolution (0 250 keV) allowed the identification of the 
transitions corresponding to the 7Be ground and first excited state at Ex = 0.429 MeV. The 15C 
ground and the excited states at Ex = 0.77, 6.77, 7.30, 8.50 MeV were experimentally 
observed, together with a structure at Ex = 6.4 MeV which likely included contributions from 
several closely spaced 15C levels. The angular distributions were measured for the transitions 
observed together with the angular distributions of the G factor [Jän96], which depends on the 
ratio of the cross sections related to the two 7Be states (see Section 3.4.1). The values of G at 
0. shows a general trend to spin transfer dynamics. 

In the 15C spectrum three narrow resonances are observed above the particle threshold 
(Sn = 1.218 MeV). In particular, a new observation is the suppression of counts immediately 
before the 8.5 MeV peak, most likely produced by the interference between the 8.5 MeV state 
and the non-resonant 3-body phase space. Although similar interferences have been 
previously observed, this is the first time that such an effect is experimentally seen in a CEX 
reaction. 

A microscopic many-body theory for heavy-ion charge exchange reaction was used in 
order to analyze the 15C structure and the (7Li,7Be) dynamics. The CEX-QRPA approach 
describes the 15C states as correlated 2-QP excitations with respect to the HFB 15NGS. A state 
dependent pairing field and an average treatment of the 4-QP correlations are included in the 
calculations. A realistic residual interaction [Hof98], dependent on the nuclear density and 
charge asymmetry and including the tensor force, is used in every step of calculations, 
assuring consistency between the structure and reaction mechanism calculations. 

The CEX-QRPA calculations describe well the 15C single particle levels (ground and 
first excited state), giving useful information about their spin and parity and reproducing also 
the known inversion between the 1/2+ and 5/2+ neutron orbitals. It is underlined that no 
parameters were “a priori”  adjusted to obtain this inversion. Nevertheless, the fragmentation 
of the strength observed in the experiment spectra at higher excitation energies is not 
reproduced. Thus the higher excitation region cannot be explained in terms of configurations 
in which the valence neutron is coupled to an inert 14C core; the core-excited components 
have to be taken into account. 
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The CEX-QRPA transition densities are used in the one-step DWBA calculations 

performed for the two bound states of 15C. A rather good agreement with the measured 
angular distributions is found. In particular, the order of magnitude of the cross sections is 
reproduced without the need to introduce large renormalization, which usually are necessary 
in order to reproduce the experimental data from the (7Li,7Be) reactions. This also confirms 
the reliability of a one-step approach. A prevalence of the unnatural parity transitions is found 
in the 15N(7Li,7Be)15C reaction and this, together with the measured G-values, indicates a 
prominence of spin transfer process. 

Similar results are found with the same approach for the 11Be nucleus [Cap04b] and, 
since the same basic parameters are used for both the 15C and 11Be calculations, this 
strengthen our conclusions. The one-step mechanism seems appropriate to describe the 
(7Li,7Be) CEX reaction at about 8 MeV/u incident energy when weakly-bound nuclei are 
populated. The dominance of the spin transfer dynamics at only 8 MeV/u is quite a surprising 
result because it is opposite to the predictions concerning the spin-isospin dependence of the 
free NN-interaction at low energy [Tad87]. However, our results concern the spin component 
of the in-medium NN-interaction. 

A more sophisticated theoretical approach, accounting for DCP effects, is necessary in 
order to explain the 15C structure above the neutron emission threshold. In the QPC model the 
15C states are described microscopically by coupling the single neutron states to the 3-QP 
core-excited configurations. The latter are calculated with QRPA methods as 2-QP excitations 
starting from 14CGS. Again, the residual interaction of ref. [Hof98] is used in the calculations. 
Strong fragmentation is found in the s1/2, d5/2 and d3/2 

15C strengths in the region Ex ~ from 5 
to 11 MeV, while large bumps are observed in the remaining strength functions. Therefore the 
fragmentation seen in the experimental spectra for Ex ~ from 6 to 9 MeV may be explained as 
arising from dynamical core polarization. In the light of the QRPA-DCP results, the narrow 
resonances seen in the 15C continuum may be interpreted as BSEC with low spin. 

In the last Chapter a theoretical approach based on the QPC model is presented and used 
to investigate the resonances and their line shapes in the low-energy continuum of light 
neutron-rich nuclei. The results of the calculations for the 15C, 17C and 19C nuclei show a 
pronounced interference pattern in the d-wave elastic cross section. This asymmetric line 
shape is produced by the interference of the 1-QP and 3-QP components, which are coupled 
by the residual interaction. 

The results for 15C are compared with experimental data, showing a very good global 
agreement: the present model reproduces qualitatively both the interference pattern seen in the 
line shape of the 8.5 MeV peak and all the narrow states experimentally observed in the 15C 
continuum. The theoretical resonance energies are very close to the measured ones. Without 
overemphasizing these results, the model accounts for the essential physics aspects observed 
in the data. This model is the first which studies the interference effects between a single 
particle continuum and a BSEC in weakly-bound nuclei. 

From the systematic comparison of the results in 15C, 17C and 19C, the energy EC of the 
core state influences the position of the BSEC: going towards more neutron-rich nuclei a 
progressive decrease of the BSEC energies is expected owing to the lowering of the 
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corresponding EC. Greater coupling strength corresponds to more intense BSEC, but if the 
interaction is too strong the peak appears at higher excitation energy with a larger width. The 
interference effect, hypothesized as starting from the experimental observation in 15C, turns 
out to be a rather general phenomenon. Indeed, the results of the calculations predict such an 
effect (more or less marked) for the states in the continuum of different carbon isotopes. Thus 
the observation of an interference pattern in these nuclei may be considered an experimental 
signature of the BSEC. 

Room is left for further improvements, such as the development of multi-channel 
calculations including at the same time the different core-excited states, in this way 
reproducing the interaction of a set of discrete levels with a single continuous background. In 
addition, the DCP wave functions obtained with the present model are the starting point for 
the development of dynamical CEX-DCP calculations, in which the effects of the CEX 
transition operator and the optical potential will be included. This will ultimately allow the 
determination of a theoretical CEX cross section to be compared with the experimental one. 

In my opinion, exotic nuclear physics is a very intriguing branch of modern physics. 
The recent development of the radioactive beam facilities has opened new perspectives in the 
investigation of the peculiar properties of drip-line nuclei. The exploration of the extreme 
regions of the mass table is just at the beginning and much remains to discover. 
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