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I. Introduction 

As is well knwon, the Weyl form of the canonical commutation 

relations (CCR's) together with the Neumann's theorem leads to a 

strongly continuous representation of the real symplectic group. This 

representation has been studied by Bargmann ~I~ with the carrier 

space taken as Hilbert space with a reproducing kernel. In this case 

the operators onto which the group elements are mapped are describable 

as kernel operators, the kernel being a continuous function of the 

group elements. By considering the real symplectic group as a 

subgroup of the complex symplectic group it is then possible to 

formally extend the kernel function to a function of the elements of 

the complex symplectic group. The question then is what are the 

properties of the operators which these extended kernel functions 

define, in particular when are the operators bounded. It has been 

shown by Kramer, Moshinsky and Seligman ~2~ that in the case of the 

group Sp(2,C) not all of these operators are bounded but those that 

are define a subsemigroup of Sp(2,C). We shall show that this is 

also the case for Sp(2n,~) for arbitrary n. 

To discuss more explicitly the representation which we wish to 

extend we require a few facts about the Hilbert space employed by 

Bargmann. Let~ be the measure on C n defined by the weighting 

function Z ~-~ ~-~ ~p (- ~U2~ and for fixed n let 
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~ ~) be the Hilbert space of complex valued 

functions square integrable with respect to this measure. With £ 

denoting the space of all entire functions on C n the Hilbert space 

t~". .  ~ l,-I¢~ has a reproducing kernel ~ Z j W ]  =" e ~' 'W 

where ~-W ~- "~,Wl+--. + Z,..,~/,.~ i.e. for all ~E ~ the relation 

~(Z] = ~M(z, w1~(w~d~Cw] obtains. The Hilbert space~ has t~e 

remarkable property that each bounded operator on ~ has a kernel, 

i.e. if "I" is bounded on ~. then (T~)C~]=fC~(CZ,~)@(w) ~]~(~ ) . 

Related to the existence of a reproducing kernel is the existence 

of a family @~ ~ ~ E ~ of elements of ~ with the property 

that <e~j ~ ~ = ~((X] for all ~ in ~ . These vectors, the 

principal vectors, are given explicitly by e~CZ] ~-~ Co-'~] 

They are complete and the subspace ~ generated by the principal 

vectors is dense in ~ . This property is extremely useful in 

checking the continuity of mappings into 

Recall that the complex symplectic group H = S~(~ ) is the 

group of invertible isometries of the antisymmetric form { j } 

on C 2n, { Z ~w] :- ~, (Z,'~W~'+~-Z~ W,. ) . Denoting an element 

of H by the matrix ~= (9~)~ @) the H adjoint of ~ is given by 

~ _ -  . The symplectic property of k is then 

~'~ = h.~' ~ 1".~ . ~ k  = k ~.~ = | . The real symplectic 

group G o is defined similarly by restricting the form { ~ ] 

to ~{2n x ~2n . Rather than working directly with G o it is 

convenient to work with the isomorphic group G : WGo W-i 

where W : ~ ~ ~{ . The group G is sometimes called the 

complex form of the real symplectic group (not to be confused with H) 

and is equal to the intersection of H with U(n,n). The condition 

that ~ E G is that ~ have the form ~= (~ ~] where ~ and 
t 

satisfy ~'~-~ = ~ and ~--j~ ~ where ~ denotes 

the transpose of ~ . With these definitions the representation of G 
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(and therefore also of G o ) studied by Bargmann is defined as 

follows. To each element ~C~ we assign the kernel ~ , 

k~ ~ 'x-' ~ - -' ~ & - ' ~  ) (1) ( z ,w  I = ,,~,p ( ~.z-.,~. z - ~ w . ~ . , ~ ,  .,- 

a n d  a complex number ~ -- det ~ (We adopt the convention 

that Z.'I/~'~ |'~' J,,~,~p (~ ~z~. .Z ") . Bargmann has shown that 

~ defines a bounded oprator ~ and that if we define ~=~ ~ 

the double valued mapping ~ ~-~ (~j- ~) is a double valued unitary 

representation of G . Of course this double valued representation 

can and should be viewed as a representation of the universal 

covering group G (G is not simply connected). 

To define an extension of the above representation to H it is 

necessary to extend both the mappings ~ ~ and ~ ~-~ 

We are immediately forced by the appearance of ~-I in (i) to restrict 

our attention to the set H~H consisting of those ~E H such 

that ~ is invertible. Then the formal replacement (~]-~t~ ~ ) 

defines a mapping ~-~ ~ where ~k is given by 

(2)  

Some comments concerning the mapping ~-~ ~k 

Observe first that ~k( ~w] , 

is an entire function. Suppose 

a bounded operator ~k on ~ 

principal vector e~ , Sh£~= 

From the assumed continuity of 

in ~ it follows that ~(~)C 

since it is somewhat easier to 

~ space) than on ~. 

It is instructive to consider ~in the 

are in order. 

that it should happen that ~k defines 

It is readily computed that for a 

~kC) ~) whence Sk(~] C~ 

S k and the fact that ~ is closed 

. This is highly fortuitous 

check boundedness on ~ (which is an 

case where ~ is the 



diagonal matrix ( ' 0 ~  -' ) 

that ~ is bounded on 

l l ~ l  ~ 'I , where II II 
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~ being diagonal, One then finds 

(and therefore on ~ )if and only if 

is the operator norm. This example 

shows that while non-trivial extensions exist they are not guaranteed 

II. Extending the Representation to a Subsemigroup of 

Sp(2n,C) 

In what follows it will be necessary to have conditions for the 

absolute convergence of integrals of the type 

where Y and ~ are ~x~ complex symmetric matrices, ¢ is an ~× 

selfadjoint matrix, and ~,~E~ ~ . Using the standard technique of 

reducing convergence to that of a Laplace integral we have found that 

the integral in (3) is absolutely convergent if and only if 

t - ~ > o  

and 

(4a) 

, l -  ~ - " 4 C'~+ ~,]CI- e ) - ' C f + ~ ]  > o (4b) 

where >O (resp° ~O ) denotes positive definiteness (resp. 

positiveness). We are interested in the value of the integral only in 

the case where ~= O . This integral has been computed by Itzykson 

[3] and is given by 

: de'l: -v~" ~..,,~] x 

+ . & . C 1 - ~ r ~ - ' , ~  } 

where the sign of det (I- ~ )-llz is obtained by analytic 

continuation. 
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The possibility of extending the representation to a semigrqup 

~ests on 

Lemma i. Suppose that for ~4~a ~ ~ the kernels ~, and ~z 

define operators ~k, and ~kL which are bounded on ~ and therefore 

on ~ . Then ~k,k~ defines a bounded operator ~K,~ on~ and 

Sk,k~ = "T'~,h~ Sk, SkL (6) 

wh ere 

~k,k~ = 6e~  -4~Ct  %~ -~ - .~,~%~ ~ (7) 

The proof of the above lemma is carried out by direct computation 

using the properties of the integral given by (3) discussed above and 

the symplectic property of ~, and ~ . It follows immediately from 

this lemma that if ~ denotes the set of all hE H such that K k 

defines a bounded operator on ~ then ~ is a semigroup. 

Our starting point in determining the semigroup ~ is the 

determination of those kE ~o such that ~k defines a Hilbert Schmidt 

(HS) operator on ~ . It follows easily that in this case ~k also 

defines an HS operator on ~ . Since the product of two HS operators 

is HS the set ~ of all such ~ is also a semigroup. 

In the ~ space ~ the condition that a kernel ~ defines an 

HS operator is equivalent to 

This condition is fairly easy to compute. Using the symplectic nature 

of ~ we find that Fk(W~Z ~ = Wk~Cz~w~ where 

~ = -~ ~ By Lemma I and Fubini's theorem we find that 

the condition expressed by (8) is equivalent to 

and 
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The conditions expressed by (9) may now be explicitly computed using 

(4). Let ~" ~o-~ ~ , where ~ demotes the set of all ~ . ~  

selfadjoint matrices, be defined by 

( ~C k3-'l YCk') 

and where 

Ck'  = "X "X - ( 1 1 a )  

and 

) 
so) 

11b) 

The conditions (9) and therefore the condition that ~E ~ may 

then be stated as a ~  I ~ O 

Since no HS operator is unitary we see that ~ G =~. Hence 

a semigroup larger than ~ is required. Recall that whenever a 

topological semigroup is embedded in a Lie group the closure of that 

semigroup is again a semigroup. It turns out that ~-, the closure 

of ~, contains G and is in fact equal to the semigroup ~ . 

It is possible here only briefly to indicate how the above 

assertions may be verified. First, using the fact that the set of 

all positive ~×%~ matrices is closed in ~ and the continuity of 

one shows that if kE~- then ~C~] ~ O . The reverse 

inequality is then established by showing that every neighborhood 

of the identity of H contains a point ~ such that a~(~1] ~ O and 

then using the equation ~(~,~] ~ ~C~]~D+~a]and the fact that 

H is a homogeneous space. One has then established that ~-is the 

set of all those ~ E H ° such that ~C~ ~ O . Since ~C~ =O 

for all ~E G it follows that G C ~  It remains to show that for 

all ~ ~- , ~ defines a bounded operator on~ . To do this 

one proceeds as follows. Denoting the operator defined by ~& as ~ 
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we compute, using (4), that for any principal vector Q~ , S k~ 

is defined and has finite norm. Then for an element ~7= ~{ ~{ea~ 

of ~ we find that ~ ~K ~ II is finite if and only if ~E~- 

and in that case l~ S K~ 11 2 ~ q-K~k II'I.)'II 

The above results permit us to define a representation of the 

semigroup ~ which maps semigroup elements onto contraction operators 

on ~. Let ~ = ~e~-~ ~ and define T k = ~K S k . Since 

~ = | ~ ¢ ~  l~det-V~(k~we find that U T ~ I ~  l o ' ~  1 ~ t~'K~k = 

= ~e~'lad(~. But k~ ~- implies that a~C~ ~ O and hence by 

(10) ~ E ~- implies ~(~ ~ I and hence that 

~ ~(~ > ~ . Thus m k is a contraction operator for each 

~ ~- . With this normalization we find that T kks = 

= ( (3"~, q'k ~ /~Kk ~ ~ TKK t = ~ TkK r by virtue of the 

symplectic nature of k and ~' . Thus if we assign to each ~ ~=~- 

the pair (TK~- X~ ~ we obtain a double valued representation 

of ~ Since our normalization agrees with the original normalization 

of Bargmann it follows that when restricted to G this representation 

becomes unitary and is in fact the representation given by Bargmann. 

Hence the original representation has been extended. 

Lastly, we point out that the above representation of ~ is 

strongly continuous. Owing to the existence of the principal vectors 

this is not too difficult to show. It follows from the fact that the 

representation is contractive that it is strongly continuous if and 

only if for all principal vectors the mapping ~ ~-~ Tk ~ is 

continuous. This is not difficult to check. 

In way of summary we can say the following. We began with a 

double valued, strongly continuous representation of G ~ H and 

showed that there exists a semigroup~ > G ~ H with its 

interior ~ also a semigroup. The original representation of G 

extends to a double valued, strongly continuous representation of~ 

by contraction operators on ~ ~ ~-~ T~ and for ~ ~ m~ 



is a Hilbert Schmidt operator. 
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III. The Algebraic Structure of the Semigroup 

We begin by pointing out that the semigroup ~ has a simple 

geometric interpretation. If ( , ) denotes the U(n,n) inner 

product on C 2n then the set of all invertible mappings A 

such that ( At, At ] ~ CZ~ ~ ] for all Z E ¢2n is easily 

seen to define a semigroup, the semigroup of all U(n~n) expansion 

operators. Using the condition kE~ if and only if ~(h) ~O 

together with (i0) it may be shown that the intersection of this 

semigroup with H is precisely ~ . Similarly the intersection of the 

semigroup obtained from the condition (AZ~ AZ] >(~)with H is 

Recalling that G:U(n,n) ~ H this is not unreasonable. 

Using the above model and the Jordan decomposition we are then 

able to show that every ~E ~ may be decomposed as ~= ~ 

where ~ ~ ~z E ~ and ~ is a direct sum of matrices of the 

form - O and ~-~ with 0< ~ I and 

O ~ ~ . It then follows that ~ is the semigroup 

generated by ~- and those matrices having the form of 

IV. Relation to the Canonical Commutation Relations 

Define the unbounded operators Z k and Wk in~ by 

~f 
( ~ ( Z ]  ~ Zk~(7] and (~k~(~] - .~Z k If 

Z i -~ 

for~E G then the fact that the original representation of G was 

associated with a representation of the CCR's may be expressed by 
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t r 

"('1< : Tk-' "Yk T~, (12a) and ~k = Tk-' Zk Tk (12b) 

this having meaning only when the operators are applied to functions 

in dom ( Z k ) ~ dom ( Yk ) . In attempting to extend (12) 

to the representation of ~ we encounter the problem that if kE~ 

then Tk-, is in general unbounded. Nevertheless, we are able to 

show the following. If ~-k has the operator defined by C~'~_, ~ko, 

as its left inverse then Tk-' has a dense domain which includes the 

domains of ~ and YD and (12) holds for functions in this domain. 
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