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Abstract Both the Einstein—Hilbert action and the Einstein equations are dis-
cussed

under the absolute vierbein formalism. Taking advantage of this form, we prove
that the “kinetic energy” term, i.e., the quadratic term of time derivative term, in
the Lagrangian of the Einstein—Hilbert action is non-positive definitive. And then,
we present two groups of coordinate conditions that lead to positive definitive ki-
netic energy term in the Lagrangian, as well as the corresponding actions with
positive definitive kinetic energy term, respectively. Based on the ADM decom-
position, the Hamiltonian representation and canonical quantization of general
relativity taking advantage of the actions with positive definitive kinetic energy
term are discussed; especially, the Hamiltonian constraints with positive definitive
kinetic energy term are given, respectively. Finally, we present a group of gauge
conditions such that there is not any second time derivative term in the ten Einstein
equations.

Keywords Vierbein formalism, Positive definiteness of kinetic energy term,
The Hamiltonian representation, Canonical quantization, The simplest constraint
conditions

0 Introduction

There are a number of literatures on the vierbein formalism of general relativity
and canonical gravity (See, for example, Refs. [1} (2} 3& 4], and recently, [S} [6]).
In this paper, at first, we use absolutely the tetrad field e% to express the Einstein—
Hilbert action and the Einstein equations; and then, discuss some characteristics
of the theory. Concretely, taking advantage of this form, we first prove that the
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“kinetic energy” term, i.e., the quadratic term of time derivative term, in the La-
grangian of the Einstein—Hilbert action is non-positive definitive. And then, we
present two groups of coordinate conditions that lead to positive definitive kinetic
energy term in the Lagrangian, as well as the corresponding actions with positive
definitive kinetic energy term, respectively. Based on the ADM decomposition, the
Hamiltonian representation and canonical quantization of general relativity taking
advantage of the actions with positive definitive kinetic energy term are discussed;
especially, the Hamiltonian constraints with positive definitive kinetic energy term
are given, respectively. Finally, we present a group of gauge conditions such that
there is not any second time derivative term in the ten Einstein equations.

1 The vierbein formalism of general relativity
1.1 The vierbein formalism of the Einstein—Hilbert action

As is well known, in general relativity, the Einstein—Hilbert action reads

4
= V—gd*xR
SeH 167rG/ gd'x
d
= 4 4 — p(; ,,L _ ’up o
167rG/ Vosdale 166 G/d X oxH [ﬁ(g Ijo —¢"°I%) |,
(1.1)
Ly = 8 (oI, — I 150): (1.2)

Although maybe a surface term such as Sy = [ 5yBVhd*x should be added in
(I.1) [7], it will be ignored in this paper.

On the other hand, one must use the tetrad field e ( ) to express the Dirac
equation in curved spacetime:

(e 2 + 370 = 5 )0 = (13)

where the constant matrices y* satisfy {y* y#} = —2n%f,c%F = %[W,yﬁ], the
Ricci’s coefficients of rotation

1
_ By _ u u
Fapy = cawves€y = 5 (eauv —eavu)ezes — 5 (eﬁu,v - eﬁv,u>eae¥
1
u
) (equy — e?v,u)eaeé~ (1.4

The relations between metric tensor g,y and tetrad field eﬁ‘ is as follows

=

8uv = Mype yev —e#eav (1.5)

In this paper, we use the Greek and Latin alphabet without the symbol “’ to de-
note spacetime indices, and the Greek and Latin alphabet with the symbol “”’ to de-
note local frame components; the Greek alphabet without the symbol “*” is raised
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lams :

or lowered by g"" or 8uv> respectively; the Greek alphabet with the symbo

raised or lowered by n“ﬁ =diag(—1,+1,+1,+1)orn, i respectively. The value
of the Greek and Latin alphabet are O, 1, 2, 3 and 1, 2, 3, respectively, unless some
special statement.

For the purpose that use spacetime indices to express the Dirac equation, we
define

p

Fuva = rapy eyeve; = ey eqy
1 a 1 & 1 &
= 5eu(eava—cary) = 56 (Canr —Cann) = 56 (eanv —cavy).  (1.6)
If eff is changed according to e gﬁu &y under coordinate transformation

X = x*(xV), then we can prove that the manner of transformation of F, reads:

0% 9P 9%
HVA ™ 9xit gV gxh “PT
this means that F};y is a three-index covariant tensor in global manifold coordi-

nate system, the index of F, is thus raised or lowered by g or gy, respec-
tively. For example,

FPg = gPHg " Fy = gVl (et — e, ). (1.7)

Similar to the characteristic that Tapy is antisymmetric in the first pair of in-
dices:

TaBy = "By (1.8)
F

uva 18 also antisymmetric in the first pair of indices:

Fuva = —Fyua- (1.9)

Hence, both r,, By and F,,; have at most 24 independent components in 4-dimensional

Riemannian geometry, respectively.
Using F),y;, the Dirac equation (I.3) and the corresponding action can be ex-
pressed as follows

(700 2 + 47 a0 ()~ 5 )00 =0, (110
Sp = /\/ng4xLD:/‘4e’d4xLD,
Lo =900 (I (0) 52+ 1 (0P 0P () e )00, 11D

where y*(x) = y&eg,

4e’ = det [eﬁ] is the determinant of the 4 x4 matrix [el‘ﬂ )
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Now that the Dirac equation in curved spacetime must be expressed by tetrad
field eff, we should find out a Lagrangian on tetrad field eff or Fyy, . If we use the
method of the Yang-Mills-like field, then we can define a “covariant derivative”
Dy =0y — %Faﬁﬂcé‘ﬁ, where Fy5 = egengcu, the corresponding field strength
reads

Bv

. 1 1o
Fiyay = ilDu,Dy] = ;0% <8#Fa . avF&B”) + 50PN By

and we can prove that the corresponding Lagrangian

I !
Liy = =3 Te(F Fjay ) = =R Ruvpo.

where Ryypo is the Riemann curvature tensor [The relation between Ry vps and
Fyya will be given in (1.14)]. We see that this theory includes higher-derivative
and is not equivalent to general relativity [8]].

Duan and Zhang [9] have given a Lagrangian that can leads to the Einstein
equations:

(1.12)

And the remainder of L, and L is a total derivative:

_ J avaeg auaeé
LgL(;—i—ax!l[\/—g(e 8x"_e Y . (1.13)

In fact, from ek et —ARM

aoov " Casvio = €l ave WE have

u u M2 U A
oV FPV«,G JrFAvI?w B F}Lorpv

=
3
<
S
|
e o3

Il
)

= Fp“c;v—Fp”v;o +F/lpoF)L“v—F7vaFl”m (1.14)

R = gP"R;}M = FP% . —FPO o+ FPOsFpp* —FPMF 5

2w (V—gF§%) + FP°sFpy* —FPo*F 6. (1.15)
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Substituting the above formula to (I.1I)), we obtain

IR 4 |44
Sen = 17 G/v ~ Ten G/| e|d'sLa

+16EG/d4xﬁ(—2\/—ng%), (1.16)
L = FPOoFpp = FP7Fppo = r®yrag? —r®PTr .0
1 . . A N
e (naﬁgﬂpgvc+2gﬂpe eﬁ —4g“pe eg) (e;iv—e?,c’u) <€€7g—e§-,p> .
(1.17)

In 7), gtV = e %- Notice that there is not any term that is higher than first
derlvatlve n Lg, and LG 1s a scalar under coordinate transformation x* = x* (¥V).
If we define

V2
F(2)luv = T [_ZFMVA + (F)Luv - Flvu) - (g)L;LFVTT _glvarT)]

2
+ lg [61Fuvl + 6] (FA[LV _FZ,V[J.) + 52(gA[J,FV‘L'T _gﬂ,VF,UTT)] s

where 8 = +1,5, = +1, then we can prove

1 1

Auv auv
Lg= 4F( 2) Foyauy = *ZF(z) Foyapvs
where Fo)auy = eéF(z)Mw. Because F)quv = —F(2)avyu, the above expression is

quite similar to the form of the Lagrangian of the Yang—Mills field; however, it is
essentially not equivalent to the Yang—Mills field due to i = y/—1 appears in the
field strength F{3); ;v inevitably.

1.2 The characteristics of transformation of Lg under local Lorentz
transformation

Because F,y, is a three-index covariant tensor for the global manifold coordi-

nate system, and notice that Fy,, satisfies @, the most general form of scalar
constructed by the quadratic terms of £,y reads

L(Fyyy) = K +aF* F* +bF*YAF g + eFFYAFyy (1.18)

where K is a constant.
Under local Lorentz transformation, the manner of transformation of eff reads:

eg:/\g(x)éﬁ,eg:xg(x)é’f (1.19)
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where A@XQ = 5?,/\27\;;6 = 5. We can obtain the rule of the transformation of

Fyy, according to and (T.19):

Fuvp = Fyz +ABAaAéﬁéW’
N (1.20)

And we have
/|4e|d xL(Fyy3) /|4e’d xL(Fyya +/Ad4x,
A =alA,+bAp+ €A,
Ay = V—g2AXAL, ~ﬁ~GFuP +AZAL ~ﬁu~PA AL de9),
a 8 B B 6,0¢
Ay =+/— 2/\?‘/7\72 *ﬁ’t FHvA AOCAY’ ~[3u~vA A
b g( B a,veue}d + B eveuem)

Ae = V=gQAFAL p2hen P + AFAL PHEYATAG o vy,

Using the formulas on the Lorentz transformation:

> =

which can be obtained by the definition of the Lorentz transformation 7% A g‘A

né‘ﬁ, for A, we have:

- 3\/ -
a72\/7AaAy pﬁ66+2 gAz;pI;BO'

2% (V=8AfAL 85287 ) —2/=gASAL 15 2P
+VRAY AL o8P — A,

where

Aui ZZVTgAgXZc,pﬁoé’;éﬁ"h/—igA“ AY P BO-—'_\/*AO‘ ~P~ﬁo

= VRAJAL) p. o = V=3(8]) .02 = 0.
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For Ay, notice Ag‘xgy =AY XZC which can be obtained by (A
(57) v = 0 we have
B )

A§ NG B P I = nPEAS AL po ™I, = n“ﬁAxnmAy &y
o A7 sBo A AT SBA 5
= Af Agboar, = AEpAaeﬁ &I

we have

2FA;;A7 egeP I, —\/*gAI‘;AgPN;““FP +V=8AL AlePrecr?,

_\/7< ocAV +A[;x X )~G~BAFP

= \/Tg</\l§/\a)’p gy,
— =z (ag) ., &g I =o.
For A we have
Ae = 2WA°‘A“’eﬁ<’ éw+2\ﬁA“AY”emew%+\ﬁA“ AbA

— oAl Pr 5 o TP (5B 5 ~B.A
_ { |: E‘ &, eﬁppeg—/\g/\a (eg_e(7 + é% egc>i| +A;;A,A }

Summarizing the above results, we obtain

/Ad4x—2a/a (v=grfal ehebn)atx

+(a+b) /\ﬁ A“ Al Gépéﬁ" 2A§‘Ay & é’ﬁ" d4x—|—£/Asd4x.
We see that if a4+ b = 0, € = 0, then the change of the action L given by (I.T8) un-
der local Lorentz transformation is just only an integral of a total derivative. How-
ever, this is just the case of with the cosmological constant k. In this paper
we do not take account of the cosmological constant, if we must take account of
it, then what we have to make is just only adding «x into (I.I7). We therefore have
proved that the change of Lg given by under local Lorentz transformation is
only to raise an integral of a total derivative in the Einstein—Hilbert action, which
does not impact on the derivation of the equations of motion. On the other hand,
the above result also shows that why the term F4V* Fy,y; cannot appears in Lg.
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Under local Lorentz transformation, assuming that the manner of transforma-
tion of the wave function ¥ (x) in (1.11)) reads:

¥(x) — S(x)¥(x),
where S(x) satisfies
SAZx)P S () =77,
we can prove that such S(x) satisfies

L 9S() 1, 9AL(x)
1 —AC 01
i§7 () oxH 4Aﬁ () oxH

7 obr =,
Combining above formula and (T.20) we can prove that both (I.I0) and (T.TT) are
invariant under local Lorentz transformation.
1.3 The Einstein equations
For the sake of brevity, we define
SUVA — FHVA | MU pVO _ pAVEHG
from the above formula we have
SHA, — _2FHA, .
And, thus, we have

1 1
F/,tvk _ S,uv)L + 5g)L,uSvcr‘s _ Eglvsucc.

According to (I.T4) and (T.I5) we can prove the Einstein tensor

1 1
R4V _ 5g,uvR _ Su?kv;;L +Fpqup60‘ _Fp/,tGFva _ 5g,uV(Fpachll _Fpo%Fp)w)
1 d
= Topaa (V) W a2
where
1
WHY = I;‘:,S“PG +S“p‘7ch,v — Eg“VLc,, (1.22)

Lg is given by lb for the Christoffel symbol I, = %gV“ (8up.c +8ucp — &pou)
in (T:22)), according to (I.5) we can prove

v _ v & \Y
Iys =eaep6—F po-
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Based on (1.21)), the Einstein equations R*Y — % g"VR= 8?—4GT“" can be written
to the following two equivalent forms:

1 8nG
S“}”V;;L +S#P5chv _ Eg#"LG = T+,
d 837G
g (V) v = Sy

According to the above second equivalent form of the Einstein equations and
notice S*V4 = —SVHA we have

0 c* & a9 9
v — uv __© wyuv - Y Y T CUAVY
axu[V g(T 87G" )} 870G ot axl(v 85 ) 0

Defining
Suvéz _ Suv)L e%
1

-2 (egg"p _ eég“”) o00 (eg(, - eg,p>
(o2
B

1 4d

" [fef ox

8
) X X . 1 -
uo 4 va o c . . _ b _
] (’ e|S“ )—l—e A\ ﬁ(eﬁpc eﬁG,p) 5¢ UG
(1.24)
where TH% = THV¢%  the Einstein equations can be written to the following form

eOHe — . (1.25)

According to the above form of the Einstein equations and notice SHVe —
—SVH® we have

J 4 ué C4 1 au ap ucﬁ
8x”<‘ e’{T +87TG|:2€ Lg—e"FS (%pﬁ%mp)}})

a9 9 5
- [ uva _
" 87G Ixt IxV ( 8s ) =0.

In fact, (1.25) is just the Euler-Lagrange equations

o'l (1esta+im)| 9|1l (raalotin)| ol
— 9 S

Q% =0
8e@m v 8eau,v 8nG ’

where Ly is the Lagrangian of matter, e.g., for the Dirac field, Ly = Lp, Lp is

given by (I.T1);

B W aedu -

€ [a<|4e|LM> ; a(m%
ae(mv
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Although there are the sixteen Euler—Lagrange equations in (1.25), defining

1 1
S@fZEGMVin% W@_.waiww)
and using (I.2I) we can obtain the six identities
d UAV 1 uv
ﬁ(\/fgs(_) )+§\/fgw(_) -0 (1.26)

we therefore have only the ten independent equations

2 1 8nG
o (vEsy) gy = 58 e

Using (1.26) we can prove
1 A 8nG
Vi _ HAV uv uv
et =0 ngl («/ 88} )+W( o T (1.27)

Notice that in Lg given by (I.17) and all the forms of the Einstein equations,
the basic variables what we use are tetrad {e W },guv and g"" are as the abbrevia-

tion for e “eav and e ¢! &> respectively. Thus, both the Einstein-Hilbert action and
the Einstein equations are expressed absolutely by tetrad {eﬁ}.

2 The Schwinger time gauge condition

The invariance of the form of the theory given by Sect. [I|under coordmate trans-
formation x* = x*(%") and local Lorentz transformation indicated by (1.19) im-
plies the existence of ten arbitrary gauge functions, which must be ellmmated by
adding ten gauge conditions to 16 variables eff in project of canonical quantiza-
tion. Among ten gauge conditions, the four are for coordinate transformation and
the six are for local Lorentz transformation. For avoiding the influence between
the two kinds of transformation as far as possible, we restrict that coordinate trans-

formation x* = x* (%V) is only used to determine a special group of g,y but not to
determine e? directly, it acts on e through (1.5). Of course, this rule cannot avoid
the influence absolutely.

Although that gauge-fixing term is not destined at beginning may be a better
method for the discussion, for the sake of simpleness, we first choose three gauge-
fixing terms:

=0, a=1,2,3, .1

which can be implemented by choosing appropriate Ag (x) of Ag‘ (x) indicated by
(T.T9). It then leads to the following results:

R A\ —1 0
0 . . 0o_ (,0 . i 0,dpi.  / = |[*e] = &0
e; :O’ i=1,2,3; 60 = (60) 5 66 - —606862, —8= ’ e‘ =¢o

ehel = 5‘5’; eled = 5/, (2.2)
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]
The condition so called “time gauge”, was first given by Schwinger [1];

its equivalent form e =0is 1ntroduced by other consideration recently [6]].
Under the condmon (2.1), (I.17) is simplified to the following form

where |3e’ = det [ ﬁ the determinant of the 3 x 3 matrix [ ”]

Lg = Lgo+ Zegeg‘kUk + Lgv,

1 ; P ; 2_
ij l,L &l v( b b _ 0
Loo = EMA[, 0( T H,i)e() (ej«,v _eV,j) - (ef)) Lco,
ki J bk a
Uk = el ehe (ell ej’i),

1 N 1. N\, A )
Loy = ¢flel (—nabe eji— Eeée;} —I—ege}{)> (ef;—el)) (e?’m - efn’j), (2.3)

ij _ i
M = nabe ‘el +el eA 2eaei),

B} U iiia an{ b i N dml b b
_ J (4 a b b ij d m( b b
Leo = M3 (¢ —€.) (ej,o *eo,j) — M (el —ef ) e (em *em,j>

L AN d j P
J d b b
+ 2M eoe ( —eﬁi)eoe:’; (ej,m —emJ).
Notice that there is not eg or eg in Lgo, time derivative term only appears in Lgo and

there is not the term eg‘o in Lgo. In fact, there is not the term e% 2 (a,A=0,1,2,3)

in Lg given by (1.17). -
We can prove that the determinant of the 9x9 symmetric matrix M

ij
}Ma”é

And, further, the equation of eigenvalues of M;Jb is
(M =21 = =22 fi(A) 2(2) = 0

fl(l)=7t3—42li ()| A+

|3€| a,i=1

16
el

3

£ 2132[ Y ()’

a,i=1

bt

a,i=1

A+

1 3 a\2 3 i\2
| L (@) () -1
‘ e | a,i=1 a,i=1

We see that the rank of the 9x9 symmetric matrix M is 6. This result is fore-
seeable because there are still three undecided spatial elements of rotation in local
Lorentz transformation AE‘( x), hence, there are three arbitrary gauge functions for
Ag (x).

Although we have only the ten independent Einstein equations, we analyze
generally the sixteen Euler-Lagrange equations ®*% = 0 under the condition
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(2.1). At first, the four equations of constraint in which there is not any second
time derivative term read

16717G

. 0; ; 2
2009 = 20 = g+ = el 7 k<|3e|Uk) Loy + ™ —0 (2.4
0 1 87rG
00d 0a 3| GOk 0jb 0a
ot =oV= 15 75 (| o|04) 4 ¢fis® (eb”—eb]l> ST b,
2.5)
where
SV — ¢ §0id — eée’ (e 2= el/{ ]>—§e’beg [ebf( €ir— el )—l—e“/( e ]ﬂ
(2.6)
We have
. 1 R
0ib o b
MapS™ :—gMiZ 0 <€ A_el,j>'
Notice that (2.4) leads to
0\ 2 5\ 2 ‘%%(|36|Uk>+[4 I%GTOO
(eo) - (eo) - o >0. (27

Because there is not eg; in eg}3e|Lc,, there is not the corresponding equation
@ = 0 in the Euler-Lagrange equations On the other hand, because ®% =
0%l = @Y%l + O, according to and (2.2) we have @ = @t¢l) =
er 8 = @0’e0 =é, (@0“68 - @Ooeo), we see that @’0 = 0 does not provide new

independent equation.
The rest nine equations are

A 1 9 A:n 1 0 P YA
68(9”‘ = _@TXO<‘3€’SOW) + 5= [’36‘ <€8€{S0m—€8€IAS0]a

+ egikeb (e“’ebf - eb’e“/) + egf’faﬂ

—I—eg,j (YU~ ‘"U’) +eo % J ol (e”ebm — eb’ecm> (eg,[’m — eomy)

—I—ege‘”f’kb (eh] L e;)k_’j) - iegea’LGV - CTeOT’“ =0, (2.8)
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where U', Lgy and % are given by (2.3) and (2.6), respectively;

s 1 . 2 4 N N 1 . & Lo .o N N
dija __ S i bl J em( a a —al bm( i J i ¢ ¢
S = — eZJe eé\e (el’m_eml) + e e e;eé—e/«66 (elﬁm_emJ)
2 2 b
_ (eazebj _ ebleru) eher (€], — o) (2.9)

3 Non-positive definiteness of the quadratic term of time derivative in L
3.1 Non-positive definiteness of the quadratic term of time derivative in Lg

There exists a basic problem in Lg given by ([2.3): the quadratic term of time
derivative in Lgo is non-positive definitive. This conclusion is obvious from the
following expression:

2 . R R 2
Lgo = — 3 {eée’d (eg)t —eﬁﬂ-)]

Ly alo dif i i 55 5 si( 3 3\
+ 6{60 _2e l(ei,l _el-,i) - l(ei,x _e/l,i> —e l(%’,k _ez,i)”
1 [ 5:( 4 5 A /A A \132
+§{e§ e (ez/l feﬁﬂ.) — e (eil feii) }
+lel'eiiei_i+iii_i'2
219 | iA T i) T Cia T ) |
1 M 3./ 4 A 5 /7 NN
+§{e§ e“<eil—eiyi>+e3’<e}’l—e}ll> }
(&, — e ) v, -2 )]V 3.1)
2170 | iA T A AT eai)| | .

The six terms in (3.1I) are independent each other, because we have proved
that the rank of the 9x9 symmetric matrix M:iji; in Lgo is 6. However, the reason
that we obtain the conclusion “the quadratic term of time derivative in Lgo is non-
positive definitive” is that we have taken advantage of the condition @, hence,
a question is whether this conclusion holds in general case, namely, does it hold
for the action (I.I))? We discuss this question as follows.

Using (2.1) and (2.2), from (1.5) we have

2 .
00 _ 0 0i 0. i i i a).
g ——(eo) y & =—egey, 8 ——eoe()—l—ede )
0>, a a a
goo = —(60) +epean, 80i = €pCai, 8ij = €;€aj- (3.2)

“

From (1.5) we have egel‘gg#vﬂ = egeﬁ#’l +eB

considering (2.1)), (2.2)) and (3.2), we can prove

A i A i Y B |
e5e; (e,;M —e,;;w.) +ef e}j(edi,x —eaﬁ,“) = Zeoegei)r,w,

€4y 2> using this formula and
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where I};; = % (gli,j +81j, —g,‘jﬁ;t). We therefore have

20 aaiir N o YT A (i i i 2
Lgo = *g(e()@ %F/lij) +6["o (281""1*@262*6363)11“}

1
Aty
+2 eretell:: 2—|—2 eretell: 2+2 erelel ?
061657 Aij 0€1¢3" Aij 0263  Aij
= chey ("8 ~ 878" ) Ly, (3.3)

where g/ = ele¥ = gl +e6e6 and g%g;; = 6.
In (33). the quadratic term of time derlvatlve Lgoo is

1
LG()() = EM el Oejo

1 2,
=2 (68) (g’l g —gV gl'")gij, 08im, 0

11

T 2-g [911(223.0)° +&22(g31,0)* + 833(812,0)°

—&11822,0833,0 — 822833,0811,0 — £33811,0822,0
+2812812,0833,0 +2823823,0811,0 + 2831831,0822,0
—812823,0831,0 — §23831,0812,0 — §31812,08230) - (3.4

Using (3.2), we can prove that all the three principal minors of the metric g;;
are positive, e.g.,

=L@

PRI oA\ 2 PPN ~ 5\ 2
822 823 (;g_e;eg) + (eled — eled) +(egeg_egeg) >0, (3.5)

832 833

Jsisl = [ > 0.

Considering @) we can introduce a group of new variables &,,,u =0,1,2,3,4,5:

Q/[gzzg% - (z§’23)2}3
V833
|gij| = ho, = hi, . ; = ha,
|8ii] 822833 — (823)
hy = gﬁ’ hy = 823831 — 812833 _ 812823 — 822831, (3.6)

) 5 - ’
833 8283 — (g23)° 922833 — (823)°
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Contrarily, according to (3.6) we can obtain easily the expression
gij:gij(h”)7 u:0717273a475 (37)

And, from we see that if there is not gravitation field, and g1 = g2 = g33 =
L

g12 = g23 = g31 = 0 (i.e., Minkowski metric), then hg = hy = hy = 1,h3 = hy =
hs = 0.

Using We can prove
21 21 21 2
L :(9) L (o o)+ 2 (o) (Mo o)
Goo = (¢ { 3}%( 0,0) +3h§( 1,0) +h§( 2,0)
L4 2 Lh 2, 1os 2
+ =h; (h3’ 0) + *fz(l’l4, 0) + —hih; (h3/’l4’ o+ hs, 0) . (3.8)
2 213 2

We see that, taking advantage of the group of variables substitution 1| | gij|

as an independent variable is separated from the six dynamical variables g;;.

The result (3.8) shows again that the six terms in (3.1)) are independent each
other and shows clearly that the quadratic term of time derivative in Lgg is non-
positive definitive.

In general case, the Lagrangian L, is given by @) and we can prove that the
quadratic term of time derivative in L, is

Lo =7 {—Zgo’ (g(" g/ — g% g”") +g% (g” g —g" g”")]gi;‘, 08im, 0
1 o
=1 (—s%) (gllgjm - g”glm)gi/, 08Im, 0-
.. .. 0i ,0j . .
where g/ = gif — &£ and g = 8t

However, in this case, the characteristics indicated by do not hold for
metric g;; and thus, generally speaking, we cannot judge whether Ly is positive
definitive.

On the other hand, for the general case, if we assume that the characteristics
indicated by hold (This is just physically significant case), then we can still
obtain (3.8) by (3.6) for Lyo. This discussion shows that the characteristic that
the quadratic term of time derivative in the Einstein—Hilbert action is non-positive
definitive is ineluctable.

In my opinion, the quadratic term of time derivative in an action should be
positive definitive. Because, the quadratic term of time derivative in an action
corresponds to the kinetic energy of the system, if this term was non-positive, then
it was weird. On the other hand, the non-positive definiteness of the quadratic term
of time derivative in an action leads to the principle of variation failure.

However, we emphasize that the characteristic “the quadratic term of time
derivative in the Einstein—Hilbert action is non-positive definitive” does not denote
that there is inconsistency in the structure of the theory of general relativity, it only
shows that if we regard general relativity as a theory of field (e.g. tetrad field), then
this characteristic is incongruous with theory of field.
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On the other hand, if we want to obtain a positive definitive kinetic energy in
the Lagrangian of the Einstein—Hilbert action, it is obvious that unique method is
that we choose some “gauge-fixing term” such that there is not any time deriva-

) N2
tive term in the first term of 1| ie., the term —% {ege’ ( el —e4 l)} ; And no

matter how we choose “gauge- xing term”, the necessary condition is that the

o 9 .
term eée?,o |3€| a‘xg | 2 |g K |g" | vanishes in ( . However, this leads to the

following two conclusions:

(1) Because |g,- j| is one of the six independent dynamical variables, this is ob-

. . .. d|gij . .
vious from the transformation ll if (lgiol | vanishes, then one of the six

dynamical equations ®” = 0 becomes an equation in which there is not any
second time derivative term. Namely, the ten Einstein equations are divided
into at least five equations of constraint in which there is not any second
time derivative term and at most five equations of motion in which there are
second time derivative terms.
(2) Because local Lorentz transformation (I.19) cannot leads to the change of
8ij» , for the purpose that a{'ﬁ’d' vanishes, we therefore
have to employ coordinate transformation x* = x* ("), this means that the
purpose can only be realized in some special coordinate system, namely,
general relativity loses general covariance.

In spite of the above two conclusions, for the purpose that vanishes, we

simply choose

Although the condition (3.9) leads to a reduction of one in the six dynamical
variables, it is allowable as long as there is a coordinate transformation such that
(3.9) holds for arbitrary coordinate system. As an example, in the theory of the
Yang-Mills field, although A is a real dynamical variable, we can still choose so
called space-axial gauge A = 0 [10]]. The reason that space-axial gauge holds is
that there exists a gauge transformation such that A§ = 0 holds for arbitrary gauge
field Af;.

However, the condition (3.9) cannot guarantee that the quadratic term of time
derivative in Lgo is surely positive definitive. Because, although duo to (3.9), we

a1 9P 1 1 dsyl _
have ezef’; = Fe] 9% ~ 2Tay] axl/

27 2 il 4 N2 2/ 304 \2 2/ 0\2 5 2
—g[e()eg(ezl—eiyi)] = g(eo ﬁl) :—§<eo> (e eol—eoebe ]l),

we see that there are eg in the above expressions. On the other hand, because there
is not any time derivative term 68 o and e(“; o in (2.4) and (2 ) hence if we regard
| and 1i as four equations of holonomic constraint about eo and eo, then we

=0, and the first term of || becomes

therefore should solve (2.4) and .) to obtam eo and ef as functions of e/, e? ' j»and
especially, e? 70- And then, substituting eo = eg(eb ef’ i f’o) and el = eo(ef’ , elb J,ef’o)
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to li for eliminating redundant variables. We see that maybe ef’ o appear again in

the first term of Lo duo to eg = eg(eb f i 10) This discussion shows that if we

only use (3.9) then it cannot guarantee that the quadratic term of time derivative
in Lg is surely positive definitive.

On the other hand, the above discussion shows yet that if eg =0, from 1|
and (3.2) then we see that this condition can be realized by choosing coordinate
condition

g0i =0, (3.10)

then the first term of (3.1)) vanishes and the quadratic term of time derivative in Lgo
is positive definitive. In fact, using (3.9) and (3.10), Landau and Lifschitz proved
that the quadratic term of time derivative in Lg of E) is positive definitive.

Under the conditions 1l and (3.10), we have 1/|g,~j‘ = ‘3e’ =hyp =1 and

e = 0, which are two holonomic equations of constraint about ‘3e| and ed, and
can be substituted directly to Lg given by (3.1), from (T.16) we therefore can
obtain an action

3
__¢ 4 0
Say = 167:G/d xeq LG s -1 =0 3.11)

From the above discussion we know that there is not negative kinetic energy term
in li However, to substitute |3e‘ =1 to Lg ask a method that separates ‘3e| as

an independent variable from the nine dynamical variables e?, we shall give such
a method in Sect. ] of this paper.

3.2 A coordinate condition insuring positive definiteness of the kinetic energy
term in Lgo

According to (2.2)) and (3.2)) we have

0A 0i
8 1T o 8
< |glm|g00> |glm|70+ |glm| i 00 + glm|<00>

§

Vel
0 0
0 0>
€%

2

0

( lie e(),z)
3 3
— O3 o|e|70 ] e| i 0,0
= eO| e|<e0 |Se te 6 | € ,l_eéeoeﬁﬁi
eo|3e|[ele’e“l+& <6}L—eée2)}
:eo| e|(e)te’e“;L +e ﬁ)

e
( ) (3.12)

A

= el o+ eich | | (<}

eoei
el g el =50 1 e |(
00
+
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another proof of (3.12)) can be found in Sect. [5]of this paper.
According to (3.12)), the negative kinetic energy term in Lg reads

2 I . . 2 2 gOA
LGNKZ—g[e()eZ(eﬁ;L_ei,i)} ~ 3 ( |glm|gm .

B

2 Ulgmlo 1% lgml; (g% | :
= —= @ _ e 2 <g00>

72

3 2 gl 28% |gum

. . 2
2 00|l 1g0’ I gOI
= gg [zg’"glmp"‘ Eggoog mg1m7i+ 7g00 ; . (3.13)

Taking advantage of (3.13)), we can calculate conveniently the negative kinetic
energy term of gravitation field for given metric tensor g,y. We investigate two
examples.

(1) For the Robertson—Walker metric indicated by the line element

dr?
1 —kr?

ds? = —d(er)* + R (1) { +r*(d6*+sin’ 9d(p2)] :

. 402 .
we have g0 = —1,g% =0, gij| = RW[)%, according to |D the cor-
responding negative kinetic energy term of the Robertson-Walker metric in
total space reads

25 i/a a2 6 1 (dR(1)\?
~5 |ebeh (el — )] :_c2RZ(t)<dt ‘
(2) For the Schwarzschild metric indicated by the line element

(1) @) L o),

r 1-5L
p

a|gi1| _ _d (r4sin29

where ry = Z(C;—ZM We see that W) = A\ 1o ) =0 in the area of ry < r,
r

hence, according to (3.13)), in the area of r; < r the negative kinetic energy term
of the Schwarzschild metric vanishes.

But the above form of the Schwarzschild metric cannot be continued into
the area of 0 < r < r,;. For continuing it into the area of 0 < r < ry, one has
used a method of coordinate transformation and obtained some metrics, e.g., the
Lemaitre and the Kruskal metrics. However, for the Lemaitre and the Kruskal
metrics of the Schwarzschild solution, using (3.13)), we can verify easily that there
are corresponding negative kinetic energy terms of gravitation field in total space,
respectively (We do not discuss these questions in detail here).

On the other hand, from we see that if we choose

g())L
V0gim|=55 | =0 (3.14)
g A

s
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then
erel (eé —é > =0 (3.15)
0 a\%ia A ’ :

the quadratic term of time derivative in Lgo given by is thus positive defini-
tive.

Hence, for the purpose obtaining a positive definitive quadratic term of time
derivative in Lgo given by B.1), we present two groups of coordinate conditions:
one is and (3.10), another is . Of course, one can try to choose other

“gauge- ﬁxmg term for this purpose

Substituting (3.15) to (2.4), 2.3) and (2.8)), we obtain a special form of the
Einstein equations with the characteristic (3.15)) under the condition (2.1, whose
concrete forms no longer be written down here.

It is important that we can prove that the action

3
_ ¢ 4 | 44
S(z) = %/‘ €’d XLGPK, (316)
Lgpxk = Lg — Lgnk = Lgo — Lok + 26868’kUk + Lgv (3.17)

can leads to a special form of the Einstein equations with the characteristic (3.15)
under the condition (2.1, where Lg is given by (2.3); especially, in Lgpk, time
derivative terms only appear in the term

1
Lo — Lok = Eleb g(ezu e

V
)es
= e} (g g g”g’”’)

. 2
_ggOO lglmgz +liglmg1 4 <g01>
3° 2% SIOT 2008 ST g0 )

It is obvious that there is not any negative kinetic energy term in Lgpg, thus,
based on (3.11)) or (3.16)), we can try to realize quantization of general relativity by
various methods of quantization, e.g., the Dirac-Bargmann method for a strange
Lagrangian system, or the method of path integral. In this paper, we only discuss
simply the method of canonical quantization.

4 The Hamiltonian representation

At first, in spite of the non-positive definiteness of the quadratic term of time
derivative in Lo provisionally, we discuss the Hamiltonian representation of (2.3).
As a first step of the Hamiltonian representation, we need 3+1 dimensional decom-
position of space-time manifold, this can be realized by using the ADM decom-
position [[11]]:

L 2 , .
ds? = = (V* = N7 (@) 2N o+ o, @.1
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where N; = h; ij . For taking advantage of the forms of the foregoing formulas,

we still use g;; to denote A;;. Under (2.1)), both (2.2) and (3.2) hold in this case,
and especially we have

e)=N, el=eN;=elN', e% = —egNi, W = gl = el 4.2)
From (3.3)) we have
v—8Lco
= e8]3e‘egeg <gil§jm - gijg_lm)ruijrvlm
|gij| sil =jm _ =ij =lm n k arn
=N <g e ) (FOijrozm —2N"I4;jl 3 + NN 17<ij17;1m)~
(4.3)

Because there may be e?o (and, further, g;;0) in a Lagrangian of matter, e.g., the
Lagrangian Lp given by (1.11)) of the Dirac field, for the sake of simpleness, we
ignore Lagrangian of matter, and the momenta conjugate to g;; are

. d(\/=gL 0 (v/—gL }gij| g
= (ag.goG) - ag(.g. OGO) =N (gllg]m—gl]glm> (Lotm—N"Tim)-
ij, if,

4.4)
Using the DeWitt metric [12]]

I 1

Gijim = ) (818 jm + &im&j1 — 8ij&im) 4.5)
|81
from (@.4)) we obtain
I3ij = —NGijimm™ + N*I3,;, (4.6)
and, further,
vV—8Lco = NG;jjum ™. 4.7
j

Notice
8ij0 = —210ij + 80i.j + 807 = 2NGijim®"™ — 2N*Tiij + N j+ Nji,
we have

7850 —V/—=8LG = NGijimm"/ 7" — 2N\ / |2i;|U* — N/ |gij| Lav
+ T (N; j+Nj;) = 2N;ig¥ Lypure™,
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hence, up to a total derivative, under the condition (2.1)), the action of the system
reads

3
__¢ 4|44
SEH - %/| e‘d XLG
- 167'CG/ ‘g” U mi NHle‘fe hism)7 (48)
Hiamilionian = thlmﬂunlm +2Z’d |gij|U \gij|Lav,  (4.9)

Hli)iffeomorphism = _2( l] +gl/F ) 4.10)

The above forms show clearly the Diffeomorphism and the Hamiltonian con-
straints. The expression (4.10) of the Diffeomorphism constraint is just the same
as the usual form (See, for example, the formula (3.6) in Ref. [12]), as for the
usual form of the Hamiltonian constraint [12]]

Hyt - Hamiltonian = Gijlmﬂ:ijnlm+ |gij}R(3)v (411)

comparmg @.9) with @.IT) we see that the “kinetic energy term” in the two ex-
pressions is the same: both are G, "/ mim

In as much as the success of the Ashtekar theory [[13; 1145 [15 165 1175 [18]], we
can try to simulate Ashtekar’s method to introduce some new variables for simpli-
fying the equations (#.9) and (4.10). However, according to known results of the
Ashtekar theory, we can forecast that if we make the thing like so, then maybe we
shall encounter some problem, e.g., a problem similar to that of “real condition” in
the Ashtekar
theory.

Before we try to simplify the equations @D and (4.10), a more basic prob-
lem is that the kinetic energy term G, T/ ™™ in and (4.11) is non-positive
definitive, this is a consequence of and (3.3). Concretely, according to (#.6)

. . . o 2
and |l the negative term in Giﬂmn’/ﬂ:l’" is —fN fg,-j’ (G,-ﬂmg’/n:l’") .
This characteristic can be shown more clearly by the transformation (3.6). If
we substitute (3.7) to (3.3) and define

= I(v—=glc) _ (v —gLGO), ©=0,1,2,3.45, (4.12)
a]’l,,,’() ahl,L,O

then through some derivation similar to (4.4)—(.10), we can obtain a form of the
Hamiltonian constraint:

3., 173 1 1 3
Hyamiltonian = _ghoﬂo + % Zh 7171 + 4}127172 +— h4 7173 + = h2 (7174—}137175)
1 2 k
bz +2(hU) — hoLay. 413
1212 5} oU")  ~holav (4.13)

This form shows clearly that the negative kinetic energy term in Hyamiltonian 1S
3 h 2
—g/o%g-
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Now we employ the coordinate condition (3:9), namely, iy = 1, then from
(@#T12) we can only get five momenta conjugate 7,,u = 1,2,3,4,5, because there
is not iy in Lgo, and (#.13)) becomes

1[3 1 1 h3 1
Hyamiltonian = 5 |:4h%7t12 + Zh%nZZ + }72‘753% + é(ﬂ4 — h37'C5)2 + h%h%ﬂsz]

+2U% - Lav, (4.14)

we see that the kinetic energy term in the Hamiltonian constraint given by (#.14)
is positive definitive.
As for the potential energy term 2U”§( —Lgy in 1} we have to add some

gauge conditions such that ¢? can be expressed by g; j» and, further, by h,(u =
0,1,2,3,4,5) according to (3.7):

6? = e?(glm) = ezﬁ(hu)'

For this purpose, we can generalize (2.1) to the form

eon =0, < 1L, (4.15)
combining the last formula in (3.2)), ez is thus a triangular matrix:
2
7
€| €y €3 822833—(823)
€51 €57 €33 823831812833 820833~ (823)° 0 4.16)
ey, €3, €3 V53V 8283 —(823) V&3
_831 _823
L V833 V833 V33 |

The conclusion that the above form of e;; always exists has been proved in many

literatures. In fact, according to the last formula in (3.2)), (3.6) thus hold, then the

form of eg; given by ([@.16) is so called the Cholesky decomposition in algebra.
And, further, according to we have

YL
ejy ef €3 hotg; 0 0
€31 €3 €33 —/hoh1 7 Jhohiis 0 (4.17)
€31 €52 ¢33 —V/hohihy(hsha +hs) /hohihahs N/hohiha

Based on (4.16)), from go; = eleg; in (3.2) we have

gol [g22g33 - (g23)2} +802(823831 — 812833) + 803(812823 — 822831)

eiO 9
2
|gij| 822833 — (23)
(4.18)
_ £02833 — 803823 _ 803
€50 = v €30 T —-
833

V833

822833 — (823)2
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Using (2.1) and (2.2) we have
N —1 . _
= (eg) = Vg, =5 (4.19)

Now we can substitute lb to the potential energy term 2U ’,‘( —Lgy in 1;

and consider hg = 1, the last result of 2U 17< — Lgy obtained by computer is in the
Appendix of this paper. ’

As well-known, after realizing canonical quantization, i (x) — ?5&?(}6) in
and becomes an equation of constraint for wave function ¥|g;;(x)]:

h 0 h b
Hyf - Hamiltonian P81 (X)] = <Giﬂmi6gij(x)iégl,,,(x)+ |gij\R<3)>'P[gij(x)]

:0,

this is so called the Wheeler—DeWitt equation. Similarly, after realizing canonical
quantization, (4.14) becomes an equation of constraint for wave function ¥'[h, (x)]:

173,55 1,5 5 1, I >, L,
<2<4(h1751)w+4(l’12ﬂ2)w+hgn3+h%(7r4h3755) +mﬂ5
+20} - Lov ) Wlhu(2)] =0, (4.20)

in which m,(x) — %Mf(x) (u=1,2,3,4,5); (h} ), (i = 1,2) means the Weyl or-

dering:
1
(hlzﬂlz)w = 6 (hlzﬂ'lz + h,’ﬂizh,' -+ ﬂihizﬂ,' —+ 7'[12/’112 + /’l,’ﬂ,’h,‘ﬂ,’,‘ —+ ﬂihiﬂih,') (l = 1,2)

Because (4.17) provides a method that separates |3e| = hg as an independent
variable from the nine dynamical variables ef (in which there are only six inde-
pendent variables), we now can discuss the theory of canonical quantization of
general relativity based on the action (3.1T).

If we use the action to realize canonical quantization of general relativ-
ity, then the Hamiltonian constraint is still given by (#.20). But because there is
not eg in , we cannot obtain directly the Diffeomorphism constraint. On the
other hand, after realizing canonical quantization and obtaining the Hamiltonian
H(yy from the action , all the Diffeomorphism constraint HI")iffeomorphism in
which all the variables become the corresponding operators are commutative with
H (1)*

E

i
Diffeomorphism>

Hy| =0,

Therefore, all H]Siffeomorphism are conservation quantities of the theory and can be
diagonalized with H() at the same time. Hence, we can pick out such ¥'[h,(x)]

that satisfies H]i)iffeomorphismq’[hu (x)] = 0 as physically significant wave function.
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By this process, we obtain the Diffeomorphism constraint again. This method is
the same as that of processing the Gaussian law under the temporal gauge in QED
[19].

Similar to the case of eg, we cannot obtain directly an equation of constraint
corresponding to Ay from the action (3.11)), because there is not hg in as
well. However, we can obtain it by the method similar to that of obtaining the
Diffeomorphism constraint, which is discussed in the above paragraph.

We no longer write down the commutation relations and the equations of mo-
tion of the operators in the theory of canonical quantization obtained by the action
(B-17) here.

We now discuss the theory of canonical quantization of general relativity based
on the action (3.16).

For the action (3.16), substituting (.17) to (3.17) and considering #.2)), we

have

C3 4
S(Z) - 16717G/d XNhOLGPK(hM’hu,lvaNi:hOvN,iaNi,jahO.i)a u= 1727374757
4.21)
defining
d(NhyL d(Nho(Lgo — L
7, = IWholarx) _ OWho(Leo —Lanw)) 15345 @)
8hu70 ahI,L,O
and from (4.22) we obtain h, o as the functions of 7,:
huo = hyo(m,), u,v=1,23,4,5. (4.23)
Substituting (4.23)—(4.21)), we have
3
c
S = 167L_G/d4XNh0LGPK(7ru§hv;hv,i§N7Niah0§N,i7Ni,j7hO,i)a
u,v=1,2,3,45. (4.24)
From the above expression we can obtain five constraints:
d(NhoL d(NhyL
The Hamiltonian constraint : (NhoLgrx) —0; (NhoLgrx) =0, (4.25
JdN IN;
d(NhyL, d(NhyL,
The Diffeomorphism constraint: (NhoLgrx) —J; (NhoLgrx) =0, (4.26)
IN, ON;
d(NhyL, d(NhyL,
The g constraint : (NhoLgrx) P (NhoLarx) _ (4.27)
8h0 8h0,’l~
After realizing canonical quantization, the commutation relations are
[hu(t,x),7,(t,X)] = 188> (x —X'); [ (%), hy(2,X)] = 0; 4.28)

[n'u(t,x),irv(t,x/)] =0; uyv=12,34,5.
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Equations (4.25)-{.27) become five equations of constraint for wave function
¥[hy(x)], the five equations of motion of the operators read

ing, (t,x) = [m,(1,x),Hp)): u=1,2,3,4,5. (4.29)

In @29).

5
H) = /d4x<z ﬂuhu,o(ﬁv)NhoLGPK(7Tu;hv;hv,i;N,Ni,ho;N,i,Ni,j,ho,i)>~

u=1

(4.30)

All the concrete forms of (#.21)—(@.30) obtained by computer are complicated.

We therefore present two theories of canonical quantization of general relativ-
ity under two different groups of coordinate conditions: one is (3.9) and (3.10),
another is (3.14), respectively. The common characteristics of the two theories are
that the kinetic energy terms in both the actions and both the Hamiltonian con-
straints are positive definitive.

5 A group of gauge conditions making there is not any second time
derivative term in the ten Einstein equations

We investigate two groups of tetrads: {€%} and {ef }, for which the Schwinger
time gauge condition holds, namely, (2.1) holds for {f } and

A=0, a=1,2,3. (5.1)

4
Hence, a local Lorentz transformation Ag‘ between such {éﬁ‘} and { ez‘} has the
characteristics:

Al =1, Adx)=0, Al(x)=0, nAIAL =nib, (5.2)

o

Under the above special local Lorentz transformation, the relation between {Eﬁ}
and {eﬁ} reads:

B sH 0 _ 50 a _ Ad( b
eg =8, eu=2y, ¢, =A;(x)e. (5.3)
According to e”ef = e?*¢§ = 1% we have

é’jiéf" A= szgebief 2t ngg’ 2 ebief = nggebi ei 2t XZXQ 2 nhé, 5.4

and using Xc:ni’é = Afndé, which can be proved by 1b , ng?,x nbé = /TZA?A n =

¢,
AI;@XZ an%4, we therefore have
1

N s : NN I .
jAa " = 3 (AZA& +A§AZ,;L)77“ =3 (AZAL}’) ln“ =

-
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Equation (5.4) thus becomes
oliel, = AjAldiel, =, (5.5)
and using (5.3) we have
ége‘”e” = e“AbA eb’ ‘ = eg.Q\(,a). (5.6)

According to li and e(’% ei = 55 =0 we have

e = o (ApAceel + ApAL el ) = b ApAce’el = 0. (5.7)

0
Especially,
3 . ~ ~ i’\ia’\ S e A
Z (eg.Q)(La) — a)(“)> = é’%é”d (é’ﬁl —éﬁ’w) = Z /\I;AéeéL (eb’ef’l — eb’eii)
a=1 a=1

= ehei(ef—ei.). (5.8)

this means that e A (el A el 2, ) is an invariable under the transformation |b

We now designate that the tetrad eﬁ‘} in 1} satisfy li According to
e =0in 2 2) (14 16 4 18 and (14 19) we see that {eﬁ‘} have been expressed as
functions oF metfic tensor g,“,

e = el (gpo)- (5.9)
According to (5.8), 2.2), @.16), @#I8) and (#.19) we have

3 3
A i sa sa \ _ A i a a 70|€’,0 ()i|€|,i 0 i
€ye;\ iy =€) =eyealein—er;) =€ Pel +epe; e] + { eoe; ;

(3
2 |gim 2800 |im] Sy

\/—[1 smlo 1 g% lgm

V=g

Equation thus be proved again for the transformation (2). i
Now that {ef} } satisfy (5.1, the characteristics (2.2) thus holds yet for {&%}.
And, further, we have

1 ( g()l
=7\ V |g1m|ﬁ )
J A

s

P/ S (5.10)
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Equation li shows that éﬁ as one of the four components of éﬁ has been com-

pletely determined for the metric tensor g,v. On the other hand, 1n Ref. [20], it is
pointed out that, in this case (i.e., one of the four vectors éﬁ‘ has been completely

determined for the metric tensor g;;v), one can choose other Eﬁ,k =1, 2,3 such
that the Ricci’s coefficients of rotation 7, by satisfy

Foab +Topa =0, a#b; a,b=1,2,3,
concretely,

ots 751 =0, Tois +7ps1 =0, Topg + 735 = 0. (5.11)

In Ref. [20], (5.T1) is called the simplest case, because it leads to that the indepen-
dent components of the Ricci’s coefficients of rotation reduce to 21 from at most
24 [see (1.8)] in the 4-dimensional Riemannian geometry, we therefore call
the simplest constraint conditions.

In fact, from the definition (T.4) of the Ricci’s coefficients of rotation and (5.1))
we have

Toab + Topa = € [é’la (é’;;,-,z - %,i) +8j (@ain — é}m,i)} : (5.12)

If there is a group of tetrads {eﬁ} that has the characteristic ¢) = 0,a = 1,2, 3
as well but rg.; + ros, # 0(a # bia,b = 1, 2, 3), for example, for the tetrad {e% }
satisfying (4.15), we have rg,; + 155, 7 0(a # bya,b = 1,2, 3), then under the
transformation (3.2)), we have

Al .
Toab T Toba = €5 [e'a (eﬁi,l - el;l,i) +e; (eain — eﬁk,i)}

where the formulas XZ

5 bo~i~ ——d —¢ —d
AP = 87885 = Ny, NegAaAba + Neghaap =

a’sc

<7753A2AZ> = (M) ; = 0 and é%é(m = 1y, = 0 are used. From the above
72' '

formula we have

~ b ad .
sab T+ Toba = AAL (Focd +Tode): (5.13)

We see that if the non diagonal elements of the 33 symmetric matrix [roé it J@]
are not zero, then we can make an orthogonal transformation by an orthogonal

matrix Aé’ such that the new 3x3 symmetric matrix |Fy,;+ 7 Jé] is diagonal,
namely, [F;;+ ;] satisfy (5.11). Concretely, from (5.13) we see that [#q,; + 7o,7;]
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becomes a diagonal matrix if and only if

AfA§<’654+r645) =0, Af/\éi(roeﬁfoga) =0, A§A§<’653+r645) =0.
(5.14)

If 1} hold, then according to (5.12)), Soia given by (2.6) but in which {eu}

is now as basic variables becomes

Jia _ iz EAJ'(E?A_EIZJ,), (5.15)

and according to (T.27) we can prove that there is not _any second time derivative
term in the three equations @/ = 0(i # j) in which {e } is as basic variables, this
means that all second time derivative terms are ehmlnated in the three of the six
equations of motion @ = 0.

Now that we have designated that {e"‘} satisfy , of course, we have

(a # bia,b=1,2,3). On the other hand, we now ask that {&%}

Toah T Topa 7 0
satisfy (fﬁb accordmg to (5.2), fl’f? and (5.14), a special local Lorentz trans-

formation A’g‘ between {e } and is fully determined.

Equation 1) shows that { e } are only functions of gy, hence, from the

expression of ry.; +rg;, [using 1} but in which {eﬁ‘} is as basic variables]
we see that ry,; + 7, are functions of g,v, goi j and g;; ; . And then, according to

li and (5.14), we know that A;f are functions of gy, go;,j and g;; 5 as well:

A = AX(guuv80i:81j.0)- (5.16)

And from (5.9) and 45.16 we know that all 2,"), e Q) and & given by (5.5).
@) and (5.7) respectively are functions of g,v,go;,; and g;; , as well.

Now that the all .Q/(la) , eg .Q‘(,“) and ©@ are functions of guv,80ij and g;; 1, we
can try to choose a coordinate transformation such that the metric tensor g,y in
the new coordinate system satisfy some conditions, which can be expressed by

(@)

some forms of combination of £, ,eg .Q‘(,”) and 0@, and we ask that these con-
ditions lead to that there is not any second time derivative term in all the Einstein
equations.

At first, for insuring that the quadratic term of time derivative in Lgg is positive
definitive, we choose (3.14), which can be generated by a special combination of
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Q/(Ia),eg Q\(,a) and 0@ li this means that the metric tensor gy in the new

coordinate system is made to satisfy (3.14).

(@)

And then, we consider the following two forms of combination of ;™

W, = 29(()1) _Qéz) __Qés) _ 2e~iiéii70 _Eﬁiézo _Eﬁiézo

—_o® () _ Hid B (w22 33\ aih .
Wr = Q)7 — Q" =eé"éjg—e'ejy= Ap—AAG | €M e

From the above discussion we know that both Wy and W, are functions of gy, goi,j
and g;; ;. , we therefore can choose

Wi = Wi(guv:&oij>&ija) =0, (5.17)

=0
W = Wa(guv;8oi.j>&ija) = 0. (5.18)

This means that the metric tensor g,y in the new coordinate system is made to

satisfy (5.17) and (5.13).

Under the conditions d3.14|), d5.17|) and d5.18b, i given by now be-
comes

0ia __ sdi ) sak | 50 5a sl (4 _ sa _ k5050 s/ (b 5b
7 =eé {e [e©e07j+eo (ej’k ekyj)} 3eb {60607]( +é5 <ej7k ek’j)}

2 . L R 30 . s "
sai ) < sak | 50 54 sl (54 _ sd - 50k | 50 5b s (0 b
é 3 é [e()eo’j +& (ej,k ek’f)} 3 Z é [60807]( +& (ejvk em)} ,

(5.19)

in which there is not any time derivative term.
Based on (5.19), we can verify easily that there is not any time derivative term
in (2:4) and (2.3)), and there is not any second time derivative term in (2.8).
Generally speaking, a coordinate transformation can provide four coordinate
conditions, but what we have used is only three of four coordinate conditions:
(B-14), (5.17) and (5.18)). Of course, one can try to choose other forms of combi-

nation of .Q)(f’> , eg .Q‘(,a) and 0@,
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Appendix
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