
General Relativity and Gravitation (2011)
DOI 10.1007/s10714-008-0613-9

RESEARCH ARTICLE

T. Mei

On the vierbein formalism of general
relativity

Received: 31 October 2007 / Accepted: 13 January 2008
c© Springer Science+Business Media, LLC 2008

Abstract Both the Einstein–Hilbert action and the Einstein equations are dis-
cussed
under the absolute vierbein formalism. Taking advantage of this form, we prove
that the “kinetic energy” term, i.e., the quadratic term of time derivative term, in
the Lagrangian of the Einstein–Hilbert action is non-positive definitive. And then,
we present two groups of coordinate conditions that lead to positive definitive ki-
netic energy term in the Lagrangian, as well as the corresponding actions with
positive definitive kinetic energy term, respectively. Based on the ADM decom-
position, the Hamiltonian representation and canonical quantization of general
relativity taking advantage of the actions with positive definitive kinetic energy
term are discussed; especially, the Hamiltonian constraints with positive definitive
kinetic energy term are given, respectively. Finally, we present a group of gauge
conditions such that there is not any second time derivative term in the ten Einstein
equations.

Keywords Vierbein formalism, Positive definiteness of kinetic energy term,
The Hamiltonian representation, Canonical quantization, The simplest constraint
conditions

0 Introduction

There are a number of literatures on the vierbein formalism of general relativity
and canonical gravity (See, for example, Refs. [1; 2; 3; 4], and recently, [5; 6]).
In this paper, at first, we use absolutely the tetrad field eα̂

µ to express the Einstein–
Hilbert action and the Einstein equations; and then, discuss some characteristics
of the theory. Concretely, taking advantage of this form, we first prove that the
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“kinetic energy” term, i.e., the quadratic term of time derivative term, in the La-
grangian of the Einstein–Hilbert action is non-positive definitive. And then, we
present two groups of coordinate conditions that lead to positive definitive kinetic
energy term in the Lagrangian, as well as the corresponding actions with positive
definitive kinetic energy term, respectively. Based on the ADM decomposition, the
Hamiltonian representation and canonical quantization of general relativity taking
advantage of the actions with positive definitive kinetic energy term are discussed;
especially, the Hamiltonian constraints with positive definitive kinetic energy term
are given, respectively. Finally, we present a group of gauge conditions such that
there is not any second time derivative term in the ten Einstein equations.

1 The vierbein formalism of general relativity

1.1 The vierbein formalism of the Einstein–Hilbert action

As is well known, in general relativity, the Einstein–Hilbert action reads

SEH =
c3

16πG

∫ √
−gd4xR

=
c3

16πG

∫ √
−gd4xLg +

c3

16πG

∫
d4x

∂

∂xµ

[√
−g(gρσ

Γ
µ

ρσ −gµρ
Γ

σ
ρσ )
]
,

(1.1)

Lg = gαβ (Γ ρ

ασΓ
σ

βρ
−Γ

ρ

αβ
Γ

σ
ρσ ). (1.2)

Although maybe a surface term such as Ssur =
∫

∂Y B
√

hd3x should be added in
(1.1) [7], it will be ignored in this paper.

On the other hand, one must use the tetrad field eα̂
µ (x) to express the Dirac

equation in curved spacetime:(
iγ α̂ eµ

α̂
(x)

∂

∂xµ
+

1
4

γ
γ̂ r

α̂β̂ γ̂
σ

α̂β̂ − mc
h̄

)
Ψ(x) = 0, (1.3)

where the constant matrices γ α̂ satisfy {γ α̂ ,γ β̂} = −2η α̂β̂ ;σ α̂β̂ = i
2 [γ α̂ ,γ β̂ ]; the

Ricci’s coefficients of rotation

r
α̂β̂ γ̂

= eα̂µ;ν eµ

β̂
eν

γ̂
=

1
2
(
eα̂µ,ν − eα̂ν ,µ

)
eµ

β̂
eν

γ̂
− 1

2

(
e

β̂ µ,ν − e
β̂ ν ,µ

)
eµ

α̂
eν

γ̂

−1
2
(
eγ̂µ,ν − eγ̂ν ,µ

)
eµ

α̂
eν

β̂
. (1.4)

The relations between metric tensor gµν and tetrad field eα̂
µ is as follows

gµν = η
α̂β̂

eα̂
µ eβ̂

ν = eα̂
µ eα̂ν . (1.5)

In this paper, we use the Greek and Latin alphabet without the symbol “̂” to de-
note spacetime indices, and the Greek and Latin alphabet with the symbol “̂” to de-
note local frame components; the Greek alphabet without the symbol “̂” is raised
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or lowered by gµν or gµν , respectively; the Greek alphabet with the symbol“̂” is
raised or lowered by η α̂β̂ = diag(−1,+1,+1,+1) or η

α̂β̂
, respectively. The value

of the Greek and Latin alphabet are 0, 1, 2, 3 and 1, 2, 3, respectively, unless some
special statement.

For the purpose that use spacetime indices to express the Dirac equation, we
define

Fµνλ = r
α̂β̂ γ̂

eα̂
µ eβ̂

ν eγ̂

λ
= eα̂

µ eα̂ν ;λ

=
1
2

eα̂
µ

(
eα̂ν ,λ − eα̂λ ,ν

)
− 1

2
eα̂

ν

(
eα̂µ,λ − eα̂λ ,µ

)
− 1

2
eα̂

λ

(
eα̂µ,ν − eα̂ν ,µ

)
. (1.6)

If eα̂
µ is changed according to eα̂

µ = ∂ x̃ν

∂xµ ẽα̂
ν under coordinate transformation

xµ = xµ(x̃ν), then we can prove that the manner of transformation of Fµνλ reads:

Fµνλ =
∂ x̃α

∂xµ

∂ x̃β

∂xν

∂ x̃γ

∂xλ
F̃αβγ ,

this means that Fµνλ is a three-index covariant tensor in global manifold coordi-
nate system, the index of Fµνλ is thus raised or lowered by gµν or gµν , respec-
tively. For example,

Fρσ
σ = gρµ gνλ Fµνλ = gρν eµ

α̂

(
eα̂

µ,ν − eα̂
ν ,µ

)
. (1.7)

Similar to the characteristic that r
α̂β̂ γ̂

is antisymmetric in the first pair of in-
dices:

r
α̂β̂ γ̂

=−r
β̂ α̂ γ̂

, (1.8)

Fµνλ is also antisymmetric in the first pair of indices:

Fµνλ =−Fνµλ . (1.9)

Hence, both r
α̂β̂ γ̂

and Fµνλ have at most 24 independent components in 4-dimensional
Riemannian geometry, respectively.

Using Fµνλ , the Dirac equation (1.3) and the corresponding action can be ex-
pressed as follows:(

iγµ(x)
∂

∂xµ
+

1
4

γ
µ(x)Fαβ µ σ

αβ (x)− mc
h̄

)
Ψ(x) = 0, (1.10)

SD =
∫ √

−gd4xLD =
∫ ∣∣4e

∣∣d4xLD,

LD = Ψ(x)
(

ih̄γ
µ(x)

∂

∂xµ
+

1
4

h̄γ
µ(x)Fαβ µ σ

αβ (x)−mc
)

Ψ(x), (1.11)

where γµ(x) = γ α̂ eµ

α̂
,
∣∣4e
∣∣= det

[
eα̂

µ

]
is the determinant of the 4×4 matrix

[
eα̂

µ

]
.
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Now that the Dirac equation in curved spacetime must be expressed by tetrad
field eα̂

µ , we should find out a Lagrangian on tetrad field eα̂
µ or Fµνλ . If we use the

method of the Yang-Mills-like field, then we can define a “covariant derivative”
Dµ = ∂µ − i

4 F
α̂β̂ µ

σ α̂β̂ , where F
α̂β̂ µ

= eρ

α̂
eσ

β̂
Fρσ µ , the corresponding field strength

reads

F(1)µν = i[Dµ ,Dν ] =
1
4

σ
α̂β̂

(
∂µ F

α̂β̂ ν
−∂ν F

α̂β̂ µ

)
+

1
2

σ
α̂β̂

η
ρ̂σ̂ Fρ̂α̂µ F

σ̂ β̂ ν
,

and we can prove that the corresponding Lagrangian

L(1) =−1
4

Tr
(

Fµν

(1) F(1)µν

)
=−1

8
Rµνρσ Rµνρσ ,

where Rµνρσ is the Riemann curvature tensor [The relation between Rµνρσ and
Fµνλ will be given in (1.14)]. We see that this theory includes higher-derivative
and is not equivalent to general relativity [8].

Duan and Zhang [9] have given a Lagrangian that can leads to the Einstein
equations:

LG = rα̂β̂

β̂
rα̂ γ̂

γ̂ − rα̂β̂ γ̂ r
α̂ γ̂ β̂

(1.12)

And the remainder of Lg and LG is a total derivative:

Lg = LG +
∂

∂xµ

[
√
−g

(
eα̂ν

∂eµ

α̂

∂xν
− eα̂µ

∂eν

α̂

∂xν

)]
. (1.13)

In fact, from eµ

α̂;σ ;ν − eµ

α̂;ν ;σ = eλ

α̂
Rµ

λνσ
we have

Rµ

ρνσ = Γ
µ

ρσ ,ν −Γ
µ

ρν ,σ +Γ
µ

λν
Γ

λ
ρσ −Γ

µ

λσ
Γ

λ
ρν

= eα̂
ρ (eµ

α̂;σ ;ν − eµ

α̂;ν ;σ )

=
(

eα̂
ρ eµ

α̂;σ

)
;ν
−
(

eα̂
ρ eµ

α̂;ν

)
;σ
− eα̂

ρ;ν eµ

α̂;σ + eα̂
ρ;σ eµ

α̂;ν

= Fρ
µ

σ ;ν −Fρ
µ

ν ;σ +Fλρσ Fλ µ
ν −Fλρν Fλ µ

σ , (1.14)

and, further,

R = gρσ Rλ

ρλσ
= Fρσ

ρ;σ −Fρσ
σ;ρ +Fρσ

σ Fρλ
λ −Fρσλ Fρλσ

= −2
1√
−g

∂

∂xρ
(
√
−gFρσ

σ )+Fρσ
σ Fρλ

λ −Fρσλ Fρλσ . (1.15)
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Substituting the above formula to (1.1), we obtain

SEH =
c3

16πG

∫ √
−gd4xR =

c3

16πG

∫ ∣∣4e
∣∣d4xLG

+
c3

16πG

∫
d4x

∂

∂xρ
(−2

√
−gFρσ

σ ), (1.16)

LG = Fρσ
σ Fρλ

λ −Fρσλ Fρλσ = rα̂β̂

β̂
rα̂ γ̂

γ̂ − rα̂β̂ γ̂ r
α̂ γ̂ β̂

=− 1
4

(
η

α̂β̂
gµρ gνσ +2gµρ eσ

α̂
eν

β̂
−4gµρ eν

α̂
eσ

β̂

)(
eα̂

µ,ν−eα̂
ν ,µ

)(
eβ̂

ρ,σ−eβ̂

σ ,ρ

)
.

(1.17)

In (1.17), gµν = eα̂µ eν

α̂
. Notice that there is not any term that is higher than first

derivative in LG, and LG is a scalar under coordinate transformation xµ = xµ(x̃ν).
If we define

F(2)λ µν =
√

2
3
[
−2Fµνλ +

(
Fλ µν −Fλνµ

)
−
(
gλ µ Fντ

τ −gλν Fµτ
τ
)]

+ i
2
3
[
δ1Fµνλ +δ1

(
Fλ µν −Fλνµ

)
+δ2

(
gλ µ Fντ

τ −gλν Fµτ
τ
)]

,

where δ1 =±1,δ2 =±1, then we can prove

LG =−1
4

Fλ µν

(2) F(2)λ µν =−1
4

F α̂µν

(2) F(2)α̂µν ,

where F(2)α̂µν = eλ

α̂
F(2)λ µν . Because F(2)α̂µν =−F(2)α̂νµ , the above expression is

quite similar to the form of the Lagrangian of the Yang–Mills field; however, it is
essentially not equivalent to the Yang–Mills field due to i =

√
−1 appears in the

field strength F(2)λ µν inevitably.

1.2 The characteristics of transformation of LG under local Lorentz
transformation

Because Fµνλ is a three-index covariant tensor for the global manifold coordi-
nate system, and notice that Fµνλ satisfies (1.9), the most general form of scalar
constructed by the quadratic terms of Fµνλ reads:

L(Fµνλ ) = κ +aFµν
ν Fµλ

λ +bFµνλ Fµλν + εFµνλ Fµνλ (1.18)

where κ is a constant.
Under local Lorentz transformation, the manner of transformation of eα̂

µ reads:

eα̂
µ = Λ

α̂

β̂
(x)ẽβ̂

µ ,eµ

α̂
= Λ

β̂

α̂(x)ẽµ

β̂
, (1.19)
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where Λ α̂

β̂
Λ

γ̂

α̂ = δ
γ̂

β̂
,Λ

γ̂

α̂
Λ

α̂

β̂
= δ

γ̂

β̂
. We can obtain the rule of the transformation of

Fµνλ according to (1.6) and (1.19):

Fµνλ = F̃µνλ +Λ
α̂

β̂
Λ

γ̂

α̂,λ ẽβ̂

µ ẽγ̂ν ,
(1.20)

F̃µνλ = ẽα̂
µ ẽα̂ν ;λ .

And we have∫ ∣∣4e
∣∣d4xL(Fµνλ ) =

∫ ∣∣4e
∣∣d4xL(F̃µνλ )+

∫
∆d4x,

∆ = a∆a +b∆b + ε∆ε ;

∆a =
√
−g(2Λ

α̂

β̂
Λ

γ̂

α̂,σ ẽβ̂

µ ẽσ

γ̂
F̃µρ

ρ +Λ
α̂

β̂
Λ

γ̂

α̂,ρ ẽβ̂ µ ẽρ

γ̂
Λ

θ̂

χ̂
Λ

τ̂

θ̂ ,σ ẽχ̂

µ ẽσ

τ̂
),

∆b =
√
−g(2Λ

α̂

β̂
Λ

γ̂

α̂,ν ẽβ̂

µ ẽγ̂λ F̃µνλ +Λ
α̂

β̂
Λ

γ̂,λ
α̂ ẽβ̂ µ ẽν

γ̂
Λ

θ̂

χ̂
Λ

τ̂

θ̂ ,ν ẽχ̂

µ ẽτ̂λ ),

∆ε =
√
−g(2Λ

α̂

β̂
Λ

γ̂

α̂,λ ẽβ̂

µ ẽγ̂ν F̃µνλ +Λ
α̂

β̂
Λ

γ̂,λ
α̂ ẽβ̂ µ ẽν

γ̂
Λ

θ̂

χ̂
Λ

τ̂

θ̂ ,λ ẽχ̂

µ ẽτ̂ν).

Using the formulas on the Lorentz transformation:

η
α̂ γ̂

Λ
β̂

γ̂
= η

β̂ γ̂
Λ

α̂

γ̂ , ηα̂ γ̂Λ
γ̂

β̂
= η

β̂ γ̂
Λ

γ̂

α̂
,

which can be obtained by the definition of the Lorentz transformation η ρ̂σ̂Λ α̂

ρ̂
Λ

β̂

σ̂
=

η α̂β̂ , for ∆a we have:

∆a = 2
√
−gΛ

α̂

β̂
Λ

γ̂

α̂,ρ ẽρ

γ̂
ẽβ̂σ

,σ +2
∂
√
−g

∂xσ
Λ

α̂

β̂
Λ

γ̂

α̂,ρ ẽρ

γ̂
ẽβ̂σ

+
√
−gη

β̂ χ̂
Λ

α̂

β̂
Λ

θ̂

χ̂
Λ

γ̂

α̂,ρΛ
τ̂

θ̂ ,σ ẽρ

γ̂
ẽσ

τ̂

= 2
∂

∂xσ

(√
−gΛ

α̂

β̂
Λ

γ̂

α̂,ρ ẽρ

γ̂
ẽβ̂σ

)
−2

√
−gΛ

α̂

β̂
Λ

γ̂

α̂,ρ ẽρ

γ̂,σ ẽβ̂σ

+
√
−gΛ

α̂

β̂ ,ρ
Λ

γ̂

α̂,σ ẽρ

γ̂
ẽβ̂σ −∆a1,

where

∆a1 = 2
√
−gΛ

α̂

β̂
Λ

γ̂

α̂,ρ,σ ẽρ

γ̂
ẽβ̂σ +

√
−gΛ

α̂

β̂ ,σ
Λ

γ̂

α̂,ρ ẽρ

γ̂
ẽβ̂σ +

√
−gΛ

α̂

β̂ ,ρ
Λ

γ̂

α̂,σ ẽρ

γ̂
ẽβ̂σ

=
√
−g(Λ α̂

β̂
Λ

γ̂

α̂),ρ,σ ẽρ

γ̂
ẽβ̂σ =

√
−g(δ γ̂

β̂
),ρ,σ ẽρ

γ̂
ẽβ̂σ = 0.
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For ∆b, notice Λ α̂

β̂
Λ

γ̂

α̂,ν = −Λ α̂

β̂ ,ν
Λ

γ̂

α̂ which can be obtained by (Λ α̂

β̂
Λ

γ̂

α̂),ν =

(δ γ̂

β̂
),ν = 0 we have

∆b = −2
√
−gΛ

α̂

β̂
Λ

γ̂

α̂,ρ ẽρ

γ̂,σ ẽβ̂σ +2
√
−gΛ

α̂

β̂
Λ

γ̂

α̂,ρ ẽσ

γ̂
ẽβ̂λ

Γ
ρ

λσ

+
√
−gΛ

α̂

β̂ ,ρ
Λ

γ̂

α̂,σ ẽρ

γ̂
ẽβ̂σ ,

As for the middle term in the above expression, due to

Λ
α̂

β̂
Λ

γ̂

α̂,ρ ẽσ

γ̂
ẽβ̂λ

Γ
ρ

λσ
= η

β̂ χ̂
Λ

α̂

β̂
ηγ̂ τ̂Λ

γ̂

α̂,ρ ẽτ̂σ ẽλ

χ̂
Γ

ρ

λσ
= η

α̂β̂
Λ

χ̂

β̂
ηα̂ γ̂Λ

γ̂

τ̂,ρ ẽτ̂σ ẽλ

χ̂
Γ

ρ

λσ

= Λ
α̂

β̂ ,ρ
Λ

γ̂

α̂ ẽβ̂σ ẽλ

γ̂
Γ

ρ

λσ
= Λ

α̂

β̂ ,ρ
Λ

γ̂

α̂ ẽβ̂λ ẽσ

γ̂
Γ

ρ

σλ
,

we have

2
√
−gΛ

α̂

β̂
Λ

γ̂

α̂,ρ ẽσ

γ̂
ẽβ̂λ

Γ
ρ

λσ
=
√
−gΛ

α̂

β̂
Λ

γ̂

α̂,ρ ẽσ

γ̂
ẽβ̂λ

Γ
ρ

λσ
+
√
−gΛ

α̂

β̂ ,ρ
Λ

γ̂

α̂ ẽβ̂λ ẽσ

γ̂
Γ

ρ

σλ

=
√
−g
(

Λ
α̂

β̂
Λ

γ̂

α̂,ρ +Λ
α̂

β̂ ,ρ
Λ

γ̂

α̂

)
ẽσ

γ̂
ẽβ̂λ

Γ
ρ

λσ

=
√
−g
(

Λ
α̂

β̂
Λ

γ̂

α̂

)
,ρ

ẽσ

γ̂
ẽβ̂λ

Γ
ρ

λσ

=
√
−g
(

δ
γ̂

β̂

)
,ρ

ẽσ

γ̂
ẽβ̂λ

Γ
ρ

λσ
= 0.

For ∆ε we have

∆ε = 2
√
−gΛ

α̂

β̂
Λ

γ̂,ρ
α̂ ẽβ̂σ

,ρ ẽγ̂σ +2
√
−gΛ

α̂

β̂
Λ

γ̂,ρ
α̂ ẽβ̂λ ẽγ̂σΓ

σ

λρ
+
√
−gΛ

α̂

β̂ ,λ
Λ

β̂ ,λ
α̂

=
√
−g
{

2
[
Λ

α̂

β̂
Λ

γ̂

α̂,ρ ẽβ̂ρ
,σ ẽσ

γ̂
−Λ

α̂

β̂
Λ

γ̂,ρ
α̂

(
ẽβ̂

σ ẽσ

γ̂,ρ + ẽσ

γ̂
ẽβ̂

ρ,σ

)]
+Λ

α̂

β̂ ,λ
Λ

β̂ ,λ
α̂

}
.

Summarizing the above results, we obtain∫
∆d4x = 2a

∫
∂

∂xµ

(√
−gΛ

α̂

β̂
Λ

γ̂

α̂,λ ẽλ

γ̂
ẽβ̂ µ

)
d4x

+(a+b)
∫ √

−g
(

Λ
α̂

β̂ ,ρ
Λ

γ̂

α̂,σ ẽρ

γ̂
ẽβ̂σ−2Λ

α̂

β̂
Λ

γ̂

α̂,ρ ẽρ

γ̂,σ ẽβ̂σ

)
d4x+ε

∫
∆ε d4x.

We see that if a+b = 0,ε = 0, then the change of the action L given by (1.18) un-
der local Lorentz transformation is just only an integral of a total derivative. How-
ever, this is just the case of (1.17) with the cosmological constant κ . In this paper
we do not take account of the cosmological constant, if we must take account of
it, then what we have to make is just only adding κ into (1.17). We therefore have
proved that the change of LG given by (1.17) under local Lorentz transformation is
only to raise an integral of a total derivative in the Einstein–Hilbert action, which
does not impact on the derivation of the equations of motion. On the other hand,
the above result also shows that why the term Fµνλ Fµνλ cannot appears in LG.
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Under local Lorentz transformation, assuming that the manner of transforma-
tion of the wave function Ψ(x) in (1.11) reads:

Ψ(x)→ S(x)Ψ(x),

where S(x) satisfies

S(x)Λ α̂

β̂
(x)γ β̂ S−1(x) = γ

α̂ ,

we can prove that such S(x) satisfies

iS−1(x)
∂S(x)
∂xµ

+
1
4

Λ
α̂

β̂
(x)

∂Λ
γ̂

α̂(x)
∂xµ

ηγ̂ χ̂ σ
β̂ χ̂ = 0.

Combining above formula and (1.20) we can prove that both (1.10) and (1.11) are
invariant under local Lorentz transformation.

1.3 The Einstein equations

For the sake of brevity, we define

Sµνλ = Fµνλ +gλ µ Fνσ
σ −gλν Fµσ

σ ,

from the above formula we have

Sµλ
λ =−2Fµλ

λ ;

And, thus, we have

Fµνλ = Sµνλ +
1
2

gλ µ Sνσ
σ −

1
2

gλν Sµσ
σ .

According to (1.14) and (1.15) we can prove the Einstein tensor

Rµν − 1
2

gµν R = Sµλν
;λ +Fρµν Fρσ

σ −Fρµσ Fρσ
ν − 1

2
gµν(Fρσ

σ Fρλ
λ −Fρσλ Fρλσ )

=
1√
−g

∂

∂xλ

(√
−gSµλν

)
+W µν , (1.21)

where

W µν = Γ
ν

ρσ Sµρσ +Sµρσ Fρσ
ν − 1

2
gµν LG, (1.22)

LG is given by (1.17), for the Christoffel symbol Γ ν
ρσ = 1

2 gνµ
(
gµρ,σ +gµσ ,ρ −gρσ ,µ

)
in (1.22), according to (1.5) we can prove

Γ
ν

ρσ = eν

α̂
eα̂

ρ,σ −Fν
ρσ .
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Based on (1.21), the Einstein equations Rµν− 1
2 gµν R = 8πG

c4 T µν can be written
to the following two equivalent forms:

Sµλν
;λ +Sµρσ Fρσ

ν − 1
2

gµν LG =
8πG
c4 T µν ,

∂

∂xλ

(√
−gSµλν

)
+
√
−gW µν =

8πG
c4

√
−gT µν .

According to the above second equivalent form of the Einstein equations and
notice Sµνλ =−Sνµλ we have

∂

∂xµ

[√
−g
(

T µν − c4

8πG
W µν

)]
=

c4

8πG
∂

∂xµ

∂

∂xλ

(√
−gSµλν

)
= 0.

Defining

Sµνα̂ = Sµνλ eα̂

λ

=
1
2

(
eµ

β̂
gνρ − eν

β̂
gµρ

)
eα̂σ

(
eβ̂

ρ,σ − eβ̂

σ ,ρ

)
−
(

eα̂µ gνρ − eα̂ν gµρ

)
eσ

β̂

(
eβ̂

ρ,σ − eβ̂

σ ,ρ

)
− 1

2
gµρ gνσ

(
eα̂

ρ,σ − eα̂
σ ,ρ

)
, (1.23)

Θ
µα̂ =

1
|4e|

∂

∂xν

(∣∣4e
∣∣Sµνα̂

)
+ eα̂ρ Sµσβ̂

(
e

β̂ρ,σ − e
β̂σ ,ρ

)
− 1

2
eα̂µ LG−

8πG
c4 T µα̂ ,

(1.24)

where T µα̂ = T µν eα̂
ν , the Einstein equations can be written to the following form

Θ
µα̂ = 0. (1.25)

According to the above form of the Einstein equations and notice Sµνα̂ =
−Sνµα̂ we have

∂

∂xµ

(∣∣4e
∣∣{T µα̂ +

c4

8πG

[
1
2

eα̂µ LG− eα̂ρ Sµσβ̂

(
e

β̂ρ,σ − e
β̂σ ,ρ

)]})
=

c4

8πG
∂

∂xµ

∂

∂xν

(√
−gSµνα̂

)
= 0.

In fact, (1.25) is just the Euler–Lagrange equations

∂

[∣∣4e
∣∣( c3

16πG LG +LM

)]
∂eα̂µ

−∂ν

∂

[∣∣4e
∣∣( c3

16πG LG +LM

)]
∂eα̂µ,ν

=−
c3
∣∣4e
∣∣

8πG
Θ

µα̂ = 0,

where LM is the Lagrangian of matter, e.g., for the Dirac field, LM = LD,LD is
given by (1.11);

T µα̂ =
c
|4e|

[
∂
(∣∣4e

∣∣LM
)

∂eα̂µ

−∂ν

∂
(∣∣4e

∣∣LM
)

∂eα̂µ,ν

]
.
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Although there are the sixteen Euler–Lagrange equations in (1.25), defining

Sµλν

(±) =
1
2
(Sµλν ±Sνλ µ), W µν

(±) =
1
2
(W µν ±W νµ),

and using (1.21) we can obtain the six identities

∂

∂xλ

(√
−gSµλν

(−)

)
+

1
2
√
−gW µν

(−) = 0 (1.26)

we therefore have only the ten independent equations

∂

∂xλ

(√
−gSµλν

(+)

)
+

1
2
√
−gW µν

(+) =
8πG
c4

√
−gT µν .

Using (1.26) we can prove

Θ
µν = Θ

νµ =
1√
−g

∂

∂xλ

(√
−gSµλν

(+)

)
+W µν

(+)−
8πG
c4 T µν . (1.27)

Notice that in LG given by (1.17) and all the forms of the Einstein equations,
the basic variables what we use are tetrad

{
eα̂

µ

}
,gµν and gµν are as the abbrevia-

tion for eα̂
µ eα̂ν and eα̂µ eν

α̂
, respectively. Thus, both the Einstein–Hilbert action and

the Einstein equations are expressed absolutely by tetrad
{

eα̂
µ

}
.

2 The Schwinger time gauge condition

The invariance of the form of the theory given by Sect. 1 under coordinate trans-
formation xµ = xµ(x̃ν) and local Lorentz transformation indicated by (1.19) im-
plies the existence of ten arbitrary gauge functions, which must be eliminated by
adding ten gauge conditions to 16 variables eα̂

µ in project of canonical quantiza-
tion. Among ten gauge conditions, the four are for coordinate transformation and
the six are for local Lorentz transformation. For avoiding the influence between
the two kinds of transformation as far as possible, we restrict that coordinate trans-
formation xµ = xµ(x̃ν) is only used to determine a special group of gµν but not to
determine eα̂

µ directly, it acts on eα̂
µ through (1.5). Of course, this rule cannot avoid

the influence absolutely.
Although that gauge-fixing term is not destined at beginning may be a better

method for the discussion, for the sake of simpleness, we first choose three gauge-
fixing terms:

e0
â = 0, a = 1, 2, 3, (2.1)

which can be implemented by choosing appropriate Λ â
0̂
(x) of Λ α̂

β̂
(x) indicated by

(1.19). It then leads to the following results:

e0̂
i = 0, i = 1, 2, 3; e0

0̂ =
(

e0̂
0

)−1
; ei

0̂ =−e0
0̂eâ

0ei
â;

√
−g =

∣∣4e
∣∣= e0̂

0
∣∣3e
∣∣;

ei
âeb̂

i = δ
b̂
â ; e j

âeâ
i = δ

j
i , (2.2)



On the vierbein formalism of general relativity 11

where
∣∣3e
∣∣= det

[
eâ

i
]

is the determinant of the 3×3 matrix
[
eâ

i
]
.

The condition (2.1), so called “time gauge”, was first given by Schwinger [1];
its equivalent form e0̂

i = 0 is introduced by other consideration recently [6].
Under the condition (2.1), (1.17) is simplified to the following form

LG = LG0 +2e0
0̂e0̂

0,kU
k +LGV,

LG0 =
1
2

Mi j
âb̂

eµ

0̂

(
eâ

i,µ − eâ
µ,i
)
eν

0̂

(
eb̂

j,ν − eb̂
ν , j

)
=
(

e0
0̂

)2
L̄G0,

Uk = ei
âe j

b̂
eb̂k(eâ

i, j− eâ
j,i
)
,

LGV = eĉlem
ĉ

(
−1

4
ηâb̂ed̂ie j

d̂
− 1

2
e j

âei
b̂ + ei

âe j
b̂

)(
eâ

i,l − eâ
l,i
)(

eb̂
j,m− eb̂

m, j

)
, (2.3)

Mi j
âb̂

= ηâb̂eĉie j
ĉ + e j

âei
b̂−2ei

âe j
b̂
,

L̄G0 =
1
2

Mi j
âb̂

(
eâ

i,0− eâ
0,i
)(

eb̂
j,0− eb̂

0, j

)
−Mi j

âb̂

(
eâ

i,0− eâ
0,i
)
ed̂

0em
d̂

(
eb̂

j,m− eb̂
m, j

)
+

1
2

Mi j
âb̂

eĉ
0el

ĉ
(
eâ

i,l − eâ
l,i
)
ed̂

0em
d̂

(
eb̂

j,m− eb̂
m, j

)
.

Notice that there is not e0
0̂

or e0̂
0 in L̄G0, time derivative term only appears in LG0 and

there is not the term eα̂
0,0 in LG0. In fact, there is not the term eα̂

λ ,λ (α,λ = 0, 1, 2, 3)
in LG given by (1.17).

We can prove that the determinant of the 9×9 symmetric matrix Mi j
âb̂∣∣∣Mi j

âb̂

∣∣∣= 0;

And, further, the equation of eigenvalues of Mi j
âb̂

is∣∣∣Mi j
âb̂
−λ I

∣∣∣ = −λ
3 f1(λ ) f2(λ ) = 0,

f1(λ ) = λ
3− 4

|3e|2

[
3

∑
a,i=1

(
eâ

i
)2
]

λ +
16

|3e|2
,

f2(λ ) = λ
3−2

[
3

∑
a,i=1

(
ei

â
)2
]

λ
2 +

[
3

∑
a,i=1

(
ei

â
)2 +

1

|3e|2
3

∑
a,i=1

(
eâ

i
)2
]

λ

− 1

|3e|2

[
3

∑
a,i=1

(
eâ

i
)2

3

∑
a,i=1

(
ei

â
)2−1

]
.

We see that the rank of the 9×9 symmetric matrix Mi j
âb̂

is 6. This result is fore-
seeable because there are still three undecided spatial elements of rotation in local
Lorentz transformation Λ α̂

β̂
(x), hence, there are three arbitrary gauge functions for

Λ â
b̂
(x).
Although we have only the ten independent Einstein equations, we analyze

generally the sixteen Euler–Lagrange equations Θ µα̂ = 0 under the condition
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(2.1). At first, the four equations of constraint in which there is not any second
time derivative term read

−2e0̂
0Θ

00̂ = −2Θ
0̂0̂ = LG0 +

2
|3e|

∂

∂xk

(∣∣3e
∣∣Uk
)
−LGV +

16πG
c4 T 0̂0̂ = 0, (2.4)

e0̂
0Θ

0â = Θ
0̂â =

1
|3e|

∂

∂xk

(∣∣3e
∣∣S0̂kâ

)
+ eâiS0̂ jb̂

(
eb̂i, j−eb̂ j,i

)
−8πG

c4 T 0̂â =0,

(2.5)

where

S0̂iâ =e0̂
0S0iâ =eâieλ

0̂ e j
b̂

(
eb̂

j,λ−eb̂
λ , j

)
−1

2
ei

b̂eλ

0̂

[
eb̂ j
(

eâ
j,λ−eâ

λ , j

)
+ eâ j

(
eb̂

j,λ−eb̂
λ , j

)]
.

(2.6)

We have

ηâb̂S0̂ib̂ =− 1
2

Mi j
âb̂

eλ

0̂

(
eb̂

j,λ − eb̂
λ , j

)
.

Notice that (2.4) leads to

(
e0

0̂

)2
=
(

e0̂
0

)−2
=
− 2
|3e|

∂

∂xk

(∣∣3e
∣∣Uk
)
+LGV− 16πG

c4 T 0̂0̂

L̄G0
≥ 0. (2.7)

Because there is not e0̂i in e0̂
0

∣∣3e
∣∣LG, there is not the corresponding equation

Θ i0̂ = 0 in the Euler–Lagrange equations. On the other hand, because Θ 0â =
Θ 0µ eâ

µ = Θ 00eâ
0 +Θ 0ieâ

i , according to (1.27) and (2.2) we have Θ i0̂ = Θ iµ e0̂
µ =

Θ i0e0̂
0 = Θ 0ie0̂

0 = ei
â

(
Θ 0âe0̂

0−Θ 00̂eâ
0

)
, we see that Θ i0̂ = 0 does not provide new

independent equation.
The rest nine equations are

e0̂
0Θ

iâ = − 1
|3e|

∂

∂x0

(∣∣3e
∣∣S0̂iâ

)
+

1
|3e|

∂

∂x j

[∣∣3e
∣∣(eb̂

0e j
b̂
S0̂iâ− eb̂

0ei
b̂S0̂ jâ

+ e0̂
0,kek

b̂

(
eâieb̂ j− eb̂ieâ j

)
+ e0̂

0s̃i jâ
)]

+
1
2

e0̂
0eâiS0̂ jb̂eλ

0̂

(
eb̂ j,λ − eb̂λ , j

)
− e0̂

0ei
0̂eâkS0̂ jb̂

(
eb̂ j,k− eb̂k, j

)
−e0̂

0eâ jS0̂ib̂eλ

0̂

(
eb̂ j,λ − eb̂λ , j

)
+e0̂

0, j
(
eâ jU i− eâiU j)+ e0̂

0, je
j
b̂
eâl
(

eĉieb̂m− eb̂ieĉm
)(

eĉl,m− eĉm,l
)

+e0̂
0eâ j s̃ikb̂

(
eb̂ j,k− eb̂k, j

)
− 1

2
e0̂

0eâiLGV−
8πG
c4 e0̂

0T iâ = 0, (2.8)
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where U i,LGV and S0̂iâ are given by (2.3) and (2.6), respectively;

s̃i jâ = − 1
2

ei
b̂eb̂le j

ĉeĉm(eâ
l,m− eâ

m,l
)
+

1
2

eâleb̂m
(

ei
b̂e j

ĉ− e j
b̂
ei

ĉ

)(
eĉ

l,m− eĉ
m,l
)

−
(

eâieb̂ j− eb̂ieâ j
)

el
b̂em

ĉ
(
eĉ

l,m− eĉ
m,l
)
. (2.9)

3 Non-positive definiteness of the quadratic term of time derivative in LG

3.1 Non-positive definiteness of the quadratic term of time derivative in LG

There exists a basic problem in LG given by (2.3): the quadratic term of time
derivative in LG0 is non-positive definitive. This conclusion is obvious from the
following expression:

LG0 = − 2
3

[
eλ

0̂ ei
â

(
eâ

i,λ − eâ
λ ,i

)]2

+
1
6

{
eλ

0̂

[
2e1̂i
(

e1̂
i,λ − e1̂

λ ,i

)
− e2̂i

(
e2̂

i,λ − e2̂
λ ,i

)
− e3̂i

(
e3̂

i,λ − e3̂
λ ,i

)]}2

+
1
2

{
eλ

0̂

[
e2̂i
(

e2̂
i,λ − e2̂

λ ,i

)
− e3̂i

(
e3̂

i,λ − e3̂
λ ,i

)]}2

+
1
2

{
eλ

0̂

[
e1̂i
(

e2̂
i,λ − e2̂

λ ,i

)
+ e2̂i

(
e1̂

i,λ − e1̂
λ ,i

)]}2

+
1
2

{
eλ

0̂

[
e1̂i
(

e3̂
i,λ − e3̂

λ ,i

)
+ e3̂i

(
e1̂

i,λ − e1̂
λ ,i

)]}2

+
1
2

{
eλ

0̂

[
e2̂i
(

e3̂
i,λ − e3̂

λ ,i

)
+ e3̂i

(
e2̂

i,λ − e2̂
λ ,i

)]}2
. (3.1)

The six terms in (3.1) are independent each other, because we have proved
that the rank of the 9×9 symmetric matrix Mi j

âb̂
in LG0 is 6. However, the reason

that we obtain the conclusion “the quadratic term of time derivative in LG0 is non-
positive definitive” is that we have taken advantage of the condition (2.1), hence,
a question is whether this conclusion holds in general case, namely, does it hold
for the action (1.1)? We discuss this question as follows.

Using (2.1) and (2.2), from (1.5) we have

g00 = −
(

e0
0̂

)2
, g0i =−e0

0̂ei
0̂, gi j =−ei

0̂e j
0̂
+ ei

âeâ j;

g00 = −
(

e0̂
0

)2
+ eâ

0eâ0, g0i = eâ
0eâi, gi j = eâ

i eâ j. (3.2)

From (1.5) we have eµ

α̂
eν

β̂
gµν ,λ = eµ

α̂
e

β̂ µ,λ + eµ

β̂
eα̂µ,λ , using this formula and

considering (2.1), (2.2) and (3.2), we can prove

eλ

0̂ ei
â

(
eb̂i,λ − eb̂λ ,i

)
+ eλ

0̂ ei
b̂

(
eâi,λ − eâλ ,i

)
= 2eλ

0̂ ei
âe j

b̂
Γλ i j,
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where Γλ i j = 1
2

(
gλ i, j +gλ j,i−gi j,λ

)
. We therefore have

LG0 = − 2
3

(
eλ

0̂ eâie j
âΓλ i j

)2
+

1
6

[
eλ

0̂

(
2ei

1̂e j
1̂
− ei

2̂e j
2̂
− ei

3̂e j
3̂

)
Γλ i j

]2

+
1
2

[
eλ

0̂

(
ei

2̂e j
2̂
− ei

3̂e j
3̂

)
Γλ i j

]2

+2
(

eλ

0̂ ei
1̂e j

2̂
Γλ i j

)2
+2
(

eλ

0̂ ei
1̂e j

3̂
Γλ i j

)2
+2
(

eλ

0̂ ei
2̂e j

3̂
Γλ i j

)2

= eµ

0̂
eν

0̂

(
ḡil ḡ jm− ḡi jḡlm

)
Γµi jΓν lm, (3.3)

where ḡi j = ei
âeâ j = gi j + ei

0̂
e j

0̂
, and ḡikgk j = δ i

j.
In (3.3), the quadratic term of time derivative LG00 is

LG00 =
1
2

Mi j
âb̂

eâ
i,0eb̂

j,0

=
1
4

(
e0

0̂

)2(
ḡil ḡ jm− ḡi jḡlm

)
gi j, 0glm, 0

=
1
2

1
−g

[
g11(g23, 0)

2 +g22(g31, 0)
2 +g33(g12, 0)

2

−g11g22, 0g33, 0−g22g33, 0g11, 0−g33g11, 0g22, 0

+2g12g12, 0g33, 0 +2g23g23, 0g11, 0 +2g31g31, 0g22, 0

−g12g23,0g31,0−g23g31,0g12,0−g31g12,0g23,0
]
. (3.4)

Using (3.2), we can prove that all the three principal minors of the metric gi j
are positive, e.g.,

g33 =
3

∑
a=1

(
eâ

3
)2

> 0,∣∣∣∣g22 g23
g32 g33

∣∣∣∣ =
(

e1̂
2e2̂

3− e1̂
3e2̂

2

)2
+
(

e1̂
2e3̂

3− e1̂
3e3̂

2

)2
+
(

e2̂
2e3̂

3− e2̂
3e3̂

2

)2
> 0, (3.5)

∣∣gi j
∣∣ =

∣∣3e
∣∣2 > 0.

Considering (3.5), we can introduce a group of new variables hu,u = 0,1,2,3,4,5:

√∣∣gi j
∣∣= h0,

4

√[
g22g33− (g23)

2
]3

√∣∣gi j
∣∣ = h1,

√
g33

4
√

g22g33− (g23)
2

= h2,

h3 =
g23

g33
, h4 =

g23g31−g12g33

g22g33− (g23)
2 , h5 =

g12g23−g22g31

g22g33− (g23)
2 ; (3.6)
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Contrarily, according to (3.6) we can obtain easily the expression

gi j = gi j(hu), u = 0,1,2,3,4,5 (3.7)

And, from (3.6) we see that if there is not gravitation field, and g11 = g22 = g33 =
1,
g12 = g23 = g31 = 0 (i.e., Minkowski metric), then h0 = h1 = h2 = 1,h3 = h4 =
h5 = 0.

Using (3.6) we can prove

LG00 =
(

e0
0̂

)2
[
−2

3
1
h2

0
(h0, 0)

2 +
2
3

1
h2

1
(h1, 0)

2 +
2
h2

2
(h2, 0)

2

+
1
2

h4
2(h3, 0)

2 +
1
2

h2
1

h2
2
(h4, 0)

2 +
1
2

h2
1h2

2(h3h4, 0 +h5, 0)
2
]
. (3.8)

We see that, taking advantage of the group of variables substitution (3.6),
√∣∣gi j

∣∣
as an independent variable is separated from the six dynamical variables gi j.

The result (3.8) shows again that the six terms in (3.1) are independent each
other and shows clearly that the quadratic term of time derivative in LG0 is non-
positive definitive.

In general case, the Lagrangian Lg is given by (1.2) and we can prove that the
quadratic term of time derivative in Lg is

Lg0 =
1
4

[
−2g0i

(
g0lg jm−g0 jglm

)
+g00

(
gi jglm−gilg jm

)]
gi j, 0glm, 0

=
1
4
(
−g00)(g̃il g̃ jm− g̃i jg̃lm

)
gi j, 0glm, 0.

where g̃i j = gi j− g0ig0 j

g00 , and g̃ikgk j = δ i
j.

However, in this case, the characteristics indicated by (3.5) do not hold for
metric gi j and thus, generally speaking, we cannot judge whether Lg0 is positive
definitive.

On the other hand, for the general case, if we assume that the characteristics
indicated by (3.5) hold (This is just physically significant case), then we can still
obtain (3.8) by (3.6) for Lg0. This discussion shows that the characteristic that
the quadratic term of time derivative in the Einstein–Hilbert action is non-positive
definitive is ineluctable.

In my opinion, the quadratic term of time derivative in an action should be
positive definitive. Because, the quadratic term of time derivative in an action
corresponds to the kinetic energy of the system, if this term was non-positive, then
it was weird. On the other hand, the non-positive definiteness of the quadratic term
of time derivative in an action leads to the principle of variation failure.

However, we emphasize that the characteristic “the quadratic term of time
derivative in the Einstein–Hilbert action is non-positive definitive” does not denote
that there is inconsistency in the structure of the theory of general relativity, it only
shows that if we regard general relativity as a theory of field (e.g. tetrad field), then
this characteristic is incongruous with theory of field.
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On the other hand, if we want to obtain a positive definitive kinetic energy in
the Lagrangian of the Einstein–Hilbert action, it is obvious that unique method is
that we choose some “gauge-fixing term” such that there is not any time deriva-

tive term in the first term of (3.1), i.e., the term − 2
3

[
eλ

0̂
ei

â

(
eâ

i,λ − eâ
λ ,i

)]2
; And no

matter how we choose “gauge-fixing term”, the necessary condition is that the

term ei
âeâ

i,0 = 1
|3e|

∂ |3e|
∂x0 = 1

2
1
|gi j|

∂ |gi j|
∂x0 vanishes in (3.1). However, this leads to the

following two conclusions:

(1) Because
∣∣gi j
∣∣ is one of the six independent dynamical variables, this is ob-

vious from the transformation (3.6), if
∂ |gi j|
∂x0 vanishes, then one of the six

dynamical equations Θ i j = 0 becomes an equation in which there is not any
second time derivative term. Namely, the ten Einstein equations are divided
into at least five equations of constraint in which there is not any second
time derivative term and at most five equations of motion in which there are
second time derivative terms.

(2) Because local Lorentz transformation (1.19) cannot leads to the change of

gi j, say nothing of
∣∣gi j
∣∣, for the purpose that

∂ |gi j|
∂x0 vanishes, we therefore

have to employ coordinate transformation xµ = xµ(x̃ν), this means that the
purpose can only be realized in some special coordinate system, namely,
general relativity loses general covariance.

In spite of the above two conclusions, for the purpose that
∂ |gi j|
∂x0 vanishes, we

simply choose ∣∣gi j
∣∣= 1. (3.9)

Although the condition (3.9) leads to a reduction of one in the six dynamical
variables, it is allowable as long as there is a coordinate transformation such that
(3.9) holds for arbitrary coordinate system. As an example, in the theory of the
Yang–Mills field, although Aa

3 is a real dynamical variable, we can still choose so
called space-axial gauge Aa

3 = 0 [10]. The reason that space-axial gauge holds is
that there exists a gauge transformation such that Aa

3 = 0 holds for arbitrary gauge
field Aa

µ .
However, the condition (3.9) cannot guarantee that the quadratic term of time

derivative in LG0 is surely positive definitive. Because, although duo to (3.9), we

have ei
âeâ

i,λ = 1
|3e|

∂ |3e|
∂xλ

= 1
2

1
|gi j|

∂ |gi j|
∂xλ

= 0, and the first term of (3.1) becomes

−2
3

[
eλ

0̂ ei
â

(
eâ

i,λ − eâ
λ ,i

)]2
=−2

3

(
eλ

0̂ ei
âeâ

λ ,i

)2
=−2

3

(
e0

0̂

)2(
ei

âeâ
0,i− eb̂

0e j
b̂
ei

âeâ
j,i

)2
,

we see that there are eâ
0 in the above expressions. On the other hand, because there

is not any time derivative term e0̂
0, 0 and eâ

0, 0 in (2.4) and (2.5), hence, if we regard

(2.4) and (2.5) as four equations of holonomic constraint about e0̂
0 and eâ

0, then we
therefore should solve (2.4) and (2.5) to obtain e0̂

0 and eâ
0 as functions of eb̂

i ,e
b̂
i, j, and

especially, eb̂
i,0. And then, substituting e0̂

0 = e0̂
0(e

b̂
i ,e

b̂
i, j,e

b̂
i,0) and eâ

0 = eâ
0(e

b̂
i ,e

b̂
i, j,e

b̂
i,0)
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to (3.1) for eliminating redundant variables. We see that maybe eb̂
i,0 appear again in

the first term of LG0 duo to eâ
0 = eâ

0(e
b̂
i ,e

b̂
i, j,e

b̂
i,0). This discussion shows that if we

only use (3.9) then it cannot guarantee that the quadratic term of time derivative
in LG is surely positive definitive.

On the other hand, the above discussion shows yet that if eâ
0 = 0, from (2.2)

and (3.2) then we see that this condition can be realized by choosing coordinate
condition

g0i = 0, (3.10)

then the first term of (3.1) vanishes and the quadratic term of time derivative in LG0
is positive definitive. In fact, using (3.9) and (3.10), Landau and Lifschitz proved
that the quadratic term of time derivative in Lg of (1.1) is positive definitive.

Under the conditions (3.9) and (3.10), we have
√∣∣gi j

∣∣ = ∣∣3e
∣∣ = h0 = 1 and

eâ
0 = 0, which are two holonomic equations of constraint about

∣∣3e
∣∣ and eâ

0, and
can be substituted directly to LG given by (3.1), from (1.16) we therefore can
obtain an action

S(1) =
c3

16πG

∫
d4xe0̂

0 LG||3e|=1,eâ
0=0 . (3.11)

From the above discussion we know that there is not negative kinetic energy term
in (3.11). However, to substitute

∣∣3e
∣∣= 1 to LG ask a method that separates

∣∣3e
∣∣ as

an independent variable from the nine dynamical variables eâ
i , we shall give such

a method in Sect. 4 of this paper.

3.2 A coordinate condition insuring positive definiteness of the kinetic energy
term in LG0

According to (2.2) and (3.2) we have(√
|glm|

g0λ

g00

)
,λ

=
√
|glm|,0 +

√
|glm|,i

g0i

g00 +
√
|glm|

(
g0i

g00

)
,i

=
∣∣3e
∣∣
,0 +

∣∣3e
∣∣
,i

−e0
0̂
ei

0̂

−e0
0̂
e0

0̂

+
∣∣3e
∣∣(−e0

0̂
ei

0̂

−e0
0̂
e0

0̂

)
,i

=
∣∣3e
∣∣
,0 + e0̂

0ei
0̂

∣∣3e
∣∣
,i +
∣∣3e
∣∣(e0̂

0

)2(
e0

0̂ei
0̂,i
− ei

0̂e0
0̂,i

)
= e0̂

0
∣∣3e
∣∣(e0

0̂

∣∣3e
∣∣
,0

|3e|
+ ei

0̂

∣∣3e
∣∣
,i

|3e|
+ ei

0̂,i
− ei

0̂e0̂
0e0

0̂,i

)
= e0̂

0
∣∣3e
∣∣[eλ

0̂ ei
âeâ

i,λ + eλ

0̂ ,i

(
δ

i
λ
− ei

0̂e0̂
λ

)]
= e0̂

0
∣∣3e
∣∣(eλ

0̂ ei
âeâ

i,λ + eλ

0̂ ,i
ei

âeâ
λ

)
= e0̂

0
∣∣3e
∣∣eλ

0̂ ei
â

(
eâ

i,λ − eâ
λ ,i

)
, (3.12)
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another proof of (3.12) can be found in Sect. 5 of this paper.
According to (3.12), the negative kinetic energy term in LG0 reads

LGNK = −2
3

[
eλ

0̂ ei
â

(
eâ

i,λ − eâ
λ ,i

)]2
=

2
3g

(√|glm|
g0λ

g00

)
,λ

2

= −2
3

{√
−g00

[
1
2

|glm|,0
|glm|

+
1
2

g0i

g00

|glm|,i
|glm|

+
(

g0i

g00

)
,i

]}2

=
2
3

g00

[
1
2

glmglm,0 +
1
2

g0i

g00 glmglm,i +
(

g0i

g00

)
,i

]2

. (3.13)

Taking advantage of (3.13), we can calculate conveniently the negative kinetic
energy term of gravitation field for given metric tensor gµν . We investigate two
examples.

(1) For the Robertson–Walker metric indicated by the line element

ds2 =−d(ct)2 +R2(t)
[

dr2

1− kr2 + r2(dθ
2 + sin2

θdϕ
2)],

we have g00 =−1,g0i = 0,
∣∣gi j
∣∣= R6(t) r4 sin2 θ

1−kr2 , according to (3.13), the cor-
responding negative kinetic energy term of the Robertson-Walker metric in
total space reads

−2
3

[
eλ

0̂ ei
â

(
eâ

i,λ − eâ
λ ,i

)]2
=− 6

c2
1

R2(t)

(
dR(t)

dt

)2

.

(2) For the Schwarzschild metric indicated by the line element

ds2 =−
(

1− rs

r

)(
dx0
)2

+
1

1− rs
r

dr2 + r2(dθ
2 + sin2

θdϕ
2),

where rs = 2GM
c2 . We see that

∂ |gi j|
∂ (ct) = ∂

∂ (ct)

(
r4 sin2 θ

1− rs
r

)
= 0 in the area of rs < r,

hence, according to (3.13), in the area of rs < r the negative kinetic energy term
of the Schwarzschild metric vanishes.

But the above form of the Schwarzschild metric cannot be continued into
the area of 0 < r < rs. For continuing it into the area of 0 < r < rs, one has
used a method of coordinate transformation and obtained some metrics, e.g., the
Lemaitre and the Kruskal metrics. However, for the Lemaitre and the Kruskal
metrics of the Schwarzschild solution, using (3.13), we can verify easily that there
are corresponding negative kinetic energy terms of gravitation field in total space,
respectively (We do not discuss these questions in detail here).

On the other hand, from (3.13) we see that if we choose(√
|glm|

g0λ

g00

)
,λ

= 0, (3.14)
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then

eλ

0̂ ei
â

(
eâ

i,λ − eâ
λ ,i

)
= 0, (3.15)

the quadratic term of time derivative in LG0 given by (3.1) is thus positive defini-
tive.

Hence, for the purpose obtaining a positive definitive quadratic term of time
derivative in LG0 given by (3.1), we present two groups of coordinate conditions:
one is (3.9) and (3.10), another is (3.14). Of course, one can try to choose other
“gauge-fixing term” for this purpose.

Substituting (3.15) to (2.4), (2.5) and (2.8), we obtain a special form of the
Einstein equations with the characteristic (3.15) under the condition (2.1), whose
concrete forms no longer be written down here.

It is important that we can prove that the action

S(2) =
c3

16πG

∫ ∣∣4e
∣∣d4xLGPK, (3.16)

LGPK = LG−LGNK = LG0−LGNK +2e0
0̂e0̂

0,kU
k +LGV (3.17)

can leads to a special form of the Einstein equations with the characteristic (3.15)
under the condition (2.1), where LG is given by (2.3); especially, in LGPK, time
derivative terms only appear in the term

LG0−LGNK =
1
2

Mi j
âb̂

eµ

0̂

(
eâ

i,µ − eâ
µ,i
)
eν

0̂

(
eb̂

j,ν − eb̂
ν , j

)
+

2
3

[
eλ

0̂ ei
â

(
eâ

i,λ − eâ
λ ,i

)]2

= eµ

0̂
eν

0̂

(
ḡil ḡ jm− ḡi jḡlm

)
Γµi jΓν lm

−2
3

g00

[
1
2

glmglm,0 +
1
2

g0i

g00 glmglm,i +
(

g0i

g00

)
,i

]2

.

It is obvious that there is not any negative kinetic energy term in LGPK, thus,
based on (3.11) or (3.16), we can try to realize quantization of general relativity by
various methods of quantization, e.g., the Dirac-Bargmann method for a strange
Lagrangian system, or the method of path integral. In this paper, we only discuss
simply the method of canonical quantization.

4 The Hamiltonian representation

At first, in spite of the non-positive definiteness of the quadratic term of time
derivative in LG0 provisionally, we discuss the Hamiltonian representation of (2.3).
As a first step of the Hamiltonian representation, we need 3+1 dimensional decom-
position of space-time manifold, this can be realized by using the ADM decom-
position [11]:

ds2 =−
(
N2−hi jNiN j)(dx0

)2
+2Nidxidx0 +hi jdxidx j, (4.1)
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where Ni = hi jN j. For taking advantage of the forms of the foregoing formulas,
we still use gi j to denote hi j. Under (2.1), both (2.2) and (3.2) hold in this case,
and especially we have

e0̂
0 = N, eâ

0 = eâiNi = eâ
i Ni, ei

0̂ =−e0
0̂Ni, hi j = ḡi j = ei

âeâ j. (4.2)

From (3.3) we have

√
−gLG0

= e0̂
0
∣∣3e
∣∣eµ

0̂
eν

0̂

(
ḡil ḡ jm− ḡi jḡlm

)
Γµi jΓν lm

=

√∣∣gi j
∣∣

N

(
ḡil ḡ jm− ḡi jḡlm

)(
Γ0i jΓ0lm−2Nn

Γ0i jΓnlm +NkNn
Γki jΓnlm

)
.

(4.3)

Because there may be eâ
i,0 (and, further, gi j,0) in a Lagrangian of matter, e.g., the

Lagrangian LD given by (1.11) of the Dirac field, for the sake of simpleness, we
ignore Lagrangian of matter, and the momenta conjugate to gi j are

π
i j =

∂ (
√
−gLG)

∂gi j,0
=

∂ (
√
−gLG0)

∂gi j,0
=−

√∣∣gi j
∣∣

N

(
ḡil ḡ jm−ḡi jḡlm

)
(Γ0lm−Nn

Γnlm).

(4.4)

Using the DeWitt metric [12]

Gi jlm =
1
2

1√∣∣gi j
∣∣(gilg jm +gimg jl −gi jglm

)
, (4.5)

from (4.4) we obtain

Γ0i j =−NGi jlmπ
lm +Nk

Γki j, (4.6)

and, further,

√
−gLG0 = NGi jlmπ

i j
π

lm. (4.7)

Notice

gi j,0 =−2Γ0i j +g0i, j +g0 j,i = 2NGi jlmπ
lm−2Nk

Γki j +Ni, j +N j,i,

we have

π
i jgi j,0−

√
−gLG = NGi jlmπ

i j
π

lm−2N,k

√∣∣gi j
∣∣Uk−N

√∣∣gi j
∣∣LGV

+π
i j(Ni, j +N j,i)−2Niḡi j

Γjlmπ
lm,



On the vierbein formalism of general relativity 21

hence, up to a total derivative, under the condition (2.1), the action of the system
reads

SEH =
c3

16πG

∫ ∣∣4e
∣∣d4xLG

=
c3

16πG

∫
d4x
(

π
i jgi j,0−NHHamiltonian−NiH i

Diffeomorphism

)
, (4.8)

HHamiltonian = Gi jlmπ
i j

π
lm +2

(√∣∣gi j
∣∣Uk
)

,k
−
√∣∣gi j

∣∣LGV, (4.9)

H i
Diffeomorphism = −2

(
π

i j
, j + ḡi j

Γjlmπ
lm
)
. (4.10)

The above forms show clearly the Diffeomorphism and the Hamiltonian con-
straints. The expression (4.10) of the Diffeomorphism constraint is just the same
as the usual form (See, for example, the formula (3.6) in Ref. [12]), as for the
usual form of the Hamiltonian constraint [12]

Huf - Hamiltonian = Gi jlmπ
i j

π
lm +

√∣∣gi j
∣∣R(3), (4.11)

comparing (4.9) with (4.11) we see that the “kinetic energy term” in the two ex-
pressions is the same: both are Gi jlmπ i jπ lm.

In as much as the success of the Ashtekar theory [13; 14; 15; 16; 17; 18], we
can try to simulate Ashtekar’s method to introduce some new variables for simpli-
fying the equations (4.9) and (4.10). However, according to known results of the
Ashtekar theory, we can forecast that if we make the thing like so, then maybe we
shall encounter some problem, e.g., a problem similar to that of “real condition” in
the Ashtekar
theory.

Before we try to simplify the equations (4.9) and (4.10), a more basic prob-
lem is that the kinetic energy term Gi jlmπ i jπ lm in (4.9) and (4.11) is non-positive
definitive, this is a consequence of (4.7) and (3.3). Concretely, according to (4.6)

and (3.3), the negative term in Gi jlmπ i jπ lm is − 2
3 N
√∣∣gi j

∣∣(Gi jlmḡi jπ lm
)2.

This characteristic can be shown more clearly by the transformation (3.6). If
we substitute (3.7) to (3.3) and define

πu =
∂ (
√
−gLG)

∂hu,0
=

∂ (
√
−gLG0)

∂hu,0
, u = 0,1,2,3,4,5, (4.12)

then through some derivation similar to (4.4)–(4.10), we can obtain a form of the
Hamiltonian constraint:

HHamiltonian = −3
8

h0π
2
0 +

1
2h0

[
3
4

h2
1π

2
1 +

1
4

h2
2π

2
2 +

1
h4

2
π

2
3 +

h2
2

h2
1
(π4−h3π5)

2

+
1

h2
1h2

2
π

2
5

]
+2
(

h0Uk
)

,k
−h0LGV. (4.13)

This form shows clearly that the negative kinetic energy term in HHamiltonian is
− 3

8 h0π2
0 .
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Now we employ the coordinate condition (3.9), namely, h0 = 1, then from
(4.12) we can only get five momenta conjugate πu,u = 1,2,3,4,5, because there
is not h0 in LG0, and (4.13) becomes

HHamiltonian =
1
2

[
3
4

h2
1π

2
1 +

1
4

h2
2π

2
2 +

1
h4

2
π

2
3 +

h2
2

h2
1
(π4−h3π5)

2 +
1

h2
1h2

2
π

2
5

]
+2Uk

,k−LGV, (4.14)

we see that the kinetic energy term in the Hamiltonian constraint given by (4.14)
is positive definitive.

As for the potential energy term 2Uk
,k −LGV in (4.14), we have to add some

gauge conditions such that eâ
i can be expressed by gi j, and, further, by hu(u =

0,1,2,3,4,5) according to (3.7):

eâ
i = eâ

i (glm) = eâ
i (hu).

For this purpose, we can generalize (2.1) to the form

eα̂µ = 0,α < µ, (4.15)

combining the last formula in (3.2), eâi is thus a triangular matrix:

 e1̂1 e1̂2 e1̂3
e2̂1 e2̂2 e2̂3
e3̂1 e3̂2 e3̂3

=



√
|gi j|√

g22g33−(g23)2 0 0

− g23g31−g12g33
√

g33

√
g22g33−(g23)2

√
g22g33−(g23)2

√
g33

0

g31√
g33

g23√
g33

√
g33

. (4.16)

The conclusion that the above form of eâi always exists has been proved in many
literatures. In fact, according to the last formula in (3.2), (3.6) thus hold, then the
form of eâi given by (4.16) is so called the Cholesky decomposition in algebra.

And, further, according to (3.7) we have

 e1̂1 e1̂2 e1̂3
e2̂1 e2̂2 e2̂3
e3̂1 e3̂2 e3̂3

=


3
√

h0h1
1
h1

0 0

− 3
√

h0h1
h4
h2

3
√

h0h1
1
h2

0

− 3
√

h0h1h2(h3h4 +h5) 3
√

h0h1h2h3
3
√

h0h1h2

. (4.17)

Based on (4.16), from g0i = eâ
0eâi in (3.2) we have

e1̂0 =
g01

[
g22g33− (g23)

2
]
+g02(g23g31−g12g33)+g03(g12g23−g22g31)√∣∣gi j

∣∣√g22g33− (g23)
2

,

(4.18)
e2̂0 =

g02g33−g03g23

√
g33

√
g22g33− (g23)

2
, e3̂0 =

g03√
g33

.
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Using (2.1) and (2.2) we have

e0
0̂ =

(
e0̂

0

)−1
=
√
−g00, ei

0̂ =
−g0i√
−g00

. (4.19)

Now we can substitute (4.17) to the potential energy term 2Uk
,k−LGV in (4.14),

and consider h0 = 1, the last result of 2Uk
,k −LGV obtained by computer is in the

Appendix of this paper.
As well-known, after realizing canonical quantization, π i j(x) → h̄

i
δ

δgi j(x)
in

(4.11) and (4.11) becomes an equation of constraint for wave function Ψ [gi j(x)]:

Huf - HamiltonianΨ [gi j(x)] =
(

Gi jlm
h̄
i

δ

δgi j(x)
h̄
i

δ

δglm(x)
+
√∣∣gi j

∣∣R(3)
)

Ψ [gi j(x)]

= 0,

this is so called the Wheeler–DeWitt equation. Similarly, after realizing canonical
quantization, (4.14) becomes an equation of constraint for wave functionΨ [hu(x)]:(

1
2

(
3
4
(
h2

1π
2
1
)

W +
1
4
(
h2

2π
2
2
)

W +
1
h4

2
π

2
3 +

h2
2

h2
1
(π4−h3π5)

2 +
1

h2
1h2

2
π

2
5

)
+2Uk

,k−LGV

)
Ψ [hu(x)] = 0, (4.20)

in which πu(x)→ h̄
i

δ
δhu(x) (u = 1,2,3,4,5);

(
h2

i π2
i
)

W(i = 1,2) means the Weyl or-
dering:

(
h2

i π
2
i
)

W =
1
6
(
h2

i π
2
i +hiπ

2
i hi +πih2

i πi +π
2
i h2

i +hiπihiπi +πihiπihi
)

(i = 1,2).

Because (4.17) provides a method that separates
∣∣3e
∣∣ = h0 as an independent

variable from the nine dynamical variables eâ
i (in which there are only six inde-

pendent variables), we now can discuss the theory of canonical quantization of
general relativity based on the action (3.11).

If we use the action (3.11) to realize canonical quantization of general relativ-
ity, then the Hamiltonian constraint is still given by (4.20). But because there is
not eâ

0 in (3.11), we cannot obtain directly the Diffeomorphism constraint. On the
other hand, after realizing canonical quantization and obtaining the Hamiltonian
H(1) from the action (3.11), all the Diffeomorphism constraint H i

Diffeomorphism in
which all the variables become the corresponding operators are commutative with
H(1): [

H i
Diffeomorphism,H(1)

]
= 0.

Therefore, all H i
Diffeomorphism are conservation quantities of the theory and can be

diagonalized with H(1) at the same time. Hence, we can pick out such Ψ [hu(x)]
that satisfies H i

DiffeomorphismΨ [hu(x)] = 0 as physically significant wave function.
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By this process, we obtain the Diffeomorphism constraint again. This method is
the same as that of processing the Gaussian law under the temporal gauge in QED
[19].

Similar to the case of eâ
0, we cannot obtain directly an equation of constraint

corresponding to h0 from the action (3.11), because there is not h0 in (3.11) as
well. However, we can obtain it by the method similar to that of obtaining the
Diffeomorphism constraint, which is discussed in the above paragraph.

We no longer write down the commutation relations and the equations of mo-
tion of the operators in the theory of canonical quantization obtained by the action
(3.11) here.

We now discuss the theory of canonical quantization of general relativity based
on the action (3.16).

For the action (3.16), substituting (4.17) to (3.17) and considering (4.2), we
have

S(2) =
c3

16πG

∫
d4xNh0LGPK(hu;hu,λ ;N,Ni,h0;N,i,Ni, j,h0,i), u = 1,2,3,4,5,

(4.21)

defining

πu =
∂ (Nh0LGPK)

∂hu,0
=

∂ (Nh0(LG0−LGNK))
∂hu,0

, u = 1,2,3,4,5, (4.22)

and from (4.22) we obtain hu,0 as the functions of πv:

hu,0 = hu,0(πv), u,v = 1,2,3,4,5. (4.23)

Substituting (4.23)–(4.21), we have

S(2) =
c3

16πG

∫
d4xNh0LGPK(πu;hv;hv,i;N,Ni,h0;N,i,Ni, j,h0,i),

u,v = 1,2,3,4,5. (4.24)

From the above expression we can obtain five constraints:

The Hamiltonian constraint :
∂ (Nh0LGPK)

∂N
−∂i

∂ (Nh0LGPK)
∂N,i

= 0, (4.25)

The Diffeomorphism constraint:
∂ (Nh0LGPK)

∂N,i
−∂ j

∂ (Nh0LGPK)
∂Ni, j

= 0, (4.26)

The h0 constraint :
∂ (Nh0LGPK)

∂h0
−∂i

∂ (Nh0LGPK)
∂h0,i

= 0. (4.27)

After realizing canonical quantization, the commutation relations are[
hu(t,x),πv(t,x′)

]
= ih̄δuvδ

3(x−x′);
[
hu(t,x),hv(t,x′)

]
= 0;

(4.28)[
πu(t,x),πv(t,x′)

]
= 0; u,v = 1,2,3,4,5.
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Equations (4.25)–(4.27) become five equations of constraint for wave function
Ψ [hu(x)], the five equations of motion of the operators read

ih̄π̇u(t,x) =
[
πu(t,x),H(2)

]
; u = 1,2,3,4,5. (4.29)

In (4.29),

H(2) =
∫

d4x

(
5

∑
u=1

πuhu,0(πv)−Nh0LGPK(πu;hv;hv,i;N,Ni,h0;N,i,Ni, j,h0,i)

)
.

(4.30)

All the concrete forms of (4.21)–(4.30) obtained by computer are complicated.
We therefore present two theories of canonical quantization of general relativ-

ity under two different groups of coordinate conditions: one is (3.9) and (3.10),
another is (3.14), respectively. The common characteristics of the two theories are
that the kinetic energy terms in both the actions and both the Hamiltonian con-
straints are positive definitive.

5 A group of gauge conditions making there is not any second time
derivative term in the ten Einstein equations

We investigate two groups of tetrads:
{

ẽα̂
µ

}
and

{
eα̂

µ

}
, for which the Schwinger

time gauge condition holds, namely, (2.1) holds for
{

eα̂
µ

}
and

ẽ0
â = 0, a = 1, 2, 3. (5.1)

Hence, a local Lorentz transformation Λ α̂

β̂
between such

{
ẽα̂

µ

}
and

{
eα̂

µ

}
has the

characteristics:

Λ
0̂
0̂ (x) = 1, Λ

â
0̂ (x) = 0, Λ

0̂
â (x) = 0, η

ĉd̂
Λ

â
ĉ Λ

b̂
d̂ = η

âb̂; (5.2)

Under the above special local Lorentz transformation, the relation between
{

ẽα̂
µ

}
and

{
eα̂

µ

}
reads:

eµ

0̂
= ẽµ

0̂
, e0̂

µ = ẽ0̂
µ , eâ

µ = Λ
â
b̂ (x)ẽb̂

µ . (5.3)

According to eb̂ieĉ
i = eb̂λ eĉ

λ
= η b̂ĉ we have

ẽâiẽâ
i,λ = Λ

â
b̂Λ

â
ĉeb̂ieĉ

i,λ +Λ
â
b̂Λ

â
ĉ,λ eb̂ieĉ

i = Λ
â
b̂Λ

â
ĉeb̂ieĉ

i,λ +Λ
â
b̂Λ

â
ĉ,λ η

b̂ĉ, (5.4)

and using Λ
â
ĉη b̂ĉ =Λ b̂

ĉ η âĉ, which can be proved by (5.2), Λ
â
b̂Λ

â
ĉ,λ η b̂ĉ =Λ

â
b̂Λ b̂

ĉ,λ η âĉ =

Λ ĉ
b̂
Λ

â
ĉ,λ η b̂â, we therefore have

Λ
â
b̂Λ

â
ĉ,λ η

b̂ĉ =
1
2

(
Λ

â
b̂Λ

b̂
ĉ,λ +Λ

b̂
ĉ Λ

â
b̂,λ

)
η

âĉ =
1
2

(
Λ

â
b̂Λ

b̂
ĉ

)
,λ

η
âĉ =

1
2

δ
â
ĉ,λ η

âĉ = 0,
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Equation (5.4) thus becomes

ẽâiẽâ
i,λ = Λ

â
b̂Λ

â
ĉeb̂ieĉ

i,λ ≡Ω
(a)
λ

, (5.5)

and using (5.3) we have

ẽµ

0̂
ẽâiẽâ

i,ν = eµ

0̂
Λ

â
b̂Λ

â
ĉeb̂ieĉ

i,ν = eµ

0̂
Ω

(a)
ν . (5.6)

According to (5.3) and eλ

0̂
eĉ

λ
= δ ĉ

0̂
= 0 we have

ẽλ

0̂ ẽâiẽâ
λ ,i = eλ

0̂

(
Λ

â
b̂Λ

â
ĉeb̂ieĉ

λ ,i +Λ
â
b̂Λ

â
ĉ,ie

b̂ieĉ
λ

)
= eλ

0̂ Λ
â
b̂Λ

â
ĉeb̂ieĉ

λ ,i ≡ ω
(a). (5.7)

Especially,

3

∑
a=1

(
eλ

0̂ Ω
(a)
λ
−ω

(a)
)

= ẽλ

0̂ ẽi
â

(
ẽâ

i,λ − ẽâ
λ ,i

)
=

3

∑
a=1

Λ
â
b̂Λ

â
ĉeλ

0̂

(
eb̂ieĉ

i,λ − eb̂ieĉ
λ ,i

)
= ηâd̂Λ

â
b̂Λ

d̂
ĉ eλ

0̂

(
eb̂ieĉ

i,λ − eb̂ieĉ
λ ,i

)
= ηb̂ĉeλ

0̂

(
eb̂ieĉ

i,λ − eb̂ieĉ
λ ,i

)
= eλ

0̂ ei
â

(
eâ

i,λ−eâ
λ ,i

)
, (5.8)

this means that eλ

0̂
ei

â

(
eâ

i,λ − eâ
λ ,i

)
is an invariable under the transformation (5.2).

We now designate that the tetrad
{

eα̂
µ

}
in (5.3) satisfy (4.15). According to

e0̂
i = 0 in (2.2), (4.16), (4.18) and (4.19) we see that

{
eα̂

µ

}
have been expressed as

functions of metric tensor gµν :

eα̂
µ = eα̂

µ

(
gρσ

)
. (5.9)

According to (5.8), (2.2), (4.16), (4.18) and (4.19) we have

ẽλ

0̂ ẽi
â

(
ẽâ

i,λ − ẽâ
λ ,i

)
= eλ

0̂ ei
â

(
eâ

i,λ − eâ
λ ,i

)
= e0

0̂

[∣∣3e
∣∣
,0

|3e|
+ e0̂

0ei
0̂

∣∣3e
∣∣
,i

|3e|
+
(

e0̂
0ei

0̂

)
,i

]

=
√
−g00

[
1
2

|glm|,0
|glm|

+
1
2

g0i

g00

|glm|,i
|glm|

+
(

g0i

g00

)
,i

]

=
1√
−g

(√
|glm|

g0λ

g00

)
,λ

,

Equation (3.12) thus be proved again for the transformation (5.2).
Now that

{
ẽα̂

µ

}
satisfy (5.1), the characteristics (2.2) thus holds yet for

{
ẽα̂

µ

}
.

And, further, we have

ẽµ

0̂
=

−g0µ√
−g00

, ẽ0̂
µ =

δ 0
µ√
−g00

. (5.10)
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Equation (5.10) shows that ẽ0̂
µ as one of the four components of ẽα̂

µ has been com-
pletely determined for the metric tensor gµν . On the other hand, in Ref. [20], it is
pointed out that, in this case (i.e., one of the four vectors ẽα̂

µ has been completely

determined for the metric tensor gµν ), one can choose other ẽk̂
µ ,k = 1, 2, 3 such

that the Ricci’s coefficients of rotation r̃
α̂β̂ γ̂

satisfy

r̃0̂âb̂ + r̃0̂b̂â = 0, a 6= b; a,b = 1, 2, 3,

concretely,

r̃0̂1̂2̂ + r̃0̂2̂1̂ = 0, r̃0̂1̂3̂ + r̃0̂3̂1̂ = 0, r̃0̂2̂3̂ + r̃0̂3̂2̂ = 0. (5.11)

In Ref. [20], (5.11) is called the simplest case, because it leads to that the indepen-
dent components of the Ricci’s coefficients of rotation reduce to 21 from at most
24 [see (1.8)] in the 4-dimensional Riemannian geometry, we therefore call (5.11)
the simplest constraint conditions.

In fact, from the definition (1.4) of the Ricci’s coefficients of rotation and (5.1)
we have

r̃0̂âb̂ + r̃0̂b̂â = ẽλ

0̂

[
ẽi

â

(
ẽb̂i,λ − ẽb̂λ ,i

)
+ ẽi

b̂

(
ẽâi,λ − ẽâλ ,i

)]
. (5.12)

If there is a group of tetrads
{

eα̂
µ

}
that has the characteristic e0

â = 0,a = 1, 2, 3
as well but r0̂âb̂ + r0̂b̂â 6= 0(a 6= b;a,b = 1, 2, 3), for example, for the tetrad

{
eα̂

µ

}
satisfying (4.15), we have r0̂âb̂ + r0̂b̂â 6= 0(a 6= b;a,b = 1, 2, 3), then under the
transformation (5.2), we have

r0̂âb̂ + r0̂b̂â = eλ

0̂

[
ei

â

(
eb̂i,λ − eb̂λ ,i

)
+ ei

b̂

(
eâi,λ − eâλ ,i

)]
= Λ

ĉ
âΛ

d̂
b̂,λ ẽλ

0̂ ẽi
ĉẽd̂i−Λ

ĉ
âΛ

d̂
b̂,iẽ

λ

0̂ ẽi
ĉẽd̂λ

+Λ
ĉ
â,λ Λ

d̂
b̂ ẽλ

0̂ ẽi
d̂ ẽĉi

−Λ
ĉ
â,iΛ

d̂
b̂ ẽλ

0̂ ẽi
d̂ ẽĉλ +Λ

ĉ
âΛ

d̂
b̂ ẽλ

0̂

[
ẽi

ĉ

(
ẽd̂i,λ − ẽd̂λ ,i

)
+ ẽi

d̂

(
ẽĉi,λ − ẽĉλ ,i

)]
= Λ

ĉ
âΛ

d̂
b̂
(
r̃0̂ĉd̂ + r̃0̂d̂ĉ

)
,

where the formulas Λ
ĉ
âΛ b̂

ĉ = δ b̂
â , ẽi

ĉẽd̂i = ηĉd̂ ,ηĉd̂Λ
ĉ
âΛ

d̂
b̂,λ + ηĉd̂Λ

ĉ
â,λ Λ

d̂
b̂ =(

ηĉd̂Λ
ĉ
âΛ

d̂
b̂

)
,λ

=
(
ηâb̂

)
,λ

= 0 and ẽλ

0̂
ẽd̂λ

= η0̂d̂ = 0 are used. From the above

formula we have

r̃0̂âb̂ + r̃0̂b̂â = Λ
ĉ
âΛ

d̂
b̂

(
r0̂ĉd̂ + r0̂d̂ĉ

)
; (5.13)

We see that if the non diagonal elements of the 3×3 symmetric matrix
[
r0̂ĉd̂ + r0̂d̂ĉ

]
are not zero, then we can make an orthogonal transformation by an orthogonal
matrix Λ b̂

â such that the new 3×3 symmetric matrix
[
r̃0̂ĉd̂ + r̃0̂d̂ĉ

]
is diagonal,

namely,
[
r̃0̂ĉd̂ + r̃0̂d̂ĉ

]
satisfy (5.11). Concretely, from (5.13) we see that

[
r̃0̂ĉd̂ + r̃0̂d̂ĉ

]
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becomes a diagonal matrix if and only if

Λ
ĉ
1̂Λ

d̂
2̂

(
r0̂ĉd̂ + r0̂d̂ĉ

)
= 0, Λ

ĉ
1̂Λ

d̂
3̂

(
r0̂ĉd̂ + r0̂d̂ĉ

)
= 0, Λ

ĉ
2̂Λ

d̂
3̂

(
r0̂ĉd̂ + r0̂d̂ĉ

)
= 0.

(5.14)

If (5.11) hold, then according to (5.12), S̃0̂iâ given by (2.6) but in which
{

ẽα̂
µ

}
is now as basic variables becomes

S̃0̂iâ = ẽâiẽλ

0̂

3

∑
b=1
b6=a

ẽb̂ j
(

ẽb̂
j,λ − ẽb̂

λ , j

)
, (5.15)

and according to (1.27) we can prove that there is not any second time derivative
term in the three equations Θ̃ i j = 0(i 6= j) in which

{
ẽα̂

µ

}
is as basic variables, this

means that all second time derivative terms are eliminated in the three of the six
equations of motion Θ̃ i j = 0.

Now that we have designated that
{

eα̂
µ

}
satisfy (4.15), of course, we have

r0̂âb̂ + r0̂b̂â 6= 0(a 6= b;a,b = 1, 2, 3). On the other hand, we now ask that
{

ẽα̂
µ

}
satisfy (5.11), according to (5.2), (5.13) and (5.14), a special local Lorentz trans-
formation Λ α̂

β̂
between

{
eα̂

µ

}
and

{
ẽα̂

µ

}
is fully determined.

Equation (5.9) shows that
{

eα̂
µ

}
are only functions of gµν , hence, from the

expression of r0̂âb̂ + r0̂b̂â [using (5.12) but in which
{

eα̂
µ

}
is as basic variables]

we see that r0̂âb̂ + r0̂b̂â are functions of gµν ,g0i, j and gi j,λ . And then, according to
(5.2) and (5.14), we know that Λ â

b̂
are functions of gµν ,g0i, j and gi j,λ as well:

Λ
â
b̂ = Λ

â
b̂ (gµν ;g0i, j,gi j,λ ). (5.16)

And from (5.9) and (5.16) we know that all Ω
(a)
λ

,eµ

0̂
Ω

(a)
ν and ω(a) given by (5.5),

(5.6) and (5.7) respectively are functions of gµν ,g0i, j and gi j,λ as well.

Now that the all Ω
(a)
λ

,eµ

0̂
Ω

(a)
ν and ω(a) are functions of gµν ,g0i, j and gi j,λ , we

can try to choose a coordinate transformation such that the metric tensor gµν in
the new coordinate system satisfy some conditions, which can be expressed by
some forms of combination of Ω

(a)
λ

,eµ

0̂
Ω

(a)
ν and ω(a), and we ask that these con-

ditions lead to that there is not any second time derivative term in all the Einstein
equations.

At first, for insuring that the quadratic term of time derivative in LG0 is positive
definitive, we choose (3.14), which can be generated by a special combination of
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Ω
(a)
λ

,eµ

0̂
Ω

(a)
ν and ω(a) (5.8), this means that the metric tensor gµν in the new

coordinate system is made to satisfy (3.14).
And then, we consider the following two forms of combination of Ω

(a)
λ

:

W1 ≡ 2Ω
(1)
0 −Ω

(2)
0 −Ω

(3)
0 = 2ẽ1̂iẽ1̂

i,0− ẽ2̂iẽ2̂
i,0− ẽ3̂iẽ3̂

i,0

=
(

2Λ
1̂
âΛ

1̂
b̂−Λ

2̂
âΛ

2̂
b̂−Λ

3̂
âΛ

3̂
b̂

)
eâieb̂

i,0,

W2 ≡ Ω
(2)
0 −Ω

(3)
0 = ẽ2̂iẽ2̂

i,0− ẽ3̂iẽ3̂
i,0 =

(
Λ

2̂
âΛ

2̂
b̂−Λ

3̂
âΛ

3̂
b̂

)
eâieb̂

i,0;

From the above discussion we know that both W1 and W2 are functions of gµν ,g0i, j
and gi j,λ , we therefore can choose

W1 = W1(gµν ;g0i, j,gi j,λ ) = 0, (5.17)

W2 = W2(gµν ;g0i, j,gi j,λ ) = 0. (5.18)

This means that the metric tensor gµν in the new coordinate system is made to
satisfy (5.17) and (5.18).

Under the conditions (3.14), (5.17) and (5.18), S̃0̂iâ given by (5.15) now be-
comes

S̃0̂iâ = ẽâi
{

ẽâk
[
ẽ0

0̂ẽâ
0, j + ẽ j

0̂

(
ẽâ

j,k− ẽâ
k, j

)]
− 1

3
ẽk

b̂

[
ẽ0

0̂ẽb̂
0,k + ẽ j

0̂

(
ẽb̂

j,k− ẽb̂
k, j

)]}

= ẽâi

2
3

ẽâk
[
ẽ0

0̂ẽâ
0, j+ẽ j

0̂

(
ẽâ

j,k−ẽâ
k, j

)]
−1

3

3

∑
b=1
b6=a

ẽb̂k
[
ẽ0

0̂ẽb̂
0,k + ẽ j

0̂

(
ẽb̂

j,k− ẽb̂
k, j

)],

(5.19)

in which there is not any time derivative term.
Based on (5.19), we can verify easily that there is not any time derivative term

in (2.4) and (2.5), and there is not any second time derivative term in (2.8).
Generally speaking, a coordinate transformation can provide four coordinate

conditions, but what we have used is only three of four coordinate conditions:
(3.14), (5.17) and (5.18). Of course, one can try to choose other forms of combi-
nation of Ω

(a)
λ

,eµ

0̂
Ω

(a)
ν and ω(a).
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Appendix
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