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Preface

One of the major challenges of present day fundamental research is to connect the science of

‘small’ with the science of ‘Big’. While the standard model of elementary particles based on

the principles of local gauge invariance provides us with a solid foundation of the former, the

‘Big bang’ cosmology based on the principles of general theory of relativity can to a large

extent explain the latter. The approaches are quite different and could not so far be brought

under a common theoretical framework. It is generally believed that the entire universe, i.e.

the spacetime, all matter and radiation came into being through the fragmentation of a very

hot and dense primordial ‘fireball’ created in the Big bang. It is necessary to understand

how the universe evolved during those initial moments of its birth. As the baby universe

expanded and cooled, it underwent through a number of symmetry breaking processes like,

the electroweak symmetry, the color SU(3) gauge symmetry, the chiral symmetry, and the

matter–antimatter symmetry. From the time of electroweak decoupling (some pico-seconds)

to hadronization (about 10 µsec.) after the Big bang, the universe is believed to be filled up

with a color conducting extended state comprising of weakly coupled quarks and gluons, a

state popularly known as the quark-gluon plasma (QGP), and a state that can be character-

ized by using perturbative quantum chromodymanics (QCD). The universe that we live in

today is overwhelmingly dominated by matter, which resulted from a very small aberration

that took place during those early moments in the form of violation of CP symmetry. As

our understanding of the fundamental laws of nature improves, and as newer experimental

evidences allow us to modify and/or fine tune the theoretical concepts, we become more

capable of looking back into those early evolutionary stages of the universe and unravel its

mysteries with greater precision.

Soon after ideas like asymptotic freedom and color confinement were introduced, it was

realized that the QCD vacuum can be heated to such high temperatures that some of

the symmetries broken during the evolution of the primordial fireball can be restored, and

a QGP-like state can be created even in a terrestrial laboratory when two heavy nuclei

collide with each other at high energies, called the ‘little bang’. Any such terrestrially

created fireball will however not only be much shorter lived (t ∼ 10−22 sec.) and much

smaller in dimension (r ∼ 10 fm.), but it would also be of much less density and less

temperature than the primordial one. It was primarily due to the works of R. Hagedron

we later realized that a transition from the QGP to color neutral hadrons can be extended

to much lower temperatures (T ∼ rest energy of a π-meson), that is far away from the

asymptotic freedom and that needs to be treated by invoking non-perturbative QCD. As
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two nuclei impinge upon each other with high collision energies (say
√
s ∼ TeV), anti-

quarks and quarks will be produced with equal abundance, and the valence quarks present

in the incoming nuclei will constitute only a small percentage of the total number of particles

present in the nuclear/partonic fireball. Under such circumstances we expect an equilibrated

state of high temperature and low baryo-chemical potential (µB ). On the other hand at lower

collision energies (say
√
s ∼ 10 GeV) the number of valence quarks present in the colliding

nuclei will comprise a significant fraction of the total number of new quarks/anti-quarks

created, and the intervening state, even though a color conducting one, should correspond

to a lower temperature and higher value of µB . Such a state may prevail in the core of very

compact astrophysical objects like neutron stars.

Over the last forty–fifty years an enormous amount of theoretical and experimental research

have been undertaken in the field of high-energy heavy-ion interaction and QGP physics.

Experiments have been performed by using various target-projectile combinations over a

widely varying collision energies. New experimental facilities are still being created so that

we get a complete (µB−T ) scan of the matter present in the fireball created in the little bang,

or equivalently study the entire QCD phase diagram. On the theoretical side several signals

that can identify the creation of a QGP-like state are suggested. Analysis of experimental

data shows that perhaps the goal to create QGP in a terrestrial laboratory has already been

accomplished. However, a complete characterization of such a short lived state extended

only over an extremely minuscule of volume, is not an easy task. One has to understand

that a high-energy heavy-ion interaction is a very complex dynamical process, where on an

average a large number of background particles are produced, and an appropriate signal has

to be filtered out only after eliminating a large amount of noise. Many of the theoretical

predictions are based on lattice QCD (LQCD) calculations, which works well at high T

and µB ≈ 0. At non-zero µB , LQCD has its own problems, a satisfactory solution for

which is not yet found. Overall high-energy heavy-ion interaction is an exciting area of

physics that needs command over several other areas like, nuclear physics, particle physics,

astroparticle physics, theory of relativity, thermodynamics, statistical mechanics, relativistic

fluid dynamics etc..

In a high-energy nucleus-nucleus (AB) collision a large number of new particles are produced,

most of them are pions, and the phenomenon is known as multiparticle production. Till

date the physics of multiparticle production is also not very comprehensively understood.

Because of its implicit complexities, the problem needs to be probed from all possible angles.

A lot of information related to the dynamics of multiparticle production can be extracted by

studying the global properties of high-energy interaction like multiplicity distribution, rapid-

ity distribution, transverse momentum distribution etc., or by studying the local properties

like fluctuations in number densities. In the year 1983 an important observation was made
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by the JACEE collaboration, where unnaturally large fluctuations in produced particle ra-

pidity distributions were found in some cosmic-ray events, that cannot simply be an artifact

of statistical coincidence. It has also been shown that the dynamical components of these

unusually large particle density values, irrespective of their exact analytical form, abide by

a power-law type of scale invariance with decreasing phase space resolution size. This ob-

servation lead to a paradigm shift in multiparticle research from studying global properties

to studying local variables that are confined within limited regions of phase space. Various

speculative proposals, conventional as well as exotic, have so far been put forward to explain

this fluctuation phenomenon.

To characterize the particle density fluctuation and cluster formation we need to use suitable

statistical tools. In this thesis we have used some of these methods and analyzed nuclear

photo-emulsion data on the angular distribution of singly charged particles produced in a

fixed target experiment on 28Si-emulsion interaction at an incident energy of 14.5A GeV (Ex-

periment No. E847 performed at the Alternating Gradient Synchrotron at the Brookhaven

National Laboratory by the SUNY at Buffalo, USA, group). The experimental results are

systematically compared with a Monte-Carlo model simulation based on Ultra-relativistic

Quantum Molecular Dynamics (UrQMD). On a few occasions the 28Si-Ag/Br results are

also compared with 32S-Ag/Br results at an incident energy of 200A GeV. The thesis starts

with a brief introductory discussion on AB interaction at relativistic energy, where some

qualitative description of the QGP state and the global scenario of past, present and future

experimental facilities are reviewed. Some aspects of multiparticle data analysis techniques

have been summarily outlined. In chapter two we briefly discuss the nuclear emulsion tech-

nique, the data collection process and the simulation method(s) adopted in the present

investigation. The UrQMD model along with a charge reassignment algorithm that mimics

the Bose-Einstein correlation as an after burner to the UrQMD output, have been outlined.

Gross features of the data are also listed in this chapter. Based on the statistical techniques

like intermittency, erraticity and multifractality, we present some results on different mul-

tiplicity moments and the scaling relations followed by them respectively, in chapter three,

four and five. Each of these techniques deals with fluctuation study of particle densities in

limited phase space intervals. In chapter six and seven we present our results, respectively

on unusual azimuthal structure formation and wavelet analysis, where corresponding results

of 32S-Ag/Br interaction at 200A GeV are also incorporated. We have also performed a col-

lective flow analysis of our 28Si-Ag/Br data and compared them with those of 84Kr-Ag/Br

data at an incident energy of 1.52A GeV. However, to follow a convention of our university,

in stead of discussing this work in a separate chapter, we have attached the corresponding

photocopy of the published paper at the end. We conclude by making some critical ob-

servations on the major results of the entire investigation and have tried to identify some

prospective areas of further study.
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Density Fluctuation and Correlation Study of Multiparticle
Production in 28Si-Ag/Br Interaction at 14.5A GeV

ABSTRACT

The present thesis is written on the basis of some results obtained from the physics analysis

of local densities and cluster formation of singly charged particles produced in 28Si-Ag/Br

interaction at an incident energy in the laboratory system Elab = 14.5A GeV. We sys-

tematically compare the experimental results with those obtained from a set of simulated

data. A nuclear transport model namely the Ultra-relativistic Quantum Molecular Dynamics

(UrQMD) is used for the simulation purpose. In addition a charge reassignment algorithm

that mimics the Bose-Einstein Correlation (BEC) between identical mesons, considered to

be primarily responsible for local cluster formation, has been implemented to the UrQMD

output as an after burner. On a few occasions similar data on 32S-Ag/Br interaction at

Elab = 200A GeV have also been used for comparison purposes.

In Chapter One we review various issues related to high-energy nucleus-nucleus (AB)

interaction, the main objective of which is to subject the nuclear matter to extreme ther-

modynamic conditions, so that one can create and characterize a color conducting extended

QCD state like the Quark-gluon Plasma (QGP). The global scenario of high-energy heavy-

ion experiments (past, present and future) is summarized. The kinematic variables required

to describe various features of AB collision are introduced. Our present understanding of

the spacetime evolution of AB collision are described. General features of QGP like its

thermodynamics, its hydrodynamics, the QCD phase diagram, and the observables that are

capable of diagnosing the formation of a QGP-like state are summarily outlined. Several

Monte Carlo simulation methods commonly used to model high-energy AB collisions are

briefly described. Finally, some statistical techniques employed to investigate multiparticle

distribution are highlighted, with a special reference to the characterization of local fluctua-

tions in particle number density. In Chapter Two the experimental aspects of the present

investigation along with the simulation methods adopted are outlined. Salient features of

nuclear photographic emulsion technique and the data collection process are summarily dis-

cussed. Gross features of the experimental and the simulated data samples on 28Si-Ag/Br

interaction at Elab = 14.5A GeV are presented.

Chapter Three presents an intermittency analysis on spatial fluctuations of the shower

track density function in 28Si-Ag/Br interaction at Elab = 14.5A GeV. The experimental

results are compared with the UrQMD simulation, with the UrQMD+BEC simulation, and

on occasions with the results available from similar other experiments. Our analysis on the

scaled factorial moments shows that small but significant nonstatistical components in the

http://www.nbu.ac.in
http://www.nbu.ac.in
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fluctuations are present in the experimentally obtained particle densities that are self-similar

in one-dimension (i.e., either in η or in ϕ), and self-affine in two-dimensions (η, ϕ). The fac-

torial correlator, factorial cumulant and oscillatory moments are also determined. In most

cases however, the UrQMD simulation fails to replicate the experiment, while inclusion of

Bose-Einstein correlation in the UrQMD could recover only partially the difference between

experiment and simulation. Event-by-event fluctuation study of factorial moments in the

pseudorapidity space has been presented in Chapter Four in terms of erraticity moments

for 28Si-Ag/Br interaction at Elab = 14.5A GeV. The erraticity parameters are extracted

by analyzing the experimental data and two sets of simulated data. To check the noise level

present in the experiment as well as in the simulations, we perform the same analysis for

a set of purely random number generated events. The erraticity moments for all four data

samples used in the analysis follow similar scaling-laws with phase space resolution size. Val-

ues of erraticity parameters suggest that the event-space fluctuation of factorial moments

as predicted by the UrQMD and UrQMD+BEC models are closer to the experiment than

their random number generated counterpart. The multifractal structure of the pseudora-

pidity density distribution of singly charged particles produced in 28Si-Ag/Br interaction

at Elab = 14.5A GeV is presented Chapter Five. Four different statistical techniques are

used for this purpose. We observe that widely fluctuating density values that apparently

lack any definite pattern, can be described in terms of a finite set of regularly behaving mul-

tifractal parameters. The analysis confirms the existence of a multifractal structure in the

experimental as well as in the simulated data. We also observe that the differences between

experiment and simulation, however large or small that may be, depend on the technique

of analysis used.

In Chapter Six we look for unusual azimuthal structures of particle distribution within the

framework of Cherenkov gluon emission and/or Mach shock wave formation in the nucle-

ar/partonic medium. Shower track emission data of 28Si-Ag/Br interaction at 14.5A GeV

and 32S-Ag/Br interaction at 200A GeV are used. Presence of unusual azimuthal structure

in the data is established with respect to the model simulations. Our analysis confirms the

presence of ‘jet-like’ structures in the central collisions for both interactions. As expected

such structures are more pronounced in the 32S data than in the 28Si data. A continuous

wavelet analysis is performed in Chapter Seven for pattern recognition of shower track

emission data of 28Si-Ag/Br interaction at 14.5A GeV and 32S-Ag/Br interaction at 200A

GeV. Making use of the event wise local maxima present in the scalograms, we try to identify

the collective behavior in multiparticle production, if there is any. Statistically significant

difference between the experiment and the simulation can be interpreted only in terms of

some hitherto unknown dynamics of multiparticle production. We have also performed a col-

lective flow analysis of our 28Si-Ag/Br data and compared the results obtained thereof with

those of 84Kr-Ag/Br interaction at Elab = 1.52A GeV. Evidences of collective flow are found
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from both the data, of which 84Kr-Ag/Br behave more systematically. However, to fulfill

our university norm, in stead of making a separate chapter, a reprint of our published paper

on this work has been attached at the end. The thesis concludes with a critical and analysis

of our results that would help us better understand the underlying physics of multiparticle

production at the collision energy range/colliding system(s) under consideration.
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Chapter 1

Relativistic Nucleus-Nucleus

Collision – an Overview

1.1 Introduction

QCD is the quantum field theory of strong interaction. The theory describes how par-

tons (quarks and gluons), the fundamental constituents of all strongly interacting particles,

namely the hadrons (which also include the nucleons), interact with each other. The idea

of color degree of freedom plays an important role in strong interaction. Quarks carry three

varieties of color, while all hadrons must be color neutral (singlet) composite objects in

the same sense as all atoms are electrically neutral. The quarks interact with each other

by exchanging gluons, the quanta of strong interaction, which themselves are color carry-

ing objects. Unlike atoms the hadrons are guided by a phenomenon called the asymptotic

freedom [1, 2], the basic essence of which is that the QCD interaction strongly depends on

the length scale. For two colored particles the interaction is strong at large and weak at

small separations. As a result, the partons are permanently confined within hadrons, and

till date nobody has been able to isolate a quark. Fig. 1.1 shows how the QCD running

coupling constant αs varies with the momentum transfer Q [3]. Small values of αs corre-

spond to a large momentum transfer or equivalently a short distance when the partons are

weakly interacting. Under such a situation the confinement phenomenon can be explained

1
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in terms of a perturbative QCD (pQCD). On the other hand, at a low momentum transfer

or equivalently at a large distance αs is large, and the strongly coupled QCD state becomes

highly nonperturbative. In the ideal QCD Lagrangian quarks are considered as massless

point particles. However, a quark confined within a hadron can polarize the surrounding

gluon field and acquire a dynamically generated effective mass, also known as the constituent

mass, whose typical value for light quarks is about 350 MeV in baryons and slightly less

in mesons [4]. The process of mass acquisition by fundamental particles like quarks and

leptons, is largely (about 98%) due to spontaneous breaking of chiral symmetry and ma-

riginally (about 2%) due to the interaction with the Higgs field. A fascinating consequence

of the idea of asymptotic freedom was recognized shortly after it was introduced. If the

normal nuclear matter can be subjected to extremely high values of temperature and pres-

sure, it becomes difficult for the constituent partons to remain within the confinements of

individual color neutral hadrons. Under such circumstances the parton-parton coupling be-

comes loose while the quarks and gluons can move freely over a region that can perhaps be

wider than the hadronic dimension (∼ 1 fm.) at least by an order [5]. If the temperature

is raised to a sufficiently high value say T > 100 GeV : (1 MeV ≈ 1010K), the gluonic

cloud surrounding the quarks will melt down, thereby restoring the chiral symmetry. At

vanishing baryon density deconfinement and chiral symmetry restoration may take place

simultaneously, while at high baryon density the former probably precedes the latter [6].

A color conducting deconfined state of weakly interacting partons comes as a solution of

pQCD. A state similar to this perhaps filled up our entire universe at the very early stages

of its creation–from the time of electro-weak decoupling (a few pico-secs) to hadronization

(several micro-secs) after the Big bang. However, the highest limiting temperature at which

a state of color neutral hadrons can survive is set at a much smaller value (T ≈ 170 MeV)

[7]. Therefore, a confinement–deconfinement transition is possible even at a much lower

temperature. Corresponding deconfined state may however not be so weakly coupled and

needs to be treated non-perturbatively. In a different approach nuclear matter is squeezed

so hard that a large number of constituent (valence) quarks are compelled to assemble in the

close proximity of every other single quark, and none of them can anymore recognize which

other quark(s) did it partner with in the original nucleon. Such a situation may also lead

to the formation of a color conducting deconfined state at a much lower temperature but

at a higher baryo-chemical potential (µB ∼ several hundred MeV). A similar state perhaps

forms the core of very compact astrophysical objects like the neutron stars, which having

temperatures T ∼ 105 − 109 K may be considered as cold in the partonic scale [8].

When two heavy nuclei with high incoming energies are allowed to impinge upon each

other, a central ‘fireball’ is created. Depending purely on the initial conditions a local

thermal and/or chemical equilibrium may be achieved. Under favorable thermodynamic

conditions such an equilibrated state may undergo a transition from a state of interacting
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Figure 1.1: Summary of measurements of αs(Q). The curves shown differ in their choice
of the QCD scale parameter ΛQCD [3].

nucleons to a color conducting state called the Quark-gluon Plasma (QGP) [5, 9, 10], where

deconfined quarks and gluons can propagate over nuclear rather than merely nucleonic

volumes. As indicated above, through AB interactions it is possible to recreate the initial

evolutionary stages of our universe since it came into being, or to produce the state of matter

similar to what probably fills up the core of very compact astrophysical objects, states

that are otherwise experimentally inaccessible in every possible sense. The science of small

elementary particles is therefore, deeply intertwined with the science of the large, the study

of the origin and the evolution of the universe. Fig. 1.2 shows a schematic of the temperature

history of our universe as it evolved with time after its creation [11]. At times ∼ 10µsec.

after the Big bang, at temperature T ∼ 200 MeV the universe was in the state of QGP. In

present-day experiments by colliding two heavy-ions at relativistic energies, we may try to

recreate that kind of matter in the laboratory through a Little bang. One has to remember

that any such terrestrially created fireball will certainly contain much less energy, and will be

much shorter lived (∼ 10−22 sec.) than the primordial one. As the infant universe expanded

and cooled down, the plasma phase of matter went through a transition to form a variety

of particles, most importantly the nucleons which constitute different forms of matter as we

see them today. However, unless the system under consideration behaves like matter and

not like individual particles or a group of particles, it is inappropriate to discuss the same in

terms of phase transition or local equilibrium. A local equilibrium means that the lifetime of

the fireball must be significantly larger than the inverse rate of binary collisions taking place

within it. Each constituent particle should experience at least several collisions. It is also
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Figure 1.2: Temperature history of the universe–from Big Bang to Little Bang.

necessary to establish that the non-hadronic degrees of freedom present in the fireball form a

statistical ensemble, so that concepts like temperature, chemical potential and flow velocity

can be applied to the system, and the system can be characterized by an experimentally

determinable equation of state. The measurements should further enable us to determine

the physical characteristics of phase transition like its order, the critical temperature and

the speed of sound in hadronic/partonic medium along with the nature of quasi-particle

states [12]. For two reasons an interacting AB system is better suited than a proton-proton

(pp) system in this regard. First, in a high-energy AB collision at the same incident energy

per nucleon, the average multiplicity of the newly produced particles is much higher (as

large as 104 per event at the highest possible collision energy achieved till date) than that of

a pp collision. Thus the relative fluctuations of thermodynamic parameters that are usually

required to characterize a state, will be less. Second, in the AB system there will be many

rescattering among the nucleons of the colliding nuclei so that enough spacetime is available

before a local equilibrium settles down within the radiation and matter mix-up prevailing

in the central reaction zone, so that the same can be called ‘a state’ [13].

1.2 Relativistic Kinematics

High-energy interactions between particles should be studied by using such kinematic vari-

ables that have simple transformation properties as we move from one Lorentz frame to the

other. The distribution functions plotted in terms of such variables in one frame of reference

can then be very easily redrawn in another Lorentz transformed frame. Conventionally in

a fixed target experiment measurements are made in the laboratory system (LS), and in a
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collider experiment in the CM system (CMS) which for a symmetric (AA) collision coincides

with the LS. Some of the commonly used kinematic variables in high-energy collisions are

introduced below.

• Energy in LS and CMS: For a target fixed in the LS, the projectile (rest mass m1

and incident energy E1) and the target (rest mass m2) four momenta may, respectively be

denoted by:

p1 = (E1, p1) and p2 = (m2, 0) (1.1)

the relativistic energy-momentum relation being effective for each particle. In the CMS both

will have equal and opposite three momenta. Corresponding four momenta will be:

p∗1 =
(
E∗1 , p

∗
1

)
and p∗2 =

(
E∗2 , p2 = −p∗

1

)
. (1.2)

In the CMS the total four momenta (s) of the colliding system is

(p∗1 + p∗2)2 = (E∗1 + E∗2)2 −
(
p∗
1 + p∗

2

)2
= (E∗1 + E∗2)2 = E2

cm ≡ s. (1.3)

Therefore,
√
s denotes the total energy available in the CMS which is also called the invariant

mass of the CMS. On the other hand in LS

(p1 + p2)2 = (E1 +m2)2 − p1
2 = m2

1 +m2
2 + 2m2E1. (1.4)

Therefore, using Lorentz invariance of
√
s one can write,

Ecm =
√
s =

√
m2

1 +m2
2 + 2m2E1 (1.5)

In the LS the CMS moves in the direction of p1 with a Lorentz factor,

γcm =
E1 +m2√

s
⇒
√
s =

Elab
γcm

(1.6)

In a collider experiment if the incident energies are very high (E1, E2 >> m1, m2),

E2
cm ≈ 4E1E2 ⇒ Ecm ≈ 2E

when E1 = E2 = E say. Under a similar situation, Ecm ≈
√

2m2E1 for a fixed target

experiment. For a symmetric AA collision the total CM energy is related to the CM energy

of an NN system (
√
sNN ) by,

√
s = A

√
sNN with a Lorentz factor

γcm =
E

M
=

√
s

2AmN
=

√
sNN

2mN
, (1.7)
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where mN is the mass of a nucleon. For asymmetric collisions however, it is difficult to

fix the ‘effective’ CM frame which is dependent on the impact parameter of the collision.

Therefore, the number of participating and spectator nucleons need to be determined first,

posing extra problems particularly for soft processes. For hard processes that are more likely

to be observed in central collisions, the NN frame still works.

• Transverse Momentum: The transverse momentum (p⊥) of a particle is the momentum

component in a direction perpendicular to the beam direction. Obviously p⊥ is related to

the longitudinal component pL as |p| =
√
p2
⊥

+ p2
L
. One can define the transverse mass

(m⊥) through m⊥ =
√

p2
⊥

+m2, where m is the rest mass of the particle. The azimuthal

angle (ϕ), defined over the transverse plane is introduced as, ϕ = tan−1 (py/px).

• Rapidity Variable: The rapidity variable (y), parameter of the ‘Lorentz boost’, can

either be defined in terms of the energy-momentum components (E, p) or in terms of the

space-time components (t,x) of a particle as,

y =
1

2
ln

(
E + pL
E − pL

)
or y =

1

2
ln

(
t+ z

t− z

)
(1.8)

Here pL is the longitudinal component of the momentum and z is the space co-ordinate of

a particle along the beam direction. y is a dimensionless quantity related to the ratio of

the forward light-cone momentum (p+) to the backward light-cone momentum (p−) of the

particle, can either be positive or negative. In the nonrelativistic limit, the rapidity of a

particle traveling along the longitudinal direction is equal to the velocity of the particle in

the unit of velocity of light in vacuum. One can easily show that, E = m⊥ cosh y and pL =

m⊥ sinh y. The energy and momentum of the CMS in the LS, respectively are γcm
√
s and

βcm γcm
√
s, where βcm and γcm are, respectively the velocity and Lorentz factor of the CMS

in the LS. Therefore the rapidity of the CMS in the LS is

ycm =
1

2
ln

[
γcm
√
s+ βcm γcm

√
s

γcm
√
s− βcm γcm

√
s

]
=

1

2
ln

[
1 + βcm
1− βcm

]
(1.9)

The rapidity of a particle is actually the relativistic realization of the velocity, and in one

Lorentz frame it is related to the rapidity in the other by an additive constant. As for

example the rapidity of a particle (y) in LS is related to the same (y∗) in CMS by the simple

relation y = y∗ + ycm. Let us denote the projectile by P and the target by T . In a fixed

target experiment pT = 0, E = mP cosh yP and pL = mP sinh yP for the incident particle,

where mP is its rest mass and yP the rapidity. Therefore,

yP = cosh−1

(
E

mP

)
= cosh−1

(√
sNN

2mN

)
or yP = sinh−1

(
pL
mP

)
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• Pseudorapidity Variable: In some experiments variables like E, p or the rest mass of a

particle may not be easily measured. In such cases it is convenient to use the pseudorapidity

(η) variable to characterize the particle which requires only the measurement of the emission

angle (θ) with respect to the beam direction. The η variable is defined as,

η = − ln [tan (θ/2)] (1.10)

At high-energy (|p| � m) the pseudorapidity can also be approximated to the rapidity,

η =
1

2
ln

(
|p|+ pL
|p| − pL

)
≈ y (1.11)

Using Eq. (1.8) and Eq. (1.10) y and η can be expressed in terms of each other

y =
1

2
ln


√
p2
⊥ cosh2 η +m2 + p⊥ sinh η√
p2
⊥

cosh2 η +m2 − p⊥ sinh η

 ; η =
1

2
ln


√
m2
⊥

cosh2 y +m2 +m⊥ sinh y√
m2
⊥

cosh2 y +m2 −m⊥ sinh y

 .
The distribution of the number of detected particles (N) in terms of p⊥ and y can therefore,

be related to the distribution in terms of p⊥ and η as,

d2N

dη dp⊥
=

(
1− m2

m2
⊥

cosh2 y

) 1
2 d2N

dy dp⊥
(1.12)

The differential d3p/E is a Lorentz invariant quantity. One can express it as,

d3p/E = dp⊥ dy = p⊥ dp⊥ dϕ dy = m⊥ dm⊥ dϕ dy. (1.13)

The Lorentz invariant differential cross-section E d3σ/dp3 ≡ E d3N/dp3, also called the

invariant yield, can now be expressed in terms of measurable quantities as,

E
d3σ

dp3
∝ 1

m⊥

d3N

dm⊥dϕ dy
=

1

2πm⊥

d2N

dm⊥ dy
=

1

2π p⊥

d2N

dp⊥ dy
. (1.14)

1.3 Nucleus-Nucleus Collision at High-energy

A high-energy AB collision is a highly complex dynamical event. The control parameters

are the collision energy and the size of the colliding system. We expect that for the short-

range hadronic interactions the collision geometry should determine the amount of matter

participating in nuclear collisions. The collision geometry is a very important and therefore

should be very carefully explored. The early age experimental results confirm the role of

this simple geometric picture of nuclear collision dynamics. The reaction radius, defined as
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the square root of the reaction cross section (σ), increases linearly with the geometric size

of the colliding system described by the sum of their radii as [14],

σ1/2 ∝
[
A1/3 +B1/3

]
. (1.15)

This result confirms that for local deposition of energy and baryon number to take place the

colliding nuclei need to ‘touch’ each other. At high energies in the laboratory system (Elab ∼
a few GeV per nucleon) in the center of momentum frame, due to Lorentz boost both the

colliding nuclei look like two discs, contracted along the direction of the boost with transverse

radii respectively, say RA and RB, approaching each other. Figure 1.3 shows a schematic

Figure 1.3: Geometry of a nucleus-nucleus collision.

drawing of such an interacting system. Nucleons that directly participate in the collision are

called the ‘participants’, and the rest that do not participate are called the ‘spectators’. The

number of participating nucleons (Npart) should in principle be geometrically determined

from the impact parameter (b) of the collision, that in principle can vary between 0 and

RA + RB. Collisions close to the b ≈ 0 side are called central events, while those on the

b ≈ RA + RB side are called peripheral events, and the entire set of events with 0 6 b 6

RA + RB is called a minimum bias sample. However, b cannot be directly measured in

an experiment. Generally, any observable that varies monotonically with b can be used

to represent the impact parameter. The average charged particle multiplicity Nch, the

transverse energy (E⊥) and the missing forward energy are suitable for this purpose. For

most central collisions the missing forward energy approaches zero, thereby posing extra

difficulty to use it as a trigger condition. Therefore, two assumptions are made: (i) on

an average E⊥ released in a collision is proportional to Npart, and (ii) Nch per collision

is proportional to Npart. Now the minimum bias E⊥ or Nch distribution can be used to
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Figure 1.4: Multiplicity distribution as a tool to determine centrality of AB collision.

determine the average centrality of a sub-sample of events, while the energy carried in the

extreme forward direction can be used to determine the number of spectator nucleons. As

for example, events with the highest 5% value of Nch should correspond to the 5% most

central collisions. The correlation between centrality and the impact parameter can be

established by Galuber-type Monte Carlo simulations and by employing Woods-Saxon type

nuclear density profile [15]. The Glauber model treats the AB collision as a superposition of

many NN collisions, assumes that at high-energies nucleons travel in straight lines (eikonal

approximation), an inelastic NN collision takes place if two nucleons come within a distance

d 6
√
σinel
NN

/π, and after each such collision if a hadron is excited, it will subsequently interact

with other hadrons with the same cross-section as the original nucleons, σinel
NN

being the NN

inelastic scattering cross section. According to this model in hard processes, where large

momentum transfer takes place, Npart proportionally varies with A, whereas the number

of NN binary collisions Ncoll grows as A4/3. The correlation between Nch, centrality and

Npart is schematically shown Fig. 1.4 [15].

Each incoming nucleus can be looked upon as a coherent cloud of partons, more precisely

as color-glass-condensates where the nucleons possess only longitudinal momentum/energy.

The nucleons undergo successive collisions, as a result of which new (transverse) degrees of

freedom are excited, and a significant fraction of the incoming kinetic energy is deposited in

the central region leading to the formation of a high-energy, high-density fireball, a highly

non-equilibrium state. This is still coherent and liberation of partons from this state takes a

finite amount of proper time (< fm/c). Subsequent collisions among partons lead to a nearly

thermalized (local thermalization) state. This happens at a time of the order of 1 fm/c, a less
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understood aspect of the entire process. When the incident energy involved is extremely

high (
√
s > 200A GeV) and the participating nucleons are far apart in phase space, the

colliding nuclei cannot stop each other and are said to be ‘transparent’ with respect to

each other. As mentioned above, still significant amount of energy will be deposited in

the central reaction zone which is gradually converted into formation of qq pairs. A large

number of final state particles will be produced in the form of mesons, while the relative

abundance of net baryon content of the state will be small. Models based on hydrodynamics

are used for theoretical understanding of such states. Once again this may eventually lead to

QGP formation at high temperature and small chemical potential, a state that perhaps has

already been created in BNL Relativistic Heavy-ion Collider (RHIC) and in CERN Large

Hadron Collider (LHC) experiments. Subsequent evolution of the system proceeds following

a relativistic imperfect fluid dynamics.

On the other hand, if the nucleons stemming out of the projectile and target nuclei can sig-

nificantly stop each other, we expect a baryon rich state to develop in the central reaction

zone that may ultimately lead to a baryon rich QGP. Nuclear stopping is a measure of the

efficiency of converting the incoming longitudinal energy into transverse degrees of freedom

and slowing down of the incoming nucleus (nuclei). Using the Alternating Gradient Syn-

chrotron (AGS) at Brookhaven National Laboratory (BNL) and Super-proton Synchrotron

(SPS) at Center for Nuclear Research (CERN), in experiments up to 60A GeV collision

energy involving 28Si or 32S projectiles almost complete stopping has been observed. Sig-

nificant redistribution of the total initial baryon number carried by the interacting nucleons

takes place, leading to a high baryo-chemical potential of the equilibrated state. The under-

lying physics issues are addressed through non-perturbative QCD and/or through hadronic

transport models. In a symmetric collision (AP = AT ), if a complete overlap between

projectile and target is reached then the stopping is large, and such collisions are best for

studying a free expansion of hot and dense nuclear matter in vacuum. Stopping is typically

measured by the average rapidity loss defined as,

〈δy〉 = yP − 〈yb〉 = yP −
2

Npart

∫ y
P

0
y
dN

b−b

dy
dy, (1.16)

where 〈yb〉 is the net average baryon rapidity after the collision. The average scaled rapidity

shift 〈δy/yP 〉 ≈ 0.27 does not significantly change up to SPS energy (Elab = 200A GeV)

[16], which signifies that for comparable system sizes the normalized rapidity densities do

not change with beam energy. Corresponding energy loss (∆E) can also be estimated,

∆E =

∫ y
P

−y
P

〈m⊥(y)〉
dN

b−b

dy
cosh y dy, (1.17)
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which comes out to be ∆E = 25.7 ± 2.1 TeV at the top RHIC energy [17]. It should also

be noted that an incomplete stopping and a longitudinally expanding source lead to similar

rapidity distributions, an issue that should be properly taken care of.

The energy content available for particle production in an AB collision is the basic and

most important quantity. This will depend globally on
√
s
NN

and collision centrality, and

locally on p⊥ and y. The p⊥ spectra of produced particles can in general be divided into

a low-p⊥ and a high-p⊥ part. The low-p⊥ part due to the random kinetic and collective

motion of particles present in the fireball, has a thermal origin and can be described by an

exponentially decaying function. The high-p⊥ part on the other hand is dominated by hard

scatterings and requires a power-law. The inverse slope of the p⊥ spectrum is the ‘effective

temperature’ (Te) of the source (here the fireball) from which the particles are originating.

Te can be measured from the knowledge of 〈p⊥〉 defined as,

〈p⊥〉 =

∫∞
0 p⊥

(
dN
dp⊥

)
dp⊥∫∞

0

(
dN
dp⊥

)
dp⊥

=

∫∞
0 p⊥

2 f(p⊥) dp⊥∫∞
0 p⊥f(p⊥) dp⊥

. (1.18)

Here f(p⊥) is the p⊥ distribution function that can be approximated by an exponential

function as,

f(p⊥) =
dN

dp⊥
=

1

2π

(
dN

p⊥dp⊥

)
∝ exp(−m⊥/Te). (1.19)

One can use the above form of f(p⊥) to determine the average value of say m⊥ :

〈m⊥〉 =

∫∞
0 p⊥m⊥ exp(−m⊥/Te) dp⊥∫∞

0 p⊥ exp(−m⊥/Te) dp⊥
=

2T 2
e + 2mTe +m2

m+ Te
. (1.20)

For 〈p⊥〉 � the rest mass m of the particle under consideration, 〈m⊥〉 ≈ 〈p⊥〉 ≈ 2Te.

Integrating the invariant yield over the entire p⊥ region one gets the rapidity distribution

dN/dy of produced particles. Significant amount of information on AB collisions can be

extracted by studying the rapidity distribution. Particle identification is necessary for the

purpose, which may not be possible in all experiments. Under such circumstances the

pseudorapidity distributions are used. At very high-energies dN/dy should exhibit a plateau

which due to the transformation given in Eq. (1.12) gets depleted by a small extent around

η∗ = η − ηcm = 0. In the CMS the depletion factor is (1 − m2/ < m2
⊥
>)1/2, whereas

in the LS the peak of the distribution is located around half of the beam rapidity yP /2,

and the depletion factor is [1 − m2/
{
< m2

⊥
> cosh2(yP /2)

}
]1/2. Due to additive nature

of the rapidity variable its distribution remains unchanged as one moves from the LS to

the CMS or vice versa. In any relativistic AB collision usually there is a central particle

producing region which results from the nucleons directly participating in the collision, and

two baryon rich fragmentation regions (target and projectile) that contain the spectator
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Figure 1.5: Stopping in nucleus-nucleus collisions.

nucleons. When the colliding nuclei are ‘transparent’ with respect to each other, they

leave a trail of energy in the form of stretched out strings in between projectile and target

rapidities. The strings subsequently fragment and the central region is populated (mostly)

by different types of mesons. The baryons (nucleons) continue to move out of the central

rapidity region apart from a down-shift in their rapidity values necessary for conservation

of energy. On the other hand when the colliding nuclei substantially stop each other, the

central rapidity region is filled up with both energy and baryons. Under the most extreme

circumstances of complete stopping, the projectile and target baryons loose all memory of

their initial states. Correspondingly, the difference (if there is any) between the energy and

baryon number distributions in longitudinal and transverse directions with respect to the

collision axis will be very little. These two extreme situations are schematically represented

in Fig. 1.5 We understand that the rapidity gap ∆y = yP −yT i.e., the difference between the

rapidity values of projectile and target, is important for characterizing the central region.

For targets fixed in the LS yT = 0 and ∆y = yP . Accordingly cosh ∆y = EP /mP . In collider

experiments involving a head on symmetric colliding system, the CMS is at rest in LS and

∆y/2 is the rapidity of projectile/target. With increasing
√
sNN rapidity gap is found to

increase as, ∆y ∝ ln
√
s [18], thereby enabling us to study the central region without having

actually to account for particles spilling over from the fragmentation regions. Up to SPS

energy the rapidity distribution do not show any plateau and can in stead be described by

a single Gaussian having a width σ(y) nearly proportional to ∆y (= 2 − 3) rapidity units.

Any system having a preferentially longitudinal expansion of the particle emitting source

will therefore, have to have a reasonably large rapidity gap (∆y > 3) which occurs beyond

the SPS energy. Experimental data suggest that nuclear/partonic stopping is present in

the primordial, first generation collisions at the microscopic level. Rapidity distributions

of particle multiplicity and/or transverse energy exhibit qualitatively similar shapes, which

also evolve similarly with
√
s in pp, pp̄ and e+e− reactions on one hand, and in central AB

collisions on the other. One can formulate a nuclear modification factor for the bulk hadron
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rapidity distributions as,

RAA =
dNch/dy in AA

0.5Npart dNch/dy in pp
, (1.21)

where Npart is the average number of participating nucleons, and for AA collisions 0.5Npart

is the average number of opposing nucleon pairs. If the contribution to the total yield from

each such opposing pairs is same as that from pp collision at same
√
s, then RAA = 1.

However, in RHIC and LHC experiments RAA is found to be more than unity, thereby

indicating higher stopping in nuclear collisions.

1.3.1 Space-time Evolution of AB Collision

In the CMS of a two-body collision the interacting nuclei follow trajectories very close to

the light cone because their velocities are very close to that of the light [18]. We consider

both longitudinal space co-ordinate (z) and the time (t) to be zero at the collision point.

After the collision a large amount of the energy/matter density or both are deposited in

the reaction zone around z ∼ 0 [19]. If the energy/matter density is so large that the

temperature/chemical potential of the created state exceeds the respective critical values

required for a phase transition, one may achieve a state of deconfined quarks and gluons.

Rescattering among the partons may then lead to thermalization and chemical equilibration.

Subsequent expansion and cooling down of the medium will be governed by the equation

of this deconfined state. As the system expands and cools down hadronization takes place.

Assuming that an equilibrated color conducting deconfined state is created and based on

some general arguments it is possible to roughly divide the entire sequence of evolution of

a high-energy AB collision into several stages as illustrated in Fig. 1.6.

(i) The initial collisions among the projectile and target nucleons take place during the

passage time of the colliding nuclei, which is ∼ 2R/γCM for a symmetric and ∼
(RA + RB)/γCM for an asymmetric collision. Here R, RA and RB are the respective

nuclear radii, and γCM is the Lorentz factor of the CMS in the LS. During this stage

intense matter compression and heating take place. Due to inelastic processes initial

longitudinal energy is converted to new internal and transverse degrees of freedom with

breaking up of initial baryon structures. This initial stage of collision is labeled as a

‘pre-equilibrium’. Processes like parton-parton hard scattering predominantly take

place in the overlap region of two colliding nuclei, depositing thereby a large amount

of energy in the central (z ∼ 0) region. The characteristic time of the pre-equilibration

state is same as the passage time.

(ii) After the short pre-equilibration time a ‘fireball’ is created, where depending on the

initial conditions thermal and chemical equilibrium may be established. If a QGP like
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Figure 1.6: Schematic of spacetime evolution of a high energy nucleus-nucleus collision in
the center-of-mass frame of two colliding nuclei.

state is formed it will be dominated by parton-parton and/or string-string scattering

and the energy density is expected to reach a high value. The transition from a

hadron gas to the QGP may occur at or around the Hagedron limit of temperature

T ≈ 170 MeV [7]. The precise value of the transition temperature (Tc) and how high

the temperature must rise before the plasma can be considered as weakly coupled,

can only be determined by an accurate and nonperturbative simulation of the QCD

equation of state. Subsequently the volume of the QGP state rapidly expands and

the energy density, temperature and/or baryon density of the fireball decrease. The

high energetic quarks and gluons may also produce ‘jets’ which propagate through the

medium so created.

(iii) If a first-order phase transition is assumed, a ‘mixed phase’ is expected to exist between

the QGP and the hadronic state, in which quarks and gluons are again confined into

hadrons at a critical point. At the mixed phase the entropy density is transferred to

lower degrees of freedom and therefore, the system is prevented from a fast expansion

and cooling due to the ‘softest point’ defined by a minimum value of energy density/-

pressure (ε/p) in the equation of state. This leads to a maximum in the lifetime of the

mixed phase, which is expected to last for a relatively long time (τ > 10 fm/c) during

the softening of the equation of state.

(iv) The expanding fireball first reaches a chemical freeze-out stage when the inelastic in-

teraction between the partons cease to take place and the relative abundance of every

single particle species does no more change. The partons gradually start to recom-

bine and produce different varieties of color neutral particles. In the hadronic phase

the system maintains a collective expansion via hadron-hadron elastic interactions,

thereby decreasing the temperature of the fireball. As the elastic collisions between
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the particles slow down, the expanding system reaches a stage of kinetic freeze-out,

and the final state particles freely stream out from the medium.

1.3.2 Experimental Scenario

The experimental studies on high-energy AB interaction has been carried out over about

the last four decades. In the early days of high-energy heavy-ion and not so heavy-ion

physics, the experimental scenario was dominated by some fixed target programmes like, (i)

the Bevatron at Lawrence Berkeley National Laboratory (LBNL), (ii) the Synchrophasotron

at Joint Institute of Nuclear Research (JINR), (iii) the Alternating Gradient Synchrotron

(AGS) at Brookhaven National Laboratory (BNL) and (iv) the Super Proton Synchrotron

(SPS) at CERN. Despite some experimental results suggesting early signal(s) of QGP for-

mation [20], a clear signal in this regard was not confirmed in these fixed target experiments.

Table 1.1: Accelerator facilities in relativistic heavy-ion physics.

Accelerator Start Year Max. Energy Projectiles Experiment type

Bevalac 1984 < 2A GeV 12C, 40Ca, Fixed target
Berkeley 84Kr, 238U

Synchrophasotron 1975 4.5A GeV 12C, 24Mg, Fixed target
JINR, Dubna 20Ne, 28Si

BNL-AGS 1986 14.6A GeV 28Si Fixed target
Brookhaven

BNL-AGS 1992 11A GeV 197Au Fixed target
Brookhaven

CERN-SPS 1986 200A GeV 16O, 32S Fixed target
Geneva

CERN-SPS 1994 200A GeV 208Pb Fixed target
Geneva

GSI-SIS 2002 2A GeV 84Kr, 197Au Fixed target
Darmstadt

BNL-RHIC 2002
√
sNN = 200 GeV 39Cu, 197Au Collider

Brookhaven

CERN-LHC 2008
√
sNN = 5.5 TeV 16O, Ar, Pb Collider

Geneva

GSI-SIS300 2017 45A GeV 59Ni, 197Au Fixed target
Darmstadt

NICA 2017
√
sNN ∼ 5A GeV 197Au, 238U Collider

JINR, Dubna
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At the beginning of 21st century the experimental study of high-energy nuclear collisions

entered into a new era with the Relativistic Heavy-Ion Collider (RHIC) started functioning

at BNL. This was followed by the establishment of Large Hadron Collider (LHC) at CERN,

making provision for collision energies higher than RHIC more than by an order. For the

first time in any terrestrial laboratory, the experiments at RHIC and LHC started to confirm

the creation of a color deconfined extended QCD state like the QGP at high temperature

and low chemical potential. The analysis, refinement of accumulated data, and physics

analysis are still going on. To complement the RHIC and LHC experiments and to study

the QCD state of high baryo-chemical potential, the Compressed Baryonic Matter (CBM)

experiment is being designed at the Facility for Anti-proton and Ion Research (FAIR) at

GSI, Darmstadt, which is expected to be commissioned some time in 2017-’18 [21]. The

major heavy-ion programmes undertaken till date are summarized in Table 1.1. Some of the

major experimental facilities and their importance in high-energy heavy-ion research are

summarily outlined within the limited scope of this thesis.

1.3.3 Experiment at the BNL-AGS

Since 1960, the Alternating Gradient Synchrotron (AGS) has been one of the world’s premier

particle accelerator facility. The AGS receives proton beam of energy 200 MeV from the

linear accelerator (LINAC) of Brookhaven and accelerates it up to energy 33 GeV. The AGS

Booster, constructed in 1991, further augments the capability of the AGS, enabling it to

accelerate more intense proton beams as well as heavy-ions such to higher energies. Currently

the AGS is being used as an injector for the RHIC. Some features of major experiments

performed in the BNL-AGS like their major detector component(s) and observable(s), are

given in Table 1.2. However, a large number of small experiments were also carried out at

the BNL-AGS facility, and the present thesis is based mainly on the data collected from one

such experiment (E847).

1.3.4 Experiment at the CERN-SPS

The Super Proton Synchrotron (SPS) was the second largest of CERN accelerators, and

now it is embedded with the Large Hadron Collider (LHC). The SPS had about 7 KM

circumference with 1317 conventional electromagnets including 744 dipoles to bend the

beams round the ring. A proton beam of 400 GeV energy was first extracted from the SPS

in 1976 with a flux of 5 × 1012 particles per pulse. Latter SPS was modified to accelerate

heavy-ions. The ions partially stripped of their electrons originate from an electron cyclotron

resonance, pass through a radio frequency quadrapole, and injected into a LINAC, where
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Table 1.2: Four experiments at BNL-AGS: its major detector components and the impor-
tant observations.

Experiment Major detector(s) Observation(s)

E787 Photomultiplier tube (PMT) rare decay,
Drift chamber specially K+ → π+νν̄
YAlO light pulser

E802 Zero-degree calorimeter (ZDC) EZD, ρ, η
Pb-glass calorimeter (PBGL) p, p̄, d, π±

Target multiplicity array (TMA) K± spectrum
Magnetic spectrometer

E810 Time projection chamber (TPC) Momenta and angles
of charged particles

E814 NaI+U calorimeter Transverse energy E⊥ ,
Target calorimeter (TCAL) multiplicity in the
Silicon multiplicity counter forward direction
Participant calorimeter
Forward spectrometer

they are accelerated to an energy of 4.2 MeV. To get rid of the remaining electrons the

ions are then allowed to pass through a stripper foil, and then successively accelerated by

the proton synchrotron booster and proton synchrotron. The ions come out of the proton

synchrotron with an energy of 4.2A GeV, and then pass through another stripper, that

completely ionizes them. They are then injected into the SPS and accelerated to the highest

possible energies. The ions are extracted at seven different points. Many experiments were

performed in the CERN-SPS over a period of almost 22 years. The experiments may be

divided into two categories, the ‘Oxygen-Sulfur’ age and the ‘Lead’ age experiments. Short

summary of some of the major heavy-ion experiments at CERN-SPS are given in Table 1.3

and Table 1.4 [22]. Like in the BNL-AGS case, many small experiments were performed

using the SPS facility too.

1.3.5 Experiment at the BNL-RHIC

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is one of

only two major collider facilities in the world, the other being the CERN-LHC. Also RHIC is

the world’s first and only polarized proton collider. RHIC is composed of two independent

rings of circumference 3.8 km. containing a total of 1740 superconducting magnets. In

principle RHIC can collide any species of nucleon with any other. Since its inception the

collider has so far operated at 15 different
√
sNN values at six different species combinations.

The startup of the RHIC in the year 2000 provided a major advancement leading to the

discovery of the QGP, which was announced in 2005. The results [23, 24] indicated that
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Table 1.3: The Oxygen-Sulfur age ‘large’ experiments at CERN-SPS: its major detector
component(s) and the important observation(s).

Experiment Major detector(s) Observation(s)

NA34 U-calorimeter
Liquid Ar-calorimeter E⊥ , ρ(η), π−, γ
Si-pad detectors Low mass muon pairs
External spectrometer

NA34 Zero degree calorimeter (ZDC)
Right calorimeter EZD, E⊥ , ρ(η),
Photon position detector π−, p, γ, K0

s , Λ, Λ̄
Streamer chamber
Vertex magnet

NA36 Time projection chamber K0
s , Λ, Λ̄, Ξ, Ω

NA38 Electromagnetic calorimeter E⊥ , J/ψ, muon pair
Di-muon spectrometer

WA80 ZDC, mid-rapidity calorimeter
Mid-rapidity multiplicity detector EZD, E⊥ , nch

Large angle multiplicity detector ρ(η), γ, π0

Pb-glass photon detector

NA85 Ω-spectrometer, MWPC K+, K0, Λ, Λ̄, Ξ±

Table 1.4: The Lead age experiments at CERN-SPS: its major detector component(s) and
the important observation(s).

Experiment Major detector(s) Particles y(lab)

NA44 Focusing spectrometer K+ 2.5 – 3.5
Time of flight (TOF)

NA49 Time projection chamber K+, K0, φ 3.0 – 5.0
Λ, Λ̄, Ξ±

NA50 Dimuon spectrometer φ 3.0 – 4.0

NA52 Beam spectrometer K+ 1.4 – 6.0

WA97 Silicon Telescope K+,K0,Λ, Λ̄ 2.4 – 3.4
Ξ±,Ω±

instead of behaving like a ‘gas’ of free quarks and gluons, the partonic matter created in

RHIC at
√
sNN = 200 GeV behaves more like an ‘imperfect fluid’. The matter is much more

strongly interacting than what was originally expected and possesses a non-zero viscosity

[12, 17, 25, 26], which inspired to give it the new name ‘sQGP’ (strongly interacting QGP)

[27]. The properties are quite different from the properties of the state of matter created
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in CERN-SPS, which also claimed of a ‘new state of matter’ [28]. However, the results

in the past two years from Pb + Pb measurements at the CERN-LHC at
√
sNN = 2.76

TeV confirm the RHIC discoveries [23, 24], and add some new information too. Four major

collaborative experiments have so far been performed at RHIC. Very brief description of

them are given below.

• The BRAHMS Experiment: The BRAHMS (Broad Range Hadron Magnetic Spec-

trometer) setup was one of the smaller detectors of the RHIC. The BRAHMS experiment

was designed to measure charged hadrons over a wide range of rapidity and transverse mo-

mentum to study the reaction mechanisms of the relativistic heavy-ion interactions and the

properties of a highly excited nuclear matter formed in these reactions. The experiment

took its first data in the year 2000 and completed data-taking in 2006.

• The PHOBOS Experiment: The PHOBOS detector was designed to examine and

analyze a very large number of Au ion collisions. For each collision, the detector gives a

global picture of the consequences of collision and information about a small subset of the

nuclear fragments ejected from the high-energy density region. PHOBOS consisted of many

silicon pad detectors surrounding the interaction region. With these detectors it was possible

to count the total number of produced particles and study their angular distribution. With

this array PHOBOS looked for unusual features, like fluctuations in the number of particles

or in their angular distributions. Fluctuations of global/local variables in an event can

be a characteristic of phase transition. In order to obtain more detailed information about

these events, the PHOBOS detector also has two high-quality magnetic spectrometers, which

study 1% of the produced particles in detail. The PHOBOS experiment was able to measure

quantities like temperature, size and density of the fireball produced in the collision. It also

studied the ratios of various particles produced.

• The STAR Experiment: The Solenoidal Tracker at RHIC (STAR) is a detector which

specializes in tracking the thousands of particles produced in each collision at RHIC. Un-

like other physics experiments where a theoretical idea can be tested directly by a single

measurement, STAR makes use of a variety of simultaneous studies in order to draw strong

conclusions about the QGP. This is due both to the complexity of the system formed in the

high-energy nuclear collision and the unexplored landscape of the physics we study. The

STAR detector therefore consists of several types of detectors, each specializing in detecting

certain types of particles or characterizing their motion. These detectors work together with

an advanced data acquisition and subsequent physics analysis that allows final statements

to be made about the collision.

• The PHENIX Experiment: The Pioneering High Energy Nuclear Interaction Ex-

periments (PHENIX) is the largest of the four experiments that have taken data at the
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RHIC. PHENIX is an exploratory experiment for the investigation of high-energy collisions

of heavy-ions and protons. PHENIX is designed specifically to measure direct probes of

the AB collisions such as electrons, muons, and photons. The primary goal of PHENIX is

to discover and study the QGP. The PHENIX set-up consists of a collection of detectors,

each of which performs a specific role in the measurement. The detectors are grouped into

two central arms, which are capable of measuring a variety of particles including pions,

protons, kaons, deuterons, photons, and electrons, and two muon arms which focus on the

measurement of muon particles. There are also additional event characterization detectors

that provide additional information about a collision, and a set of three huge magnets that

bend the trajectories of the charged particles.

1.3.6 Experiment at the CERN-LHC

The Large Hadron Collider (LHC), the world’s largest and most powerful particle accelera-

tor, is the latest addition to CERN’s accelerator complex. It consists of a 27 km. long ring

of superconducting magnets with a number of accelerating structures to boost the energy of

the particles along their path. In the LHC heavy-ion programs, beams of nuclei collide at

30 times higher energies than in RHIC. The objective is to produce nuclear matter at the

highest temperatures and densities ever studied in the laboratory, and to investigate its prop-

erties in detail. This LHC facility is expected to lead to basic new insights into the nature

of the strong interaction between fundamental particles. In the LHC heavy-ion programme

three experiments, ALICE, ATLAS and CMS, aim to produce and study this extreme high

temperature state of matter and provide novel access to the question of how most of the

mass of visible matter in the universe was generated during the first microseconds after

the Big-Bang. The ALICE along with LHCb have specialized detectors for analyzing the

LHC collisions in relation to specific phenomena. Two further experiments, TOTEM and

LHCf, are much smaller in size. They are designed to focus on ‘forward particles’ (protons

or heavy-ions). These are particles that just brush past each other as the beams collide,

rather than meeting head-on. Brief summary of the three major heavy-ion experiments at

the LHC are given below.

• The ATLAS Experiment: ATLAS, being a general purpose detector system, investi-

gates a wide range of physics, including the search for the Higgs boson, extra dimensions,

and particles that could make up dark matter. ATLAS has recorded many sets of mea-

surements on the particles created in collisions - their paths, energies, and identities. This

is accomplished in ATLAS through six different detecting sub-systems that identify par-

ticles and measure their momentum and energy. Another vital element of ATLAS is the

huge magnet system that bends the paths of charged particles for momentum measurement.
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The interactions in the ATLAS detectors create an enormous data flow. To analyze these

data, ATLAS developed a very advanced trigger and data acquisition system and a large

computing system.

• The ALICE Experiment: The ALICE (A Large Ion Collider Experiment) experiment

at LHC is designed to study the collisions of heaviest stable ions (Pb). ALICE studies the

physics of strongly interacting matter at extreme energy densities, where the formation of

the QGP is expected. For this purpose, ALICE carries out a comprehensive study of the

hadrons, electrons, muons and photons produced in Pb + Pb collisions. ALICE is also

studying proton-proton (pp) collisions both for the purpose of comparison with Pb + Pb

collisions and for physics analysis where ALICE is competitive with other LHC experiments.

At the beginning of 2013 just before the LHC shutdown, the ALICE experiment got another

opportunity to collect exciting data with the asymmetric p + Pb collisions. These data are

crucial for understanding the complexity of the Pb + Pb interaction in many levels and

are a necessary supplement for the baseline of pp data. In fact, the data from the p + Pb

collisions will represent an ultimate benchmark for the already published results from Pb

+ Pb collisions. It will definitely allow to decouple the cold nuclear matter effects and thus

will shed light to our quest for the QGP.

• The CMS Experiment: The Compact Muon Solenoid (CMS) experiment also uses a

general purpose detector to investigate a wide range of physics, including the search for

Higgs boson, extra dimensions, and particles that could make up dark matter. Although it

has the same scientific goals as the ATLAS experiment, it uses different technical solutions

and design of its detector magnet system to achieve these. The CMS detector is built around

a huge solenoid magnet. This takes the form of a cylindrical coil of superconducting cable

that generates a magnetic field of about 4 T. The magnetic field is confined by a steel ‘yoke’

that forms the bulk of the detector’s weight of 12500 tones. An unusual feature of the CMS

detector is that, instead of being built in-situ underground like the other giant detectors of

the LHC experiments, it was constructed on the surface, before being lowered underground

in 15 sections and reassembled.

1.3.7 The FAIR-CBM Experiment

The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific

programs in the future Facility for Antiproton and Ion Research (FAIR) in GSI, Darmstadt.

Laid out as a fixed-target experiment, the CBM research program will explore the QCD

phase diagram in the region of high baryon densities using proton-nucleus and AB collisions

at beam energies between 10A to 45A GeV. This includes finding out an appropriate equation

of state for the nuclear matter at high densities, search for the deconfinement, detailed study
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of the QCD phase diagram and chiral phase transitions [21]. The CBM detector will be so

designed as to measure both bulk observables with large acceptance and rare diagnostic

probes like charmed particles and vector mesons decaying into lepton pairs. Hadronic,

leptonic and photonic observables will be measured with large acceptance. The interaction

rates are expected to reach 10 MHz, in order to measure extremely rare probes like charm

near threshold. The CBM set-up requires development of novel detector systems, trigger

and data acquisition concepts as well as innovative real-time reconstruction techniques.

1.4 Quark-Gluon Plasma

Lattice QCD (LQCD) calculations suggest that a change in the state of matter (phase

transition), from a color neutral hadronic system to a color conducting gas of nearly free

quarks and gluons, is possible through high-energy heavy-ion interactions. Using the latest

accelerator facilities like RHIC and LHC in an AB collision it is possible to produce an

intermediate ‘fireball’ of sufficiently high energy/matter density, so that one can call it a

‘state’ having definite equilibrium properties. Of course the ‘fireball’ is not a static system

and evolves with time. To talk about its thermodynamics is certainly an oversimplification.

Moreover, it has been experimentally established that the ‘fireball’ behaves more like an

imperfect fluid possessing a small but finite viscosity, and not like an ideal gas. To begin

with a static idealization of the system can still be very instructive. Complexities and finer

details of a real system can always be added on at a later stage.

1.4.1 Fireball Thermodynamics

At very high temperature the average kinetic energy is much higher than the rest energy of

weakly interacting particles. To an excellent approximation such a system can be treated as

a hot relativistic free gas. If moreover, the energy density significantly dominates over mat-

ter/baryon number density, as it is the case in RHIC or LHC, then particles and antiparticles

will have nearly equal number densities and they can be created or annihilated with equal

ease. In such an environment the chemical potential µ can be neglected. On the other hand

color deconfinement is also possible at finite chemical potential and at a comparatively low

energy density (temperature). Therefore, the color neutral hadronic phase ↔ QGP phase

transition can be studied under different circumstances, e.g., transition from an ideal gas of

massless partons (i) to a gas of massless pions, (ii) to a nucleon gas at zero temperature,

and (iii) to a system where both the temperature and the mass of the hadronic constituents

are finite [29]. We shall discuss the thermodynamics of the first case with a little detail

which again offers two possibilities, one for which µq = µq = 0, and the other for which the
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chemical potentials are not zero. For the other two cases only very brief references will be

made.

• Case (i)–massless particles with µ = 0: The number density of the ith species parton

is given by,

ni =

∫
d3pi
(2π)3

1

exp (β Ei)± 1
, (1.22)

where β = T−1 and the + (−) sign corresponds to fermions (bosons). If βEi < 1 the

results are different for fermions and bosons. Setting pi ≈ Ei for relativistic particles and

integrating over phase space we find,

ni =
ζ(3)

π2
T 3 for bosons, and ni =

3

4

ζ(3)

π2
T 3 for fermions (1.23)

where ζ is the Riemann function, ζ(3) ≈ 1.202. If βEi > 1, then with increasing energy

the ±1 factor in the denominator gradually becomes insignificant, and both distributions

get converted to a Maxwell-Boltzmann distribution, yielding identical results. The energy

density for a free gas can be computed in a similar way

εi =

∫
d3pi
(2π)3

Ei
exp (β Ei)± 1

. (1.24)

The integral results in

εi(bosons) =
π2

30
T 4, and εi(fermions) =

7

8

π2

30
T 4. (1.25)

Taking the degeneracy factor gi associated with the ith species into account and summing

over all particle species we get

ε =
∑
i

gi εi = g∗
π2

30
T 4 (1.26)

where g∗ = (g
b

+ 7
8 gf ) with g

b
and g

f
are the degeneracy factors, respectively for bosons

and fermions. Obviously g∗ depends on different degrees of freedom like charge, spin, flavor,

color etc., it is an increasing function with increasing temperature. Like at T > 100 GeV all

particles of standard model should be present and contribute to the value of g∗. If QGP can

be treated as a relativistic free parton gas then the contribution to g∗ from gluons comes

from 2 helicity states and 8 colors, while that from each flavor of quarks comes from 3 colors,

2 spin states and 2 charge states. Depending on whether T > or T < the mass of a strange

quark there will either be 3 (u, d, s) or 2 (u, d) flavors present in the system. Therefore,

εqgp(3 flavor) ≈ 47.5
π2

30
T 4, and εqgp(2 flavor) = 37

π2

30
T 4 (1.27)
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is consistent with the Stefan-Boltzmann formula. Correspondingly for a free partonic gas

(i) pressure p = ε/3, (ii) the entropy per unit volume s = (ε+P )/T = 4 ε/3T , and (iii) the

entropy per particle

s

n

∣∣∣
bosons

=
2π4

45 ζ(3)
≈ 3.6, and

s

n

∣∣∣
fermions

=
7

6

2π4

45 ζ(3)
≈ 4.2. (1.28)

For massless hadrons (pions) (g
h

= 3) the numbers are

n
h

= 3
ζ(3)

π2
T 3; p

h
=

π2

30
T 4 (1.29)

In the framework of ‘Bag model’ for a QGP state comprised of (u, d, g)

pqgp = 37
π2

90
T 4 −B (1.30)

which under critical condition (maximum pressure) will be equal to p
h
,

p
h
(Tc) = pqgp(Tc) ⇒ Tc =

(
90

34π2
B

)1/4

≈ 0.72B1/4 (1.31)

Taking the Bag constant (B) for normal hadronic matter B1/4 ≈ 200 MeV/fm3, one gets

T c ≈ 144 MeV at µ = 0.

Figure 1.7(a) shows the calculated energy density ε as a function of temperature T [30].

At the critical temperature Tc ∼ 170 MeV, the energy density changes rapidly, indicating

a rapid increase in the effective degrees of freedom. At Tc not only deconfinement occurs

but also chiral symmetry is restored. The pressure variation with temperature is given in

Fig. 1.7(b), where it can be seen that in comparison with the rapid increase of energy density,

p/T 4 increases at a slower rate. Therefore the pressure gradient in the system (dp/dε) is

significantly reduced during phase transition.

• Case (i)–massless particles with µ 6= 0: For non-zero chemical potential one should

consider the ‘grand potential’

Ω(T, V, µ) = −T lnZ(T, V, µ) = E − T S − µN = −p V (1.32)

where the ‘grand partition function’

Z(T, V, µ) = Tr exp

[
Ĥ − µ N̂

T

]
= exp

[
−Ω(T, V, µ)

T

]
(1.33)
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Figure 1.7: (a) Nuclear matter energy density and (b) pressure as a function of temper-
ature from lattice calculation [30]. The arrows in the diagrams indicate the ideal Stefan-
Boltzmann values.

and the relevant thermodynamic parameters are,

n =
1

V

∂(T lnZ)

∂ µ
, p =

∂(T lnZ)

∂ V
, s =

1

V

∂(T lnZ)

∂ T
and ε =

T

V

∂(T lnZ)

∂ T
+ µn

In terms of the occupation number distribution functions

Ω = gV T

∫
d3 p

(2π)3
ln [1 ± exp {−(E − µ)/T}] (1.34)

For massless bosons (e.g., pions and gluons) one can still assume chemical potential to be

zero. Also assuming that q and q are always produced in pairs one can set µq = µq. The

integral that needs to be evaluated is therefore,

T lnZ =
g
f
V

6π2

∫
p3

[
1

exp {(E − µq)/T}+ 1
+

1

exp {(E + µq)/T}+ 1

]
d3p

= g
f
V

{
7π2

360
T 4 +

µ2
q

12
T 2 +

µ4
q

24π2

}
. (1.35)

Adding up the gluon term the total partition function for a massless quark-gluon systems

comes out to be

T lnZ|qgp =
g
b
V

90
π2 T 4 + g

f
V

{
7π2

360
T 4 +

µ2
q

12
T 2 +

µ4
q

24π2

}

= V

(
37π2

90
T 4 + µ2

q T
2 +

µ4
q

2π2

)
. (1.36)

Now the relevant thermodynamic parameters like, the net quark number density:

nq =

(
T

V

)
∂ lnZ|qgp
∂µq

= 2µq

(
T 2 +

µ2
q

π2

)
, (1.37)
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the energy density:

εqgp =

(
T 2

V

)
∂

∂T
lnZ|qgp + µq nq =

37π2

30
T 4 + 3µ2

q
T 2 +

3µ4
q

2π2
, (1.38)

the pressure:

Pqgp =
T lnZ|qgp

V
=

37π2

90
T 4 + 3µ2

q
T 2 +

3µ4
q

2π2
, (1.39)

and finally the entropy density

sqgp =
∂T lnZ|qgp

∂T
=

74π2

45
T 3 + 2µq T, (1.40)

can easily be obtained. On the other hand the total number density of an ideal gas of

massless quark, antiquark and gluons comes out as

nqgp =
34 ζ(3)

π2
T 3 + 2µ3

q
, (1.41)

and therefore, the ratio of the dominating terms proportional to T 3 is

sqgp
nqgp

=
74π4

45 · 34 ζ(3)
≈ 3.92. (1.42)

On the other hand for massless pions the corresponding numbers are:

επ =
π2

10
T 4, Pπ =

π2

30
T 4, nπ =

3ζ(3)

π2
T 3, sπ =

2π2

15
T 3, (1.43)

and the ratio sπ/nπ ≈ 3.6, is only ∼ 9% smaller than the QGP state, even though the plasma

has a larger degree of freedom. Looking at the enegy density and/or pressure expressions

it is also evident that whether confined within a hadron or within a larger bag, a phase

transition requires equal pressure across the transition region. Hence additional positive

terms in the form of a potential energy has to be added / subtracted to the respective pion

gas expressions and the energy density / pressure of a QGP state confined within a bag will

be: εQGP = εqgp +B and PQGP = Pqgp −B. With a latent heat L = 4B the phase transition

is going to be of first order.

• Case (ii)–nucleon gas at T = 0: This situation is relevant in the context of the interior

of a compact star. We have a QGP state with

εQGP =
3µ4

q

2π2
−B, PQGP =

µ4
q

2π2
+B, nQGP =

2µ3
q

π2
, sQGP = 0. (1.44)
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The nucleons constitute a degenerate Fermi gas at T = 0 for which

T lnZ|N =
gNV

6π2

∫ ∞
0

k4 dk

E

1

exp[E − µ]/T + 1
, (1.45)

where the nucleon degeneracy factor gN = 2 (spin) × 2 (isospin) = 4. The pressure PN , the

nucleon number density nN and the energy density εN for such a system are given as

PN =
M4

6π2

[
r
√
r2 − 1

(
r2 − 5

2

)
+

3

2
ln(r +

√
r2 − 1)

]
, (1.46)

nN =
T

V

∂ lnZ|N
∂µ

=
2M3

3π2

(
r2 − 1

)3/2
, (1.47)

εN =
T 2

V

∂ lnZ|N
∂T

= µnN − PN =
2µ

3π2

(
µ2 −M2

)3/2 − PN . (1.48)

where M = nucleon mass, µ = nucleon chemical potential and r = µ/M . The nucleon

number density The latent heat of transition would be

L = εQGP − εN =
2µ4

q

π2
− 2µ

3π2

(
µ2 −M2

)3/2
=

2µc
3π2
−
[(µc

3

)3
−
(
µ2
c
−M2

)3/2]
, (1.49)

where to comply with the net baryon number conservation we have to set µc = 3µq = µ/3.

• Case (iii)–finite T , finite mass: During hadronization of a QGP state at finite tempera-

ture a range of particles, mesons, baryons and their antiparticles comprised of up, down and

strange quarks are produced. The QGP can still be considered as an ideal gas of massless

partons. On the hadronic side the contribution from mesons (with zero chemical potential)

comes as

T lnZ|M =
gM V

6π2

∫ ∞
0

k4 dk

E

1

exp(E/T )− 1
=

gM V T 2m2

2π2

∞∑
n=1

K2

(nm
T

)
, (1.50)

where m = meson mass, gM = mesonic degrees of freedom and Kl is modified Bessel function

of degree l. The pressure due to this meson gas is

PM =
T lnZ|M

V
=
gM T 2m2

2π2

∞∑
n=1

K2

(nm
T

)
. (1.51)

As µM = 0 the energy density would be

εM = 3PM +
gM m3 T

2π2

∞∑
n=1

1

n
K1

(nm
T

)
, (1.52)
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and the entropy density

sM = 3
PM
T

+
gM m2

2π2

∞∑
n=1

1

n
K1

(nm
T

)
. (1.53)

Correspondingly, the baryon and antibaryon contributions are

T lnZB =
gB V

6π2

∫ ∞
0

k4 dk

E

[
1

exp {(E − µB )/T}+ 1
+

1

exp {(E + µB )/T}+ 1

]
=

gBM
2T 2V

2π2

∞∑
n=1

(−1)n−1

n2
K2

(nm
T

)
× [exp(nµ/T ) + exp(−nµ/T )] (1.54)

the pressure

PB =
gB M

2 T 2

2π2

∞∑
n=1

(−1)n−1

n2
K2

(nm
T

)
× [exp(nµ/T ) + exp(−nµ/T )] , (1.55)

the number density

nB =
gB M

2 T

2π2

∞∑
n=1

(−1)n−1

n
K2

(nm
T

)
× [exp(nµ/T )− exp(−nµ/T )] , (1.56)

the energy density

εB =
T 2

V

∂ lnZB
∂T

+ µB nB

= 3PB +
gBM

3T

2π2

∞∑
n=1

(−1)n−1

n
K1

(nm
T

)
× [exp(nµ/T ) + exp(−nµ/T )] (1.57)

and finally the entropy density

sB = 3
PB
T

+
gB M

3

2π2

∞∑
n=1

(−1)n−1

n
K1

(nm
T

)
× [exp(nµ/T ) + exp(−nµ/T )] . (1.58)

Both the meson and baryon contributions are to be included into the hadron gas. Setting

µc = 3µq = µB and T = Tc at the phase boundary one gets

PQGP = PB + PM and L = εQGP − (εB + εM ) . (1.59)

However, the fireball is a dynamically evolving system. Therefore, instead of using a static

thermodynamic description, hydrodynamical models are always preferred.
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1.4.2 The Hydrodynamics

Bulk of the particles produced (about 95%) in AB collisions are thermal pions (p⊥ < 2

GeV/c) associated with ‘soft’ processes. Their distribution will give us a first insight to the

overall collision dynamics. The extreme view of complete stopping of the colliding nuclei

was implicit in Fermi’s work [31] and described in the hydrodynamical model of Landau

[32]. The entire initial longitudinal energy is inelastically transferred to produced particles

and redistributed both in the transverse and longitudinal dimensions. In a symmetric AA

collision Landau’s model not only assumes complete stopping of the reacting nucleons, but

also an accumulation of matter and energy in a single mid-rapidity fireball that subsequently

experiences hydrodynamical expansion like an ideal one-dimensional fluid. In this model the

maximum achievable energy density is

εmax =
Ecm
VA

=
3 γcm

√
sNpart

4π R3
=

3 sNpart

4πmN R
3
, (1.60)

while the dispersion of the Gaussian follows, σ2 ∝ ln (
√
s/2mN ). A perfect fluid does not

have any viscosity and therefore, does not produce any entropy. Using simple thermody-

namics of an ideal gas of massless particles one can write

s ∝ ε3/4 and T ∝ ε1/4 (1.61)

As the initial energy density ε ∝ E2
cm, and as according to the black body formula the

number of produced particles is proportional to the entropy, the produced particle number

comes out as, N ∝ E
1/2
cm . As a consequence of initial Lorentz contraction, the intermediate

fireball evolves predominantly in the longitudinal direction. Landau’s picture suffers from a

limitation that the colliding nuclei must possess unrealistically large stopping power, which

they don’t have. However, recent works show that combining a quark constituent picture

with Landau’s hydrodynamical model, the
√
s
NN

dependence of important global parame-

ters like (i) pseudorapidity density of charged particles produced per participant pair, and

(ii) charged particle mean multiplicity per participant pair, both measured in the midra-

pidity region of central AA collisions can be very accurately predicted over a wide collision

energy range,
√
s
NN

= a few GeV to a few TeV [33]. With increasing
√
s
NN

while the midra-

pidity particle density is found to obey a linear-log increase, the multiplicity data increases

following a second-order log-polynomial fit.

With increasing collision energy a non-Gaussian central peak develops into a double hump

structure in the net baryon rapidity distribution that widens toward RHIC and LHC energies

leaving a plateau in the mid-rapidity, thereby maintaining a boost invariance within the

central rapidity region. The observed total E⊥ amounts only to a fraction (about 60%) of
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its maximum value
(
Emax
⊥

)
that can result from complete stopping. The remaining part is

therefore, used to sustain the longitudinal motion. As a rsult the central fireball fixed in the

CMS gets converted to a logitudinally extended firetube i.e., a cylindrical volume containing

high energy density, based on relativistic hydrodynamics an idea that was first introduced by

Bjorken [19]. Hydrodynamics is a macroscopic approach to describe the dynamical evolution

of the expansion stage of a heavy-ion collision. It is assumed that shortly after the collision

the strongly interacting matter reaches a state of local thermal equilibrium and subsequently

expands adiabatically. The evolution of the system is determined by its initial conditions and

the equation of state (EoS) [34, 35], which relates the energy and the baryon density to the

pressure exerted by the system, and which is subject to the constraints of local conservation

of energy, momentum, and currents (e.g., baryon number). The energy-momentum tensor

Tµν and the current density jµ of an ideal non-dissipative fluid are given by,

Tµν(x) = [ε(x) + p(x)]uµ(x)uν(x)− gµνp(x), (1.62a)

jµ(x) = n(x)uµ(x), (1.62b)

where ε(x) is the energy density, p(x) the pressure, and n(x) the conserved number density

at point x and uµ(x) = γ(x) [1, v(x)] is the local four velocity of the fluid. Note that

uµ uµ = 1. The conservation laws are written in the form of continuity equations,

∂µT
µν(x) = 0 and ∂µj

µ(x) = 0. (1.63)

The EoS describes how macroscopic pressure gradients generate collective flow. One has to

solve,

∂µ [(ε+ P ) uµ uν − gµν P ] = 0. (1.64)

Multiply with uν and use uν ∂µ u
ν = 0 to write

uµ∂µ ε+ (ε+ P ) ∂µu
µ = 0. (1.65)

Dropping the transverse co-ordinates one can write,

t = τ cosh y and z = τ sinh y (1.66)

in terms of the spacetime rapidity (y), so that uµ = (t/τ, 0, 0, z/τ), where the Lorentz

invariant proper time τ = t/γ =
√
t2 − z2 and uz = z/t = tanh y is the longitudinal

velocity. The Bjorken equation
∂ε

∂τ
+
ε+ P

τ
= 0

can now be arrived at. One can also use ε = λP , where λ = dP/dε = c2
s, the elastic wave



Chapter 1. Relativistic Nucleus-Nucleus Collision – an Overview 31

velocity in the medium, is a constant e.g., c2
s = 1/3 for an ideal gas of massless particles.

Therefore,

∂ε

∂τ
+

(1 + λ) ε

τ
= 0 ⇒ ε(τf ) = ε(τi)

(
τi
τf

)1+λ

. (1.67)

From thermodynamics one can write

ε+ P = T s + µB nB . (1.68)

For zero net baryon density,

dε = T ds and s =
(1 + λ) ε

T
⇒ s(τf ) = s(τi)

(
τi
τf

)
(1.69)

Also,

T
ds

dτ
=

dε

dτ
= −(1 + λ) ε

τ
= −s T

τ
(1.70)

⇒ ds

dτ
+

s

τ
= 0 ⇒ T (τ) = (1 + λ)

ε(τ)

s(τ)
= T (τ)

(
τi
τf

)λ
(1.71)

A phase transition from the QGP phase to a hadron gas causes a softening of the EoS.

As the temperature crosses the critical temperature, the energy and entropy densities in-

crease rapidly while the pressure rises slowly. The derivative of pressure to energy density

(p/ε) has a minimum at the end of the mixed phase, known as the softest point. The di-

minishing driving force slows down the build-up of flow. The initial conditions which are

input parameters, describe the starting time of the hydrodynamic evolution and the relevant

macroscopic density distributions at that time. The hydrodynamic evolution is terminated

by implementing the freeze out condition which describes the breakdown of local equilibrium

due to decreasing local thermalization rates. In noncentral collisions, driven by its internal

asymmetric pressure gradients, the system will expand more strongly in the direction of

the reaction plane than perpendicular to the reaction plane. As time evolves, the system

becomes less and less deformed. To estimate the initial energy density of a Bjorken-type

fluid element therefore, one has to go to the fluid rest frame. All particles are originating

from a cylindrical volume of cross-section area A, which actually is the overlap area of the

interacting nuclei, and of length uz t. We concentrate on a thin slab of thickness dz centered

between the two pancake-like moving nuclei (Fig. 1.8). The point of impact of the collision

is assumed to be the origin (z = 0) of our frame of reference. Therefore dz = τ cosh y dy,

and ignoring collisions between the produced hadrons, one can write the energy density as,

εBJ =
∆E

∆V
=
E

A
dN

dz
=

m⊥
π R2 τ

dN

dy
=

1

π R2 τ

dE⊥
dy

. (1.72)

Taking the proper time τ ∼ 1 fm/c and (dN/dy) to be the central rapidity density of
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Figure 1.8: Bjorken model of nucleus-nucleus collision.

produced particles, this relation was first derived by Bjorken [19]. However, a perfect fluid

must undergo an isentropic expansion, and the entropy of the expanding fireball S should be

a conserved quantity. In terms of entropy density s = S/V for one-dimensional expansion,

therefore to compensate the Lorentz contraction a relation like si τi = s
f
τ
f

should hold

between an initial (τi) and final (τ
f
) proper time. As it will be shown later, for massless

particles, ε = g π
2

30T
4 and s ∝ T 3, where T is the temperature and g is number of the degrees

of freedom. Correspondingly,

T 3
i τi = T 3

f τf ⇒ τ
f

= τi

(
Ti
Tf

)3

and ε
f

= εi

(
τi
τ
f

)4/3

(1.73)

which is in contradiction with Bjorken’s formula, εBJ ∼ τ−1. The energy density formula

should therefore, be modified as

ε =
1

π R2 τ0

dE⊥
dy

(
τ
f

τi

)1/3

= 2 εBJ . (1.74)

1.4.3 QCD Phase Diagram

The phase diagram (pressure vs temperature) of water has three broad regions separated

by phase transition lines, the triple point where all three phases coexist, and the critical

point where the vapor pressure curve terminates and two distinct coexisting phases, namely

liquid and gas, become identical. Such a diagram is shown in the left panel of Fig. 1.9.

In contrast the QCD phase diagram is known only schematically [11]. In high-energy AB

collisions we expect two transitions to take place, one is the color deconfinement and the
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Figure 1.9: Phase diagram of water (left). A schematic phase diagram of QCD matter
(right).

other is the restoration of chiral symmetry. The order parameters are the Polyakov loop

for the former and quark condensate for the latter, neither of which can unfortunately be

measured in experiments. LQCD and common wisdom however suggest that both should

occur at a common Tc at least at small µB . LQCD also predicts a crossover transition around

T ∼ 150 − 170 MeV for vanishing µB . As mentioned, there are two extreme conditions of

QGP to hadron phase transition, (i) at high temperature and at zero net baryon density,

and (ii) at high baryon density and at zero temperature. For a system in between these two

limits, there is a pressure arising from the thermal motion of the particles as well as from the

degeneracy of the fermion gas. Thus, for a system having non-zero pressure and temperature,

the critical temperature shall be placed in between the two extreme limits. The study of

the intermediate region of the phase diagram is quite complicated as perturbation theory

cannot be applied to QCD near Tc, and furthermore at finite baryon density the usual lattice

approach fails [36, 37]. Therefore, one of the major objectives of high-energy heavy-ion

physics is to explore the QCD phase diagram in the various temperatures and baryon density

regions so as to confirm the existence of new phase of nuclear/partonic matter. Arguments

based on a variety of other models indicate a first order phase transition as a function of T at

finite µB , which one expects to terminate at a critical point [37]. The existence of the critical

point, however, is not yet established in experiments. Apart from the region of color neutral

hadrons at the low T and low µB , and the region of quarks and gluons at high T and high

µB , there is also a region characterized by the color superconductivity, at high µB and low

T . However, precise boundaries separating these regions are not yet known. Mapping the

QCD phase diagram at least at a quantitative level, is possible by using LQCD. Although it

allows first-principle calculations, there are technical difficulties for non-vanishing µB . There

exist however, various other effective theories and phenomenological models [38] which form

the basis of the schematic QCD phase diagram (µB against temperature T ), shown very

naively in the right panel of Fig. 1.9. Experimental tools available to explore such a diagram
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are the relativistic heavy-ion accelerators. Apart from the terrestrial facilities, astronomy

of neutron stars can also shed some light on the low T and high µB region of the phase

diagram. Unlike a system in global equilibrium, here temperature and chemical potential

may depend on space-time coordinates.

1.4.4 Signals of QGP

We know that the central fireball created in a high-energy AB collision expands very rapidly,

and we observe as an outcome a large number of color neutral hadrons, leptons and pho-

tons streaming out of the collision debris. One needs to identify appropriate experimental

tools (signals) for detecting the quark-gluon plasma, and to study its properties, if it is at

all created. The problems associated with such a task are, (i) the volume filled up with

QGP is at most several fermi in diameter and (ii) the time scale for which such a state

exists ∼ 5 to 10 fm/c [39, 40]. Moreover, signals of QGP are often shadowed under a huge

background particles emitted from the hot hadronic gas. Different types of experimental

probes have been put forward to examine different stages of the hot and dense matter as

it expands and evolves back to normal color neutral hadronic state. There are some soft

probes and some hard probes [35, 36]. Arranging in increasing order of hardness they are, (i)

global observables–multiplicity distribution and rapidity distribution, (ii) geometry of emit-

ting source–HBT, impact parameter via zero-degree energy flow, (iii) early state collective

effects–elliptic flow, (iv) chiral symmetry restoration–neutral to charge ratios, resonance

decays, (v) fluctuation phenomena–event-by-event particle composition and spectra, (vi)

degrees of freedom as a function of T–hadron ratios and spectra, dilepton continuum, di-

rect photons, (vii) deconfinement–charmonium and bottomonium spectroscopy, (viii) energy

loss of partons in QGP–jet quenching, high p⊥ spectra, open charm and open beauty. A

qualitative discussion on some of these are furnished below.

• Hanbury-Brown–Twiss (HBT) Effect: Identical particle correlation or interferome-

try, provides information on the reaction geometry, and hence provides important informa-

tion about the spacetime dynamics and system lifetime of nuclear collisions. The information

about the spacetime structure of the particle emitting source created in AB collisions ob-

tained from the measured particle momenta, can be extracted by the method of the so

called ‘two-particle intensity interferometry techniques’ also called the ‘Hanbury-Brown–

Twiss’ (HBT) effect [41, 42]. The method was initially developed to measure the angular

size of distant stars [43]. The two-particle correlation arises from the interference of particle

wave-functions, where interference is defined as a phenomenon associated with the superpo-

sition of two or more waves. Such correlation depends on whether the particles are bosons or

fermions. Also the degree of interference depends on the degree of coherence of the emitting
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source of particles produced in such collisions, which reaches a maximum for a completely

incoherent source. HBT is a useful method to understand the crucial reaction mechanism

and equation of state (EoS) of the particle emitting source in relativistic heavy-ion collisions

[44] where the QGP is expected to be formed. LQCD predicts a very soft EoS near about

the QCD critical point (Tc = 173± 15 MeV), and a sudden decrease in dp/dε (= c2
s) value

from what is obtained in the T > 2Tc region [30], cs being the speed of sound in QCD

medium.

• Collective Flow: The particles produced in a high energy AB collision show a high

degree of collective behavior which is termed as flow [45]. Due to spatial asymmetry of the

overlapping volume of the colliding nuclei, the pressure gradient generated at an early stage

of collision leads to an anisotropic transverse collective flow during the expansion of the

hot and dense matter [46]. By characterizing asymmetric azimuthal distribution of particles

emitted from non-central collisions, we can understand the extent of this outward pressure.

When decomposed into Fourier components the invariant azimuthal distribution

d3N

d3p
=

1

2πE p⊥

d2N

dp⊥ dy

[
1 +

N∑
i=1

2 vn cos{n(φ− ψRP )}

]
(1.75)

has many non-zero coefficients. Here E, p⊥ , y, and φ are, respectively the energy, transverse

momentum, rapidity and azimuthal angle of the produced particle, and ψRP is the azimuthal

angle of the reaction plane which is defined as the plane spanned by the impact parameter

vector and the beam direction. The first coefficient v1 measures the ‘direct flow’ while

the second coefficient v2 is called the ‘elliptic flow’ and so on. The v2 coefficient, almost

in all high-energy AB collisions, is found to be the largest [47]. Such type of Fourier

decomposition really measures particle emission directly correlated with the orientation of

the density gradients as shown by the fact that v2 for all charged particles at low transverse

momenta scales linearly with the eccentricity of the overlap region of the colliding nuclei

[48]. In the high-p⊥ region hadronization occurs through fragmentation, whereas in the

medium-p⊥ region it is modeled by quark recombination or coalescence. The phenomenon

of constituent quark number scaling provides experimental support to this model. When

scaled by the constituent quark number, the v2 against E⊥ curves merge into one universal

curve, suggesting that elliptic flow actually develops at the quark level, and hadrons form

through merger of constituent quarks.

• Chiral Symmetry Restoration: The approximate ‘chiral symmetry’ of QCD is sponta-

neously broken by the existence of a quark condensate in vacuum [39]. Due to large energy

deposit in the collision zone of the relativistic collisions, if the QGP is formed then the

medium would possess chiral symmetry. But the rapid expansion at earlier times suddenly

reduces the temperature down, and the symmetry is spontaneously broken [49]. Lattice
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simulations predict a very rapid drop of the scalar quark condensate 〈qq̄〉 from its vacuum

value to almost zero in a narrow temperature region around Tc. The temporary restoration

of chiral symmetry in nuclear collisions may result in the formation of domains of disoriented

chiral condensate [40].

• Event-by-event Fluctuation: Another set of global observables are related to fluctua-

tions, which are of fundamental importance for studying perturbation to a thermodynamic

system [39]. Several thermodynamic quantities show varying fluctuation patterns when the

system undergoes a phase transition [50]. In the study of phase transition the measurement

of particle number density, energy and charge fluctuations are relevant. Event-by-event fluc-

tuations of thermodynamic quantities measured in high-energy heavy-ion collisions provide

a reasonable framework for studying the nature of the QGP to hadron phase transition in

the laboratory [51]. As for example, the fluctuations in the total charge contained in an ideal

gas sub-system comprising of N (= N+ +N−) particles is given by,
〈
δQ2

〉
= q2 〈N+ +N−〉

where N± are the number of positively and negatively charged particles. Obviously the

above quantity is sensitive to the square of the charge q of the constituent particles, which

should be smaller for a quark-gluon system than a color neutral hadronic system. The ration

of charge fluctuation per entropy is four times larger in a pion gas than that in a 2-flavor

QGP. Even if the contribution from hadronic resonances is taken into account the above

factor reduces to three, thereby leaving a genuine signal for a QGP state.

• Strangeness Enhancement: The production of hadrons containing s quarks is normally

suppressed in hadronic reactions compared with the production of hadrons containing only

u and d valence quarks. This suppression increases with growing strangeness content of

the produced hadrons. The theoretical studies have shown that strangeness is produced

rapidly in the collisions of thermalized gluons, within the deconfined state formed in heavy-

ion collisions [52, 53]. When QGP is formed, the production of hadrons carrying s quarks is

expected to saturate because of s quark content of the plasma is rapidly equilibrated by ss̄

pair production in the interaction between two gluons. So the yield of multi-strange baryons

and strange antibaryons is predicted to be strongly enhanced [54] in a QGP medium. The

deconfined state of QGP breaks up in a fast hadronization process with the enhancement

of strange hadrons and strange anti-baryons, along with the rise of valence quark content

of hadrons produced as the predicted property of deconfined phase [54]. This occurs due to

the breakup of strangeness rich deconfined states (or hadronization), where several strange

quarks are formed before and the independent reactions can combine into a multi-strange

hadron.

• Dilepton production: Leptons are produced at an early stage of the collision and they

can probe the very interior of the hottest stage of evolution of the fireball. The produced

lepton pairs (l±) carry information regarding the thermodynamical state of the medium at
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the moment of their production. The production rate and the momentum distribution of the

dilepton pairs depend on the momentum distribution of quarks and antiquarks present in the

plasma, which in turn are governed by the thermodynamic condition [36]. In high energy AB

collisions a probable formation of QGP is not the only source of dilepton production. There

exist other processes, like the Drell-Yan process, which is important for large values of the

invariant mass of the l± pair [36, 55]. In the Drell-Yan process a valence quark of a nucleon of

one of the colliding nuclei interacts with a sea antiquark of a nucleon belonging to the other

nucleus. The qq̄ pair annihilates to form a virtual photon (γ∗), which subsequently decays

into a l± pair. In addition a large fraction of the dilepton yield arises from the decay of long

lived states, such as the neutral pions, eta, or the omega mesons. These resonances decay

well outside the hot and compressed region and therefore, in order to extract information

regarding the properties of hot and dense matter, a detailed analysis of the dilepton spectra,

like in medium modification of hadron properties, is needed. In the low mass region, below

the φ-meson mass limit, the most important production channels are, (i) delayed decay of

η,∆, ω, a1 and (ii) direct decay of the vector mesons such as ρ, ω and Φ. Therefore, in order

to separate out the portion of invariant mass spectrum of l± due to QGP, it is essential to

analyze the contribution from all other sources of dilepton production [55].

• Thermal Photon production: Photons are emitted throughout the expansion process,

but their production is expected to be weighted more toward the hot and dense early stages

of the collision. The photon production schemes in heavy-ion collision are complex in na-

ture, and they may grossly be classified into four groups [56] namely, (i) the hard partonic

scattering produces photons that falls off at large transverse momentum–such production

rates can be calculated by making use of the perturbative QCD; (ii) photons are emit-

ted in the collisions between quarks and gluons in the QGP medium–the energy spectrum

of such photons is damped exponentially having a long tail extended up to several GeV;

(iii) during hadronization the produced hadrons collide with other hadrons and resonances

(ρ, ω)–such collisions may emit photons with energy values ranging from several hundred

MeV to several GeV; (iv) photons can also be the decay products of the neutral mesons like

π0, η etc., emerging at the end of the thermal evolution and have energies in the range of

< 102 MeV. Note that π0 and η mesons can also be produced in hard partonic scattering

at the early stage of the collision having several GeV of energy, and can subsequently decay

into high p⊥ photons. These photons together with those mentioned in category (i) appears

as a background to the thermal photons produced in category (ii) and (iii), which carry the

information of the hot and dense matter produced in high-energy AB collisions [57].

• Charmonium Production: If a J/ψ particle, a bound state of cc̄, is placed in QGP, the

color charge of c will be screened by the quarks, antiquarks and the gluons on the plasma.

The basic mechanism for deconfinement in the dense QGP is the Debye screening of the
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quark color charge. The effect of Debye screening will modify the the long-range Coulomb

potential into a short-range Yukawa potential with the range given by Debye screening

length λD. Note that in a QGP the string tension between two quarks κ vanishes. When

the screening radius becomes less than the binding radius of a quark-antiquark system, which

means that it becomes less than the hadron radius, the confining force can no longer hold

the quark-antiquark pair together and hence deconfinement sets in. The J/ψ has a radius

of about 0.2 fm [58]. which is much smaller than the normal hadronic scale λ−1
QCD ≈ 1 fm.

having a binding energy of 0.6 GeV which is larger than λQCD ≈ 0.2 GeV. λQCD is called the

QCD scale parameter to be determined from experiments. In AB collisions the J/ψ particles

are produced in the initial stage of hard scattering. The suppression of J/ψ production in a

quark-gluon plasma occurs because a cc̄ pair formed by fusion of two gluons from the colliding

nuclei cannot bind inside the quark-gluon plasma. Hence the effect of plasma will make the

J/ψ unbound, thus the suppression of J/ψ production could be a possible signature of QGP

formation [59]. There is however, an alternative proposition about charm production in

AB collisions. As a hard process, charm production increases with collision energy at a

much faster rate than that of the light quarks. At sufficiently high-energy the produced

medium will therefore, contain more charm quarks than present in a QGP at chemical

equilibrium. If these charm and anti-charm quarks combine at the hadronization point

statistically to form charmonium states, the new combination mechanism should lead to a

much enhanced J/ψ production rate, even if all primary (direct) J/ψ’s are dissociated [60].

The two predictions, sequential suppression against statistical regeneration, thus represent

two really contradictory viewpoints, and the LHC results should be able to substantiate

either (or both) of them [61].

• Jet Quenching: Hard-scattered partons (quarks and gluons) produced internally in AB

collisions can be used to probe the medium in which it is produced. Nucleons belonging to

the colliding nuclei may interact with each other and produce partons with large transverse

momenta, which subsequently fragment and emerge as jets of particles in the final state.

Hard partons are produced early in the collision, and therefore, they can probe the early

stages of collision. Moreover, their production rate can be calculated using perturbative

QCD. Partons/jets are color carrying objects and therefore, they interact strongly and lose

more energy (or get quenched) in a QGP-like medium than in a color neutral hadronic

matter. Among other factors the amount of energy loss depends on the path length the

jet has to travel inside the medium. The yields of high-p⊥ pions and etas are found to be

suppressed by a factor of about 5. Such suppressions are not seen either in d + Au or in

p + Pb collisions where QGP formation is not expected, thereby ruling out suppression by

cold nuclear matter [62]. These observations indicate that hard partons lose energy as they

traverse the hot medium and jet suppression is therefore, a final-state effect. Jet quenching

in hot dense matter can also be studied in terms of dihadron correlations as a function of
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opening angle between a high-p⊥ trigger and associated particles. In the azimuthal plane of

AB collisions there is always an enhanced high-p⊥ jet production in the near side than in

the away side, a phenomenon that is absent in proton-proton or in proton-nucleus collisions.

When soft (low-p⊥) hadrons are included into trigger, jets appear in both near and away

sides in all types of interactions.

1.5 Models of AB Interaction

In order to get a complete description of a high-energy AB collision, the QCD must be

employed without any approximation. But as we know, due to the intrinsic complexities

associated with the QCD, nonperturbative effects are to be treated through model calcula-

tions. Unfortunately, till date we do not have any complete model that describes all stages

of space-time evolution process in an AB collision. The hadronic models, where an AB

interaction is considered as a superposition of many NN interactions, try to simulate the

entire history of the space-time evolution, and any deviation observed in comparison with

measurement is considered as a collective effect. Models based on string fragmentation

mechanism(s), parton shower cascade and transport mechanism focus on the initial pre-

equilibrium stage of the interaction. Hydrodynamical model, on the other hand, mainly

describes various equilibrium stages of the space-time evolution. In this section a brief de-

scription is given for some of the phenomenological models and theory that are currently

being used by the heavy-ion community.

1.5.1 RQMD and UrQMD

The Relativistic Quantum Molecular Dynamics (RQMD) model is designed to give a com-

plete description of an AB collision, that starts from the initial overlapping of the colliding

nuclei and ends at the final freeze out state when strong interaction among the outgo-

ing hadrons ceases to act. This is a semi-classical microscopic transport theory, where

the incoming objects are represented by their classical trajectories and the interactions are

treated stochastically [63]. The model nicely works in the BNL-AGS and CERN-SPS en-

ergy domains. At high-energy (Elab > 10A GeV) AB collisions, a Glauber type sequence of

multiple scatterings is generated on the partonic level. Strings and resonances are excited in

elementary NN collisions, where the strings can overlap to form chromoelectric flux tubes

called called the ‘ropes’. Secondary particles are produced through the fragmentation of

resonances, strings and ropes. Subsequently, the fragmentation products interact with each

other and also with the original nucleons, mostly via binary collisions. For this purpose a

relativistic Boltzmann equation has to be solved for hadrons in the final stage of the collision.
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These interactions drive the system toward equilibration and are the underlying mechanism

which makes collective flow to develop even in the pre-equilibrium stage. In this model, the

equilibrium pressure is simply due to an ideal gas of hadrons and resonances. The resulting

equation of state in the cascade mode of RQMD is similar to the one in ref. [64].

The Ultra-relativistic Quantum Molecular Dynamics (UrQMD) [65] is based on analogous

principles as the RQMD but with a vastly extended collision term. The range of applicability

of UrQMD includes the SIS energy region (
√
s ≈ 2 GeV) up to the RHIC energy (

√
s = 200

GeV). Currently, the model has been employed to simulate LHC events as well. In the

UrQMD model the projectile and the target nuclei are treated according to a Fermi gas

ansatz. In this scheme particle production at high-energy is implemented by the color

string fragmentation mechanism similar to the Lund model [66]. The UrQMD code has

been successfully used to reproduce the particle density distributions and the p⊥ spectra of

various particle species in proton-proton, proton-nucleus and AB collisions. At
√
sNN ≈ 10

GeV the model can reproduce the elliptic flow parameter reasonably well. However, the

model does not incorporate the symmetry aspects of the fields associated with the identical

particles, and it predicts very small HBT radii. As the UrQMD code has been utilized to

generate 28Si-Ag/Br event sample at 14.5A GeV incident energy that has been used in the

present investigation, we shall give a detailed description of the model in Section 2.5. The

advantage of using transport models like RQMD or UrQMD is that they treat the final

freeze-out stage dynamically, do not make any equilibrium assumption, and describe the

dynamics of a hadron gas like system very well in and out of the chemical and/or thermal

equilibrium. Therefore, AB interactions where it is less likely for the intermediate ‘fireball’

to reach a local equilibrium, these models are very useful.

1.5.2 HIJING

Heavy Ion Jet Interaction Generator (HIJING) [67] is a MC event generator developed to

study jet and associated particle production in high-energy pp, pA and AB collisions. HI-

JING combines a QCD inspired model for jet production with the Lund FRITIOF [66]

and Dual Parton model [68] for soft processes at intermediate energies (
√
s . 20 GeV/nu-

cleon), and presents a successful implementation of pQCD process in PYTHIA model [69]

for hadronic collisions. The model is designed mainly to explore the range of possible initial

conditions that may occur in relativistic heavy-ion collisions. Nuclear shadowing of parton

(specially the gluon) structure functions and a schematic model of final state interaction

of high p⊥ jets in terms of an effective energy loss parameter dE/dz, have been included

into the model to study the nuclear effects. To generate the initial phase space distribution

for the parton cascade, the formation time for each parton is determined according to a
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Lorentzian distribution with a half-width tf = E/m2
⊥

, where E is the parton energy with

transverse mass m⊥ . During the time of formation partons are considered to be part of

the coherent cloud of parent nucleons and hence they do not suffer rescattering. Once the

partons stop interacting, after an additional proper time of about 1.2 fm. they are converted

into hadrons according to the HIJING fragmentation scheme.

1.5.3 AMPT

The AMPT (A Multi-Phase Transport) model [70] is an example of a hybrid type transport

model. The initial conditions of AMPT are obtained from the HIJING that uses a Glauber

formalism to determine the positions of participating nucleons. AMPT uses Zhang’s Parton

Cascade (ZPC) formalism [71] for fixing the scattering properties of partons. Note that the

ZPC model includes only parton-parton elastic scattering with an in-medium cross section

derived from pQCD along with an effective gluon screening mass taken as a parameter.

After the minijet partons stop interacting, they are combined with their parent strings.

The hadronization process is settled either by using the Lund fragmentation or by a quark

coalescence scheme. The string fragmentation mechanism is same as that implemented in

the PYTHIA program [72]. The final state hadronic scatterings are then modeled by a rela-

tivistic transport (ART) model [73]. In the AMPT model, there also exists a string melting

scenario in which hadrons, that would have been produced from string fragmentation, are

converted instead to valence quarks and antiquarks with their current quark masses [74].

Interactions among these partons are again described by the ZPC parton cascade model. As

there are no inelastic scatterings, only quarks and antiquarks from the melted strings are

present in the partonic matter. The transition from partonic matter to hadronic matter is

achieved using a simple coalescence model, which combines two nearest quark and antiquark

into mesons and three nearest quark(s) and/or antiquark(s) into baryons/antibaryons. The

particle type is determined by the invariant mass of these partons. The users thus have a

choice of using either of these two modes of particle production. In the default configura-

tion of AMPT the energy of the so-called excited strings are not used in the partonic stage

and only released in the hadronization stage, as it was implemented into the Lund string

fragmentation model. On the other hand as mentioned above, in the string melting (SM)

configuration of AMPT all excited strings are first converted (melted) into partons, and at

the end of interaction stage the left over partons are combined into either mesons or baryons

through a quark coalescence mechanism.



Chapter 1. Relativistic Nucleus-Nucleus Collision – an Overview 42

1.6 Multiparticle Production

A high-energy AB interaction is usually considered to be a superposition of many nucleon-

nucleon (NN) collisions. In an AB collision each nucleon may rescatter several times and

the produced partons from different NN collisions can also rescatter with each other be-

fore hadronization. Both these factors influence the particle production phenomena per

participating nucleon in an AB interaction. In the final state a large number of particles

comprising mostly of various types of hadrons, along with some photons and leptons are

observed. The hadrons are created in the freeze-out stage which is a relatively late stage

of the fireball expansion [75–77]. Therefore, they provide only indirect information of the

intermediate equilibrated stage(s), if there is any. However, the hadrons are very abundant,

they can be easily identified and their kinematic properties can be accurately measured. We

can expect that there will be some rare but interesting events showing something exotic and

unusual, while on the other a large majority of events will exhibit regular features e.g., a

finite number of particles will come out with different energy-momentum values from each

event. To extract any kind of nontrivial physics these regular events have to be subjected

to rigorous statistical analysis. The particle number will vary from event to event which

for a large event sample will result in a distribution of the particle multiplicity as well as

distributions in terms of different kinematic variables. The primary objective of the present

thesis is to analyze some of these distributions in a particular AB interaction, and therefore,

in the following subsections we summarily outline some of the issues related to multiparticle

production, some of which will subsequently be discussed in details.

1.6.1 Particle Density Fluctuation

The study of fluctuation of various final state observables drew an extra attention since the

early days of high-energy collision experiments. Fluctuation in the density distribution of

particles produced in AB collisions itself can render a lot of information on multiparticle dy-

namics, and this actually is the subject matter of our present investigation. Of course, there

is always a trivial statistical component (noise) associated with the observed fluctuation

that has to be carefully eliminated. The nonstatistical (also called dynamical) component

of density fluctuation that results from some nontrivial dynamics is not yet fully under-

stood. Efforts have been made to interpret the dynamical component of density fluctuation

observed within narrow phase space intervals (local pattern) in AB interactions in terms

of phenomena like (i) Bose-Einstein correlation, (ii) jet structure of particle emission, (iii)

resonance decay, (iv) collective phenomena, (v) parton shower cascade mechanism and (vi)

some exotic process like the thermal/non-thermal phase transition etc.. Various methods

have been developed to characterize the dynamical component in terms of a small number
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of well behaved parameters. A brief item-wise discussion on some of the statistical tech-

niques used to study local density fluctuations of multiparticle production are summarily

discussed below. Almost all of these issues will later be discussed in details with reference

to the results obtained from the present investigation along with the corresponding physics

analysis.

• Intermittency: The factorial moment of order q (a +ve integer) is defined as,

n[q] = n(n− 1) · · · (n− q + 1) (1.76)

where n is the particle multiplicity in an arbitrary sub-interval (bin) of width say δX =

∆X/M of the variable X, ∆X being the overall domain of the variable under consideration

which is divided into M non-overlapping equal sub-intervals. When properly normalized

with respect to the average particle number per bin and averaged over a number of bins as

well as over a large sample of events, the normalized factorial moment Fq scales with the

phase space resolution size δX [78, 79]

Fq ∝ δX−φq : δX → 0 (1.77)

In multiparticle production physics the above relation for φq > 0 is known as intermittency.

The intermittency exponent φq used for characterizing turbulence in the theory of chaos to

describe the development of a hydrodynamical system from a stable to a chaotic state, can

analogously be used in particle production [80], and it can be determined from the asymp-

totic behavior of the scaling-law (1.77). For a self-similar density function Fq is found to

follow such a scaling relation [78–80]. The technique first proposed by Bialas and Peschanski

[78] to analyze a few high multiplicity JACEE events induced by high energy cosmic ray

nuclei [81], has so far been extensively used to study local fluctuations of particle densities in

high-energy collisions involving various combinations of target-projectile and collision energy

(for review see refs. [82, 83]). In AB collisions the intermittency parameters may contain

signatures of some kind of phase transition [84]. In view of self-similarity dominating the

particle production process contradictory suggestions have also been made [85].

• Cumulant Moment: Evidence of genuine higher order particle correlations can be

obtained only after subtracting their contribution originating from lower order(s). For this

purpose one can study the cumulant moments (Kq) and the oscillatory moments (Hq). The

Fq and the Kq moments are related by a recurrence relation

Fq =

q−1∑
j=1

(
q − 1

j − 1

)
Fq−jKj +Kq; for q > 2. (1.78)
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Hq is now defined as the ratio Hq = Kq/Fq. According to a QCD parton shower cascade

model [86] the Hq moments should oscillate with order number q about the Hq = 0 line.

Almost all the correlation studies (just to cite a few of them [87–90]) have showed the validity

of the α-model and some of them are also in agreement with the QCD based parton shower

cascade model mentioned above [86].

• Factorial Correlator: While the SFM is used to look into the local (dynamical) density

fluctuation, the the two-fold factorial moment or factorial correlator (FC) provides a bin-to-

bin correlation of fluctuations within an event. Hence, the FC provides information on the

dynamics of particle production beyond that obtained from single particle inclusive spectra.

According to the α-model of particle production [79], factorial correlator (Fpq) calculated

for two equal sized non-overlapping bins (say m-th and m′-th) separated by a distance D

called the correlation length, defined as

Fpq =

〈
n

[q]
m n

[q]
m′

〉
〈
n

[q]
m

〉 〈
n

[q]
m′

〉 (1.79)

depends only on D and not on δX. Fpq follows a scaling relation like

Fpq ∼ D−φpq . (1.80)

The exponent φpq measures the correlation length, and according to the α-model the expo-

nent φpq is expected to follow a relation like, φpq = (p.q)φ11.

• Self-Affinity: The effect of intermittency is more prominent in higher dimensions [91].

This is due to the fact that the actual process of multiparticle production takes place in a

three dimensional space, and a dimensional reduction in the analysis reduces the extent of

fluctuation. It is also very unlikely and the actual fact of matter is that the distribution

of particles is not isotropic in all (longitudinal and transverse) directions. As a result, the

scaling-law Eq. (1.77) for a self-similar partitioning of phase space is not found to be exact

in higher dimensions. Hence, the scaling behavior should be different in different directions,

and in a higher dimensional analysis a scaling behavior like Eq. (1.77) can be retrieved only

by incorporating unequal partitioning in different directions. This is known as self-affine

scaling. The self-affine structure of phase space is characterized by a ‘roughness’ parameter

called the Hurst exponent (H) [92]. For H = 1 self-affine partitioning reduces to self-similar

one. The anomalous scaling of two dimensional SFM in AB collisions was studied in detail by

the EMU01 collaboration for different projectiles and different incident energies in emulsion

experiments [93]. The EMU01 analysis showed that in order to recover the scaling-law (1.77)

the phase space should be divided finer in the longitudinal η direction than in the transverse

ϕ direction.
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• Erraticity: The erraticity moment Cpq first introduced in ref. [94] to investigate both

the spatial density fluctuations and the event-to-event fluctuations. The moment Cpq is

analytically connected with a parameter called the entropy index µq, a direct measure of

the degree of fluctuation in event space. µq is also a suitable parameter for measuring the

chaotic behavior in the QCD branching process [95], possessing another advantage that it can

identify whether a branching process is initiated by a quark or by a gluon. Erraticity analysis

has been performed at various energies [96–98]. The experimental results are compared

with Monte-Carlo simulations. The brief observations of the erraticity analysis are (i) the

experimental values of the entropy indices in all cases are non-zero and significantly greater

than the simulated values, (ii) the experimental results more or less agree with the theoretical

predictions, (iii) µq decreases with increasing square-root of event multiplicity (
√
Nch), and

(iv) the pattern is independent of the energy involved in interactions [96]. In case of pp

collisions it is also noticed that the reaction may not be triggered by the QCD parton

cascading.

• Multifractality: A highly fluctuating signal can also be characterized in terms of the

theory of fractals. For a self-similar object a fractal dimension can characterize the system,

whereas an irregular or a multifractal object requires a set/spectrum of such dimensions.

Multifractality is understood to be one probable cause of the observed density fluctuations

in high-energy collisions. A multifractal analysis of multiparticle distribution data is based

on evaluating Hwa’s moment (or frequency moments) Gq [99, 100] and Takagi’s moment Tq

[101]. The Gq moment analysis is affected by the finiteness of event multiplicity (〈Nch〉).
In this method the statistical noise can be eliminated by generating a random number

based simulated event sample without invoking any inter-particle correlation. On the other

hand, Takagi’s moment is not influenced by the finiteness of 〈Nch〉, but the mechanism

of eliminating noise has not yet developed. Another very popular technique of dynamical

time series data analysis, the so-called multifractal detrended fluctuation analysis (MF-DFA)

[102], has recently been implemented for the multifractal characterization of high-energy AB

collision data [103]. The MF-DFA method is not yet fully customized for the multiparticle

data analysis and only a couple of articles are found in the literature where the MF-DFA

method is used to analyzed the Au + Au collision data at 200A GeV [103, 104].

• Azimuthal Structure: In order to look into the nature of particle production in the

azimuthal plane, one can use the prescription of ref. [105] which is known as the ‘azimuthal

structure analysis’. The objective of this analysis is to investigate whether the emitted

particles prefer to come out in clusters (or subgroups) and if so, then whether the clusters

are confined to narrow intervals of both longitudinal and transverse phase space variables

i.e., jet-like, or confined only to a narrow interval of longitudinal variable but covers the

entire allowed region of transverse one i.e., ring-like. The idea is based on a speculation that
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either ‘Cherenkov gluon emission’ or a ‘Mach shock wave’ formation in nuclear/partonic

medium [106] is responsible for such unusual structures. The EMU01 collaboration showed

the presence of jet-like particle subgroups in 16O and 32S-induced interactions in nuclear

emulsion experiments [105]. But the observation could be explained by the γ → e−e+

conversion and interference between identical particles (HBT). In some other experiments

however, presence of ring-like structure was observed [107–109].

• Wavelet Analysis: Wavelet transforms are a mathematical tool to perform signal anal-

ysis when signal frequency itself is a function of time. For certain classes of signals and

images wavelet analysis provides more precise information about the signals. Recently, the

technique has successfully been applied to analyze multiparticle emission data [110]. The

wavelet analysis in high-energy collisions is based on the assumption that the dynamical

fluctuation would be manifested by excess particles located at some characteristic position

and at some characteristic resolution(s). Wavelet transform of a function of pseudorapidity

say, f(η) is given by [111]

WΨ(a, b)f(η) =
1√
CΨ

∫ +∞

−∞
f(η)Ψa,b(η)dη, (1.81)

where

Ψa,b(η) = a1/2Ψ

(
η − b
a

)
(1.82)

is called the mother wavelet, CΨ is a normalization constant. For continuous wavelets both

the translation parameter b and the scale parameter a are continuous variables. The choice

of a wavelet depends on the problem studied. Therefore, it is not unique. In multiparticle

data analysis, the second derivative of the Gaussian function

g2(x) = (1− x2) exp(−x2/2) (1.83)

known as the ‘Mexican hat’ (MHAT), is usually chosen as the mother wavelet and the

signal to be analyzed is the η-distribution. The irregularities are revealed in the wavelet

pseudorapidity spectra within a particular scale region and they are interpreted as the

preferred pseudorapidity values of the groups of emitted particles [107, 110]. Till date only

a handful of results on wavelet analysis can be found in literature.

• Void Analysis: Multiparticle (rapidity) distributions in high-energy interactions ex-

hibit both large spikes and deep valleys. From the perspective of underlying mechanism

of multiparticle production both are equally important, and are complementary to each

other. It is known that higher order cumulant correlation functions CN can be constructed

out of two-particle cumulant correlation functions C2 [112]. Actually CN is proportional

to the product of (N − 1) two-particle reduced cumulants summed over all permutations.
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This scheme successfully implemented in both galaxy-galaxy and particle-particle correla-

tion studies, is formally termed as ‘linked-pair ansatz’ in multiparticle phenomenology. The

technique is based on finding out a rapidity gap distribution P0(∆y) that measures the

chance of finding out no particle within certain rapidity interval (∆y) [113]. Based on the

hierarchical model of particle correlations stated above, it has been shown that a scaling

behavior of the void probability distribution provides a sensible proof of the linked-pair ap-

proximation. The analysis method has so far been successfully tested in several high-energy

experiments.
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Chapter 2

Experiment and Simulation

2.1 Nuclear Emulsion

In this study we employ the age old nuclear photo-emulsion technique to collect the exper-

imental data. Emulsion experiments involve fixed targets, where the target medium itself

acts as the detector. Some excellent reviews and texts [1–3] are available on the details

of nuclear emulsion technique. However for the sake of completeness, we summarize here

some of the essential features of the nuclear emulsion technique and the data collection

method. The first use of photographic emulsion to record charged particle tracks was made

in 1891, when α-particles were found to affect silver bromide grains along the paths they

traveled [4]. However, during 1940’s due to the efforts of various commercial firms like Ilford

Ltd. (London), Kodak Ltd. (New York), and to a great extent due to the contribution of

the emulsion research group in the University of Bristol (UK), nuclear emulsion technique

became an effective and successful tool in cosmic-ray, nuclear and particle physics research.

The usefulness of this technique can be understood from its rich history of being a key

detector in discovering several new particles like the charged π and K-mesons, the Σ+ and

Λ̄ baryons, etc. In spite of a stiff competition offered by the modern sophisticated detectors

and dedicated electronic readout technology, even in a not so distant past the emulsion

experiments have contributed significantly in the field of high-energy hadron-nucleus and

nucleus-nucleus (AB) interactions.

52
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Nuclear photographic emulsion is basically a dispersion of silver halide crystals within a

gelatin matrix. The medium is used to record charged particle tracks of silver halide micro-

crystals embedded into about equal parts in volume, a matrix material comprising mainly of

gelatin and water with a small amount of glycerol and a few other substances. An electrically

charged particle while passing through the medium, produces latent image along its track

that upon proper chemical treatment appears as trails of black colloidal grains of metallic

silver along the trajectory of the particle. Compared to an ordinary photographic plate,

nuclear emulsion pellicles have several distinguishing features, Nuclear emulsion pellicles are

much thicker (thickness ranging between several hundreds to ∼ 103 microns) as compared

to only several microns in case of ordinary photographic plates. The photo-sensitive silver

halide material (mostly AgBr molecules) has three to four times more concentration in

nuclear emulsion than that in a conventional photographic plate. The AgBr grains in nuclear

emulsions are well separated and are much smaller in size (less than a micron in diameter),

whereas the AgBr grains in an ordinary photographic plate are interlocked and they can be

as large as several microns. The Ilford G5 emulsion pellicles are used in this experiment

where the grain diameter is about 0.3 micron. However, the mean crystal grain diameters are

different in different types of emulsions. It is observed that the contrast of nuclear emulsion

may be improved if the grains are uniform in size, and the sensitivity goes up with increasing

grain size. The dimension of each Ilford G5 emulsion pellicle used in the present investigation

is 18 cm. × 7 cm. × 600 microns. Gelatin being a hygroscopic material emulsion can absorb

water from the atmosphere. Therefore, while citing the relative composition of emulsions

it is necessary to refer to the real time relative humidity of the surroundings. At a relative

humidity of 58% each gram of Ilford nuclear emulsion contains about 0.83 gm. of silver

halide and 0.162 gm. of gelatine while the corresponding volume ratio is about 45 : 55.

The chemical composition of a standard research emulsion (such as Ilford G5) is given in

Table 2.1. In emulsion the total number of atoms per c.c. is 7.898× 1022, whereas the total

number of electrons is 1.0446× 1024 per c.c. Taking the nuclear radius parameter r0 = 1.2

fm, the geometrical mean free path of all elements in nuclear emulsion comes out to be

approximately 37 cm. However, the actual interaction mean free path is quite different from

this geometrical value.

2.1.1 Particle Track Formation

When a charged particle passes through nuclear emulsion it losses energy through electro-

magnetic interaction. The energy lost by the charged particle is transferred to the electrons

of the target atoms present in the emulsion medium, and if the transferred energy is greater

than the ionization potential of the target atoms, electrons are liberated and the atoms are

ionized. As a result silver specks are formed within the silver halide crystal grains. They
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Table 2.1: Chemical composition of standard emulsion.

Element Atomic weight No. of atoms Moles Concentration
(A) per cc ×1020 per cc ×10−3 at 58% R.H.

H 1.008 321.56 53.571 0.074

C 12.0 138.30 22.698 0.227

N 14.01 31.68 5.147 0.053

O 16.0 94.97 16.050 0.007

S 32.06 1.353 0.216 0.249

Br 79.92 100.41 16.673 1.338

Ag 107.88 101.01 16.764 1.817

I 129.93 0.565 0.094 0.012

serve as ‘latent images’ which when undergo proper chemical treatment become visible. It

may be mentioned here that the most important mode of energy loss of a charged particle

is the ionization, and it depends on the atomic number and kinetic energy of the incoming

particle. In the development process the silver specks act as catalysts for the action of weak

reducing agents that deposit additional silver atoms from the same crystal. The deposited

silver which appears as black grains under a microscope is permanently embedded into the

gelatin through a fixing process. The unexposed silver halide crystals that remain unaf-

fected in the development bath, are removed in the fixing bath. Thus the trail of opaque

silver grains form a permanent track structure. To get a good track resolution, the emulsion

should have very small grain size and a low density of background grains. It also depends on

the emulsion sensitivity and energy of the moving particle as well. Various characteristics

of the tracks formed in emulsion are discussed in the next section.

2.1.2 Track Structure

• Grain Density: The grain density dn/dx is defined as the number of silver grains

deposited per unit (say 100 micron) path length of a track. The grain density is found to be

proportional to the rate of energy loss (dE/dx) of the moving particle. However, for high

values of dE/dx the proportionality may not always be valid. For an incoming particle of

mass m, charge Zpe and velocity β(= v/c) that is large compared to the velocity of the

K-shell electrons of the stopping material (in this case emulsion), the average restricted

energy loss per unit distance (also called the specific energy loss) is given by [5]

− dE

dx
=

4πZ2
pe

4NZt

mv2

[
ln

(
2mv2

I

)
− ln(1− β2)− β2

]
, (2.1)
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where N is the number of atoms per c.c. of emulsion material, Zt and I are respectively,

the mean atomic number and ionization potential of the emulsion nuclei. In terms of dE/dx

an empirical expression for the grain density is obtained as [6],

dn

dx
= κ

[
1− exp

{
−bZp

(
dE

dx

) 1
2

−
√
α

}]
. (2.2)

Here κ and b are experimentally determinable constants that depend on the type of emulsion

and the developing material used, and α is the minimum specific energy loss required to

ensure that grains are developed. Thus in order to estimate the specific energy loss dE/dx

and hence the velocity of the moving charged particles, one can see that the grain density

is a useful parameter. It is determined by counting the number of developed grains within

a measured length of the track. Sometimes instead of grain density, the blob density B

is measured. A blob is a resolvable spot in which more than one grains are present. The

estimation of blob number is equivalent to measuring the number of gaps between two blobs.

It is observed that the frequency distribution of the gap length follows an exponentially

decaying nature [7]. According to [8], the number density of gaps H exceeding a gap length

value l is

H(l) = B exp(−g l), (2.3)

where the slope parameter g is a measure of the grain density, but cannot be set exactly

equal to the true grain density dn/dx. Fowler and Perkins gave another relation for the blob

density

B = g exp(−g α′), (2.4)

where α′ is a parameter determined by the average developed grain size. From these two

relations one can determine g as a useful ionizing parameter.

• Lacunarity and Opacity: The lacunarity L of a track is defined as the fraction of a

track that is made up of gaps. In terms of the grain density g it is expressed as,

L =

∫ ∞
0
−l
(
dH

dl

)
dl = exp(−g α′). (2.5)

From Eq. (2.4) and Eq. (2.5) we get g = B/L and α′ = −(L/B) lnL. For particles with low

Z and high velocity (β ≈ 1) the specific energy loss is small, and a proportionality like

dE

dx
∝ dn

dx
(2.6)

holds. Assuming g ≈ dn/dx, one may relate Z of the particle with L as, Z2 ∝ − lnL.

Opacity O on the other hand, is defined as the fraction of a track that is made up of blobs,

and therefore it is related to lacunarity as, O = 1−L. Thus the charge of a particle can be
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determined either by measuring its lacunarity or opacity. By default for low charge values

(Z 6 3) a high degree of accuracy for the charge measurement can be achieved in this

method because

δZ ∝ 1

Z

δL

L
. (2.7)

Here the error in L measurement, δL = σL/
√
Nc can arbitrarily be reduced by increasing

Nc, the number of cells of equal length over which the measurement of L has been made.

σL =
√
< L2 > − < L >2 is the variance in L.

•Delta Ray: For high charge values (usually for Z > 4) the rate of energy loss of the moving

particle is high, and secondary electrons are produced with sufficient kinetic energies, and

some of these electrons may have observable tracks within emulsion. Such electron tracks

are referred to as delta rays. The number of delta rays (nδ) is also dependent on dE/dx.

Therefore, when lacunarity measurement is not possible, the method of delta ray counting

can be utilized to determine the charge of a particle. For a particle of charge Ze the number

of delta rays with energies between W and W + dW is given as [9],

dnδ =
2πN Z2

p e
4

me v2

dW

W

[
1− β2 W

Wmax

]
. (2.8)

Where me is the electron rest mass, and

Wmax =
2 me c

2β2γ2

1 + 2γ
(
me
m

)
+
(
me
m

)2 (2.9)

being the upper energy limit that the electron may have received, and γ =
√

1− β2 is the

Lorentz factor. The lower limit of delta ray energy is found to be more or less 10 KeV.

Integrating Eq. (2.8) one obtains, nδ ∝ Z2/β2. For particles moving with relativistic speed,

β ≈ 1 and hence a relation like, nδ ∝ Z2 can be utilized to determine the charge of such

particles.

• Particle Range: Charged particles loose energy through collisions with the atoms present

in the medium through which they traverse. When the energy of the moving particle becomes

less than the ionization potential of the atoms present in the medium, the particle in motion

suffers multiple elastic scattering and ultimately stops within the medium. The track length

of the particle is the distance along the trajectory starting from its point of origin to the

last developed grain. It is also known as the residual range (R). The true range can then

be defined as the distance traveled by the particle before it stops within the emulsion. From

the knowledge of specific energy loss dE/dx and initial energy E0, the range of a charged

particle can be determined,

R(E0) =

∫ E0

0

1

dE/dx
dE. (2.10)
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Using the expression for dE/dx, the above relation can be written as,

R(E0) =
m

Z2
f(v0) (2.11)

where v0 is the initial velocity. In the nonrelativistic limit (E0 < mc2) a range-energy

relation for any particle is similar to that of a proton, Rp = KEnp , where R is in microns

and the kinetic energy Ep is in MeV. Here K (typical value 0.262) and n (typical value

0.575) are experimentally obtained parameters. For an arbitrary particle of mass m and

charge Ze the range-energy relation is derived to be [10]

E = K

(
m

mp

)(1−n)

Z2nRn, (2.12)

where mp is the proton rest mass. Due to different types of uncertainties and fluctuations,

range of even mono-energetic particles exhibit straggling. A straggling parameter may be

defined as,

ΓR =
π

2

[∑N
i=1(Ri − R̄)2

N

]1/2

. (2.13)

The full width at half maximum (∆R) of the differential distribution curve of ranges is

related to ΓR as, ∆R = 0.94 ΓR.

• Track Width: For a highly ionizing particle (usually Z > 10) the linear track structure

contains little information in terms of grain or blob density, and nδ becomes too large to be

counted. Under such circumstances, the track width has been found to be a useful parameter

to identify the charge of the particle [3]. The track width depends on various factors such

as, the type of emulsion and the developer used, the particle variables like charge, mass,

velocity etc. Experimental data show that the track width increases linearly with particle

charge for Z > 10. As the track caused by a heavy-ion reaches toward its end, a thinning

down (tapering) of the track is observed due to electron capture, which reduces the effective

charge of the ion. The length of this tapered portion (Lt) of the track may also be used to

find out the atomic number of the particle [11]. An empirical relation like Lt = C Zν with

ν ≈ 1 has been obtained in this connection.

• Shrinkage Factor: Since gelatin is a hygroscopic material, the actual equilibrium thick-

ness and index of refraction of both the processed and unprocessed emulsion depend on the

surrounding humidity. Consequently, we define the shrinkage factor (S) as,

S =
thickness of emulsion plate during exposure

thickness of emulsion plate during scanning
. (2.14)

Thus for any quantitative measurement of the track densities in emulsion, the original

thickness of the emulsion has to be known.
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2.2 The Microscopy

• Counting and Statistics: In an emulsion experiment counting is as important as mea-

surement. Tracks belonging to different categories (to be discussed later) should be properly

counted, and the target nucleus should be identified accordingly. The ionization of a track

may be measured by counting the number of grains or blobs over a particular track length

(say 100 micron). To identify the charge of the particle the delta rays over a similar length

interval may also be counted. Energy spectra are determined by counting the number of

tracks within particular range intervals. Angular distributions are determined by counting

the number of tracks in prescribed angular intervals. Therefore, a practical knowledge of

counting statistics is essential in order to justify the reliability of the collected data. The

Poisson distribution is usually used for this purpose.

• Dip Angle: The dip angle (δ) of a linear track segment is given by

tan δ =
S∆z

Lxy
, (2.15)

where ∆z is the difference in depth between any two points on the track segment under

consideration, Lxy is the length of the track projected between these two points on the

horizontal (x, y) plane, and S is the shrinkage factor. It has been implicitly assumed that the

refractive index of the oil employed for oil immersion objective is very close to the refractive

index of the developed emulsion and the glass plate. If dry objectives are used, the apparent

depth da will be less than the true depth dtrue, which is measured as, dtrue = µeda. Here µe

is the refractive index of the emulsion.

• Space Angle: The space angle also known as the emission angle (θ) between two tracks

may be measured by the simple co-ordinate method. If the direction cosines of the tracks

are (l1,m1, n1) and (l2,m2, n2), then θ is given by

cos θ = l1 l2 +m1m2 + n1 n2. (2.16)

The direction cosines of a track can easily be obtained by taking space coordinates of any

two points on the track. If (x1, y1, z1) and (x2, y2, z2) are the space points on the track, the

direction cosines are given as

(l,m, n) ≡
(
x1 − x2

d
,
y1 − y2

d
,
z1 − z2

d

)
(2.17)

with d =
[
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

]1/2
. The azimuthal plane is defined as a

plane perpendicular to the direction of motion of the incoming projectile nucleus. The track

direction projected onto the azimuthal plane with respect to some reference direction may
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be defined as the azimuthal angle (ϕ) of the track. If the projectile direction is taken as one

of the displacement directions (say x-direction), then the azimuthal angle is given by,

ϕ = tan−1

(
S ∆z

∆y

)
. (2.18)

If the projectile direction does not completely coincide with the specified x-direction, then

ϕ for a particular track may be measured by setting the corresponding quantity for the

projectile track as zero. The track geometry is schematically presented in Fig. 2.1. Due to

scattering the track of a charged particle in emulsion may not always be straight. Therefore,

it is convenient to break up the track into M number of essentially straight segments, and

the residual range of the particle may be determined from the relation,

R =
M∑
i=1

[
(xi − xi−1)2 + (yi − yi−1)2 + S2(zi − zi−1)2

]1/2
. (2.19)

θ

p

p T

p L

ϕ

Figure 2.1: Schematic of a secondary track geometry with respect to the projectile.

•Momentum Measurement: While passing through emulsion medium, charged particles

experience frequent small deflections due to elastic scattering with the Coulomb field of the

atomic nuclei present in the medium. The probability for such a deflection having small

angular deviations but at high frequency, is governed by Rutherford’s scattering formula. A

general expression for the projected absolute angle of deviation (φ) is theoretically derived

by Goudsmit and Sauderson [12] and its mean is given by

φ̄ =
χ Z

pβ

(
t

100

)1/2

. (2.20)
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Where χ is a constant of scattering, defined as

χ = Zp e
2 ZtN

1/2

[
ln

(
φmax

φmin

)]1/2

. (2.21)

Here N is the number of atoms per unit volume in emulsion, Zt is the average atomic number

of the atoms presents in the medium, Zp is the atomic number of the particle moving with

velocity β and p being its momentum, φmax (φmin) is the maximum (minimum) value of the

projected angle in the plane of the initial particle trajectory, and t is the path length in the

scattering medium. It is necessary to determine the value of φ̄ very accurately in order to

find out pβ value of a track. This can be done following a method suggested by Fowler [8].

In Fowler’s method the plate is placed on the mechanical stage of the microscope in such a

way that the track is (at least approximately) parallel to one of the sides of the stage, say

x-axis. The coordinate (x0, y0) of an arbitrary point on the track are measured. The plate

is then displaced by a distance equal to the cell length t along x-direction, and the ordinate

y1 of the point is determined by means of an eyepiece scale. The measurement should be

performed under a very high magnification (e.g., 2500×), and the ordinate eyepiece scale

is commonly replaced by a flair micrometer, which is capable of reading distances within a

few hundreds of micron. Once again the stage is moved through the standard distance t,

and the ordinate y2 is recorded. The operation is repeated several times along the length

of the track. The absolute value of the second differences taken irrespective of the sign:

Dk =| yk+2 − 2yk+1 + yk | of successive such measurements are determined. The mean

absolute value between successive chords of length t corrected for stage noise and cell length

D̄ =
∑n

k(Dk/n) gives a measure of the scattering parameter through

φ̄ =
D̄

t
(180/π). (2.22)

From the above relation pβ (in MeV/c) can be evaluated. In a given cell length t of the

track, the energy loss must be negligible if φ̄ is to be a meaningful quantity.

2.2.1 Scanning Emulsion Plates

In a scanning process events (or interactions, also called stars) of a certain types are located

in a systematic way. In area (more specifically volume) scanning the focal surface is con-

tinually shifted to sweep up and down from the surface of the emulsion to the supporting

glass. This is done by rolling the fine focus control while observing the events successively

coming into and going out of view. Each field of view is scanned throughout its depth from

one surface of the emulsion to the other. For high efficiency the field may be divided into

a number of sufficiently small separate areas, so that the entire volume can be covered as
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the traverse is made. Generally area scanning is performed under either of the following

two circumstances, (i) when events of a certain type within a given volume of emulsion

are to be found, and (ii) if the situation demands a representative sample of events. Pre-

liminary volume or line scanning may be performed under a magnification of 300 − 400×,

but the angle measurement and track identification process may finally be done under a

total magnification of 1500×. It would be worthwhile to note that volume scanning is not

an effective method for finding out single diffractive dissociation events and/or interactions

with H-nuclei. Only high multiplicity events easily catch human eyes. Therefore, to get an

unbiased sample of events area/volume scanning is not recommended. For that purpose the

technique of along the track scanning is preferred. In this technique each projectile track

is carefully followed from the leading edge of a plate along its length until the projectile

interacts or leaves the plate. Like the area scanning, the preliminary scanning along the

track may be performed under 300− 400× total magnification, though the final selection of

events has to be done under a higher magnifications (say at 1500×). There can be no denial

that the emulsion scanning is a tiresome and time consuming process, and it requires a lot

of patience and concentration on the part of a scanner. Accuracy of an emulsion experiment

depends largely on the skill of the observer. To avoid individual bias counter checking of the

same data sample by independent observers is therefore, recommended. By adopting along

the track scanning method in emulsion experiments it is possible to build up a sample of

minimum bias events.

2.3 Data Characteristics

Stacks of Ilford G5 nuclear photographic emulsion pellicles of size 18 cm × 7 cm × 600 µm,

were horizontally irradiated to a beam of 28Si nuclei at an incident energy of 14.5A GeV (Ex-

periment No. E847) from the Alternating Gradient Synchrotron (AGS) at the Brookhaven

National Laboratory (BNL) [13]. The flux of incident 28Si nuclei was 3×103 ions per square

centimeter. The equivalent nucleon-nucleon (NN) center of mass energy
√
sNN = 5.382

GeV. If the AB collision is considered as a superposition of many incoherent NN collisions,

then for a central collision where all 28 nucleons of the 28Si nucleus participate in the inter-

action, this amounts to a total center of mass energy
√
s ≈ 151 GeV. On the other hand, if

the AB interaction is considered as a coherent collision between an incoming 28Si nucleus

and a stationary Ag or Br nucleus (for which the weighted average mass number A ≈ 94),

then the total center of mass energy comes out to be
√
s ≈ 275 GeV. These are two ex-

treme limits, and the actual center of mass energy is perhaps somewhere in between the two

extreme cases mentioned. However, the above quoted values of
√
s give a qualitative idea

about the center of mass energy scale of the interactions, and not to determine the exact
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degree of coherence. To find out the primary 28Si-emulsion stars Leitz microscopes with

a total magnification of 300× were utilized, and the emulsion plates were scanned along

individual projectile tracks. According to the emulsion terminology, tracks emitted from a

star are classified into four categories namely, the shower tracks, the gray tracks, the black

tracks, and the projectile fragments.

• Shower Tracks: The shower tracks are caused by singly charged particles moving with

relativistic speed (β > 0.7). This category comprises of particles produced in a high energy

interaction, most of which are charged pi-mesons. The ionization of a shower track I 6 1.4 I0,

where I0 (≈ 20 grains/100 microns) is the minimum ionization due to any track observed

within a G5 plate. The total number of such tracks in an event is denoted by ns.

• Gray Tracks: The gray tracks are generally due to the protons that have directly partic-

ipated in an interaction and are knocked out from the target nuclei. They usually fall within

an energy range of 30 – 400 MeV. The ionization limit of gray tracks is 1.4 I0 < I 6 6.8 I0

and its range is > 3 mm in standard emulsion. A few percent of the gray tracks may also

be due to the slow moving mesons. The velocity range of these particles is 0.3c to 0.7c. The

number of gray tracks in an event is denoted by ng.

• Black Tracks: Black tracks are predominantly originate from the slowly moving protons

and other heavier fragments emitted by the excited target nucleus after an interaction has

taken place. Their velocity is < 0.3c, and for a black track caused by a proton the kinetic

energy < 30 MeV. Ionization of these category of particles is greater than 6.8 I0, and range

less than 3 mm. in emulsion. The number of black tracks in an event is denoted by nb.

• Projectile Fragments: The projectile fragments are the spectator parts of the incident

nucleus that do not directly participate in an interaction. Having almost same energy

and/or momentum per nucleon as the incident projectile, these fragments exhibit uniform

ionization over a long range and suffer negligible scattering. Their number in an event is

denoted by npf . The projectile fragments are emitted within an extremely narrow forward

cone along the beam direction whose semi-vertex angle θF is decided by the momentum

of the incoming nucleus (pinc). For a given pinc and Fermi momentum (pF ) of the target

nucleus, θF is defined as,

θF = pF /pinc. (2.23)

According to a simple Fermi gas model the Fermi energy of a nucleus is given by

EF =
~2

2mN

(
3

2
π2nN

)2/3

, (2.24)

where mN and nN are, respectively, the nucleon mass and nucleon number density. The

Fermi momentum is calculated from EF through: pF =
√

2mNEF . Roughly, pF is estimated
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to be 200 MeV/c for the silicon nucleus. For a projectile nucleus having 14.5A GeV of kinetic

energy, θF ≈ 0.013 rad. In an event npf denotes the number of projectile fragments of charge

z > 2 falling within this cone.

• Event Selection: A sample of inelastic events can be classified into two different cat-

egories namely, the electromagnetic dissociation (ED) events and the nuclear events. Ex-

tremely strong electromagnetic fields offered by the target nuclei causes electromagnetic

dissociation of the projectile nuclei. The ED events typically consist only of projectile frag-

ments [14]. Barring the ED events, rest of the events in the sample may be considered as

nuclear interactions. Nuclear interactions are subdivided into peripheral (large impact fac-

tor) and central (small impact factor) collisions in terms of their shower multiplicities. The

target of an interaction, whether a light nucleus (H, C, N, O) or a heavy nucleus (Ag, Br),

is decided by the number of heavy tracks (nh) produced from the event. The total number

of heavy tracks of an event is nh = nb + ng. By imposing a restriction nh > 8 with at least

one fragment of charge Z > 2 per event, it can be ensured that the interaction is either with

an Ag nucleus or with a Br nucleus. An event with nh < 8 can either be an Ag/Br or a

light nucleus (H, C, N, O) event. A further restriction on the number of spectator projectile

fragments in an event npf (Z > 2) = 0 enable us to choose only those interactions where

total fragmentation of the incident 28Si nucleus has taken place. By following 113.25 mts.

of primary track length a total of 1003 events were found, which is equivalent to a mean

free path of λtot = 11.29 ± 0.36 cms. for 28Si nuclei in emulsion and which corresponds

to a total cross section σtot = 1121 ± 34 mb. Among 1003 primary events, 88 events were

due to the ED of the 28Si projectile and the rest were due to inelastic interactions. The

experimental value of the mean free path for the latter class of events is λinel = 12.38± 0.41

cm., and the corresponding cross-section σinel = 1023±34 mb [13]. From a simple geometric

participant-spectator model [15], the AB interaction cross-section is given as

σth = πr2
0

[
A1/3
p +A

1/3
t − δ

]2
, (2.25)

where At (Ap) is the target (projectile) mass number. In our case Ap = 28, and the weighted

average target mass number of emulsion nuclei (Table 2.1) is taken to be At = 29.10. This

gives σth = 1262.02 mb, where r0 = 1.2 fm. and δ = 0.83 have been used. In Fig. 2.2 we

have shown a plot of reaction cross-section in the framework of the participant-spectator

model [16]. Due to intrinsic inefficiency associated with human bias, in particular to detect

diffractive dissociation and electromagnetic dissociation events, the present experimental

value of σtot is slightly lower than the universal trend.

After counting measurements are completed, the emission angle (θ) with respect to the
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Figure 2.2: Plot of reaction cross-section with A
1/3
p +A

1/3
t up to SPS energy

projectile nucleus and the azimuthal angle (ϕ) of each track were measured. The angle mea-

surement are performed by using 100× oil immersion objectives at a total magnification of

1500× with the help of Koristka microscopes. In an emulsion experiment the pseudorapidity

(η) together with the azimuthal angle (ϕ) of a track constitutes a convenient pair of basic

variables in terms of which the particle emission data can be analyzed. Knowing θ, the η

variable can be determined. As mentioned in Section 1.2, when energy and/or momentum

measurements are difficult as it is the case for emulsion experiment, and where in comparison

with the total energy the rest mass of a particle can be neglected, as it is the case for most

of the charged mesons produced in high energy interactions, the pseudorapidity variable is

a convenient replacement of the rapidity variable. The η-resolution is given as

δη = − 1

sin θ
δθ. (2.26)

So, at small angles only a small error in θ measurement can ensure a good resolution in η. An

accuracy of δη = 0.1 unit of pseudorapidity and δϕ = 1 mrad. could be achieved through the

reference primary method of angle measurement. Following the criteria mentioned above a

sample of 28Si-Ag/Br events of size Nev = 331 is considered for further analysis. Our analysis

is confined only to the shower tracks having an average shower track multiplicity 〈ns〉 =

52.67 ± 1.33. To avoid contamination between the singly charged produced particles and

the spectator projectile protons, shower tracks falling within the Fermi cone were excluded

from our analysis. Distribution of both η and ϕ for all the shower tracks in the event sample
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Figure 2.3: Distributions of (a) pseudorapidity and (b) azimuthal angle of shower tracks
emitted from 28Si-Ag/Br interaction at 14.5A GeV.

have been obtained in terms of the respective density functions

ρ(x) =
1

Nev

dns
dx

, (2.27)

with x = η or ϕ. The η-distribution of shower tracks can be approximated by a Gaussian

function like,

ρ(η)dη = ρ0 exp

[
−(η − η0)2

2σ2
η

]
dη, (2.28)

where ρ0 is the peak density, η0 is the centroid and ση is the width of the distribution. The

experimental η and ϕ-distributions are shown in Fig. 2.3. The η-distribution is fitted to

Eq. (2.28). The fit parameters are, ρ0 = 17.88, η0 = 1.90 and ση = 2.17. The ϕ-distribution

on the other hand, is asymmetric within its accessible range (0, 2π). The dips in the ϕ-

distribution near ϕ ≈ 900 and 2700 may either be due to inefficient recording of shower

tracks in the directions vertical to the emulsion plane, exactly toward or away from the

direction of vision, or it may be due to a dynamical reason like azimuthal asymmetry (flow),

or it may be due to the combination of both.

The energy density in the central η region can be estimated by making use of Bjorken’s

formula (1.72). While applying the formula two important points have to be kept in mind:

(i) that the production of neutral pions in any high energy interaction is as abundant as

either of their charge varieties, and (ii) that the overlapping area (A) between the projectile

(28Si nucleus) and target Ag (or Br) is almost equal to the geometrical area of a 28Si nucleus.

Therefore, the factor dN/dy ≈ dN/dη in Bjorken’s formula has to be replaced by 1.5 dns/dη.

Note that dN/dy is the rapidity density of all produced particles in the given sample.

Keeping these two factors in mind and putting 〈mt〉 =
√
m2 + 〈pt〉2 ≈ 0.38 GeV and τ0 = 1

fm/c, we obtain ε ≈ 1.5 GeV/fm3 for a subsample of events with shower track multiplicity

ns > 50. Note that even for the subsample with a high number of produced particles, the
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energy density value is just above the threshold required for the onset of a QGP like state,

which according to the lattice QCD is approximately a few GeV/fm3 [17]. In soft processes

like multiparticle production, it is even more difficult to extract the signature of such a

state, even if it is formed. Therefore, though we do not aspire to conclusively establish

a QGP formation in the present colliding system, obviously the multiparticle production

phenomenon, which itself is an interesting topic in heavy-ion collision, can be statistically

analyzed. Based on the Glauber model following a method prescribed in [18], for a subsample

of events falling within a limited shower multiplicity range, one can even obtain a rough

estimate of the collision centrality and hence the average impact parameter (b̄), from the

number density of shower tracks in the central η region. In this method the peak value

of the η density of produced charged particles in AB collision at an impact parameter b is

related to the same density for pp interaction at the same energy by the following relation:

dNch

dη
(b)

∣∣∣∣
AB

≈ 1.28
AB

A2/3 +B2/3

1

1 + a(A1/3 +B1/3)
exp

(
−b2/2β2

) dNch

dη
|pp . (2.29)

Here a is a parameter obtained by linear fitting of dNch/dη against A1/3 for different AB

collisions at 14.5A GeV. For our event sample with ns > 50 we obtained b̄ = 4.45 fm.

2.4 Merits and Demerits of Emulsion Experiments

One of the main advantages of nuclear emulsion is that, it can be used as a detector of

charged particles as well as a target medium comprising of nuclei of varying mass numbers.

As mentioned above, standard emulsions consist of H, C, N, O, Ag and Br nuclei. As far as

high-energy interactions are concerned, information regarding target nucleus mass can be

obtained from the characteristic appearances of an event. Nuclear emulsion has the ability

to detect all charged particles coming out of an event (also called a star) i.e., emulsion as

a detector has 4π acceptance. However, the detection efficiency is not equally good in all

directions. Particularly along the vertical direction (along the thickness of the plates) the

efficiency is not very good. The stopping power of nuclear emulsion is usually very high due

to its high medium density, and therefore, the interaction probability between a projectile

particle and a target nucleus is also very large. This in other words means an ultra-high

energy particle that may easily pass through any other detector even without interacting, has

a very small possibility to pass through an emulsion plate without creating any track. As a

detector nuclear emulsion is less costly, light weight and very easy to handle. The sensitivity

of undeveloped nuclear emulsion pellicle lasts for a few weeks. Hence all charged particles

passing through it are able to get their tracks permanently recorded within a long span of

time. That makes emulsion a suitable detector for balloon flight and satellite experiments to
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study the cosmic-ray events where the projectile / beam is rarely found. In nuclear emulsion

neutral particles can also be indirectly detected, as and when they interact with the light

nuclei, particularly Hydrogen, and produce tracks of charged particles. The same mechanism

is used in the scintillation detectors to detect neutral particles, specially neutrons. Nuclear

emulsion can be used from the temperature of liquid Helium up to the boiling point of

water. The most striking advantage of nuclear emulsion is its high spatial resolution. For

conventional horizontally irradiated stacks of emulsion pellicles, in spite of multiple Coulomb

scattering and distortion effects, an accuracy of 0.1 unit of pseudorapidity can be achieved.

This unique feature makes the emulsion experiments important to investigate distributions

of produced particles in narrow intervals of pseudorapidity space.

There are some difficulties associated with the emulsion experiments too. It is not possible

to identify the sign of a charged particle unless a magnetic field is applied. But it is difficult

to get the magnetic field penetrate into the emulsion material, hence to produce enough

curvature in the track of a relativistic particle to identify its charge. The sensitivity and

thickness of emulsion pellicles are affected by temperature, humidity, age etc. Unless special

care is taken these factor always introduce some error in the data. The track lengths of

most of the produced particles in emulsion are at best a few millimeter long. So high

magnification devices such as high power microscopes are required to scan and collect data.

Moreover, till date no automated device could be designed for scanning emulsion pellicles,

so we totally depend on our eyes. This makes the data acquisition process a tedious and

time consuming process. For AB interactions at GeV energy range, where a few hundreds

of particles may come out of an event, the time taken to build up even a moderate statistics

requires huge effort. The collected data can never be fully free from personal bias and errors.

However, such errors can be reduced through counter checking by more than one independent

observer. Identification of target fragments often becomes extremely difficult, and sometimes

even impossible. Therefore, in the data collection process it is often impossible to exactly

identify the target nucleus of the interaction. However, as mentioned in Section 2.3 a gross

distinction between the light group (H, C, N, O) and the heavy group (Ag, Br) of target

nuclei can be made.

2.5 The Simulation

We know that a complete theoretical description of high-energy AB collisions requires exact

QCD calculations. But due to the intrinsic complexities associated with the QCD, non-

perturbative effects are treated through model calculations. In our analysis we use the the

Ultra-relativistic Quantum Molecular Dynamics (UrQMD) [19] model to simulate the exper-

iment in most of the cases. However, on one occasion (Ring-jet analysis, Chapter 6) we have
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also used the RQMD model [20]. Both RQMD and UrQMD are transport models where

an AB interaction is considered as a superposition of many elementary NN interactions,

and simulates the entire history of the space-time evolution an AB event, starting from its

initial pre-equilibrium stage to the final freeze-out. Brief descriptions of both the models

are given in Section 1.5. While a provision to accommodate nuclear emulsion as a probable

target has been made in the RQMD model, the same in UrQMD cannot be automatically

done. The sampling of Ag/Br events generated by UrQMD is described below. Here we

describe the salient features of the UrQMD model in details.

The UrQMD model is a microscopic model based on a phase space description of nuclear

reactions. It describes the phenomenology of hadronic interactions at low and interme-

diate energies (
√
s < 5 GeV) in terms of interactions between known hadrons and their

resonances. At higher energies (
√
s > 5) GeV, the excitation of color strings and their

subsequent fragmentation into hadrons are taken into account. The model was proposed

mainly for a microscopic description of AB interactions. Note that up to now there is

no unique theoretical description of the underlying hadron-hadron interactions, with their

vastly different characteristics at different incident energies and in different kinematic in-

tervals. Perturbative quantum chromodynamics (pQCD) can be applied to describe hard

processes, processes with large four-momentum (Q2) transfer. But pQCD is formally inap-

propriate for the description of soft processes because of the small Q2 values. Therefore,

low-pt collisions are described in terms of phenomenological models. With advance computa-

tion facilities available now-a-days a vast variety of models for hadronic and nuclear collisions

can be implemented. The UrQMD model is one of them which is quite appropriate for the

collision energy involved in the present experiment.

The UrQMD model is based on the covariant propagation of all hadrons considered on the

(quasi)particle level on classical trajectories in combination with stochastic binary scatter-

ings, color string formation and resonance decay. It represents a Monte Carlo solution of a

large set of coupled partial integro-differential equations for the time evolution of the var-

ious phase space densities of particle species i = N,∆,Λ, π, etc. The main ingredients of

the model are the cross sections of binary reactions, the two-body potentials and the decay

widths of resonances. Projectile and target are modeled according to a Fermi-gas ansatz.

The nucleon are represented by a Gaussian shaped density distribution,

ϕj(xj , t) =

(
2α

π

)3/4

exp

[
−α{(xj − rj(t)}2 +

i

~
pj(t)xj

]
. (2.30)

The wave function of the nucleus is defined as the product of single nucleon Gaussian

functions without invoking the Slater determinant that is necessary for antisymmetrization.
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Therefore, the total N -body wave function is given as

Φ =
∏
i

ϕi(xj ,pj , t). (2.31)

In configuration space the centroids of the Gaussian are distributed at random within a

sphere of radius

R(A) = r0

(
1

2

[
A+ (A1/3 − 1)3

])1/3

: r0 =

(
3

4πρ0

)1/3

, (2.32)

where ρ0 is the nuclear matter density in the ground state. The finite widths of these

Gaussians result in a diffused surface region beyond the radius of that sphere. The ini-

tial momenta of the nucleons are randomly chosen between 0 and the local Thomas-Fermi

momentum,

pmax
F = ~c

(
3π2ρ

) 1
3 , (2.33)

ρ is the corresponding local nucleon density. A disadvantage of the initialization mentioned

above is that the initialized nuclei are not really in their ground state with respect to the

Hamiltonian used for their propagation. However, the parameters of the Hamiltonian are

tuned to the equation of state of finite nuclear matter and to properties of finite nuclei, e.g.,

binding energy, root mean square radius, etc. If however, the energy of the nucleons within

the nucleus is minimized according to the Hamiltonian in a self consistent fashion, then the

nucleus would collapse to a single point in momentum space because the Pauli principle has

not been taken into account in the Hamiltonian. One possible solution to this problem is

the inclusion of fermionic properties of the nucleons via the anisymmetrization of the wave

function of the nucleus. This ansatz has been implemented in the framework of the Fermionic

Molecular Dynamics (FMD) [21]. But the FMD equations of motion are computationally

very expensive. To get rid of the problems one can use the so called Pauli potential [22]

in the Hamiltonian. Its advantage is that the initialized nuclei remain absolutely stable,

whereas in the conventional initialization and propagation without the Pauli potential, the

nuclei start evaporating single nucleons after approximately 20–30 fm/c. A drawback of

the potential is that the kinetic momenta of the nucleons are not anymore equivalent to

their canonical momenta, i.e. the nucleons carry the correct Fermi-momentum, but their

velocities are zero. Furthermore, the Pauli potential leads to a wrong specific heat and

changes the dynamics of fragment formation.

For AB collisions the interaction potential used in UrQMD is the density dependent Skyrme

potential. This potential consists of a sum of two and a three-body interaction term. The

two-body term (ESk2) having a linear density dependence, models the long-range attractive

component of the NN interaction, whereas the three-body term (ESk3) with its quadratic
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density dependence is responsible for the short-range repulsive part of the interaction. In

addition to the Skyrme potential, Yukawa (EYuk), Coulomb (ECoul) and Pauli (EPauli)

(optional) potentials are also implemented in the UrQMD model. In finite nuclei the usage

of a Yukawa term has the advantage that the parameter can be tuned to the proper surface

potential of the nuclei without changing the equation of state. Currently only CASCADE

mode or a hard Skyrme equation of state are available in the UrQMD. The default mode is

CASCADE, the hard Skyrme equation of state is limited to incident beam energies below

4.0 GeV per nucleon. With these interactions the classical UrQMD Hamiltonian can be

written as,

H =
N∑
j=1

Ekin
j +

1

2

N∑
j,k=1

(
ESk2
jk + EYuk

jk + ECoul
jk + EPauli

jk

)
+

1

6

N∑
j,k,l=1

ESk3
jkl . (2.34)

The equation of motion of the many-body system is calculated by means of a generalized

variational principle. The time evolution of the system is obtained by the requirement that

the action is stationary under the allowed variation of the wave function. This yields an

Euler-Lagrange equation for each parameter:

ṗi = −∂ 〈H〉
∂qi

= −∇qi

∑
j 6=i
〈Vij〉 = −∇qi 〈H〉 (2.35a)

q̇i = −∂ 〈H〉
∂pi

=
pi
m

+∇pi

∑
j

〈Vij〉 = −∇pi 〈H〉 , (2.35b)

〈Vij〉 =

∫
d3x1d

3x2 ϕ
∗
iϕ
∗
j V (x1, x2) ϕiϕj . (2.35c)

These are the time evolution equations which are solved numerically. The equations have

the same structure as the classical Hamilton equations. Impact parameter of a collision

is sampled according to the quadratic measure, dW ∼ b db. Two particles collide if their

relative distance d fulfills the relation, d 6 d0 =
√
σtot/π. In UrQMD the total cross section

σtot depends on the center of mass energy
√
s, the particle type and its isospin. The neutron-

neutron cross section is set equal to the proton-proton cross section (i.e., isospin-symmetry).

In the high-energy limit (
√
s > 5 GeV) the CERN/HERA parametrization for the proton-

proton cross section is used [23]. Since the functional dependence of σtot on
√
s at low

energies shows a complicated shape, UrQMD uses a table-lookup for those cross sections.

For momenta plab < 5 GeV/c, UrQMD uses the following parametrization to obtain a good

fit to the data,

σtot(p) =

{
75.0 + 34.1p−1 + 2.6p−2 − 3.9p for 0.3 < p < 5

271.6 exp(−1.1p2) for p < 0.3.
(2.36)
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Particle production in UrQMD either takes place via the decay of a meson or baryon res-

onance or via a string excitation and fragmentation. Up to incident beam energies of 8-10

GeV/nucleon particle production is dominated by resonance decays. Production cross sec-

tions for the excitation of individual resonances can be calculated in the framework of

the one-pion exchange (OPE) or one-boson exchange (OBE) models [24]. Regarding the

number of implemented resonances in UrQMD and considering the limited applicable en-

ergy range for cross sections calculated within OPE and OBE models, the calculation of

all implemented resonance excitation cross sections in the framework of these models is

not practical. Therefore, an effective parametrization based on simple phase space con-

siderations has been employed in UrQMD, and free parameters are tuned to experimental

measurements. After the fragmentation, decay of the resonances proceeds according to the

branching ratios compiled by the Particle Data Group [23]. The resonance decay products

have isotropic distributions in the rest frame of the resonance. If a resonance is among

the outgoing particles, its mass must first be determined according to a Breit-Wigner mass

distribution. If the resonance decays into N > 2 particles, then the corresponding N -body

phase space is used to calculate their N momenta stochastically. The Pauli principle is

applied to hadronic collisions or decays by blocking the final state, if the outgoing phase

space is occupied. The collision term in the UrQMD model includes more than fifty baryon

species (including nucleon, delta and hyperon resonances with masses up to 2.25 GeV) and

five meson nonets (including strange meson resonances), which are supplemented by their

corresponding anti-particles and all isospin-projected states. The states can either be pro-

duced in string decays, s-channel collisions or resonance decays. For excitations with higher

masses e.g., more than 2 GeV, a string picture is used. Full baryon/antibaryon symmetry is

included. Therefore the number of implemented baryons defines the number of antibaryons

in the model and the antibaryon-antibaryon interaction is defined via the baryon-baryon

interaction cross sections. The framework allows to bridge within one concise model, the

entire available range of energies, from the Bevalac region (
√
sNN ∼ a few GeV) to the

RHIC (
√
sNN = 200 GeV).

2.5.1 Modeling Bose-Einstein Correlation

The Bose-Einstein correlation (or equivalently, the Hanbury-Brown–Twiss effect) is one of

the primary reasons of particle correlation in relativistic nuclear collisions. Even though

the phenomena in nuclear and particle physics was introduced more than thirty tears ago,

several basic questions concerning the form of the correlation function remain unanswered.

With the modernization of computational facility, the level of sophistication both in the

theoretical description and in the experimental studies has increased very much, in particular

in the field of heavy-ion physics [25]. The Bose-Einstein correlation (BEC) between identical



Chapter 2. Experiment and Simulation 72

particles is a quantum statistical effect which is usually not embedded in a classical Monte-

Carlo model like the UrQMD model. We know that intensity correlations appear due to the

symmetrization of the two-particle states. Suppose that a pair of particles is observed with

respective momenta q1 and q2. If final state interactions can be neglected, the amplitude of

such a final state is proportional to

A ∝ 1√
2

[
ei(q1x1+q2x2) + ei(q1x2+q2x1)

]
, (2.37)

where xi (i = 1, 2) is the emission point of the i-th particle. If the particles are emitted

incoherently, the observed two-particle spectrum is given by

ρ2(q1, q2) ∝
∫
dx1ρ1(x1)

∫
dx2ρ1(x2)|A(q1, q2)|2, (2.38)

and the two-particle intensity correlation function is defined as,

D2(q1, q2) =
ρ2(q1, q2)

ρ1(q1)ρ1(q2)
= 1 + |d1(q1 − q2)|2. (2.39)

This function carries information about the Fourier-transformed space-time distribution of

the particle emission:

d1(q) = d1(q1 − q2) =

∫
dxeiqxd1(x) (2.40)

as a function of the relative momentum q. As compared to the unsymmetrized case, BECs

modify the momentum distribution of the pair of particles in the final state by a weight

factor:

fBEC(q, x) = 〈1 + cos[(q1 − q2) · (x1 − x2)]〉 . (2.41)

A large amount of data exists on the two-particle correlation function. It has been seen

that like-charge particle correlations are much stronger than those between unlike-charge

particles [26]. These mens that the two and many-particle correlations are mainly due to

the Bose-Einstein interference.

Since the model code (UrQMD) employed here to simulate the interactions is a classical

Monte-Carlo model, and hence the quantum statistical effects like the Bose-Einstein cor-

relation (BEC) between identical bosons are not embedded into the code. We make an

attempt to include the BEC effect numerically in the form of the so called ‘after burner’

algorithm [27] by making use of the output of the event generator. The particle information

are contained in the UrQMD output file ‘test.f19’ which is written in accordance with

the OSCAR format. Only the (even-wise) pi-mesons are chosen from the output file. Each

particle entry in an event contains a serial number, the particle ID, the particle 4-momentum

(px, py, pz, E), the particle mass m, and the final freeze-out 4-coordinates (x, y, z, t). The
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algorithm of the procedure is as follows:

(i) Randomly choose a meson from an event, call it the ith one, and assign a charge ‘sign’

i.e., +, − or 0 to it, irrespective of its original charge with weight factors respectively,

given by p+ = n+/n, p− = n−/n and p0 = n0/n. Here n+, n−, n0 are respectively,

the number of +ve, −ve and neutral mesons in the event, and n (= n+ + n− + n0)

is obviously the total number of mesons in that event. This meson, say the ith one,

defines a new phase space cell.

(ii) Calculate the distances in the 4-momenta δij(p) = |pi − pj | and 4-coordinates δij(x) =

|xi − xj | between the already chosen meson (i.e., the ith one) and all other mesons

(indexed by j) that are not yet assigned any charge ‘sign’.

(iii) Assign a weight factor

Pij = exp

[
−1

2
δ2
ij(x) δ2

ij(p)

]
(2.42)

to each j-th particle. The weight factor actually characterizes the bunching probability

of the particles in a given cell.

(iv) Then start generating uniformly distributed random numbers r ∈ (0,+1). If r < Pij ,

reassign to the j-th meson the same charge ‘sign’ as the i-th one. Continue the process

until either r exceeds Pij , or until all mesons in the event having the same charge ‘sign’

as the i-th one are exhausted.

(v) Repeat the whole set of operations for all other mesons for which the charge reassign-

ment has not yet been done. Obviously, the weight factors p±,0 will now be modified,

as some of the particles present in the event are already used up. The algorithm is

repeated until mesons belonging to all charge varieties in the event are used up.

The UrQMD model provides all pion pairs with −Q = (pi − pj)2 = (∆E)2 − (∆p)2 < 0. In

order to keep the value of the factor (2.42) below unity, only the pion pairs having space-like

separation: −R2 = (xi−xj)2 = (∆t)2− (∆x)2 < 0 are accepted [28]. Without changing the

overall set of 4-momenta, 4-coordinates, or total meson charge of the system, we can in this

way generate clusters of identical charge states of mesons. A schematic of such clustering is

illustrated in Fig. 2.4.

2.5.2 Sampling 28Si-Ag/Br Simulated Events

Two sets of minimum bias 28Si + Ag and 28Si + Br events at Elab = 14.5A GeV are generated

separately using UrQMD (the UrQMD input parameter CToption(27) = 1). In order to
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Figure 2.4: An illustration of the effect of the Bose-Einstein correlation algorithm. The
phase space distribution of pi-mesons produced in the event generator (UrQMD) is modified
by the after burner algorithm of BEC (UrQMD+BEC). Three color varieties represent the
members of the pion family.

accommodate the Bose-Einstein correlation into UrQMD, the output files of UrQMD are

supplemented by the algorithm mentioned in Section 2.5.1. After that only charged mesons

have been retained for subsequent analyses. The event samples corresponding to different

target nuclei are then mixed up to produce a new (say) ‘hybrid’ sample. While doing so,

the proportional abundance of Ag and Br nuclei in G5 emulsion is maintained [3]. From

the hybrid samples we select events in such a way as to match the experimental s-particle

multiplicity distributions. The simulated sample is five times as large as the experimental

one. Since the simulated event sample possesses identical multiplicity distribution, the

average charged meson multiplicity 〈nch〉 is obviously same as the experimental 〈ns〉. The η

and ϕ distributions for the simulated sample are overlaid onto their respective experimental

distribution, shown in Fig. 2.3. One can see that the simulated event sample possesses more

or less similar η-distribution as the experiment. The peak density, centroid and the width of

the best Gaussian fit to the simulated η-distribution are also very close to their respective

experimental values. The values obtained here are: ρ0 = 18.18, η0 = 1.80 and ση = 2.22.

The ϕ distribution on the other hand possesses a dip at around 1800. This once again is

due to a preferential emission of charged secondaries in the direction of the reaction plane,

or equivalently due to an ‘elliptic flow’ (v2 > 0) in UrQMD [29].

For error calculation we have generated event samples based on random numbers, where

a pair of random numbers representing the η and ϕ values has been associated with each

track. For the pseudorapidity variables we have generated a set of random numbers following

Gaussian distribution with the mean and variance as extracted from the experimental sam-

ple, and for the azimuthal angle another set of uniformly distributed random numbers with
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appropriate limits are generated. The generated sample also possesses identical multiplic-

ity distribution, same η-distribution (actually the best Gaussian fitted distribution) as the

experimental sample and uniform ϕ-distribution. An inverse of integral method is used to

generate the Gaussian distributed random numbers, whereas the linear congruential method

is used to generate the uniformly distributed random numbers [30]. While generating the

random numbers, no correlation has been assumed, and hence these data sets correspond to

independent emission of particles. The random number generated sample size is five times

larger than the experimental one.
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Chapter 3

Intermittency in 28Si-Ag/Br

Interaction at 14.5A GeV

3.1 Introduction

The single particle density distributions of charged particles produced in high-energy col-

lisions exhibit rapid fluctuations having sharp peaks and deep valleys. The origin of such

fluctuations might be, (i) a statistical noise arising out of the finiteness of an event multi-

plicity, (ii) one or more kinematic conservation rules of energy, momentum etc., and (iii)

some nontrivial and hitherto unknown dynamical reason. By averaging over a large number

of events the effect of statistical component (noise) of these fluctuations can be substantially

reduced, but at the same time the nonstatistical (dynamical) components are also averaged

out leaving behind a smooth distribution. One way to study the nonstatistical (dynamical)

component of fluctuations is to use the technique of scaled factorial moments (SFM) first

introduced in [1, 2], and first applied to the JACEE events induced by ultra-high energy

cosmic ray nuclei [3]. In [1, 2] the SFM (Fq) of integer order q, was shown to depend on the

phase space resolution size (say, δX) obeying a power-law type scaling behavior such as

Fq ∼ (δX)−φq : δX → 0. (3.1)

77
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In high-energy physics the above dependence of Fq on δX is known as ‘intermittency’, a

term that usually is used to describe turbulence in fluid dynamics. The positive valued

exponent φq known as the intermittency index represents the strength of intermittency,

and it should be a scale-invariant quantity down to the experimental resolution. Several

speculative measures, some conventional and a few other exotic, are adopted to interpret

the intermittency phenomenon observed in high-energy interactions. As for example, to a

large extent intermittency can be explained in terms of the ordinary Bose-Einstein type of

correlation (BEC) [4, 5] arising out of an enhanced yield in the like charge sign mesons within

narrow phase space intervals. While incorporating the BEC into a numerical modeling

certainly reduces the mismatch between the observation and corresponding Monte-Carlo

(MC) simulation [6], the experimental results as we shall later see, still cannot always be

fully accounted for. Large particle densities within narrow phase space region may also

occur due to collective effects [7, 8] like the Cerenkov gluon emission [9]. The intermittency

may as well be due to a QCD parton shower cascading process of particle emission [10],

or it may be due to a nonthermal phase transition [11] similar to that observed in a spin

glass system. Last but not the least, large fluctuations in the final state particle density

particularly in the nucleus-nucleus (AB) collisions may be an outcome of a transition from

the exotic state QGP to an ordinary hadronic state [12, 13].

While the SFM accounts for local fluctuations in the particles densities, the correlations

among particles at different phase space points that are located at a distance larger than the

scale size at which the correlations are being examined, generated by the intermittency type

of fluctuation, are usually characterized by the two-fold factorial moment or the factorial

correlator (FC) [2]. Therefore, the FC corresponds to the bin-to-bin correlation. Both the

SFM and the FC are actually integrals of the same underlying correlation function, but

they differ from each other only with respect to the respective domains of integration. This

close relationship between the two can be traced into the sum rules involving the SFM and

the FC, an issue that we shall discuss later. Both moments are sensitive to the projection

(dimensional reduction) effects and both contain contributions from the corresponding lower-

order moments. In order to study the genuine multiparticle correlation, all lower-order

correlations must therefore be appropriately taken care of. To serve this purpose one can

study the phase space dependence of another set of moments known as the normalized

cumulant moments (NCM) [14]. The ratio of NCM and SFM of a particular order known

as the oscillatory moment (OM), can also provide some more insight of the multiparticle

dynamics [15, 16] e.g., the gluon-dynamical equation predicts a minimum of OM at rank

q ≈ 5. One should keep in mind though that the OM is effective only to the partonic

multiparticle dynamics [16].

The presence of dynamical components in particle density fluctuations has been confirmed
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in many high-energy experiments. There are some excellent compilations on the subject, see

ref. [17, 18]. The overall picture till date however is neither complete nor very clear. There

still exist plenty of unresolved issues related to this phenomenon that need to be further

scrutinized. To understand the dynamics of correlated particle emission, the SFM analysis

has to be complimented by other types of correlation analysis for the same set of data.

Moreover, it is also necessary to simulate experiments by using various computer codes on

high-energy AB interactions including all possible sources of correlations in multiparticle

production mechanism.

In this chapter we present some results on the SFM and other short-range correlation analysis

of singly charged particles produced in 28Si-Ag/Br interaction at an incident energy of 14.5A

GeV. We compare the experimental results with those obtained from the UrQMD model

and with the UrQMD data modified by the Bose-Einstein correlation (UrQMD+BEC).

Whenever felt necessary, the findings of this analysis are compared with similar other heavy-

ion induced experiments. The motivations of this analysis are: (i) to study intermittency

and various other short-range correlations in 28Si-Ag/Br interaction at 14.5A GeV, (ii) to

compare the experimental results with the UrQMD model and to check whether or not

the BEC implemented in the UrQMD output (discussed in Section 2.5.1) can account for

the experiment. However, before going into the detailed discussion on intermittency and

correlation analysis of our data, we provide below a section that shows the nature of the

multiplicity fluctuation and the local density fluctuation of the experimental events studied

here. A brief but general discussion on multiplicity moments is also incorporated in this

section.

3.2 Fluctuation of Particle Densities

Consider a collision between particles a and b yielding exactly n particles falling within a

subspace Ω of the total phase space Ωtot. We consider y as the basic variable which specifies

the position of each particle in Ω (e.g., y can be the rapidity variable of each particle and

Ω an interval of length δy). The distribution of n particles in Ω can be represented by

continuous probability densities Pn(y1, y2, . . . , yn), n = 1, 2, · · · etc. Now if all the final

state particles are of the same type, Pn is said to be an exclusive distribution of n particles

which describes the distribution in Ω when the multiplicity is exactly n. The inclusive

distribution for q particles in variable y is defined as,

ρq(y1, y2, · · · , yq) =
1

σinel

dqσincl

dy1 dy2 · · · dyq
, (3.2)
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with σinel and σincl the total inelastic and inclusive cross sections. For q = 1, 2, · · · the

inclusive distribution can also be written in terms of Pn as,

ρq(y1, . . . , yq) = Pq(y1, . . . , yq) +

∞∑
l=1

1

l!

∫
Ω
Pq+l(y1, . . . , yq, y

′
1, . . . , y

′
q)

l∏
i=1

dy′i, (3.3)

where ρq(y1, y2, . . . , yq) is the symmetrized number density for q points (particles) to be at

y1, y2, . . . , yq irrespective of the presence and location of any other particle. The inverse of

the above formula is

Pq(y1, . . . , yq) = ρq(y1, . . . , yq) +

∞∑
l=1

(−1)l
1

l!

∫
Ω
Pq+l(y1, . . . , yq, y

′
1, . . . , y

′
q)

l∏
i=1

dy′i. (3.4)

The mth order moment of the distribution function is

ρmq
∣∣
P

=

∫
Ω
· · ·
∫

Ω
P (y1, · · · , yq)ρmq dy1 · · · dyq (3.5)

and it can be generated from the moment generating function as given in the next section.

Integrating Eq. (3.3) over Ω in y yields∫
Ω
dyρ1(y) = 〈n〉 → average event multiplicity,∫

Ω
dy1

∫
Ω
dy2ρ2(y1, y2) = 〈n(n− 1)〉 → average number of particle pairs,∫

Ω
dy1 . . .

∫
Ω
dyqρq(y1, y2, . . . , yq) = 〈n(n− 1) . . . (n− q + 1)〉 → qth order FM. (3.6)

Here the angular brackets stand for the average over the event ensemble and n is the event

multiplicity in Ω.

3.2.1 Multiplicity Moments

Any statistical distribution can be characterized by its moments. Given a count probability

distribution Pn (n = 1, 2, · · · ) the ordinary q-th order moment is defined as,

mq ≡ 〈nq〉 =

∞∑
n=0

nq Pn : q = 0, 1, 2, · · · (3.7)

Corresponding moment generating function G(z) is given by

G(z) ≡
∞∑
n=0

enz Pn =
∑
q

mq

q!
zq. (3.8)
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Since Pn is a probability distribution, G(0) = 1, and one gets the ordinary moments from

the derivatives of G:

〈nq〉 =
∂qG(z)

∂zq

∣∣∣∣
z=0

. (3.9)

The reduced moments rq are obtained by normalizing the ordinary moments by the average

count as,

rq =
〈nq〉
〈n〉q

. (3.10)

They characterize a particular distribution in terms of the standard deviation, skewness,

kurtosis etc.. If the parameter z is assumed to be a constant, the generating functions G(z)

reduce to the generating functions G(z) for the multiplicity distribution (say, Pn). Then

one can write

G(z) =

∞∑
n=0

(1 + z)n Pn

= 1 +
∞∑
q=1

zq

q!

∫
Ω
dy1 . . . dyq ρq(y1, . . . , yq)

= 1 +
∞∑
q=1

zq

q!
〈fq〉 . (3.11)

Here

〈fq〉 =
〈
n[q]
〉
≡ 〈n (n− 1) · · · (n− q + 1)〉 (3.12)

is the unnormalized qth order (a positive integer) factorial (or binomial) moment averaged

over many events [Eq. (3.6)], n is the number of particles falling within an arbitrary phase

space interval. The multiplicity distribution in terms of G(z) is given by

Pn =
1

n!

dnG

dz n

∣∣∣∣
z=−1

. (3.13)

The normalized factorial moments can be derived from the generating function G(z) as,

Fq =
1

〈n〉q
d q G

dz q

∣∣∣∣
z=0

=

∞∑
n=0

n(n− 1) · · · (n− q + 1)Pn

〈n〉q
(3.14)

with F1 = 1, while the cumulant moments are given by

Kq =
1

〈n〉q
d q lnG

dz q

∣∣∣∣
z=0

. (3.15)
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Note that the generating function can be expressed in terms of the moments Fq and Kq as,

G(z) = 1 +
∞∑
q=1

zq 〈n〉Fq/q!, (3.16a)

lnG(z) = 〈n〉 z +

∞∑
q=2

zq 〈n〉Kq/q!. (3.16b)

Using dG/dz = G (d lnG/dz) we see that for q > 2

Fq =

q−1∑
l=0

(
q − 1

l

)
Kq−l Fl. (3.17)

However, normalized or not, the ordinary moments cannot address the issue of noise elim-

ination, but the factorial moment can do so. As for example, for a Poisson distributed

noise

Pn =

∫ ∞
0

tn

n!
e−tD(t) dt, (3.18)

where D(t) is the dynamical component of the distribution in the same bin. The critical

point here is that, for a large event sample the bin-multiplicity n can run from zero to a

very large value. Therefore,

〈fq〉 =
∞∑
n=0

n (n− 1) · · · (n− q + 1)Pn =
∞∑
n=q

n!

(n− q)!
Pn

=
∞∑
n=q

∫ ∞
0

tn

(n− q)!
e−tD(t) dt

=

∫ ∞
0

tqD(t) dt (summing over n). (3.19)

This shows that 〈fq〉 is identical to the ordinary qth order moment of the dynamical com-

ponent of the distribution Pn. The normalization property of the Poission distribution is

used in the above derivation. This shows that the statistical fluctuations have been success-

fully eliminated by averaging over the event sample. A detailed discussion on multiplicity

moments especially related to the hadronic physics can be found in refs. [18, 19].

3.2.2 Fluctuation in η-space

As mentioned in Section 3.1, a high energy AB collision can have highly fluctuating density

distribution that gets smoothed out when the distribution is averaged over many events. To

have an idea about the nature of the fluctuation, the η distributions of the shower tracks
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emerging from two high multiplicity 28Si-Ag/Br events at 14.5A GeV are shown in Fig. 3.1.

For each event the shower track multiplicity ns is given in the corresponding figure and each

distribution is drawn at two different scales: δη = 0.2 (left panel) and 0.1 (right panel).

Presence of high particle densities (spikes) as well as empty bins (dips) can be seen in η-
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Figure 3.1: Pseudorapidity distribution of shower tracks of two high multiplicity events in
28Si-Ag/Br interactions at 14.5A GeV. Note how the fluctuation increases with decreasing
bin size from δη = 0.2 to δη = 0.1. ns and nh represent respectively the number of s-tracks
and heavy fragments of the event. Gaussian fits to the distributions are shown.

space. One can also see that the local particle density (ρ = δns/δη) can shoot up to 110,

which is about 6 times the average density (ρ ∼ 18). The peak ρ value in one of the JACEE

events was found to be ∼ 300 at δη = 0.1 [3], and one NA22 event showed a rapidity spike of

ρ ∼ 100 at a resolution δy = 0.1 [20] – the latter corresponds to 60 times the average density.

When the same distribution is made for many events, the local fluctuations disappear as

illustrated in Fig. 2.3(a) for our 28Si-Ag/Br event sample.

Distributions of the local densities around the central η-region obtained from individual

events are shown in Fig. 3.2: (a) for η0 − 1 < η < η0 and (b) for η0 < η < η0 + 1,

where η0 = 1.9 is the centroid of the η-distribution, and the density values are obtained

for δη = 0.2. These diagrams provide a qualitative idea of the density fluctuation in and

around the central particle producing region in 28Si-Ag/Br interaction at 14.5A GeV.
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Figure 3.2: Distributions of local pseudorapidity density of shower tracks in 28Si-Ag/Br
interactions at 14.5A GeV.

3.3 Scaled Factorial Moments

The normalized or scaled factorial moment (SFM) [2] can be defined in two distinct ways,

and based on the normalization method adopted, it is customary to call them either a

horizontally averaged or a vertically averaged factorial moment. In terms of the inclusive

distribution ρq(η) the horizontally averaged SFM is defined as,

〈
FHq (η)

〉
=

1

M

M∑
m=1

∫
δη ρq(η1, . . . , ηq)

∏q
i=1 dηi(∫

δη ρ(η)dη/M
)q

=
1

M

M∑
m=1

〈
n

[q]
m

〉
〈n̄m〉q

, (3.20)

where 〈n̄m〉 = 〈n〉 /M , n =
∑

m nm is the total number of particles in an event. Here we

consider that a large phase space interval ∆ is divided into M smaller non-overlapping bins

of equal size δ = ∆/M . The symbol 〈 〉 represents an average over all events of our sample.

Note that, in the above expression δ can be any phase space variable such as the rapidity

(y), pseudorapidity (η), azimuthal angle (ϕ), transverse momentum (pt), or even a suitable

combination of any two (or three) of them. In emulsion experiments we consider either η or

ϕ as our phase space variable, and in two-dimension (2d) it is the (η, ϕ)-plane that serves

our purpose. On the other hand the vertically averaged SFM is defined as,

〈
F Vq (η)

〉
=

1

M

M∑
m=1

∫
δη ρq(η1, · · · , ηq)

∏q
i=1 dηi(∫

δη ρ(η)dη
)q

=
1

M

M∑
m=1

〈
n

[q]
m

〉
〈nm〉q

. (3.21)
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In Eq. (3.21) 〈nm〉 is the average number of particles in the mth bin in the event sample.

Irrespective of the averaging techniques, the SFMs are capable of suppressing the Poission

type statistical noise, which the ordinary moments cannot. The vertically averaged SFMs are

more sensitive to the bin-to-bin density variations within events but they become unstable

at small bin sizes, whereas the horizontally averaged SFMs are sensitive only to the local

fluctuations of the particle densities and they remain stable over a large range. It should be

pointed out here that both the moments are equal for M = 1 and also when 〈nm〉 = 〈n〉 /M
for all m, i.e. the underlying distribution in the particular phase space variable is flat. To

satisfy the latter criterion one can use a cumulative variable [21]

Xη =

∫ η

ηmin

ρ(η)dη
/∫ ηmax

ηmin

ρ(η)dη, (3.22)

where ηmin(ηmax) is the minimum(maximum) value of η, and ρ(η) = N−1
ev (dn/dη) is the

single particle inclusive density in terms of η. Irrespective of its original form, density

distribution in terms of Xη is always uniform ∈ (0, 1). The present analysis is based on the

cumulative variables corresponding to the η and/or ϕ variables, though we shall continue

to call the corresponding space either the η or the ϕ-space.

3.3.1 Intermittency in 1d

In 1d intermittency analysis the data have been analyzed in terms of η and ϕ variables.

Figure 3.3 shows the log-log plot of the horizontally averaged SFM 〈Fq〉 against the phase

space partition number M in η-space for q = 2, · · · , 6. Note that the superscripts h or

v is omitted from the subsequent text, though a horizontal averaging used here. We have

noticed that there is little deviation in the horizontally averaged SFM from the corresponding

vertically averaged moment. The experimentally obtained, the UrQMD generated and the

UrQMD+BEC generated results have been plotted side by side in the same figure. A similar

set of plots in the ϕ-space is shown in Fig. 3.4. In both diagrams one can see that for each

q there is a definite linear rise in the experimental ln 〈Fq〉 values with lnM that confirms a

power-law behavior like

ln 〈Fq〉 = φq lnM + cq, (3.23)

as is also suggested in Eq. (3.1). The UrQMD simulated ln 〈Fq〉 values remain practically

uniform with varying lnM over its entire range that indicates almost no intermittency in

the UrQMD events. On the other hand, the UrQMD+BEC sample shows moderate rise in

the ln 〈Fq〉 values and thereby in comparison with the experiment a weaker intermittency.

All these observations are true in the ϕ-space as well. At this point one may remember

that the string fragmentation model FRITIOF [22] also did not show any intermittency for
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AB interactions at 200A GeV [23]. The values of the intermittency index along with the
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Figure 3.3: Variation of the event averaged SFM of shower tracks with phase space
resolution in η-space. Straight lines best fitted to the data points are shown.

1 2 3 4
0

2

4

6

8

1 2 3 4 1 2 3 4

q=2
q=3

q=4

q=5

q=6

lnMlnM

 

 

ln
<F

q>

lnM

(a) Experiment
space

(b) UrQMD
space

  

 

 

q=2
q=3
q=4
q=5
q=6

 

(c) UrQMD+BEC
space

 

 

q=2
q=3

q=4

q=5

q=6

Figure 3.4: Same as Fig. 3.3 but in ϕ-space.

Pearson’s R2 coefficients, indicating the goodness of fit, are shown in Table 3.1. For each q, a

linear fit of ln 〈Fq〉 against lnM has been performed by excluding the very small M (or large

δX) region (first two points in each diagram), so that the effects of kinematic conservation

rules are minimized. The errors associated with 〈Fq〉 as shown in the figures, and those

associated with φq as quoted in the table, are only of statistical origin. For each event the

Fq is assumed to be an error free quantity, and the standard error of the mean 〈Fq〉 over

event space is calculated and shown in the diagrams. On the other hand, as the data points

in 〈Fq〉 versus M plots are highly correlated, the errors in φq are nontrivially estimated [24]

by generating several event samples based on random numbers that have same statistics
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Table 3.1: The values of 1d intermittency exponent (φq) for order q = 2−6 in 28Si-Ag/Br
interaction at 14.5A GeV. The errors are of statistical origin only.

η-space ϕ-space

Order φq R2 φq R2

q = 2 0.011±0.001 0.989 0.016±0.001 0.955

q = 3 0.039±0.003 0.972 0.065±0.002 0.940

Experiment q = 4 0.112±0.007 0.949 0.214±0.005 0.911

q = 5 0.255±0.013 0.941 0.600±0.011 0.908

q = 6 0.477±0.023 0.938 1.941±0.029 0.934

q = 2 -0.0001±0.0006 0.971 0.002±0.001 0.982

q = 3 0.0001±0.0018 0.963 0.004±0.002 0.985

UrQMD q = 4 0.006±0.005 0.960 0.005±0.002 0.951

q = 5 0.028±0.011 0.951 0.008±0.003 0.943

q = 6 0.075±0.048 0.943 0.018±0.011 0.927

q = 2 0.001±0.0005 0.991 0.0045±0.0015 0.982

q = 3 0.003±0.0017 0.972 0.041±0.004 0.981

UrQMD+BEC q = 4 0.013±0.006 0.963 0.099±0.007 0.980

q = 5 0.045±0.013 0.987 0.219±0.010 0.978

q = 6 0.091±0.024 0.983 0.352±0.015 0.970

as the experimental one. Following the same scaling-law as the data points follow, the

φq values for each individual random event sample is determined, and then the statistical

spread about the mean 〈φq〉 are quoted as errors in Table 3.1. Since in the process the

nonstatistical component is not taken into account the errors are certainly underestimated.

One can see that the φq values are consistently larger in the ϕ-space than in the η-space.

To conserve transverse momentum, probably the particles experience extra correlation in

the azimuthal plane. However, such differences in the φq values are more prominent in

interactions induced by nuclei with higher mass number e.g., 28Si or 32S, and are not so

much when the interaction is induced by a comparatively lighter (16O) nucleus [23]. Results

of the present investigation are also significantly different from what was previously obtained

from the analysis of another set of 28Si-Ag/Br data at the same incident energy [25, 26].

This discrepancy is probably due to the non-conversion of the phase space variables (η, ϕ)

to their respective cumulant variables. Hence, the intermittency phenomenon depends more

on the colliding system and less on the collision energy. It is also dependent on the choice

of the phase space variable, which is in contradiction to the observation of ref. [24], but

consistent with our previous observation on AB interactions [23].

One can now put the φq values to further tests and try to look for the underlying physical

processes (e.g., phase-transition or no phase-transition) that probably have resulted in the
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Figure 3.5: Normalized intermittency exponents as a function of order number q. Lines
joining points are drawn to guide the eye.

observed intermittency pattern. In order to check to what extent the particle correlation

embedded within a higher order SFM is influenced by the contribution from lower order

(two or three-particle) correlation(s), one can introduce the normalized exponents ζq and

the true three-particle correlation function ζ
(3)
q , and can then study their dependence on q.

These exponents are defined as [24],

ζq = φq

/(q
2

)
, (3.24a)

ζ(3)
q = (q − 2)ζ3 − (q − 3)ζ2. (3.24b)

In Fig. 3.5 the normalized exponents for the experiment, for the UrQMD and for the

UrQMD+BEC simulated data have been plotted against q. Results in η-space and in ϕ-

space are shown together in the same diagram. We see that the experimental ζq value

increases with increasing q, and the rate of increase is much higher in the ϕ-space than what

it is in the η-space. The observation also confirms a linear relationship between ζ
(3)
q and q as

prescribed in Eq. (3.24b). Expectedly, the experimental and the simulated results behave in

quite different ways and within statistical errors the UrQMD simulated values exhibit little

intermittency and thereby no correlation. The effect of incorporating BEC into the UrQMD

simulation can be clearly seen in these diagrams. However, one has to note that the shower

tracks are caused by all kinds of charged mesons. Therefore, due to intermixing of different

charge and particle states, the usual BE type correlation arising out of the symmetrization

of the wave function of a system of identical bosons is significantly weakened. The results

on normalized exponents suggest that to a large extent higher order (q > 4) correlations

may be understood in terms of two and three-particle correlations.
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A power-law behavior of the 1d SFMs characterizes some kind of scale invariance of the

dynamics of multiparticle production. This can be realized either in terms of the self-similar

random cascading models [27], or in the statistical systems at critical temperature for a

second-order phase transition [28] (for a review see ref. [17]). The dependence of φq on q

would be different in these two cases that can be examined by establishing a connection

between intermittency and (multi)fractality [29]. The generalized Rényi dimensions of mul-

tifractality Dq, a direct measure of multifractality, are directly related to the intermittency

exponents φq through the relation:

Dq = DT −
φq
q − 1

, (3.25)

where DT is the topological dimension of the supporting space, DT = 1 in 1d and DT = 2

in 2d analysis. On the other hand, the anomalous dimension dq is defined as

dq = DT −Dq. (3.26)

For a system at the critical temperature of a second-order phase transition, the multifractal

behavior reduces to a monofractal behavior for which the SFM of a single cluster will have

the same structure as the NCMs of all events. Based on a linked pair approximation, it has

been shown that under such a circumstance a scaling relation like Eq.3.23 would imply the

presence of Poisson distributed monofractal clusters characterized by a unique anomalous

dimension i.e., dq/d2 = 1 [30]. A plot of dq/d2 against q presented in Fig. 3.6 shows that

our results are certainly not indicating a monofractal structure of the density function, and

therefore, not toward a second-order phase transition either. For multiplicative cascade

mechanisms like the α-model [2], where the final state particle density is given as a product



Chapter 3. Intermittency in 28Si-Ag/Br Interaction at 14.5A GeV 90

of random numbers, the density function can be approximated by a long-tailed log-Lévy

distribution. Under this approximation, the following relation holds:

dq
d2

=
1

(q − 1)

qµ − q
2µ − 2

, (3.27)

where µ(0 6 µ 6 2) is called the Lévy stable index [27]. The Lévy-law approximation allows

a simple description of multifractal properties of random cascade models using only one

free parameter µ. Under this scheme µ < 1 is indicative of a second-order (thermal) phase

transition, while µ > 1 indicates a nonthermal phase transition. Moreover, a monofractal

behavior is characterized by µ = 0 and dq = 0 for q > 2. On the other hand, in the limit of

the log-normal approximation µ = 2, dq = d2 and all bunching parameters follow the same

power-law. A fit of our experimental data points to Eq. (3.27), shown in Fig. 3.6(a), results

µ = 3.15± 0.03 in η-space, and µ = 3.70± 0.03 in ϕ-space. Both these values far exceed the

allowed limit of the stability index, thereby showing that the (dynamical) density function in

the present case cannot exactly be represented by a log-Lévy type of distribution. Similar

observation was also made in the 1d intermittency analysis in 12C-(Cu, Ne) interactions

at 4.5A GeV/c [31], where a second-order phase transition was ruled out as a probable

mechanism of hadronization. Note that an incident energy of 14.5 GeV/nucleon is not very

much different either. The reason may as well be due to the ‘projection’ effect as is usually

found in the lower dimensional intermittency analysis. In Section 3.3.2 where the results

on 2d analysis have been presented, we would expect a better estimate of d2. The stability

index can also be obtained through other approaches, e.g. using the multifractal spectrum

as discussed in Chapter 5. Though the present µ-values (> unity) indicate a nonthermal

phase transition during the particle emission process, the issue needs further scrutiny before

arriving at a definite conclusion. Intermittency can also be studied in the framework of the

Ginzburg-Landau (G-L) model. According to which the ratio dq/d2 should obey a relation:

dq
d2

= (q − 1)ν−1, (3.28)

where ν(= 1.304) is a dimension independent universal parameter, as suggested in ref. [32].

For our 28Si-Ag/Br data we found ν = 2.30 ± 0.02 in η-space and ν = 2.65 ± 0.03 in ϕ-

space. A graphical representation of the Ginzburg-Landau prediction has also been shown

in Fig. 3.6(b). Thus, our intermittency results cannot be explained in terms of the Ginzburg-

Landau theory either.

A more direct measure of the intermittency strength can be obtained from its connection

with (multi)fractality, at first in the framework of the α-model [2], and subsequently in a

model independent way irrespective of any particular hypothesized mechanism of particle

production [33]. According to the α-model, the strength parameter αq is related to Dq by
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Figure 3.7: (a) Plot of λq with order number q. (b) Plot of intermittency strength αq

with q. (c) Plot of generalized Rényi dimension Dq with ln q/(q−1). The curves are drawn
to guide the eye.

a simple relation:

αq =

√
6 ln 2

q
(DT −Dq). (3.29)

The αq values in 1d have been calculated for all three data sets, one experimental and two

simulated, and their variation with q has been schematically presented in Fig. 3.7(b). One

can see that for the experiment the strength parameter linearly increases with increasing

order, whereas for the simulation it hovers around a very small value (≈ 0.05) except the

UrQMD+BEC generated plot in ϕ-space. From the above discussion it cannot be claimed

in clear terms as to which process (i.e., second-order phase transition or random cascading)

is actually responsible for the observed intermittency. For an arbitrary underlying dynamics

it is possible to define an effective fluctuation strength αeff =
√

2φ2 [33]. We found that

αeff = 0.15 ± 0.003 in η-space and αeff = 0.18 ± 003 in ϕ-space for the present set of

experimental data. These values are about 1/6 times the maximum fluctuation strength

(α = 1.0) allowed in the α-model. Comparing with our previous results, we find that the

present values are even less than what we observed in 16O-Ag/Br interaction at 200A GeV

(about one fourth the maximum value), but within error they are of same magnitude as

the 32S-Ag/Br interactions at 200A GeV [23]. Thus, it appears that for same target the

intermittency strength depends more on the projectile mass number than on the energy of

interaction.

A thermodynamic interpretation of multifractality has also been given in terms of a constant

specific heat C that is related to the Rényi dimensions as [34],

Dq = D∞ +
C ln q

q − 1
. (3.30)
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Table 3.2: The values of multifractal specific heat C calculated from the SFM analysis.
The C values evaluated at different q-regions are specified.

Fit region η-space ϕ-space

2 6 q 6 4 0.103±0.035 0.224±0.089

Experiment 2 6 q 6 5 0.158±0.049 0.047±0.156

3 6 q 6 5 0.273±0.061 0.758±0.229

2 6 q 6 4 0.009±0.006 -0.001±0.0010

UrQMD 2 6 q 6 5 0.022±0.011 0.0001±0.0013

3 6 q 6 5 0.046±0.017 0.0006±0.0004

2 6 q 6 4 0.013±0.007 0.120±0.011

UrQMD+BEC 2 6 q 6 5 0.013±0.005 0.149±0.008

3 6 q 6 5 0.052±0.018 0.214±0.021

While deriving the relation (3.30) it has been assumed that only Bernoulli type of fluctua-

tions are responsible for a transition from monofractality to multifractality. A monofractal

to multifractal transition corresponds to a jump in the value of C from zero to a nonzero

positive finite value. By examining the variation of Dq with q one can obtain the value of C.

A plot of Dq can be found in Fig. 3.7(c) for all the data sets used in this analysis. Whereas

the simulated Dq values are always very close to the dimension of the supporting space

(DT = 1), the experimental values are consistently different from unity. Over the full range

(q = 2, · · · , 6) the experimental Dq varies nonlinearly with ln q/(q−1), and the nonlinearity

is more prominent in the ϕ-space than in the η-space. The C value will obviously depend

on the range of q over which the data are fitted. In Table 3.2, the fit results in different q

ranges are given, which always show nonzero positive C. The simulated values are within

error, either zero or about an order less than the corresponding experimental values. One

can also see that contrary to what is found in 32S-Ag/Br interaction at 200A GeV [35], in

the present case the C value in ϕ-space is always higher than that in η-space. However, the

values of C are not consistent with the universality of the parameter as claimed in ref. [34].

The phase transition, if there is any, may not necessarily always be a thermal one, as the new

phase is not essentially defined by a (set of) thermodynamic parameter(s). Simultaneous

existence of two nonthermal phases (like those in a spin-glass system) is a possibility that

can be investigated by the intermittency parameter [36]

λq =
φq + 1

q
. (3.31)

In the α-model λq exhibits a minimum at a critical point q = qc, where the regions q < qc and

q > qc are respectively, dominated by a large number of small fluctuations (liquid phase), and
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a small number of large fluctuations (dust phase). The variation of λq has been schematically

presented in Fig. 3.7(a) for the experiment as well as for the simulations. In η-space there

is a hint of a probable minimum beyond our region of investigation (q > 6). Whereas,

in ϕ-space a clear minimum at qc = 4 can be seen. The UrQMD and the UrQMD+BEC

simulated values do not follow such pattern. The present experimental results are similar

to what was observed in 12C-Cu interaction at 4.5A GeV/c [37].

3.3.2 Intermittency in 2d

As mentioned above to a great extent the projection effect influences the intermittency

results. We therefore, extend our analysis to the two dimensional (η, ϕ) plane. Since our

analysis is based on the cumulative variables, the (η, ϕ) plane is effectively a (Xη, Xϕ)

square of unit area. As mentioned before, we continue to call it the (η, ϕ) plane. Setting

the partition numbers along each direction equal i.e., Mη = Mϕ, the phase space is first

symmetrically (or self-similarly) partitioned to result in M (= M2
η ) smaller non-overlapping

squares of equal size. The qth order two-dimensional SFM F
(2)
q is now defined in the similar

way as in Eq. (3.20), and nm is now the number of particles falling within the mth sub-cell

(a smaller square) of size 1/(Mη ·Mϕ). Figure 3.8 shows the plot of ln
〈
F

(2)
q

〉
against lnM

which we shall later refer to as the 2d-SFM plot, and where (a) is for the experiment, (b) is

for the UrQMD simulation and (c) is for the UrQMD+BEC simulation. The experimental
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Figure 3.8: Plot of 2d-SFM for a self-similar partitioning of the (η, ϕ) plane. The lines
represent linear regressions to the data points.

points show a nonlinear dependence of ln
〈
F

(2)
q

〉
on lnM . In contrast, the UrQMD simulated

2d-SFMs are almost independent of M . For q > 2 only at large M they exhibit an irregularly

fluctuating pattern. On the other hand, the UrQMD+BEC data points follow more or less a

self-similar power-law like Eq. (3.23). We denote the corresponding exponents by βq (similar
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Table 3.3: The values of 2d intermittency exponent βq of order q = 2 − 4 for self-similar
partitioning of the (η, ϕ) space in 28Si-Ag/Br interaction at 14.5A GeV.

Order βq χ2(dof)

q = 2 0.086±0.005 18.92(32)

Experiment q = 3 0.322±0.036 28.98(32)

q = 4 1.124±0.074 44.88(32)

q = 2 0.0043±0.0027 04.27(14)

UrQMD q = 3 0.0002±0.0046 10.28(14)

q = 4 0.0103±0.0092 26.45(14)

q = 2 0.028±0.002 04.38(16)

UrQMD+BEC q = 3 0.067±0.003 16.35(16)

q = 4 0.122±0.006 34.04(16)

to φq in 1d) and calculate them by fitting straight lines to the data points. For a nonlinear

variation obviously the slope will depend on the region of fit. Hence, we have done so in

a region where the variations are visibly linear as shown in the diagrams. The βq values

obtained from the linear fits are given in Table 3.3. As a measure of the goodness of the

fits the χ2 values along with the number of degrees of freedom (dof) are also quoted in the

table. However, we insist that the βq values only represent a qualitative estimate of the rise

in 2d-SFMs with diminishing phase space partition size. When the rise is nonlinear, these

indices are in no way connected to the power-law scaling, or for that matter to intermittency.

The UrQMD generated graphs are always almost uniformly distributed showing very little

or no intermittency. Correlation of any type, either due to the symmetry property of the

underlying field(s) and/or due to any dynamical reason, is virtually non-existing. When

the BEC is numerically modeled into the UrQMD data to some extent we can retrieve the

power-law type of scaling. Corresponding βq values also indicate that by accommodating

the BEC into the simulated data, one can to a certain degree account for the intermittent

behavior. However, as mentioned above, the experimental values are still several times larger

than the UrQMD+BEC values, and the experiment still cannot be fully accounted for. The

observation here supports our results on 1d analysis. We have checked that there is hardly

any nonlinearity in the variation of ln
〈
F

(2)
q

〉
with lnM in the UrQMD+BEC simulation.

As the simulated data do not exhibit any anisotropy in the (η, ϕ) plane we did not extend

our self-affine analysis for them. We notice that the experimental βq values are several times

larger than the 1d intermittency indices φq obtained for the same sets of data [Table 3.1].

The distribution of particles in the (η, ϕ) plane is anisotropic [38], while the allowed η range

depends on the collision energy, the ϕ range irrespective of all kinematic conditions is bound

within (0−2π). Similarly depending on the kinematic conditions, the longitudinal momenta
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(pl) of produced particles can vary over a wide range, whereas the average transverse mo-

menta p⊥ of these particles, irrespective of the nature of interactions and for a reason that

is still unknown to us, are limited within a relatively small range of 0.3− 0.5 GeV/c. As a

direct consequence of this anisotropy, an equal bin partitioning of the 2d distribution results

in an upward bending in the corresponding log-log plot of SFM. It is suggested that in the

2d SFM analysis, the phase space should be partitioned differently in a self-affine way as

said in the fractal theory, taking the anisotropy of the phase space into account [39]. One

way to implement this is to introduce a ‘roughness’ parameter called the Hurst exponent

(H). The anomalous scaling of the 2d-SFM that characterizes intermittency, can then be

retrieved only with a proper choice of the H value. Then the phase space scale factors in

the longitudinal (η) and transverse (ϕ) directions can be related as,

Mη = MH
φ , for H 6 1.0; Mφ = 1, 2, · · · ,Mmax

φ ; (3.32a)

Mφ = M1/H
η , for H > 1.0; Mη = 1, 2, · · · ,Mmax

η . (3.32b)

Here we choose Mmax
φ = Mmax

η = 50. For H < 1.0 the ϕ-direction is partitioned into

finer intervals than the η-direction, whereas for H > 1.0 the reverse is true. It is obvious

that, both Mη and Mϕ simultaneously cannot always be integers. After dividing the η

(ϕ) direction by a non-integer partition number, only the integer part is retained. As for

example, if δXi = ∆Xi/Mi and Mi = Ni + ai : i = η or ϕ, where Ni is integer and ai is

a positive fraction (< 1) that one can do away with. In effect, contribution from a smaller

strip of width ai∆Xi/Mi is discarded while summing (or averaging) over bins, which is done

either by placing the smaller strip at the beginning or at the end of all other equal sized

strips of width δXi. In doing so no error should in principle be incurred, as the translational

invariance of both the particle density and the SFM is ensured by choosing the cumulant

variables. We have calculated the second order 2d-SFM F
(2)
2 as a function of M over a wide

range of H(= 0.4− 3.0 in steps of 0.1) values. The variation of some of the F
(2)
2 values are

graphically represented in Fig. 3.9. Once again the errors associated with the data points

are of statistical origin. The solid curves in each case represent a quadratic function like

f(ζ) = aζ2 + bζ + c, (3.33)

where ζ ≡ lnM and f(ζ) ≡ ln
〈
F

(2)
2

〉
. The first two points are always excluded from the

fitting process. By doing so one can get rid of the effects arising out of kinematic constraints.

From Fig. 3.9 it can be seen that the strong upward bending of ln
〈
F

(2)
2

〉
with lnM , as it is

observed for H = 1 in Fig. 3.9(a), gets systematically weakened as H deviates from unity.

For H < 1 we find the weakest bending at H = 0.5 and for H > 1 at H = 2.5. The

SFM plots corresponding to these values of H are almost linear as demanded by the theory

of intermittency. A quantitative description of the above observation is provided by the
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Figure 3.9: Plot of 2d-SFM of order q = 2 against (η, ϕ)-space resolution for several
different values of H. The lines represent the quadratic function Eq. (3.33) with best fitted
parameter set given in Table 3.4. First two data points are excluded from the fits.

quadratic fit of the data points in terms of Eq. (3.33) along with the χ2(dof) values listed

in Table 3.4. We see that for the H 6 1.0 category ‘a’ is minimum and ‘b’ is maximum at

H = 0.5, while for the H > 1.0 category similar values are obtained at H = 2.5. The fit

quality as seen from the χ2(dof) values are always reasonably good. Our observation shows

that the power-law scaling of the 2d-SFM can be recovered through an asymmetric partition

of the (η, ϕ) space.

The self-affine analysis of the NA22 [40] data on pp interaction and of the NA27 [41] data

on hp interactions show that the power-law characterizing intermittency is obtained for

H < 1.0, which suggests that the transverse direction has to be partitioned finer than the

longitudinal one. In these experiments the appropriate Hurst exponent is calculated by

fitting the 1d SFM with Ochs’ formula [10]. In contrast, the EMU01 experiment on AB

collisions [24] finds that the power-law is valid for H > 1.0 i.e., the longitudinal direction

has to be partitioned finer than the transverse direction. An AB interaction can be viewed

as a superposition effect of many elementary NN interactions, as a result of which the

effective Hurst exponent Heff � H. On the other hand, in all of our AB experiments,

previous and the present one, we consistently find that the power-law of intermittency is

obtained only if H 6= 1. It does not matter which direction (i.e., longitudinal or transverse)

is partitioned finer. We have also calculated the event averaged F
(2)
q for q = 2, 3 and 4
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Table 3.4: The parameters of the quadratic Eq. (3.33) fit to the experimental data for
various H values. The χ2(dof) values showing the goodness of the fits are given.

H a b c χ2(dof)

0.4 0.0051±0.0033 0.0098±0.0321 0.0298±0.0579 6.17(45)

0.5 0.0047±0.0026 0.0155±0.0300 0.2919±0.0584 4.79(45)

0.6 0.0066±0.0032 0.0062±0.0281 0.2988±0.0581 5.72(45)

0.7 0.0121±0.0030 -0.0393±0.0274 0.3904±0.0598 6.68(45)

0.8 0.0140±0.0027 -0.0530±0.0262 0.4154±0.0602 8.57(45)

0.9 0.0145±0.0025 -0.0562±0.0252 0.4202±0.0608 8.27(45)

1.0 0.0180±0.0023 -0.0918±0.0242 0.5036±0.0615 13.5(45)

1.2 0.0152±0.0026 -0.0675±0.0258 0.4523±0.0605 7.36(45)

1.5 0.0126±0.0030 -0.0492±0.0275 0.4123±0.0591 8.45(45)

2.0 0.0132±0.0036 -0.0533±0.0295 0.4205±0.0575 8.56(45)

2.4 0.0051±0.0039 -0.0019±0.0308 0.3427±0.0570 5.18(45)

2.5 0.0032±0.0021 0.0104±0.0310 0.3246±0.0568 3.60(45)

2.6 0.0041±0.0035 0.0053±0.0313 0.3303±0.0567 3.69(45)

3.0 0.0057±0.0044 -0.0064±0.0325 0.3485±0.0566 5.49(45)
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Figure 3.10: 2d-SFM of order q = 2−4 against (η, ϕ) space resolution with two optimized

values of H for which the power-law scaling of F
(2)
2 can be recovered at its best: (a) for

H = 0.5 and (b) for H = 2.5.

using the optimized values of H obtained from F
(2)
2 (M) analysis. Figure 3.10 represents

such plots, where ln
〈
F

(2)
q

〉
is plotted against lnM , (a) for H = 0.5 and (b) for H = 2.5.

The solid curves in either of these plots represent the linear fit to the data points, leaving

first two points in each case for the same reason as mentioned earlier. The intermittency

index φ
(2)
q is nothing but the slope of these linear fits, which indirectly is related with the

intermittency strength. Table 3.5 shows the values of φ
(2)
q along with χ2(dof). One can
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Table 3.5: The values of 2d intermittency exponents φ
(2)
q of order q = 2− 4 for self-affine

partitioning of the (η, ϕ) space in 28Si-Ag/Br interaction at 14.5A GeV.

H = 0.5 H = 2.5

Order φ
(2)
q χ2(dof) φ

(2)
q χ2(dof)

q = 2 0.053±0.004 06.39(46) 0.035±0.004 04.27(46)

q = 3 0.222±0.012 27.06(46) 0.141±0.008 16.82(46)

q = 4 0.778±0.033 46.23(46) 0.436±0.022 59.63(46)
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Figure 3.11: (a) 2d intermittency strength αq in (η, ϕ) space with order q. (b) Anomalous
fractal dimension dq with order q. (c) The generalized dimension of (multi)fractality Dq

with ln q/(q− 1). The lines in (a) and (b) are drawn joining the data points, whereas those
in (c) are linear regressions.

see that the φ
(2)
q indices obtained for a symmetric partitioning are much larger than the

corresponding values for H = 0.5 and 2.5. Moreover, the H = 0.5 scaling reproduces larger

φ
(2)
q than those obtained for the H = 2.5 scaling. Comparing with our previous works we

find that the present set of self-affine φ
(2)
2 values [42] are of the same order of magnitude as

those obtained in 32S-Ag/Br and 16O-Ag/Br interactions at 200A GeV [43].

In Fig. 3.11(a) the intermittency strength αq values are plotted against the order number q

for both the H values. It can be seen that the strength parameter nonlinearly increases with

increasing order, though the values obtained for H = 0.5 are consistently higher than those

for H = 2.5. In view of our observation mentioned above regarding the intermittency index,

it is not surprising that the 2d intermittency strength in 28Si-Ag/Br interactions at 14.5A

GeV is of the same order of magnitude as those obtained in the 32S-Ag/Br and 16O-Ag/Br

interactions at 200A GeV [43]. The generalized dimension of (multi)fractality Dq is related

to the anomalous fractal dimension dq by Dq = DT −dq, where dq can be expressed in terms
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of the intermittency exponents as [44],

dq =
φq
q − 1

. (3.34)

The direct relationship between intermittency and (multi)fractality is not yet fully under-

stood. But it has been argued that, if a second-order phase transition from QGP to hadron

phase takes place, then the particle density distribution would show such intermittency that

the anomalous dimension dq becomes independent of q [45]. On the other hand, hadroniza-

tion through a cascading process will lead to dq linearly increasing with q. The dependence

of dq on q is shown in Fig. 3.11(b) for H = 0.5 and 2.5. The plot shows that the anomalous

fractal dimension increases approximately linearly with increasing order q in both cases and

the rate of increase for H = 0.5 is greater than that for H = 2.5. Hence the observation

is in agreement with the prediction of the cascade model. Similar to the 1d analysis, we

make an attempt to interpret the observed multifractality in terms of the constant specific

heat C, defined through Eq. (3.30). In Fig. 3.11(c), plots of Dq with ln q/(q − 1) are given

for H = 0.5 and 2.5. The multifractal specific heat is extracted by fitting straight line to

the data points, shown in the figure. For H = 0.5, C = 0.657 ± 0.083 and for H = 2.5,

C = 0.453 ± 0.064, are found. The C values in 2d are larger than the universal value of

C = (1/4) suggested in ref. [34], they are larger than the 1d values of C in 32S-Ag/Br and

16O-Ag/Br interactions at 200A GeV [43], and they are very close to the 1d values obtained

in a similar 28Si-induced experiment [46].

3.4 Factorial Correlators

The dynamics of particle correlation beyond that obtained from the single particle inclusive

spectra, can be investigated by studying the two-fold factorial moment or the factorial

correlator (FC). As mentioned, whereas the SFM can be used to measure the local density

fluctuations, the FC can extract additional information on the bin-to-bin correlation between

such fluctuations within an event. The FC in terms of single particle factorial moment n
[q]
m

[see Eq. (3.12)] is defined as [2],

f̃pq =
〈
n[p]
m n

[q]
m′

〉
, (3.35)

where nm(nm′) is the number of particles falling within the m(m′)th bin. The FCs are

calculated at a fixed resolution (say, δX) and for each combination of nonoverlapping pair

of intervals (e.g., mm′) that are separated by a distance D along the considered phase

space variable. As mentioned above, using cumulant variables [see Eq. (3.22)] we ensure

the translational invariance of particle density, and for the sake of statistics the FCs are

averaged over all such combinations of bins as well as over the entire event sample. The
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multivariate correlator f̃pq is then normalized as

F̃pq =
f̃pq

f̃p f̃q
, (3.36)

where f̃q =
〈
n

[q]
m

〉
is the single-variate factorial moment averaged over many non-overlapping

equal sized phase space intervals belonging to different events. Hence, factorial moments

and factorial correlators are intimately related quantities. In terms of inclusive densities one

has

F̃pq =

∫
Ω1

dη1 . . . dηp

∫
Ω2

dηp+1 . . . dηp+q ρp+q(η1, . . . , ηp; ηp+1, . . . , ηp+q), (3.37)

where ρp+q is the inclusive densities of order p + q. The integrations are performed over

two arbitrary phase space cells Ω1 and Ω2, separated by D. Factorial moment and factorial

correlators of the same order are thus seen to differ only in the choice of the integration

domains. It should be noted that the above definition is more general than Eq. (3.35). For

Ω1 = Ω2 or D = 0, Eq. (3.37) reduces to the correct definition of f2 Eq. (3.12), whereas

Eq. (3.35) equals to
〈
n2
〉

and misses the so called ‘short-noise’ term, −〈n〉.

Since p 6= q, the normalized FCs F̃pq as defined in Eq. (3.36) are not symmetric under the

p↔ q interchange. For analysis purpose the symmetrized correlators

Fpq = (F̃pq + F̃qp)/2 (3.38)

are often used. According to the α-model, Fpq should depend on the correlation distance

D but not on the phase space interval size δXη, and as D approaches a small value the FC

should follow a power-law type of dependence like,

〈Fpq〉 ∝ (∆Xη/D)φpq . (3.39)

Figure 3.12 depicts how ln 〈Fpq〉 depends on − lnD for (a) the experiment, (b) the UrQMD

simulation and (c) the UrQMD+BEC simulation for various combinations of (p, q). In the

experimental case for each such combination with increasing − lnD one can see a rapid

growth in the ln 〈Fpq〉 value at the beginning, a saturation next, followed by a moderate but

systematic linear rise near the end. Over the entire range of − lnD this variation may not be

linear. But at the end when 1/D is large, an approximately linear variation can be observed

over a limited range. The exponents φpq are obtained by fitting straight lines to the data

points only in the large− lnD region (the last five/six data points), a region that corresponds

to short range correlation. Once again the errors either in 〈Fpq〉 or in φpq are of statistical

origin and they are estimated by using data sets generated by random numbers. For the
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Figure 3.12: Factorial correlators with correlation length in η-space. The error bars are
only of statistical origin. For clarity successive orders are shifted by one unit along the
vertical axis as shown in the diagram. Lines joining points are drawn to guide the eye.

UrQMD and the UrQMD+BEC events one can hardly see any variation in the ln 〈Fpq〉 values

with varying − lnD. The FC exponents φpq and the R2 values corresponding to the best

linear fit are presented in Table 3.6 for all three data samples employed in this analysis. As

expected, negligibly small values of φpq in the simulated data shows that the UrQMD as well

as the UrQMD+BEC simulation cannot reproduce the experimentally observed correlation

effects among the final state charged mesons. Moreover, the φpq values obtained from the

UrQMD+BEC simulation always underestimate the corresponding UrQMD values, though

in case of intermittency indices the reverse is observed. According to the α-model, under a

log-normal approximation, the exponents φpq should follow a sum rule, like

φpq = φp+q − φp − φq = (p · q)φ11. (3.40)

Table 3.6: The φpq exponents of the FC scaling relation Eq. (3.39) for several different
combinations of (p, q).

Experiment UrQMD UrQMD+BEC

(p, q) φpq R2 φpq R2 φpq R2

(1,1) 0.012±0.002 0.959 0.006±0.006 0.964 0.003±0.001 0.985

(2,1) 0.024±0.004 0.958 0.011±0.009 0.932 0.007±0.003 0.910

(3,1) 0.045±0.009 0.923 0.013±0.011 0.971 0.011±0.007 0.967

(2,2) 0.057±0.013 0.911 0.021±0.015 0.893 0.014±0.005 0.820

(3,2) 0.089±0.017 0.933 0.033±0.021 0.887 0.021±0.020 0.821

(3,3) 0.203±0.025 0.979 0.041±0.032 0.851 0.028±0.043 0.830
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Therefore, the φpq/φ11 value should linearly rise with the product (p · q), which can be

used as a consistency check between the experimental data and the α-model. Such a plot

for the experiment together with the UrQMD and the UrQMD+BEC simulated data is

given in Fig. 3.13. The expected linear variation is satisfactorily ascertained in this plot.

One also notices that the UrQMD line is well short of reproducing the experiment, and

the UrQMD+BEC line falls in between these two. Though the experiment and both the

simulations are consistent with this prediction of the intermittency model, there exists a

certain quantitative difference between them. Another prediction of the α-model is that,

for a fixed D the correlators should be independent of δXη. This aspect has been verified
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in Fig. 3.14, where graphical plots of ln 〈Fpq〉 at fixed D(= 0.1, and 0.2) and for several

different values of ln δXη are shown for the experiment. Within errors the δXη independence

of Fpq is established. It should be pointed out here that, such a property does not hold for

the α-model only, but is a feature of any model that takes short range correlation into

consideration.

3.4.1 Sum Rules

Suppose the initial interval ∆Xη is divided into M subintervals of size δXη = ∆Xη/M

for the calculation of the bivariate factorial moments
〈
n

[p]
m (δXη) n

[q]
m′(δXη)

〉
, while the same

interval is divided into L = M/2 bins of size 2δXη for the determination of the single variate

factorial moments
〈
n

[p]
l (2δXη)

〉
. Between the two types of factorial moments the following

relation should hold:〈
n

[p]
l (2δXη)

〉
=

〈
(nm(δXη) + (nm+1(δXη)

[p]
〉

=

p∑
q=0

(
p

q

)〈
n[p]
m (δXη) n

[p−q]
m+1 (δXη)

〉
, (3.41)

with m = 2l− 1 for l = 1, 2, . . . , L. The relation is obtained by application of the binomial

theorem generalized to factorial powers [47]. In case of translational invariance, the above

equation can be used to derive a relation between F11 and F2. For p = 2, after a division

by 〈nm〉 〈nm+1〉 Eq. (3.41) becomes

〈
(nm + nm+1)[2]

〉
〈nm〉 〈nm+1〉

=

〈
n

[2]
m

〉
〈nm〉 〈nm+1〉

+

〈
n

[2]
m+1

〉
〈nm〉 〈nm+1〉

+ 2
〈nmnm+1〉
〈nm〉 〈nm+1〉

. (3.42)

Since translational invariance is assumed,

〈nm〉 〈nm+1〉 = 〈nm〉2 = 〈nm+1〉2 =
1

4

〈
(nm + nm+1)2

〉
. (3.43)

After averaging over m, one can obtain [48]

〈F11(D)〉 = 2 〈F2(2D)〉 − 〈F2(D)〉 . (3.44)

Here F11(D) denotes the FC calculated for a distanceD between the bins of size δXη. Guided

by the predictions of the α-model, one can state that the relationship (3.44) holds for all bin

sizes δXη for which F11(D) is effectively independent of δXη in the range δXη 6 D 6 D0.

Relation (3.44), known as the ‘sum-rule’, can be trivially extended to more than two cells.

They allow to measure high-order correlations by varying the distances between the cells. In

Fig. 3.15 we have shown such a plot of ln 〈F11(D)〉 and ln [2 〈F2(2D)〉 − 〈F2(D)〉] as functions
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Figure 3.15: The validity of the scaling relation Eq. (3.44) for (a) the experiment, (b) the
UrQMD and (c) the UrQMD+BEC.

of − lnD for (a) the experiment, (b) the UrQMD simulation and (c) the UrQMD+BEC

simulation. One can see that the data points corresponding to either side of Eq. (3.44)

fall almost over each other for the experiment as well as for both the simulations, thereby

proving the validity of the scaling relation. Overall, our study on FC shows the presence

of a short range correlation in the 28Si-Ag/Br data, and gross features of the experiment

are consistent with the predictions of the α-model. Due to intermixing of many sources

of particle production in AB interaction most of the long range correlations are probably

smeared out. The present set of observations on factorial correlator is qualitatively consistent

with those of similar such studies in high energy AB interactions [49, 50].

3.5 Factorial Cumulant Moments

The inclusive q-particle densities ρq(η1, . . . , ηq) in general contains ‘trivial’ contributions

from the lower-order densities. Under certain conditions it is advantageous to consider a new

sequence of correlation functions Cq(η1, . . . , ηq) which vanish whenever one of the arguments

becomes statistically independent of the others. The quantities with such properties are

called the cumulant functions defined via the sequence,

C1(1) = ρ1(1), (3.45a)

C2(1, 2) = ρ2(1, 2) + ρ1(1)ρ1(2), (3.45b)

C3(1, 2, 3) = ρ3(1, 2, 3)−
∑
(3)

ρ1(1)ρ2(2, 3) + 2ρ1(1)ρ1(2)ρ1(3), (3.45c)

and so on . . .
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Likewise, the higher order expressions can be derived from the related formulae. With the

help of the cumulant functions the cell averaged normalized factorial cumulant moments are

defined as,

Kq(δη) =
1

M(δη)q

M∑
m=1

∫
δη

∏
i

dηi
Cq(η1, . . . , ηq)

(ρ̄m)q
. (3.46)

The cumulants provide a measure of genuine higher order correlation beyond the contribu-

tion(s) coming from the lower order. The inter-relationship between the cumulant moments

and the factorial moments is guided by Eq. (3.17)

Fq =

q−1∑
j=1

(
q − 1

j − 1

)
Fq−jKj +Kq; q = 2, 3, · · · , (3.47)

with F0 = F1 = K1 = 1, and K0 = 0. Successive terms in the expansion correspond

to contributions coming from genuine 2, 3 · · · , q-particle correlation present in the local

particle densities. In order to calculate the cumulant moment, one needs to calculate Fq first

following Eq. (3.20), and then the corresponding cumulants are obtained from the following

set of explicit relations (for q = 2− 5):

F2 = 1 +K2, (3.48a)

F3 = 1 + 3K2 +K3, (3.48b)

F4 = 1 + 6K2 + 3K2
2 + 4K3 +K4, (3.48c)

F5 = 1 + 10K2 + 15K2
2 + 10K3K2 + 10K3 + 5K4 +K5. (3.48d)

The bar average is defined as AB = (1/M)
∑

mA
(m)B(m). For a Poisson distribution

Kq = 0 for q > 1. Nonzero Kq values (q > 1) should therefore, indicate an existence of

nontrivial correlation in the inclusive density distribution of produced particles. In Fig. 3.16

we graphically present the variation of ln 〈Kq〉 for (q = 2, · · · , 5) with lnM for the present

28Si-Ag/Br data. The errors shown in these diagrams are calculated by making use of the

random number generated data sets, and hence they are of statistical origin only [51]. The

cumulants increase with diminishing phase space interval size. There are obvious statistically

significant contributions coming from two and three-particle correlation(s). However, the

same is not true for K4 or K5, which are either vanishingly small within errors (at wide

δXη), or the cumulant values are associated with large statistical uncertainties (in narrow

δXη interval), and it is difficult to draw any definite conclusion from the data. We do

not attach much significance to the observation that at η ∼ 3.5 a few points suddenly rise

above the neighboring points. The UrQMD and UrQMD+BEC generated points are almost

uniform over the entire lnM range, and both simulations underestimate the corresponding

experimental result on K2, K3 and K4. The same is however not true for K5. In the
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Figure 3.16: The normalized cumulant moments plotted against the phase space partition
number in 28Si-Ag/Br interaction at 14.5A GeV.

latter case there is hardly any difference between the experiment and the UrQMD or the

UrQMD+BEC simulated points where statistical errors are small. The errors attached

correspond to one standard deviation and any conclusion regarding a systematic behavior

will be only at the ∼ 68% confidence level. While the present observation is consistent

with one previously obtained AB result [52], it is in contradiction with a few similar other

experiments [53, 54].

3.6 Oscillatory Moment

By a parton shower cascade model based on the QCD it has been predicted that the Kq

moments should oscillate irregularly around the zero value with increasing order q [15, 16].

Both Fq and Kq have strong energy and order dependence, and due to finite multiplicity in

an event the high rank moments are difficult to measure at high phase space resolution. To

overcome the deficiency a new set of moments is introduced that are defined as,

Hq = Kq/Fq. (3.49)

The Hq moment also known as the oscillatory moment, shows a very interesting oscillatory

behavior with q, which even at large q is also much more regular than Fq or Kq. The ratio

reflects genuine q-particle correlation integral relative to the global correlation integral,
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Figure 3.17: The oscillatory moments Hq plotted with its rank q for the experiment
(solid circle) and for the UrQMD (empty circle). The lines joining points are shown to
guide the eye. The pseudorapidity cuts taken as (a) η0 − 0.25 6 η 6 η0 + 0.25, (b)
η0 − 0.5 6 η 6 η0 + 0.5, (c) η0 − 0.75 6 η 6 η0 + 0.75 and (d) η0 − 1.0 6 η 6 η0 + 1.0.

and it is very sensitive to the tail of the multiplicity distribution. In the cases of high

energy e+e−, hh and hA interactions oscillatory behavior of Hq with increasing q around

the zero value has been experimentally confirmed. Whereas, for e+e− and hh interactions

the oscillatory behavior has been attributed to the multicomponent structure of the particle

production process [16], in the hA case [55] the result has been explained in terms of a

leading particle cascade model. In all cases, for each participating particle/nucleon either a

negative binomial distribution, or a modified negative binomial multiplicity distribution, or

both have been successfully used.

In the present case of 28Si-Ag/Br interaction at 14.5A GeV of energy, the variation of Hq

moments with order q is graphically presented in Fig. 3.17, for the experiment as well as

for the UrQMD model simulation. The BEC effect introduced into the UrQMD output

does not make any measurable deviation in Hq from its original values, and hence are not

adopted in the diagrams. The jet structure has been examined in the central particle-

producing region with four different η windows selected as: (a) η0 − 0.25 6 η 6 η0 + 0.25,

(b) η0 − 0.5 6 η 6 η0 + 0.5, (c) η0 − 0.75 6 η 6 η0 + 0.75 and (d) η0 − 1.0 6 η 6 η0 + 1.0,

where η0 is the mean of the η-distribution. One can see that after an initial fall the Hq

values oscillate about the Hq = 0 line. In the considered η-intervals there are always a

marginal difference between the experiment and the UrQMD. However, the differences are

not statistically significant. The extent of oscillation is large in the high q region where
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Hq values have large statistical errors (once again calculated from random number based

data sets). As the η window is increased beyond ηcut = 1.0, probably due to intermixing

from different particle producing sources the correlation effects are washed out, and the

experiment and simulation start to coincide, showing only a small or no oscillation. We

observe that the Hq moment though oscillating, is not a very sensitive parameter that can

filter out the correlation effects of the experiment from the simulation which is otherwise

lacking any significant correlation.

3.7 Discussion

Multiplicity moments related to intermittency and short-range particle correlation phenom-

ena have been studied in 28Si-Ag/Br interaction at 14.5A GeV. The experimental results

are compared with the prediction of the microscopic transport model UrQMD, and with the

UrQMD output supplemented by the Bose-Einstein type of correlation included as an after-

burner. In general we observe a nonstatistical component present in the final state charged

particle density distribution. On most occasions neither the UrQMD nor the UrQMD+BEC

model can replicate the experimental pattern well. The following specific observations can

be made from the analysis.

The 1d intermittency analysis shows that in AB interaction the phenomenon is dependent

more on the colliding objects than on the collision energy involved. The 1d intermittency

also depends on the choice of the underlying phase space variable. It is slightly stronger in

ϕ-space than in the η-space. The higher order intermittency exponents can be explained in

terms of two- and three-particle correlations. The shower tracks are caused by non-identical

mesons (both positive and negative charge). Hence, the observed correlations are not entirely

due to the usual Bose-Einstein type which is being reflected from the comparison of our

experiment with the UrQMD+BEC results. The order dependence of the intermittency

indexes is neither in conformity with a second-order thermal phase transition, nor with a

multiplicative cascade mechanism. Instead, our intermittency results indicate that there

may be a nonthermal phase transition and (or) simultaneous coexistence of two different

states of hadronic matter. Using the generalized Rényi dimensions, the multifractal specific

heat C has also been obtained for the interactions. However, no universality is found to be

associated with this parameter.

The 2d intermittency is several times stronger than the 1d one. Like in the 1d case, due to the

absence of any correlation between particles in the input, the UrQMD model alone cannot

produce significant intermittency, but definite improvement in this regard is observed when

BEC is incorporated into the UrQMD output. The experimental slope values however, still



Chapter 3. Intermittency in 28Si-Ag/Br Interaction at 14.5A GeV 109

remain several times larger than the UrQMD+BEC simulation, and the upward bending

that is so typical of the anisotropy in two dimensional density distribution, is absent in both

the UrQMD and UrQMD+BEC simulated plots. As reflected from the upward bending

in the variation of the 2d-SFM, there is a strong anisotropy in the (η, ϕ) space. This

anisotropy is taken care of by introducing the Hurst exponent H, which in the present

case comes out to be 0.5 and 2.5. With the above choice of H values we can retrieve the

anomalous scaling of the 2d-SFM, and obtain the actual intermittency strength. As the

anomalous scaling is obtained both for H < 1 and H > 1, in our case it is not mandatory

that one particular direction (e.g., longitudinal η or transverse ϕ) has to be partitioned

finer with respect to the other. This in a sense contradicts the observations of similar AB

experiments [56, 57], and an interpretation of AB results in terms of the superposition of

many elementary NN collisions seems inadequate [58]. Using the appropriate H values we

have determined the intermittency strength, the generalized multifractal dimension, and the

multifractal specific heat in (η, ϕ)-plane. The 2d intermittency strength is of the same order

of magnitude as obtained from similar AB experiments at a much higher incident energy

(200 GeV per nucleon). This in a sense indicates that the intermittency phenomenon in

nucleus-nucleus experiments is less sensitive to the variation in collision energy. The general

nature of the fractal parameters obtained here tells us that a multifractal structure is present

in the underlying dynamical fluctuation of the particle density function, which probably is

an outcome of a random cascading process of particle production.

The short-range particle correlation study on the other hand demands, besides local fluctua-

tions bin-to-bin correlations should also be present in the experimental data. However, such

correlation effects cease to exist beyond a small length in η-space. The experimental results

on FC are in conformity with the sum rules and the scaling-laws suggested by the α-model.

That the observed intermittency effects primarily result from two and three-particle corre-

lation is verified from our results on the factorial cumulants. As expected, these correlations

grow with diminishing phase space interval size as it narrows down to the experimental res-

olution. There is an indication that small amount of higher order (q > 3) correlations may

also be present in the experiment. Due to large statistical errors however, the observation

cannot be considered very seriously. All these correlation effects could not be reproduced

either by the UrQMD model or by the BEC effect implemented over the same model. The

oscillatory nature of Hq has been confirmed for the present data on 28Si-Ag/Br interactions.

However, in this case the difference between the experimental and the simulated (UrQMD

or UrQMD+BEC) results is not very significant. Note that the Bose-Einstein correlation

has been accommodated into the UrQMD output as an after-burner without any check

on the two-particle correlations, and not directly at the real correlation level. Hence, the

method adopted cannot be considered as a fully convincing way of taking the BEC effect

into account as a probable cause of the intermittency in the 28Si-Ag/Br data analyzed here.
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Chapter 4

Erraticity in 28Si-Ag/Br Interaction

at 14.5A GeV

4.1 Introduction

In Chapter 3 we have presented our results on the scaled factorial moment (SFM) analysis

for the 28Si-Ag/Br collision events at an incident energy of 14.5A GeV. It is found that

the SFM (Fq) of integer order q anomalously scales with diminishing phase space resolution

size, which is technically termed as intermittency. The factorial moments are capable of

filtering out the dynamical component of fluctuation from the statistical noise if the latter

is Poisson distributed. However the moments are incapable of locating the position of a

spike or a sharp void in an event, and also while averaging over a large event sample, the

event space fluctuations of the factorial moments are smoothed out. In case a factorial

moment analysis is made over a narrow region of phase space, so that due to finite event

multiplicity only a few phase space sub-intervals contribute to the moment calculation, very

little information about the dynamical fluctuation present in that event can be retrieved.

Moreover, the averaging of SFM over a limited number of bins does not completely satisfy

the criterion of disentangling the statistical noise. Therefore, a simple intermittency analysis

cannot fully account for all kind of fluctuations. To investigate the nature of event-to-event
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fluctuations beyond intermittency, it therefore, becomes essential to introduce a new set of

moments.

The erraticity moment (Cp,q) is free from some of the limitations of the factorial moment as

described above and is a useful tool for investigating the event-space fluctuation of multipar-

ticle emission data [1, 2]. The Cp,q moment is defined for any positive value of p but only for

integer positive q. The idea of erraticity was originally introduced to understand the pos-

sible chaotic behavior in quark and gluon (parton) jet formation (or branching processes)

[2]. The parameters extracted from the Cp,q moment analysis can on one hand quantify

the chaotic nature of spatial fluctuation in event space and on the other it is capable of

characterizing the degree of fluctuation of the parton multiplicity that initiates the QCD

branching processes. It is claimed that in order to describe the chaoticity of multiparticle

production in high-energy interactions, the ‘entropy index’ (µq) (to be defined later) is as

effective as the Lyapunov exponent for describing a classical deterministic nonlinear system

[2], and nonvanishing positive values of µq can be used as a criterion for this purpose. More-

over, from the magnitude of µq one can distinguish a branching process initiated by a quark

from one that is initiated by a gluon. A quark triggered branching process will result in

a high value of entropy index than one triggered by a gluon, though there is not yet any

quantitative measure for how large or small that value would be. The scaling behavior of

erraticity moments has so far been verified in several high-energy experiments and in all

cases nonvanishing values of erraticity parameters confirm the existence of a chaotic nature

of particle production data that may vary from event-to-event [3–9]. However, the physics

behind such a chaotic nature of fluctuation could not yet be explained. In the recent past

it has been observed that the FRITIOF and VENUS model calculations also reproduce

considerable amount of erraticity in central AB collisions [7], where the produced particle

multiplicities are as high as 102 − 103 per event. In other words this means that within the

framework of these models the statistical fluctuations still dominate the erraticity behavior.

On the other hand, some previous works of our group showed that the FRITIOF prediction

of erraticity parameters like µ̃q are about 100− 50 times smaller than those obtained from

the experiment (32S and 16O-induced collisions at an incident energy of 200A GeV), and

the model estimated values of µ̃q are close to the corresponding values obtained from or-

dinary random number generated data samples [8, 9]. Therefore, a systematic comparison

between experiment and model simulation(s) using various computer codes is necessary to

understand the chaotic nature of multiparticle production in high-energy AB collisions.

In this chapter we present the erraticity related results of our data on 28Si-Ag/Br interaction

at an incident energy of 14.5A GeV. For the sake of completeness the erraticity analysis

methodology is also briefly outlined. The objectives of the present investigation are: (i)

to investigate comprehensively the erraticity characteristics of multiparticle production in
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28Si-Ag/Br interaction at 14.5A GeV, (ii) to compare the experimental values of erraticity

parameters with those obtained from the simulated data sets, and (iii) to investigate the

influence of the Bose-Einstein type of correlation (BEC) between identical meson pairs on

the erraticity parameters. The UrQMD simulation technique and the numerical algorithm

of inducting BEC into the UrQMD generated events have been described in Section 2.5.

4.2 Methodology and Results

The erraticity moment deals with the event space fluctuation of factorial moments. The

single event factorial moment F eq of order q is defined as,

F eq =

1
M

M∑
m=1

nm(nm − 1) . . . (nm − q + 1)(
1
M

M∑
m=1

nm

)q , (4.1)

in the same way as we did it for the intermittency analysis, where M is the number of

non-overlapping equal sized sub-intervals (bins) into which the entire accessible phase space

(here η space), say of size ∆η, is divided. Note that, instead of the η variable here we have

used the corresponding cumulative variables Xη [defined in Eq. (3.22)], though we continue

to call the underlying space as the η-space. The moment F eq does not fully describe the

structure of an event, since at any fixed q it is insensitive to the rearrangement of the bins.

However, it does capture some aspect of the fluctuations from bin-to-bin that is adequate

for the intermittency analysis. As for instance, in Fig. 4.1 we have shown the F eq distribution

for the experimental events along with the corresponding UrQMD simulated events for two

different values of phase space partition number M = 5 and M = 10. It can be seen that

majority of the F eq values are concentrated within an initial small range, but a long tail

that corresponds to unusually large F eq values is also visible in each distribution. It is our

objective to quantify these large fluctuations of F eq in terms of the erraticity moments and

associated scaling parameters. The method of analysis starts by introducing a normalized

moment Φq defined for an individual event as, Φq = F eq /
〈
F eq
〉
, and then by defining a pair

of erraticity moments expressed in terms of Φq. On one hand, we have the Cp,q moments

defined as the vertically averaged pth order moment of Φq, Cp,q = 〈Φp
q〉 and on the other,

we have an entropy like quantity Σq defined as, Σq = 〈Φq ln Φq〉 . In the p > 1 region,

Cp,q characterizes the large Fq behavior of the corresponding distribution P (F eq ) and is

sensitive only to the spikes in the η-distribution. Conversely for p < 1, Cp,q measures the

low F eq behavior of the distribution P (F eq ), which is influenced mainly by bins with low

multiplicities, including the empty ones i.e., the valleys present in the underlying space.
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Figure 4.1: Distributions of F e
2 in 28Si-Ag/Br interaction at 14.5A GeV for two different

values of η-space partition number M = 5 (a) and 10 (b).

The domain of analysis (0 < p < 2) reveals enough information about the properties of

P (F eq ), probably beyond those probed by intermittency. We are particularly interested in

studying the erraticity behavior in the region p ≈ 1. In multiparticle dynamics the erraticity

moments Cp,q are found to follow a scaling-law with phase space partition number M (or

equivalently with the resolution size δη) as

Cp,q ∝Mψ(p,q) : M →∞. (4.2)

This behavior is referred to as the ‘erraticity’ and the exponent ψ(p, q) is called the ‘erraticity

index’. If the spatial pattern of particle density function does not change from one event

to the other, one would expect the distribution P (F eq ) to behave like a delta function.

Correspondingly, both Φq and Cpq would reduce to unity and ψ(p, q) to zero. Hence, any

deviation of ψ(p, q) from zero can be considered as a measure of erraticity. The slope

µq = (d/dp)ψq(p)|p=1 is the entropy index mentioned above. In high-energy AB interactions

however, Cp,q may not exhibit as strict a scaling-law as prescribed in Eq.(4.2), but would

rather follow a more generalized form like,

Cp,q ∝ f(M)ψ̃(p,q), (4.3)

where f(M) is some well behaved function of M . Similar to Eq. (4.3) one would expect a

generalized scaling-law for the Σq moments as well,

Σq ∝ µ̃q ln f(M). (4.4)
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Figure 4.2: Erraticity moments Cp,q plotted as functions of phase space partition number
M . The solid curves are drawn to guide the eye.

From the definitions of Cp,q and Σq it follows that the slope

µ̃q =
d

dp
ψ̃(p, q)

∣∣∣∣
p=1

. (4.5)

The parameter µ̃q is quite different from the entropy index µq related to the simple scaling-

law of Eq. (4.2), and should therefore, not be compared with each other. However, this

parameter is again a measure of the erratic behavior of event-to-event fluctuation and a

chaotic behavior in the QCD branching processes [2]. Whereas a small µ̃q value corresponds

to a large Σq and hence to a less chaotic system, a large µ̃q value corresponds to a small

entropy and therefore, to a highly chaotic system.

In Fig. 4.2 the Cp,q moments for q = 2 − 5 over a wide range of p values are plotted with

the phase space partition number M . For better comparison the experimental results and

those obtained from the UrQMD and the UrQMD+BEC simulations are shown side by

side. From these graphs one can see that the experimental Cp,q values vary over a wider

range than the corresponding UrQMD and UrQMD+BEC generated values. A smooth but

nonlinear variation of lnCp,2 with lnM can be seen over its entire range, which indicates

the justification of invoking a generalized power law like Eq. (4.3). For q = 3, 4 and 5

the variation patterns are more or less similar to those for q = 2. However, several kinks

(or discontinuities) at large M are observed for all three sets of plots, which may be a
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Figure 4.3: Plot of lnC2,2 and Σ2 with ln f(M) = (lnM)b. The lines represent best linear
fits to the data points.

Table 4.1: Values of b, ψ̃(2, 2) and µ̃2 for the experiment, the UrQMD, the UrQMD+BEC
and for a random number generated sample.

Data set b ψ̃(2, 2) µ̃2

Experiment 2.95 0.0138±0.0006 0.0049±0.0001

UrQMD 2.45 0.0068±0.0003 0.0037±0.0001

UrQMD+BEC 2.52 0.0063±0.0005 0.0031±0.0001

Random 2.70 0.0082±0.0004 0.0037±0.0008

result of finite event multiplicity, or limited statistics, or both. As the present 28Si-Ag/Br

event sample does not possess a very high multiplicity (〈ns〉 ≈ 52), with increasing q more

events become susceptible to the empty bin effect and a kind of saturating trend beyond

M = 10 can be seen with growing fluctuation in the data points. To establish a generalized

scaling-law as suggested by Cao and Hwa [2], we have assumed ln f(M) = (lnM)b, where

b is a free parameter that has to be adjusted from the linear fit of lnC2,2 against ln f(M).

Such plots can be found in Fig. 4.3 for (a) the experiment, (b) the UrQMD and (c) the

UrQMD+BEC with the respective best fitted straight lines represented by solid lines. The

values of b obtained are given in the first column of Table 4.1. One can compare these values

with b = 3.23 and b = 2.08 (experiment), respectively for the 16O-Ag/Br and 32S-Ag/Br

interactions at 200A GeV/c [8, 9]. In all cases Pearson’s coefficient (R2) which decides the

goodness of fit, are found to be > 0.98. The slope of ln f(M) versus lnC2,2 straight line

gives us another erraticity parameter ψ̃(2, 2). The calculated ψ̃(2, 2) values are also quoted

in the second column of the Table 4.1. The indices µ̃2 can now be obtained from the linear

relationship between Σ2 and ln f(M) = (lnM)b from the estimated values of b. These plots

are also included in Fig. 4.3 and the µ̃2 values as shown in the third column of the Table

4.1, are nothing but the slopes of the ln f(M) versus Σ2 straight lines of the respective data
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Figure 4.5: Variation of χ(p, q) with p. The curves represent the best quadratic fits.

sample. Note that all the Cp,q moments depend almost similarly on lnM . Therefore, one

can also use lnC2,2 in place of ln g(M) to evaluate the erraticity parameters. The scaling

relation (4.3) can thus be converted to

Cp,q ∝ (C2,2)χ(p,q). (4.6)

We have found that for q = 2 the expected linear dependence of lnCp,q on lnC2,2 is almost

exact and for different values of p the results are graphically presented in Fig. 4.4. For

q > 2 the linear dependence is only approximate, in the sense that it is valid in the low M

region, and effects of finite multiplicity (saturation) and limited statistics (scattered points)

are visible at high M . For q > 2 we have however, obtained χ(p, q) through linear fit of

the approximate linear dependence of lnCp,q on lnC2,2 within a limited region (M 6 12),

where lnCp,q is found to behave systematically. In Fig. 4.5 the χ(p, q) values so obtained

for the experiment, UrQMD and UrQMD+BEC are plotted against p for different q values.
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For each q the data points are fitted to a quadratic function like

χ(p, q) = a2 p
2 + a1 p + a0. (4.7)

The solid curves in the diagrams represent this quadratic function. The first order derivatives

of χ(p, q) at p = 1,

χ′q =
∂

∂p
χ(p, q)

∣∣∣∣
p=1

(4.8)

can now be obtained by using this diagram and/or the corresponding quadratic fit param-

eters, and can further be utilized to determine the µ̃q index from the following relation:

µ̃q = ψ̃2,2 χ
′
q. (4.9)

The entropy-like moments Σq for different q are also plotted against lnM in Fig. 4.6. As

expected, one can see that these moments are also not linearly varying with lnM over its

entire range. However, for all q the variation patterns look similar. Hence, in place of g(M)

one can as well use Σ2 and make a plot of Σq against Σ2, which is given in Fig. 4.7. In both

these figures the UrQMD and the UrQMD+BEC prediction are incorporated along with the

experimental. In each case the slope parameters

ωq =
∂

∂Σ2
Σq (4.10)

are obtained by making a linear fit of the Σ2 versus Σq data point within a limited M (6 12)

region, as shown in Fig. 4.7. Subsequently, following a different relationship

µ̃q = µ̃2 ωq, (4.11)

once gain we can derive the µ̃q index. All the erraticity parameters pertaining to this
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analysis of 28Si-Ag/Br data, namely χ′q, ωq and two sets of µ̃q using Eq. (4.9) and Eq. (4.11),

have been presented in Table 4.2 for q = 2−5. The parameters obtained from the experiment

as well as from the simulations are presented together. Several observations can now be made

regarding the erraticity behavior of our 28Si-Ag/Br event sample. First of all, in general

the erraticity of particle distribution is observed for all four data sets. With increasing q

while the experimental χ′q parameter increases at a slower rate, the ωq parameter increases

at a faster rate than the corresponding UrQMD and UrQMD+BEC generated values. Both

parameters for the random number generated sample change at a slower rate than both the

experiment and model simulations. For the Itcanbeseen28Si-Ag/Br interaction at 14.5A

GeV both χ′q and ωq are found to increase at a much slower rate than what was observed

previously in AB interactions at 200A GeV/c [8, 9]. The index (µ̃q) obtained by using two

different formulae [i.e., Eq. (4.9) and Eq. (4.11)], within their statistical uncertainties, are

very close to each other. For a better understanding the parameter µ̃q is plotted with q in

Fig. 4.8 for all four data sets used in this analysis. Fig. 4.8(a) is drawn following Eq. (4.9)

and Fig. 4.8(b) follows Eq. (4.11). In either of these diagrams the experimental data show

a rapid increase with increasing q. The experimental values are always larger than the

corresponding simulated values. The experimental µ̃q values in 28Si-Ag/Br interaction at

14.5A GeV are almost of the same order of magnitude as the µ̃q values obtained in 32S-

Ag/Br interaction at 200A GeV [8], but are slightly larger than the corresponding values

found in 16O-Ag/Br interaction at 200A GeV [9]. So the dependence on the projectile mass

number seems to dominate the erraticity behavior over the collision energy involved in an

AB experiment. We note that the µ̃q parameter characterizes the event space entropy and

hence the chaoticity of the interacting system. An increase in the entropy index signals

the augmentation of a possible quark-hadron phase transition [10]. This feature has indeed

been observed for a possible nonthermal phase transition [11], where it is shown that the µq
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Table 4.2: Erraticity parameters in 28Si-Ag/Br interaction at 14.5A GeV.

Data set Order χ
′
q ωq µ̃q [Eq. (4.9)] µ̃q [Eq. (4.11)]

q = 2 0.368±0.111 — 0.0051±0.0015 0.0049±0.0001

q = 3 1.671±0.904 5.272±0.132 0.0230±0.0124 0.0282±0.0008

Experiment q = 4 5.995±0.922 16.554±0.536 0.0825±0.0132 0.0816±0.0031

q = 5 11.918±1.672 27.729±0.588 0.1641±0.0242 0.1367±0.0039

q = 2 0.546±0.033 — 0.0037±0.0003 0.0037±0.0001

q = 3 2.929±0.463 4.452±0.227 0.0199±0.0032 0.0168±0.0009

UrQMD q = 4 8.138±1.808 12.487±0.803 0.0553±0.0124 0.0471±0.0032

q = 5 17.908±1.537 24.638±1.536 0.1217±0.0115 0.0929±0.0061

q = 2 0.449±0.061 — 0.0028±0.0004 0.0031±0.0001

UrQMD q = 3 2.308±0.883 6.609±0.142 0.0145±0.0057 0.0205±0.0007

+BEC q = 4 9.135±1.865 20.438±0.577 0.0576±0.0126 0.0633±0.0026

q = 5 19.997±2.115 40.719±2.618 0.1260±0.0167 0.1262±0.0091

q = 2 0.441±0.094 — 0.0037±0.0001 0.0032±0.0001

q = 3 1.367±0.077 3.431±0.104 0.0116±0.0001 0.0111±0.0005

Random q = 4 3.451±0.127 8.709±0.249 0.0294±0.0016 0.0283±0.0011

q = 5 6.308±0.226 16.529±0.599 0.0537±0.0030 0.0537±0.0024
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Figure 4.8: Plot of the entropy index µ̃q against order number q calculated from (a)
Eq. (4.9) and (b) Eq. (4.11). The lines joining the data points are shown.

index increases fast with q in case of a ‘critical’ M interval. We can find a similar increasing

trend of our µ̃q parameter for the present set of 28Si-Ag/Br data, which is consistent with

the nonthermal phase transition as indicated our intermittency analysis [Fig. 3.7(a)].

The µ̃2 values of the present analysis are significantly (by approximately two-order) smaller
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than what was obtained in a similar experiment on 28Si-Ag/Br interaction at 14.6A GeV

[5]. In ref. [5] µ̃2 is calculated as a function of average event multiplicity 〈ns〉 and it is found

that the parameter µ2 decreases monotonically with increasing 〈ns〉. Note that the average

event multiplicity of our sample is greater than the highest multiplicity of the subsample

used in ref. [5]. Also it may be noted here that in ref. [5] the erraticity moments were plotted

against lnM , not against ln f(M). Hence as already mentioned above, the entropy index µ2

obtained thereby is altogether a different parameter than the µ̃2 parameter obtained in the

present investigation. We have checked that a similar linear fit of the lnCp,q versus lnM data

in the region 11 6M 6 25 for the present event sample results in µ2 = 0.092±0.009, and the

value is very close to the µ2 values of ref. [5] within a similar M -range. We observe that the

UrQMD as well as the UrQMD+BEC simulation fail to replicate any of the intermittency

predictions of our 28Si-Ag/Br data, whereas both the model simulated samples and the

random number generated sample exhibit reasonable amount (well below the experiment

though) of erraticity. Similarly we earlier found that the FRITIOF also reproduced erraticity

behavior to a lesser extent than the experiment [9]. Either the FRITIOF or the UrQMD has

nothing to do with the dynamics of erraticity of particle production, as no particle correlation

is embedded into these models. The erraticity behavior comes merely as a statistical effect

in these models, as is also confirmed from the random number generated values. The effect

of BEC in µ̃q almost vanishes when the parameter is calculated following Eq. (4.9), but it is

quite prominent in case of the second formalism adopted i.e., Eq. (4.11). The UrQMD+BEC

values of µ̃q calculated by using Eq. (4.11) are always well above the corresponding UrQMD

values, and are always very close to their experimental counterparts. Similar observation

regarding the statistical contribution to erraticity behavior has been highlighted in other

experiments as well [12]. As for example, in ref. [13] it was demonstrated that the erraticity

behavior of a set of low multiplicity data of the NA27 experiment, could be reproduced by

considering purely statistical fluctuations. Fuming et al. [7] showed that the FRITIOF and

the VENUS simulations on AB interactions fit very well with the expected form of the 3d

pure statistical fluctuation model. The results are independent of the event generator, the

colliding nuclei, the incident energy, the particle species and even the phase space variables

used in the analysis. Thus one can say, in the framework of the FRITIOF and/or VENUS

event generators, even in the central collision of heavy nuclei at energies up to 200A GeV, the

statistical fluctuations dominate the erraticity behavior. The erraticity analysis of hadronic

interaction at 250 GeV/c [6] also confirms the dominance of statistical fluctuation in the

experimental measurement. However, in emulsion experiments [4, 5] the experimental results

of s-particles are found to be far apart from the corresponding random number generated

results. In this regard our observation supports the previous records of AB experiments

based on the emulsion technique.
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4.3 Discussion

In this chapter the erraticity analysis of charged mesons produced in 28Si-Ag/Br interac-

tion at 14.5A GeV is presented. Various parameters related to chaoticity in event space

fluctuation are estimated. The experimental results are compared with the prediction from

two sets of simulated data, one by using the microscopic transport model UrQMD, and

another set of UrQMD data which is supplemented by the Bose-Einstein type of correla-

tion (UrQMD+BEC). To check whether the erraticity parameters are sensitive enough to

the statistical fluctuation, we also perform the same analysis for a purely random number

generated data sample. To summarize, the event-to-event fluctuation in the experiment, as

well as in the models are found to be of chaotic nature. The following critical observation

can be made from the analysis.

The erraticity moments are found to abide by a less stringent generalized scaling-law than

the scaled factorial moment (see the intermittency analysis in Chapter 3). Quantitatively,

this observation is true for the experimental, the UrQMD as well as for the UrQMD+BEC

simulated data. Unlike the intermittency, the UrQMD and the UrQMD+BEC generated

results on 28Si-Ag/Br interactions also exhibit erratic nature, and the simulated system

appears to be almost as chaotic as the experimental one. Also the effect of BEC in this

analysis is not as prominent as it was observed in the intermittency analysis. It may be noted

that as found earlier, the string fragmentation model FRITIOF does not fully reproduce

either the intermittency results or the erraticity results at a similar or higher energies in AB

or in hadronic interactions. The erratic behavior present in the transport models UrQMD

as well as in the pure statistical fluctuations is signaling the dominance of the statistical

fluctuation in UrQMD.

The present sample of 28Si-Ag/Br events at 14.5A GeV seems to be almost as chaotic as the

16O-Ag/Br and the 32S-Ag/Br interactions at 200A GeV/c [9]. A comparison of our results

with those obtained from the random number generated events, as well as the results from

other experiments on hadron-nucleon (hN), nucleon-nucleon (NN) and AB interactions

[3, 4, 6] show that, in the present case the µ̃q indices are significantly smaller than the

entropy indices µq obtained in other analyses. A high value of 〈ns〉 and correspondingly a

lower statistical fluctuation in bin-to-bin multiplicity might have contributed to a smaller

entropy index. The geometry of collisions might be another important factor of concern, as

it has been observed that the factorial moment increases with decreasing particle multiplicity

[6]. Similar observation is also made in ref. [14] for the 28Si-Ag/Br interactions at 4.5A and

14.5A GeV, where µq for q = 2 and 3 are found to decrease with increasing
√
〈ns〉. In

emulsion experiments usually the sample statistic is not too large, and being a fixed target
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experiment the event-to-event multiplicity fluctuates to a large extent, which in other words

contributes a large fraction to the statistical noise.
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Chapter 5

Multifractality in 28Si-Ag/Br

Interaction at 14.5A GeV

5.1 Introduction

It is known that the theory of fractals has the ability to explain deterministic chaos in

nonlinear physics [1]. Studies of intermittent behavior in turbulent fluids have also been

well explained in terms of the fractal dimensions [2]. This observation has prompted the

fractal formalism to be adopted to explain multiparticle emission data in high-energy col-

lisions, which subsequently leads to the study of intermittency from the perspective of

(multi)fractality. Several techniques based on the fractal theory are available to analyze the

multiparticle emission data [2–4]. The most popular one has been the frequency moment

method [5, 6] followed by a similar technique introduced in ref. [7]. In this chapter we

use both of these methods to analyze shower track emission data of 28Si-Ag/Br interaction

at an incident energy of 14.5A GeV, along with a couple of detrended techniques, namely

the multifractal detrended fluctuation analysis (MF-DFA) method [8] and the multifractal

detrended moving average (MF-DMA) method [9].

The single particle density distribution of particles produced in a high-energy collision ex-

hibits random fluctuations consisting of sharp peaks and deep valleys, which are apparently
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devoid of any regular pattern. In the intermittency analysis we have characterized these fluc-

tuations in terms of a set of regularly behaving parameters. The power law scaling behavior

of SFM as elucidated in Eq. (3.23) indicates that some kind of scale invariant dynamics is

involved in the particle production process that may have a connection with the theory of

fractals [5, 10–13]. Efforts have been made to interpret the intermittency parameters and the

self-similarity observed in the particle density distribution, in terms of several conventional

as well as exotic speculative processes, but each with a limited degree of success. Both the

experimental and phenomenological development of the subject has been comprehensively

reviewed in ref. [14].

For a self-similar process, the multifractal Gq moment (also called the frequency moment)

introduced in ref. [5, 6] exhibits a power-law dependence on the phase space resolution size

in a way similar to Eq. (3.23). Over intermittency the Gq moment technique has an added

advantage in the sense that, by using the Gq moments one can study not only the spikes

(for q > 0) but also the non-empty valleys (for q < 0), while the Fq moments are useful only

for the spikes of the density distribution. Unlike the Fq moments, the Gq moments can be

defined for fractional as well as for negative q values, and hence one can enjoy the freedom

of computing a continuous spectrum of moments. However, in low multiplicity events as

the empty bin effects dominate the Gq moments saturate with δX → 0, and the statistical

noise present in the density function cannot be automatically accounted for. The limiting

condition δX → 0 is again a mathematical idealization, and the only achievable limit is

up to the phase space resolution allowed by the detector granularity. In Gq technique the

noise has to be eliminated by using an equivalent uncorrelated event sample generated by

the random numbers. Takagi’s Tq moments on the other hand, are defined only for positive

integer order q, and are not particularly affected by the finiteness of the event multiplicity

[7]. Takagi used his technique to determine several multifractal parameters by analyzing

pp and e−e+ annihilation data. However, a proper method of eliminating the statistical

noise from the Tq moments has not yet been formulated. In the recent past both Hwa’s and

Takagi’s methods have been applied to analyze high-energy nucleus-nucleus (AB) collision

data at different collision energies involving different colliding systems [5, 6, 15, 16].

The multifractal detrended fluctuation analysis (MF-DFA) [8] method is a very useful tool

for the multifractal characterization of noisy and nonstationary time series data. As a

robust and powerful technique for capturing the long-range correlations in time series data,

the method has so far been applied to various fields of stochastic analysis e.g., in stock

markets, foreign exchange, geophysical time series, medicine and many more. To illustrate

the applicability of the MF-DFA method we cite a few resent articles in ref. [17], certainly

the list is not a complete one. In the recent past Zhang et al. [18] have applied the

method probably for the first time to analyze the multiparticle data on Au+Au interaction at
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√
sNN =200 GeV. The multifractal detrended moving average analysis (MF-DMA) technique

[9] on the other hand, is a comparatively new method adopted in time series analysis. The

MF-DMA analysis method is also an efficient tool for the detection and characterization of

multifractal scaling and long-range correlation properties of noisy and non-stationary time

series data [19, 20]. It is obvious that like other multifractal techniques, MF-DMA technique

can also be used to investigate the scale invariance property of the particle density in high-

energy collisions, though to the best of our knowledge it has not so far been applied to any

such multiparticle distribution.

As mentioned above, the intermittency analysis of our AB data signals towards the possi-

bility of some kind of scale invariant dynamics that ultimately leads to a self-similar density

distribution in one dimensional density distribution [21], and a self-affine distribution in the

two-dimensional (η, ϕ) plane [22]. These observations encouraged us to perform a multi-

fractal analysis of the 28Si-Ag/Br data. Therefore, in this chapter we examine the scaling

behavior of various multifractal moments and derive several parameters related to multifrac-

tality. We adopt four different techniques, namely Hwa’s moment [5, 6, 11], Takagi’s moment

[7], the MF-DFA moment [8] and the MF-DMA moment [9]. Moreover, the results obtained

from the experimental data sample are systematically compared with the predictions of the

UrQMD and UrQMD+BEC simulations.

5.2 Hwa’s Moment

The frequency moment or the qth order multifractal moment Gq averaged over many events

as well as over many non-overlapping phase space intervals of equal size say δXη = ∆X/M ,

is defined as [5],

〈Gq〉 =
1

Nev

Nev∑
e=1

M∑
m=1

[
nem
nes

]q
. (5.1)

In the above definition of Gq, the order q can be any real number, M represents the total

number of equal size intervals into which the entire accessible phase space ∆X is partitioned,

nem is the number of shower tracks falling within the mth such interval of the eth event,

nes is the total number of shower tracks in the eth event (i.e., nes =
∑M

m=1 n
e
m). For finite

nes the single event Gq moments are subjected to large statistical fluctuations that can be

minimized through event averaging. To get rid of the saturation problem mentioned above,

Hwa and Pan [6] introduced a step function Θ(nem − q) into the definition of Gq which acts

like a filter for the empty bin. With this modification the 〈Gq〉 moment is redefined as,

〈Gq〉 =
1

Nev

Nev∑
e=1

M∑
m=1

[
nem
nes

]q
Θ(nem − q). (5.2)
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The Θ function equals to 1 if nem > q, and vanishes otherwise. According to the theory of

fractals, if the single particle density distribution possesses multifractal structure, then 〈Gq〉
like the SFM should also exhibit a scaling relation,

〈Gq〉 ∝ (δXη)
τ(q) : as δXη → 0. (5.3)

The exponent τ(q) is called the ‘multifractal mass exponent’ or simply the ‘fractal exponent’

that can be related to the generalized Renyi (fractal) dimensions Dq through the relation:

τ(q) = (q−1)Dq. The phase space variable used here is nothing but the cumulative variable

Xη defined in Eq. (3.22) corresponding to the pseudorapidity (η). We have calculated the

Gq moments as functions of phase space partition number M over a wide range of q values.

Fig. 5.1 shows the corresponding schematic representations, where ln 〈Gq〉 has been plotted

against lnM (a) for the experiment, (b) for the UrQMD, and (c) for the UrQMD+BEC.

The diagrams show that the phase space dependence of Gq is more or less similar for all the

three data samples e.g., ln 〈Gq〉 increases for q < 0 and decreases for q > 1, ln 〈Gq〉 tends

to saturate at large lnM , and the saturation effect that might simply be an outcome of

the finiteness of 〈ns〉, is more prominent for the higher positive values of q(> 4). The mass

exponent τ(q) is calculated from the linear dependence of ln 〈Gq〉 on ln δXη (see Eq. (5.3))

through

τ(q) = lim
∆→0

∆ ln 〈Gq〉
∆ ln δXη

. (5.4)

For each q, τ(q) is extracted from the best linear fit to the ln 〈Gq〉 versus lnM data. While

fitting a straight line we did not take into account the points falling in the saturation region.

From the knowledge of τ(q) one can now establish a connection between intermittency

and multifractality, can evaluate the fractal dimensions, and can also construct the most
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Figure 5.1: Multifractal Gq moment plotted with phase space partition number in 28Si-
Ag/Br interaction at 14.5A GeV. Lines joining points are drawn to guide the eye.
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Figure 5.2: (a) The event average mass exponent τ(q) and the Lipschitz-Hölder exponent
α plotted against q. Note that the experiment (solid line), the UrQMD (dotted line) and
the UrQMD+BEC (dashed line) are very close to each other. (b) The multifractal spectral
function for the experiment (solid circles), the UrQMD (open circles) and the UrQMD+BEC
(shaded circles).

important multifractal singularity spectral function [23],

f(α) = q α(q)− τ(q). (5.5)

Here the Lipschitz-Hölder exponent α is defined as α(q) = ∂τ(q)/∂q. The importance of the

singularity spectrum in the theory of multifractals is that, the width of the spectrum is a

direct measure of the degree of multifractality present in the data, which for a monofractal

object should reduce to a delta function centered around a particular α(q) = α(0). A finite

width of f(α) distribution on the other hand would suggest that, the quantitative nature

of the singularities of particle density, as the scaling law (5.1) suggests, may be different at

different phase space points, and not guided by any universal exponent. In Fig. 5.2(a) we

have shown a plot of τ(q) against q for the experiment and the simulations. Corresponding

α values are also presented in the same diagram. One can notice that the experimental and

the simulated results behave almost identically. It can also be seen that (i) there exists a

small but definite non-linearity in the variation of τ(q) with q, and (ii) a decreasing trend of

α with increasing q. In the phenomenology of multifractality both the observations indicate

the presence of multifractality in the actual density distribution [5, 6]. The multifractal

spectral functions f(α), obtained for the experiment, for the UrQMD simulation with and

without BEC are plotted in Fig. 5.2(b). All the spectra are found to be very stable, smooth

and concave downwards having peaks at α(q = 0). The straight line f(α) = α shown in

the diagram, tangentially touches all the spectra at around α ≈ 1.0. The maxima of f(α)

is very close to unity, indicating that the empty bin effect, especially within the scale re-

gion of analysis, has properly been taken care of. A wide f(α) spectrum for all the data
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samples is strengthening the proposition of multifractality. The important issue is that the

experimental spectrum is wider than both the UrQMD and UrQMD+BEC generated spec-

tra, and the UrQMD+BEC spectrum falls in between the experimental and the UrQMD

generated spectra. This is an indication of the fact that multifractality in the experimental

data is greater than the UrQMD simulation, and inclusion of BEC actually enhances the

multifractal character of the UrQMD data. Similar effect has also been observed in our

intermittency analysis as well [21]. The spectral functions obtained in our analysis exhibit

similar features that are observed in the pp collisions of the UA1 collaboration [12], or in

the AB collisions of the EMU01 [15] experiments. It is to be noted that the UA1 results

were compared with the GENCL and the PYTHIA(v4.8) predictions, whereas a stochastic

model was used to compare the EMU01 results. As mentioned, in addition to the dynamical

component of fluctuation (if any), the Gq moment calculated through Eq. (5.2) is contam-

inated by the statistical noise. While the dynamical component in the particle density

fluctuation can automatically be filtered in the intermittency technique, the same is not

true for multifractality. Therefore, it would be a useful exercise to estimate the nontrivial

dynamical component of the Gq moment, and to see whether it can match the same obtained

from our intermittency analysis. In order to find out the statistical contribution, we have

calculated the Gq moments over an uncorrelated event sample (call it Gsta
q ) generated by

(pseudo)random numbers as discussed in Chapter 2. For each q corresponding mass expo-

nents τ sta(q) are also calculated from the best fitted straight lines to the data points. It has

been shown in ref. [6] that the dynamical component of τ(q), denoted by τdyn(q) is related

to the statistical one τ sta(q) by the following relation,

τdyn(q) = τ(q)− τ sta(q) + q − 1. (5.6)

In deriving the above relation, it has been assumed that Gdyn
q obeys the same scaling-law as

Gq i.e.,
〈
Gdyn
q

〉
∝ (δXη)

τdyn(q) as δXη → 0. It then follows from Eq. (5.6) that for a trivial

dynamics τdyn(q) should be equal to (q−1). Therefore, any deviation in τdyn(q) from (q−1)

may be considered as an outcome of the nontrivial dynamics. A phenomenological relation

between the intermittency exponent φq and the dynamical component of mass exponent

τdyn(q) after Hwa [6] is given by,

τdyn(q)− q + 1 ≈ φq. (5.7)

The effect of eliminating the statistical contribution to the Gq moments can be readily seen

from Fig. 5.3, where the q − 1 − τ(q), the q − 1 − τdyn(q), along with the φq values taken

from ref. [21] are plotted together against q. The results obtained from the experiment, the

UrQMD and UrQMD+BEC simulation are shown separately to avoid mutual overlapping

of the points. Both in the experiment and in the simulations (with and without BEC) the
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Figure 5.3: Plots of q − 1− τdyn(q), q − 1− τ(q) and the intermittency exponent φq [21]
versus order number q. In all diagrams lines joining points are drawn to guide the eye.

q − 1 − τ(q) values are far above the corresponding φq values. As soon as the statistical

contribution is subtracted, the respective q − 1 − τdyn(q) values come down very close to

the intermittency index. It is to be noted that, very little evidence of dynamical fluctuation

has been observed in the intermittency analysis (φq ≈ 0) of the UrQMD data [21, 22],

and the UrQMD+BEC estimation of φq is about 5 − 10 times larger than the respective

UrQMD values. The UrQMD and the UrQMD+BEC predictions of q − 1 − τdyn(q) also

match their respective φq values. In spite of the fact that the model produces only statistical

fluctuations, the UrQMD shows multifractality and the Bose-Einstein correlation included

by the prescribed afterburner technique enhances the degree of multifractality. Since the

multifractal character is also found in the random number generated sample, the scaling

behavior of Gq cannot be taken as the characteristic of the dynamical fluctuation, rather

the dynamical signature of the data has to be scrutinized at the level of scaling exponents

and derivatives obtained thereof.

A fractal system can also be characterized by a parameter called the Lévy stable index (µ)

which has a stability range, 0 6 µ 6 2 [24, 25], though occasionally the index is found outside

the specified stability range [26]. The upper limit µ = 2 corresponds to minimum fluctuation

for a self-similar branching process, whereas the lower limit µ = 0 corresponds to maximum

fluctuation i.e., monofractals that may be a signal of a second order phase transition. For the

α-model [27], where the final state particle density is given as a product of random numbers,

the density function can be approximated by a log-Lévy type of distribution. Under this

approximation the Lévy index µ can be determined using the following relation [25, 28]:

DT −Dq

DT −D2
=

1

q − 1

qµ − q
2µ − 2

, (5.8)
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where DT is the topological dimension of the supporting space, which is 1 in the present

case, and Dq is the generalized Renyi dimension of integer order q defined in terms of the

intermittency exponents φq as,

Dq = DT −
φq
q − 1

. (5.9)

Following Eq. (5.7) one can also set

Dq ≈
τdyn(q)

q − 1
. (5.10)

We shall discuss more about Dq in the next section. In practice only a few Dq values

are obtained from the intermittency and/or multifractal analysis. Therefore, the µ value

extracted by fitting Eq. (5.8) to a small set of data points is likely to be unreliable. Hence

we follow an alternative method of calculating µ using the multifractal spectral function

f(α), as described by Hu et al. [29]. According to [29], f(α) is related to µ by the following

relation,

1− f(α) ∝ (B − α)µ/(µ−1) for α < B, (5.11)

where with B = 1 + (1−D2)/(2µ − 2). Note that for any q, positive or negative, f(α) is a

smooth and continuous function of α(q). Therefore, the index µ can be extracted from the

slope C = µ/µ − 1 of the ln(1 − f(α)) versus ln(B − α) straight line in the α < B region.

As it follows from Eq. (5.11), the only criterion that has to be satisfied here is f(B) = 1.

Fig. 5.4 shows the results of such calculations. In either of these plots, it is clear that a

single straight line cannot reproduce the data well and hence the µ value is found to depend

on the region of fitting the straight lines. The best fitted straight lines in two different

q-regions are shown in the diagrams. In the positive and low-q region the straight line fit is
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Figure 5.4: Plot of ln [B − α] versus ln [1− f(α)]. In all diagrams the dotted(solid) lines
represent linear fits to the data points in the low(high)-q region.
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shown by the dotted line and the solid line represents the linear fit in the positive and high-q

region. The values of µ obtained from these fittings are listed in Table 5.1. The experiment

and the UrQMD simulation provide somewhat reasonable values of µ in the high-q region,

otherwise the index is either diverging or far from the admissible limits. Therefore, one may

conclude that the (dynamical) density fluctuations present in our data are not compatible

to the log-Lévy type of distributions.

Table 5.1: The values of the Lévy stable index (µ) obtained at two different regions of q
in 28Si-Ag/Br interaction at 14.5A GeV.

Fit region Experiment UrQMD UrQMD+BEC

Low-q region 3.843±0.089 →∞ 6.880±0.0.0124

High-q region 2.199±0.164 2.466±0.152 -2.6129±0.0801

5.3 Takagi’s Moment

In order to study the multifractal structure of particle density distributions, Takagi pro-

posed a new set of moments called the Tq moments [7]. Takagi’s method is based on two

assumptions: (i) the density distribution ρ is uniform all over the phase space interval and

(ii) the multiplicity distribution Pn does not depend on the location of the phase space in-

terval. Both these criteria are found to be more or less valid when the cumulative variables

are used in place of the basic phase space variable like η or ϕ. The Tq moment for positive

integer order q is defined as,

Tq(δXη) = ln

Nev∑
i=1

M∑
j=1

(pij)
q, (5.12)

where pij = nij/K, K being the total number of tracks present in all Nev events, and nij

is the number of tracks in the jth bin of the ith event. Unlike the Gq moments, the Tq

moments so defined are not very much affected by the finiteness of an event multiplicity

〈ns〉. According to Takagi [7], Tq(δXη) should be a linear function of ln(δXη), i.e.

Tq(δXη) = Aq +Bq ln(δXη), (5.13)

where Aq and Bq are two constants independent of the phase space resolution size. When a

linear relation like Eq. (5.13) is observed over a considerable range of δXη, the generalized
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dimension Dq can be obtained in terms of the fit parameter Bq as

Dq =
Bq
q − 1

, for q > 2. (5.14)

For a sufficiently large Nev one can set

Nev∑
i=1

M∑
j=1

(pij)
q =

〈nq〉
Kq−1 〈n〉

, (5.15)

where 〈n〉 represents the average bin multiplicity. From Eq. (5.12)–(5.15) and replacing δXη

by 〈n〉 one can derive an expression for the generalized dimension for q > 2 through the

following relation:

ln 〈nq〉 = Aq + {(q − 1)Dq + 1} ln 〈n〉 . (5.16)

For q = 1 the parameter D1 is known as the information dimension, which provides the

information of how much of a phase space interval is filled up with the distributed tracks.

D1 is obtained by taking an appropriate limit to Eq. (5.14) [30]. This is equivalent to

considering an entropy like function

S(δXη) = −
Nev∑
i=1

M∑
j=1

pij ln pij , (5.17)

and to looking for its linear dependence on ln(δXη),

S(δXη) = −D1 ln(δXη) + constant. (5.18)

Using Eq. (5.15) one can now easily obtain an expression for D1 as,

〈n lnn〉 / 〈n〉 = C1 +D1 ln 〈n〉 . (5.19)

Following the prescription of Takagi [7], we have calculated 〈n lnn〉 and ln 〈nq〉 (for q =

1 − 7) with increasing phase space interval δXη taken symmetrically about the centroid

of the η-distribution. The results are shown graphically in Fig. 5.5 for all the data sets

employed in this analysis. The information dimension D1 is evaluated from the best fitted

straight lines to the 〈n lnn〉 / 〈n〉 versus ln 〈n〉 plot and is shown in the upper panel of

the Fig. 5.5. The generalized dimensions Dq are evaluated from the best linear fits to the

ln 〈nq〉 versus ln 〈n〉 graph for q = 2 − 7. It turns out that D1 = 0.933 ± 0.037 for the

experiment, D1 = 0.926± 0.005 for the UrQMD, D1 = 0.935± 0.005 for the UrQMD+BEC

and D1 = 0.934±0.005 for the random number generated event sample. All these values are

slightly less than the phase space dimension, which according to the theory of fractals, is a

signature of fractal density distribution function. The generalized dimensions Dq obtained
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Figure 5.5: Multifractal Tq moment as a function of number of counts in the phase space
interval. The best fitted straight lines are shown in all diagrams.

from Takagi’s moments [Eq. (5.16)], and those obtained from Hwa’s moments [Eq. (5.10)] are

plotted together against q in Fig. 5.6. On the same figure we have included the Dq values

obtained from the SFM analysis [21]. A general decreasing trend of Dq with increasing

q has been observed for all three data samples, which again indicates multifractality. In

the case of experiment the Dq values obtained from the SFM fall at a much faster rate

than those obtained from the Gq moment, whereas for UrQMD the Dq values calculated

either form the SFM or from the Gq moment, within the errors are very close to unity,

which is the dimension of the supporting space. The UrQMD+BEC data, on the other

hand, shows a rapid fall in Dq when calculated from the SFM but the rate of fall is not

as high as the experimental one. The Dq values obtained from the Tq moment for all the

data sets are significantly and consistently lower than those obtained from the SFMs and

the Gq moments. Such a large and systematic deviation might reflect the fact that the Tq

moments are not corrected from the statistical contamination, the technique of which is

still unknown to us. Moreover, the moments are defined in different ways, which might be

another source of such inconsistencies. Note that for a simple Poissonian type of multiplicity

distribution within a given interval δXη, the generalized dimensions would all be equal to the

topological dimension of the supporting space. Any deviation from unity, as it is observed in
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Gq(Tq) moment analysis. The lines are the best linear fits to the data points.

our analysis, should therefore be considered as a signature of nonstatistical elements present

in the particle distribution.

The thermodynamic interpretation of fractals in terms of the multifractal specific heat, has

been given by Bershadski [31]. If the monofractal to the multifractal transition is governed

by a Bernoulli type of fluctuation only, then the multifractal specific heat C can be derived

from the relation [31]:

Dq = D∞ +
C ln q

q − 1
. (5.20)

A monofractal to multifractal transition corresponds to a jump from C = 0 to a nonzero
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finite value. In Fig. 5.7 we have plotted Dq against ln q/(q−1) for (a) the experiment, (b) the

UrQMD and (c) the UrQMD+BEC data, and the values obtained from both Hwa’s moments

and Takagi’s moments are shown together. An approximately linear dependence of Dq on

ln q/(q − 1) is observed for all three data samples, indicating the relevance of Bershadski’s

interpretation of multifractality [31] in the context of a phase transition in the present case.

The C values are extracted from the best linear fits to the data points shown in the diagrams.

The values of C are quoted in Table 5.2. The effect of eliminating the statistical noise using

the random number generated event sample is manifested once again in the C value obtained

from Hwa’s method, which produces almost null value of C for the simulated events. On

the other hand, in Takagi’s method no distinction is possible between the experiment and

the UrQMD predictions, but for some reason that cannot be clarified at this point, inclusion

of BEC lowers the value of C by about ten times the experiment/UrQMD prediction. The

present set of C values are not consistent with the universality as it was claimed in ref. [31].

Table 5.2: The values of multifractal specific heat C calculated from theGq and Tq moment
analysis of the 28Si-Ag/Br data at 14.5A GeV.

Method employed Experiment UrQMD UrQMD+BEC

Hwa’s moments 0.0493±0.0076 0.00004±0.09055 0.0261±0.0074

Takagi’s moments 0.1154±0.0598 0.1566±0.0371 0.0125±0.0371

5.4 Multifractal Detrended Fluctuation Analysis

The details of the multifractal detrended fluctuation analysis (MF-DFA) method is given in

ref. [8], however for the sake of completeness we provide a brief description of this method

in the following section.

Let {xk : k = 1, 2, . . . , N} be a fluctuating signal of length N . In our case xk is nothing

but the single particle η-density values in an event. The MF-DFA procedure consists of the

following steps:

(i) Determine a profile series through

Y (i) =
i∑

k=1

[xk − 〈x〉], i = 1, 2, . . . , N, (5.21)

where 〈x〉 = (1/N)
∑N

i=1 xi is the mean value of the signal to be analyzed.
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(ii) Divide the profile Y (i) into NM = int(N/M) non-overlapping segments of equal length

M . One has to choose the M value depending upon the signal length. If the length

N is not a multiple of the considered scale M , then the same dividing procedure is

repeated starting from the opposite end of the series. Hence, in order not to disregard

any part of the signal, usually altogether 2NM segments of equal length are obtained.

(iii) Calculate the local trend for each of the 2NM segments. This is done by least-square

fits of the segments (or subseries). Linear, quadratic, cubic or even a higher order

polynomial may be used to detrend the series, and accordingly the procedure is said

to be the MF-DFA1, MF-DFA2, MF-DFA3, · · · analysis. Here we use a linear fit,

and hence the detrended method is denoted as MF-DFA1. Let, yν be the best fitted

polynomial to an arbitrary segment ν of the signal. Then determine the variance

F 2(ν,M) =
1

M

M∑
i=1

{Y [(ν − 1)M + i]− yν(i)}2 (5.22)

for ν = 1, · · · , NM , and the same for ν = NM + 1, · · · , 2NM is given as

F 2(ν,M) =
1

M

M∑
i=1

{Y [N − (ν −NM )M + i]− yν(i)}2 . (5.23)

(iv) The MF-DFA fluctuation function (moment) Fq is defined by averaging the variance

F 2(ν,M) over all the 2NM segments as,

Fq(M) =

{
1

2NM

2NM∑
ν=1

[F 2(ν,M)]q/2

}1/q

∀ q 6= 0, (5.24a)

Fq(M) = exp

{
1

4NM

2NM∑
ν=1

ln[F 2(ν,M)]

}
for q = 0. (5.24b)

In general, the order parameter q can take any real value.

(v) Finally varying the scale parameter M , i.e. the phase space partition number, one can

study the scaling behavior of the detrended fluctuation functions.

If the series {xk} possesses long-range correlation, Fq(M) for large values of M would follow

a power-law type of scaling relation, such as

Fq(M)|M→∞ ∝M
h(q) ∀ q. (5.25)

The exponent h(q), in general a function of q, is said to be the generalized Hurst exponent

[8]. It follows that h(2) = H, the well known Hurst exponent. The series {xk} is considered
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as long-range anti-correlated if 0 < H < 0.5, uncorrelated if H = 0.5 and long-range

correlated if H > 0.5. Although such a classification is based on the consideration that the

signal {xi} is a stationary one, such as the fractional Gaussian noise (fGn) [32]. For non-

stationary signals e.g., the fractional Brownian motion (fBm), H is related to h(2) through

H = h(2) − 1 and h(2) > 1.0 [33]. For a monofractal series h(q) is independent of q since

the variance F 2(ν,M) is identical for all the subseries, and hence Eq. (5.24) yields identical

values for all q. Note that the function Fq can be defined only for M > m + 2, where m

is the order of the detrending polynomial. Moreover, Fq is statistically unstable for very

large M (> N/4). If small and large fluctuations scale differently, there will be a significant

dependence of h(q) on q. Whereas for positive values of q, Fq will be dominated by the

large variance which corresponds to the large deviations from the detrending polynomial,

for negative values of q major contributions of Fq arise form small fluctuations from the

detrending polynomial. Thus, for positive (negative) values of q, h(q) describes the scaling

behavior of the segment with large (small) fluctuations. Note that the MF-DFA method

is a kind of generalization of the detrended fluctuation analysis (DFA) [33], introduced to

study the scaling properties of DNA sequences [33, 34]. For q = 2 the function defined in

Eq. (5.24)(a) reduces to the ordinary DFA fluctuation function.

5.4.1 Relation with Standard Multifractal Variables

One can easily relate the h(q) exponent with the standard multifractal exponent, such as the

multifractal (mass) exponent τ(q). Suppose the series {xk} is stationary and normalized.

Then the detrending procedure in step (iii) of the above methodology is not required. The

variance of such a series is given by

F 2
N (ν,M) = {Y (νM)− Y [(ν − 1)M ]}2, (5.26)

and the fluctuation function and its scaling-law would be

Fq(M) =

{
1

2NM

2NM∑
ν=1

|Y (νM)− Y [(ν − 1)M ]|q
}1/q

∼Mh(q), ∀ q. (5.27)

Now if we assume that the length of the series N is an integer multiple of the partition

number M , then the above relation can be rewritten as

N/M∑
ν=1

|Y (νM)− Y [(ν − 1)M ]|q ∼M qh(q)−1. (5.28)
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In the above relation the term under | · | is nothing but the sum of {xk} within an arbitrary

νth segment of length M . In the standard theory of multifractals it is known as the box

probability p(M,ν) for the series {xk}. Hence,

p(M,ν) ≡
νM∑

k=(ν−1)M+1

xk = Y (νM)− Y ((ν − 1)M). (5.29)

The multifractal scaling exponent τ(q) is defined through the partition function Zp(M) as

Zp(M) ≡
N/M∑
ν=1

|p(M,ν)|q ∼M τ(q), (5.30)

where q is a real parameter. From Eq. (5.28) to Eq. (5.30) it is clear that the multifractal

exponent τ(q) is related to h(q) through the following relation

τ(q) = q h(q)− 1. (5.31)

After knowing τ(q) once again we can calculate the multifractal singularity spectrum:

f(α) = q α− τ(q) and the generalized fractal dimension Dq = τ(q)/(q−1). Here α = ∂τ/∂q

is the Lipschitz-Hölder exponent also known as the singularity strength parameter [23].

5.4.2 Results of Multifractal Detrended Fluctuation Analysis

As mentioned, the detrended method has been originally developed for the (multi)fractal

characterization of the time series data of effectively infinite length. Here we apply the

methods to the single event η distributions of particles produced in 28Si-Ag/Br collision at

14.5A GeV. In our event sample the event-to-event multiplicity varies over a wide range,

and there exists a large number of low multiplicity events where the detrended technique

cannot be applied. Therefore, we impose a shower multiplicity cut of ns > 50 that makes

the average shower multiplicity 〈ns〉 ∼ 80. Further, we have as many signals as the number

of events present in the sample. Therefore we take an average of the single event MF-DMA

fluctuation function F
(e)
q over the event sample. In this way we actually study the average

behavior of the detrended fluctuation functions i.e., 〈Fq〉 = (1/Nev)
∑
F

(e)
q , and the scaling

relation (5.25) reads as

〈Fq〉|M→∞ ∝M
h(q) ∀ q. (5.32)

Accordingly, the exponent h(q) and other multifractal variables derived thereof are none

other than their event space averaged values. We show the event averaged DFA fluctua-

tion functions 〈F 〉 = 〈Fq=2〉 with phase space partition number M in Fig. 5.8 for (a) the

experiment, (b) the UrQMD and (c) the UrQMD+BEC. In this analysis we vary M from
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Figure 5.8: Event averaged DFA fluctuation functions 〈Fq=2〉 plotted with phase space
partition number. The lines represent the best linear fits to the data points in the linear
region.

Table 5.3: The values of the Hurst exponent H and the fractal dimension DF calculated
from the MF-DFA method for the 28Si-Ag/Br interaction data at 14.5A GeV.

Parameter Experiment UrQMD UrQMD+BEC Random

H 1.463±0.021 1.456±0.019 1.450±0.018 1.446±0.017

DF 0.537±0.021 0.544±0.019 0.550±0.018 0.554±0.017

4 to nmin
s /4, where nmin

s is the least multiplicity of the event sample (here ns > 50). It is

noticed that the data points are nicely reproduced by the scaling-law (5.32). The Hurst

exponent H is evaluated from a straight line fit to the ln 〈F 〉 versus lnM data points in

the region 4 6 M 6 10, since a couple of points at large-M side slightly deviate from the

initial linear trend. The H values are given in Table 5.3 for all the data sets. We repeat the

analysis for a random number generated event sample, and the corresponding value of H is

also put in the table. As mentioned earlier, the exponent H allows us to identify the type

of correlation present in the signals. Accordingly, we argue that a long-range correlation

may exist in all the cases studied. The values of fractal dimension (DF ) calculated from

the H values are given in the same table. We know that for a fractal object DF < DT ,

the topological dimension of the supporting space (here unity), and the deviation of DF

from DT is a measure of the degree of fractality. The results of the DFA analysis therefore,

demand that the η-distribution for the 28Si-Ag/Br interaction is highly fractal in nature.

We compute the event averaged MF-DFA1 fluctuation function 〈Fq〉 for q = −5 to 5 with

an incremental step of 0.25. Some of them (for integer q only) are plotted against M in

Fig. 5.9 for the experiment, UrQMD and UrQMD+BEC samples. Apparently we do not
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Figure 5.9: Event averaged MF-DFA1 fluctuation functions plotted with phase space
partition number for integer q ∈ [−5,+5] in 28Si-Ag/Br interaction at 14.5A GeV. Lines
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Figure 5.10: (a) Plot of h(q) versus q, (b) τ(q) versus q, and (c) the singularity spectra
f(α) obtained from the MF-DFA1 method. Lines joining points are shown.

find any difference between the experimental and the model simulated values of Fq. The

scaling behavior of the 〈Fq〉-functions are not linear over the entire scale range, especially

for the Fq60 functions which are nonlinear in the low-M region. Therefore we compute h(q)

in the large-M region (6 6 M 6 12), where the scaling relation (5.25) holds satisfactorily.

This is not a surprising phenomenon and the reason of which is already mentioned and

also specified in Eq. (5.25). It is to be noted that unlike the Gq moments [Section 5.2]

the detrended moments of this analysis are not influenced by the finiteness of the event

multiplicity. The multifractal parameters, namely (a) the generalized Hurst exponents h(q),
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(b) the multifractal mass exponents τ(q) and (c) the singularity spectra f(α), measured from

the MF-DFA1 fluctuation functions are shown in Fig. 5.10. We have dropped the UrQMD

generated spectrum from this diagram since it almost coincides with the UrQMD+BEC

plot. A number of observations can be made from this figure, which are: (i) h(q) for q 6 −1

is approximately constant at ∼ 2, then it falls rapidly in the q = −1 to 1 region and tends

to saturate at h(q) ∼ 0.5 for q > 1, (ii) the τ(q) spectra are nonlinear, especially in the

q ≈ 0 region, (iii) the singularity spectra are smooth and nonlinear function of α and (iv)

the difference between the experiment and UrQMD+BEC (and also UrQMD) simulation

is insignificant. Since the h(q < 0) values are approximately constant, all the f(α) values

for q < 0 are assemble together around a fixed point that results in an unstable singularity

spectrum for q < 0. A similar observation has also been made for a set of high multiplicity

32S-Ag/Br event sample at 200A GeV [35]. Till date the MF-DFA technique has not been

widely used in multiparticle data analysis, and therefore, we are not in a position to make

a direct comparison of our results with similar other such analysis. In ref. [18] also the

singularity spectrum for q < 0 has been found to be unstable. The MF-DFA method Dq

values are compared with all the other methods of this analysis in Section 5.5.1.

5.5 Multifractal Detrended Moving Average Analysis

The multifractal detrended moving average (MF-DMA) analysis technique shares many ideas

with the detrended fluctuation analysis, but an added advantage in the former method

probably makes it more sophisticated over the latter one. The advantage in MF-DMA

analysis is that it gives us the freedom to chose the location of the detrending window with

respect to the measurement to be detrended. On the other hand, while in MF-DFA one

can detrend the signal under consideration by a polynomial of desired order, in MF-DMA

the signal has to be detrended only by the average value of the series. The MF-DMA

analysis method is nicely described in ref. [9]. In the following subsection a brief outline of

the method is itemized below. Like in the MF-DFA case let {xi : i = 1, 2, · · · , N} be a

fluctuating signal of length N , which in our case is the single particle η-distribution function

in an event. The MF-DMA procedure consists of the following steps.

(i) Construct an integrated sequence

Y (i) =
i∑

k=1

[xk − 〈x〉], i = 1, 2, · · · , N (5.33)

with respect to the mean 〈x〉 = (1/N)
∑

i xi. In the subsequent steps the above

sequence is considered as the signal.
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(ii) Calculate the moving average function ỹ(i) in a moving window of size M through

Ỹ (i) =
1

n

d(M−1)(1−θ)e∑
k=−b(M−1)θc

Y (i− k), (5.34)

where bξc is the largest integer not larger than ξ and dξe is the smallest integer not

smaller than ξ. Here θ is a parameter ∈ [0, 1] that specifies the position of the moving

window and it is said to be the window parameter. In general the moving average

function includes d(M − 1)(1− θ)e data points in the past and b(M − 1)θc data points

in the future with respect to the point/variable to be detrended (say xλ). Here we

consider θ = 0.5 for which the moving average function Ỹ (i) is equally extended on

both sides of xλ, and hence the moving window is said to be the ‘central moving’

window. Note that for θ = 0 the moving average function Ỹ (i) is calculated over all

the n data points in the past (xk<λ), while for θ = 1 the function is calculated over all

the n data points in the future (xk>λ), and accordingly the detrending windows are

said to be the ‘backward moving’ and ‘forward moving’ windows, respectively.

(iii) Detrend the sequence Y (i) by subtracting Ỹ (i) and obtain the residue series,

e(i) = Y (i)− Ỹ (i), (5.35)

where i satisfies the criterion: M − b(M − 1)θc 6 i 6 N − b(M − 1)θc.

(iv) Divide the series e(i) into Nn = bN/M − 1c non-overlapping segments of equal length

M . Let the segments are denoted by ev so that ev(i) = e(l + i) for 1 6 i 6 M and

l = (v−1)M . For an arbitrary segment v the mean-square fluctuation function F2
v (M)

is calculated as a function of M ,

F2
v (M) =

1

M

M∑
i=1

{ev(i)}2. (5.36)

(v) The overall qth order MF-DMA fluctuation function Fq(M) is then defined as,

Fq(M) =

{
1

Nn

Nn∑
v=1

[F2
v (M)]q/2

}1/q

∀q 6= 0, (5.37a)

Fq(M) = exp

{
1

2Nn

Nn∑
v=1

ln[F2
v (M)]

}
for q = 0. (5.37b)

(vi) The scaling behavior of Fq(M) is examined for a set of q exponents. If the signal {xi}
contains multifractality (long-range correlation), Fq(M) for large values of M would
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follow a power-law type of scaling relation, such as

Fq(M)|M→∞ ∝M
h(q), (5.38)

and the exponent h(q) known as the generalized Hurst exponent, would be a nonlinear

function of q.

Knowing h(q) once again we can calculate the multifractal scaling exponent τ(q), the mul-

tifractal singularity spectrum f(α), and the generalized multifractal dimensions Dq. The

formulae are given in sub-section 5.4.1. Needless to mention that similar to the MF-DFA

method here also we study the average behavior of the fluctuation function Fq(M), and the

above scaling-law becomes

〈Fq〉|M→∞ ∝M
h(q). (5.39)

5.5.1 Results of Multifractal Detrended Moving Average Analysis

In Fig. 5.11 the event averaged MF-DMA (θ = 0.5) fluctuation functions 〈Fq〉 are plotted for

q = 0, ±2, ±5 versus the phase space partition number M . Actually we have calculated the

function 〈Fq(M)〉 for all q values between −5 and +5 with an incremental step of 0.25, but

all of them are not shown in the diagram to maintain clarity. One can see that the scaling

behavior of 〈Fq(M)〉 is not linear over the entire region, especially not at low M , although

the nonlinearity is not as prominent as it is in the case of the MF-DFA functions. Like

the MF-DFA methods the MF-DMA method with θ = 0.5 also produces visually identical

variation of Fq in both the simulated samples as the experiment, and therefore, we again

drop the UrQMD results from the diagrams of our subsequent MF-DMA analysis. For a

given q the exponent h(q) is calculated from the log-log plot of the fluctuation function

〈Fq(M)〉 in the large-M region. Here we take 8 6 M 6 18, since the best linear behavior

of the functions 〈Fq(M)〉 is found in this region. The h(q) values so obtained are plotted

against q in Fig. 5.12(a), while the corresponding multifractal exponents τ(q) = qh(q) − 1

are plotted in Fig. 5.12(b). It is seen that in the experiment the q dependence of both

h(q) and τ(q) values are stronger than the UrQMD+BEC (and also the UrQMD) generated

values. Unlike the h(q) − q plot of the MF-DFA method [see Fig. 5.10], here we obtain

a smoothly varying h(q) values for the experiment as well as for the simulations. The

existence of a multifractal pattern in the particle density function can be conjectured for all

the data samples studied. The calculated h(q = 2) values are 0.619 ± 0.047 (Experiment)

and 0.878 ± 0.039 (UrQMD+BEC). The parameter h(2) indicates that the η-distributions

are similar to the stationary time series signal for which h(2) = H, the ordinary Hurst

exponent, and that the η-distribution functions have long-range correlation (H > 0.5). In
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Figure 5.11: Event averaged MF-DMA (θ = 0.5) fluctuation functions for the window
parameter θ = 0.5. Lines joining points are drawn to guide the eye.

diagram 5.12(c) we present the singularity spectra obtained from the MF-DMA technique.

The f(α) spectra have a similar look as those obtained from the Gq moment analysis for the

same set of data, but without any multiplicity cut as imposed in the detrended analysis. It is

worth mentioning that the f(α) spectra of the MF-DFA technique are found to be unstable

for q < 0. In contrast, the singularity spectra obtained in this method are smooth and bell-

shaped functions of the Lipschitz-Hölder exponent α. A mismatch between the experiment

and the UrQMD+BEC simulation, mainly at the low-α side of the spectra, is prominent.

The difference originates from a mismatch between the corresponding h(q) values. Another

important observation of the diagram is that, the experimental spectrum is slightly right-

skewed (skewness ≈ 0.052). Such an asymmetric f(α) spectrum implies that the pronounced

multifractality appears from a small scale (noise like) fluctuation, while the dynamics of large

scale fluctuation is much weaker in this respect [36]. This is not an unusual phenomenon in

multiparticle data, since the coarse fluctuation pattern arises from a small scale statistical

noise, whereas a small number of events may contribute with very large scale fluctuations

due to one or more dynamical effects. As we know, the degree of multifractality is usually

quantified by the width of the spectrum W = αmax − αmin at f(αmax) = f(αmin) = 0. If

the calculated f(α) spectrum does not extend up to f(α) = 0, as it is the case here, then

the spectrum is extrapolated by an appropriate function to obtain the values of α for which

f(α) = 0. From this analysis we find W = 1.55 (experiment) and 1.31 (UrQMD+BEC). This

is a direct evidence that the multifractality present in the experiment is stronger than that

of the simulation. One can mention here that the MF-DMA method has been adopted here

in multiparticle data analysis probably for the first time, therefore we could not compare

the results of this analysis with similar other analysis for different colliding nuclei and/or

energy involved. However the MF-DMA results presented here show a gross similarity with
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those obtained for a set of high multiplicity (ns > 150) 32S-Ag/Br events at 200A GeV [37].

In Fig. 5.13 the generalized fractal dimensions Dq are plotted against q. Following the trend

we draw two separate diagrams, one for the experiment and another for the simulation. The

Dq values obtained from all the other methods (Gq, Tq, SFM and MF-DFA) are included

in the diagrams for an easy comparison. The Dq values measured from the conventional

methods likeGq, Tq and SFM are all very close to the topological dimension of the supporting

space. For the experiment all the Dq values decrease very slowly with increasing q, thereby

indicating multifractality, whereas for the simulation the values are almost q independent.

The detrended methods yield much smaller values of Dq over the interval 2 6 q 6 5.

According to the theory of fractals, the conventional Gq, Tq and SFM methods indicate

the presence of a very low degree of multifractality in the data. The detrended methods

contradict this observation and imply the existence of a strong multifractal structure of

the data. Note that the SFM, Gq and Tq moment techniques are formulated particularly

for the multiparticle data analysis, whereas the detrended method is formulated for the

nonstationary time series data analysis. Therefore, the observed inconsistency between the

detrended method and other conventional methods might be an outcome of the definitions

of their moment generating functions, or it may so happen that the detrended method is not

sensitive enough to the nature of fluctuation present in the multiparticle emission data, or

the statistical component dominates the distribution to such an extent that in the detrended

method it eventually suppresses the actual signal.
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As mentioned, we have studied the event averaged values of the detrended multifractal

variables. One can also extract the generalized Hurst exponent h(e)(q) from the single event

detrended fluctuation function on an event-by-event basis, and can then take the average

over the event sample [18], i.e.

〈h(q)〉 =
1

Nev

∑
Nev

h(e)(q). (5.40)

In this context we also study the difference between these two kinds of averaging of the h(q)

exponent, and find that the difference δh(q) = h(q)− 〈h(q)〉 marginally deviates from zero.

That means, the detrended multifractal results presented here are not affected by one or the

other averaging process adopted.

In the detrended analysis we select only the high multiplicity events with a multiplicity cut

of ns > 50. So the statistics of the samples reduce significantly, and it might influence

the multifractal results. Therefore, we study the effects of the sample size on the results

presented here. To do that, we consider a random number generated sample of 10,000 events.

The multiplicity and pseudorapidity distributions of this sample are identical to those of the

experiment (with a multiplicity cut ns > 50). We calculate the generalized Hurst exponent

hrand(q) for the random number generated sample. The big sample is thereafter divided into

ten smaller equal sized subsamples (1000 events in each) and the analysis is repeated for

each of them. It is found that for the smaller subsamples the hrand(q) values do not differ

significantly (less than 6%) from each other as well as from the estimated value of the overall

sample. In addition we have verified the sample size effect in the UrQMD+BEC generated



Chapter 5. Multifractality in 28Si-Ag/Br Interaction at 14.5A GeV 149

events. For this we divide the UrQMD+BEC sample, which is five times the experimental

one, into five equal sized subsamples and redo the analysis individually for each of them.

From this analysis also we have not noticed any substantial difference in the individual h(q)

values from those of the original UrQMD+BEC event sample. The entire exercise implies

that the detrended multifractal results presented here are not significantly affected by the

size of the sample statistics. Probably the key operation acting behind such a sample size

independence of the multifractal exponent h(q) is the averaging over the event sample. It is

worth noting that in the case of time series data analysis the detrended multifractal results

are quite sensitive to the length of the signal to be analyzed [8, 20].

5.6 Discussion

To summarize, we have presented some results on multifractal analysis of singly charged

particles produced in 28Si-Ag/Br interactions at 14.5A GeV. Specifically, we provide a

multifractal characteristics of the pseudorapidity distribution of produced singly charged

particles. Following the trend of our analysis the experimental results are systematically

compared with a set of model simulation. The data behave expectedly and the results are

consistent with those obtained from similar other experiments on AB interactions. The

observations of this analysis can be summarized in the following way.

The multifractal moments introduced by Hwa [5] follow a scale invariant power-law and scale

with diminishing phase space resolution size. The trend of the UrQMD+BEC (or UrQMD)

simulated results are almost identical to the experiment. The intermittency results on

the same sets of data, however, behave differently for the experiment and the simulations.

Whereas, the self-similar nature of the 1d intermittency of the density fluctuation observed

previously [21] is the primary motivation of the present work, where we have observed that

the differences between experiment and simulations lie not in the scaling pattern of the

multifractal moments, but in the quantitative aspects of the scaling parameters and in the

derivatives thereof. The nature of multifractal mass exponent τ(q) or the Lipschitz-Hölder

exponent α for the experiment cannot be distinguished from the simulations. The parame-

ters themselves are probably not very sensitive to the nature of the fluctuation (statistical or

dynamical) present in the data. However, when the statistical contribution is properly taken

care of, we observe that within experimental uncertainties, the intermittency exponents φq

overlap with the corresponding multifractal parameter (i.e., q − 1 − τdyn(q)). A small but

definite departure from the simulations can be traced into the experiment, and the deviation

slightly diminishes when BEC is incorporated into the UrQMD data. The multifractal spec-

trum, consistent in all aspects with its expected behavior, has a slightly smaller width in the

UrQMD generated curve than that of the experiment and of the UrQMD+BEC. Therefore,
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the multifractal spectrum might be considered as a sensitive variable that can distinguish

the dynamical contribution from the statistical noise in the density fluctuation.

The stability index µ associated with the log-Lévy distribution is an important parameter

that needs to be mentioned separately. Our intermittency analysis for the same sets of data

resulted in a µ value that is way beyond its stability limit. In this analysis we have adopted

a method based on the multifractal spectral function and, irrespective of the data set used,

we have obtained different µ values in different q-regions. The estimated values of µ in the

low-q region are consistent with the observation of our intermittency analysis, though the

values are far above the upper acceptable limit µ = 2 [24, 25]. However, in the high-q region

the experimental µ value within errors is very close to the upper limit of the parameter. In

any case the simulated values of µ deviate the experimental values to a large extent. Hence

in the present case a log-Lévy distribution can not appropriately describe the multiplicity

fluctuation.

Takagi’s multifractal moments also exhibit expected power-law type of scaling behavior.

Though Takagi’s technique has a few advantages over Hwa’s technique of analysis, the Tq

moments are contaminated by statistical noise. This limitation is reflected in the multifractal

parameters derived by using this method. The experimental Dq values obtained from the

Tq moments are not significantly different from the corresponding simulated values. This is

not true either for the factorial moment or for Hwa’s moments, where the statistical noise

has been taken care of at some level of analysis. However, a systematic deviation in Dq

from the topological dimension which increases with order number, is an indication of the

presence of multifractality in the single particle density distribution. The parameter Dq,

unlike τ(q) and α, is found to be sensitive to the nature of fluctuation. The variation of Dq

with ln q/(q− 1) is consistent with the thermodynamic interpretation of the monofractal to

multifractal phase transition, though the magnitude of specific heat does not corroborate

any kind of universality as claimed in [31].

The detrended fluctuation functions for all the analyzed data also scale in a manner as

expected from a multifractal system. The h(q), τ(q) and f(α) obtained from the MF-DFA

and MF-DMA analysis also confirm the presence of multifractality both in the experiment as

well as in the simulations. The nature of these spectra and the estimated values of the Hurst

exponent demand that the origin of fractality may be two, three or higher order particle

correlation. The MF-DFA/MF-DMA prediction of the generalized fractal dimensions are

consistently lower than that of the SFM method, Hwa’s method and Takagi’s method, the

discrepancies being ∼ 50%. We also notice that except for the singularity spectrum and to a

small extent the Dq values, within the error margins the experimental detrended multifractal

parameters are not significantly different from the simulated values. The observations signify

that the detrended technique like the other previously used techniques, is either probably
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not sufficiently sensitive to the self-similar nature of fluctuation present in the data, or

they lack an appropriate noise elimination technique. A reliable method of filtering out the

statistical noise from the detrended fluctuation moments should therefore, be formulated to

make the technique more effective.
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E. Koscielny-Bunde et al. J. Hydrology 322, 120 (2006);
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[36] S. Drożdż, P. Oświȩcimka, Phys. Rev. E 91, 030902(R) (2015).

[37] P. Mali, A. Mukhopadhyay and G. Sing, Physica A (in press, 2016).



Chapter 6

Azimuthal Structure of Particle

Distribution in Relativistic

Nucleus-Nucleus Collisions

6.1 Introduction

It is now confirmed that the experimental data on 28Si-Ag/Br interaction at 14.5A GeV con-

tain rapid fluctuations of produced particle multiplicity in the pseudorapidity space, which

goes beyond the trivial statistical noise. The most important reason of the observed fluctu-

ation as advocated in refs. [1–3], is the Bose-Einstein Correlation (BEC) between identical

bosons. Another probable reason that has recently drawn the interest of several heavy-ion

research groups is the emission of Cherenkov gluons [4, 5], or the formation of Mach shock

waves [6–8] within the partonic/nuclear medium. In either case the resulting wavefront

bears a conical structure, which is characterized by a semi-vertex angle α given by

cosα =
vmed

v
=
v0

µv
. (6.1)

Depending upon the case as it may be, vmed = v0/µ is either the velocity of the gluons or

that of the shock wave in the nuclear/partonic medium, v0 is the velocity of the gluons or the
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velocity of the elastic wave in free space, µ is the refractive index of the medium concerned

and v is the velocity of the partonic jet that triggers the Cherenkov gluon emission or the

shock wave in the nuclear/partonic medium. In this formalism an impinging nucleus is

treated as a bunch of confined partons, each of which is capable of emitting the Cherenkov

gluons while traversing through a target medium. Under favorable circumstances if the

conical structure of the Cherenkov wavefront can withstand the impact of collision, the

consequence will be reflected in the azimuthal distribution of the final state particles [5, 9].

In this process if the number of emitted gluons is large, and if each of them generates a

minijet, then a ‘ring-like’ structure of final state mesons distributed over the entire target

azimuth may appear. On the other hand for a moderate number of emitted gluons, only

a few jets are expected and the corresponding pattern is said to be a ‘jet-like’ structure.

Similar azimuthal structures may also result due to the formation of nuclear shock waves

as the impinging projectile nucleons travel with a speed greater than that of the elastic

waves through the nuclear medium. Whatever may be the reason, the phenomenon still

largely speculative in nature, and so far it is investigated without taking the BEC effect into

consideration [5, 10–17].

In the recent past we have reported an analysis on the azimuthal structure of charged par-

ticles in AB collisions at 200A GeV [18]. In ref. [18] two different data sets [32S-Ag/Br and

16O-Ag/Br] are used and the experiment is compared merely with a random number based

simulation. Jet-like structures are found in the experimental data. In the present work

we present similar analyses for the 28Si-Ag/Br interaction at 14.5A GeV. The analysis also

encompasses 32S-Ag/Br data at 200A GeV for a ready reference and systematic comparison.

Following the trend of our analysis, the experiments are compared with the UrQMD. In ad-

dition to UrQMD we also consider the Relativistic Quantum Molecular Dynamics (RQMD)

models [19] for comparison. In both simulations Bose-Einstein correlation is incorporated

as an after burner. The simulation technique is elaborated in Section 2.5 of Chapter 2. The

primary motivation of this analysis is to eliminate the known cause(s) of particle cluster for-

mation so that any discrepancy between the experiment and the simulation can be regarded

as a genuine signal of some nontrivial dynamics. For Elab = 14.5A GeV the equivalent

nucleon-nucleon (NN) center of mass energy is
√
sNN = 5.39 GeV and Elab = 200A GeV

corresponds to
√
sNN = 19.4 GeV. Thus, in our data sets the target-projectile combinations

are almost of same geometrical size, but the collision energy involved (
√
sNN ) differs almost

by a factor of four. We therefore, get a chance to examine the energy dependence of the

effects to be investigated. The number of participating nucleons in the central collisions

is more and therefore it is more likely that unnatural angular structures (if any) will be

observed in central collisions.
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6.2 Methodology

Without claiming any originality whatsoever, we furnish below the methodology adopted

in the present analysis as elaborated in ref. [11]. Accordingly, an event with a shower

track multiplicity ns is first divided into several subgroups (or clusters) each containing a

fixed number of shower tracks, say nd. Each nd-tuple of particles (tracks) are thereafter

consecutively placed along the η-axis in increasing order of their η values. A cluster is

characterized by the following quantities,

(i) a size ∆η = ηmax − ηmin, (6.2a)

(ii) a density ρ = nd/∆η, (6.2b)

(iii) a mean ηm =

nd∑
i=1

ηi/nd. (6.2c)

Here, ηmax (ηmin) is the largest (smallest) η value in the particle subgroup (cluster). Since

all clusters characterized by the above parameters pertain to same multiplicity nd, they are

statistically comparable with each other. For a similar analysis Gogiberidze et al. [20] used

a different approach where instead of fixed cluster multiplicity, fixed cluster size ∆η was

used. Two other parameters expressed in terms of the azimuthal angle ϕ of the shower

tracks are also used to identify the jet/ring-like structures. They are,

S1 = −
nd∑
i=1

ln(∆ϕi) and S2 =

nd∑
i=1

(∆ϕi)
2, (6.3)

where ∆ϕi = ϕi+1 − ϕi is the azimuthal gap between successive particles in the target

diagram belonging to a particular cluster/subgroup, starting from the first and second,

followed by second and third · · · , so on, ultimately ending at the last and the first. For

simplicity one can measure ∆ϕi in the unit of a full revolution (2π) of ϕ. For an ideal ring-

like structure the tracks will be concentrated within a narrow η interval but isotropically

distributed over the whole azimuth, while for an ideal jet-like structure the tracks will be

concentrated into small dense groups within a narrow region of both η and ϕ. To make things

clear a schematic representation of the target azimuth of an ideal ring/jet-like structure is

given in Fig. 6.1. The ‘S-parameters’ and the cluster density ρ will decide whether the

structures are ring-like or jet-like. On the other hand, the cluster mean ηm and the cluster

size ∆η help us to identify respectively, the location and the size (a measure of correlation

length) of the clusters. From the definition of the S-parameters it is clear that while S1

is sensitive to small gaps, S2 is sensitive to large ones. In that respect S1 and S2 are

complementary to each other. For an ideal jet-like emission S1 →∞ and S2 → 1, and for an

ideal ring-like distribution S1 → nd lnnd and S2 → 1/nd. For a purely stochastic emission
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(a) Ring like (b) Jet like

Figure 6.1: Schematic diagrams of an ideal (a) ring-like and (b) jet-like structure in the
target azimuth.

of particles the ∆ϕ-distribution is expected to be

f(∆ϕ) = (nd − 1)(1−∆ϕ)(nd−2), (6.4)

and under such a circumstance the expectation values of the S-parameters evaluated ana-

lytically are

〈S1〉 = nd

nd−1∑
k=1

1

k
and 〈S2〉 =

2

nd + 1
. (6.5)

Distributions of S1 and S2 parameters would be peaked around their respective stochastic

expectation values. Presence of ring-like structures are reflected as an excess observed in

the experiment over the respective stochastic distribution in a region left to the stochastic

mean. On the other hand, for jet-like structures such excess counts would occur in a region

right to the stochastic mean. A schematic of the normalized S2 distributions of Gaussian

form expected from three different processes are illustrated in Fig. 6.2. In this figure the

distributions marked by 1, 2 and 3 represent, respectively the ring-like, the stochastic and

the jet-like effects. The solid curve is the combined distribution of all the three individuals.

Therefore, in order to extract information about the unusual azimuthal structure(s), one

needs to subtract the contribution coming out of the stochastic phenomena. In this analysis

the stochastic process is mimicked by using two sets of Monte-Carlo simulations, namely

the RQMD and the UrQMD, both supplemented by BEC in the form of an after burner.

6.3 Results

We examine the average as well as the event-wise behavior of both S-parameters introduced

above. However, in ref. [11] it is argued that to identify a jet/ring-like structure S2 is a
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Figure 6.2: A schematic of S2/ 〈S2〉 distributions from three effects, namely (1) ring-like
effect distribution, (2) stochastic distribution and (3) jet-like effect distribution. The solid
curve represents the resultant distribution.

better choice than S1. An analysis on the cluster properties similar to that of ours, was

performed by Vokál et al. in Pb-Ag/Br interaction at 158A GeV [16]. They found that for

the high multiplicity events the effects of any unusual azimuthal structure is almost indepen-

dent of the choice of the n
d

value, while for the low multiplicity events such effects diminish

with increasing n
d
. The result of Vokál et al. [16] in this regard is shown in Fig. 6.3. In

the present study only high multiplicity events are chosen, the multiplicity cuts taken are

ns > 50 for the 28Si data and ns > 200 for the 32S data. We have checked that within the

range, 10 6 nd 6 25 for the 28Si-Ag/Br interaction and 25 6 nd 6 50 for the 32S-Ag/Br in-

teraction, our results depend only insignificantly on the choice of nd. Therefore, throughout

our ‘ring-jet’ analysis we set the subgroup multiplicity nd to 15 for the 28Si-Ag/Br interac-

tion and to 40 for the 32S-Ag/Br interaction. For this choice of the n
d

values, the stochastic

expectation values for the 28Si-events are 〈S1〉 = 48.773 and 〈S2〉 = 0.125, while those for

the 32S-events are, respectively = 170.142 and = 0.049 [see Eq. (6.5)]. As a first test, we

normalize the S parameters by their respective stochastic values (〈S1〉 and 〈S2〉) and plot

the histograms for two different AB interactions under consideration. Fig. 6.4 is drawn

for the 28Si-induced events, whereas Fig. 6.5 is for the 32S-induced events. For compari-

son the corresponding RQMD+BEC and UrQMD+BEC predictions on the S-parameters

are also schematically presented along with the experiment. The S-parameter distribu-

tions of 28Si-Ag/Br interaction are slightly right skewed with respect to the corresponding

stochastic mean values. As expected we find that the RQMD+BEC and the UrQMD+BEC
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Figure 6.3: Contribution of the ring-like effect to the experimental data on 208Pb-Ag/Br
interaction at 158A GeV/c as a function of the number of particles in a subgroup (Nd) for
three different multiplicity groups [16].

distributions are marginally different from their experimental counterparts. In each case the

difference between the experiment and the simulation is shown in the respective diagram

with the help of shaded histograms drawn around the S-axis. We notice that in both cases

there exist small experimental excesses in the left to the stochastic mean, i.e., to the jet side.

In comparison with experiment the differences are larger in RQMD+BEC simulation. For

the 32S-Ag/Br interaction the S-distributions once again are right skewed. The skewness

however, is less in this case than the 28Si-Ag/Br interaction. For 32S-Ag/Br interaction the

difference between experiment and simulation, once again shown by shaded histograms, lack

any definite pattern and their magnitudes are smaller than the 28Si-Ag/Br case. Beyond

statistical uncertainties such differences are of little significance. It is to be remembered

that an experimental excess in Si/ 〈Si〉 < 1 (> 1) : i = 1, 2 region indicates ring (jet) like

structures. Based on the S-parameter distributions we can therefore, say that in the 32S-

Ag/Br data there is hardly any indication of an unusual structure, whereas in 28Si-Ag/Br

data there is a small signal of ring-like structures. In a similar analysis of the Pb+Ag/Br

data at 158A GeV and Au-Ag/Br data at 11.6A GeV [16, 17], experimental excesses over

their respective FRITIOF model [21] predictions were obtained in the S2-distributions on

either side of S2/ 〈S2〉 = 1. It is to be remembered that for overlapping η-intervals strong

correlations between particles belonging to different sub-groups will be present, and this will

certainly influence the statistical errors. One way to estimate the statistical uncertainties
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Figure 6.5: Same as Fig. 6.4 but in 32S-Ag/Br interaction at 200A GeV.

in such cases is to generate several independent sets of data based on random numbers that

are similar in size, multiplicity, η and ϕ distributions as the experiment. One can then

determine the dispersion or the standard deviation of the parameter/quantity under consid-

eration over the number of generated data sets. The statistical errors obtained in this way

can be made free from the influence of such correlations. It may also be mentioned that

the problem of γ-conversion and the resulting e+e− tracks getting mixed up with the pion

tracks can influence our observation. However, this effect is more acute in vertically exposed

emulsion chambers. In horizontally exposed emulsion experiments such as the present one,
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Figure 6.6: Average behavior of (a) the S1 parameter and (b) the S2 parameter in 28Si-
Ag/Br interaction at 14.5A GeV. Horizontal dashed lines follow Eq. (6.5). The effect of the
BEC algorithm is shown in the bottom panel.

it is possible to follow every track back to its production point. Hence the e+e− pairs arising

out of γ-conversion (if there is any) can easily be traced back to their point of origin which

will certainly be different from the primary interaction vertex. Moreover, production of

direct gamma is less in the energy range considered. The contamination by e+e− pairs is

therefore, insignificant in the present investigation.

Following ref. [11] we also study the average behavior of the S-parameters over a small

η-interval (∆η). The average values are given by,

S1 =
〈
−
∑

ln(∆ϕi)
〉

and S2 =
〈∑

(∆ϕi)
2
〉
, (6.6)

where 〈· · · 〉 indicates event averaging. These average values are graphically presented as

functions of ∆η in Fig. 6.6 and Fig. 6.7, respectively, for the 28Si-Ag/Br and 32S-Ag/Br

events. In both figures panel (a) represents S1 while panel (b) represents S2. In each diagram

the dashed lines correspond to the respective stochastic averages obtained from Eq. (6.5).

The RQMD+BEC and UrQMD+BEC predictions are also incorporated in these diagrams.

From these figures it is seen that the RQMD+BEC and UrQMD+BEC predictions are sys-

tematically but consistently a little above the corresponding stochastic line, indicating a

positive effect of incorporating BEC into the code. If we do not incorporate BEC then both

the RQMD and the UrQMD points overlap with the stochastic lines. This feature is graphi-

cally shown at the bottom of each of the diagrams (Fig. 6.6 and Fig. 6.7), indicating thereby
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Figure 6.7: Same as Fig. 6.6 but in 32S-Ag/Br interaction at 200A GeV.

absence of any correlation whatsoever among the emitted mesons. The important aspect of

these diagrams is that the first one or two experimental points (up to ∆η ≈ 0.2 − 0.3) are

significantly way above all the other values, and beyond ∆η ≈ 0.2 − 0.3 the experiments

are always very close to the respective simulated values. In the 32S-Ag/Br interaction the

simulated results beyond ∆η ≈ 0.3 are almost always overlapping with each other, and both

are closer to the stochastic line than what they are in the 28Si-Ag/Br case. The first two

or three experimental points (up to ∆η ≈ 0.2 − 0.3) also show significant deviation from

the RQMD, RQMD+BEC, UrQMD, UrQMD+BEC, and the stochastic prediction. The ob-

servation confirms that short range particle correlations other than the Bose-Einstein type,

are present in both the experiments. We further examine whether the contributions to the

experimental excesses in the average S values within a small ∆η (≈ 0.1 − 0.3), are coming

from a small η region or they are distributed over the entire η space under consideration.

For this purpose the average S- parameters are now plotted as functions of both ∆η and ηm.

Only the experimental distributions are shown in Fig. 6.8 and Fig. 6.9, respectively, for the

28Si-Ag/Br and 32S-Ag/Br interactions. To our surprise, we notice that while the average S1

values are more or less uniformly distributed over a wide η range, there are very prominent

peaks in the average S2 distributions. The peaks are located within 1.0 6 ηm 6 2.0 in

the 28Si-Ag/Br case and within 3.0 6 ηm 6 4.0 in the 32S-Ag/Br one. Both sets of data

behave similarly, and the peaks in both cases are more or less located around the central

particle producing regions. Whatever may be the reason, the results suggest that to detect

any unusual structure, S2 is indeed a better parameter than S1 [11]. In Fig. 6.10 we
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Figure 6.9: Same as Fig. 6.8 but in 32S-Ag/Br interaction at 200A GeV.

plot the cluster density distributions for the 28Si-Ag/Br events, like before for the experi-

ment as well as for the simulated data. Fig. 6.10(a) represents the regions which should be

dominated by the ring-like structure, S2/ 〈S2〉 < 1, and Fig. 6.10(b) represents the regions

which should be dominated by the jet-like structures, S2/ 〈S2〉 > 1. Similar plots for the

32S-Ag/Br events are shown in Fig. 6.11. While both the 28Si-Ag/Br diagrams are slightly
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Figure 6.11: Same as Fig. 6.10 but in 32S-Ag/Br interaction at 200A GeV.

right skewed, the 32S-Ag/Br diagrams are more symmetric. If dense groups of particles

are present in these data samples, then an excess experimental count over the background

noise should have appeared. Occasional differences between the experiment and the simu-

lation are seen in all diagrams. In Fig. 6.10(a) these differences are statistically not very

significant. Even in Fig. 6.11(a) the experimental excesses over the simulation are not too

large. Differences between experiment and RQMD+BEC are more than those between the
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Figure 6.12: Cluster size distributions for (a) the ring-like region, S2/ 〈S2〉 < 1 and (b)
the jet-like region, S2/ 〈S2〉 > 1 in 28Si-Ag/Br interaction at 14.5A GeV.

experiment and the UrQMD+BEC. The results are consistent with our previous observa-

tions [18]. To have an idea about the cluster size, we plot the ∆η distributions in Fig. 6.12

and Fig. 6.13, respectively, for the 28Si-Ag/Br and the 32S-Ag/Br data samples. As usual,

separate graphs are plotted for regions that should be dominated by the ring-like and the

jet-like structures. We notice that all these distributions are asymmetric (right skewed). In

the 28Si-induced experiment significant excesses over the simulation are seen in the region

that should be dominated by ring-like structures (S2/ 〈S2〉 < 1) particularly in the left to

the peak (small ∆η < 0.5) of the distribution. For S2/ 〈S2〉 > 1 the experiment is either well

reproduced or the UrQMD+BEC simulation exceeds the experiment. In 32S-Ag/Br events

a very narrow and sharp experimental excess is observed in the distribution at ∆η ≈ 0.5 for

S2/ 〈S2〉 < 1. While in the probable jet-like region (S2/ 〈S2〉 > 1) there is a broader and sig-

nificant experimental excess over the simulation in and around the peak of the distribution

(0.5 6 ∆η 6 0.7). Barring a very narrow and sharp structure around ∆η ≈ 0.5 observed

in Fig. 6.12(a), all other observations are consistent with our previous results which are,

(i) mild effects due to ring-like structure in the 28Si-Ag/Br interaction at 14.5A GeV, (ii)

effects due to jet-like structures in 32S-Ag/Br interaction at 200A GeV, and (iii) differences

between the experiment and RQMD+BEC are consistently larger than those between the

experiment and the UrQMD+BEC. The cluster position on the η-axis is investigated by

plotting the ηm-distributions. For the 28Si-Ag/Br interaction, these distributions are shown

in Fig. 6.14, and similar plots for the 32S-Ag/Br interactions are given in Fig. 6.15. The ex-

perimental distributions are more or less consistently symmetric about a mean value ηm ≈ 2
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Figure 6.13: Same as Fig. 6.12 but in 32S-Ag/Br interaction at 200A GeV.

for the 28Si-Ag/Br events and about ηm ≈ 3.25 for the 32S-Ag/Br events. To separate az-

imuthal structure(s) originating due to different reasons, following ref. [16] we use a little

more stringent conditions e.g., (i) S2/ 〈S2〉 < 0.9 due only to the ring-like structures, (ii)

0.9 < S2/ 〈S2〉 < 1.1 due to the statistical effects, and (iii) S2/ 〈S2〉 > 1.1 due only to the

jet-like structures. For 28Si-Ag/Br events we see that (i) in the ηm-distribution the region

that should be dominated by ring-like structures (S2/ 〈S2〉 < 0.9) at a couple of places e.g.,

at ηm ≈ 1.5 and 2.2, the experiment significantly exceeds the UrQMD+BEC simulation.

For 0.9 < S2/ 〈S2〉 < 1.1 the experiment and the simulation more or less match each other

within statistical uncertainties. On the other hand, for S2/ 〈S2〉 > 1.1 except at the ex-

treme right hand side tail (ηm > 3.6) the simulation either matches or dominates over the

corresponding experimental values. For the 32S-Ag/Br interaction in S2/ 〈S2〉 < 0.9 region

small experiment-simulation mismatch can be seen at several places. They are however,

statistically not very significant. In the 0.9 < S2/ 〈S2〉 < 1.1 region there are experimental

excesses over the simulation in the central ηm-region, the reason of which may probably be

attributed to the limited statistics of the experiment. In the S2/ 〈S2〉 > 1.1 region there

are however significant experimental surplus over the simulation at several places, which

indicate presence of jet-like structures at different ηm-locations. We notice that in this case

also the RQMD+BEC results either underestimate the experiment, or they behave similarly

as the UrQMD+BEC results.
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Figure 6.14: Cluster mean ηm distributions for (a) S2/ 〈S2〉 < 0.9, (b) 0.9 < S2/ 〈S2〉 > 1.1
and (c) S2/ 〈S2〉 > 1.1 in 28Si-Ag/Br interaction at 14.5A GeV.
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Figure 6.15: Same as Fig. 6.14 but in 32S-Ag/Br interaction at 200A GeV.

6.4 Discussion

The azimuthal substructures of shower track emission from 28Si-Ag/Br interaction at 14.5A

GeV and from 32S-Ag/Br interaction at 200A GeV are investigated under the framework of

the Cherenkov gluon emission and/or the Mach shock wave formation. The experimental

results are compared with the RQMD and the UrQMD models where the Bose-Einstein

correlation effect has also been taken into account as an after burner. In general we find
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that there are occasional but statistically significant differences between the experiment and

the simulation. In comparison with the experiment, the RQMD model differs more than

the UrQMD. A brief discussion on our results obtained from the present analysis is given

below.

We conjecture that at Elab ∼ 101 − 102 GeV/nucleon, the probability of formation of ring

and/or jet-like clusters is small. At this energy scale the phenomenon is not very much

energy dependent, rather it depends more on the colliding objects [11, 16–18]. In 28Si-Ag/Br

interaction at 14.5A GeV an indication of, however small it may be, ring-like structure is

observed. The feature may be attributed to the comparatively lower incident energy, where

the conical structure if formed during the initial stage of the collision, has probably survived

the impact of collision. On the contrary in 32S-Ag/Br interaction at 200A GeV there are

indications of augmentation of jet-like structures, which is not very unusual. From our

analysis we can at least claim that, whatever may be the reason (nuclear or partonic) behind

the signals that we see in our experiments, they are beyond any known dynamics such as

the Bose-Einstein correlation. In particular the prominent short range structures in the

average S parameter values that we find in the central particle producing region (Fig. 6.8

and 6.9), are certainly due to some nontrivial reasons. With all probability at incident

energies Elab ∼ 10 − 200A GeV nuclear phenomenon like formation of Mach shock waves,

rather than partonic effects (e.g., Cherenkov gluon emission) dominates. In our 28Si-Ag/Br

data we see small peaks at certain ηm values in the ring-like region (ηm ≈ 1.5 and 2.2).

Similarly in the 32S-Ag/Br data significant excesses in the ηm distribution are seen in the

jet region, at ηm ≈ 3.0 and 4.5. With the knowledge of the velocity distribution of the

nucleon/partonic jet in the nuclear/partonic medium, it would be a worthwhile exercise

to estimate the speed of sound wave/refractive index in nuclear/partonic matter, either of

which can serve significant purpose to constrain the nuclear equations of state.
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Chapter 7

Wavelet Analysis in Relativistic

Nucleus-Nucleus Collisions

7.1 Introduction

The fundamental idea behind the wavelets is to analyze a distribution according to scale.

Wavelets are functions that satisfy certain mathematical requirements and are used to rep-

resent data or other functions. Approximation methods using superposition of functions has

existed since the early 1800’s, when Joseph Fourier discovered that he could superpose sines

and cosines to represent other functions. However, in wavelet analysis the scale that we use

to analyze data plays a special role. Wavelet algorithms process data at different scales or

resolutions. If we look at a signal with a large ‘window’ we would notice only its gross fea-

tures, while if we look at the signal with a small window, we would notice its finer structures.

Thus, while using wavelets, one is actually adopting a entirely new mindset or perspective in

processing data. The result in wavelet analysis is to see both the forest and the trees, so to

speak. This makes wavelets interesting and useful. In order to approximate choppy signals

for many years scientists have wanted more appropriate functions than the sines and cosines,

which comprise the bases of Fourier analysis [1]. By their definition, the sine and cosine

functions are non-local. Therefore, Fourier transform does not seem to be a good approxima-

tion for a choppy (sharp spiky) signal. But wavelets are well-suited for approximating data
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with sharp discontinuities. With wavelet analysis we can use approximating functions that

are contained neatly in finite domains. The wavelet analysis procedure is to adopt a wavelet

prototype function, called an analyzing wavelet or mother wavelet. Temporal analysis is per-

formed with a contracted–high-frequency version of the prototype wavelet, while frequency

analysis is performed with a dilated–low-frequency version of the same wavelet. Because the

original signal/function can be represented in terms of a wavelet expansion using coefficients

in a linear combination of the wavelet functions, while data operations can be performed

using just the corresponding wavelet coefficients. If one further chooses the best (mother)

wavelet to analyze the data, or truncates the expansion coefficients below a threshold, the

data are sparsely represented [2]. This sparse coding makes wavelet analysis an excellent

tool in the field of data compression. As for an example, we show in Fig. 7.1 the goodness of

the wavelet denoising technique, where a pair of ‘before’ and ‘after’ illustrations of a nuclear

magnetic resonance (NMR) signal are shown. The technique works in the following way.

When you decompose a data set using wavelets, you use filters that act as averaging filters

and others that produce details. Some of the resulting wavelet coefficients correspond to

details in the data set. If the details are small, they might be omitted without substantially

affecting the main features of the data set. Then the idea of thresholding is to set to zero all

coefficients that are less than a particular threshold. These coefficients are used in an inverse

Figure 7.1: ‘Before’ and ‘after’ illustrations of a nuclear magnetic resonance signal. The
original signal is at the top and the denoised signal is at the bottom. (Images courtesy
David Donoho, Stanford University, NMR data courtesy Adrian Maudsley, VA Medical
Center, San Francisco).
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wavelet transformation to reconstruct the data set. The signal is transformed, thresholded

and inverse-transformed. The technique is a significant step forward in handling noisy data

because the denoising is carried out without smoothing out the sharp structures. The result

is cleaned-up signal that still shows important details. Wavelet analysis technique is used

in astronomy, acoustics, nuclear engineering, signal and image processing, neurophysiology,

magnetic resonance imaging, speech discrimination, optics, fractals, turbulence, human vi-

sion, pure mathematics applications such as solving partial differential equations, and many

more. For a detail review on the applications of wavelets one can follow the refs. [1–4].

In the present investigation we report some results on the wavelet analysis of the angu-

lar distribution of shower tracks coming out of 28Si-Ag/Br interaction at 14.5A GeV and

systematically compare them with those obtained from 32S-Ag/Br interaction at 200A

GeV [5]. Several works on the wavelet analysis of multiparticle production at Elab =

10 − 103 GeV/nucleon have so far been reported [6–11]. However, in this regard there

has hardly been any comparison between the experiment and a proper simulation on AB

interaction. Hence it is difficult to conclude whether the experimental observations are sig-

nificant or they are merely consequences of statistical artifacts. Therefore, in both cases the

experimental results are compared with the Ultra-relativistic Quantum Molecular Dynamics

(UrQMD) model simulation and the UrQMD combined with an additional Bose-Einstein

correlation effect (UrQMD+BEC) [see Section 2.5]. Any discrepancy between the experi-

ment and the simulation should now be recognized as a genuine collective behavior of the

final state particle emission, that has to be interpreted in terms of some nontrivial dynamics.

Thus the present analysis on one hand allows us to compare experiments induced by very

close projectile masses while the corresponding Elab values differ by an order of magnitude,

on the other it provides an opportunity to compare the experiment with such simulated

data where the known dominant source of cluster formation (BEC) is taken into account.

7.2 Methodology

The wavelet method is used to analyze nonstationary as well as inhomogeneous signals that

can be any ordered set of numerically recorded information on some processes, objects,

functions etc.. A wavelet construction is based on a dilation (a) and a translation (b)

parameter. By changing a the local characteristics of a signal are distinguished, while by

doing the same with b the whole range of a spectrum can be analyzed. Unlike the Fourier

transformation method which uses only two basis functions, the wavelet transformation

method can in principle use an infinite set of discrete or continuous functions as the basis.

However, a suitable choice of the basic wavelet is made only after looking at the basic

features of the signal to be processed. In the present case we use a continuous wavelet
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method to find out the strongest fluctuations on an event-by-event basis that may exceed

the expected statistical noise at a particular scale and at a particular point of the underlying

phase space variable (in this case pseudorapidity η). The wavelet transform of a function

f(x) is its decomposition into an orthogonal functional family (Ψ) like

WΨ(a, b) f =
1√
CΨ

+∞∫
−∞

f(x)Ψa,b(x) dx, (7.1)

where

Ψa,b ≡
1√
a

Ψ

(
x− b
a

)
(7.2)

is the mother wavelet characterized by a and b as mentioned above,

CΨ = 2π

∫ +∞

−∞

∣∣∣Ψ̃(ω)
∣∣∣2

|ω|
dω (7.3)

is a normalization constant and Ψ̃(ω) is the Fourier transform of Ψ(x). Thus, wavelet

transforms comprise an infinite set. The different wavelet families make different trade-offs

between how compactly the basis functions are localized in space and how smooth they

are. There are a lot of wavelet basis functions (family of wavelets) used in reality according

to the need. Within each family of wavelets (such as the Daubechies family) there are

wavelet subclasses distinguished by the number of coefficients and by the level of iteration.

Wavelets are classified within a family most often by the number of vanishing moments.

There exist an extra set of mathematical relationships for the coefficients that must be

satisfied, and they are directly related to the number of coefficients [1]. For example,

within the Coiflet wavelet family, Coiflets with two vanishing moments and Coiflets with

three vanishing moments are found. Even a wavelet basis might be of fractal structure, such

as the Daubechies wavelet family. In Fig. 7.2 several different wavelet families are illustrated.

Derivatives of the Gaussian function

Ψ(x) ≡ gn(x) = (−1)n+1 d
n

dxn
e−x

2/2 (7.4)

are also often used as mother wavelets. In particular the second derivative,

g2(x) = (1− x2) e−x
2/2 (7.5)

popularly known as the Mexican hat (MHAT) wavelet, because of its localized character, is

customarily used to analyze multiparticle emission data in η space. In Fig. 7.3 we show the

plots of g1(x) and g2(x). In the present case the phase space is spanned by the η variables of
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Figure 7.2: Several different families of wavelets. The number next to the wavelet name
represents the number of vanishing moments (A stringent mathematical definition related
to the number of wavelet coefficients) for the subclass of wavelet.

all the s-particles present in the sample and the signal to be analyzed is the density function

f(η) =
dn

dη
=

N∑
i=1

δ(η − ηi), (7.6)

where N is the number of shower tracks in the event sample considered, and ηi is the

pseudorapidity of the i-th particle. N may either be the ns value of a single event, or it may

be the total number of shower tracks present in the entire event sample/sub-sample within

the η interval considered. The wavelet transform of f(η) therefore, becomes

WΨ(a, b) f =
1

N

N∑
i=1

1√
a

Ψ

(
ηi − b
a

)
. (7.7)

WΨ(a, b) is the contribution of Ψ(a, b) to the spectrum f(η) in the sense that it represents

the probability to find out a particle at some position b = ηi at the scale a. A wavelet image

at large scale shows only the coarse features, while the same at small a reveals the more

detailed and finer structures of the underlying distribution.
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Figure 7.3: (a) First derivative and (b) second derivative (Mexican hat wavelet) of the
Gaussian function.

7.3 Results

In Fig. 7.4 we have presented the g2 pseudorapidity spectra of the shower tracks coming

out of all 331 28Si-Ag/Br events at an incident energy of 14.5A GeV at different scales

(four different a values). For comparison, the UrQMD and the UrQMD+BEC predicted

graphs are plotted along with those of the experiment. Though the overall multiplicity

and the η distributions of the simulated and experimental event samples are identical, we

observe that the g2 spectra of the experiment are quiet different from those of the simula-

tions. The fluctuations are more rapid in the experiment. In Fig. 7.4(a) we can see peaks at

b ≈ 1.0, 2.0 and 3.0 in the experimental distribution. These are the preferred η values where

particle clusters are formed, and one can relate them respectively, to the target fragmenta-

tion, the central particle producing and the projectile fragmentation regions. However, we

also notice that the central particle producing peak around b ≈ 2.0 is well reproduced also

by the UrQMD+BEC plot. As expected, with increasing a the fluctuations are smoothed

out, and the distributions gradually converge to the mother wavelet g2. Needless to say that

such plots do not reflect any unique structure of particle distribution in individual events.

They would rather correspond to a systematic collective behavior of the particle emission

of the entire sample. Similar plots for the entire 32S-Ag/Br event sample at 200A GeV are

presented in Fig. 7.5. While the general features of Fig. 7.4 and Fig. 7.5 are more or less sim-

ilar, we notice that more peaks are present in the 32S-sample than in the 28Si-sample. There

are at least 6 prominent peaks within b ≈ 1.0 − 5.0 in the experiment, out of which two

very prominent peaks are lying within the central particle producing region (b ≈ 3.0 − 4.0),

and the simulations cannot replicate them. Even at a large scale a (= 0.5) we find a hump
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Figure 7.4: g2 wavelet pseudorapidity spectra in 28Si-Ag/Br interaction at 14.5A GeV for
different values of the scale parameter a.

to the left of the peak of the experimental distribution that refuses to be smoothed out, a

feature that is absent in the 28Si case. The other peaks, one to the right and three to the

left side of the central region, can be related respectively, to the projectile and the target

fragmentations.

The wavelet spectra can be generated for individual events at many different scales that

can be used to simultaneously study the location and the scale dependence of WΨ(a, b). We

have obtained such distributions for two high multiplicity events, one for a 28Si-Ag/Br event

(ns = 146) and the other for a 32S-Ag/Br one (ns = 379). We have schematically presented

the WΨ(a, b) distributions respectively, in Fig. 7.6(a) and (b). The dark (white) regions in

the graphs correspond to the low (high) values of WΨ(a, b). As mentioned before, at the

finest scales (a < 0.05) we only get information about individual particles, while at large

a particles loose their individual identities to coalesce into a big cluster. It is therefore,

pointless to study an event under either of these two extreme but trivial scales. We see that

in both diagrams several small and large clusters are present at a > 0.1. Looking at the
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Figure 7.5: g2 wavelet pseudorapidity spectra in 32S-Ag/Br interaction at 200A GeV for
different values of the scale parameter a.

28Si-Ag/Br diagram we recognize that two large groups of particles are present, one centered

around η ≈ 0.7 and the other around η ≈ 1.4. Similarly in the 32S-Ag/Br diagram again

there are two large groups, one at η ≈ 3.0 and the other at η ≈ 4.6. Beside them several

other smaller groups of particles are present, all belonging to the fragmentation regions.

Identification of the peculiarities in particle distribution in individual events from the two-

dimensional energy spectrum {WΨ(a, b)}2 is a difficult proposition. Instead we may concen-

trate on the scalogram EW (a) defined as

EW (a) =

∫
{WΨ(a, b)}2 db, (7.8)

which represents the one-dimensional energy distribution with respect to the scale a. A

scalogram reflects some of the characteristic features of an event. As for example, a mini-

mum on it represents the average distance between the particle clusters, while a maximum

represents the most compact group of particles present in the event. Two such scalograms,
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Figure 7.6: Wavelet pseudorapidity spectra for a high-multiplicity event in (a) 28Si-Ag/Br
interaction at 14.5A GeV and (b) 32S-Ag/Br interaction at 200A GeV, the event multiplic-
ities are respectively 146 and 379.
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Figure 7.7: Scalograms of the events for which the wavelet pseudorapidity spectra are
shown in Fig. 7.6.

one for the 28Si-Ag/Br event and the other for the 32S-Ag/Br event considered above, are

shown in Fig. 7.7. In each diagram a peak or a small rise seen at the lowest scale that

represents individual particles, and they are of little significance. In the scalogram of the

28Si-Ag/Br event a local peak at a ≈ 0.2 and a minimum at a ≈ 0.3 are seen. On the other

hand, in the 32S-Ag/Br event there are a couple of local maxima and minima. The maxima

are located at a ≈ 0.1 and 0.2, while the minima are located at a ≈ 0.15 and 0.35. The

simulation, either with or without BEC, fails to reproduce the experiment at the significant

scales. It is now amply clear that the scales and the η values at which the clusters are formed

will vary from one event to the other. Most of the local maxima (minima) are found within

a ≈ 0.1−0.5, and in most of the events only a few such maxima (minima) are found. To check
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Figure 7.8: Distributions of the local maxima (left panel) and minima (right panel) of the
scalograms in 28Si-Ag/Br interaction at 14.5A GeV.

whether there exists any systematic behavior of particle emission, or the clusters formation

occurs at random, we investigate the distributions of the extremum points over our entire

event sample(s). In Fig. 7.8 we plot the frequency distribution of the scales amax and amin at

which respectively, the maxima and the minima of the scalograms belonging to individual

28Si-Ag/Br events are graphically seen. The experiments as usual are plotted together with

the simulations. Except in Fig. 7.8(b), where the experiment slightly exceeds the simulation

at the characteristic scale of amax ≈ 0.2, no significant difference between experiment and

simulation is observed. In Fig. 7.9 similar histograms for the 32S-Ag/Br events are plotted.

In this case also no significant difference between the experiment and the corresponding

simulation is seen.

The wavelet analysis is not complete unless we study the distributions of the locations (b),

where the local maxima in WΨ(amax, bmax) are observed. We do this with different choices

of scale intervals, cumulative as well as differential. In Fig. 7.10 such distributions for the

28Si-Ag/Br sample (both experiment and simulation) are graphically presented at different

cumulative scale windows. The common features of these diagrams are that, at the lowest

amax range the distributions are rapidly fluctuating, and as expected with increasing scale

window size the fluctuations get reduced. In comparison with the experiment the UrQMD

distributions vary more smoothly. However, when the BEC is incorporated into the UrQMD,

to some extent the fluctuating patterns are retrieved. The 32S-Ag/Br sample on the other
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Figure 7.9: Same as Fig. 7.8 but in 32S-Ag/Br interaction at 200A GeV.

hand, behaves a little differently. The distributions are shown in Fig. 7.11. In this case

the experimental distribution is still more rapidly fluctuating than both the UrQMD and

the UrQMD+BEC plots. It seems that incorporating BEC into UrQMD apparently has

little effect in the respective distributions. In Fig. 7.12 and 7.13 the bmax distributions

respectively, for the 28Si-Ag/Br and 32S-Ag/Br samples are once again graphically shown,

where we choose differential scale intervals to draw the histograms. For both sets of data

the basic features are more or less same. As expected at the smallest scale window 0.05 6

amax 6 0.1 most rapid fluctuations are seen, which are systematically smoothed out with

increasing amax. The distributions for the 32S-Ag/Br interaction are slightly wider than

those for the 28Si-Ag/Br interaction. It seems that the inclusion of BEC into the UrQMD

in both interactions increases the heights of the local peaks to a small extent.

7.4 Discussion

Pseudorapidity distributions of singly charged particles coming out of 28Si-Ag/Br and 32S-

Ag/Br interactions, respectively at incident energies of 14.5A GeV and 200A GeV, are

analyzed by using the continuous wavelet transform technique. Compared to similar other

such emulsion investigations [8–11], the target nuclei in the present case have less uncertain-

ties. For background noise elimination the experiments are compared with a set of ordinary
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Figure 7.11: Same as Fig. 7.10 but in 32S-Ag/Br interaction at 200A GeV.

UrQMD simulated data, and also with the same set of UrQMD output that is modified

by a mimicry of the Bose-Einstein type of correlation. The observed discrepancies between

the experiment and the corresponding simulation should therefore, result from nontrivial

dynamics like collective flow of hadronic matter. Irregularities in the wavelet pseudorapid-

ity spectra are observed in individual AB events as well, and the cluster characteristics are

not reproducible by the simulations. As far as a systematic behavior in many events is
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Figure 7.13: Same as Fig. 7.12 but in 32S-Ag/Br interaction at 200A GeV.

concerned, we observed certain difference between experiment and simulation in the 28Si

event sample under consideration. The differences with all probability are not a result of

ordinary correlations among identical bosons. They should be interpreted in terms of certain

nontrivial dynamical reason(s), that is (are) not very much clear from the present analysis.

The present study can be extended to the azimuthal angle distribution of shower tracks,
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to the 2-dimensional wavelet analysis [12], and with larger statistics to examine the impact

parameter dependence of the observed irregularities.
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Concluding Remarks

This thesis is based on some statistical analysis of local density fluctuation and cluster for-

mation of charged particles produced in high-energy nucleus-nucleus interaction(s). Exper-

imental data on angular distribution of shower tracks coming out of 28Si-Ag/Br interaction

at an incident energy in the laboratory system Elab = 14.5A GeV are used. To understand

the mechanism of multiparticle production we systematically compare the experimental re-

sults with those obtained from event samples simulated by a microscopic transport model

namely the Ultra-relativistic Quantum Molecular Dynamics (UrQMD). For the first time

in the history of AB collision, we have also implemented a charge reassignment algorithm

that mimics the Bose-Einstein correlation (BEC) to the UrQMD output in the form of an

after burner. It has to be however remembered that a real BEC can be incorporated into

any model only by appropriately symmetrizing the underlying bosonic fields, which is an ex-

tremely difficult task. On more than one occasion our 28Si-Ag/Br results are compared with

32S-Ag/Br results at Elab = 200A GeV, allowing thereby to examine the effect of different

collision energies on colliding systems of more or less same geometrical size. Though at the

end of each chapter a section is devoted to discuss the results obtained from a particular

method of analysis, we thought that to conclude it would be prudent to summarize the

major observations of the present investigation together, and put each of them under a close

scrutiny. We are aware that multiparticle production is a soft hadronic process and pertains

to very late stages of any high-energy AB collision. Therefore, only by using statistical tools

it would be too ambitious a project to probe into the more interesting early evolutionary

and/or thermodynamically equilibrated stages of the ‘fireball’. Nevertheless, multiparticle

production mechanism itself is a complex dynamical process that should be examined from

different perspectives through a colliding system and/or collision energy scan.

First of all we observe that the total 28Si-Ag/Br interaction cross-section at Elab = 14.5A

GeV incident energy, is consistent with the prediction of a simple participant – spectator

model. In this regard a small mismatch between the theoretical estimation and experimen-

tal observation can be attributed to personal errors, an aspect inherent to any emulsion

experiment. As we have with us only a subsample of 28Si-Ag/Br events and not the entire

183
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minimum bias sample, we have not presented any multiplicity distribution in the thesis. In

emulsion experiments the criterion of selecting Ag/Br events (n
h
> 8) excludes a significant

fraction of Ag/Br events. The pseudorapidity distribution of the shower tracks (caused by

produced charged mesons moving at relativistic speed) can be approximated by a Gaussian

distribution. Corresponding UrQMD generated distribution also possesses this Gaussian

nature, though there is a small overall shift between the centroids of the two distributions.

The Bjorken’s energy density, determined from the central pseudorapidity density of a sub-

sample of high multiplicity 28Si-Ag/Br events (ns > 50) is very close to the LQCD estimated

value (∼ a few GeV/fm3) needed to augment the transition from a color neutral hadronic

state to a color conducting extended QCD state. However, the single Gaussian description

of the pseudorapidity distribution(s) is(are) compatible to significant stopping of the projec-

tile by the target, as expected at such collision energies (Elab = 14.5A GeV). Therefore, the

fireball created in 28Si-Ag/Br collision must be rich in baryon number. The experimental

azimuthal angle distribution of shower tracks on the other hand is significantly different

from the UrQMD generated one. The azimuthal asymmetry observed in the experimental

distribution, can perhaps be attributed to a combination of two effects, (i) some dynamical

effect – a collective behavior of shower track emission during the collision process, and (ii)

experimental deficiency – small efficiency to detect shower tracks that are moving exactly

towards or away from the observer’s eyes.

Single particle density distribution of shower tracks in high multiplicity 28Si-Ag/Br events

exhibit random fluctuations consisting of sharp peaks and deep valleys. Using the technique

of scaled factorial moments (SFM) we could characterize these fluctuations, apparently

devoid of any regular pattern, in terms of a finite set of regularly behaving parameters.

The SFM can by definition suppress any Poisson distributed statistical background (noise)

present in the data. We could identify that the unusually large particle density values, irre-

spective of their exact analytic form, possess a dynamical component, which with decreasing

phase space resolution size (δX) asymptotically approaches a singularity obeying a scale in-

variant power-law. The UrQMD generated sample does not exhibit any such behavior, i.e.

no significant change in the SFM values with phase space resolution size. Even inclusion

of BEC in the UrQMD output can only partially recover the power-law type of scaling in

simulated data, and that too in the two dimensional analysis. Therefore, certain amount of

correlated emission must be present in the experiment which is beyond the known sources

of correlation like BEC. In the framework of a simple intermittency model (α model), we

observe that within errors intermittency in the 28Si-Ag/Br case is almost as strong as it

is in the 32S-Ag/Br case, and slightly stronger in 16O-Ag/Br interaction at Elab = 200A

GeV. Therefore, within the energy range Elab ∼ 10 − 100A GeV, the size of the colliding

objects has perhaps a greater influence on the intermittency strength than the collision

energy involved. We also observe that in all interactions the intermittency effect in the
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azimuthal plane is consistently stronger than that on the pseudorapidity axis. This may be

an outcome of the kinematic conservation laws (before collision such transverse degrees of

freedom were absent), or a more complicated hitherto unknown dynamical reason. There

is a definite indication of non-thermal phase transition in the intermittency pattern in the

azimuthal plane. Another important observation is that, while the power-law type of scaling

is self similar down to the experimental resolution in one dimension, it is self-affine in two

dimension. In (η − ϕ plane) self-similarity is retrieved only when independent phase space

directions are partitioned differently by invoking an appropriate ‘roughness’ parameter (H).

Two-dimensional intermittency is always stronger than one-dimensional intermittency.

The intermittency technique not only enables us to characterize the local particle densities

belonging to a particular bin, but it also allows us to examine the bin-to-bin correlations in

terms of the two fold SFM or factorial correlators. Our experimental results in this regard,

namely the scaling-laws and sum rules etc., are in conformity with the α-model, and are

indicative of short range correlation. UrQMD predictions, even after being supplemented

by the BEC, fall short of the experiment. The correlation that we find in these analysis

originates mainly from two or three particle correlation, while presence of genuine higher

order correlations (of order more than three) are seldom statistically significant. We have

also examined the event space fluctuation of the SFM called the erraticity analysis. In the

SFM distribution we notice that while most of the single event SFM values are restricted

within a small interval, some events have really high SFM values. It is speculated that this

kind of event space fluctuation of SFM is chaotic in nature, and should be characterized in

terms of a new set of moments called the erraticity moments. We found that the erraticity

moments in 28Si-Ag/Br interaction at Elab = 14.5A GeV abide by appropriate scaling-

law, and the corresponding erraticity parameters also behave as expected. Small difference

between the experiment and simulation do exist, and the 28Si-Ag/Br results are qualitatively

similar to the 32S-Ag/Br or 16O-Ag/Br results reported earlier.

The self-similar nature of dynamical fluctuation as observed in our intermittency analysis,

has inspired us to extend the scope of our investigation to the domain of fractals. Using

several statistical techniques we have observed that the shower track distribution both in the

experiment and in the simulation(s) are multifractal in nature. The methods of detrended

multifractal analysis have so far not been very widely used for AB experiments. As far as

multifractal patterns are concerned, on most of the occasions there is hardly any difference

between the experiment and the corresponding simulation. There may be more than one

reason behind this kind of apparent anomaly between the intermittency results which show

some degree of correlated emission in the experiment, and the multifractality results which

to a large extent agrees with the uncorrelated UrQMD data. One reason may be that the

techniques of multifractal analysis adopted are not very sensitive to correlated emission. The
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second reason may be that in multifractal analysis there is no robust technique of eliminating

the statistical noise from the data. Only when we take into account the random number

generated mass exponent τ staq , the (multi)fractal parameter (q−1−τq) drops down very close

to its equivalent quantity, the intermittency exponent (φq). The third reason may be that the

fractal nature of a distribution should actually be examined under the limiting condition

δX → 0, which because of the finite event multiplicity cannot in practice be achieved

in any real experiment. Notwithstanding these shortcomings it is worthy to mention that

there are statistically significant differences in the multifractal singularity spectra and in the

generalized dimension values, obtained from the experiment and generated by the simulation.

The experimental singularity spectrum is always wider than the simulated one, while the

experimentally obtained generalized dimensions change with the order of the (multi)fractal

moments and are always smaller than the corresponding UrQMD simulated values. The

simulated generalized dimensions also do not always change significantly with its order, and

they are closer to the topological dimension of the supporting space.

We have also tried to find out unusual structures in the azimuthal distribution (if there is

any) of shower tracks coming out of 28Si-Ag/Br events at Elab = 14.5A GeV, compared the

results with those of 32S-Ag/Br events at Elab = 200A GeV as well as with the BEC supple-

mented UrQMD and RQMD generated events. Except for observing strong correlation(s) in

the central particle producing region and occasional formation of jet-like structures, nothing

very unusual was found from this analysis. The difference(s) between experiment(s) and

simulation(s) is/are often very small. Once again the methodology itself does not allow us

to be very conclusive about the probable mechanism(s) of formation of such unusual az-

imuthal structure(s). Our wavelet analysis of 28Si-Ag/Br and 32S-Ag/Br data once again

shows that clusters of particles are formed at different locations on the pseudorapidity axis

and at different scales of resolution. The wavelet technique has also not so far been used

in many AB experiments, and probably there has so far not been any comparison with any

simulated result. The experiments differ from the corresponding UrQMD or UrQMD+BEC

predictions. Therefore, with all probability the clusters result from some nontrivial dynam-

ics other than the BEC. As per a norm of our university, at the end we have attached the

reprint of one of our published papers on collective flow analysis on 28Si-Ag/Br interaction

at Elab = 14.5A GeV, measured the flow angles and flow parameters, and compared the

results with those obtained from 84Kr-Ag/Br interaction at Elab = 1.52A GeV. Though

collective emission of particles is present in both cases the Kr-induced experiment behave in

a more systematic manner, and the present results are consistent with those obtained from

previous such similar experiments.

The thesis contains some new results on multiparticle emission data obtained from some

conventional as well as some not so frequently used statistical tools. An effort however
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small it may be, has been made even to modify the simulation technique employed. In view

of the upcoming CBM experiment to be held at FAIR, GSI, Germany, designed to study

baryon rich ‘fireballs’ produced in AB collisions, in near future these results may eventually

come out to be more than useful. In spite the best of our intentions there is no denial that

several physics outputs of the present investigation could be put forward only in the form of

conjectures. If it were not for the constraint imposed by limited statistics and experimental

technique, we could have been more confident and more specific about our conclusions, e.g.

by studying the centrality dependence and/or the dependence on the number of binary NN

collisions involved in AB collision. As a final statement, one may say that with the advent

of new and more sophisticated detecting devices the days of nuclear emulsion technique as

an effective tool of experimental nuclear/particle physics research may be numbered, but

there are still some scopes of using this age old technique where event statistics is not a very

important factor, but direct observation and spatial resolution are.


