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Abstract

We demonstrate that in non-Abelian N = 1 supersymmetric gauge theories the NSVZ relation is valid 
for terms quartic in the Yukawa couplings independently of the subtraction scheme if the renormalization 
group functions are defined in terms of the bare couplings and the theory is regularized by higher covari-
ant derivatives. The terms quartic in the Yukawa couplings appear in the three-loop β-function and in the 
two-loop anomalous dimension of the matter superfields. We have obtained that the three-loop contribu-
tion to the β-function quartic in the Yukawa couplings is given by an integral of double total derivatives. 
Consequently, one of the loop integrals can be taken and the three-loop contribution to the β-function is 
reduced to the two-loop contribution to the anomalous dimension. The remaining loop integrals have been 
calculated for the simplest form of the higher derivative regularizing term. Then we construct the renormal-
ization group functions defined in terms of the renormalized couplings. In the considered approximation 
they do not satisfy the NSVZ relation for a general renormalization prescription. However, we verify that 
the recently proposed boundary conditions defining the NSVZ scheme in the non-Abelian case really lead 
to the NSVZ relation between the terms of the considered structure.
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1. Introduction

The exact NSVZ β-function [1–4] is the equation which relates the β-function of N = 1
supersymmetric gauge theories to the anomalous dimensions of the matter superfields (γφ)j

i

and gives the exact β-function for the pure N = 1 supersymmetric Yang–Mills (SYM) theory,1

β = −
α2

(
3C2 − T (R) + C(R)i

j (γφ)j
i/r

)
2π(1 − C2α/2π)

. (1)

Here r = δAA is the dimension of the gauge group; C(R)i
j ≡ (T AT A)i

j with T A being the 
generators of the gauge group in the representation to which the chiral matter superfields belong. 
T (R) is defined by the equation tr(T AT B) ≡ T (R)δAB , and C2 = T (Adj).

The NSVZ relation is closely connected with the N = 2 non-renormalization theorem [5–7]
(which states that the divergences in N = 2 SYM theories exist only in the one-loop approxi-
mation [8–10]). There are also NSVZ-like equations in the softly broken N = 1 supersymmetric 
theories [11–13].

Originally the NSVZ relation has been obtained from various general arguments based, e.g., 
on the structure of instanton contributions [1,3,5], anomalies [2,4,14], non-renormalization of the 
topological term [15]. However, straightforward perturbative calculations indicate that the NSVZ 
relation is not valid in the DR subtraction scheme [16–18] and in the MOM subtraction scheme 
[19]. This is caused by the scheme dependence of the NSVZ relation [20,21]. The NSVZ scheme 
can be related to the above mentioned schemes by finite renormalizations [16–18,22]. Note that 
the possibility of making these finite renormalizations is highly non-trivial, because the NSVZ 
relation leads to some scheme independent consequences [19,21]. Nevertheless, in the case of 
using the dimensional reduction the NSVZ scheme should be tuned in each order of the pertur-
bation theory, and there is no simple prescription giving it in all orders (see, e.g., [22]). Such a 
prescription [23] can be given in the case of using the Slavnov higher derivative regularization 
[24–26] in the supersymmetric version [27,28]. Presumably, with the higher derivative regular-
ization the renormalization group (RG) functions defined in terms of the bare coupling constant 
satisfy the NSVZ relation in all orders independently of the subtraction scheme. This occurs 
because the β-function seems to be determined by integrals of double total derivatives.2 The 
factorization into integrals of total derivatives and double total derivatives has first been noted in 
[31] and [32], respectively. Subsequently, for various supersymmetric theories it has been ver-
ified by numerous calculations in the lowest orders of the perturbation theory [33–38,6,7] and 
even proved in all orders in the Abelian case [39,40]. Similar factorizations into integrals of dou-
ble total derivative have been proved in orders for the Adler D-function [41] in N = 1 SQCD 
[42,43] and for the anomalous dimension of the photino mass in the softly broken N = 1 SQED 
[44]. In both cases they allow all-order proving of the NSVZ-like relations for the RG functions 
defined in terms of the bare coupling constant.

For the scheme-dependent RG functions (standardly, [45]) defined in terms of the renormal-
ized coupling constant the NSVZ scheme can be obtained in all orders in the Abelian case by 
imposing simple boundary conditions to the renormalization constants [19,21,23]. The NSVZ 
scheme for the photino mass anomalous dimension has been constructed by this method in [46].

1 Note that so far we do not specify the definitions of the renormalization group functions. They will be discussed in 
details later.

2 In the case of using the dimensional reduction [29] such a factorization does not take place [30].
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For non-Abelian gauge theories, regularized by higher derivatives, the NSVZ relation for the 
RG functions defined in terms of the bare couplings has not yet been derived by the tools of the 
perturbation theory. However, at the qualitative level, the appearance of the NSVZ β-function 
has been explained in [47], where the NSVZ equation was rewritten as a relation between the 
β-function and the anomalous dimensions of the quantum gauge superfield, of the Faddeev–
Popov ghosts, and of the matter superfields. This allows to suggest that for the higher covariant 
derivative regularization in the non-Abelian case the NSVZ relation is also valid for the RG 
functions defined in terms of the bare couplings and has the form

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R) − 2C2γc(α0, λ0) − 2C2γV (α0, λ0)

+ C(R)i
j γφ(α0, λ0)j

i/r
)
. (2)

Consequently, the prescription giving the NSVZ scheme for the RG functions defined in terms 
of the renormalized couplings in the non-Abelian case is

Zα(α,λ, x0) = 1; Zφ(α,λ, x0)i
j = δi

j ;
Zc(α,λ, x0) = 1; ZV = Z1/2

α Z−1
c , (3)

where x0 is a fixed value of x = ln	/μ with 	 and μ being a dimensionful parameter of the 
regularized theory and a normalization point, respectively.

Certainly, it is necessary to verify these statements by explicit perturbative calculations. Tak-
ing into account that the β-function is scheme-dependent starting from three loops, and the 
anomalous dimensions are scheme-dependent starting from two loops, for non-trivial checking 
of the above statements one has to compare the three-loop β-function with the two-loop anoma-
lous dimension. The complete three-loop calculation is rather complicated, so that in this paper 
we consider only a part of it. Namely, we consider only the terms quartic in the Yukawa cou-
plings. The purpose of this paper is to verify that the β-function is given by integrals of double 
total derivatives and check Eqs. (2) and (3) for the terms of this structure.

The paper is organized as follows. In Sect. 2 we consider the N = 1 SYM theory with matter 
superfields regularized by higher derivatives and introduce the notation. The supergraphs defin-
ing the terms quartic in the Yukawa couplings in the three-loop β-function and in the two-loop 
anomalous dimension are calculated in Sect. 3. In particular, in this section we demonstrate 
that the considered contribution to the β-function can be presented as an integral of a double 
total derivative in the momentum space. Moreover, we obtain that the considered parts of the 
RG functions defined in terms of the bare couplings satisfy the NSVZ relation independently 
of the subtraction scheme with the higher covariant derivative regularization. In Sect. 4 for the 
simplest form of the higher derivative regulator we calculate the integrals giving the part of the 
two-loop anomalous dimension quartic in the Yukawa couplings. The explicit expression for the 
anomalous dimension obtained in Sect. 4 is used in Sect. 5 for checking the prescription (3)
which gives the NSVZ scheme for the RG functions defined in terms of the renormalized cou-
plings. In particular, we calculate the considered parts of the RG functions defined in terms of 
the renormalized couplings. One can see that the part of the anomalous dimension quartic in the 
Yukawa couplings is scheme independent and coincides with the result obtained earlier in the DR
scheme (see [16] and references therein), while the part of the β-function quartic in the Yukawa 
couplings is scheme dependent. Then we demonstrate that under the prescription (3) the NSVZ 
relation is really valid for the considered contributions to the RG functions (defined in terms of 



348 V.Yu. Shakhmanov, K.V. Stepanyantz / Nuclear Physics B 920 (2017) 345–367
the renormalized couplings). In the Appendixes we present explicit expressions for individual 
superdiagrams and describe in details the calculation of the loop integrals.

2. The N = 1 SYM theory regularized by higher derivatives

In this paper we will consider the general N = 1 SYM theory with matter in the massless 
limit. In terms of superfields [48,49] it is described by the manifestly supersymmetric action

S = 1

2e2
0

Re tr
∫

d4x d2θ WaWa + 1

4

∫
d4x d4θ φ∗i (e2V )i

jφj

+
(1

6

∫
d4x d2θ λ

ijk

0 φiφjφk + c.c.
)
, (4)

where V is a real gauge superfield and φi are chiral matter superfields in a certain representation 
R of the gauge group G. The supersymmetric gauge field strength Wa = D̄2(e−2V Dae

2V )/8 is 
also a chiral superfield; e0 and λijk

0 are the bare gauge and Yukawa couplings, respectively. We 
assume that the theory is gauge invariant, so that

λ
ijm

0 (T A)m
k + λimk

0 (T A)m
j + λ

mjk

0 (T A)m
i = 0, (5)

where (T A)i
j are the generators of the representation R. The generators of the fundamen-

tal representation are denoted by tA. By definition, they satisfy the normalization condition 
tr(tAtB) = δAB/2.

For calculating the coupling constant renormalization it is convenient to use the background 
field method. In the supersymmetric case the background gauge superfield V , such that e2V =
e�+

e�, is introduced by the substitution e2V → e�+
e2V e�.

We regularize the theory (4) by the BRST invariant version of the higher covariant derivative 
regularization following Ref. [50]. In particular, we add to the action (4) terms with the higher 
degrees of covariant derivatives, so that

S + S	 = 1

2e2
0

Re tr
∫

d4x d2θ e�e�Wae−�e−�R
(

− ∇̄2∇2

16	2

)
Adj

e�e�Wae
−�e−�

+ 1

4

∫
d4x d4θ φ+e�+

e�+
F

(
− ∇̄2∇2

16	2

)
e�e�φ

+
(1

6

∫
d4x d2θ λ

ijk

0 φiφjφk + c.c.
)
, (6)

where the supersymmetric and gauge covariant derivatives are defined by

∇a = e−�+
e−�+

Dae
�+

e�+; ∇̄ȧ = e�e�D̄ȧe
−�e−� (7)

with e2V = e�+
e�. The regulator functions R(x) and F(x) should have sufficiently rapid growth 

at infinity and satisfy the conditions R(0) = 1 and F(0) = 1. The gauge fixing term invariant 
under the background gauge transformations has the form

Sgf = − 1

16ξ0e
2
0

tr
∫

d4x d4θ ∇2V K
(

− ∇̄2∇2

16	2

)
Adj

∇̄2
V, (8)

where ξ0 is the bare gauge parameter, and the background covariant derivatives are given by

∇a = e−�+
Dae

�+; ∇̄ȧ = e�D̄ȧe
−�. (9)
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The regulator K(x) also satisfies the condition K(0) = 1 and should have sufficiently rapid 
growth at infinity.

Also it is necessary to introduce the Faddeev–Popov and Nielsen–Kallosh ghosts and the 
Pauli–Villars determinants for regularizing one-loop divergences, which remain after adding the 
higher derivative terms. The details of these constructions can be found in [50]. The quantum 
corrections considered in this paper do not involve these fields, so that we will not discuss them 
in details. We only note that the actions for the Pauli–Villars superfields are quadratic in the 
chiral matter superfields. This implies that there are no Yukawa interaction terms including the 
Pauli–Villars superfields.

Having in mind the exact results derived with the higher derivative regularization for Abelian 
supersymmetric theories, it is natural to suggest that the NSVZ relation in the non-Abelian case 
is satisfied by the RG functions defined in terms of the bare couplings if the theory is regularized 
by higher covariant derivatives. According to [47], the NSVZ equation can be rewritten in the 
form of the relation (2) between the β-function and the anomalous dimensions of the quantum 
gauge superfield, of the Faddeev–Popov ghosts, and of the matter superfields. Eq. (2) implies 
existence of the relation between the Green functions of these superfields, which can be written 
as

d

d ln	

(
d−1 − α−1

0

)∣∣∣
α,λ=const; p→0

= −3C2 − T (R)

2π

− 1

2π

d

d ln	

(
− 2C2 lnGc − C2 lnGV + C(R)i

j (lnGφ)j
i/r

)∣∣∣
α,λ=const;q→0

. (10)

This equation admits a simple graphical interpretation [47]. Namely, let us consider a supergraph 
without external lines. If we attach to it two external lines of the background gauge superfield, 
then the sum of the diagrams obtained in this way contributes to the function d−1 − α−1

0 . From 
the other side, various possible cuts of the original supergraph propagators give a set of diagrams 
contributing to the two-point functions of the quantum gauge superfields, of the Faddeev–Popov 
ghosts, and of the matter superfields that is to GV , Gc , and (Gφ)i

j , respectively. Eq. (10) relates 
them to the above described contribution to the function d−1 − α−1

0 .
In this paper we verify that Eq. (10) is valid for terms proportional to λ4

0. Such terms are 
present in the functions d−1 and (Gφ)i

j , which are related to the two-point Green functions of 
the background gauge superfield and of the matter superfields, respectively. Namely,


(2) − S
(2)
gf = 1

4

∫
d4p

(2π)4
d4θ φ∗i (θ,−p)φj (θ,p)Gφ(α0, λ0,	/p)i

j

− 1

8π
tr

∫
d4p

(2π)4
d4θ V (θ,−p)∂2�1/2V (θ,p)d−1(α0, λ0,	/p) + . . . .

(11)

The functions Gc and GV are related to the Green functions of the Faddeev–Popov ghosts and of 
the quantum gauge superfield. Their definitions are given in [47], but in this paper these functions 
are not essential, because they do not contain terms of the considered structure.

If Eq. (10) is valid, then the NSVZ scheme is given by the prescription (3). Therefore, we will 
also be able to verify Eq. (3) for the considered terms. Note that this check is non-trivial, because 
we consider the scheme-dependent contributions to the NSVZ relation.
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Fig. 1. We consider diagrams which are obtained from the first two graphs by attaching two external lines of the back-
ground gauge superfield. The last graph vanishes in the massless case.

Fig. 2. Here we marked chiral ends of propagators for the graphs which do not vanish in the massless case.

3. Terms quartic in Yukawa couplings in the NSVZ relation

In this paper we are interested in terms quartic in the Yukawa couplings (without the gauge 
coupling constant) in the NSVZ relation (2). Below we will see that for calculating them, it 
is also necessary to know terms quadratic in the Yukawa couplings without the gauge coupling 
constant. All terms mentioned above correspond to one two-loop graph and two three-loop graphs 
presented in Fig. 1. However, in the massless limit the last graph vanishes. Really, in the massless 
theory each propagator has a chiral end and an antichiral end. Each vertex connects either three 
chiral ends or three antichiral ends of the propagators. However, one can easily see that it is 
impossible to satisfy both these requirements in the last graph. The other graphs nontrivially 
contribute in the massless case. The arrangement of chiral and antichiral vertices for these graphs 
is presented in Fig. 2.

As we have explained above, to obtain the diagrams contributing to the β-function from the 
graphs presented in Fig. 2, it is necessary to attach two external lines of the background gauge 
superfield V by all possible ways. This gives three two-loop diagrams presented in Fig. 3 and 
eight three-loop diagrams presented in Fig. 4. Their contribution should be compared with the 
part of the anomalous dimension of the matter superfield which comes from the diagrams ob-
tained by all possible cuts of the graphs presented in Fig. 2. Certainly, it is necessary to take into 
account only the 1PI graphs, which are presented in Fig. 5, because the effective action encodes 
the sum of 1PI graphs. Note that cutting a matter line in the (vanishing in the massless limit) 
third graph in Fig. 1 gives the only superdiagram presented in Fig. 6. One can easily check that 
in the massless limit it vanishes and, therefore, does not contribute to the anomalous dimension.

Let us start with calculating the diagrams presented in Figs. 3 and 4. More exactly, we will 
calculate their contribution to the β-function defined in terms of the bare coupling constant,

d

d ln	

(
d−1(α0, λ0,	/p) − α−1

0

)∣∣∣
p=0

= β(α0, λ0)

α2
0

. (12)

The differentiation with respect to ln	 in this expression should be made at fixed values of the 
renormalized gauge and Yukawa couplings, while the result should be reexpressed in terms of 
the bare ones. Note that it is also necessary to take the limit p → 0, where p is the external 
momentum, in order to get rid of the finite terms proportional to 	−k , where k is a positive 
integer.
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Fig. 3. Diagrams giving the two-loop contribution quadratic in the Yukawa couplings to the β-function. The wavy lines 
correspond to the background gauge superfield V .

Fig. 4. These diagrams give the three-loop contribution quartic in the Yukawa couplings to the β-function.

The results for contributions of all diagrams presented in Figs. 3 and 4 to the effective action 
in the limit of the vanishing external momentum are collected in Appendix A. Their sum appears 
to be transversal as it should be due to the background gauge invariance. We have also verified 
that it is given by an integral of a double total derivative. In particular, the contribution of the 
considered supergraphs to the expression (12) can be written as3

�β(α0, λ0)

α2
0

= −2π

r
C(R)i

j d

d ln	

∫
d4k

(2π)4

d4q

(2π)4
λimn

0 λ∗
0jmn

∂

∂qμ

∂

∂qμ

×
( 1

k2Fk q2Fq (q + k)2Fq+k

)
+ 4π

r
C(R)i

j d

d ln	

∫
d4k

(2π)4

d4l

(2π)4

d4q

(2π)4

(
λiab

0 λ∗
0kabλ

kcd
0 λ∗

0jcd

( ∂

∂kμ

∂

∂kμ
− ∂

∂qμ

∂

∂qμ

)

+ 2λiab
0 λ∗

0jacλ
cde
0 λ∗

0bde

∂

∂qμ

∂

∂qμ

)
1

k2F 2
k q2Fq (q + k)2Fq+k l2Fl (l + k)2Fl+k

, (13)

where the derivative with respect to ln	 is calculated at fixed values of the renormalized Yukawa 
constants.4 To write the complete β-function, it is necessary to add the one-loop contribution 

3 For simplicity, we do not include the one-loop contribution into this expression.
4 Note that Eq. (13) is not contributed by the Pauli–Villars superfields, because, for the considered regularization [50], 

there are no triple vertices which include the Pauli–Villars superfields.
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Fig. 5. These diagrams give the one and two-loop contributions to the anomalous dimension of the matter superfields 
quadratic and quartic in Yukawa couplings, respectively.

Fig. 6. This superdiagram is obtained after cutting a matter line in the third graph in Fig. 1. It is easy to see that it gives 
vanishing contribution to the anomalous dimension in the massless case.

and the contributions of the other supergraphs, which have not been considered in this paper. The 
result can be presented in the form

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)

)
+ �β(α0, λ0)

α2
0

+ O(α0) + O(λ6
0), (14)

where O(α0) denotes terms proportional to α0 (including the ones which appear in the two-loop 
approximation) and O(λ6

0) denotes terms with higher degrees of the Yukawa couplings in higher 
orders. The two-loop part of the result agrees with the expression obtained in [33,34] for the 
particular case F(x) = 1 +xm and for a different version of the higher derivative regularization,5

which has been subsequently written as an integral of double total derivative in [35].
The expression (13) does not vanish because of singularities of the integrand. This can be 

illustrated by a simple example,∫
d4q

(2π)4

∂

∂qμ

(qμ

q4
f (q2)

)
= − 1

8π2
f (0), (15)

where we assume that the function f (q2) is non-singular and has a sufficiently rapid fall-off at 
infinity. Calculating one of the loop integrals in Eq. (13) by the help of similar equations, we 
obtain the considered part of the β-function in the form

�β(α0, λ0)

α2
0

= 1

πr
C(R)i

j d

d ln	

[
− λimn

0 λ∗
0jmn

∫
d4k

(2π)4

1

k4F 2
k

+ λiab
0 λ∗

0kabλ
kcd
0 λ∗

0jcd

∫
d4k

(2π)4

∫
d4l

(2π)4

1

k4F 2
k l4F 2

l

+ 4λiab
0 λ∗

0jacλ
cde
0 λ∗

0bde

∫
d4k

(2π)4

d4l

(2π)4

1

k4F 3
k l2Fl (k + l)2Fk+l

]
. (16)

Note that this integral is well-defined due to the differentiation with respect to ln	 which should 
be made before the integrations. This will be demonstrated below.

Now, let us compare Eq. (16) with the corresponding contribution to the anomalous dimen-
sion, which comes from the diagrams presented in Fig. 5. Calculating them, we obtain

5 For the considered terms the difference of the regularizations is not essential.
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Gφ(α0, λ0,p/	)j
i = δi

j + λiab
0 λ∗

0jab

∫
d4k

(2π)4

2

k2Fk (k + p)2Fk+p

− λiab
0 λ∗

0jacλ
cde
0 λ∗

0bde

×
∫

d4k

(2π)4

d4l

(2π)4

8

k2F 2
k (k + p)2Fk+p l2Fl (k + l)2Fk+l

+ O(α0) + O(λ6
0). (17)

Taking the logarithm of this expression and making the differentiation with respect to ln	 in 
the limit of the vanishing external momentum, we construct the anomalous dimension defined in 
terms of the bare couplings,

γφ(α0, λ0)j
i = −d(lnZφ)j

i

d ln	
= d(lnGφ)j

i

d ln	

∣∣∣
p=0

. (18)

From this equation we obtain the considered part of the anomalous dimension in the form of the 
sum of loop integrals,

�γφ(λ0)j
i = d

d ln	

(
λiab

0 λ∗
0jab

∫
d4k

(2π)4

2

k4F 2
k

− λiab
0 λ∗

0kabλ
kcd
0 λ∗

0jcd

∫
d4k

(2π)4

d4l

(2π)4

2

k4F 2
k l4F 2

l

− λiab
0 λ∗

0jacλ
cde
0 λ∗

0bde

∫
d4k

(2π)4

d4l

(2π)4

8

k4F 3
k l2Fl (k + l)2Fk+l

)
. (19)

The complete expression for the anomalous dimension also contains terms proportional to α0
(starting from the one-loop approximation) and terms, proportional to λ6

0 (starting from the three-
loop approximation),

γφ(α0, λ0)i
j = �γφ(λ0)i

j + O(α0) + O(λ6
0). (20)

The expression (19) should be compared with Eq. (16). Exactly as in Eq. (16), the derivative 
with respect to ln	 should be calculated at fixed values of the renormalized Yukawa couplings λ. 
Moreover, it is easy to see that the integrals coincide up to the multiplicative factor,

�β(α0, λ0)

α2
0

= − 1

2πr
C(R)i

j�γφ(λ0)j
i . (21)

This implies that the NSVZ relation (2) (and, therefore, Eq. (1)) is satisfied by the RG functions 
defined in terms of the bare coupling constant for the considered groups of diagrams in the case 
of using the higher covariant derivative regularization.

4. Explicit expression for the considered part of the anomalous dimension

Let us calculate the considered contribution to the anomalous dimension explicitly for the 
simplest regulator function

F(k2/	2) = 1 + k2/	2. (22)

According to Eq. (21), then we will also obtain the explicit expression for the (considered terms 
of the) β-function defined in terms of the bare couplings. Moreover, this calculation allows 
demonstrating that in the previous section we really deal with the well-defined expressions.



354 V.Yu. Shakhmanov, K.V. Stepanyantz / Nuclear Physics B 920 (2017) 345–367
First, we should express the bare Yukawa couplings in terms of the renormalized ones. Due 
to the absence of divergent quantum corrections to the superpotential [51] the renormalization of 
the Yukawa couplings is related to the renormalization of the matter superfields. Consequently, 
it is natural to choose the substraction scheme in which

λ
ijk

0 = λmnp(Z
−1/2
φ )m

i(Z
−1/2
φ )n

j (Z
−1/2
φ )p

k. (23)

In this paper we calculate a part of the anomalous dimension which does not contain the gauge 
coupling constant. That is why we are interested only in terms independent of α. In the one-loop 
approximation such terms in the renormalization constant of the matter superfields have the form

(Zφ)j
i = δi

j − 1

4π2
λimnλ∗

jmn

(
ln

	

μ
+ g1

)
+ O(α) + O(λ4). (24)

The finite constant g1 appears due to arbitrariness of choosing the subtraction scheme in the con-
sidered approximation. Substituting Eq. (24) into Eq. (23) we relate the bare Yukawa couplings 
to the renormalized ones,

λ
ijk

0 = λijk + 1

8π2

(
λijmλ∗

mabλ
kab + λimkλ∗

mabλ
jab + λmjkλ∗

mabλ
iab

)(
ln

	

μ
+ g1

)
+ O(αλ) + O(λ5). (25)

By the help of this equation we express the anomalous dimension (19) (see also (20)) in terms of 
the renormalized Yukawa couplings, on which the derivative with respect to ln	 does not act,

γφ(α0, λ0)j
i = d

d ln	

(
λiabλ∗

jab

∫
d4k

(2π)4

2

k4F 2
k

− 2λiabλ∗
kabλ

kcdλ∗
jcd

∫
d4k

(2π)4

1

k4F 2
k

×
{∫

d4l

(2π)4

1

l4F 2
l

− 1

4π2

(
ln

	

μ
+ g1

)}
− 8λiabλ∗

jacλ
cdeλ∗

bde

∫
d4k

(2π)4

1

k4F 2
k

{∫
d4l

(2π)4

× 1

Fk l2Fl (k + l)2Fk+l

− 1

8π2

(
ln

	

μ
+ g1

)})
+ O(α) + O(λ6). (26)

The term in this expression proportional to λiabλ∗
kabλ

kcdλ∗
jcd can be easily calculated for an 

arbitrary function F(k2/	2), such that F(0) = 1 and F−1(∞) = 0. For this purpose we note 
that the corresponding integral can be presented in the form∫

d4k

(2π)4

1

k4F 2
k

{∫
d4l

(2π)4

1

l4F 2
l

− 1

4π2

(
ln

	

μ
+ g1

)}
= − 1

64π4

(
ln

	

μ
+ g1

)2

+
[∫

d4k

(2π)4

1

k4F 2
k

− 1

8π2

(
ln

	

μ
+ g1

)]2
. (27)

The second term in Eq. (27) is independent of 	. To see this, we take into account that the 
function Fk depends on k2/	2, so that the derivative with respect to ln	 can be converted into 
the derivative with respect to lnk (with the opposite sign). Therefore,

d

d ln	

[∫
d4k

(2π)4

1

k4F 2
k

− 1

8π2

(
ln

	

μ
+ g1

)]
= − 1

8π2

∞∫
0

dk

k

d

d ln k

( 1

F 2
k

)
− 1

8π2
= 0.

(28)
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Consequently, the expression (26) for the considered part of the anomalous dimension can be 
rewritten as

γφ(α0, λ0)j
i = 1

4π2
λiabλ∗

jab + 1

16π4
λiabλ∗

kabλ
kcdλ∗

jcd

(
ln

	

μ
+ g1

)
− 8λiabλ∗

jacλ
cdeλ∗

bde

d

d ln	

∫
d4k

(2π)4

1

k4F 2
k

×
{∫

d4l

(2π)4

1

Fk l2Fl (k + l)2Fk+l

− 1

8π2

(
ln

	

μ
+ g1

)}
+ O(α) + O(λ6), (29)

where we take into account that the derivative with respect to ln	 does not act on the renormal-
ized Yukawa couplings.

For the function F(k2/	2) = 1 + k2/	2 the remaining integral is calculated in Appendix B. 
The result obtained there has the form

d

d ln	

∫
d4k

(2π)4

1

k4F 2
k

{∫
d4l

(2π)4

1

Fk l2Fl (k + l)2Fk+l

− 1

8π2

(
ln

	

μ
+ g1

)}
= 1

64π4

[ 1

2
−

(
ln

	

μ
+ g1

)]
. (30)

This implies that the anomalous dimension defined in terms of the bare couplings is given by the 
expression

γφ(α0, λ0)j
i = 1

4π2
λiabλ∗

jab + 1

16π4
λiabλ∗

kabλ
kcdλ∗

jcd

(
ln

	

μ
+ g1

)
+ 1

16π4
λiabλ∗

jacλ
cdeλ∗

bde

[
− 1 + 2

(
ln

	

μ
+ g1

)]
+ O(α) + O(λ6). (31)

The right hand side of this equation depends on the renormalized Yukawa couplings λ and 
ln	/μ. Certainly, it should be expressed in terms of the bare Yukawa couplings λ0 by the help 
of Eq. (25). This gives the final result for the considered part of the anomalous dimension,

γφ(α0, λ0)j
i = 1

4π2
λiab

0 λ∗
0jab − 1

16π4
λiab

0 λ∗
0jacλ

cde
0 λ∗

0bde + O(α0) + O(λ6
0). (32)

We see that all ln	/μ disappear. This can be considered as a check of the calculation correct-
ness. Moreover, the finite constant g1, which (partially) determines the subtraction scheme in 
the one-loop approximation, does not enter the expression for γφ(α0, λ0)j

i . This follows from 
the statement that the RG functions defined in terms of the bare coupling constant are scheme 
independent for a fixed regularization [23].

The result for the β-function defined in terms of the bare couplings can be easily found by the 
help of Eqs. (14), (21), and (32). Namely, for the regulator (22) in the considered approximation 
we obtain

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)

)
− 1

2πr
C(R)i

j
( 1

4π2
λiab

0 λ∗
0jab

− 1

16π4
λiab

0 λ∗
0jacλ

cde
0 λ∗

0bde

)
+ O(α0) + O(λ6

0). (33)

Finally, it should be mentioned that the explicit result obtained for the considered part of the 
anomalous dimension demonstrates that we really deal with the well-defined expressions.
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5. The NSVZ scheme

In this section we construct the RG functions defined in terms of the renormalized couplings 
assuming that the regulator is chosen in the form (22). The terms of the considered structure in 
the NSVZ relation are scheme-dependent, so that the NSVZ relation is satisfied only in special 
subtraction schemes which presumably include the one given by the boundary conditions (3). 
Therefore, the purpose of this section is to verify this statement by an explicit calculation.

As a starting point, we integrate the RG equation (18). The result has the form

(lnZφ)j
i = − 1

4π2
λiabλ∗

jab

(
ln

	

μ
+ g1

)
− 1

32π4
λiabλ∗

kabλ
kcdλ∗

jcd

(
ln2 	

μ
+ 2g1 ln

	

μ
+ g̃2

)
− 1

16π4
λiabλ∗

jacλ
cdeλ∗

bde

(
− ln

	

μ
+ ln2 	

μ
+ 2g1 ln

	

μ
+ g2

)
+ O(α) + O(λ6), (34)

where g1, g2, and ̃g2 are finite constants. Fixing these constants one fixes the subtraction scheme. 
To obtain the considered part of the anomalous dimension defined in terms of the renormalized 
Yukawa couplings, first, it is necessary to express lnZφ in terms of the bare Yukawa couplings 
λ0 by the help of Eq. (25),

(lnZφ)j
i = − 1

4π2
λiab

0 λ∗
0jab

(
ln

	

μ
+ g1

)
+ 1

32π4
λiab

0 λ∗
0kabλ

kcd
0 λ∗

0jcd

(
ln2 	

μ
+ 2g1 ln

	

μ
+ 2g2

1 − g̃2

)
+ 1

16π4
λiab

0 λ∗
0jacλ

cde
0 λ∗

0bde

(
ln

	

μ
+ ln2 	

μ
+ 2g1 ln

	

μ
+ 2g2

1 − g2

)
+ O(α0) + O(λ6

0). (35)

Then the contribution to the anomalous dimension

γ̃φ(α,λ)j
i = d(lnZφ)j

i

d lnμ
(36)

is calculated by differentiating Eq. (35) with respect to lnμ at fixed values of the bare Yukawa 
couplings λ0. This gives

γ̃φ(α,λ)j
i = 1

4π2
λiab

0 λ∗
0jab − 1

16π4
λiab

0 λ∗
0kabλ

kcd
0 λ∗

0jcd

(
ln

	

μ
+ g1

)
+ 1

16π4
λiab

0 λ∗
0jacλ

cde
0 λ∗

0bde

(
− 1 − 2 ln

	

μ
− 2g1

)
+ O(α0) + O(λ6

0). (37)

The right hand side of this equation should be expressed in terms of the renormalized Yukawa 
couplings again using Eq. (25),

γ̃φ(α,λ)j
i = 1

4π2
λiabλ∗

jab − 1

16π4
λiabλ∗

jacλ
cdeλ∗

bde + O(α) + O(λ6). (38)

We see that this expression does not explicitly depend on ln	/μ that confirms correctness of 
the calculation. Let us also note that the expression (38) is independent of the finite constant g1
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which determines the subtraction scheme in the lowest approximation. This implies that the terms 
of the considered structure in the anomalous dimension are scheme independent. Consequently, 
Eq. (38) should coincide with the corresponding result obtained in the DR scheme (see [16]
and references therein). Our notations λijk , α, γ̃φ(α, λ), β̃(α, λ) are related to the corresponding 
notations of Ref. [16] Y ijk , g, γ (g, Y), and βg(g, Y) as follows:

λijk = 1

2
Y ijk; α = g2

4π
; γ̃φ(α,λ) = 2γ (g,Y ); β̃(α,λ) = gβg(g,Y )

2π
. (39)

Using these equations one can easily verify that the terms of the considered structure in Ref. [16]
agree with Eq. (38).

Now, let us proceed to calculating the β-function defined in terms of the renormalized cou-
plings. We start with integrating the RG equation

d

d ln	

( 1

α0

)
= −β(α0, λ0)

α2
0

, (40)

taking into consideration the one-loop result (see Ref. [50]), the two-loop terms quadratic in the 
Yukawa couplings, and the three-loop terms quartic in the Yukawa couplings. Then we obtain 
the equation relating the bare coupling constant to the renormalized one,

1

α0
= 1

α
+ 1

2π

(
3C2 − T (R)

)(
ln

	

μ
+ b1

)
+ 1

2πr
C(R)i

j
[ 1

4π2
λiabλ∗

jab

(
ln

	

μ
+ b2

)
+ 1

32π4
λiabλ∗

kabλ
kcdλ∗

jcd

(
ln2 	

μ
+ 2g1 ln

	

μ
+ b̃3

)
+ 1

16π4
λiabλ∗

jacλ
cdeλ∗

bde

×
(

− ln
	

μ
+ ln2 	

μ
+ 2g1 ln

	

μ
+ b3

)]
+ O(α) + O(λ6), (41)

where b1, b2, b3, and b̃3 are arbitrary finite constants determining the subtraction scheme in 
the considered approximation. Certainly, in the three-loop approximation there are also terms 
proportional to α (a part of the two-loop contribution), α2, and αλ2. However, in this paper we 
do not consider them.

At the next step, we solve Eq. (41) for the renormalized coupling constant α and write the 
result in terms of the bare gauge and Yukawa couplings by the help of Eq. (25). In the considered 
approximation the result is written as

1

α
= 1

α0
− 1

2π

(
3C2 − T (R)

)(
ln

	

μ
+ b1

)
− 1

2πr
C(R)i

j
[ 1

4π2
λiab

0 λ∗
0jab

(
ln

	

μ
+ b2

)
− 1

32π4
λiab

0 λ∗
0kabλ

kcd
0 λ∗

0jcd

(
ln2 	

μ
+ 2b2 ln

	

μ
+ 2b2g1 − b̃3

)
− 1

16π4
λiab

0 λ∗
0jacλ

cde
0 λ∗

0bde

(
ln

	

μ
+ ln2 	

μ
+ 2b2 ln

	

μ
+ 2b2g1 − b3

)]
+ O(α0) + O(λ6

0). (42)

Differentiating 1/α with respect to lnμ at fixed values of the bare gauge and Yukawa couplings, 
we obtain the β-function defined in terms of the renormalized constants,

β̃(α,λ)

2
= − d ( 1 )

. (43)

α d lnμ α
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A part of this β-function corresponding to the terms of the considered structure, which is obtained 
from the derivative of Eq. (42), has the form

β̃(α,λ)

α2
= − 1

2π

(
3C2 − T (R)

)
+ 1

2πr
C(R)i

j
[
− 1

4π2
λiab

0 λ∗
0jab

+ 1

16π4
λiab

0 λ∗
0kabλ

kcd
0 λ∗

0jcd

(
ln

	

μ
+ b2

)
+ 1

16π4
λiab

0 λ∗
0jacλ

cde
0 λ∗

0bde

×
(

1 + 2 ln
	

μ
+ 2b2

)]
+ O(α0) + O(λ6

0). (44)

As usual, the right hand side should be expressed in terms of the renormalized Yukawa couplings 
by the help of Eq. (25). This gives the final result for the considered part of the β-function,

β̃(α,λ)

α2
= − 1

2π

(
3C2 − T (R)

)
+ 1

2πr
C(R)i

j
[
− 1

4π2
λiabλ∗

jab

+ 1

16π4
λiabλ∗

kabλ
kcdλ∗

jcd

(
b2 − g1

)
+ 1

16π4
λiabλ∗

jacλ
cdeλ∗

bde

(
1 + 2b2 − 2g1

)]
+ O(α) + O(λ6). (45)

We see that this expression contains the constants b2 and g1 and is, therefore, scheme-dependent. 
Note that it is written in an arbitrary scheme, so that the result obtained in DR-scheme should be 
a particular case of Eq. (45). (The results obtained with various regularizations can be related by 
a specially tuned finite renormalization or, equivalently, by a special choice of the finite constants 
defining the subtraction scheme.) The DR result has been obtained in [16]. It can be written in 
the notation of this paper via Eq. (39) as

β̃DR(α,λ) = − α2

2π

(
3C2 − T (R)

)
+ α2

2πr
C(R)i

j
[
− 1

4π2
λ∗

jabλ
iab

+ 1

64π4

(
λiabλ∗

kabλ
kcdλ∗

jcd + 6λiabλ∗
jacλ

cdeλ∗
bde

)]
+ O(α3) + O(α2λ6). (46)

Comparing Eqs. (45) and (46), we see that they coincide for

b2 − g1 = 1

4
. (47)

This implies that our results agree with the results of [16], certainly, taking into account that the 
regularizations and the subtraction schemes are different. Also it is easy to see [16] that for the 
finite constants satisfying Eq. (47) the NSVZ relation is not valid.

Next, let us verify that the prescription (3), proposed in [47], really gives the NSVZ scheme. 
First, we compare Eqs. (38) and (45) and note that the NSVZ relation is not valid in an arbitrary 
subtraction scheme (which is defined by the coefficients b and g).

Then, let us impose the boundary condition Zφ(α, λ, x0)i
j = δi

j . Substituting ln	/μ by the 
fixed value x0 in the expression (Zφ)i

j we solve the above equation for the finite constants 
g1 etc. In the lowest approximation this gives g1 = −x0. Similarly, we find the constants b1, 
b2 etc. from the boundary condition Zα(α, λ, x0) = α/α0 = 1. Namely, we solve the equation 
1/α = 1/α0 with ln	/μ = x0 for the constants b. The result has the form b1 = b2 = −x0. This 
implies that in the scheme defined by the prescription (3)

b2 − g1 = 0. (48)
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Consequently, in the scheme (3)

β̃(α,λ)

α2
= − 1

2π

(
3C2 − T (R)

)
+ 1

2πr
C(R)i

j
[
− 1

4π2
λiabλ∗

jab

+ 1

16π4
λiabλ∗

jacλ
cdeλ∗

bde

]
+ O(α) + O(λ6)

= − 1

2π

(
3C2 − T (R)

)
− 1

2πr
C(R)i

j γ̃φ(α,λ)i
j + O(α) + O(λ6). (49)

Thus, under the condition (3) the NSVZ relation is satisfied for terms of the considered structure. 
This confirms the guess made in [47].

6. Conclusion

In this paper we have verified the relation between the two-point Green functions of N = 1
SYM for the contributions quartic in the Yukawa couplings in the case of using the higher covari-
ant derivative regularization. For this regularization it was demonstrated that (in the considered 
approximation and for the terms of the considered structure) the NSVZ relation is satisfied by 
the RG functions defined in terms of the bare couplings as it was suggested in [47]. Exactly as in 
the Abelian case, this follows from the factorization of the loop integrals into integrals of double 
total derivatives in the momentum space. Consequently, it is possible to calculate one of these 
integrals and relate the three-loop contribution to the β-function to the two-loop contribution to 
the anomalous dimension. For the RG functions defined in terms of the renormalized couplings, 
we have checked that the prescription proposed in [47] really gives the NSVZ scheme. It should 
be noted that this check is not trivial, because the considered terms in the NSVZ relation are 
scheme dependent. Thus, we confirmed the proposals made in [47] by the explicit calculations.

Appendix A. Explicit expressions for the diagrams

In this section we present the results for all supergraphs shown in Figs. 3 and 4. In the 
Minkowski space the result for any supergraph contributing to the two-point Green function 
of the background gauge superfield can be written in the form

�
 =
∫

d4p

(2π)4
d4θ

[
V (p, θ)i

j ∂2�1/2V (−p, θ)k
lIinv(p)jl

ik

+ V (p, θ)i
jV (−p, θ)k

lInon-inv(p)jl
ik

]
, (50)

where �
 is the corresponding contribution to the effective action. Due to the background gauge 
invariance the non-invariant terms cancel each other in the sum of all superdiagrams,∑

all supergraphs

(T A)i
j (T B)k

l Inon-inv(p)jl
ik = 0. (51)

The sum of the invariant terms determines the function d−1 − α−1
0 according to Eq. (11). To 

write the result in the most convenient form, we note that (T A)i
j (T B)k

l
(
Iinv

)
j l

ik is the invariant 
tensor. In this paper we consider simple gauge groups, for which it should be proportional to 
δAB . Therefore,

(T A)i
j (T B)k

l
(
Iinv

)
ik = 1

δAB (T C)i
j (T C)k

l
(
Iinv

)
ik. (52)
j l r j l
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Thus, from Eq. (11) we obtain

d−1(α0, λ0,	/p) − α−1
0 = −16π

r
(T C)i

j (T C)k
l

∑
all supergraphs

Iinv(p)jl
ik. (53)

We are interested in the derivative of this function with respect to ln	 in the limit of the vanishing 
external momentum. That is why we can calculate the functions (Iinv)jl

ik and (Inon-inv)jl
ik in the 

limit p → 0. Certainly, in this case expressions for individual supergraphs are not well-defined. 
However, the sum of invariant contributions differentiated with respect to ln	 is well-defined 
due to Eq. (12).

Below we present expressions for the functions (Iinv)jl
ik and (Inon-inv)jl

ik in the limit p → 0
for all supergraphs in Figs. 3 and 4 in the form

Supergraph = V i
j ∂2�1/2V k

lIinv(p = 0)jl
ik + V i

jV k
lInon-inv(p = 0)jl

ik, (54)

where the coefficients Ijl
ik are written as integrals over Euclidean momentums which are ob-

tained after the Wick rotation. Using these expressions one can verify Eq. (51) in the limit p → 0
and obtain the function (53), which, after differentiating with respect to ln	, gives the β-function 
defined in terms of the bare couplings. In the equations presented below the prime denotes the 
derivative with respect to the square of the momentum,

F ′
k ≡ d

dk2
F(k2/	2). (55)

Let us start with the supergraphs presented in Fig. 3. They are given by the following expres-
sions:

(1) = λika
0 λ∗

0j la

∫
d4q

(2π)4

d4k

(2π)4

1

q4F 2
q k4F 2

k (q + k)2Fq+k

[(
(q + k)2FkFq + 2k2(2qμkμ

+ q2)FqF ′
k + 2k2q2qμkμF ′

kF
′
q

)
V i

j ∂2�1/2V k
l + 2q2Fq k2Fk V i

jV k
l
]
; (56)

(2) = λiab
0 λ∗

0jab

∫
d4q

(2π)4

d4k

(2π)4

1

q4F 3
q k2Fk (q + k)2Fq+k

[(
F 2

q + 2q2F ′
qFq + 2q4(F ′

q)2
)

× (
V ∂2�1/2V

)
i
j + 2q2F 2

q

(
V 2)

i
j
]
; (57)

(3) = −λiab
0 λ∗

0jab

∫
d4q

(2π)4

d4k

(2π)4

1

q2F 2
q k2Fk (q + k)2Fq+k

[
(q2F ′′

q + F ′
q)

(
V ∂2�1/2V

)
i
j

+ Fq

(
V 2)

i
j
]
. (58)

To find the sum of these diagrams, it is necessary to take into account the identity

λ∗
0j laλ

ika
0 (T A)k

l = −1

2
λ∗

0jabλ
kab
0 (T A)k

i = −1

2
(T A)j

kλ∗
0kabλ

iab
0 , (59)

which follows from Eq. (5). Rewriting the expression for the diagram (1) by the help of Eq. (59), 
we obtain that the non-invariant terms cancel each other, and the sum of the invariant terms is

1
λiab

0 λ∗
0jab

(
V ∂2�1/2V

)
i
j

∫
d4q

4

d4k

4

∂

μ

∂ ( 1
2 2 2

)
. (60)
8 (2π) (2π) ∂q ∂qμ k Fk q Fq (q + k) Fq+k
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Consequently, the contribution to the function d−1 − α−1
0 from the considered (two-loop) dia-

grams can be written as the integral of the double total derivative

−2π

r
C(R)i

j λ∗
0jabλ

iab
0

∫
d4q

(2π)4

d4k

(2π)4

∂

∂qμ

∂

∂qμ

( 1

k2Fk q2Fq (q + k)2Fq+k

)
. (61)

The supergraphs presented in Fig. 4 are given by the following expressions:

(1) = λiab
0 λ∗

0jadλdek
0 λ∗

0bel

∫
d4q

(2π)4

d4k

(2π)4

d4l

(2π)4

× 4

q4F 2
q k4F 2

k l4F 2
l (q + k)2Fq+k (k + l)2Fk+l

×
[(

− 2q2k2l2qμlμF ′
qF ′

l + 2l2FqF ′
l

( − q2(k + l)2 + q2l2 − 2k2qμlμ
)

+ FqFl

( − 2q2(k + l)2 + q2l2 − 2k2qμlμ
))

V i
j ∂2�1/2V k

l

− 2q2Fq k2l2Fl V i
jV k

l
]
; (62)

(2) = −λiab
0 λ∗

0labλ
kcd
0 λ∗

0jcd

∫
d4q

(2π)4

d4k

(2π)4

d4l

(2π)4

× 1

q2Fq k4F 4
k l2Fl (q + k)2Fq+k (k + l)2Fk+l

×
[(

F 2
k + 2k2F ′

kFk + 2k4(F ′
k)

2
)
V i

j ∂2�1/2V k
l + 2k2F 2

k V i
jV k

l
]
; (63)

(3) = −λika
0 λ∗

0j lbλ
bcd
0 λ∗

0acd

∫
d4q

(2π)4

d4k

(2π)4

d4l

(2π)4

× 2

q4F 2
q k2F 2

k l2Fl (q + k)4F 2
q+k (k + l)2Fk+l

×
[(

k2FqFq+k + 2q2(k2 − q2)F ′
qFq+k + q2(q + k)2(k2 − 2q2)F ′

qF ′
q+k

)
× V i

j ∂2�1/2V k
l + 2q2Fq (q + k)2Fq+kV i

jV k
l
]
; (64)

(4) = λikb
0 λ∗

0albλ
acd
0 λ∗

0jcd

∫
d4q

(2π)4

d4k

(2π)4

d4l

(2π)4

× 8

q4F 2
q k4F 3

k l2Fl (q + k)2Fq+k (k + l)2Fk+l

×
[(

− 2q2k2qμkμF ′
qF ′

k − k2F ′
kFq

(
(k + q)2 − k2) − q2F ′

qFk

(
(k + q)2 − q2)

− (k + q)2FqFk

)
V i

j ∂2�1/2V k
l − 2q2Fq k2Fk V i

jV k
l
]
; (65)

(5) = −λiab
0 λ∗

0kabλ
kcd
0 λ∗

0jcd

∫
d4q

(2π)4

d4k

(2π)4

d4l

(2π)4

× 2

q2Fq k4F 4
k l2Fl (q + k)2Fq+k (k + l)2Fk+l

×
[(

F 2
k + 2k2F ′

kFk + 2k4(F ′
k)

2
)(

V ∂2�1/2V
)

j + 2k2F 2
k

(
V 2) j

]
; (66)
i i
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(6) = −λiac
0 λ∗

0jadλ
def

0 λ∗
0cef

∫
d4q

(2π)4

d4k

(2π)4

d4l

(2π)4

× 4

q4F 3
q k2F 2

k l2Fl (q + k)2Fq+k (k + l)2Fk+l

×
[(

F 2
q + 2q2F ′

qFq + 2q4(F ′
q)2

)(
V ∂2�1/2V

)
i
j + 2q2F 2

q

(
V 2)

i
j
]
; (67)

(7) = λiab
0 λ∗

0kabλ
kcd
0 λ∗

0jcd

∫
d4q

(2π)4

d4k

(2π)4

d4l

(2π)4

× 2

q2Fq k2F 3
k l2Fl (q + k)2Fq+k (k + l)2Fk+l

×
[
(k2F ′′

k + F ′
k)

(
V ∂2�1/2V

)
i
j + Fk

(
V 2)

i
j
]
; (68)

(8) = λiac
0 λ∗

0jadλ
def

0 λ∗
0cef

∫
d4q

(2π)4

d4k

(2π)4

d4l

(2π)4

× 4

q2F 2
q k2F 2

k l2Fl (q + k)2Fq+k (k + l)2Fk+l

×
[
(q2F ′′

q + F ′
q)

(
V ∂2�1/2V

)
i
j + Fq

(
V 2)

i
j
]
. (69)

Various structures formed by the Yukawa constants in these expressions can be reduced to two 
basic combinations by the help of Eq. (5). For example, the non-invariant terms are proportional 
to

(1) → λiab
0 λ∗

0jadλdek
0 λ∗

0belV i
jV k

l = 1

4
λiab

0 λ∗
0kabλ

kcd
0 λ∗

0jcd(V 2)i
j ; (70)

(2) → λiab
0 λ∗

0labλ
kcd
0 λ∗

0jcdV i
jV k

l = λiab
0 λ∗

0kabλ
kcd
0 λ∗

0jcd(V 2)i
j ; (71)

(3) → λika
0 λ∗

0j lbλ
bcd
0 λ∗

0acdV i
jV k

l

=
(1

2
λiab

0 λ∗
0kabλ

kcd
0 λ∗

0jcd − λiac
0 λ∗

0jadλ
def

0 λ∗
0cef

)
(V 2)i

j ; (72)

(4) → λikb
0 λ∗

0albλ
acd
0 λ∗

0jcdV i
jV k

l = −1

2
λiab

0 λ∗
0kabλ

kcd
0 λ∗

0jcd(V 2)i
j , (73)

where we take into account that V i
j = e0V

A(T A)i
j .

Using these identities one can verify that all non-invariant terms in the considered three-loop 
diagrams cancel each other. This fact can be considered as a test of the calculation correctness, 
because the non-invariant terms should vanish due to the background gauge invariance of the 
effective action.

Using identities similar to Eqs. (70)–(73) for the invariant terms, after some transformations 
the sum of the expressions Eqs. (62)–(69) can be presented as the following integral of double 
total derivatives:

−1

4

(
V ∂2�1/2V

)
i
j

∫
d4k

(2π)4

d4l

(2π)4

d4q

(2π)4

[
λiab

0 λ∗
0kabλ

kcd
0 λ∗

0jcd

( ∂

∂kμ

∂

∂kμ
− ∂

∂qμ

∂

∂qμ

)
+ 2λiab

0 λ∗
0jacλ

cde
0 λ∗

0bde

∂

∂q

∂

∂qμ

] 1

k2F 2 q2F (q + k)2F l2F (l + k)2F
. (74)
μ k q q+k l l+k
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From this expression we obtain that the contribution of the diagrams shown in Fig. 4 to the 
function d−1 − α−1

0 is

4π

r
C(R)i

j

∫
d4k

(2π)4

d4l

(2π)4

d4q

(2π)4

[
λiab

0 λ∗
0kabλ

kcd
0 λ∗

0jcd

( ∂

∂kμ

∂

∂kμ
− ∂

∂qμ

∂

∂qμ

)
+ 2λiab

0 λ∗
0jacλ

cde
0 λ∗

0bde

∂

∂qμ

∂

∂qμ

] 1

k2F 2
k q2Fq (q + k)2Fq+k l2Fl (l + k)2Fl+k

. (75)

Summing Eqs. (61) and (75) and differentiating the result with respect to ln	 we obtain Eq. (13).

Appendix B. Calculation of integrals with higher derivatives regularization

In this appendix we calculate the expression

I ≡ d

d ln	

∫
d4k

(2π)4

1

k4F 2
k

{∫
d4l

(2π)4

1

Fk l2Fl (k + l)2Fk+l

− 1

8π2

(
ln

	

μ
+ g1

)}
(76)

entering Eq. (29) for the regulator F(k2/	2) = 1 + k2/	2. Then the integral over d4l can be 
written as∫

d4l

(2π)4

1

l2Fl(k + l)2Fk+l

=
∫

d4l

(2π)4

( 1

l2
− 1

l2 + 	2

)( 1

(k + l)2
− 1

(k + l)2 + 	2

)
= 2I1 − I2, (77)

where we introduce the notation

I1 ≡
∫

d4l

(2π)4

( 1

l2
− 1

l2 + 	2

) 1

(k + l)2
; (78)

I2 ≡
∫

d4l

(2π)4

( 1

l2(k + l)2
− 1

(l2 + 	2)
(
(k + l)2 + 	2

))
. (79)

The integral I2 can be calculated by the standard methods, see, e.g. [52]. The result is given by 
the expression

I2 = 1

8π2

(
ln

	

k
+

√
1 + 4	2

k2
arctanh

√
k2

k2 + 4	2

)
. (80)

The integral I1 can be calculated by the method similar to the one considered in [52,53]. Namely, 
we use the four-dimensional spherical coordinates

l1 = l sin θ3 sin θ2 sin θ1; l2 = l sin θ3 sin θ2 cos θ1;
l3 = l sin θ3 cos θ2; l4 = l cos θ3, (81)

in which the integration measure is given by∫
d4l =

∞∫
0

dl l3

π∫
0

dθ3 sin2 θ3

π∫
0

dθ2 sin θ2

2π∫
0

dθ1. (82)

If the fourth axis is directed collinear to the vector kμ, then (k+ l)2 = k2 +2kl cos θ3 + l2, and the 
integrand in the expression (78) depends only on θ3. In this case, after the substitution x ≡ cos θ3, 
the integration measure can be written in the form
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Fig. 7. The contour C in the x complex plane which is used for integrating over the angle θ3.

∫
d4l → 4π

∞∫
0

dl l3

1∫
−1

dx
√

1 − x2. (83)

Consequently, the integral I1 can be presented as

I1 = 1

16π3

∞∫
0

dl2 	2

l2 + 	2

∮
C

dx

√
1 − x2

k2 + 2klx + l2
, (84)

where C is the contour in the complex x-plane shown in Fig. 7. The contour integral can be found 
by calculating the residues at infinity and at x0 = −(k2 + l2)/2kl, see Ref. [52,53] for details. 
The result is written as∮

C

dx

√
1 − x2

k2 + 2klx + l2
=

⎧⎪⎨⎪⎩
π

k2
for k ≥ l

π

l2
for l ≥ k.

(85)

Using this equation it is possible to calculate the angular part of the integral I1, so that

I1 = 1

16π2

k2∫
0

dl2 	2

k2(l2 + 	2)
+ 1

16π2

∞∫
k2

dl2 	2

l2(l2 + 	2)

= 	2

16π2k2
ln

(
1 + k2

	2

)
+ 1

16π2
ln

(
1 + 	2

k2

)
. (86)

From Eqs. (86) and (80) we obtain

2I1 − I2 = 1

8π2
ln

	

k
+ 1

8π2

(
1 + 	2

k2

)
ln

(
1 + k2

	2

)
− 1

8π2

√
1 + 4	2

k2
arctanh

√
k2

k2 + 4	2
. (87)

Thus, the expression (76) can be presented in the form

I = 1

8π2

d

d ln	

∫
d4k

(2π)4

1

k4F 3
k

{
ln

	

k
− Fk

(
ln

	

μ
+ g1

)

+
(

1 + 	2

k2

)
ln

(
1 + k2

	2

)
−

√
1 + 4	2

k2
arctanh

√
k2

k2 + 4	2

}
. (88)
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Let us note that contribution of the last two terms in the brackets vanishes,

d

d ln	

∫
d4k

(2π)4

1

k4F 3
k

{(
1 + 	2

k2

)
ln

(
1 + k2

	2

)
−

√
1 + 4	2

k2
arctanh

√
k2

k2 + 4	2

}
= 0.

(89)

Really, the expression in the large brackets rapidly tends to 0 in the limit k → 0, while the 
function Fk rapidly increases at infinity. This implies that the integral in Eq. (89) is convergent. 
Consequently, the dependence on 	 can be eliminated by the substitution kμ = 	Kμ. Therefore, 
the considered integral is independent of 	, and its derivative with respect to ln	 vanishes.

Then, we proceed to calculating the remaining part of the expression (88). It should be noted 
that the integral of the first two terms is not well-defined, because it diverges at k = 0. However, 
the derivative with respect to ln	 eliminates this problem, if we perform the integration over 
d4k after the differentiation. After differentiating with respect to ln	 we obtain

I = 1

8π2

d

d ln	

∫
d4k

(2π)4

1

k4F 3
k

{
ln

	

k
− Fk

(
ln

	

μ
+ g1

)}
= 1

8π2

∫
d4k

(2π)4

1

k4

{ (1 − Fk)

F 3
k

−
(

ln
	

μ
+ g1

) d

d ln	

( 1

F 2
k

)
+ ln

	

k

d

d ln	

( 1

F 3
k

)}
. (90)

The integral corresponding to the first term in the brackets can be calculated straightforwardly in 
the four-dimensional spherical coordinates taking into account that the volume of the unit sphere 
S3 is 2π2,

∫
d4k

(2π)4

(1 − Fk)

k4F 3
k

= − 	4

16π2

∞∫
0

dk2

(k2 + 	2)3
= − 1

32π2
. (91)

To find a contribution of the second term in Eq. (90), we note that the function Fk depends on 
k/	, so that the derivative with respect to ln	 can be converted into the derivative with respect 
to lnk,

∫
d4k

(2π)4

1

k4

d

d ln	

( 1

F 2
k

)
= − 1

8π2

∞∫
0

dk
d

dk

( 1

F 2
k

)
= 1

8π2F 2
k (k = 0)

= 1

8π2
. (92)

The contribution of the last term in Eq. (90) in the four-dimensional spherical coordinates takes 
the form

∫
d4k

(2π)4

1

k4
ln

	

k

d

d ln	

( 1

F 3
k

)
= − 1

8π2

∞∫
0

dk ln
	

k

d

dk

( 1

F 3
k

)
. (93)

It is easy to see that this integral is convergent both at infinity and at k = 0. (The derivative of Fk

with respect to ln	 is proportional to k2 in the limit k → 0.) Therefore, it is possible to replace 
the lower integration limit by ε → 0. After this, integrating by parts we obtain
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− 1

8π2F 3
k

ln
	

k

∣∣∣∣∣
∞

ε

− 1

8π2

∞∫
ε

dk

kF 3
k

= 1

8π2
ln

	

ε
− 	6

16π2

∞∫
ε

dk2

k2(k2 + 	2)3

= 1

8π2
ln

	

ε
− 1

16π2

(
	4

2(k2 + 	2)2
+ 	2

k2 + 	2
− ln

(
1 + 	2

k2

))∣∣∣∣∣
∞

ε

= 3

32π2
. (94)

Using Eqs. (91), (92), and (93) we find the result for the integral (76),

I = 1

64π4

[ 1

2
−

(
ln

	

μ
+ g1

)]
. (95)
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