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“Liebe Radioaktive Damen und Herren!

...bin ich angesichts ... des kontinuierlichen
beta-spektrums auf einen verzweifelten Ausweg

verfallen um ... den Energiesatz zu retten.
Nämlich die Möglichkeit, es könnten elektrisch
neutrale Teilchen, die ich Neutronen nennen

will, in den Kernen existieren.
...

Ich gebe zu, dass mein Ausweg vielleicht von
vornherein wenig wahrscheinlich erscheinen

wird, weil man die Neutronen, wenn sie
existieren, wohl schon längst gesehen hätte.

Aber nur wer wagt, gewinnt
...

Also liebe Radioaktive, prüfet, und richtet...”

Wolfgang Pauli, 1930
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Motivation

Neutrino physics is one of the most interesting and vividly discussed topics in high-energy
physics today. Especially the question whether the neutrinos can oscillate or not (i. e. different
neutrinos can change into each other) gave rise to a huge number of experiments to actually
observe these oscillations. At least since the results from the Super Kamiokande [A+04,
H+06] and the SNO experiment [A+01, A+02a, A+02b] are published, it is widely believed
that neutrino oscillations (NO) are an experimentally verified fact. However, the first hint has
already been found in 1964 when the Homestake experiment [Dav64] discovered the solar-
neutrino problem. That is, the number of measured electron neutrinos from the sun is by a
factor of 2-3 less than the number of neutrinos predicted by the standard solar model (SSM).
Since within the standard model (SM) of particle physics the neutrinos are massless, and

consequently cannot oscillate, their measurement shows that new physics beyond the SM ex-
ists. And indeed nowadays the experiments on NO are important to measure the unknown
parameters of the SM and its minimal extensions. In particular, these unknown parameters
are the neutrino masses and the entries in the neutrino mixing matrix.
From all the measurements made to discover NO one should think that the theory behind

NO is well established and understood. But surprisingly this is not the case. The first who
mentioned the idea of NO, though he assumed neutrino-antineutrino oscillations, was Pon-
tecorvo in 1957 [Pon57, Pon58]. A few years later Maki, Nakagawa and Saka were the
first to consider oscillations between the electron and the muon neutrino [MNS62]. Then it
took around 20 years before Kayser in 1981 showed that the up to that point used plane-wave
approximation cannot hold for oscillating neutrinos and he proposed a wave packet treatment
[Kay81], which then has again not been discussed for around 10 years. In the early 90s the
discussion on the theoretical description of NO finally started with several seminal papers.
First, Giunti, Kim and Lee explicitly calculated the oscillation probability for the neutrinos
in a wave packet model [GKL91] and then showed that the state vectors used for the quantum
mechanical description are, in general, ill-defined [GKL92]. In 1993 they published together
with Lee a calculation of the probability in a quantum field theoretical framework without
using state vectors for the neutrinos [GKLL93]. And finally, in 1995 Blasone and Vitiello
showed that the description of mixed particles in quantum field theory (QFT) yields unex-
pected problems for the interpretation of neutrinos as particles. By only using exact—without
perturbation—QFT methods they calculated an oscillation probability which differes signifi-
cantly from the other results [BV95]. All these different approaches are even today still under
discussion, but however under the assumption of relativistic neutrinos which have tiny mass-
squared differences, all approaches give the same result. Thus, the theoretical discussion on
the right description of the neutrinos does not spoil the experimental results, because today
we are only able to measure ultra-relativistic neutrinos whose energy is at least a few orders
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viii Motivation

of magnitude higher than their mass.
The aim of this thesis is on the one hand to summarise the different theoretical approaches to

NO and on the other hand to point out the important and critical points in their argumentation.
In particular, the different approaches are the standard plane-wave approximation in chapter 3,
the internal wave-packet model in chapter 4, the external wave-packet model in chapter 5, the
weak-process states in chapter 7 and the Blasone-Vitiello approach in chapter 8.
Nevertheless, there are some points connected to NO which go beyond the scope of this

thesis and will not be discussed. That are for example the question wether neutrinos are
Dirac or Majorana particles, whether the lepton sector of the SM breaks CP-invariance and
the determination of the mass hierachy and the absolute mass scale for neutrinos.



Chapter 1

A Short Introduction to Neutrino Physics

Neutrino physics was born in 1930 when Pauli wrote his famous letter to the participants of
the conference on radioactivity in Tübingen (see the quote on page v). In this letter he pre-
dicted the existence of a new particle in order to explain the continuous energy-spectrum of the
electrons measured in β-decays. He first called the new particles neutrons but this name was
later changed by Fermi into neutrinos to distinguish it from the neutron discovered by Chad-
wick in 1932. Since the usual conservation laws on energy, angular and linear momentum,
and charge should not be violated in the β-decay n→ p+e−+νe, the neutrinos were predicted
to be electrically-neutral spin-1/2 particles with a mass that is small compared to the electron
mass. Until today three different types of neutrinos have been discovered, that are the electron
neutrino νe (1956 by Cowan and Reines), the muon neutrino νµ (1962 by Steinberger,
Schwartz and Lederman) and the tauon neutrino ντ (2000 with the DONUT experiment).
This number of different flavours is exactly the one which we expect from the measurement
of the Z-width made at LEP. This measurement predicts a number of 2.994 ± 0.012 [Y+06]
neutrino flavours with a mass less than half the Z-mass.

1.1 Fermi’s Theory

The first field-theoretical description of the β-decay was published in 1934 by Fermi [Fer34a,
Fer34b]. He used the QED interaction Lagrangian, which couples an electron current to the
photon field, and replaced it by a current-current term which couples a neutron-proton current
n̄γµp to a neutrino-electron current νeγµe. Therefore, he used a four-fermion point-interaction
without considering a messenger particle. The interaction Lagrangian can then be written as

Lfermi := −GF√
2

(
n̄γµp

)(
νeγµe

)
, (1.1)

where γµ are the usual γ-matrices and GF = 1.16637(1) · 10−5 GeV−2 [Y+06] is the Fermi
constant. The factor 1/

√
2 is due to historical reasons. Since the constant is numerically small

compared to the other coupling constants, for example the fine-structure constant which is
α ≈ 1/137, the name weak interactions is justified. This weakness together with the fact that
neutrinos are electrically neutral explains why the measurement of neutrinos is so complicated.
During the years Fermi’s theory was changed according to new observations. First it was

noticed in the 50s that weak interactions are parity violating interactions. This was finally
implemented in the theory by using not only vector current (V) but also axial vector currents

1



2 Chapter 1 A Short Introduction to Neutrino Physics

(A) in the form V-A. The Lagrangian can then be written as

Lweak = −GF√
2

(
nγµ(1− gAγ5)p

)(
νeγµ(1− γ5)e

)
, (1.2)

where gA = −(1.2573 ± 0.0028) [KP93] is the nucleon axial vector coupling constant and
γ5 = iγ0γ1γ2γ3. This theory extended to other particles is consistent with all low energy
experiments made until today [KP93].
A further improvement of the theory was done after it was recognised that the neutron and

proton are not the fundamental fields but build out of quarks. Then, in the Lagrangian (1.2)
the neutron can be replaced by the up quark and the proton by the down quark:

Lweak = −GF√
2

(
uγµ(1− γ5)d

)(
νeγµ(1− γ5)e

)
. (1.3)

Note that the factor gA disappeared in this Lagrangian, because its appearance in (1.2) is due
to strong interactions of the nucleons. The Lagrangian (1.3) is a first step in the direction of
the SM which we will describe next. The reason why we need a further improved theory for
the weak interactions, although it is consistent with all low-energy experiments, is the non-
renormalisability of the Lagrangian (1.3). This can be seen from the mass dimension of the
current-current operator, which is 6. Thus, the coupling constant is of dimension -2, which
leads to a breakdown of the theory for energies above ∼ G−1/2

F ∼ 300GeV. Beneath this energy
scale the Fermi theory can be considered as a effective theory.

1.2 The Standard Model

In the early 60s mainly Glashow, Salam and Weinberg started to develop a gauge theory
for the weak interactions. This so-called GSW-model is today a part of the SM of particle
physics. The other part is QCD gauge theory for the strong interaction. Since both parts do
not influence each other and we do not need the strong interactions in this thesis, we will only
describe the GSW-model in more detail here.
Before doing so, we should introduce the terms left- and right-handed fields. These fields are

eigenfields of the operator γ5 and we can project them out of an arbitrary field ψ by means of
the chirality operators PL/R := (1± γ5)/2

ψL :=
1
2

(1− γ5)ψ, ψR :=
1
2

(1 + γ5)ψ.

The names left- and right-handed stem from the fact that for massless particles the chirality
eigenfields are simultaneously eigenfields of the helicity. Whereas helicity is defined as the
projection of the spin on the direction of the momentum of the particle, which is called right-
handed if the projected spin is in the direction of the momentum and left-handed for the
opposite direction. The helicity of a particle is only unique in the case of massless particles
which travel with the speed of light. For massive particles it depends on the frame of the
observer. In contrast, chirality is independent of the frame.
In the GSW-model the neutrinos are assumed to be massless and thus chirality and helicity

are the same. However, from experiments we know that only neutrinos with left-handed helicity
participate in the weak interactions. In other words, no one has seen a right-handed neutrino
yet. This is the reason why right-handed neutrinos are absent in the GSW-model.
The crucial step for the theory of weak interactions is now to assume that the experimental

fact for the neutrinos can be generalised to all other fermions. That is, we assume that only



1.2 The Standard Model 3

left-handed fields interact weakly. It is important to note that this does not mean the right-
handed components are absent as in the case of the neutrino, because they can still interact
via the electromagnetic and strong interactions. The starting point for the GSW-model is the
gauge principle, which means we start with a global symmetry and postulate that it is also
a local symmetry. In the GSW-model this gauge group is SU(2)w×U(1)Y , where SU(2)w is
called the weak isospin and U(1)Y is called the Hypercharge. Additionally, we assume that the
left-handed fields form doublets under the weak isospin transformation while the right-handed
fields are singlets. The left-handed doublets for the leptons and quarks can be grouped in the
following way:

LeL :=
(
νeL
eL

)
, LµL :=

(
νµL
µL

)
, LτL :=

(
ντL
τL

)
,

Q1L :=
(
uL
dL

)
, Q2L :=

(
cL
sL

)
, Q3L :=

(
tL
bL

)
. (1.4)

To get a shorter notation we can write the different lepton fields as

νeL, νµL, ντL

`eL := eL, `µL := µL, `τL := τL,

`eR := eR, `µR := µR, `τR := τR, (1.5)

In the following we will not go through all the details of the model, but only state some
important points before coming to the interesting terms for this thesis.
Using the above defined singlets and doublets we could write down the most general, renor-

malisable Lagrangian which is invariant under the gauge group SU(2)w×U(1)Y . But this
Lagrangian does not involve any mass terms for leptons, quarks and gauge bosons, because
such terms would violate the gauge invariance. This cannot describe the weak interactions as
we are measuring them in experiments. Because the interactions are extremly short ranged the
messenger particles, that is the gauge bosons, have to be massive in contradiction to the QED
where the photon is massless. In order to create these masses in a gauge invariant way we use
the Higgs mechanism. That is, we spontaneously break the gauge symmetry by assuming a
non-vanishing vacuum expectation value (VEV) for the Higgs boson field

〈Φ〉 :=
1√
2

(
0
v

)
.

This VEV is choosen in a way to get a remaining unbroken U(1)Q gauge symmetry, which is
the QED gauge group. The breaking can then be symbolised as

SU(2)w ×U(1)Y → U(1)Q.

After the symmetry breaking the important parts of the Lagrangian—the ones which contain
neutrinos—read

Lν = Lνkin + Lνcc + Lνnc (1.6)

with

Lνkin =
∑

α=e,µ,τ

ναL i/∂ ναL, (1.7a)
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Lνcc = − g

2
√

2

∑
α=e,µ,τ

(
ναLγ

µ`αLW
+
µ + `αLγ

µναLW
−
µ

)
= − g

4
√

2

∑
α=e,µ,τ

(
ναγ

µ(1− γ5)`αW+
µ + `αγ

µ(1− γ5)ναW−µ
)
, (1.7b)

Lνnc = − g

cos θW

∑
α=e,µ,τ

ναLγ
µναLZµ

= − g

cos θW

∑
α=e,µ,τ

ναγ
µ(1− γ5)ναZµ, (1.7c)

where cos θW is the weak mixing angle which defines the mixing between the gauge bosons Aµ
and Zµ, and g is the SU(2)w coupling constant. The first term is just the usual kinetic term
for a massless fermion with the exception that there is no right-handed field. The second term
describes the so-called charged currents (CC) which are nothing else than the V-A currents,
which leads to the low energy theory of Fermi. If we derive the effective low-energy theory
from Lcc we would find the following connection between the Fermi constant GF and the weak
coupling constant g

GF√
2

=
g2

8M2
W

, (1.8)

whereMW is the mass of theW -bosons. The third term in (1.7) describes neutral currents (NC)
which were not included in Fermi’s theory. These interactions couple an antineutrino-neutrino
current to the Z-boson. They are hard to measure, because usually the electromagnetic inter-
actions dominate the NC-processes. However, they are important for the understanding of NO
in matter.
A closer look on the terms (1.7) shows that they are invariant under three different global

U(1) transformations which change the lepton and neutrino fields according to

U(1)α : ν′αL := eiLαναL `′αL := eiLα`αL. (1.9)

These symmetries are the manifestation of the lepton number conservation for each flavour
seperately, that is Le, Lµ and Lτ are conserved in the weak interactions. Altough we have not
shown it explicitly, we should note that the same holds for the complete Lagrangian.
Since NO are per definition flavour changing processes we immediately see that NO can not

be described in the GSW-model. Thus, we have to extend the theory.

1.3 Neutrino Mixing

As already noted in the Motivation the first who mentioned NO was Pontecorvo [Pon57,
Pon58]. But he considered neutrino-antineutrino oscillations which we will not describe here.
The first who mentioned NO in the form in which they are mainly considered today were
Maki, Nakagawa and Saka [MNS62]. They assumed that the neutrinos are massive, and
that the neutrinos which we observe are actually superpositions of neutrinos with different
masses. Due to the different masses they evolve differently in time and space, which then leads
to oscillations.
Before we go on and explain how we can extend the GSW-model to describe such superpo-

sitions we will make some important comments on the terms flavour and mass neutrinos.
First of all we have to define the term flavour. By flavour we usually mean the quantum

numbers corresponding to the three U(1) symmetry groups (1.9), which we call either e, µ or
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τ . This corresponds to the labeling of the three different generations of leptons in the SM. Now
a flavour neutrino is a neutrino which has a definite flavour. Thus, the usual neutrinos νe, νµ
and ντ are flavour neutrinos. The question is then how can we define the flavour of a neutrino
by just measuring it? This question is not as trivial as it might sound. The point is that we
cannot measure the neutrinos directly, because they do not interact electromagnetically. That
means they do not leave a track of ionised particles in a detector as for example electrons
would do. Thus, the only way to observe neutrinos is by observing the particles which decay
into a neutrino and the ones which are produced in a neutrino interaction. Experimentally a
neutrino interaction is always identified by the lepton in connection with which it is produced.
For example in the β−-decay n→ p+ e− + ν̄ this lepton is the electron, while in the π-decay
π+ → µ+ + ν the lepton is the muon. Therefore, we can define the flavour of the neutrino by
aligning it to the flavour of the corresponding lepton. In the β−-decay this means the neutrino
is an electron neutrino while it is a muon neutrino in the π-decay. This correspondence between
the flavour neutrinos is the reason why in the GSW-model the SU(2)w doublet are choosen in
the way (1.4).
After having defined the flavour neutrino we can go on to the mass neutrinos. Simply

spoken a mass neutrino is defined as a neutrino with definite mass. In particular, that means
the mass term in the Lagrangian is diagonal if it is written in terms of the fields that describe
mass neutrinos. Since the GSW-model describes massless neutrinos the mass term is trivially
diagonal and the flavour and mass neutrinos coincide, because the in the theory described
neutrinos have both a definite flavour and a definite mass. This again shows that there are no
NO possible in the SM, because we do not have a superposition of different mass neutrinos.
As a conclusion we see that we need massive neutrinos in order to get NO. In particular that

means we have to add mass terms for the neutrinos to the GSW-model.
Since the neutrinos are electrically neutral each neutrino could, in principle, exists in either

of two types. The first possibility is a Dirac paricles, that is the particle and antiparticle are
different. This is for example the case for all other leptons in the SM. But Dirac particle
consists of left- and right-handed parts. This is in principle not a problem, because right-
handed electrically neutral particles are singlets under SU(2)w transformations and thus would
interact neither weakly nor electromagnetically nor strongly. Therefore, they are not detectable
due to SM interactions. However, they have a gravitational interaction due to their mass. Such
a particle is usually called sterile in order to distinguish it from the active particles. Thus, we
could add as many right-handed neutrinos as we want without changing the interactions of the
other particles. However, we will just add three right-handed neutrinos, one for each flavour:
νeR, νµR and ντR. The expected mass term for a Dirac neutrino would be

LDmass :=−mναLναR −mναRναL
=−mνDα νDα (1.10)

with νDα := ναL + ναR.
As we already said, there is another possibility for the neutrinos. That is, we consider the

neutrino and the antineutrino as the same particle, which can be written as

ψ = ψc := CψT (1.11)

with the charge conjugation matrix C = iγ2γ0. This kind of particles are usually called Majo-
rana particles. The important point is that we do not need additional right-handed neutrinos
for a Majorana particle, we can just define the Majorana field as

νMα := ναL + νcαL = ναL + CναLT .
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The generic mass term for such a field reads

LMmass :=− m

2
(
νcαLναL + ναLν

c
αL

)
=− m

2
(
−νTαLC†ναL + ναLCναLT

)
=− m

2
νMα νMα (1.12)

which has the same form as the Dirac term except for the factor of one half which avoids double
counting, because the two fields are not independent.
However, there is an important difference between the two types of mass terms. That is, the

Dirac term can be generated via the Higgs mechanism while this is in the usual way not possible
for the Majorana term, because it would need an additional Higgs triplet which would lead to
non-renormaliseble terms in the Lagrangian. However, this would not be a big problem because
today it is believed that the SM is just an effective theory of a more general theory. Moreover,
the Dirac term can in principle be invariant under the lepton number transformations (1.9),
while this is not possible for the Majorana term, which breaks this symmetry. This is due
to the Majorana condition ψ = ψc which is not compatible with (1.9). This breaking of the
lepton number conservation can lead to interesting phenomena, for example the neutrinoless
double-β-decay.
For simplicity we will discuss in this thesis only the case of Dirac neutrinos. Therefore,

we add three right-handed neutrinos to our theory. This also allows us to introduce Yukawa
couplings between the neutrinos and the Higgs in the unbroken Lagrangian, just in the same
way as it is done for the leptons and quarks. After the spontaneous symmetry breaking these
couplings yield the mass terms for the neutrinos:

Lνmass =− v√
2

∑
α,β=e,µ,τ

(
ναLY

ν
αβνβR + h.c.

)
− v√

2

∑
α,β=1,2,3

(
`αLY

`
αβ`βR + h.c.

)
. (1.13)

Note that we also wrote down the term for the leptons. Here Y ν and Y ` are the Yukawa
couplings summarised as a 3 × 3 matrix. These terms are just the Dirac mass terms for
the neutrinos and leptons, but in the general case they are non-diagonal. Thus, we have to
diagonalise them in order to find the fields that describe the mass neutrinos. This can be done
by means of a bi-unitary transformation:

Uν†L Y νUνR = Y ′ν with Y ′νij = y′νi δij ,

U `†L Y
`U `R = Y ′` with Y ′`αβ = y′`αδαβ . (1.14)

In order to rewrite the Lagrangian in terms of the mass fields we define

νiL :=
∑

β=e,µ,τ

(Uν†L )iβνβL, νiR :=
∑

β=e,µ,τ

(Uν†R )iβνβR,

`αL :=
∑

β=e,µ,τ

(U `†L )iβ`βL, `αR :=
∑

β=e,µ,τ

(U `†R )iβ`βR. (1.15)

If we rewrite the Lagrangians containing the neutrino part in terms of these new field operators
we find

Lνkin =
∑

i=1,2,3

νiL i/∂ νiL, (1.16a)

Lνmass = −
∑

i=1,2,3

vy′νi√
2

(
νiLνiR + h.c.

)
−

∑
α=e,µ,τ

vy′`α√
2

(
`′αL`

′
αR + h.c.

)
. (1.16b)
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Lνcc = − g

2
√

2

∑
i=1,2,3

∑
α=e,µ,τ

(
νiLγ

µ(Uν†L U `L)iα`′αLW
+
µ + `′αL(U `†L U

ν
L)αiγµνiLW−µ

)
(1.16c)

Lνnc = − g

cos θW

∑
i=1,2,3

νiLγ
µνiLZµ. (1.16d)

In the following we abbreviate the masses for the neutrinos as mi = vy′νi /
√

2. As we can see,
the neutrinos for the right-handed fields vanishe and only the charged current term depends
on the matrix combination

Uαi = (V `†L V νL )αi (1.17)

which is usually called the PMNS-matrix after Pontecorvo, Maki, Nakagawa and Saka.
Here, we already used the convention that flavour neutrinos gain a Greek index and mass
neutrinos a Latin index.
By construction the lepton fields `′α are the ones with a definite flavour. Thus, we can simply

ignore the primes. It is then convinient to define the flavour neutrino fields as

ναL =
∑
i

UαiνiL. (1.18)

This is the mixing of the flavour and mass neutrino field operators we were looking for. Note
that it is similar to the mixing in the quark sektor, where Uαi is called CKM-matrix. Due to
this correspondence we can simply adopt some information on the PMNS-matrix. For example
in the case of Dirac neutrinos the N ×N unitary matrix can be parameterised by

N(N − 1)
2

angles and
(N − 1)(N − 2)

2
complex phases.

This follows from the parameterisation of a general N ×N matrix. But here we can show that
some of the phases are not physical and thus can be defined away. However, in the case of
Majorana neutrinos we have to be a bit more careful, because in this case we cannot remove
the same number of phases. In the end we are left with

N(N − 1)
2

physical phases [GK07]. In particular, this means for three different Dirac neutrinos that the
PMNS-matrix can be parameterised by three angles and one phase. One possible way to write
the matrix in this case is c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13

s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13

 , (1.19)

where cab = cos θab and sab = sin θab. Since we will often use the two flavour case, we will also
give the usual parameterisation for this case. For Dirac neutrinos we only need one angle and
thus can write the matrix as (

cos θ sin θ
− sin θ cos θ

)
. (1.20)

The absence of a phase implies that we will not have CP-violation in the two flavour case
[GK07]. Moreover, from (1.14) we can see that the non-diagonal mass matrix for two flavours
is symmetric.
In conclusion, we have shown that we can extend the GSW-model in order to describe a

mixing between flavour and mass neutrinos. How this mixing actually leads to NO will be the
main issue of this thesis.
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1.4 Neutrino Oscillation Experiments

Before we go on with the theoretical description of NO we should briefly explain how NO are
actually measured in experiments. We will mainly follow [GK07] for the description of the
experiments. In order to understand the results from the experiment we will anticipate some
results from later chapters. The main quantity which shall be measured in experiments is the
oscillation probability. For the two flavour case it is given by

P(α→ α;L) = 1− sin2(2θ) sin2

(
1.27

∆m2[eV 2]L[m]
E[MeV ]

)
, (1.21a)

P(α→ β;L) = sin2(2θ) sin2

(
1.27

∆m2[eV 2]L[m]
E[MeV ]

)
, (1.21b)

where ∆m2 is the difference of the squared masses

∆m2 = m2
i −m2

j .

The factor of 1.27 stems from the convertion between the different units. We see that for a
given distance L between source and detector, and energy of the neutrinos, we can measure
the mixing angle as well as the mass-squared difference. It is important to note that NO
experiments can only measure relative and not absolute masses. From (1.21) we can define the
oscillation length

Losc = 2.47
E[MeV ]

∆m2[eV 2]
, (1.22)

which gives the distance for a complete oscillation. The oscillation length yields an important
constraint on the measurement conditions. That is, oscillations can only be measured if L ∼
Losc, because for L � Losc there are no oscillations and for L � Losc the oscillations are
averaged out due to natural uncertainties for the neutrino energy. Thus, we have the condition

∆m2L

2E
∼ 1. (1.23)

All NO experiments can then be classified by their so-called ∆m2 sensitivity which is the value
of ∆m2 that satisfy the observability condition for a given L and E. The sensitivities for
different types of experiments are shown in table 1.1 According to their sensitivity the different
experiments are traditionally classified into groups of short-baseline (SBL), long-baseline (LBL)
and very long-baseline (VBL) experiments.

Types of Neutrino Oscillation Experiments Basically there are two different types of
experiments

• Appearance experiments, which search for flavours that have not been present in the
initial beam. They have the advantage to be very sensitive to rather small mixing angles.

• Disappearance experiments, which compare the measured number of neutrinos with the
expected number.

Another important way to classify the different experiments is to group them according to
the origin of the neutrinos. There are three groups
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Type of experiment L E ∆m2 sensitivity
Reactor SBL ∼ 10m ∼ 1MeV ∼ 0.1eV2

Accelerator SBL (Pion DIF) ∼ 1km & 1GeV & 1eV2

Accelerator SBL (Muon DAR) ∼ 10m ∼ 10MeV ∼ 1eV2

Accelerator SBL (Beam Dump) ∼ 1km 102GeV ∼ 102eV2

Reactor LBL ∼ 1km ∼ 1MeV ∼ 10−3eV2

Accelerator LBL ∼ 103km & 1GeV &10−3eV2

ATM 20-104km 0.5-102 GeV ∼ 10−4eV2

Reactor VLB ∼102km ∼ 1MeV ∼ 10−5eV2

Accelerator VLB ∼104km & 1GeV & 10−4eV2

SOL ∼ 1011km 0.2-15MeV ∼ 10−12eV2

Table 1.1: Types of neutrino oscillation experiments with their typical source-detector distance,
energy, and sensitivity to ∆m2 (taken from [GK07]).

• Solar neutrino experiments These experiments measure the neutrinos produced in the
fusion reactions in the core of the sun, which are only electron neutrinos. Due to the
large distance between source and detector these experiments are sensitive to extremly
small values of ∆m2. Important examples for solar neutrino experiments are Homes-
take, Kamiokande, GALLEX and SNO. Most of these experiments are disappearance
experiments and their results contribute mainly to the measurements of ∆m2

12 and θ12.

• Atmospheric neutrino experiments Due to the cosmic radiation which interacts with the
upper atmosphere a huge number of pions is produced in this region. The pions then decay
into muon neutrinos, which can be measured either coming from above or coming from
below after passing the earth. The important representants for these kinds of experiments
are Kamiokande, Super Kamiokande and MINOS. They mainly measure the effects
on ∆m2

23 and θ23.

• Reactor and accelerator neutrino experiments The neutrinos for these kinds of experi-
ments are produced either in nuclear reactors as products of β-decay of the fission prod-
ucts or in accelerators as decay products of pion or muon beams. The sensitivity for
these experiments varies over the whole spectrum and they can be used to measure all
three angles and two mass differences. The main experiments are CHOOZ, K2K and
KamLAND.



10 Chapter 1 A Short Introduction to Neutrino Physics

νμ↔ντ

νe↔νX

100

10–3
Δm

2  [
eV

2 ]

10–12

10–9

10–6

10210010–210–4

tan2θ

CHOOZ

Bugey

CHORUS
NOMAD

CHORUS

K
A

R
M

E
N

2

PaloVerde

νe↔ντ

NOMAD

νe↔νμ

CDHSW

NOMAD

BNL E776

K2K

http://hitoshi.berkeley.edu/neutrino

Cl 95%

Ga 95%

KamLAND
95%

SNO
95%

Super-K
95%

Super-K+SNO
+KamLAND 95%

LSND90/99%

SuperK 90/99%

All limits are at 90%CL
unless otherwise noted

Figure 1.1: The combined results of all NO experiments. The shaded areas are inclusion regions
while the lines define exclusion regions. In particular, the regions above these lines are excluded.
The best fit results are the white area above for ∆m2

23 and θ23 and the red area below for ∆m2
12

and θ12.

Experimental Results The results from all important NO experiments are combined in
figure 1.1. The results for the best fit come mainly from Super Kamiokande, SNO and
KamLAND. Numerically the results are given by the Particle Data Group [Y+06] as

sin2(2θ12) = 0.86+0.03
−0.04 ∆m2

21 = (8.0+0.4
−0.3) · 10−5eV2

sin2(2θ23) > 0.92 ∆m2
32 = 1.9− 3.0 · 10−3eV2

sin2(2θ13) < 0.19,CL = 90%



Chapter 2

Oscillations in Quantum Mechanics

In this chapter we will derive the oscillation probability in the framework of quantummechanics.
We will do this in a quite general way in order to easily compare the plane-wave approximation
which we consider in chapter 3 and the Gaussian wave-packet model in chapter 4.

2.1 State Vectors for Flavour Neutrinos

Up to now we only considered the mixing of flavour and mass neutrinos in terms of the field
operators (1.18). But for the description in quantum mechanics we need the state vectors that
should describe the flavour neutrinos. The usual way to get a relation for the mixing in terms
of state vectors is to just assume the relation∣∣να〉 :=

∑
i

U∗αi
∣∣νi〉. (2.1)

Equivalently, the same can be done for the anti-particle state vectors, which is defined as∣∣να〉 :=
∑
i

Uαi
∣∣νi〉. (2.2)

The definitions of the state vectors as in (2.1) and (2.2) are the most common ones and used
in almost any textbook (see e. g. [MP91, KP93, FY03, GK07]) and most papers dealing with
neutrino oscillations in quantum mechanics. We should note here that this assumption is not
without problems. In particular in chapter 6 we will discuss this choice in more detail.
By comparing (2.1) and (2.2) we can already see that the difference between the treatment

of neutrinos and anti-neutrinos is just a complex conjugation of the PMNS-matrix. Therefore,
in the following only the treatment of neutrinos will be done in detail, while at the end all
formulas can be rewritten for the anti-neutrinos by just complex conjugating all appearing
PMNS-matrices.
Before we actually start with the calculation we should make some comments on the inter-

pretation of the flavour state vectors (2.1) and (2.2). The usual way is to say that |να〉 describes
a state whith one flavour neutrino, but this leads to the further question of the interpretation
of a particle that does not have a well-defined mass. These kind of particles provide some very
basic problems in the experimental handling as well as in the theoretical description. First of
all, the behaviour of neutrinos reflects the usual particle-wave duality of quantum mechanics.
That is, the production and detection processes are localised in a small space region and can

11
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be regarded as particle processes, while the oscillation behaviour and, in particular, the super-
position of mass neutrinos to a flavour neutrino are only understandable in the wave picture.
Thus, whenever in this thesis a superposition of mass neutrinos is mentioned, one should bear
in mind this duality.
Compared to a particle with well-defined mass, a flavour neutrino has a more complicated

energy-momentum dependence. While in the first case the definite mass implies also a definite
energy and momentum, which can, in principle, be measured at the same time if the particle is
considered to be free, this is not possible for a flavour neutrino without a definite mass. This
comes from the superposition of different mass neutrinos. If the energy and momentum of a
flavour neutrino are measured with a high precision, which can be done by precise measurement
of the corresponding leptons, the dispersion relation m =

√
E2 − p2 implies a specific mass.

In other words, the precise measurement picks out one of the mass neutrinos and in turn
destroys the information on the superposition. However, as will be seen later, flavour changing
is still possible in this case, while space-time dependent oscillations are ruled out. This comes
from the remaining incoherent mixing. From this measurement problem one can obtain some
relations that have to be obeyed by the production and detection processes in order to allow
the measurement of oscillations. These are

σE >
∣∣Ei − Ej∣∣ and σp >

∣∣pi − pj∣∣,
where σE and σp are the uncertainties of the energy and momentum of the flavour neutrino,
respectively, while Ei and pi are the energy and momentum of the i-th mass neutrino. These
conditions were first mentioned by Kayser in 1981 [Kay81] and we will describe them in more
detail in chapter 4. The use of uncertainties already shows, that a flavour neutrino has to be
described as a wave packet with uncertainties σE and σp and not as a plane wave. However,
since the plane wave treatment is the most easiest one and allows some first views on the
theory, it will be described in the next chapter while the wave packet treatment is postponed
to chapter 4.

2.2 The Quantum Mechanical Description of Neutrinos

In the last section we showed how the mixing of flavour and mass neutrinos can be described
in terms of state vectors (cf. (2.1)). This result will be used in the present section in order to
find the description of the space-time dependence of a flavour neutrino in quantum mechanics,
which then can be used to describe the oscillation behaviour. The notation (which follows
roughly [KP93]) in this chapter is slightly extended compared to the usual one found in most
publications. That is, the description of the degrees of freedom for the space-time as well as
the energy-momentum dependence and the degree of freedom that characterises the neutrino
species shall be factorized. This is analogous to the usual quantum mechanical description of
a spin-1/2 particle, where the general wave function can be factorised into a spin-independent
wave function and a spin vector

Ψ(x, σ) =
(
ψ↑(x)
ψ↓(x)

)
= ψ↑(x)

(
1
0

)
+ ψ↓(x)

(
0
1

)
,

which then leads to a factorisation of the Hilbert space into two parts

H = L2 ⊗ C2.

For the neutrinos this kind of factorisation is (in this simple manner) only possible for
the mass neutrinos, because the space-time and energy-momentum degrees of freedom for a
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flavour neutrino are a priori unknown. However, the full Hilbert space H for the neutrinos can
be written as a direct product of the space for the dynamical degrees of freedom Hd = L2 and
a space which describes the mass degree of freedom Hm = CNm :

H := Hd ⊗Hm = L2 ⊗ CNm . (2.3)

The already introduced state vectors |νi〉 shall be used as a basis for Hm, where we addition-
ally assume that they are orthonormalised, while the elements of Hd will be denoted by |ψi〉,
where the index i indicates the mass dependence of the dynamics. A general neutrino state
|Ni〉 ∈ H can then be defined as ∣∣Ni〉 :=

∣∣ψi〉⊗ ∣∣νi〉. (2.4)

In this chapter, the state vectors |ψi〉 will not be specified. However, in the next chapters we
will choose them to describe either the dynamics of plane waves or wave packets.
As already mentioned, a similar simple relation cannot be written down for a flavour neutrino.

Nevertheless, by comparing (2.1) and (2.4) it is possible to define a general flavour-neutrino
state as ∣∣Nα〉 :=

∑
i

U∗αi
∣∣Ni〉

=
∑
i

U∗αi
∣∣ψi〉⊗ ∣∣νi〉, (2.5)

After the state vectors have been defined, we can analyse their time development. In order
to do so, the vector |Ni〉 has to be expanded in a basis whose energy dependence is known.
One possibility for this basis are the momentum eigenstates |p〉, which are—according to
the dispersion relation E =

√
p2 +m2—also energy eigenstates if the mass is given. Hence,

inserting a complete set of momentum eigenstates in (2.5) yields∣∣Nα〉 =
∑
i

U∗αi

∫
d3p

∣∣p〉〈p|ψi〉⊗ ∣∣νi〉
=
∑
i

U∗αi

∫
d3pψi(p)

∣∣p〉⊗ ∣∣νi〉, (2.6)

where ψi(p) is the momentum space wave functions for the neutrino with mass mi:

ψi(p) :=
〈
p|ψi

〉
. (2.7)

Actually, for (2.6) to be formally correct, one needs to have an additional operator that acts
in the Hilbert space Hm. However, this shall be a unity operator and left implicit here as well
as in the following steps.
Assuming the neutrino to be produced at t = tP (P stands for production) with a given

flavour α fixes the initial condition for the time dependence to
∣∣Nα(tP )

〉
=
∣∣Nα〉. The state

vector which describes the neutrino at time t ≥ tP can then be obtained by means of the time
evolution operator U(t− tP ) = exp

[
−iH(t− tP )

]
, where H is the Hamilton operator, which is

assumed to be time-independent, of the system:∣∣Nα(t)
〉

= e−iH(t−tP )
∣∣Nα(tP )

〉
=
∑
i

U∗αi

∫
d3pψi(p)e−iEi(p)(t−tP )

∣∣p〉⊗ ∣∣νi〉. (2.8)
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Here, we used the fact that the momentum states |p〉 are also eigenstates of the Hamilton
operator with energy Ei, which are different for each mass state and given by the above
mentioned dispersion relation

Ei(p) =
√
p2 +m2

i . (2.9)

From (2.8) it follows, as one would naively expect, that the time development of a flavour
neutrino is described by a superposition of the time developments of the mass neutrinos.
The next step on our way to a full description of a flavor neutrino will be the discussion of

the space dependence of the neutrino. This is important, because the experiments on neutrino
oscillations are localised in space and the oscillations are connected with the distance between
production and detection. Thus, the theoretical description should reflect this dependence.
In the same manner as in the case of the time dependence, the vector

∣∣Nα(tP )
〉
should be

expanded in a basis whose spatial dependence is known. This will be the position eigenstates
|x〉. Inserting a complete set of these eigenvectors and additionally assuming the neutrino to
be produced at x = xP , which results in an additional phase, yields∣∣Nα(t)

〉
=
∑
i

U∗αi

∫
d3p d3xψi(p)e−iEi(p)(t−tP )

∣∣x〉〈x|p〉⊗ ∣∣νi〉
=
∑
i

U∗αi

∫
d3p d3x

(2π)3/2
ψi(p)eip·(x−xP )−iEi(p)(t−tP )

∣∣x〉⊗ ∣∣νi〉
=
∑
i

U∗αi

∫
d3xψi(x,xP , t, tP )

∣∣x〉⊗ ∣∣νi〉. (2.10)

In the last step the wave function of a neutrino with mass mi in position space was introduced.
It is given by the Fourier transformation of the wave function in momentum space

ψi(x,xP , t, tP ) :=
∫

d3p

(2π)3/2
ψi(p)eip·(x−xP )−iEi(p)(t−tP ). (2.11)

The variables in the parenthesis are not all of the same kind. While x and t are real variables,
are xP and tP placeholders for the initial conditions due to the experiment.
In conclusion, the result (2.10) can be summarised as follows: A general flavour-neutrino

is described by a state vector
∣∣Nα(t)

〉
which is a superposition of vectors that describe full

mass-neutrinos. The dynamics of this flavour neutrino is then given by the dynamics of each
of the mass neutrinos, which can be described by a wave function either in momentum or in
position space.

2.3 The General Oscillation Formula

In this section we will use the results from the previous section in order to derive the formula
which reproduces the measured effects of neutrino oscillations, or in other words, the probability
that a neutrino, which is produced at the space-time point (xP , tP ) with a flavour α, is detected
as a neutrino with flavour β at the space-time point (xD, tD). The amplitude that corresponds
to this probability can be written as

A(α→ β;L, T ) :=
∫

dt
〈
ND
β (t)|Nα(t)

〉
, (2.12)
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where we introduced the abbreviations L = xD − xP and T = tD − tP as a simplification.
The D in the bra denotes the dependence on the detection process. The explicit form of this
state vector will be given below. Furthermore, the integration over t is unusual and not found
in papers which only deal with the plane wave approximation. However, we will use a general
notation in this thesis, which allows the computation in terms of plane waves as well as wave
packets.
To understand the usage of this notation, it is important to note that a realistic detector is

not a point-like object, which is switched on for exactly one point in time, but it has spatial
and temporal spread. The spatial spread is just the spatial uncertainty of the particle that
actually detects the neutrino, while the temporal spread comes from the fact, that a detector
measures for a finite—non-zero—time-interval. These uncertainties of the detection process are
described by the state vector

∣∣ND
β (t)

〉
, which can be written—in terms of either the momentum

or the position space wave functions, ψDj (p, t) or ψDj (x′,xD, t, tD), respectively—as

∣∣ND
β (t)

〉
=
∑
j

U∗βj

∫
d3p d3x′

(2π)3/2
ψDj (p, t)eip·(x′−xD)−iEj(p)(t−tD)

∣∣x′〉⊗ ∣∣νj〉
=
∑
j

U∗βj

∫
d3x′ ψDj (x′,xD, t, tD)

∣∣x′〉⊗ ∣∣νj〉. (2.13)

The wave function in momentum space can be explicitly time-dependent since it should describe
the temporal uncertainty of the detection process. The integration over t in the amplitude is
then just the calculation of the overlap of the neutrino and “detector wave packets”.
We can re-obtain the case of a point-like detection process by using the following wave

function

ψDj (x′,xD, t, tD) := δ(x′ − xD)δ(t− tD), (2.14)

which then reduces (2.13) to ∣∣ND
β (t)

〉
= δ(t− tD)

∣∣xD〉⊗ ∣∣νρ〉. (2.15)

In the general case the calculation of the amplitude yields

A(α→ β;L, T ) =
∫

dt

(∑
j

Uβj

∫
d3x′ ψD∗j (x′,xD, t, tD)

〈
x′
∣∣⊗ 〈νj∣∣

)

·

(∑
i

U∗αi

∫
d3xψi(x,xP , t, tP )

∣∣x〉⊗ ∣∣νi〉
)

=
∑
i

UβiU
∗
αi

∫
dtd3xψD∗i (x,xD, t, tD)ψi(x,xP , t, tP ), (2.16)

where we used the normalization of the position eigenstates and the orthogonality of the mass-
neutrino states.
The remaining step in order to get a measurable quantity is the calculation of the probability
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that corresponds to this amplitude. That is,1

P(α→ β;L, T ) :=
∣∣A(α→ β;L, T )

∣∣2
=
∑
i

∣∣Uβi∣∣2∣∣U∗αi∣∣2∣∣∣∣∫ dtd3xψD∗i (x,xD, t, tD)ψi(x,xP , t, tP )
∣∣∣∣2

+ 2Re

[∑
i<j

UβiU
∗
αiU

∗
βjUαj

∫
dtd3xψD∗i (x,xD, t, tD)ψi(x,xP , t, tP )

·
∫

dt′ d3x′ ψDj (x′,xD, t′, tD)ψ∗j (x′,xP , t′, tP )

]
. (2.17)

This is the neutrino oscillation formula, which is general in the sense, that the wave functions
for the mass neutrinos and the detection process are not specified at this point.

2.4 Remarks on the Oscillation Formula

In this section, some remarks on the oscillation formula (2.17) will be given. These points can
already be obtained in the general case without knowing the specific wave functions.

1. The probability should be normalized in the following way∑
α

P(α→ β;L, T ) =
∑
β

P(α→ β;L, T ) = 1, (2.18)

which ensures that the neutrino can be found as one of the flavour states at any time.

2. As already mentioned in section 2.1, the difference between the treatment of neutrinos
and anti-neutrinos is obtained by replacing U by U∗ and vice versa, which follows from
(2.1) and (2.2). From (2.17) it then follows that the relation

P(β̄ → ᾱ;L, T ) = P(α→ β;L, T ) (2.19)

is satisfied. This is nothing but the manifestation of the CPT -invariance of the theory.

3. If the PMNS-matrix is real, which is for example the case in CP-invariant theories (see,
chapter 1), the probability satisfies two different relations (cf. (2.17)):

P(ᾱ→ β̄;L, T ) = P(α→ β;L, T ) (2.20)

and

P(β → α;L, T ) = P(α→ β;L, T ). (2.21)

The first relation shows that neutrino and anti-neutrino probabilities are equal, which is
nothing but the manfestation of the CP-invariance, whereas the second relation shows
the invariance under interchanging the initial and final state: This is the T -invariance.

1Note: There is a misprint in [KP93] on p.135, where the last sum reads
P

i6=j and not
P

i<j .
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Figure 2.1: Depiction of the situation for interference at different points.

4. Up to now we said nothing about the differences between Dirac and Majorana neutrinos.
The only relevant differences here are the possible additional CP-phases in the PMNS-
matrix for the Majorana neutrinos (see chapter 1). However, if the PMNS-matrix is
replaced by

Uαi → eiδαUαie−iδi

the phase of each matrix entry is changed seperately. Therefore, adding the Majorana
CP-phases is a special case of this replacement. But due to the complex conjugations in
(2.17), all these additional phases vanish and thus it is not possible to distinct between
Dirac and Majorana neutrinos only by measuring the oscillation probability.

5. In the calculation of the oscillation probability (2.17) we explicitly took into account
possible uncertainties in the production and detection process. This gives rise to the
question whether all mass neutrinos are produced and detected at the same space-time
points or not. Especially Kiers, Nussinov and Weiss [KNW96, KW98] pushed these
discussion by showing that it should be possible to measure interference between spatially
seperated wave packets if they arrive the detector within its temporal uncertainty. Giunti
and Kim [GK01] then considered the interference conditions at different space-time points
in detail. In the following we will briefly summarise these considerations. The setup for
the calculation of Giunti and Kim is shown in figure 2.1, where for simplicity only two
mass neutrinos are shown. The points labeled in this figure shall be understood as pairs
of space and time coordinates, that is, for example xP = (xP , tP ). The dashed circles
around xP and xD symbolises the uncertainties of the source and the detector, σxP/D
and σtP/D , respectively. The production and detection points of the neutrinos ν1 and ν2
are labeled by x1

P/D and x2
P/D. These points must lie inside the uncertainties, thus∣∣xiP/D − xP/D∣∣ < σxP/D and

∣∣tiP/D − tP/D∣∣ < σtP/D .

The important point for the production and detection process is the coherence of the
mass-neutrino waves, which implies a well-defined phase relation between the different
waves. Therefore, we can introduce initial and final phases eiφiP/D for each mass neutrino
seperately. Since we are free to define a global overall phase, the initial and final phases
can be related to specific points. For convenience, these are the production and detection
point, xP and xD, because they are the only ones known in an actual experiment. Hence,
the arguments can be written as

φiP/D = ip ·
(
xiP/D − xP/D

)
− iEi(p)

(
tiP/D − tP/D

)
. (2.22)
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Figure 2.2: The double slit experiment as an analog to inteference at different point.

In order to take these phases into account in the derivation of the oscillation formula,
the state vectors

∣∣Nα(t)
〉
(2.10) and

∣∣ND
β (t)

〉
(2.13) have to be rewritten to

∣∣Nα(t)
〉

=
∑
i

U∗αi

∫
d3pd3x

(2π)3/2
ψi(p)eip·(x−xiP )−iEi(p)(t−tiP )eiφiP

∣∣x〉⊗ ∣∣νi〉 (2.23)

and∣∣ND
β (t)

〉
=
∑
j

U∗βj

∫
d3p d3x′

(2π)3/2
ψDj (p, t)eip·(x′−xjD)−iEj(p)(t−tjD)eiφiD

∣∣x′〉⊗ ∣∣νj〉. (2.24)

The first change concerns the production and detection points in the first exponentials,
which are now different. The second change is the implementation of the initial and
final phases for each mass neutrino. By comparing (2.22) with (2.23) and (2.24) we
immediately see that the new state vectors reduce to the old ones and all dependences
on xiP/D disappear.
This result is not surprising, since we can also obtain it in a more hand-waving way.
That is, the interference at different space-time points is analogous to the usual double-
slit interference experiment. In this experiment, a wave is produced at one point (which
in our case would be xP ) then propagates through two seperated slits (at x1

P and x2
P )

and finally interferes with itself at the detector (at xD). If we now assume two additional
points (x1

D and x2
D), which lie somewhere on the two paths behind the slits, the situation

is the same as for the neutrinos (cf. figure 2.2). In the double-slit experiment the two
paths are coherent, but the points on the paths are in general spatially and temporally
seperated. Thus, if we concentrate on the part of the diagram lying in-between these
points and forget about xP and xD, the double-slit case can be regarded as the creation of
a coherent superposition at different space-time points which is then detected at different
points. The initial phases at the production are then just the phase differences between
the production points and xP , while the final phases are the phase differences between
the detection points and xD. Therefore, it is obvious that the whole phase difference
between the two waves is the same as it would be in the case of a production at xP and
a detection at xD and not at the intermediate points.
This argumentation allows the usage of equal production and detection points in the
theoretical treatment even if this might not be the case in the real world [GK01, Giu02b,
Giu04b].
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6. The last remark concerns a basic problem of the mixing of states as represented in
(2.1), which is noted by some authors (e. g. [Zra98, Beu03]). That is, in non-relativistic
quantum mechanics the superposition of states with different masses is forbidden due to
the Bargmann superselection rule [Bar54]. The usual argumentation is as follows: Non-
relativistic quantum mechanics should be invariant under Galilean transformations. If
such a transformation acts on a wave function—in the form of a transformation to another
system and then back to the original system—it results in a phase that depends on the
mass of the state. It then follows that the transformation of a superposition of different
mass states aquires a relative phase depending on the mass difference. This relative phase
would, in principle, be measurable. In order to avoid this problem, one usually impose
a superselection rule, which simply forbids such superpositions. However, neutrinos are
relativistic and thus they are not described by the non-relativistic Schrödinger equation
but by the relativistic Dirac equation. Therefore, the invariance group is the Lorentz
rather than the Galilean group. But, the action of a Lorentz transformation on a state
vector that satisfies the Dirac equation does not yield a mass-dependend phase factor
and hence no relative phase for a superposition will occur. Furthermore, it was shown
that the relative phase is just the non-relativistic residue of the usual twin paradox of
special relativity and thus there is no reason to wonder about its appearance [Gre01].





Chapter 3

Neutrinos as Plane Waves

In this chapter we will approximate the mass neutrinos as plane waves. The simple treatment
in the first section yields a probability which is not satisfactory from an experimental point
of view, because it contains an unmeasurable time-dependence. This will be changed in the
second section, where different assumptions are used to convert the temporal into a spatial
dependence. The discussion of these assumptions will be done in the third section. Finally,
the last section contains a few remarks on the discussed plane-wave treatment.

3.1 The General Plane Wave Solution

As already mentioned in the previous chapter, the flavour neutrinos are described as superpo-
sitions of mass neutrinos whose space-time and energy-momentum dependence are stored in
wave functions ψi(p) =

〈
p|ψi

〉
. In this chapter these wave functions will be considered as plane

waves with definite momenta pi, or in other words, the
∣∣ψi〉 are be momentum eigenstates.

Hence, the wave functions in momentum space are given by delta functions

ψi(p) = δ(p− pi). (3.1)

Using the Fourier transform (2.11), then yields the wave functions in position space

ψi(x,xP , t, tP ) =
1

(2π)3/2
exp

[
ipi · (x− xP )− iEi(t− tP )

]
, (3.2)

which are the mentioned plane waves. The dispersion relation for the energy Ei is the same as
in (2.9), but this time the momentum has the definite value pi. Thus,

Ei =
√
p2
i +m2

i . (3.3)

In order to derive the oscillation probability for the plane-wave treatment, we additionally
have to fix the description of the detection process. Since plane waves do not have a spatial
uncertainty, we will assume a point-like detection process, given by (2.14) and (2.15), here.
That is, the detection shall take place at one well-defined space-time point (xD, tD). Under
this assumption the general probability (2.17) reduces to

P(α→ β;L, T ) =
1

(2π)3

∑
i

∣∣Uβi∣∣2∣∣U∗αi∣∣2
+

2
(2π)3

Re

[∑
i<j

UβiU
∗
αiU

∗
βjUαj exp

[
i(pi − pj) ·L− i(Ei − Ej)T

]]
. (3.4)
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This probability consists of two parts. The first part, which does not depend on space
and time, is the transition probability which we would get if the superposition of the mass
neutrinos were incoherent. This would for example be the case if the flavour neutrinos were
not a superposition but a statistical mixture of mass neutrinos with probabilities given by
the PMNS-matrix. The second part is the actual oscillation part that includes the coherent
effects and therefore gives rise to oscillations. Since a real neutrino beam always has an energy-
momentum spread, the second term will be washed out if the distance or time is large enough
and no oscillations can be measured in this region. However, even if this is the case, the
transition probability is not zero due to the incoherence term. A more precise estimation for
this will be given in the remarks at the end of this chapter. However, if the neutrino beam is
described by plane waves which do not have an energy-momentum spread, there will not occur
such effects in this treatment. This is the first hint on the incompleteness of the plane wave
treatment, which, in the end, leads to the necessity of using wave packets instead.
Nevertheless, the probability (3.4) looks quite simple and it should be easy to calculate

some results for real experiments. But after a closer look, one sees that it lacks in two points.
First, in real experiments no one measures the time between the production and detection of the
neutrino. And in most cases, e. g. solar neutrinos, it is rather impossible to know the production
time. Therefore, one has to convert the time dependence into a distance dependence, since
this is usually known to a much higher accuracy. Second, the exponential in (3.4) contains the
energy and momentum of the different mass neutrinos. These are impossible to know, because
the neutrinos cannot be measured directly. In particular, the only observed particles are the
ones that participate in the detection process, or the production process if it is observed. Those
particles are the corresponding leptons or nuclei to the neutrinos and have only one specific
energy and momentum. Thus, the energy and momentum of the mass neutrinos have to be
rewritten in terms of the measured momenta of the actually detected particles. These easy
looking tasks give rise to a vast number of papers written by different authors who all claim
different ways to be the only right ones.

3.2 Time to Space Conversion

The rewriting of the oscillation probability (3.4) in an only space dependent way is not unique
and in fact there are basically four different possibilities mentioned in the literature. They are
usually called:

1. equal-energy assumption,

2. equal-momentum assumption,

3. equal-velocity assumption,

4. energy-momentum conservation.

In the following the main points in these assumptions will be summarized while the discussion
of the different cases is postponed to the next section. For simplicity the derivations will be
done in only one spatial dimension. This is not a crude approximation since the neutrinos
travel a macroscopic distance, which means a deviation from the one dimensional case would
cause a separation of the mass neutrinos and thus no oscillation would be measurable. A
further simplification will be the restriction to the argument of the exponential in (3.4), which
is the only interesting quantity here. In particular it will be denoted as

φ := (pi − pj)L− (Ei − Ej)T, (3.5)
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and shall get an index E, p, v and c in the four different cases, respectively.

Equal-Energy Assumption This assumption is the easiest one. It was first mentioned
by Lipkin in 1995 and then repeated and defended in several following papers [Lip95, GL97,
Sto98, Lip99, Lip02, Lip06]. Equal energy means, all mass states are supposed to have the
same energy, that is, Ei = Ej = E. Then the time dependence of (3.5) simply vanishes and
the resulting argument can be written as

φE = (pi − pj)L =
p2
i − p2

j

pi + pj
L =

m2
j −m2

i

pi + pj
L, (3.6)

where the last step requires the use of the dispersion relation (3.3). In order to get a relation
in terms of the measured momentum, we can define an average momentum

p̄ :=
1
Nm

∑
i

pi. (3.7)

Since the difference of the momenta pi must be smaller than the momentum uncertainty of the
flavour neutrino—as already mentioned in section 2.1—they have to be nearly equal and we
can approximate them by the average momentum. Thus, the argument becomes

φE ≈
m2
j −m2

i

2p̄
L. (3.8)

If the neutrinos are considered to be relativistic (i. e., pi � mi)—as they in fact are in
practice—the momenta can be expanded in terms of the mass

pi =
√
E2 −m2

i = p0 −
m2
i

2p0
+O

(
m4
i

p3
0

)
, (3.9)

where p0 = E is the momentum and energy of a massless neutrino. Using this expansion to
rewrite p̄ in terms of p0 changes the argument to

φE ≈
m2
j −m2

i

2p0
L. (3.10)

The terms proprtional to m2
i in (3.9) are neglected, which can be done if

m2
j −m2

i

2p0

m2
i

4p2
0

�
m2
j −m2

i

2p0
. (3.11)

The validity of this estimation can be seen from experimental details, since in usual experiments
only neutrinos with an energy higher than about 100 keV can be detected, while the mass is
found to be smaller than about one eV (see [Giu04b] footnote 3 and references therein). Thus,
m2
i /p

2
0 . 10−10, which is obviously in good agreement with (3.11).

Equal-Momentum Assumption This is the oldest and most common assumption used in
nearly every publication on neutrino oscillations. Equal momentum means pi = pj = p. Thus,
this time the space dependent term in (3.5) vanishes and the argument can be written as

φp = −(Ei − Ej)T = −
E2
i − E2

j

Ei + Ej
T =

m2
j −m2

i

Ei + Ej
T. (3.12)
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In the last step we again used the dispersion relation (3.3). With the same argumentation as
in the equal-energy assumption we can introduce an average energy

Ē :=
1
Nm

∑
i

Ei (3.13)

and rewrite the argument as

φp ≈
m2
j −m2

i

2Ē
T. (3.14)

Now, in the same manner as in the previous assumption, the relativistic limit can be con-
sidered. Here, the expansion of the energy in terms of the mass yields

Ei =
√
p2 +m2

i = p0 +
m2
i

2p0
+O

(
m4
i

p3
0

)
, (3.15)

where p0 = p is the momentum and energy of a massless neutrino. Here, p0 rather than E0

is used in order to have a consequent notation in the different assumptions. This expansions
allows us to rewrite the average energy and thus the argument to

φp ≈
m2
j −m2

i

2p0
T. (3.16)

The terms proportional to m2
i in (3.15) are again neglected. This can be validated by the

same argument as in the equal-energy assumption. The last step is the conversion of the
temporal dependence into a spatial dependence. This can be done by using the classical
velocity vi = p0/Ei, which is also the group velocity for a wave packet with mean momentum
p0. However, in principle, no such velocity is defined in the case of plane waves, which is
again a point against the usage of plane waves and for a description in terms of wave packets.
Expanding the velocity in terms of the mass in the relativistic limit yields

L

T
= vi =

p0

Ei
= 1− m2

i

2p2
0

+O
(
m4
i

p4
0

)
. (3.17)

We can again neglect the second term since it is smaller than ∼ 10−10 if the same arguments
as in the equal-energy case are used. This allows us to approximate T ≈ L and the final form
of the argument is

φp ≈
m2
j −m2

i

2p0
L, (3.18)

which is the same as the one in the equal-energy assumption.

Equal-Velocity Assumption The equal-velocity assumption deals—as suggested by the
name—with the velocities of the mass neutrinos, in particular the group velocities, which is in
the same way insufficient as in the equal-momentum assumption. These velocities are assumed
to be equal for all neutrinos:

vi =
pi
Ei

= v =
L

T
∀ i. (3.19)
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The first mention of this assumption was independently made by Takeuchi et al. [TTTY99]
and De Leo et al. [DLDR00]. The argumentation here is the one of Takeuchi et al.
We can use (3.19) to rewrite the general argument (3.5). In order to do so we should note

that (3.19) implies EiT = piL/v
2. Then the argument changes to

φv = (pi − pj)
(

1− 1
v2

)
L

= (pj − pi)
L

v2γ2
, (3.20)

where we introduced the usual relativistic γ-factor γ = 1/
√

1− v2. The factor also gives a
relation between the momentum and mass: pi = γvmi. Inserting this in (3.20) after the
momentum part is extended, yields

φv =
p2
j − p2

i

pi + pj

L

v2γ2

=
m2
j −m2

i

pi + pj
L, (3.21)

which is the same as in the equal-energy assumption. Hence, we get the same result if we first
introduce an average momentum and then go to the relativistic limit:

φv ≈
m2
j −m2

i

2p̄
L
pi�mi≈

m2
j −m2

i

2p0
L. (3.22)

Energy-Momentum Conservation In this approach, a rigorous treatment of the energy
and momentum conservation in the production process of the neutrino is performed. This was
first done by Winter in 1981 [Win81] and then used by several other authors [Gol96, GK01,
Giu01, Giu06] to show that neither the equal-energy assumption nor the equal-momentum
assumption are satisfying.
If the production process of the neutrino is a two-body decay, within the rest-frame of the

decaying particle, the energy-momentum conservation relation can be written as

EI =
√
p2
i +M2 +

√
p2
i +m2

i . (3.23)

Here, EI is the energy of the decaying particle, pi is the momentum of the neutrino and the
recoiling particle and m2

i and M2 are the neutrino and recoiling particle mass, respectively.
Of course, the same considerations can be done for more complicated processes. We just have
to insert the energy of the entire initial state on the left-hand side and the entire mass and
the sum of the momenta of all recoiling particles on the right-hand side, while working in the
center of mass system of the neutrino and the recoiling particles. This is the reason why the
left-hand side is called EI rather than just the mass of the decaying particle.
From (3.23) we can find the value of the momentum pi:

pi =

√
p2

0 −
2(E2

I +M2)m2
i −m4

i

4E2
I

= p0 −
E2
I +M2

2E2
I

m2
i

2p0
+O

(
m4
i

p3
0

)
, (3.24)
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where again p0 = E2
I−M

2

2EI
is the momentum of a massless neutrino. The higher order terms

in this expansion can be neglected even in the case of relatively low neutrino energies. For
example, a neutrino with mass 1 eV and momentum p0 ∼ 100 eV, which is not even observable
[Giu04b], would give a correction of order 10−6, four orders less than the first correction term.
Using the dispersion relation (3.3) yields the energy of the neutrino

Ei =
√
p2
i +m2

i =

√
p2

0 +
2(E2

I −M2)m2
i +m4

i

4E2
I

= p0 +
E2
I −M2

2E2
I

m2
i

2p0
+O

(
m4
i

p3
0

)
. (3.25)

In the notation of [GK01], the factors E2
I +M2/2E2

I and E2
I −M2/2E2

I are called ξ and 1− ξ,
respectively. Since this simplifies the notation we will also use the factor ξ here. If we now
insert (3.24) and (3.25) into the general argument (3.5) and neglect the higher order terms, we
get the following argument for the energy-momentum conservation assumption:

φc ≈ ξ
m2
j −m2

i

2p0
L+ (1− ξ)

m2
j −m2

i

2p0
T. (3.26)

In order to get a relation between the time and distance, we can again compute the group
velocity (where the question of the existence of this velocity is the same as in the other as-
sumptions):

vi =
pi
Ei

= 1− ξ m
2
i

2p2
0

− (1− ξ)m
2
i

2p2
0

+O
(
m4
i

p4
0

)
= 1− m2

i

2p2
0

+O
(
m4
i

p4
0

)
. (3.27)

Again the higher order terms can be neglected for relatively low neutrino energies. In particular,
using the same example would give a correction of order 10−8 here.
Inserting (3.27) into (3.26) then yields

φc ≈ ξ
m2
j −m2

i

2p0
L+ (1− ξ)

m2
j −m2

i

2p0
L

=
m2
j −m2

i

2p0
L, (3.28)

where we also neglected the terms which come from the m2
i terms in the velocity, because as

in the equal-energy assumption and the equal-momentum assumption the bound

m2
j −m2

i

2p0

m2
i

2p2
0

�
m2
j −m2

i

2p0
(3.29)

holds for realistic neutrinos.
As can be seen from (3.28), the factor ξ does not show up in the final argument.

3.3 Discussion

There is an extensive discussion on the different options in the literature (see the citations in
this section) without reaching a consensus on any of those assumptions. We will present parts
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of the discussion in this section. In particular, the equal-energy assumption and the energy-
momentum conservation are the most favoured ones. Beuthe [Beu03] gave a comprehensive
summary of the arguments used in the literature. In the following there will be some overlap
with his presentation but we will present some additional arguments.
As can be seen from the last section, there is no difference in (3.10), (3.18), (3.22) and (3.28)

after the relativistic limit is applied. That is, the argument of the phase is for all cases

φ =
m2
j −m2

i

2p0
L,

or by introducing the, so called, oscillation length Loscji = 4πp0/(m2
j −m2

i )

φ = 2π
L

Loscji
.

This result is not surprising since the relativistic limit was applied by expanding the energy
and momentum in terms of the mass and then neglecting all terms of second or higher order
in the mass. Hence, only terms that describe massless neutrinos are considered. But in the
massless case all energies and momenta are the same: Ei = Ej = pi = pj = p0 and every
distinction in the assumptions simply vanishes. This means, in order to discuss the validity of
the assumptions one cannot use the results obtained in the relativistic limit.
A first look at the four assumptions shows that they are incompatible. For example, if the

neutrinos with different masses had the same energy they could not have the same momentum
and vice versa. In particular, this means they also could not have the same velocities in this
cases. If energy-momentum conservation is assumed, (3.24) and (3.25) show that neither the
energy nor the momentum can be equal. Nevertheless, the equal-velocity assumption could, in
principle, be used in this case.
A closer look then shows that the plane wave treatment itself cannot be the last step. That

is, assuming a production process for a neutrino where all particles are described by plane
waves. Then the energies and momenta of the non-neutrino particles are fixed and energy-
momentum conservation determines the exact values for the neutrino. This is a missing mass
experiment [Lip95] and allows only the production of a mass eigenstate. Hence, no oscillations
would occur. But, since oscillations are observed one has to improve the treatment. This will
be, as usual, the description in terms of wave packets which we will do in the next chapter.
However, the plane-wave description already leads to the oscillation phase, which will be the
same in the wave-packet treatment. Therefore, we should first discuss the easier treatment of
plane waves before going over to wave packets. Nevertheless, in order to do so, we have to
assume some results from the wave packets. In particular, these will be the uncertainties for
energy, momentum and position as well as the group velocities.
A rough estimation of the uncertainties yields–as already noted in section 2.1

σE >
∣∣E2 − E1

∣∣ and σp >
∣∣p2 − p1

∣∣,
to be necessary in order to allow oscillations.
In the following, we will discuss the arguments for each of the assumptions seperately.

• The equal-energy assumption is the by far most discussed assumption. There are basically
three different arguments given for using equal energies for the mass neutrinos.

First of all, in [Lip95, Lip99] the uncertainties in the production process are considered
and it is claimed that the energy uncertainty can be neglected compared to the momentum
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uncertainty. The argument goes as follows: Assuming the initial particle, which decays
to the neutrino, to be at rest gives a momentum uncertainty from the localisation of
the particle, which, in turn, gives an energy uncertainty σEI ∼ σ2

pI/mI . Since σEI is
of second order in σpI , it is neglected. This is actually an over simplified view, because
the produced neutrino is not at rest and thus the energy uncertainty is of first order in
the momentum uncertainty: σEν ∼ σpνpν/Eν ∼ σpν . Moreover, even if σEν � σpν , the
uncertainty does not have to be exactly zero.
The second argument is given in [GL97, Lip99], where a boundary condition for the
neutrino wave function is assumed. This is, the probability of finding a neutrino with
a wrong flavour at the production point vanishes for all times. The boundary condition
then leads to a factorization of the flavour and time dependence and, by Fourier transform
of the time, to a factorization of flavour and energy. Therefore, only mass neutrinos with
the same energy can give rise to a flavour change. However, the authors did not give a
real reason why the condition should be valid for all times. And moreover, in the wave
packet picture the packets leave the region of production rather quickly which then leads
to a vanishing probability and the condition becomes meaningless [Beu03].
As a third argument a fuzziness in time is assumed [GL97, Lip99]. This comes from
the spatial spread of the wave packets which results in a non-zero overlap time with the
source (or detector). Thus, one has to average the flavour-change probability over this
fuzzy arrival time. If the source (or detector) is stationary [Sto98, Lip02] this leads to a
wash out of all terms with different energies. This can already be seen in the plane wave
picture, where the average can be written as (cf. [Beu03, Giu06])∫

dtP ei(pi−pj)(xD−xP )−i(Ei−Ej)(tD−tP ) = 2π δ(Ei − Ej) ei(pi−pj)(xD−xP )−i(Ei−Ej)tD .

This is of course only true if the integration range is infinity, which can be assumed in
the case of stationarity. If this is not the case, the delta function becomes a narrow peak
around Ei − Ej . However, real processes are not stationary on the microscopic scale,
because the particle that decays into the neutrino has an inherent energy uncertainty
due to its instability of the order 1/τ the inverse life-time. Likewise, the same is true for
the detection process.
A further argument, which is against the assumption of equal energy, is the question of
Lorentz invariance. It can be shown that the Lorentz transformation, from one frame to
another, of the energy and momentum leads to a non-vanishing difference in the energy
even if it is zero in one particular frame [Giu01].
In conlusion, the arguments for the equal-energy assumption are not very convincing, but
at least from the third argument it can be said that in the case of a nearly stationary
process the interference terms of the wave packet components with equal energies will
give the main contribution. However, this does not fix the energies to be exactly equal.

• The equal-momentum assumption is more or less the poor cousin in the discussion on
which is the right assumption. On the one side it is used by almost all authors to come
to a quick solution for the probability, but on the other side no one gives arguments for
the correctness of this assumption. On the contrary, all given arguments predict that
it is wrong. These are, in principle, all arguments that are used for the equal-energy
assumption. For example, if the uncertainty of the momentum is larger than the energy
uncertainty there is no reason to assume the momenta to be equal. Moreover, the equal
energies in a nearly stationary process predict different momenta due to the differnet
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masses. In addition, the question of Lorentz invariance provides the same difficulty as in
the energy case. That is, the assumption of equal momenta is only valid in one particular
frame [Giu01].

• The energy-momentum conservation assumption has the advantages of already contain-
ing the conservation laws of energy and momentum and on the other hand being the
most general assumption in the sense that neither the energy nor the momentum are
constrained. The missing of a constraint allows the usage of this assumption in any
Lorentz frame. One just has to transform the factor ξ into the relevant frame. In fact,
one can show that either ξ > 1/2 or ξ < 1/2 is valid in any system. In particular, this
means that a system, where the energies are equal, cannot be transformed into a system,
where the momenta are equal [Giu01], because equal energies correspond to ξ = 1 while
equal momenta correspond to ξ = 0.

The only real criticism on this assumption is made in [Beu03]. Therein, Beuthe claims
that, for example, in the case of a pion decay at rest (π → µν), the energy-momentum
uncertainty of the pion is much larger than the difference in masses m2

j −m2
i and thus it

should be meaningless to compute the values of the neutrino energy and momentum to
order m2. However, this would also mean that it is meaningless to compute a oscillation
probability since the interference terms are of order m2

j −m2
i . A more detailed analysis

of the uncertainties shows the following: From (3.24) and (3.25) the computation of the
uncertainties of pi and Ei, under the assumption of a pion uncertainty σEI , yields

σpi ∼ σEi ∼
M2m2

i

E2
I p0

σEI
EI

.

Since M/EI ∼ 1 for a pion decay it is obvious that the uncertainty for the neutrino can
be neglected—as long as σEI � EI—for the computation of the oscillation phase.

• The last assumption to be discussed is the equal-velocity assumption. As already said, it
could only be used in the case of different energy and momenta. However, there is one
argument that makes it very unlikely to use this assumption. That is, equal velocities
means equal γ-factors and hence (cf. [OT00])

Ei
Ej

=
pi
pj

=
mi

mj
.

Obviously, this can not be true for the equal energy and equal momentum case since then
also the masses must be equal. But even in the case of different energies and momenta this
relation cannot hold, because it is inherent Lorentz invariant and it was shown [Giu01]
that one can always transform to a system where either the energies or the momenta
are equal, which then, in turn, breaks the relation above. Therefore, the equal-velocity
assumption can be ruled out.

In conclusion, the assumption of energy-momentum conservation seems to be the most sat-
isfying one. On the one side it is the most general one that includes the conservation laws. On
the other side, all the other assumptions lack in some point or are only approximately valid.
However, it is possible that the equal-energy assumption or the equal-momentum assumption
are valid in some particular Lorentz frames, while the time average yields the energies to be,
at least, nearly equal.
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3.4 Remarks on the Plane Wave Treatment

The Wash-Out of the Oscillations As already mentioned in 3.1 the energy-momentum
spread of a real neutrino beam leads to a wash out of the oscillations if the time or distance
between production and detection is large enough. This can be seen in the following way: The
energy-momentum spread requires an averaging of the probability over the spread. Hence,

P̃(α→ β;L, T ) =
1

σ6
pσ

2
E

∫
d3pid3pjdEidEjP(α→ σ;L, T ), (3.30)

where P̃ is the averaged probability. In (3.4) the only part that depends on the energy and
momentum is the phase and the integration of this yields a term proprtional to (σ6

pσ
2
EL

2T 2)−1

which vanishes for large L and T . Thus, the result after the average is

P̃(α→ β;L, T ) =
1

(2π)3

∑
i

∣∣Uβi∣∣2∣∣U∗αi∣∣2,
which can be non-zero even in the case of α 6= β.

The Factor of Two Problem Several authors showed that it is possible to get an oscillation
phase that is two times the standard one [Lip95, SWS95a, SWS95b, WS96, DLDR00, DLNR04,
DLNR03]. As it is pointed out in the replies to this problem [L+96, Kay97, BLSG99, GK01,
Giu02b, OST03, Giu04b], the origin of the factor is the superposition of different mass states at
different times (or positions). In particular, if different energies or momenta are assumed, the
neutrinos will have different group velocities and thus arrive at different times Ti = (Ei/pi)L
(or positions Li = (pi/Ei)T ) at the detector. Then the phase difference is given by

φ = (pi − pj)L− (EiTi − EjTj) =
m2
j

pj
L− m2

i

pi
L

or

φ = (piLi − pjLj)− (Ei − Ej)T =
m2
j

Ej
T − m2

i

Ei
T,

which in the case of equal momenta (or energies) yields an argument twice as large as the
standard ones (3.10), (3.18), (3.22) and (3.28). This result is general and can be obtained in
all assumption schemes—except the equal-velocity assumption, where the arrival times are all
the same and the computation shown in section 3.2 then gives the standard result.
However, the important point to explain this wrong result was given by [GK01]. That is, the

different waves must be coherent, which implies additional phases as we showed in section 2.4.
If these phases are properly taken into account we obtain the standard result back.
In section 2.4 we also showed that the use of the coherence condition gives a result which

is the same as if production and detection at the same space -time points is assumed. This
means, if we ignore the possibility of different production and detection points we can, in turn,
state that the interference must be calculated at the same space-time point. This argument
was used by [L+96, Kay97, BLSG99, OST03, Giu04b].
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Do Charged Leptons Oscillate? Closely related to the factor of two problem is the ques-
tion whether the recoil particle, in for example the decay W± → l±σ + νσ, can oscillate. The
authors of [SSW95, SWS95a, SWS95b, WS96] claimed that this oscillations should appear
for recoil leptons—or, for example Λs, in the case of kaon oscillation. As pointed out by
[DMOS97, BLSG99] this effect actually bases on the assumption of superpositions at different
times. Thus, the argumentation on the correctness of these oscillations is the same as in the
factor of two case. The calculation particularly reduces to the standard case with no oscillations
if the superposition is calculated at the same space-time point. Moreover, in [GK01, Giu04b]
it is argued that oscillations in the probability of finding a charged particle are, in principle,
impossible, because this would violate the conservation of the probability. However, the mixing
matrix in (1.16) can be considered to act on the leptons rather than the neutrinos. Then the
mass leptons are different from the flavour leptons and oscillations could occur. But since the
masses of the leptons differ from around 500 keV to 2GeV very high energies which exceed a
few hundred TeV and some new physics in order to detect such a flavour superposition are
needed to get this effect [Akh07].





Chapter 4

The Intermediate Wave Packet Model

4.1 The Uncertainties of a Neutrino

In the previous chapter the description of the neutrinos was done in the plane-wave approxi-
mation, although the arguments in the discussion often relied on a wave-packet interpretation.
This already shows the insufficiency of regarding neutrinos as plane waves. A more important
reason why one has to use wave packets instead comes from the experimental conditions. In
particular, neutrino-oscillation experiments are localised in space and the important measure-
ment is the distance between production and detection. This is contrary to usual high-energy
physics experiments, where one is more interested in the energies and momenta of the parti-
cles. Thus, the usual plane-wave approximation cannot hold for neutrinos. Moreover, as will
presented shortly, a too precise measurement of energy and momentum destroys the oscillation
behaviour.
Even though the plane-wave and wave-packet approach seems to be quite different, there is

an interesting feature that should be noted. In 1996, Kiers, Nussinov and Weiss [KNW96]
showed that it is impossible to perform an experiment which can discriminate between an
ensemble of wave packets with equal mean energy Ē and energy spread σE and an ensemble of
plane waves, whose definite energies are distributed around Ē with the same spread ∆E = σE .
However, before the wave-packet treatment will be described some comments on the involved

uncertainties shall be made. Since this is done in detail in [KP93, GK07] only a summary of
the important points will be given here.
The first who considered the effects of wave packets on neutrino oscillations was Nussinov

in 1976 [Nus76] who used simple physical arguments in order to estimate a size of the packets.
From the separation of the packets due to their different velocities, he could then predict a
coherence length, which describes the maximal distance in which oscillation can occur. Twenty
years later, he together with Kiers and Weiss [KNW96, KW98] showed, that the coherence
of the different mass neutrinos could be restored, even if they are spatially separated, by taking
into account the temporal resolution of the detection process. This was already noted when
the interference at different space-time points was discussed in section 2.4.
In 1981 Kayser [Kay81] studied the influence of the uncertainties on neutrino oscillations.

In particular, he showed, that the energy or momentum uncertainties, σE or σp, for the neutrino
become smaller than the energy or momentum difference of the corresponding mass neutrinos,
|Ei − Ej | or |pi − pj |, by for example more precise measurements on the initial and recoil
particles of the production. Under this assumption, on the one hand one precisely knows which
mass neutrino is produced and on the other hand the induced spatial uncertainty σx ∼ 1/σE
or σx ∼ 1/σp becomes larger than the oscillation length, which leads to a wash out of the
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oscillations.
Therefore, the requirements for oscillations to occur can be summarised (for relativistic

neutrinos) as follows:

1
σE
∼ 1
σp
∼ σx < Losc ∼

1∣∣Ei − Ej∣∣ ∼ 1∣∣pi − pj∣∣ . (4.1)

In the following we will give an estimation of the wave-packet size for the general case and
particularly for the muon decay (the more detailed description can be found in [GK07] p. 311ff).
There are basically two different mechanisms influencing the size of the wave packet. They
depend on the physical situation.

Natural Linewidth If the neutrino is produced in a decay of a free particle, the important
influence on the wave-packet size comes from the mean life time of the decaying particle. That
is, the emission of a coherent wave train will be interrupted due to the decay of the particle.
Therefore, the maximum size of the wave packet—for a relativistic neutrino—can be estimated
to

σx ∼ τX ,

where τX is the mean life time of the decaying particle X. This is valid in the rest frame of
the decaying particle. If it decays in flight, the relativistic time dilation changes the size of the
wave packet to

σx ∼ γτX ,

where the usual γ-factor was included. This factor is given by γ = EX/mX , the ratio of the
energy and mass of the decaying particle.
For the muon decay

µ+ −→ e+ + νe + νµ

at rest we can estimate the size of the wave packet to

σx ∼ τµ ∼ 2.2 · 10−6s ∼ 103m ∼ 1010eV−1.

The corresponding momentum uncertainty is then

σp ∼
1
σx
∼ 10−10eV.

Collision Broadening If the neutrino is produced in a decay of a particle contained in a
medium, there are more effects that influence the size of the wave packet. In particular, the
emission of a coherent wave train will be interrupted if one of the involved particles collides
with a particle of the medium. Thus, the important time scale is the average time between
two collisions:

τ ∼ min
X

[
`X
vX

]
,

where `X is the mean free path of particle X and vX its velocity. X can be any of the involved
particles without the neutrinos, because they are relativistic and leave the region as soon as
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they are produced. The velocities can be estimated for the initial particles by the mean thermal
velocity and for the produced particles by the kinematics of the process. The mean free path
is a bit more complicated. It is defined as

`X =
1

πb2N
,

where N is the particle number density of the medium and b the impact parameter for the
Coulomb scattering with the electric field of the nuclei, which can be written as

b ≈ 4παZ
T

.

Here, α is the fine-structure constant, T the kinetic energy and Z the atomic number of the
nuclei in the medium. There is, however, an upper bound for the impact parameter. That
is, it cannot exceed half the mean internuclear distance, which can be estimated by 1/N1/3.
Therefore, ` cannot be smaller than ∼ 1/N1/3.
For a muon that decays in graphite at 300K. The values are Z = 6 and N ≈ 1023cm−3.

Then the internuclear distance is 1/N1/3 ≈ 2 ·10−8cm and the kinetic energy is T ≈ 4 ·10−2eV.
From this we get a mean free path of `µ ≈ 5 · 10−17cm, which is smaller than the internuclear
distance. Therefore, the value for the mean free path is given by the internuclear distance. The
velocity of the muon is vµ =

√
2T/mµ ∼ 2 · 10−5. Thus, σx ∼ 10−3cm. The mean free path of

the positron is the internuclear distance since it is annihilated as soon as it meets an electron.
The velocity can be assumed to be ∼ 1 since it is relativistic. Thus σx ∼ `e ∼ 2 · 10−8cm.
Which is smaller than the muon contribution. Therefore, for the neutrino we can estimated
σx ∼ 2 · 10−8cm and σp ∼ 2 · 103eV.

There is an important difference between the uncertainties and the production and detection
at different space-time points. That is, if all waves are produced at the same space-time point
they will have a spatial uncertainty due to the localisation of the production process and the
momentum uncertainty involved in this process. After they travelled to the detector, they
will be detected at one specific space-time point. But since the detection process also involves
some spatial and temporal uncertainties due to the localisation and finite detection time, this
detection can in principle take place everywhere inside these uncertainties. Therefore, the
detector has to be described as a wave packet and the probability is the overlap integral over
the wave packet and the detector. On the other side, if production and detection at different
space-time points are considered, this does not influence the shape of the wave packets neither
at the detector nor at the source and only effects the phases. But the phases have to satisfy
the coherence condition which means they can be regarded as produced at some point and
detected at some other specific point

4.2 Gaussian Wave Packets

In this section we will review the calculation of the flavour changing probability for the case
of Gaussian wave packets. This was first done in 1991 by Giunti, Kim and Lee [GKL91] (a
summary of this paper can be found in [KP93]) and extended by Giunti and Kim in 1997
[GK98], where they took into account the spatial coherence width of the detection process.
Finally, in 2002 Giunti [Giu02b] also included the temporal coherence width of the detection
process. Moreover, a summary of the whole calculation in three spatial dimensions can be
found in [GK07].
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Since we already introduced the most general treatment in chapter 2, we can directly calcu-
late the version of [Giu02b] just by fixing the wave functions ψi(x,xP , t, tP ) for the propagating
mass neutrinos and the functions ψDi (x,xD, t, tD) for the detection process. As the title of
this section implies, we will describe the mass neutrinos as Gaussian wave packets. Thus, we
can use the following momentum space wave function

ψi(p) =
1

(2πσ2
pP )3/4

exp
(
− (p− p̄i)2

4σ2
pP

)
, (4.2)

where σpP is the momentum width of the packet coming from the uncertainty of the production
process and p̄i is the mean momentum of the wave packet. The factor in front of the exponential
normalises the packet to ∫

d3p
∣∣ψi(p)

∣∣2 = 1. (4.3)

Nevertheless, we will forget about the normalisation factors in the following calculation. But,
however, we will come back to this question in the final result for the probability, which will
then be normalised to (2.18).
The next step is to Fourier transform the momentum space function (4.2) into the position

space. Therefore, we use (2.11) which yields

ψi(x,xP , t, tP ) =
∫

d3p

(2π)3/2
ψi(p)eip·(x−xP )−iE(p)(t−tP )

=
1

(2πσ2
xP )3/4

exp
[
ip̄i · (x− xP )− iĒi(t− tP )

]
· exp

(
−
[
(x− xP )− v̄i(t− tP )

]2
4σ2

xP

)
(4.4)

In order to get this analytical result, we expanded the energy Ei(p) around the mean momen-
tum p̄i. Thus,

E(p) = Ēi + (p− p̄i) · v̄i with Ēi =
√
p̄2
i +m2

i , v̄i =
p̄i
Ēi
, (4.5)

where v̄i is the group velocity of the wave packet. It is important to note that the neglection
of higher order terms in the expansion also means a neglection of the spreading of the wave
packet. This can be done for relativistic neutrinos. The new width σxP introduced in (4.4) is
the spatial wave packet width, which is related to the momentum width by

σxP σpP =
1
2
. (4.6)

The integral in (4.4) and most of the following integrals are Gaussian. Therefore, they can
be calculated analytically.
Before we can actually calculate the amplitude (2.16), we have to find an explicit form for

the wave function that describes the detection process. In order to get an analytical result we
use a Gaussian wave packet which shall be localised around the detection point xD with the
spatial and temporal widths σxD and σtD , respectively:

ψDi (x,xD, t, tD) ∝ exp
[
ip̄i · (x− xD)− iĒi(t− tD)

]
exp

(
− (x− xD)2

4σ2
xD

− (t− tD)2

4σ2
tD

)
. (4.7)
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The mean energy and momentum of the detection process are the same as those of the propagat-
ing mass neutrino. This is necessary, because the incoming mass neutrino excites the degree
of freedom of the detection process which corresponds to its mean energy and momentum
[Giu02b].
Now, we have everything together in order to calculate the amplitude (2.16). That is,

A(α→ β;L, T ) ∝
∑
i

UβiU
∗
αi

∫
dt
∫

dx

· exp
[
−ip̄i · (x− xD) + iĒi(t− tD)

]
exp

(
− (x− xD)2

4σ2
xD

− (t− tD)2

4σ2
tD

)

· exp
[
ip̄i · (x− xP )− iĒi(t− tP )

]
exp

(
−
[
(x− xP )− v̄i(t− tP )

]2
4σ2

xP

)

∝
∑
i

UβiU
∗
αi exp

(
ip̄i ·L− iĒiT

)
exp

(
−
(
L− v̄iT

)2
4σ2

xi

)
, (4.8)

where for simplicity a new width σxi was introduced. It is related to the other widths by

σ2
xi := σ2

xP + σ2
xD + v̄2

iσ
2
tD . (4.9)

Result (4.8) shows that each mass neutrino is detected in a space-time region of width σxi
around the space-time point (L, T ). The size of this region is determined by the width of the
propagating wave packet and the spatial and temporal coherence widths of the detection pro-
cess. The dominating contribution comes obviously from the largest of these widths. However,
since we already assumed relativistic neutrinos in order to neglect the wave packet spreading,
we can use this assumption again and approximate

σ2
xi ≈ σ

2
xP + σ2

xD + σ2
tD = σ2

x. (4.10)

From the amplitude (4.8) we can now derive the probability for the flavour change by taking
the absolute square. Hence,

P(α→ β;L, T ) ∝
∑
i,j

UβiU
∗
αiU

∗
βjUαj exp

[
i(p̄i − p̄j) ·L− i(Ēi − Ēj)T

]

· exp

(
−
(
L− v̄iT

)2
4σ2

x

−
(
L− v̄jT

)2
4σ2

x

)
. (4.11)

This probability contains the same problem as the one for the plane-wave treatment (3.4).
That is, we need to know the time interval between the production and detection processes in
order to really calculate P(α→ β;L, T ), but as we said in chapter 3.1 the time is not measured
in usual neutrino oscillation experiments. Therefore, we have to dispose the time dependence.
In the plane-wave treatment this was done by using different assumptions which then allow a
conversion of the time into a distance dependence. However, for the wave-packet treatment
we cannot use this assumptions, because they rely on well-defined energies and momenta for
the mass neutrinos, which are not given for a wave packet that has inherent uncertainties.
Therefore, we have to use another possibility, which will be the average over the time interval
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T . Performing the corresponding integral, which is again Gaussian, yields

P (α→ β;L) ∝
∫

dT P (α→ β;L, T )

∝
∑
i,j

UβiU
∗
αiU

∗
βjUαj exp

(
i(p̄i − p̄j) ·L− i(Ēi − Ēj)

v̄i + v̄j
v̄2
i + v̄2

j

·L
)

· exp

(
− (Ēi − Ēj)2σ2

x

v̄2
i + v̄2

j

− L2

2σ2
x

+
(v̄i ·L)2 + (v̄j ·L)2

2σ2
x(v̄2

i + v̄2
j )

−
[
(v̄i − v̄j) ·L

]2
4σ2

x(v̄2
i + v̄2

j )

)
.

(4.12)

In order to get a simplified expression we expand the mean momentum p̄i in powers of
m2
i . This is the same as we have done in the energy-momentum conservation assumption in

chapter 3.2, but now we will use the more general ansatz in three spatial dimensions. Thus,

p̄i ≈ p0 − ξ
m2
i

2p0
with

ξ

2p0
= − ∂pi

∂m2
i

∣∣∣∣
mi=0

, (4.13)

where p0 is the vector and p0 the absolute value of the momentum of a massless neutrino.
While ξ is the three dimensional generalisation of the factor ξ introduced in chapter 3.2. The
higher order terms can be neglected, because we will only consider relativistic neutrinos here.
The same will be done in all following expression.
Using the dispersion relation Ēi =

√
p̄2
i +m2

i yields the expression

Ēi ≈ p0 +
(

1− p0 · ξ
p0

)
m2
i

2p0
(4.14)

for the mean energy of the ith mass neutrino. The last quantity that we will approximate is
the mean velocity, which is given by the ratio of the mean momentum and energy. Hence,

v̄i ≈
p0

p0
−
[
p0

p0

(
1− p0 · ξ

p0

)
+ ξ
]
m2
i

2p2
0

. (4.15)

Now we can insert these approximations into the probability (4.12) and neglect all appearing
terms of higher than second order in m2

i . The resulting probability for relativistic neutrinos is

P (α→ β;L) =
∑
ij

UβiU
∗
αiU

∗
βjUαj exp

[
−2πi

L

Loscij
− 2π2

(
1− L · ξ

L

)2(
σx
Loscij

)2

−
(

L

Lcohij

)2
]

(4.16)

with the oscillation and coherence lengths

Loscij =
4πp0

m2
i −m2

j

and Lcohij =
4
√

2p2
0

m2
i −m2

j

σx. (4.17)

Throughout the whole calculation we did not care about the factors in front of the exponen-
tial. This will be changed now. The normalisation condition (2.18) can easily be applied on
(4.16). If we for example take the sum over α, we can use the unitarity of the PMNS-matrix
and the fact that all terms in the exponential vanish if i = j and get as a result just 1. This
means, the probability is already normalised, which allows us to use the equal sign in (4.16)
rather than the proportional sign.
In the following we will explain the physical meaning of the three exponential factors in the

probability.
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The phase factor

exp
[
−2πi

L

Loscij

]
(4.18)

This factor describes the actual oscillations. As can be seen from chapter 3, it is exactly the
same as in the plane-wave treatment.

The localisation term

exp

[
−2π2

(
1− L · ξ

L

)2(
σx
Loscij

)2
]

(4.19)

This term suppresses the oscillations if σx � Loscji . This means, in order to get oscillations the
production and detection process must be localised in a region much smaller than the oscillation
length. This is the reason why it is called localisation term. Since in usual experiments this
condition is very well satisfied, we can ignore the this term and only use the effective probability

P (α→ β;L) =
∑
ij

UβiU
∗
αiU

∗
βjUαj exp

[
−2πi

L

Loscij
−
(

L

Lcohij

)2
]
. (4.20)

The coherence term

exp

[
−
(

L

Lcohij

)2
]

(4.21)

This term suppresses the oscillations if the distance L becomes larger than the coherence length,
that is L� Lcohij . As could be seen in the detailed calculation of the probability, the coherence
term basically comes from the last term in (4.12), which becomes large if the velocity of the
wave packets is different. Therefore, this term describes the suppression of the oscillations
due to the separation of the wave packets for different mass neutrinos. If the packets are too
much separated they cannot have an overlap with the detection process and thus they cannot
be detected coherently. In this case the coherence term yields an effective flavour changing
probability, which is simply the probability for an incoherent mixing

P (α→ β;L) =
∑
i

∣∣Uβi∣∣2∣∣U∗αi∣∣2. (4.22)

If L� Lcohij , the coherence is satisfied and the effective probability reduces to the one already
obtained in the plane-wave picture

P (α→ β;L) =
∑
i

∣∣Uβi∣∣2∣∣U∗αi∣∣2 + 2Re

[∑
i<j

UβiU
∗
αiU

∗
βjUαj exp

(
2πi

L

Loscji

)]
. (4.23)





Chapter 5

The External Wave Packet Model

During the last 20 years a number of models to describe neutrinos in QFT have been published.
According to Beuthe [Beu03, Beu02] all these models can be grouped into four different
categories: the external wave-packet models, the stationary boundary-conditions models, the
source-propagator models and the Blasone-Vitiello models. Since the last category of models
uses a different approach than the other models, we will postpone its discussion to chapter 8.
The source-propagator models proposed by Srivastava, Widom and Sassaroli [SWS98],
where the neutrino is described by its propagator, which is coupled to a source but not to a
detector, leads to non-standard oscillation lengths or oscillations of the recoil particle. The
reason is the same as in chapter 3.4 where the factor of two problem and the oscillation of recoil
particles was discussed. Since we ruled out these result, we will not discuss the QFT version of
it here. The stationary boundary-conditions models describe the neutrino as an internal particle
produced in a certain process which then propagates and is detected in another certain process.
The important boundary condition assumed in these models is the stationarity of the source
and the detector. This condition leads to a unique value for the energy of the neutrinos. The
best examples of this kind of models are given by Grimus and Stockinger [GS96] as well as
Cardall and Chung [CC99]. As was shown by Beuthe [Beu03, Beu02], these models are
actually special cases of the general external wave-packet model. Therefore, we will also not
describe them here. The last category is the external wave-packet model whose first version
for neutrinos was proposed by Giunti, Kim, Lee and Lee [GKLL93] and then a few years
later generalised by Giunti, Kim and Lee [GKL98]. In this model they used Gaussian wave
packets for the external particles and described the neutrino by its propagator. Similar models
were used by Kiers and Weiss who replaced the external wave packets by quantum oscillators
[KW98] and by Cardall who pays more attention on the spin structure [Car00]. The most
general version of this kind of models was given by Beuthe [Beu03, Beu02]. In this chapter we
will review his computation of the neutrino oscillation formula. The whole calculation involves
quite a lot of steps, which are given in great detail in [Beu03]. Therefore, we only present the
main steps and arguments here. To be consistent with the original computation we have to
change some of our notations, but this will be explicitly noted when it is important.

5.1 The Jacob-Sachs Model

The first authors who used a model in line with the external wave-packet model were Jacob
and Sachs. They used it to describe the propagation of unstable particles in QFT [JS61].
A few years later Sachs applied the model to Kaons in order to describe their oscillations
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x x′

xP xD

PI(q)

PF (k)

DI(q′)

DF (k′)

L, T

Figure 5.1: Propagation of the neutrino between the source and the detector centered around
xP and xD, respectively (reproduced according to [Beu03]).

[Sac63]. In the following section we will describe this model and how it can be applied to the
description of neutrino oscillations.

The Feynman Diagram The basic point in the external wave-packet model is that the
neutrino is not considered as an observable particle, which is produced and/or detected, but
the whole process starting from the particle which produces the neutrino up to the particles
which are produced in the neutrino detection is consider as on quantum field theory process.
This description avoids the problem that we cannot regard the neutrino as an asymptotically
particle. Of course, we have to assume that the external particles for the overall process can
be considered as asymptotically free. In figure 5.1 we have depicted the situation. We consider
the production process PI → PF + ν and the detection process ν +DI → DF , where P and D
symbolises all particles involved in these processes. The 4-momenta of the external particles
are q, k, q′ and k′, respectively. If we assume the production and detection to take place at
xP = (tP ,xP ) and xD = (tD,xD) we can have the actual interaction points at x = (t,x)
and x′ = (t′,x′), which lie somewhere inside the production and detection regions depicted as
circles around xP and xD. These, regions appear, because we assume the external particles
to be described as wave packets. The neutrino is then a internal particle that propagates the
macroscopically distance L in the time T . Note that we can consider the diagram as a Feynman
diagram if we remove the circles.

The Wave Packets Before we go on with this analogy we will briefly introduce the notation
for the wave packets, which we will use in the following. The notation and normalisation follows
roughly the one used in [PS95]. That is, the state vector which describes a particle with mass
m is given as the wave packet ∣∣ψ〉 :=

∫
[d3k]ψ(k)

∣∣k〉,
where [d3q] is the integration measure given by

[d3k] :=
d3k

(2π)3
√

2E(k)
,

with E(k) =
√
k2 +m2. Note that there is no time-dependence for the state vector |ψ〉. This

follows from the fact that we work in the interaction picture, where the time-dependence of the
momentum eigenvector |k〉 is given by a phase exp(iE(p)t), while the momentum space wave
function ψ(k) evolves in time due to a phase factor exp(−iE(p)t). Thus, both dependencies
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cancel each other. However, if we want to calculate the configuration space wave function by
means of a Fourier transformation we have to take the time dependence into account.
Furthermore, we will denote a momentum wave function which is sharply peaked and sym-

metric around K by ψ(k,K). The corresponding configuration space wave function is then
centered around the spatial origin. By means of the space-time translation operator exp(iP ·x0)
we can shift this the maximum to x0 and time t0. The corresponding momentum space wave
function is then denoted by

Ψ(k,K,x0, t0) := ψ(k,K)eiE(k)t0−ikx0 .

The Fourier transformation of this wave function then gives the configuration space wave
function

Ψ̃(x, t,x0, t0) =
∫

d3k

(2π)3
ψ(k,K)e−iE(k)(t−t0)+ik(x−x0). (5.1)

For simplicity we will assume that the external particles PI , PF , DI and DF only consists of
one particle whose corresponding state vectors are given as∣∣PI〉 :=

∫
[d3q]ΨPI (q,Q,xP , tP )

∣∣PI(q)
〉
,∣∣PF 〉 :=

∫
[d3k]ΨPF (k,K,xP , tP )

∣∣PF (k)
〉
,∣∣DI

〉
:=
∫

[d3q′]ΨDI (q
′,Q′,xD, tD)

∣∣DI(q′)
〉
,∣∣DF

〉
:=
∫

[d3k′]ΨDF (k′,K′,xD, tD)
∣∣DF (k′)

〉
,

The Amplitude As we mentioned before, we will interpret the process shown in figure 5.1
as a Feynman diagram with an additional folding with the initial and final particles’ wave
function. In turn this means we can compute the amplitude for the whole process of neutrino
production, propagation and detection by using the usual QFT rules for such diagrams. For
simplicity we will consider the neutrino as a scalar particle and ignore the spin structure. This
can be done because we can factorise the spin part from the rest of the amplitude. In order to
“proove” this we have to distinguish between three different possibilities [Beu03]:

1. If the neutrinos are relativistic their chirality and helicity is the same as we already noted
in chapter 1.2. Since the weak interactions involve only left-handed neutrinos we know
that only this helicity eigenstates propagate. Thus, we can factorise the spin structure
from the amplitude, which can then be evaluated as if the neutrinos were scalars, i. e.

Aspin = H(s)Ascalar

where H(s) includes all spin relevant factors.

2. If the neutrinos are non-relativistic but have nearly degenerated masses, the spin structure
for the different helicities is nearly the same and we can again take the spin part out of
the sum over the mass eigenstates∑

i

UβiAspin
i Uiα ∼

(∑
s

H(s)
)∑

i

UβiAscalar
i Uiα.
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3. If the neutrinos are non-relativistic with very different masses we cannot factorise the
amplitude. However, the case of very different masses is not relevant for NO because this
situation corresponds to an incoherent mixing of the mass neutrinos and not a coherent
one which is necessary for oscillations. However, even if an experiment can produce a
coherent mixing for this case, the energy and momentum uncertainties would average out
the oscillation effect quite rapidly.

Thus, in conclusion we can neglect the spin structure in all cases relevant for oscillations.
Now we can come back to the diagram in figure 5.1. Using the common Feynman rules yields

the amplitude

A(α→ β;L, T ) =
〈
DF , DI

∣∣T[exp
(
−i
∫

d4xHI
)]
− 1
∣∣PI , PF 〉, (5.2)

where HI is the interaction Hamiltonian, T is the time-ordering operator and we included
the 1 to avoid the calculation of the trivial process, because in that case no neutrino would
propagate. For the explicit calculation of the amplitude we expand the exponential to second
order in the coupling constant in HI , which yields

A(α→ β;L, T ) =
∫

[d3q]ΨPI

∫
[d3k]Ψ∗PF

∫
[d3q′]ΨDI

∫
[d3k′]Ψ∗DFAplane(q, k, q′, k′) (5.3)

where Aplane is the amplitude if all external particles were plane waves:

Aplane(q, k, q′, k′) =
∫

d4xMP (q, k)e−i(q−k)x

∫
d4x′MD(q′, k′)e−i(q′−k′)x′

G(x′ − x). (5.4)

HereMP (q, k) andMD(q′, k′) are the amplitudes for the interactions at the production and
detection vertex, respectively. The propagator for the neutrino is a bit more complicated. Since
the neutrinos which interacts at x and x′ are flavour neutrinos we cannot just write down the
propagator as in the case of a mass neutrino. However, by definition we have

Gβα(x′ − x) :=
〈
0
∣∣T(νβ(x′)ν∗α(x)

)∣∣0〉, (5.5)

which is the time-ordered two-point function. If we now insert the mixing of the field operators

να =
∑
i

Uαiνi, (5.6)

we obtain

Gβα(x′ − x) =
∑
ij

Uβi
〈
0
∣∣T(νi(x′)ν∗j (x)

)∣∣0〉U∗jα
=
∑
i

UβiGiiU
∗
iα, (5.7)

with the diagonal propagator for the mass neutrinos

Gii(x′ − x) =
∫

d4p

(2π)4
e−ip(x′−x) i

p2 −m2
i + iε

=
∫

d4p

(2π)4
e−ip(x′−x)Gii(p2). (5.8)



5.2 External Particles as Gaussian Wave Packets 45

We assume that the renormalisation has been carried out and thus mi is the physical mass of
the neutrino νi. After a shift in the variables x and x′ we finally obtain the amplitude

A(α→ β;L, T ) =
∑
i

UβiAi(i→ i;L, T )U∗iα

=
∫

d4p

(2π)4
ψ(p0,p)Gii(p2)e−iE(p)T+ipL, (5.9)

where ψ(p0,p) is the overlap function that describes the overlap of the wave packets both at
the source and the detector. It is given by

ψ(p0,p) =
∫

d4xeipx

∫
d4x′e−ipx′

∫
[d3q]ψPI (q,Q)e−iqx

∫
[d3k]ψ∗PF (k,K)eikx

·
∫

[d3q′]ψDI (q
′,Q′)e−iq′x′

∫
[d3k′]ψ∗DF (k′,K′)eik′x′

MP (q, k)MD(q′, k′). (5.10)

Thus, the final amplitude A(α→ β;L, T ) is the sum of the amplitudes Ai(i→ i;L, T ), where
the internal particle is a mass neutrino weighted by the mixing matrix elements UβiU∗iα.

5.2 External Particles as Gaussian Wave Packets

The crucial step in the actual calculation of (5.9) are the integrations within the overlap
function. In most cases it is not possible to do this analytically. One exception is the assumption
of plane waves for the external particles. But this is spoiled by the same problems as in the
quantum mechanical plane wave approximation. Another possibility is the assumption of
Gaussian wave packets for the external particles. This is the approach done first in [GKLL93]
and later in [Beu03]. As we already said we will not describe details here. The whole calculation
can be found in [Beu03].

Gaussian Wave Packets A Gaussian wave packet in the normalisation of [Beu03] is given
as

ψχ(p,pχ) =
(

2π
σ2
pχ

)3/4

exp
(
−

(p− pχ)2

4σ2
pχ

)
. (5.11)

By using (5.1) we find the configuration space version of it if we expand the energy to second
order around the mean momentum pχ

E(p) ' Eχ + vχ · (p− pχ) +
1

2Eχ

(
(p− pχ)2 −

(
vχ · (p− pχ)

)2) (5.12)

with Eχ =
√
p2
χ +m2

χ and vχ = pχ/Eχ. The Fourier transformation then yields

ψ̃χ(x, t,pχ) =
(2πσ2

xχ)−3/4

√
det Σ

exp
(
−iEχt+ ipχx−

(x− vχt)Σ−1(x− vχt)
4σ2

xχ

)
(5.13)

with

σxχσpχ =
1
2

and Σij = δij + (δij − vivj)
2itσ2

pχ

Eχ
. (5.14)
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The matrix Σ is important because it detemines the spreading of the wave packet. As can be
shown this spreading is different for the directions transverse and along vχ. In particular, the
transverse spreading begins at t ' Eχ/2σ2

pχ , whereas the longitudinal spreading begins at the
later time t ' E3

χ/2m
2
χσ

2
pχ . This will become important later.

For the external wave packets we will neglect the spreading. Additionally, we assume that the
factorsMP (q, k) andM(q′, k′) vary only slowly over the width of the wave packets. Therefore,
we can approximate them by their value at the mean momentum of the wave packets and then
take them out of the integrals in the overlap function. Moreover, we can take them out of
the sum over the different mass eigenstates, because we suppose the neutrinos to be either
relativistic or having nearly degenerate masses, which results in the same factor for all mass
neutrinos.
The different integrals in the overlap function can now be calculated. Finally we arrive at

ψ(p0,p) ∼ ψP (p0,p)ψ∗D(p0,p) (5.15)

with

ψP/D(p0,p) ∼ exp

[
−

(p− pP/D)2

4σ2
pP/D

−
(
p0 − EP/D − (p− pP/D) · vP/D

)2
4σ2

EP/D

]
(5.16)

The new energy and momentum variables are

pP := Q−K, EP := EPI − EPF ,
pP := K′ −Q′, ED := EDF − EDI .

The explicit form of the uncertainties and velocities shall not be of interest to us at this
point. However, they can be interpreted as the momentum and energy uncertainties as well
as the velocities of the source and detector, respectively. Since the propagation distance is
macroscopically for neutrino oscillations, the production and detection processes have to satisfy
global energy-momentum conservation laws. Therefore, we can impose the conditions

pP = pD = p0 and EP = ED = E0. (5.17)

5.3 Three Different Amplitudes

The Pole Integration In the last section we found an expression for the overlap function.
Thus, the last step in the computation of the amplitude is the momentum integral (5.9). We
will do this integration in two steps, first we integrate over p0 to get rid of the poles in the
propagator and then we do the p integration.
The integration over p0 involves a careful choice of the integration contour, because the

overlap function diverges at infinity in the complex plane. Since we will not go into detail,
we just mention that we can perform the integration by using the Jacob-Sachs theorem (cf.
[Beu03] appendix A). This theorem states that the integral has for T → ∞ the asymptotical
behaviour ∫

dp0ψ(p0,p)G(p2)e−ip0T → π

E(p)
ψ(E(p),p)e−iE(p)T . (5.18)

Thus, the remaining part of the amplitude is given by

Ai ∼
∫

d3p

Ei(p)
ψ(E(p),p)e−iE(p)T+ipL, (5.19)
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which can be seen as an amplitude in the intermediate wave packet model. The overlap function
would then be the wave function for the ith mass neutrino. Hence, we can interpret the process
in figure 5.1 as the production of a neutrino as a superposition of wave packets one for each
mass neutrino, which are then detected. Nevertheless, there is an important difference to this
model. That is, the overlap function contains the information on the source as well as the
detector which spoils the causality. This point was discussed in detail by Giunti [Giu02a]
who showed by using a different ansatz that the produced wave packets are only functions of
ψP (p0,p). The phase factor then comes from the propagation and the detection process finally
leads to the remaining function ψ∗D(p0,p).

The 3-Momentum Integrations Unfortunetaly, the last integration over the 3-momentum
cannot be done analytically. But according to the form of the integrand we have two possibilities
for an approximation:

1. Laplace’s method [BO78]: Since the overlap function is of the form I = exp(−af(p))
where a is a large parameter, we can expand the integrand around the minimum of f(p)
to second order and then perform a Gaussian integration.

2. Method of stationary phase [BO78]: Since the phase contains the large parameters T
and L the phase oscillates rapidly. This allows us to expand the integrand around the
stationary point of the phase to seccond order and then perform a Gaussian integration.

Since we cannot use both approximations at the same time, we have to decide which is more
useful. Laplace’ method is preferable if the phase varies slowly over the overlap function,
whereas the method of stationary phase is applicable if the phase varies rapidly over the overlap
function. It can be shown [Beu03] that this difference is connected to the spreading of the
overlap function. If we can neglect the spreading we prefer Laplace’s method. In the cases
where we cannot neglect the spreading we will use the method of stationary phase. As we have
seen before, the spreading depends on the direction which in the end leads us to divide the
propagation range into three different parts:

1. The no-dispersion regime, where we can neglect the spreading in all directions and thus
use Laplace’s method.

2. The transversal-dispersion regime, where we can only neglect the spreading in the longi-
tudinal direction. Therefore, we use Laplace’s method for the longitudinal direction and
the method of stationary phase for the transverse directions.

3. The longitudinal-dispersion regime, where we have to take into account the spreading in
all directions and thus will use the method of stationary phase.

In the following we describe the oscillation in each regime seperately.

Oscillations in the No-Dispersion Regime If the neutrino is not too far away from
the source, we can assume that the phase in (5.9) varies slowly over the width of the overlap
function. Therefore, we can use Laplace’s method to get an approximation for the 3-momentum
integral in (5.9). The term “not too far away” corresponds to a vanishing dispersion for the
overlap function. It can be shown that the dispersion is negligible for distances L ≤ p0/σ

2
p,

where σp is defined by

1
σ2
p

=
1
σ2
pP

+
1
σ2
pD

, (5.20)
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and is thus dominated by the smallest width among the production and detection widths
[Beu03]. This threshold for the no-dispersion regime is rarely of the order of a macroscopic
distance. And thus usual NO are not present in this regime. Nevertheless, we can compute
the amplitude by finding the momentum pi which maximises the overlap function. The whole
integrand can then be expanded to second order around this momentum, which allows us to
perform a Gaussian integration. The final result for the amplitude has the form [Beu03]

Ai ∼ exp
(
−iEiT + ipiL− fi(pi)− Fi(T )

)
, (5.21)

where the factor Fi(T ) describes the space-time envelope of the propagating wave packet,
whose explicit form does not interest us here. The factor fi(pi) represents the exponent in
(5.16) taken at pi.
After having found the amplitude we can go on and compute the probability. In order to

get a time-independent probability we average the absolute square of the amplitude over the
propagation time T just as we have done it in the intermediate wave packet model. Thus, the
probability is given by

P(α→ β;L) ∼
∑
i,j

UβiU
∗
iαU

∗
βjUjα

∫
dTAiA∗j . (5.22)

Inserting the amplitude (5.21) and performing the integration over T finally yields [Beu03]

P(α→ β;L) ∼
∑
i,j

UβiU
∗
iαU

∗
βjUjα exp

(
− (ṽ0 × L̃)2

2σ2
xṽ

2
0

)

· exp
(
−2πi

L

Loscij
−

(m2
i −m2

0)2 + (m2
j −m2

0)2

16σ̃2
mE

2
0

− 2π2

(
ρ̃σ̃xeff
Loscij

)2)
(5.23)

with

Loscij =
4πp0

m2
i −m2

j

. (5.24)

The mass m0 corresponds to the momentum p0 and energy E0, while σ̃m can be interpreted as
a mass uncertainty and σ̃xeff as an effective spatial uncertainty build from the uncertainties of
the production and detection region. The explicit form will not interest us. ρ̃ is a factor which
describes the deviation of Ei and E0.
We will explain the different terms after the discussion of the two other regimes.

Oscillations in the Transverse-Dispersion Regime If the distance from the source does
not satisfy the relation L < p0/σ

2
p, we cannot use Laplance’s method for all three spatial

dimensions. However, if the distance satisfy the relation [Beu03]

L < Ldisp =
p0E

2
0

2m2
iσ

2
peff

, (5.25)

we can at least neglect the spreading in the direction of the momentum. σpeff is again an
effective width given by the production and detection widths.
The integration over the 3-momentum in (5.9) involves now two steps. First we have to

perform the integration over the transverse momenta by using the method of stationary phase.
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That is we expand the integrand around the stationary point of the phase to second order and
then perform a Gaussian integration. The second step is the integration over the longitudinal
momentum using Laplace’s method. The result is given by [Beu03]

Ai ∼
g(`)σpeff

T
√

1 + iT/T dispi

exp
(
−iEiT + ipiL− fi(pi)−

1

1 + iT/T dispi

(viT −L)2

4σ2
xeff

)
(5.26)

with

g(`) = exp
(
− (p0 × `)2

4σ2
p

)
and ` =

L

L
(5.27)

which restricts the propagation to a cone around the axis p0 with the angle arcsin(σp/p0). The
dispersion time T dispi is defined by Ldispi = v0T

disp
i . Using (5.22) allows the computation of

the corresponding probability [Beu03]

P(α→ β;L) ∼v0σpeff
g2(`)
L2

∑
i,j

UβiU
∗
iαU

∗
βjUjα

· exp
(
−2πi

L

Loscij
−

(m2
i −m2

0)2 + (m2
j −m2

0)2

16σ2
mE

2
0

− 2π2

(
ρσxeff
Loscij

)2

−
(

L

Lcohij

)2)
,

(5.28)

where σm, σxeff and ρ have the same interpretation as in the no-dispersion regime but with a
slightly different definition. The main difference to the result in the previous paragraph is the
additional term which defines a coherence length Lcohij given by

Lcohij =
1√
2π

p0

σpeff
Loscij . (5.29)

Oscillations in the Longitudinal-Dispersion Regime If the propagation distance is
larger then the dispersion distance Ldisp we cannot neglect the spreading in the longitudinal
direction. Thus, we have to use the method of stationary phase for all integrals and expand
the integrand in terms of the stationary momentum pcl,i. Performing the Gaussian integration
yields [Beu03]

Ai ∼
g(`)σpeff

T
√

1 + iT/T dispi

exp
(
−imi

√
T 2 − L2 − fi(pi) + σ2

peff

(
f ′i(pcl,i)

)2
1 + iT/T dispi

)
, (5.30)

where f ′ is the derivative of f . The remaining step is the computation of the probability
according to (5.22). The final result reads

P(α→ β;L) ∼v0σpeff
g2(`)
L2

∑
i,j

UβiU
∗
iαU

∗
βjUjα

· exp
(
−2πi

L

Loscij
−

(m2
i −m2

0)2 + (m2
j −m2

0)2

16σ2
mE

2
0

− 2π2

(
ρσxeff
Loscij

)2

−
(

L

Lcohij

)2)
,

(5.31)

which is exactly the same as in the transverse dispersion regime.
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5.4 Analysis of the Probabilities

The probabilities in the different regimes are given by (5.23), (5.28) and (5.31). We will first
discuss the probability for large distances, that is in the transverse and longitudinal dispersion
regime and explain the different factors appearing in the result.

The geometrical factor

g(`) = exp
(
− (p0 × `)2

4σ2
p

)
(5.32)

This factor yields a geometrical constraint between the momentum p0 and the direction of the
observation ` = L/L. That is, the propagation is restricted to a cone with angle arcsin(σp/p0)
around the axis defined by p0.

The phase factor

exp
[
−2πi

L

Loscij

]
(5.33)

This factor describes the oscillations. It is exactly the same as in all other approaches (cf.
(4.18)).

The coherence term

exp
[
−
(

L

Lcohij

)2]
(5.34)

This term implements a coherence length into the oscillations. That is, the oscillations vanish
if L� Lcohij . There are two different physical explanations for this phenomena:

• If the coherence length is smaller than the dispersion length Lcohij < Ldisp then the
coherence comes from the separation of the different wave packets due to their different
group velocities.

• If the coherence length is larger than the dispersion length, then the decoherence takes
place in the longitudinal dispersion regime and the wave packets spread out as quickly as
the they separate. Therefore, the decoherence is due to the spread of the wave packets,
which at some point becomes comparable with the oscillation length and thus oscillations
vanish

Thus, even though the term has the same form in the intermediate wave-packet model (cf.
(4.21) we obtain a second explanation for the loss of the coherence, which is the dispersion of
the wave packets. Since we neglected dispersion in the intermediate wave-packet model this is
not a surprise.

The localisation terms

exp
[
−

(m2
i −m2

0)2 + (m2
j −m2

0)2

16σ2
mE

2
0

− 2π2

(
ρσxeff
Loscij

)2]
(5.35)

= exp
[
−

(m2
i −m2

j )
2

32σ2
mE

2
0

+
(m2

j +m2
j − 2m2

0)2

32σ2
mE

2
0

− 2π2

(
ρσxeff
Loscij

)2]
(5.36)
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The first term in this sum can be written as a term which suppresses the oscillations if Loscij �
σx. Thus, it demands the localisation of the source and detector to be small against the
oscillation length. Such a term was also found in the intermediate wave packet model (cf.
(4.19). The third term gives a similar constraint. It can be shown that it implies that the
oscillations vanish if Loscij � SP/D where SP/D is the macroscopic size of the source or detector,
respectively. The term in the middle will be described in the following.

The kinematical term

exp
[

(m2
j +m2

j − 2m2
0)2

32σ2
mE

2
0

]
(5.37)

Since m0 is the mass of a particle with energy and momentum according to the energy-
momentum conservation at the source and the detector, this term implies that the mass eigen-
states have to be on-shell within the uncertainty σm.

Oscillations at short distance In the no-dispersion regime the probability looks slightly
different. First of all, there is no coherence term in the probability. Which is more or less
expected because at short distances the wave packets should not be driven appart too much
and moreover there is no dispersion in this regime. Second there is no geometrical decrease
1/L2 which can be explained by the neglected dispersion. Finally the geometrical term does
not constrain the propagation to a cone, but rather to a cylinder.





Chapter 6

Some Comments on Quantum Field Theory

In the last chapter we described the external wave-packet model, which already was a QFT
model. Therein the neutrino was represented by its propagator and thus we did not need to
worry about the description of the neutrino in terms of state vectors. However, the Blasone-
Vitiello model, which we excluded in the last chapter, discusses the state vectors for flavour
neutrinos in detail. Since we will encounter some usually not mentioned and not discussed
properties of quantum field theories, we will describe them in a compact form in this chapter.

6.1 A One-Particle Theory

One possible starting point for a quantum field theory is the Lagrangian which describes the
couplings between different fields. Therefrom, we can then find the equations of motion for
the fields. Note that we will only discuss fermion fields in this chapter, because we do not
need boson fields for the description of neutrinos. Nevertheless, we could rewrite this chapter
without much effort in terms of bosons.
As an example we can consider the one-particle Dirac Lagrangian for a field ψ(x) with mass

m

L = ψ̄(i/∂ −m)ψ, (6.1)

which yields the following equation of motion

(i/∂ −m)ψ = 0. (6.2)

In order to solve this equation we can Fourier expand the field ψ(x). Since we will later find
a difference between the finite and the infinite volume case, we start with a finite volume V
and take the limit V →∞ in the end. One important difference between the two cases is the
countable number of degrees of freedom for the finite volume and an uncountable number for
the infinite volume. Thus, we get

ψ(x) =
1√
V

∑
p,r

(
arpu

r
pe−ipx + br†p v

r
peipx

)
, (6.3)

where r is the helicity and the spinors urp and vrp are defined via

(/p−m)urp = 0 and (/p+m)vrp = 0. (6.4)

53
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Note that the limit V →∞ can be performed by replacing

1√
V

∑
p

−→ 1
(2π)3

∫
d3p. (6.5)

To actually get a quantised theory we impose the second quantisation and treat the field
ψ(x) as well as the Fourier coefficients arp and br†p as operators defined in some Hilbert space.
Therefore, we assume the following canonical anti-commutation relations (CCR){

ψ(x), ψ(y)
}
x0=y0 =

{
ψ†(x), ψ†(y)

}
x0=y0 = 0, (6.6a){

ψ(x), ψ†(y)
}
x0=y0 = δ(x− y), (6.6b)

or equivalently {
arp, a

s†
k

}
=
{
brp, b

s†
k

}
= δpkδrs and all other zero. (6.7)

Using the creation and annihilation operators ar†p , br†p and arp, brp, respectively, allows us to
define a Fock-space F which we will then use as the Hilbert space for our theory. The basis
for the Fock-space is the set of state vectors describing states with a finite number of particles.
It can be shown that all other state vectors can be obtained by successively acting creation
operators on the ground state, which is defined as the state vector annihilated by all operators
arp and brp

arp
∣∣0〉 = brp

∣∣0〉 = 0 ∀p, r. (6.8)

This state vector is usually called the vacuum and interpreted as the zero-particle state.
An important assumption on the state vectors in the Fock space is that they describe asymp-

totically free particles. That is, the particles in this states do not interact with each other.
Without this assumption we would not be able to interpret the vectors as states with a definite
number of particles, because interactions in QFT mean the appearance of virtual particles
which spoils the definition of a particle number. This also follows from the relation[

H, a†
]

= Ea†, (6.9)

which is essential to interpret a† as a creation operator. But this relation is only valid if the
Hamiltonian H is the free Hamiltonian without interaction terms and thus is bilinear in a†.
If the field ψ(x) is an interacting field, we can still Fourier transform it with respect to the
spatial coordinates, but the corresponding coefficients will then be time-dependent and do not
satisfy (6.9). Thus, they cannot be interpreted as creation and annihilation operators. The
only connection to the particle picture can then be obtained by the asymptotic condition. Of
course, this is not important for the field ψ(x), because there are no interactions. But it should
be noted for later reference. It should also be noted that the Fock space is separable. That
means the basis is countable [UMT82]. However, there are states which are not represented in
the Fock space. In general these are all states which contain an infinite number of particles. If
we build a Hilbert space H which contains all possible states, with a finite number as well as
an infinite number of particles, it can be shown that this space is uncountable and thus non-
separable [UMT82]. The space F can then be seen as a separable subspace of H. In particular,
there is an uncountable number of different separable subspaces, which can be grouped into
equivalence classes [Bar63]. The different classes contain all subspaces that only differ in a
finite number of particles. This shows that the Fock space is distinct to all other subspaces
because it contains the unique zero-particle state.
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6.2 An Example

In order to describe the problems that arise from the discussion on the Fock space we will give
an example for a theory with interacting particles. This can be found in [Bar63] as well as
in a slightly different form in [UMT82]. For this example we consider two fields, ψ1(x) and
ψ2(x), which obey the free Dirac equation (6.2). For simplicity the field ψ2(x) shall be massless
m2 = 0. Additionally, both fields should obey the CCR (6.6). If both fields are independent
of each other we can build Fock spaces F1 and F2 for both of them. The generic space for a
description of both fields is then the direct product

F = F1 ⊗F2. (6.10)

For neutrinos we need linear combinations of the field, for example νe = cos θν1 + sin θν2,
which can be obtained by taking an apropriate boundary condition. For simplicity, we will use
a simpler case here and impose the condition that both fields are equal at time x0 = 0

ψ1(x, 0) = ψ2(x, 0). (6.11)

Because we assumed that both fields are representations of the CCR we are tempted to find a
unitary operator which connects both fields

ψ1(x) = U−1ψ2(x)U, (6.12)

or in terms of the creation and annihilation operators

arp,1 = U−1arp,2U and brp,1 = U−1brp,2U. (6.13)

The reason why we seek for unitary equivalence is the so-called von Neumann theorem [vN31],
which is valid in quantum mechanical systems with a finite or countable number of degrees of
freedom. It says simply spoken:

An irrdeducible set of operators satisfying the CCR is determind uniquely up to
unitary equivalence.

For our example we can find the transformation (6.13) explicitly by using the Fourier expan-
sion (6.3) and insert it in (6.11). arp,1 and br−p,1 can be isolated by taking an apropriate scalar
product of the u and v spinors and using the orthogonality of u and v. This yields

arp,1 = αp a
r
p,2 + βp b

r†
−p,2, (6.14a)

br−p,1 = αp b
r
−p,2 − βp a

r†
p,2, (6.14b)

where αp and βp are scalar products of the u and v spinors in ψ1(x) and ψ2(x). The explicit
form of these scalars does not interest us here. Nevertheless, we should note that we can
parametrise them by an angle θp with αp = cos θp and βp = sin θp. The operator U in (6.13)
is then given by

U = exp
[∑
p,r

θp

(
arp,2b

r
−p,2 + ar†p,2b

r†
−p,2

)]
. (6.15)

To see that this operator really generates the mixing (6.14) we make use of the relation

eABe−A = B + [A,B] +
1
2!
[
A, [A,B]

]
+

1
3!

[
A,
[
A, [A,B]

]]
+ . . . (6.16)
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and explicitly compute the appearing commutators. A transformation of the form (6.14) is
usually called a Bogolubov transformation which is well-known in thermal field theory [UMT82]
and in the BCS-theory of superconducting.
The transformation of the creation and annihilation operators by U also yieds a connection

between the two Fock spaces F1 and F2. If arp,1 acts on an arbitrary state vector |〉1 ∈ F1 we
can rewrite this to

arp,1|〉1 = U−1arp,2U |〉1 = U−1arp,2|〉2 with |〉2 := U |〉1 ∈ F2 (6.17)

For the particular case of the ground states |0〉1 and |0〉2 we then find

|0〉1 = U−1|0〉2 =
∏
p,r

{
αp − βpar†p,2b

r†
−p,2

}
|0〉2. (6.18)

As we can see the ground state |0〉1 of F1 is a superposition of excitations of the ground state
|0〉2 of F2. Each pair of excitations has total momentum zero and a helicity of ±2. This spoils
our interpretation of |0〉1 as the zero-particle state in F1. Therefore, we should not call F1 as
Fock space anymore. In turn the same is true for F2, because we could invert (6.17) and get
|0〉2 as a superposition of excitations of |0〉1. In conclusion, the ground state of F = F1 ⊗ F2,
which is |0〉1 ⊗ |0〉2, is not a zero-particle state but describes a condensate of infinitely many
particles. Thus, due to the dependency which we imposed in (6.11) we encounter the problem
of how to interpret the state vectors in F . Nevertheless, the spaces F1, F2 as well as F are
well defined and we will use them to find out more about the operator U . For example we can
calculate the overlap of the two ground states, which is likewise the matrix element of U taken
between the ground state of F1

O =
1

〈
0|0
〉

2
=

1

〈
0
∣∣U ∣∣0〉

1
. (6.19)

By using (6.17) we find

O =
∏
p,r

αp =
∏
p,r

exp
(
lnαp

)
= exp

(
2
∑
p

lnαp

)
. (6.20)

Up to now we have not said anything about the finite volume and its consequences. From the
infinite volume behaviour of the sum (6.5) we can write the overlap as

O = exp
(

2V
(2π)3

∫
d3p lnαp

)
. (6.21)

Since αp < 1 (remember αp = cos θp) the exponent is negative and the overlap vanishes for
V → ∞. The same can be done for all state vectors and we find that all matrix elements of
U taken between state vectors of one space, F1 or F2, vanishes. An operator with this kind
of behaviour is called an improper unitary operator in contrast to the usual proper unitary
operators.
Eq. (6.21) also shows that in the infinite volume limit the spaces F1 and F2 are completely

disjoint. Or, in other words, they are in different equivalence classes if we use the language
of section 6.1. Such spaces are called unitarily inequivalent as a short form for improperly
unitarily equivalent, which means their equivalence is due to an improper unitary operator.
The situation for the spaces in this example can be depicted as in figure 6.1.
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H

F1 F2U

Figure 6.1: The two “Fock spaces” F1 and F2 are subspaces of the overall Hilbert space H.
These subspaces are connected by the improper operator U which maps a vector from F1 to F2,
while the creation and annihilation operators map within the respective subspaces.

6.3 Haag’s Theorem

The reason why the operator becomes improper in the infinite volume limit is the breakdown
of the von Neumann theorem which was only valid for a finite or countable number of degrees
of freedom. But in the infinite volume limit the number of degrees of freedom becomes un-
countable and thus two different representations of the CCR are, in general no longer unitarily
equivalent. In turn this implies an uncountable number of different representations of the CCR
because we have an uncountable number of equivalence classes.
However, the Fock space is unique in this number of representations, because it is the only

representation which describes a definite number of asymptotically free particles.
The reason for all these problems we encountered so far is connected in Haag’s theorem

[Haa55, BLT75]. It says simply spoken:

• If two fields are unitarily equivalent, then both are free if one is free.
• Only if the ground states |0〉1 and |0〉2 are equal, their corresponding “Fock
spaces” are unitarily equivalent.

Neutrinos and Haag’s Theorem As emphasised before, the flavour-neutrino fields arise
in the combinations

να =
∑
i

Uαiνi, (6.22)

where the νi are the fields with definite masses m1 and m2, respectively. Therefore, the linear
combinations act in the Hilbert space F1 ⊗F2 which has the ground state |0〉1 ⊗ |0〉2. But as
we have seen this is not a zero-particle state and consequently F1 ⊗ F2 is not a Fock space.
Thus, we have no particle interpretation for exitations of |0〉1⊗|0〉2 due to να. In other words,
although να and νi obey the same CCR they belong to different subspaces of H. The same
behaviour is manifest in the standard quantum mechanical approaches where we define the
state vectors which should describe the flavour neutrinos as∣∣να〉 =

∑
i

Uαi
∣∣νi〉. (6.23)
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That means particularly we define the Fock spaces Fα and Fi to be unitarily equivalent.
Applying Haag’s theorem then yields that both spaces describe free particles because we assume
that at least the mass neutrinos can be regarded as asymptotically free particles. Thus, the
flavour neutrinos should be asymptotically free. But this would not allow them to oscillate. In
other words a particle which can oscillate into another particle cannot be considered as a free
particle since it has at least interactions with the particle it oscillates in. Therefore, this kind
of definition cannot be the right one and we expect that at some point problems will arise. We
will show an example in the next chapter.
As we have seen, the problems for flavour neutrinos come from the implicitly assumed uni-

tarily equivalence of the “Fock spaces” for flavour and mass neutrinos. Hence, one possible way
out is to give up this equivalence. That is, we have to give up (6.23) and find a new relation
which describes a unitarily inequivalence. This is the approach of Blasone and Vitiello,
which we will describe in chapter 8.
However, even in this approach we will encounter a problem with the interpretation. If we

assume the flavour and mass spaces to be unitarily inequivalent, only one of them can be the
Fock space which includes the state vectors with a definite number of particles. Naturally,
this would be the mass space, because we can assume the mass neutrinos to be asymptotically
free. But then we already know that the flavour states are a condensate of mass neutrinos
which means we cannot interpret a flavour state as a definite number of flavour neutrinos.
Nevertheless, the states are well-defined as a condensate of infinitely many asymptotically free
mass neutrinos. In chapter 8 we will show how NO can be calculated with this state vectors.



Chapter 7

The State Vectors for Flavour Neutrinos

As we have seen in the last chapter, the definition of the flavour neutrino state vectors as a
superposition of mass neutrino state vectors in the form∣∣να〉 :=

∑
i

U∗αi
∣∣νi〉 (7.1)

leads to problems in the interpretation. In order to show that these problems are not only
of academical nature, but also lead to wrong results we will show an example in this chapter.
This example was first pointed out by Giunti, Kim and Lee in 1992 [GKL92] without resort
to the results in the last chapter. The second part of this chapter describes the attempt of
Giunti et al. to avoid the problems arising from the so-called weak states (7.1). In particular,
this is the introduction of so-called weak-process states as an alternative to the weak states.

7.1 Problems due to Weak States

Giunti, Kim and Lee showed that if the state vectors (7.1) are used, one could get non-
vanishing transition amplitudes for forbidden processes [GKL92]. We will now shortly sum-
marise their argumentation but make use of a notation which is more convinient for the next
section.
If we consider the decay process

PI −→ PF + `+β + να (7.2)

where PI is the decaying particle and PF represents all other final particles, while `+β is the
corresponding lepton to the neutrino να, the amplitude for this process should only be non-zero
for β = α, because the flavour of the lepton defines the flavour of the neutrino. However, let
us use the general version and derive the amplitude

API→PF+`+β+να
=
〈
να, `

+
β , PF

∣∣S∣∣PI〉, (7.3)

where S is the S-matrix. Using the definition of the flavour neutrino state vectors (7.1) the
amplitude can be written as

API→PF+`+β+να
=
∑
i

Uαi
〈
νi, `

+
β , PF

∣∣S∣∣PI〉
=
∑
i

UαiAβi, (7.4)

59
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where we introduced the obvious abbreviation Aβi.
In order to understand this relation better we can insert the explicit form of the S-matrix

S = 1− i
∫

d4xHcc(x), (7.5)

where we only considered the first order contribution of the effective low-energy charged-current
Hamiltonian

Hcc =
GF√

2

∑
α=e,µ,τ

ν̄α(x)γµ(1− γ5)`α(x)hPI→PFµ (x) + h.c.

=
GF√

2

∑
α=e,µ,τ

∑
i

U∗αiν̄i(x)γµ(1− γ5)`α(x)hPI→PFµ (x) + h.c., (7.6)

where hPI→PFµ is the current for the transition PI → PF . In the second step we also included
the mixing of the field operators (1.18).
Inserting (7.5) and (7.6) into (7.4) then yields

API→PF+`+β+να
=
∑
i

UαiU
∗
βiMβi (7.7)

with the matrix element

Mβi = −i
GF√

2

∫
d4x

〈
νi, `

+
β , PF

∣∣ν̄i(x)γµ(1− γ5)`β(x)hPI→PFµ (x)
∣∣PI〉. (7.8)

This result is obviously not proptional to δαβ , because the matrix element Mβi depends on
the different masses mi of the neutrinos and can therefore not be taken out of the sum. Thus,
the amplitude for forbidden transitions can be non-zero.
Another important point is the probability for the process (7.2) which is the absolute square

of (7.7)

PPI→PF+`+β+να
=
∣∣∣∣∑
i

UαiU
∗
βiMβi

∣∣∣∣2. (7.9)

Since not the flavour but the mass neutrinos are the physical particles which propagate in
space-time with definite kinematical properties, the probability should be the incoherent sum
of the different matrix elements for the different decay channels weighted by the mixing matrix
elements

∣∣Uαi∣∣2 [Shr80, Shr81a, Shr81b]. Hence, the expected probability is

PPI→PF+`+α+να
=
∑
i

∣∣Uαi∣∣2∣∣Mαi

∣∣2, (7.10)

which is clearly different from (7.9).
However, if the process (7.2) is not sensitive to the different neutrino masses, which is for

example the case for relativistic neutrinos, the matrix element can be approximated as

Mβi 'Mβ . (7.11)

This allows us to take the matrix elements out of the sums in (7.7), (7.9) and (7.10). Addi-
tionally, we can use the unitarity of the PMNS-matrix and get for (7.7)

API→PF+`+β+να
'Mβδβα (7.12)
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and (7.9)

PPI→PF+`+β+να
'
∣∣Mβδβα

∣∣2, (7.13)

which is indentical to (7.10) in this approximation.
This means, the weak states (7.1) can, strictly spoken, only be used if the production process

is not sensitive to the different neutrino masses. In particular, this is not the case if some of
the neutrinos are non-relativistic.

7.2 Weak-Process States

In order to avoid the problems that arise from the weak states (7.1), Giunti et al. [GKL92,
Giu02a, Giu04a, Giu04b, Giu06] introduced so-called weak-process states. These states are
defined in a way that they contain the information on the production process

PI −→ PF + `+α + να. (7.14)

The notation here is the same as in (7.2), but this time we assume β = α. We should also note
that the whole following computation can easily be adopted to the second possible production
process, which is the scattering of a lepton and some initial particle PI

`−α + PI −→ PF + να.

In terms of the state vectors, which describe the involved particles in the production process,
we can get the general final state |f〉 by applying the S-matrix on the initial state. Hence∣∣f〉 = S

∣∣PI〉, (7.15)

where the final state contains all possible decay channels for the particle PI and PI itself:∣∣f〉 =
∣∣να, `+α , PF 〉+ . . . =

∑
i

APαi
∣∣νi, `+α , PF 〉+ . . . . (7.16)

Here, we singled out the important decay channel (7.14) and additionally took into account the
coherent superposition of the mass neutrino state vectors. Since all different decay channels
are represented by orthogonal state vectors and the vectors |νi, `+α , PF 〉 are orthogonal and
normalised, we find the coefficients APαi to be the amplitudes

APαi =
〈
νi, `

+
α , PF

∣∣S∣∣PI〉. (7.17)

From (7.16) we can now identify the state vector for the flavour neutrino:

∣∣νPα 〉 =
1√∑
i

∣∣APαi∣∣2
∑
i

APαi
∣∣νi〉, (7.18)

where the first factor is due to the normalisation. Thus, in conclusion, the state vector which de-
scribes flavour neutrinos is a coherent superposition of the mass neutrino state vectors weighted
by the amplitude for the production of the respective mass neutrino. These states are also called
production flavour neutrino states [Giu06].
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For the computation of neutrino oscillations we also need a description for the detected
neutrino. This can be done in an analogous way as for the production. Let us consider the
detection process

να +DI −→ DF + `−α . (7.19)

Again the computation can easily be rewritten to describe the second possible detection process

να + `+α +DI −→ DF .

Analogous to (7.16) the final state for the scattering να +DI is given by∣∣f〉 = S
∣∣να, DI

〉
=
∣∣DF , `

−
α

〉
+ . . . . (7.20)

Using the unitarity of the S-matrix and decomposing the initial state vector in a coherent
superposition of mass neutrino state vectors yields∑

i

ADαi
∣∣νi, DI

〉
= S†

∣∣DF , `
−
α

〉
+ . . . , (7.21)

where ADαi is given by

ADαi =
〈
νi, DI

∣∣S†∣∣DF , `
−
α

〉
, (7.22)

which is the complex conjugate of the amplitude for the detection of a νi in the process (7.19).
Now we are able to single out the state vector for a detected neutrino which shall be nor-

malised: ∣∣νDα 〉 =
1√∑
i

∣∣ADαi∣∣2
∑
i

ADαi
∣∣νi〉 (7.23)

These state vectors are also called detection flavour neutrino states.
Although (7.18) and (7.23) have the same structure, they describe different things. On

the one hand the production flavour neutrino state describes a neutrino produced in a charged
current process which then propagates through space and time. On the other hand the detection
flavour neutrino state does not describe a propagating neutrino but rather the component of a
propagating neutrino which can generate a charged lepton through the charged current process
(7.19) [Giu06].
In order to see the connection between the weak-process states and the weak states we use

the explicit form of the S-matrix (7.5) and the effective low-energy charged-current Hamilto-
nian (7.6). This allows us to write the production and detection amplitudes APαi and ADαi,
respectively, as

APαi = U∗αiMP
αi and ADαi = U∗αiMD

αi, (7.24)

with the matrix elements

MP
αi = −i

GF√
2

∫
d4x

〈
νi, `

+
α , PF

∣∣ν̄i(x)γµ(1− γ5)`α(x)hPI→PFµ (x)
∣∣PI〉, (7.25a)

and

MD
αi = −i

GF√
2

∫
d4x

〈
νi, DI

∣∣ν̄i(x)γµ(1− γ5)`α(x)hDI→DFµ (x)
∣∣DF , `

−
α

〉
. (7.25b)
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The currents hPI→PFµ (x) and hDI→DFµ (x) describe the transitions PI → PF and DI → DF ,
respectively.
Inserting (7.24) into the states (7.18) and (7.23) yields

∣∣νPα 〉 =
∑
i

MP
αi√∑

j

∣∣Uαj∣∣2∣∣MP
αj

∣∣2U∗αi∣∣νi〉, (7.26a)

and

∣∣νDα 〉 =
∑
i

MD
αi√∑

j

∣∣Uαj∣∣2∣∣MD
αj

∣∣2U∗αi∣∣νi〉. (7.26b)

These states have the same structure as the weak states (7.1) except for a factor that depends
on the production or the detection process.
If the experiments are not sensitive to the different neutrino masses, the matrix elements

can be approximated to be independend of i:

MP
αi 'MP

α and MD
αi 'MD

α . (7.27)

In this case the vectors (7.26) reduce to the weak states up to an irrelevant phase. Thus, the
weak states are approximations of the production and detection flavour neutrino states if the
experiment is not sensitive to the different neutrino masses.
In the last section we said that the expected decay rate for the process (7.14) is an incoherent

sum over the different decay channels which correspond to the different mass neutrinos. On the
other side the computation of neutrino oscillations uses explicitly the coherent superposition
of the mass neutrino state vectors. Thus, we should show that these two arguments can
consistently be described with the weak-process states.

Decay Rates The amplitude for the process PI → PF + `+α + να is

API→PF+`+α+να
=
〈
να, `

+
α , PF

∣∣S∣∣PI〉. (7.28)

This can be rewritten by using the production flavour neutrino state (7.18):

API→PF+`+α+να
=

1√∑
j

∣∣APαj∣∣2
∑
i

AP∗αi
〈
νi, `

+
α , PF

∣∣S∣∣PI〉 =
√∑

i

∣∣APαi∣∣2. (7.29)

Therefore, the probability is just the incoherent sum

PPI→PF+`+α+να
=
∑
i

∣∣APαi∣∣2. (7.30)

If we additionally use the decomposition of the production amplitudes into the mixing matrix
and the matrix element (7.24), the probability becomes of exactly the form which we expected
in (7.10):

PPI→PF+`+α+να
=
∑
i

∣∣Uαi∣∣2∣∣MP
αi

∣∣2. (7.31)
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Neutrino Oscillations In order to describe neutrino oscillations with the above defined
state vectors, we first rearrange them in a way that they fit into our notation of chapter 2,
that is∣∣NP

α (t)
〉

=
∑
i

MP
αi√∑

j

∣∣Uαj∣∣2∣∣MP
αj

∣∣2U∗αi
∫

d3x eipi·(x−xP )−iEi(t−tP )
∣∣x〉⊗ ∣∣νi〉, (7.32a)

and

∣∣ND
β

〉
=
∑
i

MD
βi√∑

j

∣∣Uβj∣∣2∣∣MD
βj

∣∣2U∗βiδ(t− tD)
∣∣xD〉⊗ ∣∣νi〉. (7.32b)

Since the neutrinos are seen as plane waves in the treatment so far, we used the assumption of
a point-like detection process. Now we can insert the modified vectors in the general oscillation
amplitude (2.12) and get as result

A(α→ β;L, T ) =
∑
i

MP
αi√∑

j

∣∣Uαj∣∣2∣∣MP
αj

∣∣2 MD∗
βi√∑

j

∣∣Uβj∣∣2∣∣MD
βj

∣∣2U∗αiUβie−iEiT+ipi·L (7.33)

which is exactly the same amplitude as in the standard case for plane waves, execpt for the
factors in front which depend on the production and detection process. But, however, neutrino
oscillation experiments are not sensitive to the different neutrino masses and we can use the
approximation (7.27). In this case the factors in front become unity and the amplitude reduces
to the standard one for which the probability was already given in (3.4).
In conclusion, the weak-process states give the same results as the weak-states in the case

of experiments not sensitive to different neutrino masses. Moreover, their usage gives the
expected result for the decay rate, which is not the case for the weak states. But however,
they also describe a unitary equivalence and thus have the same principle probles as the weak
states.



Chapter 8

The Approach of Blasone and Vitiello

In this chapter we come back to the implications of Haag’s theorem in chapter 6.3 and describe
an approach where the mixing of the neutrinos is generated by an improper unitary operator.
The main authors who pushed this approach forward are Blasone and Vitiello and their
collaborators (see [BV95, ABIV95, BHV99, BV99, BJV01, BCV01, BCV02, BPT03, BMP05,
BCTV05, BCJV06] and the comprehensive review [Cap04]). In the following we will abbreviate
them by BV. However, there are also other authors who work in this field (e. g. [FHY99, FHY01,
JM02, Giu05, LL06]). Note, that since we are not interested in boson mixing in this thesis,
we only cite the papers concerning neutrino mixing and oscillations. Nevertheless, the whole
treatment has been applyied to bosons (see for example the review [Cap04]).
In the following sections we will summarise the BV-approach, but in order to avoid detours

in the notation we will sometimes change or generalise the notation developed by BV.

8.1 The General Setup

Here we will only describe the simplest and most discussed version of the BV-approach. That is,
the case of two flavour neutrinos which are superpositions of two mass neutrinos (for definiteness
we call the flavours e and µ and the masses 1 and 2). Furthermore, we assume the neutrinos
to be Dirac neutrinos. This restriction has the advantage, that we do not need to consider the
influence of CP-phases, which makes the approach considerably easier and allows us to focus
on the important points.
However, the BV-approach can be used for three flavour neutrinos as well as for Majorana

neutrinos (see e. g. [BCV02, Cap04]).

The Lagrangians The starting point for the following computations will be the Lagrangian

L1,2 =
(
ν̄1(x), ν̄2(x)

) [
i/∂ −

(
m1 0
0 m2

)](
ν1(x)
ν2(x)

)
, (8.1)

which describes two free fields with masses m1 and m2. The field operators ν1(x) and ν2(x)
shall satisfy the canonical equal-time anticommutation relations{

νi(x), νj(y)
}
x0=y0 =

{
ν†i (x), ν†j (y)

}
x0=y0 = 0, (8.2a){

νi(x), ν†j (y)
}
x0=y0 = δijδ(x− y). (8.2b)

65
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We now define the unitary transformed fields νe(x) and νµ(x), which are called flavour eigen-
fields, by (

νe(x)
νµ(x)

)
:= U

(
ν1(x)
ν2(x)

)
, (8.3)

with U being the PMNS matrix for two flavours (cf. (1.20))

U =
(

cos θ sin θ
− sin θ cos θ

)
. (8.4)

These fields clearly satisfy the same canonical equal-time anticommutation relations as the
mass fields {

να(x), νβ(y)
}
x0=y0 =

{
ν†α(x), ν†β(y)

}
x0=y0 = 0, (8.5a){

να(x), ν†β(y)
}
x0=y0 = δαβδ(x− y). (8.5b)

In order to find the Lagrangian for the flavour fields we introduce the mass matrix

M := UMdU
T =

(
mee meµ

meµ mµµ

)
, (8.6)

whereMd is the diagonal mass matrix for the mass fields. The different entries of the matrices
are connected by

mee = m1 cos2 θ +m2 sin2 θ, (8.7a)

mµµ = m1 sin2 θ +m2 cos2 θ, (8.7b)
meµ = (m2 −m1) sin θ cos θ. (8.7c)

We can now finally write down the Lagrangian for the flavour fields as

Le,µ =
(
ν̄e(x), ν̄µ(x)

) (
i/∂ −M

)(νe(x)
νµ(x)

)
. (8.8)

Note that this Lagrangian clearly shows that the flavour fields are not free, because the mass
matrix is non-diagonal they have interactions among each other.

The Creation and Annihilation Operators Since the Lagrangian (8.1) describes free
neutrinos with definite masses, we can simply expand the field operators νi(x) in the usual way
(see e. g. [PS95]) in terms of creation and annihilation operators:

νi(x) =
1√
V

∑
p,r

(
arp,iu

r
p,ie
−iEit+ip·x + br†p,iv

r
p,ie

iEit−ip·x
)

=
1√
V

∑
p,r

(
arp,i(t)u

r
p,i + br†−p,i(t)v

r
−p,i

)
eip·x, (8.9)

where we included the time dependence into the operators

arp,i(t) = arp,ie
−iEit and br†−p,i(t) = br†p,ie

iEit. (8.10)
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The indices on the operators and spinors shall have the following meaning: the lower indices,
here p and i, denote the momentum and the neutrino species, while the upper index, here r
denotes the helicity.
As in chapter 6 we will start with box normalisation in a finite space volume V . The limit

V →∞ will then be taken in the end.
The spinors urp,i and vr−p,i are defined as solutions of the equations

(/p−mi)urp,i = 0 and (/p+mi)vrp,i = 0 (8.11)

and shall be normalised such that they obey the following orthogonality and completeness
relations:

ur†p,iu
s
p,i = vr†−p,iv

s
−p,i = δrs, (8.12a)

ur†p,iv
s
−p,i = vr†−p,iu

s
p,i = 0, (8.12b)∑

r

(
ur†p,iu

r
p,i + vr†−p,iv

r
−p,i

)
= 1. (8.12c)

The explicit form for the spinors is the given by

urp,i =
√
Ei +mi

2Ei

(
ξr

σ·p
Ei+mi

ξr

)
and vrp,i =

√
Ei +mi

2Ei

( σ·p
Ei+mi

ξr

ξr

)
(8.13)

with

ξ1 =
(

1
0

)
, ξ2 =

(
0
1

)
. (8.14)

The vector σ is the vector composed of the Pauli matrices σi.
Furthermore, the creation and annihilation operators satisfy the anticommutation relations

for {
arp,i, a

s†
k,j

}
=
{
brp,i, b

s†
k,j

}
= δijδpkδrs and all other zero. (8.15)

Now we come to the field operators for the flavour neutrinos. Since they do not describe
free particles—they have interactions among each other due to the non-diagonal mass matrix
in (8.8)—the expansion in terms of creation and annihilation operators can only be made as

να(x) =
1√
V

∑
p,r

(
arp,α(t)urp,α + br†−p,α(t)vr−p,α

)
eip·x, (8.16)

where the time-dependence of arp,α(t) and br†−p,α(t) is a priori unknown, therefore we cannot
simply postulate the anticommutation relations. However, they will follow from our computa-
tion in section 8.2. Note that we will call the arp,α(t) and br†−p,α(t) operators for flavour fields
creation and annihilation operators, although we already know from chapter chapter 6 that
they can not be interpreted in a particle picture.
The choice of the spinors urp,α and vr−p,α is a bit more complicated and involves a closer look

on quantum field theoretical details. The original choice made by BV is

ur (BV )
p,α := urp,i and vr (BV )

p,α := vrp,i (8.17)
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for the index pairs (α, i) = (e, 1) and (µ, 2). As it was pointed out in [FHY99, FHY01], this is
not the most general case and in fact they showed that it is possible to use

vr (FHY )
p,α := urp,i(µi) and vr (FHY )

p,α := vrp,i(µi) (8.18)

which are defined by the Dirac equations

(/p− µi)urp,i(µi) = 0 and (/p+ µi)vrp,i(µi) = 0. (8.19)

The µi are considered as arbitrary mass parameters. Moreover, in [Giu05] it was shown that
these parameters can appear in measurable quantities, which lead Giunti to the conclusion
that the BV-treatment is unphysical.
However, BV showed in [BV99, BCV01] that the parameters do not appear in the important

quantities, namely the charges and the oscillation formula and furthermore they argued in
[BCTV05] that the possibility of different mass parameters is intrinsic to the structure of
quantum field theory. Here we will shortly summarise their argumentation in order to justify
our choice of the spinors.
The main point is that every field operator—at least every Dirac operator—can be expanded

in different spinor basis which correspond to different mass parameters. For example if we
consider the field operator ν1(x) for the mass neutrino ν1, we can expand it as

ν1(x) =
1√
V

∑
p,r

(
arp,1(t)urp,1 + br†−p,1(t)vr−p,1

)
eip·x (8.20)

and as

ν1(x) =
1√
V

∑
p,r

(
arp,1(µ1, t)urp,1(µ1) + br†−p,1(µ1, t)vr−p,1(µ1)

)
eip·x, (8.21)

where the different creation and annihilation operators are connected via

arp,1(µ1, t) :=
∑
s

(
ur†p,1(µ1)usp,1a

s
p,1(t) + ur†p,1(µ1)vs−p,1b

s†
−p,1(t)

)
, (8.22a)

br†−p,1(µ1, t) :=
∑
s

(
vr†−p,1(µ1)usp,1a

s
p,1(t) + vr†−p,1(µ1)vs−p,1b

s†
−p,1(t)

)
. (8.22b)

This is just the Bogoliubov transformation which appeared in chapter 6. The equivalence
of these two expansion can simply be proven by inserting (8.22) into (8.20) and using the
completeness relation (8.12).
Therefore, it is possible to expand a given field operator in different basis for different mass

parameters and the only reasonable choice for this parameters is govern by the physical mass
of the particle. In our case the only physical relevant masses are m1 and m2, the masses of the
mass neutrinos, which in turn corresponds to the choice of BV for the spinors.
In the following we will use the same assumption for the spinors.

The Group Structure of the Lagrangians For later reference we will also have a look on
the group structure of the Lagrangians (8.8) and (8.1). Both Lagrangians are invariant under
a global U(1) transformation, which changes the field operators by adding a phase(

ν1
′(x)

ν2
′(x)

)
:= eiαm

(
ν1(x)
ν2(x)

)
and

(
νe
′(x)

νµ
′(x)

)
:= eiαf

(
νe(x)
νµ(x)

)
, (8.23)
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where αm and αf are real constants. If we apply Noether’s theorem to this symmetry, we
obtain the conserved charges

Qm =
∫

d3x
(
ν̄1(x), ν̄2(x)

)
γ0

(
ν1(x)
ν2(x)

)
=
∫

d3x
(
ν†1 (x)ν1(x) + ν†2 (x)ν2(x)

)
, (8.24a)

Qf =
∫

d3x
(
ν
†
e (x)νe(x) + ν

†
µ (x)νµ(x)

)
, (8.24b)

which can be shown to be equal, Qm = Qf = Q, by inserting the mixing for the field operators
(8.3).
A second interesting transformation is the SU(2) mixing(

ν1
′(x)

ν2
′(x)

)
:= eiαjmτ

j

(
ν1(x)
ν2(x)

)
and

(
νe
′(x)

νµ
′(x)

)
:= eiαjfτ

j

(
νe(x)
νµ(x)

)
, (8.25)

with τ j := σj/2 and σj being the usual Pauli matrices, while the αjm and αjf are real constants.
Note, that we used the sum convention for simplicity.
The Lagrangians (8.8) and (8.1) are, in general, not invariant under this transformation,

which can be seen by calculating the change of the Lagrangians induced by (8.25)

δL1,2 = iαjm
(
ν̄1(x), ν̄2(x)

) [
τ j ,Md

](ν1(x)
ν2(x)

)
, (8.26a)

δLe,µ = iαjf
(
ν̄e(x), ν̄µ(x)

) [
τ j ,M

](νe(x)
νµ(x)

)
. (8.26b)

Only the commutator
[
τ3,Md

]
vanishes, which implies a conserved charge for this case. Nev-

ertheless, we can use Noether’s theorem to compute all charges, which will be in general
time-dependent

Qm,1(t) =
1
2

∫
d3x
(
ν†1 (x)ν2(x) + ν†2 (x)ν1(x)

)
, (8.27a)

Qm,2(t) = − i
2

∫
d3x
(
ν†1 (x)ν2(x)− ν†2 (x)ν1(x)

)
, (8.27b)

Qm,3 =
1
2

∫
d3x
(
ν†1 (x)ν1(x)− ν†2 (x)ν2(x)

)
, (8.27c)

Qf,1(t) =
1
2

∫
d3x
(
ν
†
e (x)νµ(x) + ν

†
µ (x)νe(x)

)
, (8.27d)

Qf,2(t) = − i
2

∫
d3x
(
ν
†
e (x)νµ(x)− ν†µ (x)νe(x)

)
, (8.27e)

Qf,3(t) =
1
2

∫
d3x
(
ν
†
e (x)νe(x)− ν†µ (x)νµ(x)

)
. (8.27f)

The situation here is somehow similar to the situation in the GSW-model (see chapter 1),
where the U(1) symmetry would be the weak-hypercharge symmetry and the SU(2) the weak-
isospin symmetry. Therefore, we will define in analogy to the electric charge in the GSW-model
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the following charges

Q1 :=
1
2

Q + Qm,3 =
∫

d3 ν†1 (x)ν1(x), (8.28a)

Q2 :=
1
2

Q−Qm,3 =
∫

d3 ν†2 (x)ν2(x), (8.28b)

Qe(t) :=
1
2

Q + Qf,3(t) =
∫

d3 ν
†
e (x)νe(x), (8.28c)

Qµ(t) :=
1
2

Q−Qf,3(t) =
∫

d3 ν
†
µ (x)νµ(x). (8.28d)

The charge Q can be interpreted as the total lepton number of a system, while the charges
Q1, Q2, Qe(t) and Qµ(t) are the lepton number for each neutrino species seperately. The time-
dependence of the flavour charges Qe(t) and Qµ(t) already show that something like oscillations
must occur, because the sum Qe(t) + Qµ(t) = Q is conserved and thus a decreasing charge for
the electron neutrino can only result in an increasing charge for the muon neutrino.

8.2 An Improper Generator for the Mixing

The main point in the work of BV is the definition of an operator which generates the mixing
(8.3) between the field operators for the mass and the flavour neutrinos, respectively. This
operator is usually called G(θ, t) and corresponds to the operator U in chapter 6. Its explicit
form is given by

G(θ, t) := exp
[
θ

∫
d3x
(
ν†1 (x)ν2(x)− ν†2 (x)ν1(x)

)]
. (8.29)

As can be seen from (8.27) the argument of the exponential is propotional to the second SU(2)
charge for the mass fields:

G(θ, t) = exp
[
−2iθQm,2(t)

]
. (8.30)

The mixing between the mass and flavour field operators in terms of this operator can then be
written as (

νe(x)
νµ(x)

)
= G−1(θ, t)

(
ν1(x)
ν2(x)

)
G(θ, t). (8.31)

In order to see that this really generates the mixing (8.3), we use the relation

eABe−A = B + [A,B] +
1
2!
[
A, [A,B]

]
+

1
3!

[
A,
[
A, [A,B]

]]
+ . . . ,

where the commutators are given by[
2iθQm,2(t), ν1(x)

]
= θν2(x),[

2iθQm,2(t), ν2(x)
]

= −θν1(x).

Thus, we get by recombinig the infinite sum

νe(x) = cos θν1(x) + sin θν2(x),
νµ(x) = − sin θν1(x) + cos θν2(x),
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which is just the mixing (8.3).
After having defined the mixing of the field operators in terms of G(θ, t), we can go a step

further and try to find the relation between the creation and annihilation operators of the
mass and flavour neutrinos. This relation is called the dynamical map [UMT82]. In order to
find this map we insert the expansions for the field operators (8.9) and (8.16) into the mixing
relation (8.31) and get 

arp,e(t)
arp,µ(t)
br†−p,e(t)
br†−p,µ(t)

 = G−1(θ, t)


arp,1(t)
arp,2(t)
br†−p,1(t)
br†−p,2(t)

G(θ, t). (8.32)

For the calculation of this transformation we use the same relation as above. In order to calcu-
late the commutators we have to express the charge in terms of the creation and annihilation
operators. We get this expression by inserting the expansion (8.9) into the charge (8.27), which
yields

2iθQm,2(t) = θ
∑
p

∑
r,s

(
ar†p,1(t)asp,2(t)ur†p,1u

s
p,2 + br−p,1(t)asp,2(t)vr†−p,1u

s
p,2

ar†p,1(t)bs†−p,2(t)ur†p,1v
s
−p,2 + br−p,1(t)bs†−p,2(t)vr†−p,1v

s
−p,2

ar†p,2(t)asp,1(t)ur†p,2u
s
p,1 + br−p,2(t)asp,1(t)vr†−p,2u

s
p,1

ar†p,2(t)bs†−p,1(t)ur†p,2v
s
−p,1 + br−p,2(t)bs†−p,1(t)vr†−p,2v

s
−p,1

)
. (8.33)

The commutators are then given by[
2iθQm,2(t), arp,1(t)

]
= −θ

∑
s

(
ur†p,1u

s
p,2a

s
p,2(t) + ur†p,1v

s
−p,2b

s†
−p,2(t)

)
, (8.34a)

[
2iθQm,2(t), arp,2(t)

]
= θ

∑
s

(
ur†p,2u

s
p,1a

s
p,1(t) + ur†p,2v

s
−p,1b

s†
−p,1(t)

)
, (8.34b)

[
2iθQm,2(t), br−p,1(t)

]
= −θ

∑
s

(
vr†−p,1u

s
p,2a

s
p,2(t) + vr†−p,1v

s
−p,2b

s†
−p,2(t)

)
, (8.34c)

[
2iθQm,2(t), br−p,2(t)

]
= θ

∑
s

(
vr†−p,2u

s
p,1a

s
p,1(t) + vr†−p,2v

s
−p,1b

s†
−p,1(t)

)
. (8.34d)

If we recombine the terms, we get as a final result for the dynamical map
arp,e(t)
arp,µ(t)
br†−p,e(t)
br†−p,µ(t)

 =
∑
s


cos θ δrs sin θ ur†p,1u

s
p,2 0 sin θ ur†p,1v

s
−p,2

− sin θ ur†p,2u
s
p,1 cos θ δrs − sin θ ur†p,2v

s
−p,1 0

0 sin θ vr†−p,1u
s
p,2 cos θ δrs sin θ vr†−p,1v

s
−p,2

− sin θ vr†−p,2u
s
p,1 0 − sin θ vr†−p,2v

s
−p,1 cos θ δrs



arp,1(t)
arp,2(t)
br†−p,1(t)
br†−p,2(t)

 .

(8.35)

This relation also gives us the explicit time-dependence of the flavour operators, because we
already know the time-dependence of the mass operators from the definition (8.10). If we
choose as a particular reference frame the one wherein p = (0, 0, |p|) = (0, 0, p), we can further
simplify the matrix in the relation (8.35). From the explicit form of the spinors (8.13) we
see that only the spinor products with r = s remain. Furthermore, we can introduce the
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abbreviations Up and Vp which correspond to the coefficient αp and βp in chapter 6. They are
defined as

Up := ur†p,2u
r
p,1 = vr†−p,1v

r
−p,2

=
√
E1 +m1

2E1

√
E2 +m2

2E2

(
1 +

p2

(E1 +m1)(E2 +m2)

)
, (8.36a)

(−1)rVp := ur†p,1v
r
−p,2 = −ur†p,2vr−p,1

= (−1)r
√
E1 +m1

2E1

√
E2 +m2

2E2

(
p

E2 +m2
− p

E1 +m1

)
(8.36b)

and satisfy the relation

U2
p + V 2

p = 1. (8.37)

Both, Up and Vp have a minimum or maximum at p =
√
m1m2. For p � √m1m2, that is

in particular for relativistic neutrinos, Up → 1 and Vp → 0. The same happens for the cases
where m1 = m2, which means no mixing is present.
Relation (8.35) can now be written as
arp,e(t)
arp,µ(t)
br†−p,e(t)
br†−p,µ(t)

 =


cos θ sin θ Up 0 (−1)r sin θ Vp

− sin θ Up cos θ (−1)r sin θ Vp 0
0 −(−1)r sin θ Vp cos θ sin θ Up

−(−1)r sin θ Vp 0 − sin θ Up cos θ



arp,1(t)
arp,2(t)
br†−p,1(t)
br†−p,2(t)

 .

(8.38)

Using the anticommutation relations for the mass operators (8.2) and the orthogonality and
completeness relations for the spinors (8.12), we can show by a staightforward calculation, that
the flavour operators satisfy the usual equal-time anticommutation relations{

arp,α(t), as†p,β(t)
}

=
{
br−p,α(t), bs†−p,β(t)

}
= δαβδpkδrs and all other zero. (8.39)

Furthermore, we can calculate unequal-time anticommutators from (8.38). The same could
be done for the mass operators, but there are only the two non-vanishing anticommutators in
(8.2) that get a time-dependence and nothing new appears, while the flavour operators give
new non-vanishing anticommutators:{

arp,e(t), a
s†
k,e(0)

}
= cos2 θ e−iE1t + sin2 θ

(
U2
p e−iE2t + V 2

p eiE2t
)
, (8.40a){

arp,e(t), a
s†
k,µ(0)

}
= sin θ cos θ Up

(
e−iE2t − e−iE1t

)
, (8.40b){

arp,e(t), b
s
k,e(0)

}
= sin2 θ UpVp

(
eiE2t − e−iE2t

)
, (8.40c){

arp,e(t), b
s
k,µ(0)

}
= sin θ cos θ Vp

(
eiE2t − e−iE1t

)
, (8.40d){

arp,µ(t), as†k,µ(0)
}

= cos2 θ e−iE2t + sin2 θ
(
U2
p e−iE1t + V 2

p eiE1t
)
, (8.40e){

arp,µ(t), bsk,e(0)
}

= sin θ cos θ Vp
(

eiE1t − e−iE2t
)
, (8.40f){

arp,µ(t), bsk,µ(0)
}

= sin2 θ UpVp

(
e−iE1t − eiE1t

)
, (8.40g)
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{
br†−p,e(t), b

s
k,e(0)

}
= cos2 θ eiE1t + sin2 θ

(
U2
p eiE2t + V 2

p e−iE2t
)
, (8.40h){

br†−p,e(t), b
s
k,µ(0)

}
= sin θ cos θ Up

(
eiE2t − eiE1t

)
, (8.40i){

br†−p,µ(t), bsk,µ(0)
}

= cos2 θ eiE2t + sin2 θ
(
U2
p eiE1t + V 2

p e−iE1t
)
. (8.40j)

If we consider the case of relativistic neutrinos, which corresponds to the large-p limit of Up
and Vp, we see that for (8.38) and (8.40) the case of the standard mixing is recovered.
In conclusion, the mixing of neutrinos is similar to our example in chapter 6. In both cases

we have two fields ψ1, ψ2 and ν1, ν2, which become connected by imposing boundary conditions.
In chapter 6 this condition was ψ1(x, 0) = ψ2(x, 0). For the neutrinos we have two conditions
νe(x) = cos θν1(x)+sin θν2(x) and νµ(x) = − sin θν1(x)+cos θν2(x). Therefore, we assume that
similar things happen to the “Fock spaces” and the operator G(θ, t). In particular, we assume
that the “Fock spaces” are disjoint and G(θ, t) is an improper unitary operator.

8.3 A Fock Space for Flavour Neutrinos

In the previous section we found the relation between the creation and annihilation operators
for the mass and flavour neutrinos, respectively. Since the ”Fock space“ is build upon the
ground state by acting creation operators on it, we can use the mixing relation to construct
the ”Fock space“ for the flavour neutrinos.
We will start with the Fock space H1,2 for the mass neutrinos. The vacuum is defined as the

state which is annihilated by all annihilation operators

arp,i(t)
∣∣0〉

1,2
= brp,i(t)

∣∣0〉
1,2

= 0 ∀p, r, i, t. (8.41)

From this vacuum state vector the whole Fock space can be constructed by successive applying
of creation operators on the vacuum. For example the one neutrino state is decribed by∣∣νi(t)〉1,2 := ar†p,i(t)

∣∣0〉
1,2
. (8.42)

In order to find the ”Fock space“ for the flavour neutrinos we have a look at the vacuum
expecatation value for the mass neutrino annihilation operator:

1,2

〈
0
∣∣arp,i(t)∣∣0〉1,2 = 0. (8.43)

Since we know the connection to the flavour neutrino annihilation operator (8.32), we can
identify the flavour neutrino vacuum state vector

0 =
1,2

〈
0
∣∣G(θ, t)arp,i(t)G

−1(θ, t)
∣∣0〉

1,2
:=

e,µ

〈
0(θ, t)

∣∣arp,α∣∣0(θ, t)
〉
e,µ

(8.44)

with ∣∣0(θ, t)
〉
e,µ

:= G−1(θ, t)
∣∣0〉

1,2
. (8.45)

This is the corresponding relation to (6.13) in chapter 6. The ”Fock space“ He,µ for the flavour
neutrinos shall then be the space build up by applying flavour creation operators on this
vacuum. For example the ”one flavour neutrino“ state is∣∣να(θ, t)

〉
e,µ

: = ar†p,α
∣∣0(θ, t)

〉
e,µ

= G−1(θ, t)
∣∣νi(t)〉1,2 (8.46)
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and we can regard the operator G−1(θ, t) as the bijective map:

G−1(θ, t) : H1,2 → He,µ (8.47)

which connects the two ”Fock spaces“.
From (8.45) we can explicitly compute the form of the flavour vacuum [BV95]∣∣0(θ, t)

〉
e,µ

=
∏
p,r

[(
1− sin2 θ V 2

p

)
− (−1)r sin θ cos θ Vp

(
ar†p,1(t)br†−p,2(t) + ar†p,2(t)br†−p,1(t)

)
+ (−1)r sin2 θ UpVp

(
ar†p,1(t)br†−p,1(t)− ar†p,2(t)br†−p,2(t)

)
+ sin2 θ V 2

p a
r†
p,1(t)br†−p,2(t)ar†p,2(t)br†−p,1(t)

]∣∣0〉
1,2
. (8.48)

This shows that the flavour vacuum is a condensate of mass neutrinos. By using (8.48) we can
compute the condensation density, which is the number of mass neutrinos with momentum p
condensated in the flavour vacuum:

e,µ

〈
0(θ, t)

∣∣ar†p,i(t)arp,i(t)∣∣0(θ, t)
〉
e,µ

=
e,µ

〈
0(θ, t)

∣∣br†−p,i(t)br−p,i(t)∣∣0(θ, t)
〉
e,µ

= sin2 θ V 2
p . (8.49)

Thus, we encountered the same problem as in chapter 6. The ”Fock space“ for the flavour
neutrinos is no real ”Fock space“ because, the state vectors in it cannot be interpreted as states
with a definite particle number. However, the vectors are well-defined by the map (8.47).
As a next step we will show that the two spaces H1,2 and He,µ are disjoint in the infinite

volume limit. Therefore, we compute the overlap of th two ground states

O =
1,2

〈
0|0(θ, t)

〉
e,µ

=
1,2

〈
0
∣∣G−1(θ, t)

∣∣0〉
1,2

=
∏
p,r

(
1− sin2 θV 2

p

)
=
∏
p

exp
(

2 ln
(
1− sin2 θV 2

p

))
= exp

(∑
p

2 ln
(
1− sin2 θV 2

p

))
. (8.50)

Using relation (6.5) for the behaviour of the sum in the infinite volume we obtain

O = exp
(

2V
(2π)3

∫
d3p ln

(
1− sin2 θV 2

p

))
. (8.51)

Since the argument of the logarithm is always smaller then 1, the exponent is negative and the
overlap vanishes for V →∞ just as it was the case in chapter 6. The same calculation can be
done for all state vectors of the different spaces with the same result. This also shows that the
matrix elements of G(θ, t) vanish if taken between vectors of the space H1,2 or He,µ. Thus,
G(θ, t) is an improper unitary operator.
In conclusion, we have shown in this chapter so far that it is possible to consider the mixing

between flavour and mass neutrinos as generated by an improper unitary operator G(θ, t).
This implies a unitary inequivalence of the mass and flavour ”Fock spaces“. Haag’s theorem
then allows us to consider the mass neutrinos as asymptotically free particles, while at the
same time the flavour neutrinos have interactions among each other. But this also spoils the
interpretation of a flavour neutrino state vector as a state with a definite number of flavour
neutrinos. In particular, these states are condensates of mass neutrinos. Nevertheless, the
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state vectors in He,µ are well-defined and we can compute an oscillation probability as we will
show in the next section. However, due to the problems with the interpretation of these states
we cannot interpret the probability as a particle with flavour α which propagate and in the
meanwhile oscillates into a flavour β. But we can consider the change in the expectation value
of the flavour charge, defined in (8.28), in some particular state. This is possible for all kind
of states even if they describe a condensate. As we will show in section 8.5 the state vectors
in He,µ are just the eigenvectors of the flavour charges and thus they are the natural choice to
describe the ”flavour neutrinos“.

8.4 Neutrino Oscillations

As we said in the last section we will interpret the oscillations between different flavours as the
change of the expectation value of the flavour charges taken in some particular state. Therefore,
we have to express the flavour charge operators (8.28) in terms of the creation and annihilation
operators. As usual we will work with normal ordered operators defined by

:: Qα(t) ::= Qα(t)−
e,µ

〈
0(θ, 0)

∣∣Qα(t)
∣∣0(θ, 0)

〉
e,µ
. (8.52)

We used the symbol :: . . . :: in order to note that the normal ordering is done with respect to
the flavour vacuum. In contrast, : . . . : will denote the normal ordering with respect to the
mass vacuum. Note that we will work in the Heisenberg picture, where the time-dependence
is transferred to the operators. Since the flavour state vectors are different for each time, we
have to choose a reference time—in our case t = 0.
Using the expansion (8.16) and the definition of the flavour charge (8.28) we find

:: Qα(t) ::=
∑
p,r

(
ar†p,α(t)arp,α(t)− br†−p,α(t)br−p,α(t)

)
. (8.53)

In order to find the probability amplitudes for the oscillation νe → νe and νe → νµ we compute
the following expectation values

P(e→ e; t) =
e,µ

〈
νe(θ, 0)

∣∣ :: Qe(t) ::
∣∣νe(θ, 0)

〉
e,µ
, (8.54a)

P(e→ µ; t) =
e,µ

〈
νe(θ, 0)

∣∣ :: Qµ(t) ::
∣∣νe(θ, 0)

〉
e,µ
. (8.54b)

The state vector |νe(θ, 0)〉e,µ is defined according to (8.46). To actually calculate the probabil-
ities we insert the flavour charges (8.53) and use the relation

e,µ

〈
0(θ, 0)

∣∣ :: Qα(t) ::
∣∣0(θ, 0)

〉
e,µ

= 0 (8.55)

which follows from (8.52). The result can be written in terms of anticommutators to unequal
times

P(e→ e; t) =
∣∣∣{arp,e(t), ar†p,e(0)

}∣∣∣2 +
∣∣∣{br†−p,e(t), ar†p,e(0)

}∣∣∣2, (8.56a)

P(e→ µ; t) =
∣∣∣{arp,µ(t), ar†p,e(0)

}∣∣∣2 +
∣∣∣{br†−p,µ(t), ar†p,e(0)

}∣∣∣2. (8.56b)

Since we already know the form of these anticommutators, as they are given in (8.40), we can
compute the final result

P(e→ e; t) = 1− sin2(2θ)U2
p sin2

(
E2 − E1

2
t

)
− sin2(2θ)V 2

p sin2

(
E2 + E1

2
t

)
, (8.57a)

P(e→ µ; t) = sin2(2θ)U2
p sin2

(
E2 − E1

2
t

)
+ sin2(2θ)V 2

p sin2

(
E2 + E1

2
t

)
. (8.57b)
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These two probabilities are the main results of the Blasone-Vitiello approach. They obviously
differ from the results in the other approaches in two ways. First the probabilities depend on
the momentum due to the dependency of Up and Vp and second there is an additional term
depending on the sum of the energies. Note that these results only depend on time and not
on the spatial distance. However, this was only assumed for simplicity. We could get a spatial
dependency if we use the flavour charge density J(x, t) with

Qα(t) =
∫

d3xJα(x, t) (8.58)

instead of the charges. The probabilities are then given by

P(α→ β;L) =
∫ T

0

∫
Ω
e,µ

〈
να(θ, 0)

∣∣Jβ(x, t)i
∣∣να(θ, 0)

〉
e,µ

dSi, (8.59)

which is the flux of neutrinos through the surface of the detector averaged over the time.
This has been done in [BPT03]. Furthermore, we should note that in the case of relativistic
neutrinos, that is p� √m1m2, the standard formula is recovered due to Up → 1 and Vp → 0
in this case.

8.5 Reasons in Favour of the BV-Approach

In this section we will discuss the important question whether the BV-approach is really more
convinient than the standard approaches. This question can be reformulated to the one whether
the state vectors ∣∣να(θ, t)

〉
e,µ

= G−1(θ, t)
∣∣νi(t)〉1,2 (8.60)

really describe the behaviour of flavour neutrinos better than the state vectors∣∣να〉 =
∑
i

Uαi
∣∣νi〉. (8.61)

We will discuss this question on the basis of two different attempts. First the flavour charges
of the different state vectors and second the calculation of the process W+ → e+ + νµ.

Flavour Charge Eigenstates In (8.28) we defined the flavour charges on the basis of the
symmetry properties of the Lagrangian. Thus, we have not used any information concerning
the state vectors. This allows us to test the different definitions (8.60) and (8.61) by computing
their behaviour under a transformation with Qα(t). This was done in [BCTV05, BCJV06].
If we use the different normal orderings defined in section 8.4 we can get the following

relations for the charges

:: Qe(t) :: = G−1(θ, t) : Q1 : G(θ, t), (8.62a)

:: Qµ(t) :: = G−1(θ, t) : Q2 : G(θ, t) (8.62b)

On the other hand, if we explicitly insert the mixing for the field operators into the definition
of the flavour charges, we get

Qe(t) = cos2 θQ1 + sin2 θQ2 + sin θ cos θ
∫

d3x
(
ν†1 ν2 + ν†2 ν1

)
, (8.63a)

Qµ(t) = sin2 θQ1 + cos2 θQ2 − sin θ cos θ
∫

d3x
(
ν†1 ν2 + ν†2 ν1

)
. (8.63b)
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It can be shown by writing the charges in terms of creation and annihilation operators, that
the mass neutrino state vectors are eigenvectors of the charges Q1 and Q2

: Q1 :
∣∣ν1

〉
1,2

=
∣∣ν1

〉
1,2
, : Q2 :

∣∣ν1

〉
1,2

= 0, (8.64)

: Q2 :
∣∣ν2

〉
1,2

=
∣∣ν2

〉
1,2
, : Q2 :

∣∣ν2

〉
1,2

= 0. (8.65)

If we use all these relations we can esily show that the state vectors (8.60) are eigenvectors
of Qe(t) and Qµ(t) at the reference time t = 0

:: Qe(0) ::
∣∣νe(θ, 0)

〉
e,µ

= G−1(θ, 0) : Q1(t) :
∣∣ν1

〉
1,2

=
∣∣νe(θ, 0)

〉
e,µ

(8.66)

and similar for the following relations

:: Qe(0) ::
∣∣νµ(θ, 0)

〉
e,µ

= 0, and :: Qµ(0) ::
∣∣νe(θ, 0)

〉
e,µ

= 0, (8.67a)

:: Qµ(0) ::
∣∣νµ(θ, 0)

〉
e,µ

=
∣∣νµ(θ, 0)

〉
e,µ

(8.67b)

If we try the same for the state vectors (8.61), we find that they are obviously not eigenvectors
of Qe(t) and Qµ(t)

: Qe(t) :
∣∣νe〉 =: Qe(t) :

(
cos θ

∣∣ν1

〉
+ sin θ

∣∣ν2

〉)
= cos3 θ

∣∣ν1

〉
+ sin3 θ

∣∣ν2

〉
+ sin θ cos θ

∫
d3x :

(
ν†1 ν2 + ν†2 ν1

)
:
(
cos θ

∣∣ν1

〉
+ sin θ

∣∣ν2

〉)
6=
∣∣νe〉. (8.68)

The same holds for the other state vectors. Thus, we found that only the state vectors defined
via the improper mixing (8.60) describe states with the expected flavour charge.

Amplitude for the Fundamental Vertex Now we will consider the processW+ → e++νµ
whose amplitude should vanish. This is similar to the considerations in chapter 7 but however,
we will encounter some new insight in the problem. The first who computed this process for
the BV state vectors were [LL06] who found that the amplitude is non-vanishing. Later BV
[BCJV06] showed that the actual problem is to consider the state vectors as asymptotically free
and take a time integration in the amplitude from −∞ to ∞. As we pointed out in chapter 6
the neutrino states cannot be considered as asymptotically free because they have interactions
among each other. Thus, the infinite times in the amplitude are meaningless. However, we
expect that the problems due to the oscillations will not be present immediately and thus
we can regard vour neutrinos to be free for times shortly after the production. Thus, in the
following we will calculate the amplitude for small times around the interaction time.
If we consider the amplitude

A(W+ → e+ + νµ) =
〈
νµ, e

+
∣∣S∣∣W+

〉
(8.69)

and expand the S-matrix to first order in the charged current Hamiltonian the amplitude will
certainly contain a factor

Aν =
∫ x0

out

x0
in

dx0
〈
νµ
∣∣ν̄e(x)

∣∣0〉, (8.70)
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which is the only interesting term for us.
We will start with the state vectors in the BV-approach. Then Aν reads

Aν =
∫ x0

out

x0
in

dx0
e,µ

〈
νµ(θ, 0)

∣∣ν̄e(x)
∣∣0(θ, 0)

〉
e,µ

=
∫ x0

out

x0
in

dx0
∑
k,s

(
us†k,e

{
arp,µ(0), as†k,e(x

0)
}

+ vs†−k,e
{
arp,µ(0), bs−k,e(x

0)
})

(8.71)

where we used the expansion (8.16) for the field operator. The explicit form of the anticom-
mutators is given in (8.40) which yields

Aν =
∫ x0

out

x0
in

dx0 sin θ cos θ
(
us†k,e

(
eiE2t − eiE1t

)
+ vs†−k,e

(
e−iE1t − eiE2t

))
(8.72)

We now assume that the initial and final times x0
in and x0

out, respectively, are small compared
to 1/E2 and 1/E1. Note that these times are much larger than the time-scale for the acutal
interaction which is of the order 1/G1/2

F .Then we see that the exponentials can be approximated
by the zero order term and the whole term Aν vanishes. Thus we obtain the expected result.
In terms of the state vectors (8.61) the factor reads

Aν =
∫ x0

out

x0
in

dx0
〈
νµ
∣∣ν̄e(x)

∣∣0〉 (8.73)

=
∫ x0

out

x0
in

dx0 sin θ cos θ
(
ur†p,2eiE2t − ur†p,1eiE1t

)
, (8.74)

where we first wrote the factor in terms of the mass field operators and state vectors and then
used the Fourier expansion for the field operators. If we now use the same assumption for the
initial and final times as before we get

Aν = sin θ cos θ
(
ur†p,2 − u

r†
p,1

)
6= 0, (8.75)

which is not the expected result.
Thus, we have seen that if we consider the amplitude for times in a small range around the

interaction time, only the BV-state vectors give the expected result of a vanishing amplitude.
For this small times we can neglect the oscillation behaviour of the neutrinos and can consider
them to be free. Note that we could do the same calculation for the weak-prcess states. The
result would again be a non-vanishing amplitude.
In conclusion, this shows that the state vectors defined by the improper transformation (8.60)

are preferable for the description of the flavour neutrino behaviour.



Summary and Outlook

In this thesis we have summarised the different theoretical approaches for the description of
neutrino oscillations. As we have seen the quantum-mechanical plane-wave approach produces
a number of problems. The main problem is the unclear notion of the state vector for a
“particle” having no definite mass. Therefore, it should not be used for a accurate theoreti-
cal description of NO, even though it is the most used approach in the literature. The more
advanced intermediate wave-packet model solves some of these problems but nevertheless it
suffers from the same insufficiencies as all quantum-mechanical approaches. In particular, that
are the Bargman superselection rule, which forbids the superposition of different mass states
for non-relativistic particles, and the ill-defined flavour state vectors which do not reproduce
the expected flavour neutrino behaviour. One possible way out is the external wave-packet
model which bases on QFT and does not describe the neutrinos by state vectors but by their
propagator. This reflects in an interesting way the unobservability of the flavour neutrino. In
this model the oscillation probability is mainly the same as in the intermediate wave packet
model. The differences are mostly due to QFT effects in the description of the source and
detector. Another important point, which is not considered in the quantum mechanical ap-
proaches is Haag’s theorem. The main point of this theorem within the present circumstances
is that if mass and flavour neutrinos are connected by a unitary transformation they are both
free particles, because we consider the mass neutrinos as asymptotically free, which can ex-
plicitly be seen in the BV-approach, where the Lagrangian for the mass fields does not contain
any interaction term. In contrast, the flavour neutrinos have interactions among each other
leading to mixing transitions and can thus not be considered to be free. These problems, al-
though known since the beginning of QFT, were not considered in the theory of neutrinos for
a long time. Even today they are mostly ignored, which is partly justified by the fact that all
approaches presented in this thesis give the same results if the neutrinos are considered to be
relativistic. But from a theoretical viewpoint this approaches are unsatisfactory. Therfore, the
BV-approach can be considered as a breakthrough for the theoretical description of neutrinos,
because the state vectors in this approach really describe the behaviour of flavour neutrinos as
we would expect it. However, the approach gives rise to a new problem, which concerns the
interpretation of a flavour neutrino. As we have seen, the state vectors for flavour neutrinos
can be considered as describing a condensate of infinitely many mass neutrinos and thus we do
not have a definite particle number. Nevertheless, we can work with these vectors if we only
consider quantities which do not resort to a particle interpretation. For example, we defined
the oscillation probability as the expectation value of the flavour charge, which is not bothered
by the infinite number of particles in the state.
As we said, for relativistic neutrinos all approaches yield the same result. Thus, in order

to proof or disproof the different approaches empirically we have to measure oscillation effects
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for non-relativistic neutrinos. This means we need a new kind of detection possibilities since
today’s experiments are only sensible to relativistic neutrinos. Another posibility could be the
precise measurements made for the B-mesons and Kaons. Even though these are boson mixing
effects most of the approaches and in particular the BV-approach can also be applied to boson
mixing.



Acknowledgment

I would like to thank Prof. Dr. Reinhart Kögerler for guiding me through all the different aspects
of neutrino physics, escpecially the QFT topics where I could learn from his knowledge on the
things that only “the elder” know. And of course I thank him for all the tea and cakes in
the cafeteria. Furthermore, I would like to thank Benjamin and Florian for their eagerness to
answer to every of my question of whatever kind and not to mention their comprehensive proof
reading of this thesis and the great atmosphere in our office. I also thank my parents for their
support in every sense.
Finally, I thank Jette just for everything.

81





Bibliography

[A+01] Q. R. Ahmad et al., Measurement of the charged current interactions produced by
b-8 solar neutrinos at the sudbury neutrino observatory, Phys. Rev. Lett. 87
(2001), 071301, nucl-ex/0106015.

[A+02a] , Direct evidence for neutrino flavor transformation from neutral-current
interactions in the sudbury neutrino observatory, Phys. Rev. Lett. 89 (2002),
011301, nucl-ex/0204008.

[A+02b] , Measurement of day and night neutrino energy spectra at sno and con-
straints on neutrino mixing parameters, Phys. Rev. Lett. 89 (2002), 011302,
nucl-ex/0204009.

[A+04] Y. Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino os-
cillation, Phys. Rev. Lett. 93 (2004), 101801, hep-ex/0404034.

[ABIV95] E. Alfinito, Massimo Blasone, A. Iorio, and Giuseppe Vitiello, Squeezed neutrino
oscillations in quantum field theory, Phys. Lett. B362 (1995), 91–96, hep-
ph/9510213.

[Akh07] Evgeny Akhmedov, Do charged leptons oscillate?, arXiv:0706.1216 [hep-ph].
[Bar54] V. Bargmann, On unitary ray representations of continuous groups, Annals Math.

59 (1954), 1–46.
[Bar63] G. Barton, Introduction to advanced field theory, Interscience Publishers, 1963.
[BCJV06] Massimo Blasone, Antonio Capolupo, Chueng-Ryong Ji, and Giuseppe Vitiello,

Flavor charges and flavor states of mixed neutrinos, hep-ph/0611106.
[BCTV05] Massimo Blasone, Antonio Capolupo, Francesco Terranova, and Giuseppe Vitiello,

Lepton charge and neutrino mixing in decay processes, Phys. Rev. D72 (2005),
013003, hep-ph/0505178.

[BCV01] Massimo Blasone, Antonio Capolupo, and Giuseppe Vitiello, Comment on ’remarks
on flavor-neutrino propagators and oscillation formulae’, hep-ph/0107183.

[BCV02] , Quantum field theory of three flavor neutrino mixing and oscillations with
cp violation, Phys. Rev. D66 (2002), 025033, hep-th/0204184.

[Beu02] Mikael Beuthe, Towards a unique formula for neutrino oscillations in vacuum,
Phys. Rev. D66 (2002), 013003, hep-ph/0202068.

[Beu03] , Oscillations of neutrinos and mesons in quantum field theory, Phys. Rept.
375 (2003), 105–218, hep-ph/0109119.

[BHV99] Massimo Blasone, Peter A. Henning, and Giuseppe Vitiello, The exact formula for
neutrino oscillations, Phys. Lett. B451 (1999), 140–145, hep-th/9803157.

[BJV01] Massimo Blasone, Petr Jizba, and Giuseppe Vitiello, Currents and charges for
mixed fields, Phys. Lett. B517 (2001), 471–475, hep-th/0103087.

83

http://arxiv.org/abs/nucl-ex/0106015
http://arxiv.org/abs/nucl-ex/0204008
http://arxiv.org/abs/nucl-ex/0204009
http://arxiv.org/abs/hep-ex/0404034
http://arxiv.org/abs/hep-ph/9510213
http://arxiv.org/abs/hep-ph/9510213
http://arxiv.org/abs/0706.1216
http://arxiv.org/abs/hep-ph/0611106
http://arxiv.org/abs/hep-ph/0505178
http://arxiv.org/abs/hep-ph/0107183
http://arxiv.org/abs/hep-th/0204184
http://arxiv.org/abs/hep-ph/0202068
http://arxiv.org/abs/hep-ph/0109119
http://arxiv.org/abs/hep-th/9803157
http://arxiv.org/abs/hep-th/0103087


84 Bibliography

[BLSG99] H. Burkhardt, J. Lowe, Jr. Stephenson, G. J., and T. Goldman, Oscillations of recoil
particles against mixed states, Phys. Rev. D59 (1999), 054018, hep-ph/9803365.

[BLT75] Nikolai N. Bogolubov, Anatoli A. Logunov, and Ivan T. Todorov, Introduction to
axiomatic quantum field theory, 1. english ed., W. A. Benjamin, Inc., 1975.

[BMP05] Massimo Blasone, Joao Magueijo, and Paulo Pires Pacheco, Lorentz invariance for
mixed neutrinos, Braz. J. Phys. 35 (2005), 447–454, hep-ph/0504141.

[BO78] Carl M. Bender and Steven A. Orszag, Advanced mathematical methods for scien-
tists and engineers, 1. ed., International Series in Pure and Applied Mathemat-
ics, McGraw-Hill, 1978.

[BPT03] Massimo Blasone, Paulo Pires Pacheco, and Hok Wan Chan Tseung, Neutrino
oscillations from relativistic flavor currents, Phys. Rev. D67 (2003), 073011,
hep-ph/0212402.

[BV95] Massimo Blasone and Giuseppe Vitiello, Quantum field theory of fermion mixing,
Ann. Phys. 244 (1995), 283–311, hep-ph/9501263.

[BV99] , Remarks on the neutrino oscillation formula, Phys. Rev. D60 (1999),
111302, hep-ph/9907382.

[Cap04] Antonio Capolupo, Aspects of particle mixing in quantum field theory, hep-
th/0408228.

[Car00] Christian Y. Cardall, Coherence of neutrino flavor mixing in quantum field theory,
Phys. Rev. D61 (2000), 073006, hep-ph/9909332.

[CC99] Christian Y. Cardall and Daniel J. H. Chung, The msw effect in quantum field
theory, Phys. Rev. D60 (1999), 073012, hep-ph/9904291.

[Dav64] R. Davis, Solar neutrinos. ii: Experimental, Phys. Rev. Lett. 12 (1964), 303–305.
[DLDR00] Stefano De Leo, G. Ducati, and Pietro Rotelli, Comments upon the mass oscillation

formulas, Mod. Phys. Lett. A15 (2000), 2057–2068, hep-ph/9906460.
[DLNR03] Stefano De Leo, Celso C. Nishi, and Pietro Rotelli, Reply to hep-ph/0211241: ’on

the extra factor of two in the phase of neutrino oscillations’, hep-ph/0303224.
[DLNR04] , Wave packets and quantum oscillations, Int. J. Mod. Phys. A19 (2004),

677–694, hep-ph/0208086.
[DMOS97] A. D. Dolgov, A. Yu. Morozov, L. B. Okun, and M. G. Shchepkin, Do muons

oscillate?, Nucl. Phys. B502 (1997), 3–18, hep-ph/9703241.
[Fer34a] Enrico Fermi, An attempt of a theory of beta radiation. 1, Z. Phys. 88 (1934),

161–177.
[Fer34b] , Trends to a theory of beta radiation. (in italian), Nuovo Cim. 11 (1934),

1–19.
[FHY99] Kanji Fujii, Chikage Habe, and Tetsuo Yabuki, Note on the field theory of neutrino

mixing, Phys. Rev. D59 (1999), 113003, hep-ph/9807266.
[FHY01] , Remarks on flavor-neutrino propagators and oscillation formulae, Phys.

Rev. D64 (2001), 013011, hep-ph/0102001.
[FY03] Masataka Fukugita and Tsutomu Yanagida, Physics of neutrinos and applications

to astrophysics, 1. ed., Springer-Verlag, 2003.
[Giu01] Carlo Giunti, Energy and momentum of oscillating neutrinos, Mod. Phys. Lett.

A16 (2001), 2363, hep-ph/0104148.

http://arxiv.org/abs/hep-ph/9803365
http://arxiv.org/abs/hep-ph/0504141
http://arxiv.org/abs/hep-ph/0212402
http://arxiv.org/abs/hep-ph/9501263
http://arxiv.org/abs/hep-ph/9907382
http://arxiv.org/abs/hep-th/0408228
http://arxiv.org/abs/hep-th/0408228
http://arxiv.org/abs/hep-ph/9909332
http://arxiv.org/abs/hep-ph/9904291
http://arxiv.org/abs/hep-ph/9906460
http://arxiv.org/abs/hep-ph/0303224
http://arxiv.org/abs/hep-ph/0208086
http://arxiv.org/abs/hep-ph/9703241
http://arxiv.org/abs/hep-ph/9807266
http://arxiv.org/abs/hep-ph/0102001
http://arxiv.org/abs/hep-ph/0104148


Bibliography 85

[Giu02a] , Neutrino wave packets in quantum field theory, JHEP 11 (2002), 017,
hep-ph/0205014.

[Giu02b] , The phase of neutrino oscillations, hep-ph/0202063.

[Giu04a] , Flavor neutrinos states, hep-ph/0402217.

[Giu04b] , Theory of neutrino oscillations, hep-ph/0409230.

[Giu05] , Fock states of flavor neutrinos are unphysical, Eur. Phys. J. C39 (2005),
377–382, hep-ph/0312256.

[Giu06] , Neutrino flavor states and oscillations, hep-ph/0608070.

[GK98] Carlo Giunti and Chung W. Kim, Coherence of neutrino oscillations in the wave
packet approach, Phys. Rev. D58 (1998), 017301, hep-ph/9711363.

[GK01] , Quantum mechanics of neutrino oscillations, Found. Phys. Lett. 14 (2001),
213–229, hep-ph/0011074.

[GK07] , Fundamentals of neutrino physics and astrophysics, 1. ed., Oxford Univer-
sity Press, 2007.

[GKL91] Carlo Giunti, Chung W. Kim, and U. W. Lee, When do neutrinos really oscillate?:
Quantum mechanics of neutrino oscillations, Phys. Rev. D44 (1991), 3635–
3640.

[GKL92] , Remarks on the weak states of neutrinos, Phys. Rev. D45 (1992), 2414–
2420.

[GKL98] , When do neutrinos cease to oscillate?, Phys. Lett. B421 (1998), 237–244,
hep-ph/9709494.

[GKLL93] Carlo Giunti, Chung W. Kim, J. A. Lee, and U. W. Lee, On the treatment of
neutrino oscillations without resort to weak eigenstates, Phys. Rev. D48 (1993),
4310–4317, hep-ph/9305276.

[GL97] Yuval Grossman and Harry J. Lipkin, Flavor oscillations from a spatially localized
source: A simple general treatment, Phys. Rev. D55 (1997), 2760–2767, hep-
ph/9607201.

[Gol96] J. Terrance Goldman, Source dependence of neutrino oscillations, hep-ph/9604357.

[Gre01] Daniel M. Greenberger, Inadequacy of the usual galilean transformation in quantum
mechanics, Phys. Rev. Lett. 87 (2001), no. 10, 100405.

[GS96] W. Grimus and P. Stockinger, Real oscillations of virtual neutrinos, Phys. Rev.
D54 (1996), 3414–3419, hep-ph/9603430.

[H+06] J. Hosaka et al., Three flavor neutrino oscillation analysis of atmospheric neutrinos
in super-kamiokande, Phys. Rev. D74 (2006), 032002, hep-ex/0604011.

[Haa55] Rudolf Haag, On quantum field theories, Dan. Mat. Fys. Medd. 29 (1955), no. 12,
1.

[JM02] Chueng-Ryong Ji and Yuriy Mishchenko, The general theory of quantum field mix-
ing, Phys. Rev. D65 (2002), 096015, hep-ph/0201188.

[JS61] R. Jacob and R. G. Sachs, Mass and lifetime of unstable particles, Phys. Rev. 121
(1961), 350–356.

[Kay81] Boris Kayser, On the quantum mechanics of neutrino oscillation, Phys. Rev. D24
(1981), 110.

http://arxiv.org/abs/hep-ph/0205014
http://arxiv.org/abs/hep-ph/0202063
http://arxiv.org/abs/hep-ph/0402217
http://arxiv.org/abs/hep-ph/0409230
http://arxiv.org/abs/hep-ph/0312256
http://arxiv.org/abs/hep-ph/0608070
http://arxiv.org/abs/hep-ph/9711363
http://arxiv.org/abs/hep-ph/0011074
http://arxiv.org/abs/hep-ph/9709494
http://arxiv.org/abs/hep-ph/9305276
http://arxiv.org/abs/hep-ph/9607201
http://arxiv.org/abs/hep-ph/9607201
http://arxiv.org/abs/hep-ph/9604357
http://arxiv.org/abs/hep-ph/9603430
http://arxiv.org/abs/hep-ex/0604011
http://arxiv.org/abs/hep-ph/0201188


86 Bibliography

[Kay97] , The frequency of neutral meson and neutrino oscillation, SLAC-PUB-7123.

[KNW96] Ken Kiers, Shmuel Nussinov, and Nathan Weiss, Coherence effects in neutrino
oscillations, Phys. Rev. D53 (1996), 537–547, hep-ph/9506271.

[KP93] Chung Wool Kim and Aihud Pevsner, Neutrinos in physics and astrophysics, 1.
ed., Contemporary Concepts in Physics, vol. 8, Harwood Academic Publishers,
1993.

[KW98] Ken Kiers and Nathan Weiss, Neutrino oscillations in a model with a source and
detector, Phys. Rev. D57 (1998), 3091–3105, hep-ph/9710289.

[L+96] J. Lowe et al., No Λ oscillations, Phys. Lett. B384 (1996), 288–292, hep-
ph/9605234.

[Lip95] Harry J. Lipkin, Theories of nonexperiments in coherent decays of neutral mesons,
Phys. Lett. B348 (1995), 604–608, hep-ph/9501269.

[Lip99] , Quantum mechanics of neutrino oscillations: Hand waving for pedestrians,
hep-ph/9901399.

[Lip02] , Stodolsky’s theorem and neutrino oscillation phases - for pedestrians, hep-
ph/0212093.

[Lip06] , Quantum theory of neutrino oscillations for pedestrians: Simple answers
to confusing questions, Phys. Lett. B642 (2006), 366–371, hep-ph/0505141.

[LL06] Y. F. Li and Q. Y. Liu, A paradox on quantum field theory of neutrino mixing and
oscillations, JHEP 10 (2006), 048, hep-ph/0604069.

[MNS62] Z. Maki, M. Nakagawa, and S. Sakata, Remarks on the unified model of elementary
particles, Prog. Theor. Phys. 28 (1962), 870.

[MP91] Rabindra N. Mohapatra and Palash B. Pal, Massive neutrinos in physics and as-
trophysics, 1. ed., World Scientific Lecture Notes in Physics, vol. 41, World
Scientific Publishing Co. Pte. Ltd., 1991.

[Nus76] S. Nussinov, Solar neutrinos and neutrino mixing, Phys. Lett. B63 (1976), 201–
203.

[OST03] L. B. Okun, M. G. Schepkin, and I. S. Tsukerman, On the extra factor of two
in the phase of neutrino oscillations, Nucl. Phys. B650 (2003), 443–446, hep-
ph/0211241.

[OT00] L. B. Okun and I. S. Tsukerman, Comment on equal velocity assumption for neu-
trino oscillations, Mod. Phys. Lett. A15 (2000), 1481–1482, hep-ph/0007262.

[Pon57] B. Pontecorvo, Mesonium and antimesonium, Sov. Phys. JETP 6 (1957), 429.

[Pon58] , Inverse beta processes and nonconservation of lepton charge, Sov. Phys.
JETP 7 (1958), 172–173.

[PS95] Michael E. Peskin and Daniel V. Schroeder, An introduction to quantum field the-
ory, 1. ed., Westview Press, 1995.

[Sac63] R. G. Sachs, Interference phenomena of neutral k mesons, Ann. Phys. 22 (1963),
239–262.

[Shr80] R. E. Shrock, New tests for, and bounds on, neutrino masses and lepton mixing,
Phys. Lett. B96 (1980), 159.

http://arxiv.org/abs/hep-ph/9506271
http://arxiv.org/abs/hep-ph/9710289
http://arxiv.org/abs/hep-ph/9605234
http://arxiv.org/abs/hep-ph/9605234
http://arxiv.org/abs/hep-ph/9501269
http://arxiv.org/abs/hep-ph/9901399
http://arxiv.org/abs/hep-ph/0212093
http://arxiv.org/abs/hep-ph/0212093
http://arxiv.org/abs/hep-ph/0505141
http://arxiv.org/abs/hep-ph/0604069
http://arxiv.org/abs/hep-ph/0211241
http://arxiv.org/abs/hep-ph/0211241
http://arxiv.org/abs/hep-ph/0007262


Bibliography 87

[Shr81a] Robert E. Shrock, General theory of weak leptonic and semileptonic decays. 1.
leptonic pseudoscalar meson decays, with associated tests for, and bounds on,
neutrino masses and lepton mixing, Phys. Rev. D24 (1981), 1232.

[Shr81b] , General theory of weak processes involving neutrinos. 2. pure leptonic de-
cays, Phys. Rev. D24 (1981), 1275.

[SSW95] E. Sassaroli, Y. N. Srivastava, and A. Widom, Charged lepton oscillations, hep-
ph/9509261.

[Sto98] L. Stodolsky, The unnecessary wavepacket, Phys. Rev. D58 (1998), 036006, hep-
ph/9802387.

[SWS95a] Y. Srivastava, A. Widom, and E. Sassaroli, Spatial correlations in two neutral kaon
decays, Z. Phys. C66 (1995), 601–605.

[SWS95b] Y. N. Srivastava, A. Widom, and E. Sassaroli, Λ oscillations, Phys. Lett. B344
(1995), 436–440.

[SWS98] Y. Srivastava, A. Widom, and E. Sassaroli, Charged lepton and neutrino oscilla-
tions, Eur. Phys. J. C2 (1998), 769–774.

[TTTY99] Y. Takeuchi, Y. Tazaki, S. Y. Tsai, and T. Yamazaki, Wave packet approach to the
equal-energy / momentum / velocity prescriptions of neutrino oscillation, Mod.
Phys. Lett. A14 (1999), 2329–2339, hep-ph/9809558.

[UMT82] H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo field dynamics and condensed
states, 1. ed., North-Holland Publishing Company, 1982.

[vN31] J. von Neumann, Die eindeutigkeit der schrödingerschen operatoren, Math. Ann.
104 (1931), 570.

[Win81] R. G. Winter, Neutrino oscillation kinematics, Lett. Nuovo Cim. 30 (1981), 101–
104.

[WS96] A. Widom and Y. N. Srivastava, Λ oscillations and the conservation laws, hep-
ph/9605399.

[Y+06] W. M. Yao et al., Review of particle physics, J. Phys. G33 (2006), 1–1232.

[Zra98] Marek Zrałek, From kaons to neutrinos: Quantum mechanics of particle oscilla-
tions, Acta Phys. Polon. B29 (1998), 3925–3956, hep-ph/9810543.

http://arxiv.org/abs/hep-ph/9509261
http://arxiv.org/abs/hep-ph/9509261
http://arxiv.org/abs/hep-ph/9802387
http://arxiv.org/abs/hep-ph/9802387
http://arxiv.org/abs/hep-ph/9809558
http://arxiv.org/abs/hep-ph/9605399
http://arxiv.org/abs/hep-ph/9605399
http://arxiv.org/abs/hep-ph/9810543

	Motivation
	A Short Introduction to Neutrino Physics
	Fermi's Theory
	The Standard Model
	Neutrino Mixing
	Neutrino Oscillation Experiments

	Oscillations in Quantum Mechanics
	State Vectors for Flavour Neutrinos
	The Quantum Mechanical Description of Neutrinos
	The General Oscillation Formula
	Remarks on the Oscillation Formula

	Neutrinos as Plane Waves
	The General Plane Wave Solution
	Time to Space Conversion
	Discussion
	Remarks on the Plane Wave Treatment

	The Intermediate Wave Packet Model
	The Uncertainties of a Neutrino
	Gaussian Wave Packets

	The External Wave Packet Model
	The Jacob-Sachs Model
	External Particles as Gaussian Wave Packets
	Three Different Amplitudes
	Analysis of the Probabilities

	Some Comments on Quantum Field Theory
	A One-Particle Theory
	An Example
	Haag's Theorem

	The State Vectors for Flavour Neutrinos
	Problems due to Weak States
	Weak-Process States

	The Approach of Blasone and Vitiello
	The General Setup
	An Improper Generator for the Mixing
	A Fock Space for Flavour Neutrinos
	Neutrino Oscillations
	Reasons in Favour of the BV-Approach

	Summary and Outlook
	Acknowledgment
	Bibliography

