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Major progress in axiomatic field theory in recent years has been achieved in three different 

areas: 

(i) Algebraic approach. A general study of particle statistics (including parastatistics) and 

field commutation relations based on the assumption of commutativity of observables at spacelike 

distance has been successfully carried through by Doplicher. Haag. and Roberts t , 2 usi.ng an alge­

braic method. Their work was not reported on at this conference. 

(ii) Constructive field theory. This is an attempt to construct a quantum field theory for a 

given interac tion sue h as If,
4 

and -;w, <t> in a rnathematic ally satis fac tory manner, ther eby es tab!ish­

ing the existence of nontrivial models satisfying the basic axioms of quantum field theory and 

enabling a further mathematical study of the physical properties of these models such as broken 

symmetry. Recent remarkable progress was reported in the mini -rapporteur talks of Jaffe and 

Wightman. 

(iii) Properties of scattering amplitudes. There has been remarkable progress in the anal­

ysis of on -mass -shell n-point amplitudes by Bros. Epstein, and Glaser. 3 This subject along with 

some recent work on the Pomeranchuk theorem was discussed in the mini-rapporteur talk of 

Martin (#788. 3t2, 31.3, 31.4). In addition, a parametric dispersion representation. which con­

tains only physical absorptive parts and follows from axiomatic analyticity {or pion -pion sca.tter­

ing, was reported by Khuri (1/787), and a connection between scaling, light-cone singularities and 

the asymptotic behavior of the J08t-Lehmann~Dysonspectral function was discussed by Vladimirov 

(1/9t 7) and Stichel. 4 

In addition to achievement in the above three areas, important progress in renormali,-;ation 

has been made by Epstein and Glaser. 5 This work was not reported on. 

In the area of mathematical aspec ts of quantum field theory. E. Mihul reported her work 

on the Bargman-Hall-Wightman theorem and on the extended tube. and Swieca ilI/E.37) discussed 

the unitary implementability of special conformal transformations for free fields. 

In the following. areas (ii) and (iii) listed above are discussed in somewhat more detail. 

I. Constructive Field Theory
 

One considers a Hamiltonian
 

where H is a free Hamiltonian, HI is an interaction Hamiltonian, and H is an (infinite) counter­
O c 

term. Typically, one starts out from a cutoff Hamiltonian, proves the seU·adjointness and semi­

boundedness of the cutocr Hamiltonian, defines a Heisenberg field t/J(;, tl = eitH,f)(;)e -itH (in a 

cutoff theory), proves a finite propagation property, goes to the limit of no cutoff, and proves the 

Wightman axioms one by one. For super -renormalizable interactions. 1. e. , for those interactions 
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which produce essentially only a finite number 0 f di vergent graphs, such a program can be carried 

through by treating the divergences exactly. and remarkable progress has been achieved over the 

past several years. where outstanding contributions have been made by Gllmm and Jaffe. 

At the time of this conference. all the Wightman axioms including the existence of a mass 

gap between the vacuum and the rest of the energy momentum spectrum had been established for 

Pld!l theory (a theory with an interaction HI = j:P(r/!(X)\:dX where P is a polynomlal which isz 
bounded below such as \d!4 - atjl2. \. > 0, and the space -time di mens ion is 2) for small coupling 

constant. Jaffe predicted that the (Yukawal theory will be in similar sha.pe within 12 months
Z 

because of recent results on the Euclidean formulation for Fermions. 6.7 (The Euclidean for­

mulation in general will be discussed below.) Another recent breakthrough is a proof of the posi­

tivity of the Hamiltonian for (,p4}3 theory. Rapid progress was also predicted for this interaction 

as well as the {Yukawal theory.
1 

One of the most recent technical developments, which has been of vital importance for the 

rapid progress in the past year and is responsible for the optimistic future predictions, is con­

e erned with the so -called Euclidean method. In particular. relations among Euclidean field theory, 

classical statis tical mec hanics, and quantum field theory were emphasized by Wightman and wi n 

be explained below in some detail. 

It has long been known that the vacuum expectation values of products of fields in quantum 

field theory (VEVI c an be continued analytic ally to Schwinger poin ts. i. e .. points with pure im­

aginary times and real s pac e coordinates. The VE V at Schwinger points is called a Schwinger 
ll

function. Symanzik has developed a Euclidean field theory which yIelds SchWinger functions of 

a Minkowski quantum field theory as the expecfation values of commuting fields with� respect to a 
it

positive measure. J)ecisive progress has been achieved in the past year by Nelson9 - who in­

troduced the Markoff property to Eucl id(~an field theory and showed that this property together 

with properties discussed by Symanzik permit the reconstruction of a Minkowaki quantum field 

theory from a Euclidean field theory. Thus one can first construct the Euclidean field theory or 

Schwinger functions for a given interaction and then study the corresponding Minkowski quantum 

field theory. This is the so -called Eue1idean method. 

The Schwinger functions for a cutoff interaction are obtained by the Gell-Mann-Low formula. 

L c .• the infinite t limit of 

Z -1 J!/>(x ) .. 4>(xn)du(,pI, ;\,1 ~ Jdu.(¢J1,t. t 1 

where d!(xl in this expression is a commuting Euclidean field. 

dfJ.(,p) =� du (!/>\'exp[J 
t 
d~D J//2 dS 1V(0(~)I] 

OJo -I/? 
4 

V(dJ) is an interaction such as 6 and diJ.o(d!l is the Gaussian measure for free fields The model 

without a spatial cutoff is obtained in the limit I - '" Thus one is interested in the limit of a 

state given by a measure exp[- fA H(dJ(~))dglduo(dl1 as the rectangle II (in space-time\ becomes in­

finite, which makes the correspondence with dassical statistical mechanics more than mere 

analogy. Such a limit is used to obtain an equilibrium state in classical statistical mechanics 

Since abstract characterizations of equilibrium states by a variational principle and by other 

equivalent conditions are known for classical statistical mechanics in an infinite volume. and 
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since new techniques for predicting the existence of phase transitions are being developed. one 

can expect similar developments for quantum field theory. A study along these lines is contained 

in Refs. 1.2 and B. 

Apart from the connection with statistical mechanics, the power 0 f the Euclidean method 

can be seen in Nelson's symmetry: 

(01)0' exp[-tH1l«>o) = (~O' exp[-/Ht]~Ol. 

where ~O is the free vacuum and HI denotes the cutoff full Hamiltonian, I being the space cutoff. 

Such a symmetry between the (time) parameter t and the space cutoff 1 is quite remarkable and 

is a simple consequence of the Feynman-Kac formula 

(oliO' exp[-tH/]4JO) = Zt.l 

Guerra14 was the first person to notic e an important application 0 f this symmetry, which 

started a fullscale use 0 f the Euclidean method by many authors. 6,7,12,13.15 -t 9 Some of the 

advantages 0 f the Euc tidean method are the availability 0 f the Feynman -Kac form.ula. Euclidean 

symmetry, the symmetry of Green's function due to unrestricted commutativity of fields. and the 
2 2

availability of a perturbation expansion using the Feynman propagator (k + ro l -t which greatly 

simplifies earlier estimates. 

We include in the list of references those quoted by Jarfe and Wightman in connection with 
19-21 4 22-24 25-28

P(q,)2 theOry. (q, ) theory, and (YukaW8)2 theory. 

n. Analyticity of n-Point Amplitudes on Mass -Shell 

Analyticity of the 2 particle-2 particle amplitude A + B .... C + D (for particles slltisfying 

stability conditions) in a neighborhood of the phySical region except for the energy cut was estab­

Hshed some time ago by Bros, Epstein, and Glaser on an axiomatic basis, and the analyticity 

domain was improved by Martin on the basis of unitarity and positivity. 29 The recent result of 

Bros, Epstein, and Glaser:3 is concerned wi th n -point amplitudes on mass shell and shows that 

the physical amplitude is the sum of a finite number of boundary values 0 f analytic rune tions. 

(The fact that an n-point amplitude is not always a boundary value of a single analytic function in 

the neighborhood of some Landau singularities had been recognized earlier in perturbation 

theory,30-32) 

The most spectacular progress has been aChieved for the 5 -point ampli tude: 4 + 5 .... t + 2 

+ 3, It is proved in this case that above a certain incident center-of-mass energy (4.8 times the 

common mass in the equal mass case, the calculation of 4.8 being due to Martin), the amplitude 

at any physical point is the boundary value of a single analytic function. holomorphic in a ''local 

tube" in all (5 complex) variables, To describe the result, let E E E be the center -of-mass1 , 2 , 
3

. 

energies of the final particles t, 2, 3 and St2' S23' 8 31 be the (squared) two-particle subenergies 

of the final particles: 

In addition. two angular variables 8 and tiJ, are necessary to describe completely the scattering 

process. For fixed E E ' E analyticity in the angular variables {I and.p haa been known . 34 
1

. 
3

,
Z 

for some time. (In the quoted literature, an i.ntegration of the cross sections over all possible 

E , E E at a given total incident energy is done to obtain the analyticity of the production
2

. 
t 3 
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amplitude from the size of the ellipse of analyticity of the elastic amplitude" + S - .. + S. How­

ever, Omnes and Martin noticed that analyticity of the amplitude in the angular variables as a 

distribution in E . E ' E is obtained by integrating over an arbitrarily small cell in E , E ' E]
t Z 3 t Z� 

and using the Schwarz inequality.) Bros. Glaser, and Epstein obtained analyticity in all variables� 

E . E ' E • 6. t/> in a region which is described by the following inequalities in the neighborhood
t Z 3 

of physical points : 

lmS > O.
k1 

[(E Z_mjZf/Z -€Ej}rmS + [(E Z-m2f/Z
j kl j j� 

Z� 
+ f(E - m (E + E Z + E 3 ) -t)} lm (8 iZ + S23 + S3t I < 0,j j t 

where (j, k .1) is any cyclic permutation of (t • Z. 3) and f : =':t. Here E is the real part of the
i� 

particle energy. As all E , E ' E tend to infinity. the second set of constraints on the relative� 
t Z 3 

magnitude of ImS ' rmS Z3 ' rmS]t becomes weaker and weaker.iZ 

III. Generalizations of the Pomeranchuk Theorem 

The problem is to compare differential cross sections (and integrated cross sectionsl for 

line reversed processes 

A + B - C + D and C + B - A + D. 

At fixed momentum transfer, Cornille and Martin proved that if the phases of amplitudes 

for both processes (defined by continuity assuming no physical region zerosl grow separately less 

fas t than 10 g s. then 

if in addition, this limit exists. (The case of a slowly varying momentum transfer can also be 

treated, but with great complications.) If the phases are bounded by (canst) log B (a fact which 

can be proved from first principles for elastic scattering if the amplitude has no zeros at physical 

points). then Cornille and Martin prove that the limit is finite. 

In the case of elastic scattering (A : C, B : D), it ia shown that (1) widths of the diffraction 

peaks are asymptotically equal if the width of one amplitude has a nonzero limit and (2\ if one 

amplitude exhibits pcraistent shrinkin~ (i. e. , monotonously tends to zero) and (da/dtl(t = 0\ ~ conet. 

(dO'l dtl( s, t). then the ratio u (widths tends to 1. Here the width ~(e\ of an amplitude F1 s, t) is de­

fined by li'(s, ~(51) : a Fl S ,0) where () is any fixed constant such as i 12. 

I V Parametric Dispersion Representations 

Starting from an analyticity domain in the two Mandelstam variables. Auberson and Khuri 

(11787) derive a parametric dispersion representation for equal mass elastic scattering amplitudes, 

which is symmetric in the three Mandelstam variables and contains only physical absorptive parts 

V Scaling, Light-Cone Singularities and Asymptotic Behavior of 
the Jost-Lehmann-Dyson Spectral Function 

The fact that scaling follows from certain light-cone singularities has been discussed by 

many authors, Vladimirov presented some work done in collaboration with N. N. Bogolubov, 

A, N, Tavkhelidze (it917\ showing that a certain asymptotic behavior of the Jost-Lehmann-Dyson 
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4
spectral function implies scaling and light -cone singularities, Stichel presented his work show­

ing that scaling implies a certain asymptotic behavior of the Jost-Lehmann-Dyaon spectral function, 

References 

ts, Doplicher, R, Haag, and J, E, Roberts, Commun. Math, Phys, ~. 199 (1971).� 

lS, Doplicher and J. E. Roberts, Fields, Statistics and Non Abelian Gauge Groups. University� 

of Rome preprint.� 

3J. Bros, H. Epstein. and V. Glaser, Local Analyticity Properties of the n Particle Scattering� 

Amplitude, CERN preprint TH. 1460, to be published in Helv. Phys. Acta.� 

4p . Stichel. Scaling, Light-cone Singularities and Asymptotic Behaviour of the Jost-Lehmann� 

Spectral Function, preprint.� 

5H . Epstein and V. Glaser. Renormalization of Non Polynomial Lagrangians in Jaffe's Class,� 

1. H. E. S. preprint. 

6K. Osterwalder and R. Schrader, Euclidean Fermi and Bose Fields: Feynman -Kac FOrmula, 

Harvard preprint.� 

7K . Osterwalder and R. Schrader, Euclidean Fermi Fields and a Feynman-Kac Formula for� 

Boson - Fermion Models, to appear.� 

8K . Symanzik, Euclidean Quantum Field Theory, Hendi: Scuola Int. di Fis. "E. Fermi" XLV� 

Corso (1968),� 

9E . Nelson, Quantum Fields and Markoff Fields, Proe. Amer, Math. Soc, Symposium on� 

Partial Differential Equations, Berkeley {t971~.
 

t DE Nelson, Construction of Quantum Fields from Markoff Ei'ip.lds . .T, Functional Anal. , to 

appear, 

HE, Nelson. The Pree Markoff Field, J. Functional Anal. . to appear. 

121-', Guerra, L, Hosen. and B. Simon, Statistical Mechanics Results in the P(d»Z Quantum Field 

Theory. preprint Buhmitted to Phys. Letters. 

1 ~ F. Guerra. L. Rosen, aod B. Simon, The P( 4J 1 Euclidean Field Theory as Class ic al Statistical
2 

Mechanics, in preparation. 

14F , Guerra, Phys. Rev. Letters~, tlt3 (t972\, 

15J. Feldman, A Relativistic Feynman-Kac Formula. Harvard preprint, 

16[-', Guerra, L. Rosen, and B. Simon, C()mmun. Math, Phys, ~, to (1972\. 
17 

F. Guerra, L. Hasen, and B. Simon, The Vacuum Energy for P{¢~2: Infinite Volume Limit aod 

Coupling Constant Dependence, Princeton preprint in preparation. 

18K. Osterwalder and R. Schrader, Axioms for Euclidean Green's r"unctions, to appear, 

19K . Osterwalder and R. Schrader, On the Uniqueness of the Energy Density in the Infinite Limit 

for Quantum Field Models, Harvard preprint. 
20 . 4

J. Ghmm and A. Jaffe. The }.,(t/! \2 Quantum Field Theory without Cutoffs TV. Perturbations of 

the Hamiltonian. preprint (1972). 

21 J. Glimm and T, Spencer. Wightman Axioms and the Mass Gap for the P(l/!12 Quantum Field 

Theory, NYU preprint. 

2Z J . P. Eckmann, Commun. Math. Phys. 25. 1 (1972). 

23 3 . p, Eckmann and K. Osterwalder. Hel~ Phys. Acta. 44. 864 (1971). 

-5 ­



24J . Glimm and A. Jaffe. Posltivity of the (l/J4 lJ Hamiltonian preprint. 

25 J . Dimock, Ann. Phys. "!..3.., 177 (19n). 

26 J . Dimock. J, Math. Phys. ~, 477 (1912l. 

27O. McBryan, Harvard Thesis (1912\. 

28R . Schrader. Ann. Phys. ~, 412. (t972). 

29A. Martin, Scattering Theory: Uni tarity. Analyticity and Crossing (Springer Verlag, Berlin­

Heidelberg-New York, 1969). 

30C . Chandler and H, P. Stapp. J. Math. Phys, ~, 826 (1969), 

31 D . Iagolnitzer, Lectures in Theoretical Physics. Ed. K. T. Mahanthappa and W. E. Brittin 

(Gordon and Breach. 1969), p. 22t. 

32D . Iagolnitzer and H. P. Stapp. Commun, Math. Phys. ~. t5 (1969), 

33A. A. Logunoy. M, A, Metreshvili. and Nguyen Van Hien. Proceedings of the 1967 International 

Conference on Particles and Fields (Interscience. New York, t 967), 

34G. TiktopouloB and S. B, Treiman, Phys. Rev, ~, t437 (iQ68). 

-6 ­


