
Diss. ETH No. 14225

Worldsheet Boundaries, Supersymmetry, and

Quantum Geometry

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

(ETH Zürieh)

for the degree of

Doctor of Natural Sciences

presented by
Johannes Walchcr, Dipl. Phys. ETH

born October 3. 1973

German citizen

accepted on the recommendation of

Prof. Dr. J. Fröhlich, examiner

Prof. Dr. W. Lerche, co-examiner

Dr. Ch. Schwcigcrt. co-examiner

2001





Ill

Contents

Kurzfassung v

Abstract vii

1 Introduction 1

1.1 String perturbation theory 2

1.2 String compactification 5

1.3 Non-pcrturbativc aspects, string dualities, and D-brancs
...

6

1.4 Summary and outline 8

2 Boundary conditions in rational conformai field theory 11

2.1 Conformai field theory with boundaries 11

2.2 Boundary conditions for simple-current modular invariants
. .

23

3 Supersymmetry, worldsheet boundaries, and D-branes 35

3.1 Boundary conditions in Kahler and Calabi-Yau cr-models
...

36

3.2 M = 2 supcrconformal field theory with boundaries 45

4 Examples 61

4.1 The torus 62

4.2 From J\f = 2 minimal models to ADE singularities 69

4.3 From Gcpncr models to Calabi-Yau hypcrsurfaccs 75

4.4 From J\f = 2 cosct models to Grassmannians 104

5 Conclusions 123

Bibliography 127

Vita

Acknowledgements



iv



V

Kurzfassung

Gegenstand der vorliegenden Abhandlung ist die Beziehung zwischen Rand¬

bedingungen in zwci-dimensionalcn. M = 2 supersymmetrischen und konfor¬

men Quantenfeldthcoricn auf der einen Seite, und D-branes, die als ausge¬

dehnte geometrische Objekte in nicht-perturbativer Stringthcoric auftreten,

auf der anderen. Das Hauptforschungsintcrcssc gilt den Eigenschaften von

D-branes in nicht-klassischen oder stark gekrümmten Hintergründen. Es wer¬

den in dieser Arbeit Methoden der konformen Feldtheorie auf Wcltflächcn mit

Rändern entwickelt und zum Studium der Quantengeometrie von D-branes

angewendet.
Das erste Resultat, das in dieser Arbeit vorgestellt wird, ist ein Beitrag

zu dem Problem. Randbedingungen in rationalen konformen Feldtheorien zu

definieren. Solche Theorien sind auf geschlossenen Ricmannschen Flächen

durch eine chiralc Symmetriealgebra und cine modular invariante Toruszu-

standssummc gekennzeichnet. Das Problem, Randbedingungen zu definieren,

hängt von beidem ab—Randbedingungen müssen einerseits nicht die gesamte

Symmetrie der geschlossenen Theorie erhalten, und dürfen andererseits nur

Felder cinschlicsscn, die in der Zustandssummc vorkommen. Nun sind die

meisten modularen Invarianten in rationalen konformen Feldtheorien vom

simple-current Typ, und können unter Umständen eine erweiterte chirale

Symmetrie aufweisen. Das Problem, das hier behandelt wird, ist, alle Rand¬

bedingungen zu bestimmen, die die nicht erweiterte chiralc Algebra erhalten,

für eine beliebige modularc Invariante vom simple-current Typ.
Der Hauptteil der Arbeit handelt von Feldtheorien, die zusätzlich zu kon¬

former Invarianz M = 2 Supcrsymmctric besitzen. Solche Theorien treten

in der störungstheoretischen Definition auf der Weltflächc des Superstrings
auf. Zusätzliche Einschränkungen sind notwendig, um Stabilität und ein

Raumzcit-supcrsymmctrischcs Spektrum zu erhalten. Für a-Modcllc ist das

Kriterium, dass die Ziclmannigfaltigkcit eine Calabi-Yau Mannigfaltigkeit ist.

In einer abstrakten algebraischen Konstruktion können die notwendingen

Projektionen ausgehend von einer beliebigen M = 2 rationalen konformen

Feldtheorie ausgeführt werden.

Eine mikroskopische Beschreibung von D-branes erfordert das Einführen

von Wcltnächcn mit Rändern, und die Bedingungen für Supcrsymmctric
müssen neu analysiert werden. Im Besonderen erklärt die vorliegende Arbeit,

wie die Projektionen, die im abstrakten Rahmen der algebraischen konformen

Feldtheorie auftreten, in systematischer Weise behandelt werden können, und

wie die wichtigsten Eigenschaften von D-brancs in diesem Zugang kodiert

sind.

Die allgemeine Theorie wird anschliessend in einer Anzahl von Bcispic-
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len illustriert, nämlich dem zwci-dimensionalcn Torus, M = 2 minimalen

Modellen, Gepner-Modellcn und M = 2 Cosct-Modcllen (Kazama-Suzuki-
Modcllcn).

Gcpncr-Modcllc sind ausgezeichnete Beispiele, in denen rationale kon¬

forme Feldtheorien im inneren Teil einer Stringkompaktifizicrung verwendet

werden. Sic werden aus Tensorprodukten von M = 2 minimalen Modellen

aufgebaut. Das wichtigste neue technische Resultat zu Gepner-Modellcn ist

die Auflösung von simplc-currcnt-Fixpunktcn, die in der Konstruktion von B-

Typ Randbedingungen auftreten. In der physikalischen Interpretation führt

dies zu einem interessanten neuen Mechanismus für die Erhöhung der Eich¬

symmetrie auf D-brancs. Weiterhin wird in zwei Beispielen gezeigt, wie sich

die Beziehung zwischen Gepner-Modellcn und Calabi-Yau-Hypcrflächcn in

gewichteten projektiven Räumen auf Randbedingungen und D-brancs aus¬

dehnen lässt.

M = 2 Cosct-Modclle, die die minimalen Modelle als Spezialfall enthalten,

sind eine weitere Klasse von Beispielen von rationalen konformen Feldtheo¬

rien mit M = 2 Supcrsymmctric. Eine Untermenge von superkonformen

Randbcdinguncn in diesen Modellen können über die Cardy-Konstruktion
definiert werden. Über ihre Schnittcigcnschaftcn erhalten die Randzuständc

eine geometrische Interpretation in der Homologie der Auflösung einer zu¬

geordneten Singularität. Ausserdem zeigt sich, dass die strukturelle Ver¬

wandschaft zu Grassmannschcn Mannigfaltigkeiten im offenen String beste¬

hen bleibt.
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Abstract

The subject matter of the present dissertation is the relation between, on

one side, boundary conditions in two-dimensional, M = 2 supersymmctric,
and conformai, quantum field theories, and D-brancs, which arc extended

geometric objects appearing in non-pcrturbativc string theory, on the other

side. The primary research interest arc the properties of D-brancs in non-

classical or strongly curved backgrounds. In this work, techniques of confor¬

mai field theory on worldshccts with boundaries arc developed and applied
to study the quantum geometry of D-brancs.

The first result presented in this thesis is a contribution to the problem
of defining boundary conditions in rational conformai field theories. These

theories arc specified, on closed Ricmann surfaces, by a chiral symmetry

algebra and a modular invariant torus partition function. The problem of

defining boundary conditions depends on both—boundary conditions may,

on the one hand, be allowed to break part of the bulk symmetry, and must, on

the other hand, only involve bulk fields that arc present in the bulk partition
function. Now most modular invariants in rational conformai field theories

arc of simple-current type, and they may or may not exhibit an enlarged
chiral symmetry. The problem which is treated here is to determine all

boundary conditions that preserve the unextended chiral symmetry algebra,
for an arbitrary modular invariant of simple-current type.

The main part of the thesis deals with field theories that in addition to

conformai invariance exhibit J\f = 2 supcrsymmctry Such theories appear in

the perturbative definition on the worldshect of the supcrstring. Additional

restrictions are needed to achieve stability and a space-time supersymmctric

spectrum. For a-models, the criterion is that the target be a Calabi-Yau

manifold. In an abstract algebraic construction, the necessary projections

can be performed starting from any M = 2 rational conformai field theory.
A microscopic description of D-branes requires the introduction of world-

sheet boundaries, and the conditions for supcrsymmctry have to be reexam¬

ined. In particular, the present thesis explains how to deal in a systematic

way with the projections that arise in the abstract setting of algebraic con-

formal field theory, and how the most important characteristics of D-branes

arc encoded in this approach.
The general theory is then illustrated in a number of examples, namely

the two-dimensional torus. J\f = 2 minimal models, Gcpncr models, and

M = 2 cosct models (Kazama-Suzuki models).
Gepncr models are examples in which rational conformai field theories

arc used for the internal part of a string compactification. They arc built

on tensor products of M = 2 minimal models. The main new technical
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result on Gepncr models is the resolution of simple-current fixed points that

appear in the construction of B-type boundary conditions. In the physical

interpretation, this leads to an interesting new mechanism for enhancement

of gauge symmetry on D-brancs. Furthermore, it is shown in two examples
how the connection between Gepncr models and Calabi-Yau hypcrsurfaccs in

weighted projective spaces can be extended to include boundary conditions

and D-brancs.

A/" = 2 cosct models, which contain minimal models as a special case, are

another class of examples of rational conformai field theories with M = 2

supersymmetry. A subset of supcrconformal boundary conditions in these

models can be obtained by Cardy's construction. Through their intersection

properties, the boundary states receive a geometric interpretation in terms

of the homology of the resolution of an associated singularity. Also, the

structural resemblance to Grassmannian spaces is found to extend to the

open string.



Chapter 1

Introduction

String theory intends to be a serious candidate for a next unification step in

theoretical physics. At the present state of development, quantized, super-

symmetric strings have convinced a significant part of the theoretical physics

community of their aptitude to describe, in a unified manner, all elementary

particles and their known fundamental interactions, including gravity.

In twentieth century high-energy physics, fundamental interactions were

described by quantum field theories with gauge symmetries. At the currently
most fundamental testable level, physicists rely on the Standard Model of

particle physics, with gauge group SU(3) x SU(2) x U(l). It accounts for

the strong interaction and the electro-weak interaction. The matter content

of the Standard Model arc the well-known three lepton generations, three

quark generations, and the as yet unsignificantly established Higgs field. It

is generally expected that many ad-hoc features of the Standard Model can

be explained from unification at very high energies. The energy scale of this

Grand Unification typically is of the order 1016GcV. This is much higher
than energies accessible with today's accelerators, and just below the Planck

scale of 1019GeV, at which effects of quantum gravity arc expected to become

relevant.

Part of the appeal of string theory arises from its ability to account for

gauge theories in a unified framework in which symmetries and gauge and

matter fields have a common, geometric origin.

Besides unification, string theory offers the advantage of a better behaved

perturbation theory for the computation of scattering amplitudes for phys¬
ical processes. For String Theory, the low-energy limit of these scattering

amplitudes—at today's accessible high energies—takes the role played by
the classical limit for Quantum Mechanics, the low curvature limit for Gen¬

eral Relativity, or the low velocity limit for Special Relativity. As in these

historical examples, the existence of the limit, and the recovery of previously
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known results, is the major touchstone for the theory and together with very

few (or even without?) non-trivial verifiable new predictions will suffice for

a general acceptance of string theory as an embracing physical theory.
In addition to its role for high-energy physics, '"string theory predicts

gravity'' (E. Witten), in the sense that the spectrum of the quantized string
contains a spin two excitation, identifiable with the graviton. The classical

equations of motion of General Relativity are recovered as the on-shcll con¬

dition of string perturbation theory. At the same time, string theory makes

a quantum theory of gravitation well-defined, at least at the pcrturbativc
level.

String theory also has interesting consequences for mathematics, more

particularly for geometry. If string theory contains a quantum version of

gravity, then, since gravity is fundamentally linked with the geometry of

space-time, it must be that strings probe a quantum structure of space-time
itself. In the mathematical part of the theory, the usual notions of classical

geometry have to be abandoned, and must be replaced with new ones. In

other words, in string theory, space-time and its geometry must become

derived concepts, and cannot remain fundamental or a prion. This aspect

of string theory, which, honestly, is largely undiscovered, is referred to as

quantum geometry.

While many non-pcrturbative properties of quantized strings—the very

definition of "non-pcrturbative string theory" included—arc still out of sight
at present, string theory provides a fascinating guessing ground for theoretical

physicists searching for a satisfactory, unified theory of space, time, and

matter.

1.1 String perturbation theory

The basic idea of string theory is that elementary particles—the ''fundamen¬

tal" constituents of matter—should not be pictured as pointlikc objects, but

rather as little strings—one-dimensional extended objects moving in space-

time. The following briefly sketches the main steps from classical point-

particles to quantized supcrstrings. For textbook treatments of string theory,

sec [1, 2].
The classical action for a rclativistic point-particle moving in space-time,

M, is essentially equal to the length of the worldlinc -7 swept out by the

moving particle,

S{g,1) = m /|i(r)|dr, (1.1)
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where r is a coordinate along the worldlinc 7 C M of the particle, and m is

its mass1. The action depends on the choice of a metric g on M, which is

thought of as defining the '"background"' that acts on the particle.
The classical description is good as long as S(g, 7) is large compared to

the fundamental quantum of action, Planck's constant h. This constant then

appears in the quantum mechanical description of the particle's propagation
in Al, for example in the study of path-integrals of the form

J Vl c27aS(9.7)/h
_ (L2)

It is possible to let also other background fields, for example electromag¬
netic, act on the particle, simply by adding further terms to the action (1.1).
However, the re-actio of the particle on the background is not described by

(1.1). In fact, already the correct quantum mechanical description of interac¬

tions of relativistic particles requires the framework of quantum field theory.

Quantum field theory and the Standard Model are extremely successful in

describing interactions of fundamental particles, but also have important
mathematical problems and well-known conceptual shortcomings. Most no¬

tably, the gravitational interaction—mediated by the space-time metric g—

cannot be described in this way. '"By a historical accident'' in the late 1960"s,

high-energy physicists were led to try to overcome these shortcomings with

strings.

Strings moving in space-time sweep out a two-dimensional surface, the

worldshcet E. The classical action is proportional to the area of E in space-

time, again computed with the help of a background metric g. Choosing for

E a paramctrization (a. r) and a metric h, and denoting by X : E —> M the

embedding into space-time, the classical action is2

S(g.X) = ^-iJVhha0gß,(X)daX^d0XlJdadr, (1.3)

where a' is a fundamental constant with the dimension of a length squared.
Notice that the action(1.3) defines a classical field theory, in which the co¬

ordinates X(<j,t) arc fields living on E. As before, the action may be sup¬

plemented with other terms to include more

background(space-time)fields.Inparticular,onemayaddthecouplingtoadilatonfield.<f>,whichisoftheformJs(p(X)R,whereRisthecurvatureofh.Armedwith100yearsofexperiencewithquantumtheory,itisasimple1Hereandbelow,itistakenforgrantedthattheunderstandingoftheroleofthespeedoflightintheoreticalphysicsiscompleteandallowssettingc—1.2Tobeprecise.(1.3)isthegeneralizationoftheanalogof(1.1)foramasslessparticle.
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matter to quantize (1.3). for example using path integrals. However, one

would like to quantize respecting all classical symmetries of (1.3). In par¬

ticular, the classical action is conformally invariant, and the preservation of

this symmetry at the quantum level puts severe constraints on the classical

background. While the appearance of the equations of General Relativity

(for g) might be rather surprising, it is an even more astonishing feature that

the classical equations of motion in string theory constrain even the number

of space-time dimensions, to 26 for the bosonic string and 10 for the super-

string. Thus, the worldsheet theories of strings arc conformally invariant,

two-dimensional quantum field theories. It is mainly from this perspective
that strings will be studied in this thesis.

That being so simple, it is natural to ask how to describe the interac¬

tions of strings and the backreaction on the background. It turns out that

interactions can be accommodated in a simple fashion by allowing strings

to split and to join. More precisely, quantization of the action (1.3) on a

cylinder, S = S1x19((j,t) corresponds to a single non-interacting string.

Considering the corresponding conformai field theory on worldshcets of more

complicated topology than the cylinder amounts to including interactions

of strings. In the perturbative prescription, the fundamental excitations of

the string arc interpreted as elementary particles and scattering amplitudes
for physical processes describing their interactions arc obtained from a sum

over all worldsheet topologies. Higher topologies arc suppressed by powers of

gs = cxp(0), which therefore plays the role of the string coupling constant.

Supersymmctry is a symmetry that relates bosonic and fermionic degrees of

freedom of a quantum theory. The discovery of supersymmctry in the early
1970's was motivated in part by the tendency of supcrsymmetric theories

to have milder divergences as compared to ordinary quantum field theories.

The main phcnomcnological interest for supersymmctry lies in the fact that

the supcrsymmetric version of the Standard Model predicts a convergence

of the coupling constants of the electro-magnetic, the weak, and the strong

force at a single unification scale around 1016Gcv. The late 1970"s also wit¬

nessed a major interest in theories with local versions of supersymmctry,

yielding supcrgravity theories. Indeed, the improved convergence properties

of supcrsymmetric theories led to the hope that gravity could be consistently

quantized after introduction of supersymmctry. Until today, local supersym¬

mctry still is an important ingredient for models of quantum gravity, mainly

as the low energy limit of supcrstring theory.

Supersymmctry was incorporated into string theory from the beginning.
The basic idea is to add fermionic degrees of freedom that propagate along
the string, in such a way that after quantization, the worldsheet theory has

supcrconformal invariance. In the development of string theory until around
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1985 it was realized that supcrsymmctry allows the construction of truly
consistent and phcnomcnologically interesting string models. It turned out

that the presence of extended worldshcct supcrsymmctry, i.e., from J\f = 1

to J\f = 2. allows performing the GSO projection that eliminates the tachyon
from the string spectrum and guarantees space-time supcrsymmctry of the

resulting spectrum. Also, it was shown that the uncompactificd version of

the supcrstring, which naturally lives in 10 space-time dimensions is a sat¬

isfactory quantum theory, in which anomalies cancel by the Grcen-Schwarz

mechanism. Until 1985, then, the basic five types of pcrturbativcly defined

uncompactificd string theories had been discovered: Type I with gauge group

SO(32), type IIA and type IIB, and two hetcrotic theories with gauge group

SO (32) and E8 x E8, respectively.

1.2 String compactification

As explained in the last section, strings require space-time to have a critical

dimension, which is 26 = 25 + 1 for the bosonic and 10 = 9 + 1 for the

supcrsymmctric string. Thus, if string theory describes the world of expe¬

rience, which has dimension 4 = 3 + 1, it is natural to ask how this may

come about. A possible answer is that only 4 of the 10 (or 26) dimensions

arc actually extended to sizes larger than the Planck scale, and the remain¬

ing 6 dimensions arc ''curled up'' and too small to be resolved. This means

that the background of space-time fields, or vacuum of the quantized string,
describes a manifold with 6 dimensions of typical size much smaller than the

remaining 4. To ensure conformai invariance of the pcrturbativc string the¬

ory, and space-time supcrsymmctry for a stable vacuum, the vacuum must

be, to lowest order, a supcrsymmctric solution of the supcrgravity equations
of motion. A careful analysis of these equations of motions and supcrsymmc¬

try conditions reveals that the 6 compact dimensions must form a Calabi-Yau

manifold.

A closely related, if seemingly different, approach to compactification is to

directly specify a suitable conformai field theory for the internal part without

any reference to a classical geometric space-time.
In cither case, the choice of the internal part of the compactification

has important consequences for the physics in the external part, which is

the usual flat extended Minkowski space. As is familiar from Kaluza-Klein

theory, the spectrum of fields of the internal conformai field theory determines

the field content of the low-energy effective theory in the external dimensions.
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1.3 Non-perturbative aspects, string

dualities, and D-branes

Interacting string theory contains two parameters along which the theory is

modified from the free case. On the one hand, there is the string coupling. gs,

that governs interactions among strings in space-time. The role played by gs

in the string loop expansion is similar to the role played by h in field theory.
On the other hand, also the worldshcct theory, which is a two-dimensional

conformai field theory, is not '"free"'. "Interactions" on the worldsheet are

controlled by the string tension, a', or more precisely by the scale of space-

time curvature in units of 1/a'. The couplings in the low-energy effective

theory depend on both gs and a'. In a first attack, a' and gs arc treated as

perturbativc parameters, leading to cr-modcl- and string perturbation theory,

respectively. But then there arc also quantum corrections to the classical

description that arc non-perturbative in the two couplings. The last ten

years of string theory have witnessed significant progress in understanding
these non-perturbative effects.

Choosing a specific Calabi-Yau manifold as compactification space for the

supcrstring solves the zcroth-ordcr requirement for a string vacuum. Possi¬

ble quantum corrections to this classical solution arc tightly constrained by

symmetries. For instance, the relevant symmetry algebra on the worldsheet

is the M = 2 super-Virasoro algebra [3], which combines two very powerful

algebraic structures: conformai symmetry in two dimensions [4] and J\f = 2

supcrsymmctry. It plays an important role in the problems treated in the

present thesis.

On the worldshcct, non-perturbative effects arc due to worldshcct in-

stantons, [5. 6] which are topologically non-trivial embeddings of the world¬

shcct into the target Calabi-Yau space. Worldsheet instantons correct string

scattering amplitudes—or effective couplings of space-time fields—beyond o-

model perturbation theory. In string theory, the low-energy space-time fields

can be viewed as moving on the parameter space of the target manifold, and

the couplings as data from additional geometric structure on this parameter

space. Thus, one may interpret worldshcct instantons as effectively deform¬

ing the classical parameter space of the manifold into a "quantum moduli

space". This quantum parameter space is the relevant object for low-energy

physics. It can be regarded as a first glimpse into "quantum geometry". the

modification of classical geometry described by string theory.

Exact results on the structure of the quantum moduli space of Calabi-Yau

manifolds for type II and hctcrotic strings have been obtained by mirror sym¬

metry [7]. A basic consequence of supcrsymmctry is that the moduli space
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is locally a direct product of two separate structures [8. 9]. From the point
of view of the Calabi-Yau manifold, these arc the complex structure mod¬

uli space and the Kahler moduli space. The corresponding structures from

the space-time point of view arc, for instance, the vector- and hypcrmulti-

plct moduli spaces of the low-energy effective theory of the type II string.

Non-pcrturbative corrections by worldshcct instantons only affect the Kahler

moduli space and leave the complex structure moduli space untouched. The

proposal of mirror symmetry [10. 11] is that to every Calabi-Yau manifold Y,

there is a mirror manifold Y* such that the quantum Kahler moduli space of

Y is isomorphic to the complex structure moduli space of Y* and vice-versa.

Thus, worldshcct instanton corrections of the Kahler moduli space of Y can

be computed purely classically in the complex structure moduli space of Y*

[12. 13].

While non-pcrturbative quantum corrections on the string worldshcct arc

under control at least conceptually, and partly also computationally, this is

not true for non-pcrturbative corrections in space-time. The main result

of the 'third supcrstring revolution" in 1995 was the access to certain non-

pcrturbative effects through string dualities [14. 15]. Here, the word '"duality"
refers to a non-pcrturbative equivalence of physical theories that look rather

different at the perturbativc level. In other words, one and the same physical

theory admits several distinct—dual—perturbativc definitions, each valid in

a different regime of parameters. Mirror symmetry is actually an example
of a duality, albeit one that does not involve the string coupling, gs. The

current picture is that there is an extended ''web of dualities" that involves

and connects all five perturbativc string theories. This picture has also led to

the expectation that there is an underlying, even more fundamental theory
called M [16], that reduces to the various string theories in certain regions of

parameter space.

An important role in the context of string dualities is played by D-brancs.

The brancs in question arose as certain solitonic solutions of the classical

supcrgravity equations [17]. These solutions arc extended in a certain num¬

ber of space-time directions and include a non-trivial configuration of the

Ramond-Ramond (RR) fields. It was then noticed that string solitons arc

the degrees of freedom that appear in non-pcrturbative sectors of and pro¬

vide the link between, the various perturbatively defined string theories. The

non-pcrturbative character of these objects is easily seen. On the one hand,

the curvature of space-time diverges at the position of the branc. and per¬

turbativc string theory in the traditional sense breaks down. On the other

hand, they contain RR field configurations, to which the elementary string
does not couple.
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It was realized by Polchinski [18] that in fact there is an object in string

theory that docs carry RR charge, namely the boundary condition for open

strings [19]. Hence, branes should be described by letting open strings end

on them. The fact that the open string boundary conditions are of Dirichlct

type in the directions orthogonal to the branc led to the name D(irichlct)-
branc. Upon quantization, the open strings represent the elementary degrees
of freedom of the brane [20]. The open string picture also avoids the singular¬

ity at the position of the branc [21]. and hence gives an interesting alternative

approach to the exploration of space-time at small distances.

The role of D-brancs for string theory is twofold. On the one hand, they

are fundamental for string dualities as microscopic degrees of freedom. On

the other hand, when appropriately combined with oricntifolds [22, 23] they

can be included in the background geometry, and thus multiply the freedom

of choice of a pcrturbativc vacuum. In both cases, open string sectors with

appropriate boundary conditions appear in the description. This necessitates

the study of conformai field theories on the string worldshcct also in the

presence of boundaries.

1.4 Summary and outline

The subject of this research arises from a combination of various topics that

were discussed above. The general goal is to develop techniques for finding

boundary conditions for open strings in type II string theory, to carefully

analyze the implications of supcrsymmctry, both on the worldshcct and in

space-time, for the construction, and to determine the consequences for the

modification of geometry described by strings and branes. In the following
outline of the thesis, the references point partly to the places where this work

is published, and partly to additional literature which is relied upon in the

presentation of background material.

Chapter 2 contains a review of two-dimensional conformai field theory
with boundaries [24. 25]. The ideas arc developed along the guiding prin¬

ciple that there arc two conceptual stages of conformai field theory (CFT),
ehiral CFT and full CFT. Chiral CFT is the stage at which the ehiral symme¬

tries of the theory are implemented. In fact, chiral CFTs can be completely
reconstructed from the representation theory of algebraic objects known as

vertex operator algebras. The step from chiral CFT to full CFT then is a

projection problem, subject to the physical requirements of locality, modular

invariance, and factorization. Without boundaries, the field content of a full

CFT is encoded in the modular invariant torus partition function. Boundary
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conditions can be understood as parametrizing solutions to the projection

problem if the worldshcct of the full CFT has boundaries. The second part

of this chapter presents results on the problem of defining boundary condi¬

tions for rational conformai field theories with arbitrary modular invariant

of simple-current type [26]. Simple currents arc the invertible elements of

the fusion ring of a rational CFT, and constitute a powerful combinatorial

tool to analyze modular constraints on a CFT. In particular, most known

modular invariants of rational CFT can be constructed with simple-current

techniques. These modular invariants may also exhibit an enlarged chiral

algebra, but the boundaries will not be required to preserve this larger alge¬
bra. Thus, the results presented in section 2.2 cover a rather general class of

situations in rational CFT with boundaries.

Chapter 3 turns to a second important ingredient of worldshcct theories

for pcrturbativc string theory: J\f = 2 supcrsymmetry. The first part of the

chapter is a review of cr-models on Kahler and Calabi-Yau manifolds, which

arc used as the internal part of compactifications of the type II string, and of

the definition of supersymmctric boundary conditions (D-brancs) for these

models [27, 28, 29]. The boundary conditions fall into two main classes.

Those of A-typc correspond to special Lagrangian submanifolds equipped
with a flat U(l) connection, while those of B-typc correspond to holomor¬

phic objects such as stable holomorphic vector bundles. The second part of

the chapter explains the algebraic approach to string compactification and

boundary conditions therein. It is laid out in detail how the various projec¬
tions can be taken into account in a systematic way in defining boundary
conditions [30]. Furthermore, the space-time supcrsymmctrics that arc bro¬

ken or preserved by the boundary conditions arc identified, and many other

characteristics of D-branes, such as their mass and Ramond-Ramond charge,

arc identified in the abstract setting. Furthermore, a general formula for the

intersection index of two boundary states is derived [31].

Chapter 4 illustrates the general theory of chapters 2 and 3 in a large
class of examples. The examples show that the combination of algebraic
and geometric methods leads to interesting results about D-brancs in the

strong-curvature regime.

Section 4.1 contains material about boundary conditions for the two-

dimensional torus. The main goal is to show that here the algebraic and

geometric approaches lead to the same results. This also gives a good check

on the formalism and the developing intuition.

Section 4.2 reviews boundary conditions in J\f = 2 minimal models [32,
33, 29]. and their relation to strings and branes near simple singularities of

ADE type. The results about minimal models arc also useful input for the
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next section.

Section 4.3 then deals with Gcpncr models, which arc built on tensor

products of J\f = 2 minimal models. A-typc boundary conditions in Gcp¬
ncr models can be defined following the prescriptions of section 3.2. The

discussion is aimed in part at clarifying results that have appeared in the lit¬

erature [34. 35, 36]. B-type boundaries arc then constructed by making use

of the self-mirror property of Gcpncr models. Namely, the Grccnc-Plcsser

construction allows to reduce the problem to the question of boundary con¬

ditions for simple-current modular invariants, for which the results of section

2.2 provide the clue. Fixed points under the projections arc identified and

resolved both for A- and B-type boundary conditions. In two examples [37],
the B-type boundary conditions of the Gcpncr arc then related to geometric

objects on the associated Calabi-Yau hypcrsurfaces, following the work of

[32] for the quintic. The two models under considerations have the structure

of K3-fibrations over P1. The fixed points in B-type boundary conditions

can be interpreted in physical terms. The stabilizers arc realized only pro-

jectivcly. and this implies that the worldvolumc theory exhibits an unusual

enhancement of gauge symmetry [38], somewhat similarly to orbifolds with

discrete torsion.

Finally, section 4.4 analyzes the properties of boundary states in J\f = 2

cosct models based on Grassmannians Qi(n,n + k) [31]. The underlying in¬

tersection geometry is given by the fusion ring U(n). This is isomorphic to the

quantum cohomology ring of Gr(n, n + k + 1), and thus can be encoded in a

'"boundary'' superpotcntial whose critical points correspond to the boundary
states. In this way, the intersection properties can be represented in terms of

a soliton graph that forms a generalized, "Ln+k+i symmetric McKay quiver.

Investigating the spectrum of bound states, it turns out that the states ob¬

tained from rational conformai field theory produce only a small subset of

the possible quiver representations.

Chapter 5 contains conclusions.



Chapter 2

Boundary conditions in rational

conformai field theory

Worldshcct theories of perturbative string theory arc conformally invariant

quantum field theories (CFTs). This chapter is devoted to such CFTs, al¬

lowing in particular the presence of boundaries, as necessary for a worldshcct

description of D-brancs. The first part of the chapter reviews certain aspects,

mainly of algebraic nature, of conformai field theory in two dimensions. It

is based on [24. 25]. The second part is more specifically concerned with

boundary conditions for arbitrary simple-current modular invariants in ra¬

tional conformai field theories. This part contains results of [26].

2.1 Conformai field theory with boundaries

2.1.1 From chiral CFT to full CFT

For the constructions described below, it is necessary to distinguish two con¬

ceptual levels of CFT, chiral conformai field theory (%CFT) and full con-

formal field theory (full CFT), and to understand the construction of a full

CFT as a two-step process. The underlying physical idea is to '"split a CFT

into two chiral halves", and to rccombine them afterwards by a projection.

Thus, xCFT considers only chiral (left- or right-moving) degrees of free¬

dom at a time. The large amount of symmetry implied by conformai in¬

variance in two dimensions [4] imposes strong constraints on and greatly

simplifies the study of %CFT. To define a xCFT, it suffices to specify a chi¬

ral algebra, which includes at least the (super-)Virasoro algebra, and a set

of irreducible representations of the chiral algebra, closed under fusion. The

natural arena for the Euclidean version of %CFT arc complex one-dimensional
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(super-)manifolds (complex curves). In a mathematical language, yCFT can

be reduced to the representation theory of the chiral algebra, formalized in

what are known as vertex operator algebras.
Full CFT. on the other hand, contains both left- and right-moving degrees

of freedom. Typically, a full CFT is obtained from a yCFT by a projection

operation, in a way that will be described further below. All remaining
constraints on the theory, such as locality, modular invariance, factorization

constraints, etc.. arc implemented in going from x^FT to full CFT. Ac¬

cordingly, the definition of a full CFT based on the data of a given %CFT,
amounts to finding a solution of these constraints. It is important to real¬

ize that a string background can be defined only after a full CFT has been

constructed. For instance, modular invariance, required for integrating corre¬

lation functions over the moduli space of curves, is satisfied only by full CFT.

But string theory also imposes constraints on the CFT that can be traced

back to the chiral level, such as worldshcet supcrsymmetry. In addition, the

choice of a particular D-branc background is equivalent to the assignment
of Chan-Paton multiplicities to the various possible boundary conditions on

worldshcet boundaries. Again, this is subject to certain conditions, such as

supcrsymmetry and absence of anomalies in the space-time theory.
While full CFT is the starting point of (perturbativc) string theory, x^FT

also has numerous and beautiful applications in physics and has found sound¬

ing resonance in mathematics itself. An particularly nice example is the use

of yCFT for the description of incompressible quantum Hall fluids (sec [39],
and [40] for recent work on this problem).

The starting point of the discussion in this section is the description of

the '"arenas" on which the CFTs are defined. Then a summary of x^FT will

follow, and, finally, the projection to full CFT is treated.

The worldsheet

A full CFT lives on a conformai manifold E which might be unoricntcd

and can have boundaries. Topologically, such manifolds arc classified by
three quantities: the number g G {0,1, 2,... } of handles, the number b G

{0,1.2,...} of boundaries, and the number c G {0.1, 2} of crosscaps. The

Eulcr characteristic (that determines the order in the string loop expansion)
of such a manifold is

x = 2-2g-b-c. (2.1)

To every such manifold, there corresponds a double cover E, which is an

oriented manifold without boundaries. The defining property is that E can
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be obtained from Ë by dividing out an orientation reversing involution a,

E = E/a. (2.2)

The manifold E is characterized topologically by its Eulcr characteristic or

its genus.

X = 2-2g = 2X. (2.3)

The choice of a conformai structure on E induces a complex structure on

E. which hence naturally is a complex curve. The space of conformai (or
complex) structures form the moduli space of E (or E).

In the study of correlation functions in CFT, the conformai manifolds, or

complex curves, appear with punctures, i.e., insertion points of field oper¬

ators. The moduli spaces of an n-puncturcd complex curve will gencrically
be denoted by A4(En), the corresponding universal covering space (the Tc-

ichmiillcr space) by T(En). For a corresponding conformai manifold, there

is a distinction between bulk and boundary insertions. The moduli space

with n bulk and m boundary insertions will be denoted by A4(En\m), the

Tcichmiiller space by T(En|m).
The central idea is the following:

Full CFT on a conformai manifold E is constructed from
chiral CFT on the double E o/E.

Chiral CFT

A %CFT is a quantum field theory
x
on E, respecting the given complex struc¬

ture. Explicitly, this means that the fields of such a theory arc holomorphic.

Among all fields of a %CFT, the local ones are distinguished. These local

chiral fields form an algebra of operator-valued distributions on the Hilbcrt

space of physical states. This algebra is called the chiral algebra of the theory
and is denoted by A. Among the fields generating A. there is the energy-

momentum tensor T of the theory. The coefficients of the Laurent expansion
of T in a chosen local complex coordinate z, Ln, then satisfy the commutation

relations of the Virasoro algebra.
A unitary2 %CFT with chiral algebra A can be reconstructed from the

unitary representations of A [41]. Let A label a unitary representation of A,

and let H\ denote the corresponding representation space, which is a Hilbcrt

1of a rather special kind. It is not a local quantum field theory in the usual sense.

2Unitarity is assumed here for simplicity. It is a reasonable requirement when one is

considering the internal part of a string compactification. However, in full string theory,

non-unitary theories do appear.
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space. To each such representation is assigned a nonnegative number, AA,
called the conformai weight of the representation. It is defined as the minimal

eigenvalue of the zero-mode operator, i0, of the energy-momentum tensor.

AA = inf {{vx,L0vx) | vx e Hx. (HI = 1} • (2.4)

In a consistent theory there is always a unique irreducible vacuum represen¬

tation, u, characterized by the vanishing of the conformai weight. Aw = 0.

Given two representations, A and /i, one can define their fusion, namely

a tensor product representation, A * /i, which is again a unitary representa¬

tion of A. A chiral algebra is called rational if the number of incquivalcnt,
irreducible unitary representations is finite. Let / denote the set of such

representations. For a rational chiral algebra, the tensor product of two

representations can be decomposed into a direct sum of irreducible unitary

representations. Thus, the set of unitary irreducible representations of a ra¬

tional chiral algebra, furnished with the tensor product, has the structure of

a commutative, associative ring. For Ai. A2 and A3 in I, let Nx*x,2 denote the

multiplicity of A3 as a subrcprcscntation in the tensor product Ai * A2. The

multiplicities Nx3 x
are the structure constants of the ring and arc called fu¬

sion rules; for a rational chiral algebra, they arc finite non-negative integers.
The vacuum representation,

u,playstheroleoftheunitforthetensorprod¬uct,i.e.,X*tu=u*X=X.ForeveryirreduciblerepresentationAthereisacontragrcdicnt(orconjugate)representationA+withthepropertythatA*A+containsthevacuumrepresentationuexactlyonceasasubrcprcscntation.Givenanumbernofirreducibleunitaryrepresentations,AiXn,thelinearspaceofconformaiblocksisdefinedasthespaceofinvarianttensors,i.e.,ofinvariantlinearfunctionals.ontherepresentationspaceofthetensor-productrepresentationAi*-•-*An.Itactuallyturnsout(sec[42])thatinthedefinitionofthetensorproductrepresentationAi*•••*An,onecanintroduceadependenceonncomplexparametersz\zn,whichcanbeconsideredaslocalcoordinatesofpairwiscdifferentpointsoftheworldshcctS.ThisishowtherepresentationtheoryofAyieldsbackthe%CFT.Forthisreason,thespaceofconformaiblocks,Vf,(zi,Ai,...,zn,Xn),(2-5)dependsonthecomplexparametersz\....,zn.ItsdimensionisgivenbyjV?:=NMx=VN?\Nß\NXn,,(2.6)1*1,—,ßn-3anddocsnotdependontheparametersz±,...,zn.Themoreintuitivephysicalcontentofaconformaiblockisasacorrelationfunctionofthe

%CFT:
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By state-field correspondence, to every vector vx G 7ï\ is associated a field

&x(v\,z), such that the conformai blocks (2.5). evaluated on (vi,... ,vn) G

T^Ai ® • • • ® 7~l\n give precisely the vacuum expectation value of the product
of the corresponding fields,

V^^Ai,... ,zn,Xn)(v1,... ,vn) = ($Al(^i,2;i)---$An(fn.2;n))è, (2.7)

where z\ zn arc local coordinates of pairwisc distinct insertion points

on E.

An important insight into the structure of xCFT is that the spaces of

conformai blocks fit together into a vector bundle of rank given by N^, over

the moduli space of the n-puncturcd curve En. This bundle is denoted by

V(En. A). It is naturally equipped with a protectively flat connection, called

Knizhnik-Zamolodchikov connection. In this language, the correlators of

%CFT arc just horizontal sections of V(E„,A). Since this bundle is non-

trivial, however, the horizontal sections arc not global sections. The holon-

omy of the Knizhnik-Zamolodchikov connection defines a representation of

the fundamental group of the moduli space of n-puncturcd curves (the braid

group on n strands, if the curve is connected) on the spaces of conformai

blocks.

To repeat, the data of a xCFT consists of a ehiral algebra and a set of

irreducible representations closed under fusion. The solution of a %CFT con¬

sists of the conformai blocks and the associated representation of the braid

group (fusing and braiding matrices). The present discussion sufficesforunderstandingtheconstructionofafullCFTatthelevelofcorrelationfunc¬tions.Morepreciserepresentation-theoreticdefinitionsofconformaiblocksandreferencestomathematicallyrigorousstudiesoftheirpropertiescanbefound,e.g..in[43,24].FullCFTAssumegivenaconformaimanifoldEwithboundary<9E,andimagineasituationwithavectorofinsertionpointsinthebulk,p=(pi,..•pn).withPjGE\<9Eandanumberofinsertionsontheboundary,q=(q\....qm)withqtG9E.BydefinitionoftheSchottkycoverE,everyinsertionpointPjhastwopreimages,z%GEandz%=<7{zt)undertheprojectionE—»E,whileeveryboundarypointq%hasonlyasingleprcimagcw%=a(wz).Fromthe%CFTthatisassumedgivenonE,onemayattachtoeachpttwoehirallabels:Xz,associatedwithzt,and\\,associatedwithz%.Ontheotherhand,everyq%carriesbutoneehirallabel,/vThisdeterminesthelabellingoffieldsofthefullCFT,butonlypartially;whatcombinations(Xz,Xt)ofehiral
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labels are allowed for the bulk insertions, and what further labels arc needed

to distinguish boundary insertions, is part of the data to be determined.

At the level of the xCFT, the situation is then specified by data z =

(z, z, w) and A = (A, A. ß). The yCFT then determines a bundle of conformai

blocks over the moduli space of an fi-puncturcd curve with n = 2n + m,

V(EÄ,A). (2.8)

As explained above, the correlators of the yCFT are the local horizontal

sections of this bundle of conformai blocks. To construct correlation functions

for the full CFT on E, proceed as follows. Lift the bundle V(EÄ,A) from

M.{Tin) to T(EÄ), restrict this bundle to T(E„|m) C T(EÄ), and denote it

by W(Sn|m. (A, A, /!)). This bundle inherits a connection from the Knizhnik-

Zamolodchikov connection on V. The important point is that the bundle

W might (and indeed should) admit horizontal sections that arc globally
defined over .M(En|m). This expresses the main requirement of locality of

the correlation functions of the full CFT.

The intuitive reason that W admits global horizontal sections even if V

docs not is, for bulk insertions, that the monodromies in one chiral label A

are canceled by those in the other, A. This clarifies that a judicious choice

of allowed combinations (A, A) has to be made. For boundary insertions, the

monodromies arc lost basically because in E, boundary insertions cannot be

moved around each other or around bulk insertions. The monodromies of

the corresponding insertions in the cover £ thus disappear.
The requirements of locality with respect to bulk insertions and moduli

of the curves (modular invariance) arc still not enough to single out a unique

solution of the projection problem %CFT —» full CFT. There are in general
several possible choices of allowed pairings (A, A) that yield a consistent solu¬

tion. There is even more freedom in the presence of boundaries, for roughly
the same reasons as above. In string theory, it is not necessary to parametrize
the set of solutions for every topology of E independently.

Thisisbecauseamplitudesarcrequiredtofactorize.Factorizationmeansthatatthebound¬aryofthemodulispaceofthetwo-dimensionalmanifold,wherethemanifoldissingular,theamplitudecanalsobewrittenintermsofamplitudesonamanifoldwithblown-upsingularity.Thisallowsreducingtheproblemtolowtopologies,namelytoworldsheetswithEulcrcharacteristic\>0.ThetoruspartitionfunctionInthebulk(i.e.,withoutboundaries,andonorientablesurfaces),thespec¬trumofthefullCFTisdeterminedfromthemodularinvarianttoruspartition
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function. This is by definition the vacuum correlation function Z{r) on the

torus, where r is the modular parameter of the torus. Written as

Z(t) = J2ZxxXx(t)xx(t). (2.9)

A,À

the partition function encodes the spectrum of allowed bulk fields for any

topology. Here, Xx(T) arc the characters of the %CFT, and Zxx is a matrix

with non-negative entries that commutes with the action of the modular

group SL(2,Z) on the characters, i.e.,

[Z.S] = 0=[Z,T\, (2.10)

where 5* and T arc the modular S- and T-matriccs, respectively. The condi¬

tion (2.10) is the requirement of modular invariance on the torus.

Clearly, the expansion (2.9) depends on the choice of chiral algebra, which

determines the range of A and A. When classifying modular invariants, it is

expected that there is always a unique maximally extended chiral algebra, A,

with respect to whose characters the entries of the matrix Zxx arc cither 0 or

1. In other words, working with the maximally extended chiral algebra, all

bulk fields arc uniquely labelled by the allowed combinations of chiral labels

(A. A). However, it might be more convenient to neglect the extension of the

chiral algebra to A expressed in (2.9) and to work with a smaller algebra

A C A. It is then necessary to enlarge the range of chiral labels A, because

irreducible representations of A can become reducible when restricted to A,

and also to allow for Zxx > 1 to account for the fact that one and the same

irreducible representations of A can be embedded in incquivalcnt ways into

representations of A.

2.1.2 Boundary conditions

The presence of worldshcct boundaries requires new prescriptions for the

projection from xCFT to full CFT. A natural proposal is based on the ex¬

pectation that it should be possible to parameterize the set of solutions by

attaching the label of a '"boundary condition" to every boundary compo¬

nent. When referring to boundary components, also any boundary insertion

is regarded as separating the boundary into different components. Any such

boundary insertion is then interpreted as a boundary field vt, and receives,

in addition to the chiral label ß. the two labels a, 5 of the adjacent bound¬

ary conditions. In particular, for a/ 6a boundary field can be viewed as

changing the boundary condition. As in the bulk, the spectrum of boundary
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fields is encoded in a partition function. In this case, it is the annulus with

boundary conditions a and b on the two boundaries,

Zab(t) = J2Aa^t)- (2-11)
ß

Here t is the modular parameter of the annulus, and A^b G Z>0 arc the annu¬

lus coefficients. An annulus coefficient greater than 1 indicates a degeneracy
of boundary fields, i.e., there is more than one way to transform boundary
condition a into boundary condition b. using the same chiral representation

\i. The boundary field ^ then has an additional degeneracy label A, and the

full labelling is therefore of the form \&aA&.

On the other hand, boundary fields are not taking part in the character¬

ization of the boundary conditions themselves. A boundary condition can

therefore be regarded as a solution to the factorization constraints for sur¬

faces E with a single boundary component and only bulk insertions. More¬

over, factorization (e.g., of the Möbius strip to a crosscap plus a disc) allows

to restrict attention to the case where E is the disc and where there is a

single bulk insertion.

Individual boundary conditions arc thus determined by the properties of

bulk correlators on a disc. At the chiral level, these correlators correspond
to conformai blocks on the sphere, E = CP1. with an even number of in¬

sertions. The moduli space of three or less points on a sphere is trivial,

so non-trivial constraints arise for the first time from the four-point blocks.

These blocks appear also in the familiar case of correlators of four bulk in¬

sertions on E = S2, as well as for four boundary insertions on the disc. In

both cases, factorization of the four point blocks is used to derive constraints

for the operator product coefficients, and ultimately to solve for them. Here,

two-point functions on the disc provide constraints for the boundary condi¬

tions.

The classifying algebra

To proceed, introduce the bulk-boundary operator product

^aä^^-EE^-N2)"^^^^^^^^ for |*|-1.
uei B

(2.12)

This OPE expresses what happens when a bulk field $A^ approaches the

boundary of the disc \z\ < 1 with boundary condition a: It creates excitations

on the boundary, described by the boundary operators \&aBa.
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Consider now the situation with two bulk insertions. (Ai, Ai) and (A2. À2)
and one boundary insertion of the vacuum, u. Two factorizations of this am¬

plitude arc possible. First using the bulk OPE to produce a single bulk field

and then considering its bulk-boundary operator product, yields an expres¬

sion which contains the reflection coefficient 7Za once. The other factorization

is to apply (2.12) to both bulk fields; then two reflection coefficients TZa ap¬

pear. Comparison of the two factorizations yields an identity of the form

U\ x K\x =V^, *3ft° r
, (2.13)

A36/

where J\fx x3 is some complicated combination of operator product coeffi¬

cients and representation matrices for 7Ti(A^4,o) acting on four-point blocks.

The structure encoded in (2.13) is that, for a fixed boundary condition,

a. the quantities 7Za form a one-dimensional representation of an associative

algebra with structure constants J\fx x3. This algebra is called the classifying

algebra [44] ; it encodes a piece of structure that a consistent set of boundary
conditions is expected to possess.

Ishibashi states and boundary states

The reflection coefficients 1Z also determine the correlation functions of a

single bulk field, &(\\\- at the center of a disc with boundary condition a.

Other positions of the bulk field can be related to this case by using the action

of the Möbius group SL(2,M) on the disc. In this situation, the reflection

coefficients appear simply as the expansion coefficients of these one-point
functions in terms of the relevant conformai blocks of the %CFT on the cover

of the disc. Both these one-point functions and conformai blocks can be

conveniently
writtenintermsof"boundarystates",whicharcintroducedasfollows.Onthechirallevel,thecorrelatorinquestionisgivenbytwo-pointblocksonthesphere.CP1,withinsertionsatZ\=0andz~x=00.Bydefinition,thetwo-pointblocksarcinvariantfunctionalsßG(H\<8>7~L\)*withtheproperty3o(J°®1+1®J°n)=0,(2.14)foreverycurrentJa(z)="Yln^n^1m^ncchiralalgebra(assumingthatthechiralalgebraisacurrentalgebra).ByaversionofSchur'slemma,non-trivialfunctionalsßobeying(2.14)existonlyifAandAarcconjugaterepresentationsofthechiralalgebra.EveniftheselinearfunctionalsarcnotintheHilbcrtspacedualof7i\®H\+.theyarcusuallywrittenaskcts||A))andcalledIshibashistates.Intermsofthose,formula(2.14)reads(Jna®l+1®J^)||A))=0.

(2.15)
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It is sometimes possible to write down the Ishibashi state ||A)) explicitly;

e.g., for theories based on a free boson, it can be written as a generalized
coherent state,

||A))=cxp(-^6_„®5-n)vA, (2.16)
rc=l

where vx is the highest weight state in the tensor product of Fock spaces,

generated by the oscillator creation operators. b-n. Such a realization is

helpful for calculating one-point functions on a disc explicitly. It is. however,

not necessary to know such an explicit realization to determine the spectrum

of boundary fields. For this, it is sufficient to know how ||A)) behaves under

factorization. The crucial information that allows to calculate concretely
with boundary states is the following identity that relates two-point blocks

and characters:

Xx(2t) = ((A|| c2TiT(Loai+i®Lo-c/i2) ||A^ _ (2_17)

Returning to the level of full CFT, the information about one-point func¬

tions on the disc with boundary condition a is again encoded in a ''boundary
state" |a)). Just like the Ishibashi states (2.15), this is a linear form on the

space of bulk states. The correlator for the bulk field &(v<g>v; z = 0) inserted

in the center of the disc \z\ < 1 is given by the value of \a)) on v <g) v.

{$>(v®v;z = 0))a = ((a\v®v) . (2.18)

The boundary state can then be written as a linear combination of Ishi¬

bashi states. With a suitable normalization of bulk fields, this expansion
reads [45, 46, 25]

ia)) = E^nA))- (2-19)
xei Vbx^

The Cardy coefficients B\ a
arc. up to normalization, equal to the reflection

coefficients Ti\x+U1- Eq. (2.17) is an example of the general idea that corre¬

lation functions in full CFT arc special sections of the space of conformai

blocks, i.e., linear combinations of the basis elements, which arc here given

by the
Ishibashistates.2.1.3ClassificationofboundaryconditionsinRCFTTheproblemofclassifyingboundaryconditionsinconformaifieldtheorydependsontwodata.Thefirstisachoiceofabulktheory.Asexplained
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above, this is determined by the choice of a (maximally extended) chiral

algebra A to be used on the covers of all closed worldsheets and the choice

of a modular invariant torus partition function.

The second ingredient in the classification problem is the amount of sym¬

metry preserved by the boundary conditions, or in other words the choice of

a chiral algebra A to be used on the covers of open worldsheets. If A Ç A,

the boundary conditions arc usually referred to as "'symmetry breaking".

Concerning "symmetry breaking boundaries", two remarks arc in order.

First, the distinction between symmetry breaking and symmetry preserving

is not an invariant one. Indeed, by viewing a bulk theory with chiral algebra
A and diagonal partition function as a theory with chiral algebra A C A,

but with a non-trivial partition function. UA symmetry breaking boundary
conditions" arc mapped to "A symmetry preserving boundary conditions

with non-trivial modular invariant".

The second comment is related to the way in which a bulk symmetry is

broken. For every current J(z) in the preserved algebra A, the boundary
states satisfy an equation of the type (2.15),

(J«®l + l®Ja_n)\a)) = 0. (2.20)

It sometimes happens that, for some currents in A, the boundary state sat¬

isfies a "'twisted" version of this identity, namely,

(J* ® 1 + 1 ® n(Ja_n)) \a)) = 0
, (2.21)

where O is an automorphism of the chiral algebra A. In this case, the bound¬

ary condition a is said to have '"automorphism type fi" [25] (or that there

is a non-trivial '"gluing condition", defined by the automorphism fi [34]).
However, not all A symmetry breaking boundary conditions actually have a

definite automorphism type, and boundary conditions which do, have rather

special properties (for example in M = 2 theories, sec section 3). Also, it

should be mentioned that boundary conditions with definite, but non-trivial

automorphism type should not be considered as symmetry preserving. For

the free boson, for instance, this point of view would lead to the conclusion

that Dirichlct boundary conditions preserve the U(l) current that generates

translations, which is obviously not the case.'*

Since the work of Cardy [47], boundary conditions have been classified in

the following situations of rational CFT.

1. The bulk partition function is given by charge conjugation, and the

boundary conditions preserve the full bulk symmetry. This case is

3Of course, and this is one of the reasons why D-branes are so rich, Dirichlet boundary
conditions preserve translational invariance of the T-dual circle.
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known as the Cardy case, and is briefly described below. In the Cardy

case, correlation functions for all worldshcct topologies can be described

using techniques from topological field theory. Remarkable, in that

framework, factorization properties and modular invariance under the

relative modular group can be rigorously proven [48].

2. The bulk partition function is a simple-current modification of the

charge conjugation invariant, and the boundary conditions preserve the

full symmetry corresponding to the original partition function. The so¬

lution of this problem is the content of section 2.2 of the present thesis.

3. The bulk partition function is given by charge conjugation and the

boundary conditions preserve an orbifold subalgebra of the original
chiral algebra by an Abclian automorphism [49. 50]. This problem is

related to the previous one by shifting the point of view from "symme¬

try breaking'' to '"non-trivial modular invariant", as explained above.

The correspondence uses that simple-current extensions arc inverse to

orbifolding by an Abclian automorphism of finite order.

4. The bulk partition function is given by a modular invariant which is

not of simple-current type, and the boundary conditions preserve the

original chiral algebra. This problem was considered for Virasoro mini¬

mal models and SU(2) WZW models in [51]. These authors emphasize
the role played by graphs in the classification of modular invariants

and boundary conditions in rational CFT. Sec [52] for a recent review

of these ideas. A different approach to going beyond simple currents,

which emphasizes the symmetry breaking, was presented in [53].

In addition, solutions for a few other isolated cases are also known. Recent

work includes [54, 55, 56].

Cardy's construction [47]

If the bulk partition function is given by the charge conjugation modular

invariant, there is a primary bulk field <&(a,a+) for every irreducible represen¬

tation A G / of the chiral algebra, and hence the Ishibashi states (giving a

basis of the classifying algebra) arc in one-to-one correspondence with the

element A of /. The structure constants of the classifying algebra. J\fx ^ can

be computed explicitly. It is found that they arc just the fusion rules. By
the Vcrlindc formula,

*x£ =^ = £ SXl'af'aSka, (2.22)
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the one-dimensional representations of the fusion algebra arc then labelled

by the elements a of / and given by the (generalized) quantum dimensions.

Ra(*x) = f^ • (2-23)

It follows in particular that also the boundary conditions arc in onc-to-onc

correspondence to the primary fields. In general, it is expected that the

number of boundary conditions is equal to the number of Ishibashi states,

and the matrix of Cardy coefficients is unitary. However, the seemingly
natural correspondence between Ishibashi states and Cardy states does not

generalize. Indeed, the difference in meaning of the labels for the boundary
blocks (solution of the Ward identities) and of the labels for the boundary
conditions (solution to the projection problem %CFT —» full CFT on the

disc) shows that asking for symmetry of the matrix BXja is not a natural

requirement.

The explicit expression for the boundary states in the Cardy case is

and for the annulus coefficients,

Aß = y>
B*XaBXybSx,ß

E
S*XjaSXbSXjß (2.25)

SX.üü

= Nbaß

So, also the annulus coefficients arc given by the fusion rules, and arc mani¬

festly non-negative integers.

2.2 Boundary conditions for simple-current

modular invariants

Following the rather general theory presented in the last section, the present

section deals with the concrete problem of defining possible boundary condi¬

tions for conformai field theories with rational chiral algebra. A, and a torus

modular invariant of simple-current type. The boundary conditions will be

required to preserve the given chiral algebra, even if the partition function

exhibits an extended chiral algebra.
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The contents of this section have appeared in the paper [26]. The prob¬
lem of constructing boundary conditions for the most general simple-current
invariant appeared in the work on Gcpner models. As will be expanded in

section 4.3, B-type brancs in Gcpner models can be constructed precisely as

boundary conditons in a certain modular invariant of simple-current type,

which is not a pure extension, and the required methods did not exist in

the literature. On the other hand, the problem also appears natural in the

context of "open descendants" of CFTs defined on closed, oriented surfaces.

This is how the problem was presented in [26], and how it will be introduced

here.

Recall that for the construction of type I string vacua, one needs to include

not only boundaries (i.e.. D-brancs). but also crosscaps (i.e., oricntifolds) in

the background. In the conformai field theory, such data is equivalent to the

choice of a Klein bottle projection, and a collection of boundary conditions

with certain Chan-Paton multiplicities. Such a system of CFTs is referred

to as an '"open descendant" [57].

The more basic data one wishes to determine is the set {m} of Ishibashi

labels, the set {a} of boundary labels, and a matrix Bm>a of boundary coef¬

ficients and a vector Ym of crosscap coefficients, which relate the Ishibashi

states to boundary states and to the crosscap state, respectively. Quite gener¬

ally, there is an Ishibashi label for each primary field A that is paired with its

conjugate, A+, in the torus partition function (defined by a modular invari¬

ant Zx\). A difficulty arises when some of these terms in the torus partition
function have a multiplicity larger than 1. The resulting degeneracy, which

is precisely ZX\+, leads to Ishibashi labels being of the general form (A. a),
where A labels an irreducible representation of A, and a takes Z\\+ values.

These data must satisfy a large collection of "'sewing constraints" [45,
58, 46]. Most of them arc difficult to check explicitly because this would

require detailed knowledge of fusing matrices, braiding matrices and OPE

coefficients. There exists a set of simpler constraints, which arc presumably

a consequence of the sewing constraints, but arc certainly necessary, namely
the requirement of positivity and integrality of the partition functions. These

partition functions correspond to the torus, annulus, Möbius strip and Klein

bottle surface. Each partition function can be written as a linear combination

of characters x^ with arguments that depend on the surface under considera¬

tion, and with coefficients that depend on the choice of boundary condition.

Actually, characters of precisely which algebra should be used to expand the

partition functions in, is part of the problem. A possible solution is to simply
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use characters of the given chiral algebra A. Then, the coefficients arc given

by

Dm,a Dm,b 0\ fi

Aab - 2-^1
m=(\,a)

M, = yJ*mB^aPx,, (226)
m

'

S\,U)

for annulus, Möbius strip, and Klein bottle, respectively. Here S is the

usual modular transformation matrix of the RCFT, and P = VTST2SVT,
as introduced in [59]. All quantities on the left of (2.26) must be integers.

Furthermore, torus modular invariant Zxx. annulus coefficients, and the com¬

binations \{Z\\ + KX) and \{A^a + M£) (the closed and open string partition
function coefficients) must be non-negative integers. And A^b, the boundary

conjugation matrix (the label 'V refers to the vacuum), must be a permu¬

tation of order 2.

In practice, these integrality conditions have turned out to be very re¬

strictive. In principle, however, it must be checked that, indeed, the the¬

ory is well-defined, and one may need additional requirements for this. It

should also be mentioned here that other, alternative and complementary

approaches to the characterization of conformally invariant boundary con¬

ditions have been proposed in the literature. Each approach abstracts and

generalizes a different aspect of the Cardy case, which is presumably the only

case that is completely under control. For instance, given the relation be¬

tween the classification of modular invariant partitions functions to graphs
of various types, one can imagine generalizing this to the boundary prob¬
lem, see [51] and references therein. Another, looselyrelated,ideaisthatthereshouldbeananalogofthefusionalgebrafortheboundaryconditions(a"'boundaryfusionring''),withstructureconstantsgivenbytheannuluscoefficients,sec[53].2.2.1SimplecurrentsandmodularinvariantsTheCFTunderstudyinthissectionisgiven,inthebulk,bythemodificationofthechargeconjugationmodularinvariantbyasimple-currentinvariant.Themodularinvariantisthusoftheform(ZC)Xß=ZXß+.whereZXßisamodularinvariantofsimple-currenttype,andC\ß=Sßtx+isthechargeconjugationmatrix.
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Simple currents [60] arc the units (invcrtiblc elements) of the fusion ring
of a rational conformai field theory. Recall that the fusion ring of a rational

CFT is a commutative associative semi-simple ring with identity and basis

(over Z). and with a distinguished basis with respect to which all structure

constants arc positive integers (the fusion rules). Simple currents have a

number of equivalent characterizations.

(i) The fusion product of the simple current J with any other field A. yields

just a single field, $j * $a = 3\u-

(ii) J and its conjugate satisfy $j *$j+ = Q^.

(iii) The quantum dimension of J is equal to 1.

Simple currents contain information about "accidental" additional sym¬

metries of a conformai field theory, i.e., symmetries not encoded in the chiral

algebra [61]. Here is a summary of important properties of simple currents.

With respect to multiplication in the fusion ring, simple currents form a

finite Abclian group, also called the ''center" of the conformai field theory.

Simple currents associate a conserved charge to every primary field of the

conformai field theory, called the monodromy charge,

Qj(A) = Aj + AA - AJA G Q/Z. (2.27)

A consequence of the Vcrlindc formula is the following property of the

modular S-matrix.

S,x,ll = Cxp(2niQ,(fi))SXß. (2.28)

This equation is central to all applications of simple currents. As an example,

(2.28) implies that the monodromy charge can be written as [62]

r(ord(J) - 1)
gj(A) "

2ord(J)
• (2"29)

where ord(J) is the order of J, i.e., the smallest integer with ($j)°r = &u,
and where the monodromy parameter r is in Z/(2ord(J)) or Z/ord(J) if

ord(J) is even or odd. respectively. In particular, 2 ord(J) Aj G Z. Currents

satisfying in addition ord(J) Aj G Z arc "bosonic" and form the ''effective

center" of the CFT. They can be used for the construction of modular in¬

variants.

Given a distinguished subgroup Q of the group of all simple currents, it is

useful to think of Q as a group of symmetries acting on the primary fields of
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the conformai field theory. As a consequence, primary fields arc organized in

orbits of the ^-action given by the fusion product. Furthermore, it is possible
to understand a modding out of the theory by Q. As always, this operation

requires particular care if the action of Q on the primary fields is not free.

Simple currents were first applied to the construction of modular invariant

partition functions in [62]. A modular invariant,

Z{r)= X>aäXa(^)Xä(^ (2-30)

x,xei

is called a simple-current invariant if any two paired chiral labels arc con¬

nected by the action of some simple current, i.e.,

Z\\ 7^ 0 =^ A = JA for some simple current J
. (2.31)

The majority of all known modular invariants arc of simple-current type,

and in contrast to the other, exceptional modular invariants, simple-current
invariants have been completely classified [63].

The prescription for constructing simple-current invariants is as follows:

First choose a subgroup Q of the effective center of the conformai field theory.
The relative monodromies in Q determine the symmetric part, X + Xf, of

a pairing (bihomomorphism) X : Q x Q —» R mod Z. by the prescription

(AA+AAt)(J. K) = Qj(K) mod Z. One can then choose the antisymmetric part

of X. fixing the ambiguity on the diagonal by the condition X(J, J) = Aj.

The requirement that X defined in this way be a homomorphism precludes
the use of simple currents that do not satisfy ord(J)Aj G Z. With this data,

define a matrix Z = Z(Ç,X). where the matrix entry ZX/1 is equal to the

number of solutions, J G Ç, to the equations

a = JA
/

(2 321

QK(A) + X(K.J) = 0modZ VK G Q.
v' '

The results of [63] show that (2.32) indeed defines a modular invariant

partition function and, furthermore, that any modular invariant of simple-
current type is of this form Z(Ç,X). Using results from group theory, it is

possible to show that, given Q, the modular invariants arc classified by the

cohomology group H2(Ç.C*).
A somewhat finer characterization of simple-current invariants can be

obtained by identifying the maximally extended chiral algebra encoded in
thepartitionfunction.Itiseasytoseefrom(2.32)thattheleft(rcsp.right)movingchiralalgebraisextendedpreciselybyallsimplecurrentsintheleft(rcsp.right)kernelof

X.
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2.2.2 Ishibashi and boundary labels

The simple-current modular invariant Z(Ç,X) specified by Q and the alter¬

nating part of X is to be multiplied with the charge conjugation matrix. In

general. Ishibashi states correspond to labels paired with their charge con¬

jugate in the partition function, and, hence, they arc here determined by
the diagonal elements of Z{Q,X), counting multiplicities. The only simple
currents that can contribute by a solution to (2.32) arc those that satisfy
JA = A. They form a group, the stabilizer S\ of A. If this group is non-

trivial, multiplicities larger than 1 may occur, possibly leading to Ishibashi

label degeneracies. For pure extensions {i.e.. X = 0), this was analyzed in

[49, 50], and the conclusion is that the Ishibashi label degeneracy is actually

equal to the fixed point degeneracy4. It is natural to extend this result to the

general case, and to label the degeneracy by the simple currents that cause

it. Hence the ansatz for the Ishibashi labels is

m = (A, J); J G Sx with QK(\) + X(K, J) = 0 mod Z for all K G Q .

(2.33)

This ansatz produces also the correct count for pure extension invariants,

although the labelling chosen here is not the same as in [49, 50]. In those

papers the dual basis—the characters tpa of S\—was used for the degeneracy
labels. This is not possible if the modular invariant involves also a non-trivial

fusion rule automorphism, because the currents satisfying (2.33) do not form

a group in that case. For pure extensions, the basis used here differs by a

(discrete) Fourier transformation from the one in [49, 50].
A hint for the set of boundary labels can also be obtained from the results

for pure extension invariants [49. 50], and the results for Z2 automorphism
invariants [57. 64]. In those cases, the boundaries arc in one-to-one correspon¬

dence with the complete set of Ç orbits (of arbitrary monodromy charge). As

usual, fixed points lead to degeneracies. For pure Z2 automorphism invari¬

ants due to a half-integer spin simple current, the degeneracy was found to be

given by the order of the stabilizer of the orbit, whereas for pure extensions

it is the order of the untwisted stabilizer. The ansatz for the boundary labels

in the present case will be a natural generalization of these two special cases.

The untwisted stabilizer in the case X = 0 is defined as follows. For

every simple current J with fixed points there exists a ''fixed point resolu¬

tion matrix" SJ: these matrices can be used to express the unitary modular

4This result is non-trivial, because the degeneracy in the extended theory is in general
not equal to the fixed point degeneracy, i.e., the order of the stabilizer, but rather to the

size of a subgroup, the untwisted stabilizer.
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S-transformation matrix of the extended theory through quantities of the un-

extended theory. The matrices S'1 arc conjectured to be equal to the modular

S-transformation matrices for the J-onc-point conformai blocks on the torus,

and arc explicitly known for all WZW models [65. 66], their simple-current
extensions [67] and also for coset conformai field theories. In these cases, the

matrix S"1 is obtained from the modular S-matrix of certain twisted affine Lie

algebras, related to the current algebra of interest by folding of the Dynkin

diagram. Therefore, S1,1 matrices have many properties in common with the

uncxtended S-matrix. In particular, elements of the matrix SJ whose labels

arc related by the action of a simple current K obey an equation similar to

(2.28), albeit with a twist,

SiP,, = Fp(KJ)c2^^S^. (2.34)

The quantity Fp is called the simple-current twist, and the untwisted stabi¬

lizer Up is the subgroup of Sp of currents that have twist 1 with respect to

all currents in Sp,

Up := {J G Sp; Fp(K, J) = 1 for all K G Sp} . (2.35)

It turns out that Fp is an alternating bihomomorphism on Sp (alternating
simply means Fp(J, J) = 1. which for a bihomomorphism implies Fp(J, K) =

Fp(K, J)-1), and therefore the definition of Up admits a cohomological inter¬

pretation [68].
In the present case, it is easy to sec that, due to the presence of non-local

currents in Q, Fp is not alternating any longer (i.e., Fp(J, J) ^ 1, in general).
However, one can show that a modified twist, F*, defined by

Ff (K, J) := c2mX(K'J)iv(K, J), (2.36)

indeed is alternating, i.e., obeys F^(J, J) = 1 for all J G Q. The untwisted

stabilizer in the presence of X is then defined as before, replacing
FpwithF*,i.e.,Uf:={JGSp\Fpx(K,J)=1forallKGSp}.(2.37)Asmentioned,thetwistF*hasanicecohomologicalinterpretation.Moreprecisely,alternatingbihomomorphismsofanAbcliangroupQarcinone-to-onecorrespondencetocohomologyclassesTfinH2(G,U(l)).Inpar¬ticular,theuntwistedstabilizerprovidesabasisofthecenterofthetwistedgroupalgebraCjrxSp.Itisthischaracterizationoftheuntwistedstabilizer—moreappropriatelycalledthecentralstabilizerbecauseofits

cohomological
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interpretation—that will be of particular interest in the application to Gcp-
ncr models.

Given all these facts, there is only one natural ansatz for the labels of

the boundaries in the general case: orbits of labels of the unextcnded theory
with degeneracy given by the untwisted stabilizer,

a=\p,ipP]. (2.38)

where p is the label of a representative of a Ç7-orbit, and ip a character of U*.

In (2.38). the bracket [•, •] is defined as equivalence classes under the action

of G on pairs (p, ipp) given by K(p, ipp) = (Kp, K(ibp)) with

K(^)(J) = Fp(K, J)*c-2mX(KJ)^(J) (2.39)

for J G U*. Notice that the action of Sp is trivial.

2.2.3 The boundary coefficients

By definition, Ishibashi states arc the conformai blocks for one-point cor¬

relation functions on the disc, i.e.. specific two-point blocks on the sphere.
However, in the present case, it is more appropriate to view the Ishibashi

state labelled by (A, J) as a three-point block on the sphere, with insertions

A, A+. and J 5. Moreover, already from [47] it is known that the relation

between Ishibashi and boundary states essentially expresses the effect of a

modular S-transformation. Together with the previous observation, it is then

natural to expect that the fixed point resolution matrices SJ appear in the

boundary coefficients.

The ansatz for the boundary coefficients is therefore

B(X,j),\p,»p] =a(J)S(X,j),\p,»p]=\—-"(J)S3Xy)p{3)*,(2.40)wherea(J)isaphasethatwillnotbediscussedhere,butwhichmustsatisfya{ui)=1.Also.sp:=\SP\.up:=|Z^|.Allpreviouslystudiedcasesarecorrectlyreproducedbytheremarkablysimpleformula(2.40).ThematrixBiswell-definedonorbits[p.ipp],asisapparentfromK(Vp)(J)*^Kp=[FP(K.J)*c-2^K'JVV(J)]*•c^Mi^K,jySip=%(jyc2^Q^x)+x^-J))SlP(2.41)%vrstp'5Thisisactuallythenaturalinterpretationinthethree-dimensionaltopologicalpictureestablishedin[691.
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by using the simple-current property of S'J. the action of K on ipp defined

in (2.39) and the fact that J G Sx. Here. Sx is defined by the property in

(2.33).
A non-trivial check of the formula (2.40) is completeness, i.e., that the

matrix of boundary coefficients is square and invcrtiblc. Indeed. S is unitary
with inverse

(^1)[P'^'(A'J) = 5(\J);[MV]. (2.42)

Before proving unitarity, note the following useful implication concerning the

SJ matrices.

JeSx\Ux = S{p = 0. (2.43)

This follows from the fact that if J G Sx \ Ux, there is a K G Sp with

Ff(K,J) ^1. But then,

qJ cJ
°\,p

—

°A,Kp

cqkWfp(k,\)*sIp (2-44)
J

A,p-F*(K,J)*SJ

where the last step uses Qk(X) = —X(K, J) mod Z. Hence Slp = 0.

Now turning first to the right-inverse property of (2.42), assume that

(A. Ja) and (p. JM) satisfy (2.33). Then

E S(x.Jx).[p4,p]SIjMp^p] = \Q\ E —^(ja)Wj/J3!;Ä*
[p-Vp] [p>*pl

SpUp

Wp 3Ja'JM

E E ^(Ja)^p(j^)s&5^
n ,;. rl/Xt Z3
P V'p6"^

(2.45)

E^A.'V^A^^
p

- £a>aAa,Jm - £(A,JA),(^,JM)

To prove that (2.42) is a left inverse, use a projector onto Qg(X) +

X(Ç,,1) = 0. It is given by

^(Q^A) + X(Ç, J)) = -^ Y" c-2.i(QK(A)+X(K.J))
_ (2_46)

11
Kee
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Now compute

(A,J)

Gl
E ^(j)>.(j)5ix/ (2-47)

^/SpUpS^U, (A,J)

JA
' '"V

After inserting the projector (2.46). the constraint J G S* can be dropped,
since otherwise, S'1 is 0. Using unitarity of S'1, this yields

(A,J)

=E E Ec_2,ti(QK(A)+x(K-J)Vp(J)*^(J)^x
Keg jeu?ou? a

E E c~2mX(k'j)^(k,j)>,(j)^v(j)E5aX
V^^^^Keejewx^x

Kct

— X)«W E ^(J)*^(K,J)*c-2^K'J)^(J)

Tu-E'W E ^(j)*K(^ff)(j)
p p Keg jeu?

— E ap-KaÖ^Kty,,)
bPKeg

°[p4>p\,[v4>o-\

(2.48)

The fact that the matrix of boundary coefficients is square implies rather

non-trivial relations involving the number of orbits of various kinds and the

orders of stabilizers. The finest such sumrule is

#{[p],JGWpx} = #{A.JG5f}. (2.49)

In the language of boundary conditions, this identity means that the number

of boundary conditions arising with J in the untwisted stabilizer is equal to

the number of diagonal terms (and hence, boundary blocks) in the partition
function arising by the action of J. In particular, summing over J, the number

of boundary blocks (or Ishibashi states) is equal to the number of boundary
conditions.
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2.2.4 Concluding remarks and open problems

The main results of this section are the ansätzc for Ishibashi and boundary
labels, and for the boundary coefficients. These arc crucial ingredients in

the application to Gepncr models in section 4.3. The strongest indication

that the ansätzc arc correct comes, besides naturalness, from the various

integrality checks.

First of all, it should be mentioned that there is also a natural ansatz for

the vector of crosscap coefficients. They arc given in [26], where also the

phases a appearing in (2.40) are defined.

The integrality of the annulus coefficients, as defined in cq. (2.26) has been

verified by Huiszoon and Schcllckens in a large class of examples (WZW
models), and this is accepted to be a highly non-trivial check in this context.

It has also been checked in a large class of examples that all other partition

functions, Möbius strip and Klein bottle, and open and closed string partition
functions satisfy the necessary integrality and positivity constraints.

For further support of the prescription, it would be helpful to justify more

rigorously the ansatz for the Ishibashi states (2.33) from a representation the¬

oretic point of view, similar to [49]. Furthermore, it would be nice to make

contact with the pictures in topological field theory, along the lines of [48],
and to interpret Ishibashi and boundary states in this language. This would

not only provide a clean justification of the ansatz for the boundary coeffi¬

cients. It could also help to prove that there is no inconsistency in situations

of more complicated topology. Furthermore, it should help in developing
further the connection between CFT in two dimensions and topological field

theory in three dimensions, which exists in the bulk [70, 41]. and is expected
to hold in the same generality also in the presence of boundaries [53]. As an

example, it should be possible to rccxprcss the annulus amplitudes in terms

of '"solitonic'' characters of a certain extended chiral algebra, for which in¬

tegrality is more apparent. Further work is in progress on these questions,

and, hopefully, will be reported about elsewhere soon.
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Chapter 3

Supersymmetry, worldsheet

boundaries, and D-branes

Conformai quantum field theories in two dimensions, as described in the

previous chapter, are important in various areas in physics. The application
of interest in this thesis arc worldsheet theories for strings. As indicated in

the introductory chapter, a second important ingredient for the construction

of consistent models in string theory is supersymmctry.

The aim in this chapter is to review the role played by supersymmctry

in the construction of worldsheet theories for strings and to describe some of

the new features that appear upon inclusion of worldsheet boundaries.

Section 3.1 follows the geometric approach and characterizes symmetry

preserving boundary conditions in a supcrsymmetric a-model with target a

Kahler manifold. This section closely follows the recent paper [29]. The

geometric description will be appropriate to describe D-branes in the "large
volume'' region of moduli space, where worldsheet quantum corrections arc

suppressed. At a generic point in moduli space, the picture is that D-branes

correspond to boundary conditions in the conformai field theory on the string

worldsheet. Over most of moduli space, however, this conformai field theory
is defined only implicitly as the fixed point of the rcnormalization group

flow starting at the classical cr-modcl. Explicit calculations arc restricted

to the topological sector of the theory, in other words to the properties of

the (quantum) moduli space itself. A simplification occurs again at special

points in moduli space with enhanced symmetry, where the conformai field

theory becomes rational. These rational points in moduli space allow to make

contact with the algebraic construction of CFTs described in the previous

chapter.

Section 3.2 takes up the algebraic approach to string compactification,
reviews certain aspects of space-time supersymmctry and describes the con-
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struction of (a class of) supersymmetric boundary conditions in rational

J\f = 2 CFTs. This will prepare the ground for the analysis of explicit

examples in chapter 4. This section is based on [30, 31].

3.1 Boundary conditions in Kahler and

Calabi-Yau <7-models

It has been appreciated for a long time that there is an intimate connection

between supersymmetry of a field theory and the special geometry of the

classical target or field space. One well-known example in string theory is

that J\f = 2 supersymmetry of a two-dimensional cr-model requires the target

space to be a Kahler manifold, i.e., a manifold endowed with both a complex
and a symplcctic structure, which must be compatible in the sense that the

symplcctic form is a positive closed (1.1) form with respect to the given

complex structure.
x

Upon quantization of the theory, it becomes more difficult to talk about

the classical geometry of the target space. Supersymmetry. if it survives

quantization, is then the only remnant of the special geometry of the target

space. Thus, the amount of (worldshcet) supersymmetry of a quantum theory
is the quantum equivalent of different structures of classical geometry, sec,

e.g., ref. [73].
While the geometric conditions mentioned so far arc common to all su¬

persymmetric quantum theories, a further restriction on the target is special
to string theory. Namely, strings require the worldshcet theory to be confor-

mally invariant [74. 75, 76], and to allow for the GSO projection that elimi¬

nates the tachyon from the string spectrum and guarantees supersymmetry of

the space-time theory. In the simplest cases, conformai invariance translates

into the condition that the metric of the target be Ricci flat, while space-time

supersymmetry requires the existence of a covariantly constant spinor, and

leads to a restriction on the holonomy group of the compactification man¬

ifold. In mathematics, these two conditions arc known to be equivalent on

a Kahler manifold, and arc called the Calabi-Yau property [77. 78]. Also,
from the worldshcet point of view, J\f = 2 supersymmetry intimately links

conformai invariance and space-time supersymmetry [79, 80, 81].

Obviously, the various symmetry conditions and their mutual relation¬

ships have to be analyzed again after inclusion of worldshcet boundaries.

Similarly to before, the first step is to characterize supersymmetric bound¬

ary conditions in terms of classical geometry. In a second step, one would like

1See the texts [71, 72] for references on complex and Calabi-Yau geometry.
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to understand what further conditions arc imposed by conformai invariance,

space-time supcrsymmctry, and stability.

3.1.1 The cr-model2

In the compactification of the type II string, space-time is split into an exter¬

nal part, which is extended, for instance four-dimensional Minkowski space,

and an internal part, which is typically given the form of a compact Calabi-

Yau manifold. Restricting only to the internal part leads to the study of a

supcrsymmctric non-linear cr-modcl. In the present subsection, the target,

Y, is only assumed to be a Kahler manifold, the restriction to Calabi-Yau

will be explained below. The field content of such a cr-modcl is as follows. J

The worldshcct bosons arc maps X : S —> Y from the worldshcct to the

target. Picking local coordinates, one can think of X as n complex bosons

X\ i = 1, ...

,
n. where n is the number of complex dimensions of Y.

The worldshcct fermions %p± arc sections of the bundle S±(T.) (& X*T<-1'°^Y,

where S±(E) arc spinor bundles on S. and X*T^-,{^Y is the pullback of the

holomorphic tangent bundle of Y.

In terms of these component fields, and in conformai gauge, the cr-modcl

has the following action.

S= d2z[-g(d+X,d_X) + ]-g$-, D+rp_) + ±g(y+, D_4>+)

+ s(^+,fl(^_>+)^_)], (3. 1^

where g is the Kahler metric and R the Ricmann-tcnsor of Y. Furthermore,

d± arc ordinary derivatives on E, while D± = d± + X*u arc covariant deriva¬

tives obtained from the pullback of the Levi-Civita connection, u, in the

tangent bundle of Y.

Kählcrity of Y implies that the following global worldshcct supcrsymmc¬

try transformations arc symmetries of the theory,

ÖX = e+i)- - £-ip+ - e+îp- -\

<%>+ = ie_d+Xh + e+^!+(eJ)

ö^+ = -ie_d+Xh-e+u^+(^)
Öl}}- = -ie+d_Xh - e-ui,_{ip+)

5^_ = ie+d-Xh + e-u^,_(ip+)

e_ip_i

(3.2)

2The following two subsections closely follow [29].
3A thorough mathematical presentation of supersymmetric <r-models can be found in

[82]).
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where d±Xh and d±Xh denote holomorphic and antiholomorphic compo¬

nents of the tangent vectors d±X, respectively. More precisely, under the

transformations (3.2), the action varies by a boundary term,

ÔS = \ f \-c+9(d-X. </,_) + e+g(9-X, V-)

- e_g(d+X, </>+) + ê_5(<9+X, Vi+)] . (3.3)

Without boundaries, there arc then four conserved supercurrcnts, G+ =

g(d+X,y>+), G+ = g{d+X^+), G_ = g(d-X,ip_). and G_ = 5(Ö_X^_).
In the presence of boundaries, however, at most one half of these symmetries
will be preserved.

3.1.2 Boundary conditions

Quite generally, the definition of a classical field theory in the presence of

boundaries requires the specification of boundary conditions. In the La-

grangian framework, it is useful to distinguish boundary conditions imposed

on the variation of fields in the variational principle from boundary conditions

satisfied by the fields in the equations of motion. The first kind of boundary
conditions can be viewed as external constraints imposed on the system, and

the second kind depend on the first through consistency of the equations of

motion. More precisely, the variation of the action functional under arbitrary
variations of the fields contains boundary terms that depend on the varia¬

tions and values of the fields at the boundary. Requiring vanishing of the

boundary terms (independently of bulk terms in the variation) then deter¬

mines boundary conditions in the equations of motion, which depend on the

boundary conditions imposed in the variational principle. Furthermore, con¬

sistency of the constraints (boundary conditions on the allowed variations)
with the equations of motion typically imply '"secondary constraints" on the

fields.

As an example, consider a free bosonic field in two dimensions with action

S = j^ä?zdßXd^X. The variation of S under arbitrary variation of X is

öS = J^[—dßdßX^5X + J9S dnX5X, where dnX is the normal derivative at

the boundary. <9£.If5Xisunconstrained,theboundaryconditionsfortheequationsofmotion—dßdßX=0areofNeumanntype,dnX\g^=0.IfontheotherhandoneimposestheconstraintX\qy,=const,(thisimpliestherestriction5X|gS=0),thevariationalequationdocsnotimplyanyboundarycondition,butconsistencywiththeequationsofmotionrequiresdtX\gz=0.wheredtisthetangentialderivativeattheboundary.TheseboundaryconditionsarcofDirichlettype.
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A typical feature of boundaries is that symmetries of the theory arc bro¬

ken by the boundary conditions. In the Lagrangian framework, continuous

symmetries imply conserved currents by Noether's theorem, and boundary
conditions arc symmetry preserving under the following requirements.

On the one hand, the transformation corresponding to an unbroken sym¬

metry has to be consistent with the boundary conditions. In other words, the

allowed variations have to contain the infinitesimal symmetry transformation

at the boundary.
On the other hand, the boundary conditions have to be such that the ac¬

tion is still invariant under the symmetry transformation, after imposing the

boundary conditions. In other words, the normal component of the Noether

current has to vanish at the boundary.

In the free boson example, it is easy to sec that the U(l) symmetry of S,

which is infinitcsimally generated by ÖX = e is preserved by Neumann and

broken by Dirichlct boundary conditions. On the other hand, introducing a

boundary breaks translational invariance on the worldshcet in both cases. As

a consequence, only conformai transformations that preserve the boundary

arc symmetries of the theory.

Consider now the Kahler er-model with action (3.1) on a two-dimensional

worldshcet E with boundary <9E. As before, denote the normal derivative

at the boundary by dn, and the tangent derivative by dt. Assume that the

boundary conditions arc geometric, i.e.. there is a submanifold V C Y such

that the boundary is mapped to Y, X(9E) C T. The boundary conditions

on the bosonic fields arc then

5X\\T\ dnX ± T. (3.4)

For the purpose of string theory, one is interested in boundary conditions

that break half of the supcrsymmctrics of cq. (3.2). and preserve the other

half. There arc essentially two ways to achieve this [27, 29], called A- and

B-typc supersymmctry, respectively

A-typc supersymmctry is the diagonal combination of supcrsymmctrics

generated by e+ = e_ = e^ and e+ = e_ = a- Equation (3.3) then shows

that the preserved supercurrcnts arc GA = G+ + G-, and GA = G+ + G-.

B-typc supersymmctry, on the other hand, is generated by e+ =
—e_ = e^

and e+ = —e_ = eg. The preserved supercurrcnts arc GB = G+ + G_ and

GB = G+ + G_.
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To understand the geometry of A-typc boundary conditions, notice that

in this case,

ÖX = eA(4>- + $+) - A(Ü- + 0+) (3.5)

5ip+= eA(id+Xh + co4,+ (^)) (3.6)

dip- = eA(-id-Xh + ^_(V+)) • (3-7)

In view of (3.4), the fermions then have to satisfy the boundary conditions

0_ +ip+ || T and -0_ +ip+ || T. The condition that GA be preserved becomes

(recall d+ = dt + dn, <9_ = dt - dn),

g{dtX, 0+ - 0_) + g(dnX, V+ + ï>-) = 0
. (3.8)

Since dnX _L T, <9tX || Y. the second term vanishes, while the first implies

0+ — -0_ ± T. If J" denotes the complex structure of Y, one has that

i7('0+ + ^/-'-) = i("0+ — tp-). It follows that J" maps vectors tangent to T to

vectors orthogonal to F and vice-versa. In other words, T is a Lagrangian
submanifold of Y [28, 27, 29].

Very similarly, one can show that in the case of B-typc supcrsymmctry,

the fermions have to satisfy ^_ + ip+ || Y, ip_ + -0+ || T, 0+ — ip+ ± T, and

0_ — -0+ ± T. This means that Y has to be a holomorphic submanifold of X.

This characterization of boundary conditions—A-typc as Lagrangian and

B-typc as holomorphic submanifolds—was in the simplest situation. More

general cases include, for example, the addition of a B-ficld term, f^X*B,
to the action (3.1), where B is a closed two-form on Y. Furthermore, if

the Kahler manifold Y is non-compact, it admits non-trivial holomorphic

functions, and one can add a supcrpotential term. Last not least, one can

couple the boundary to a target space gauge field A, by introducing a term of

the form Jas X*A. It turns out [28] that A-typc supcrsymmctry is preserved
if the gauge field is flat, while B-typc supcrsymmctry requires the gauge field

to be holomorphic. For a more precise description of the possible boundary
conditions in the various cases, sec rcf. [29].

3.1.3
QuantumcorrectionsTheforegoinganalysiswaspurelyatthelevelofclassicalfieldtheory,andquantumeffectswillmodifythisdescription.Asisfamiliarfromthesituationinthebulk,onemaydistinguishpcrturbativcandnon-perturbativcquantumcorrectionsontheworldshcet.Tostartwith,noticethattheclassicalcr-modclaction(3.1)alsohasthesymmetriesofconformaiinvariance,andinvarianceunderglobal

R-
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rotations. R-rotations correspond to automorphisms of the M = 2 super-

symmetry algebra and act on the fermions as ip± —>• c27riavtb± for vector, and

ip± —>• c±2niaA^±, for axial R-rotations. respectively.

Upon quantization of the cr-modcl, however, conformai invariance is bro¬

ken, unless the beta-function vanishes. It turns out that to lowest order in

<7-model perturbation theory, the beta-function for the target metric is pro¬

portional to the Ricci tensor corresponding to this metric. Thus, conformai

invariance requires that the target admit a Ricci flat metric. The target must

be a Calabi-Yau manifold.4 The R-symmctrics involve rotations of fermions

and arc also subject to quantum effects. Namely, the anomaly of the axial

R-symmctry is proportional to the index of the Dirac operator for the world-

sheet fermions. This index is equal to 2c\(Y), where ci(Y) is the first Chcrn

class of the tangent bundle of Y. Thus, according to Yau's theorem [78],
the two conditions of conformai invariance and anomaly cancellation on the

worldshcet are equivalent.

Besides these pcrturbativc corrections to classical considerations, there is

another kind of quantum effect on the worldshcet, namely non-perturbative
instanton corrections [5. 6]. For a cr-modcl with Calabi-Yau target, instantons

correspond, after Wick rotation to a Euclidean worldshcet, to holomorphic

maps of the worldshcet E into Y. Worldshcet instantons modify the geometry

of the moduli space of the Calabi-Yau manifold, and thereby also the masses

and couplings in the low-energy effective field theory.

Recall that the moduli space of Ricci flat Kahler metrics on a Calabi-Yau

manifold is locally the product of complex structure moduli space and Kahler

structure moduli space. In physics terms, this factorization corresponds to a

decoupling of vector- and hypermultiplet moduli of the M = 2 supcrgravity

theory, which is the effective description of compactified type II string theory
at low energies [8, 9, 83].

Since, by definition, contributions of an instanton <I> : E —» Y must be

weighted with cxp~ Js
* w/a

,
where u is (the pullback of) the complexified

Kahler form, they can only correct the Kahler moduli space. On the other

hand, the complex structure moduli space is unaffected by worldshcet in¬

stantons. and canbecomputedclassically.Thesetwofacts—decouplingandabsenceofnon-perturbativecorrectionsonthecomplexstructureside—makemirrorsymmetrysuchapowerfultool.ByexchangingKahlermoduliofYwithcomplexstructuremoduliofamirrormanifold.Y*.mirrorsymmetryallowstomapanaprioricomplicatedcalculationofworldshcetinstanton4Althoughtherearehigherordercontributionstothebeta-functionevenwhenthetargetisRiccifiat,thegeneralcriterionthatrequiresYtobeCalabi-Yauisvalidtoallordersinperturbationtheory.
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corrections of the Kahler moduli space of F to a classical computation in the

complex structure moduli space of the mirror manifold. Y* [13]. The math¬

ematical interest of mirror symmetry computations arises from the relation

to counting of holomorphic curves and Gromov-Witten invariants, see [84]
for further references.

To summarize this brief review, it can be seen that the requirements of

string theory impose certain constraints on the classical geometric target that

defines the cr-modcl. Furthermore, some of the non-pcrturbativc quantum

corrections of string theory on Calabi-Yau manifolds arc accessible using
mirror symmetry.

3.1.4 D-branes

Similarly as in the bulk, it should be asked how the classical analysis of section

3.1.2 is modified by quantum effects. As before, one expects to first determine

stronger geometric conditions that will ensure existence of a consistent, i.e.,

conformally invariant and stable, quantum theory on the worldsheet. Note

that these geometric conditions for the boundary sector can, or rather, must,

depend on the moduli of the bulk theory. In a second step, one might then

try to explicitly evaluate the non-pcrturbativc quantum corrections.

These problems have attracted a lot of attention in recent years, sec,

e.g., [85, 32, 86, 87, 88, 89, 90. 91] and it is not intended to review here

the significant progress that has been made. The goal of this subsection

is merely to summarize those aspects of the geometric characterization of

D-brancs on Calabi-Yau manifolds that will be needed in the examples, in

particular, in section 4.3. This includes the topological classification of D-

brancs, basic stability (supcrsymmctry) criteria, the effective coupling to RR

gauge fields, and the BPS central charge. For the rest of this section, the

complex dimension of Y will be assumed to be n = 3.

Special Lagrangian submanifolds

As reviewed above, boundary conditions of A-typc with respect to the M = 2

worldsheet supcrsymmctry correspond geometrically to Lagrangian subman¬

ifolds, with a flat U(l) connection. Such submanifolds arc topologically char¬

acterized by a homology class in H3(Y.Z).
It is shown in [92. 27] that the extra geometric condition ensuring space-

time supcrsymmctry is

lmcnfi|r = 0, (3.9)
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where V is the cycle wrapped by the branc. and Q is the unique holomor-

phic top-form of the Calabi-Yau. The angle 7 is arbitrary. The alternative

characterization is that the cycle wrapped by the branc has minimal vol¬

ume in its homology class, or that cnQ\r is proportional to the volume form

induced by the Kahler metric. The condition (3.9) is called the "special

Lagrangian condition'', the corresponding brancs in string theory are called

A-typc branes.

Physically, one can measure the homology class of an A-type branc as a

charge under RR gauge fields. Recall that in the low-energy effective theory
in the flat part of space-time, the RR gauge fields in hypcrmultiplcts arise

from dimensional reduction of RR form fields in 10 dimensions along the

various cycles in the compactification manifold. In particular, for A-type
brancs that arc point-like in the flat part of space-time, the relevant fields

arc the RR p + 1-forms (with p odd) of the type IIB string. The natural

space of RR gauge fields therefore is H3(Y). The coupling of an A-type
branc (topologically also an clement of H3(Y)) to these RR gauge fields can

then be shown to simply equal the natural symplcctic pairing in H3(Y) (see,
e.g., [93]). Equivalcntly, the RR charge <3(RR)(r) of an A-typc brancs can be

thought of as lying in the dual space, i.e..

Q(RR){T)eH3{Y.Z). (3.10)

More explicitly, given a basis of 3-cycles {7*. i = 1,... , h'^Y)} in H3(Y), one

may expand T = QfR)7l, and call Qfm the RR charges of the A-typc branc.

Of central importance for later applications is the J\f = 2 central charge
of the branc. By definition, the central charge is the coupling of the branc to

the central clement of the J\f = 2 supcrsymmetry algebra in flat
space-time.Thiscentralclementarisesfromtheoperatorgeneratingleft-rightsymmetricspectralflow,which,forthetypeIIBstringcompactificdto4dimensions,correspondstotheholomorphicthreeformQGHS(Y)ontheCalabi-Yauthree-fold.ThinkingofthechargeasanclementofH3(Y),oneshouldthenreallyevaluateQ(monthethreecyclePoincarcdualtoQ.Equivalcntly,thecentralchargeZ(T)ofanA-typcbrancwrappedonTisgivenbyZ(T)=IQ=c-'nJc^Q.(3.11)SinceTisspecialLagrangian,(3.9),thisexpressionshowsinparticularthattheabsolutevalueofZ(T)isthevolumeofthecycle,whichinphysicstermsisthemassofthebranc.asviewedfromflatspace-time[2].Thus,themassofthebranciscompletelyfixedbyitsRRcharge,asbefitsaBPSstate.Also,7isequaltothephaseofthecentral

charge.
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Stable coherent sheaves

For ''B-type" brancs, A/" = 2 worldsheet supersymmctry requires boundary
conditions on holomorphic submanifolds, and a coupling to a connection in a

holomorphic vector bundle. More generally, one considers coherent sheaves

[93] or complexes thereof [94] as the natural geometric objects corresponding
to B-type brancs. The natural receptacle for the topological classification of

D-brancs is currently believed [95, 96] to be K-thcory. But for the present

purposes, it will be enough to approximate K-thcory classes by cohomology
classes. The topological class of a B-typc brancs V, is then given by the Chern

character. ch(V). and lies in the diagonal cohomology, ®Hl,l(Y) 3 ch(V).
Space-time supersymmctry for B-typc boundary conditions is governed by

Kahler moduli, and in distinction to the situation for A-typc brancs, depends

on quantum corrections for the bulk. The precise geometric characterization

of B-typc brancs throughout moduli space is subject of intensive current re¬

search, and will not be discussed in detail here. Sec [88. 94] for recent work.

At large volume, the situation is somewhat better understood. The basic

criterion [93] in the simplest case of a vector bundle (a branc wrapping the

whole Calabi-Yau) is the existence of a hcrmitian Yang-Mills connection. By
the Donaldson-Uhlcnbcck-Yau theorem [97, 98], this is equivalent to math¬

ematical definitions of stability of holomorphic vector bundles on Y. The

general situation is more involved, and it is not easy to state the analog of

cq. (3.9) in general.
Consider now the relation between the topological class of a B-typc branc,

V, and its physical RR charges. Here, the relevant gauge fields arise from

dimensional reduction of RR p + 1-form fields, with p even, of the type IIA

string. It is shown in [99. 93] that the charge describing the correct coupling
to these RR gauge fields is given by the generalized Mukai vector

Qm(V) = ch(V) yjÂ(Y) e ®ZH"(Y), (3.12)

where ch(V) = tr(cF) is the Chern character, and A(Y) a topological invari¬

ant of Y.

As for A-typc brancs, the central charge of a B-type branc can be com¬

puted from its RR charge. Again, it is nothing but the coupling to the central

clement of the J\f
=2space-timesupersymmctryalgebra,thistimeforthetypeIIAstring.Atlargevolume,onecanwritethecentralchargeas[100],Z(V)=fc-KQ^(V)=[cKch(V)^/ÂÏx),(3.13)whereKisthecomplexifiedKahlerclassoftheCalabi-Yaumanifold.Butthisformulaissubjecttoquantumcorrectionsontheworldsheet.The

best
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way to determine the central charge at a generic point in moduli space is to

use mirror symmetry to map the charges of B-typc branes on Y. cq. (3.12),
to the charges of A-typc branes on Y*, eq. (3.10). and then compute Z using

eq. (3.11).

Intersection indices

One more piece of information that will be useful in comparing results from

algebraic conformai field theory with geometry in chapter 4 is the intersection

index of branes. This intersection index is a topological invariant associated

with two D-branes and can be thought of as a pairing between the respective

topological charges. From the worldsheet point of view, the intersection index

is the Witten index in the space of open strings stretching between the two

branes.

For A-typc branes, the natural pairing is the symplcctic intersection form

on H[i(Y, Z). In particular, picking a symplcctic basis of cycles, in which

the intersection matrix is of the canonical form (^J), one may expand

g(RR)(r) = (g(RR)i g(RR))? ^ ^ and ^^ for ^ jv £ jj^y^

/i3/2

(<2(RR)(r),Q(RR)(r')) = rnr' = J]QfR)(r)gfR)(r') -gfR)(r)QfR)(r').

(3.14)

For B-typc branes V, V, with charges Q(RR)(V), Q(RR)(V) G i7diag(F), the

analogous expression is

(Q(RR)(V),Q(RR)(V'))= f Q(m(V*)Q(m(V)= f ch(V* <g> V')Â(Y). (3.15)

Using the index theorem, one can relate this expression to the index of the

Dirac operator coupled to V* ® V, which directly shows its relation to the

Witten index in the open string sector between the corresponding branes.

3.2 J\f = 2 superconformai field theory with

boundaries

The goal of this section is to analyze the interplay between theprojectionsthatariseinalgebraicstringcompactificationsandtheconstructionofbound¬aryconditionsforsuchtheories.Thediscussioncentersaroundtheinternalpartofthecompactification.andisthealgebraiccounterpartoftheclassicalgeometriccharacterizationofD-brancsgivenintheprevioussection.
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(3.16)

3.2.1 Algebraic construction of type II string compact-
ifications

In the compactification of the type II string from 10 to D dimensions (D
even), the role of the internal manifold Y is to provide an implicit definition of

a conformai field theory. Since F is a Calabi-Yau manifold, one expects that

the rcnormalization group flow starting at the classical cr-modcl on Y defines

a unique conformai field theory with M = 2 worldshcct supersymmetry. In

other words, at the conformai fixed point the modes of the energy momentum

tensor, supersymmetry currents, and U(l) currents generate two copies of the

J\f = 2 super-Virasoro algebra, which is explicitly,5

c

[J-'ni Lm\ = (n — m)Ln+m + ~7~n\n" ~ n)^n,-m

{G^ G^} = 2Lr+s ±(r- s)Jr+s + ^(r2 - -^5r_s
{G±,Gf} = 0

[Ln, Gr ] = \ — - rjGn+r
\ J J } = -nö

[J-Jji, <Jm\ '<<"Jn+m

[Jn, Crr J = ±Gra+r .

Abstracting from geometry, one may also ask for other, more explicit
definitions of conformai field theories with the right properties required for

string compactification. The class of conformai field theories that arc used

in such '"algebraic" compactifications typically include ''free'' theories (e.g.,
lattice CFTs and orbifolds thereof), or they arc rational CFTs. which gives

a good handle at explicit calculations. To be usable as a building block for

string theory, the
CFTmustsatisfyanumberofconditions,themostbasiconebeingthecorrectVirasorocentralcharge,c=3c=15—3D/2.Here,cisnumericallyequaltothenumberofcompactificdcomplexspatialdimensions.Furthermore,theCFTmustinparticularhaveJ\f=2supersymmetryontheworldshcctandtheassociatedU(l)chargesmustbeinteger[79,80.81].Itturnsoutthatinmanycases,theseconditionscanbeimposedstepbystep,andacarefulimplementationofeachstepguaranteestheultimatesuccessoftheprocedure.5Thereadershouldbewarnedaboutthefollowingchangeofconventions.TheworldsheethasbeenWick-rotatedtoEuclideansignature.Hence,"right-moving"(anti-holomorphic)quantitiesontheworldsheetaredistinguishedfrom"'left-moving''(holomor-phic)byabar.Thisisasinchapter2anddifferentfromsection3.1.wherea±subscriptisused.Here,the±subscriptdistinguishesthetwoworldsheetsupercurrents.
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The first step in the construction is the adjustment of the central charge.
To this end, choose a certain number r of rational M = 2 supcrconformal
field theories, C^\ with central charge ct, i = 1, ... ,

r, such that 5^ c% = 15 —

3D/2. In fact, r might also be equal to 1, but ordinary constructions (e.g.,
free bosons, cosct models, orbifolds, etc., without using tensor products),
very rarely produce such models.

To be able to make contact with chapter 2, the individual H = 2 building
blocks will be described as bosonic theories with Virasoro central charge c%

and J\f = 2 structure appearing as simple-current symmetries.6 In particu¬

lar, each factor of the tensor product contributes two distinguished simple

currents, denoted by vt and st for i = 1 r. The primary field vz has

conformai weight AVt = 3/2, is a simple current of order 2 and contains at

the lowest Virasoro degree two fields representing the worldshcct supcrcur-

rcnts, G±(z) of the supcrconformal theory. It is referred to as the vector

current. The second simple current. st, has conformai weight ASj = c,/24,
and a model dependent order. In supcrsymmetric language, the module cor¬

responding to st contains at the lowest degree the unique Ramond ground
state of maximal U(l) charge ql(sl) = c,/6. The action of st by the fusion

product is equivalent in supcrsymmetric language to spectral flow by half a

unit, and the monodromy charge with respect to sz satisfies

a.(A) = ^ modZ, (3.17)

where ql(X) is the i-th U(l) charge of the field A in the tensor product.

Naively, one would now like to take the tensor product,

Ctenprod = X"=1 CW . (3.18)

as the internal CFT of the compactification. However, the ordinary tensor

product of the CFT factors is adapted to the bosonic language, and is not

equivalent to their tensor product as supcrconformal theories. Indeed, the

tensor product (3.18) is not M = 2 supcrsymmetric. essentially because the

contributions of the individual factors to the putative worldshcct supcrsym-

mctry current,

l®---(g)G±(^)(g)---®l, (3.19)

6A summary of simple currents
wasgiveninsection2.2.ForbackgroundmaterialontheJ\f—2superconformalalgebra,see[10];formoreinformationaboutsimplecurrentsinsuchtheories,see.forexample,[101].
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with G± in the i-th factor, do not lie in the same irreducible module of the

bosonic tensor product, and it would not make sense to add them. In the

other sectors of the theory, the problem reappears in the existence of fields

that arc NS in some factors of the tensor product, and R in others, i.e.. that

the fermions arc not ''aligned". Fermion alignment can be achieved by a

projection operation and is most easily implemented at the level of yCFT as

a simple-current extension. Explicitly, the extension with the simple-current

group generated by

Wj = vxv%, (3.20)

for i = 2.
...

,
r, guarantees that the summands (3.19) all lie in the same

irreducible representation of the extended algebra, namely in the equivalence
class labelled by v = [(v1.lû2, .. .ur)].

7 Furthermore, since the monodromy

charge with respect to vector currents distinguishes NS sector (QVt = 0)
from R sector (QVt = 1/2), the projection, QWi = 0 mod Z ensures fermion

alignment.
The general properties of simple-current extensions automatically guaran¬

tee that the resulting theory is a consistent CFT, in particular if the concern

is modular invariance. The tensor product (3.18). extended by the alignment
currents (3.20), will be referred to as Cwsusy, with chiral algebra Awsusy.

Having obtained an J\f = 2 supcrconformal theory with central charge c =

15 — 3D/2, the next condition on the CFT is that the total U(l) charge of all

NS fields be integer. This condition is equivalent to the physical requirement

that the string vacuum obtained after tensoring with external space-time, and

performing the GSO projection, is stable (absence of tachyons) and exhibits

space-time supcrsymmctry.

Since the total U(l) charge, q, is measured by the spectral flow operator,

i.e., the simple current

s =
(s1,s2,...-sr),(3.21)itisnaturaltounderstandalsothissecondprojectionasasimple-currentextension.Moreprecisely,theextensionisbythecyclicgroupgeneratedbyIndeed,themonodromychargeofaprimaryfieldAofthetheoryCwsusywithrespecttouisequaltor\J^(^)^AisintheNSsectorWu(A)=<D2..(3.23)Iq{X)H——ilAismtheRsector,7Recallthatuj,denotesthevacuuminthez-thfactorofthetensorproduct.
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and hence extension by u guarantees integrality of the U(l) charge in the NS

sector. The factor V((D-2^2 in (3.22) and the shift by (D - 2)/2 in the R

sector in (3.23) is the usual dependence on odd or even complex dimensional

compactification space (recall that c = c/3 = n = 5 — D/2).
The tensor product Cten-Prod- (3.18). extended by the simple-current group

£ext :=(w,,u), (3.24)

generated by the w? and the current u is an J\f = 2 supcrconformal theory
with integer U(l) charge in the NS sector, and can constitute the internal

sector of a string compactification. It will be denoted by Cinner, with cor¬

responding maximally extended chiral algebra Amnei. In principle now, the

construction of boundary conditions in this extended tensor product is a

well-posed problem. However, for the physical interpretation of various in¬

gredients of the construction, in particular to determine the correct amount

of symmetry to be preserved by the boundary conditions, it is necessary to

take a brief look at the remaining steps, involving the external space-time,
towards a consistent string vacuum.

At the level of CFT the flat dimensions arc described by the tensor prod¬
uct of D free bosons and D free fermions. This tensor product CSD' osx CsD,^ra'
has J\f = 2 supcrsymmctry (subscripts here stand for the Virasoro central

charge). Gauging of the Af = 1 superconformai symmetry on the worldshcct

can be performed by introducing a system of ghosts, Cg26; for the stress-

energy tensor and a system of superghosts, C[f for the M = 1 supcrcurrent.

Consider then the tensor product

/7St,bos ^st,ferm pinner /?gh ^.sgh /q r)r\
Or) A. X^j^iiy A L' A \s 2fi -** ^"11 ' [O.ZjOj

Again, to retain J\f = 2 worldshcct supcrsymmctry, the space-time and in¬
ternalworldshcctfermionshavetobealignedbyasimple-currentextension.TheGSOprojectionthatavoidsspace-timetachyonsandensuresaspace-timesupcrsymmetricspectrumamountstoprojectingontoodd-integertotalU(l)chargein(3.25).FullstringtheoryproceedsfromthisbyintroducingtheBRSToperator(nilpotencyfollowsfromthevanishingofthetotalcentralcharge)andrestrictingtophysicalobservablesintheBRSTcohomology.ItturnsoutthatthereisaconvenientprescriptionthatallowstoexpressalsotheGSOprojectioninthelanguageofbosonicCFTasasimple-currentextension,namelytheso-calledbosonicstringmap.Inessence,itamountstoreplacingsuperghostsandspace-timefermionsin(3.25)byabosonicCFTcorrespondingtotheSO(D+6)WZWmodelatlevel1.Forareviewofthebosonicstringmap.sec[102].Forthepurposesofthenextsubsection.
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suffice it to note that in this completely bosonic language, the space-time

supercharges arc the zero modes of the chiral fields (''spinor fields"),

S(z) = sext(z)s-mt(z), (3.26)

where sext is a spinor primary field of SO(D + 6)i, and smt is the primary
field obtained from (3.21) after extension by u.

3.2.2 Automorphism types of boundary conditions and

space-time supersymmetry

As seen in the geometric description of D-brancs on Calabi-Yau manifolds,
there are essentially two types of possible boundary conditions for the sym¬

metry currents of an J\f = 2 field theory, commonly called A- and B-type

boundary conditions. In the algebraic framework, the two possibilities reap¬

pear as different automorphism types of boundary conditions with respect to

the J\f = 2 algebra. By construction, however, the chiral algebra of Cmner is

much larger than the J\f = 2 algebra and boundary conditions can be further

classified according to the way in which this extended symmetry is realized.

In particular, the algebra v4mner contains the simple current u. Since u oc s2,
and s is related to the space-time supercharge, it is reasonable to expect a

connection between the realization of u on the boundary and the space-time

supersymmetry preserved by the corresponding branc. It is the goal of this

subsection to explain this connection.

It is easy to sec that the automorphism group of the M = 2 algebra (3.16)
is isomorphic to U(l) x Z2, where the U(l) stems from inner, and Z2 from

outer automorphisms. A priori, there arc therefore two families of boundary
conditions. Considering the theory on the upper half plane, with boundary
at z = z, one distinguishes

A-typc boundary conditions:

T(z) = T(z)

G±{z) = c±1LYA G*{z) &tz = z (3.27)

J(z) = -J(z)

B-type boundary conditions:

T(z) = f(z)

G±(z) = c±iaB G±(z) -dtz = z (3.28)

J(z) = J(z)
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Now recall that supcrstring theory is based on local invariance under

M = 1 worldshcet supersymmetry. This supersymmctry can be realized in

different ways. It is easy to sec that for each choice of tp. the combination

q(<p) — civ>q+ _|_ c~llpG~ generates an J\f = 1 super-Virasoro algebra. If

this symmetry is to be gauged, it must not be broken by the boundaries.8

Not every choice of inner automorphism is compatible with every embedding
of the M = 1 into the M = 2. More precisely, each choice of ola for A-

type boundary conditions is compatible with one and only one choice of <p,

namely ola = —2<p. One the other hand. B-type boundary conditions arc

only compatible with </? = 0, but this independently of the choice of Oß.

This rather subtle distinction and its implications do not seem to have been

analyzed in the literature. In any case, the angles cxa and aß in (3.27) and

(3.28) may be shifted by a redefinition of G±. and most convenient is to

simply set them to zero. Sec also [29] for arguments that this is no loss of

generality in the <r-model context.

Another choice of convention is whether one describes a given theory

using the diagonal or the charge conjugation modular invariant partition
function. This freedom, which is in fact the origin of mirror symmetry, can

be confusing. This is particularly true when applying results from conformai

field theory with boundaries, because the natural choice there is the charge

conjugation modular invariant, while geometrically, the diagonal modular

invariant appears to be more suggestive. In this thesis, A- respectively IB-

type boundary condition will refer to a geometric interpretation, while trivial

respectively mirror automorphism type will mean the algebraic characteriza¬

tion. Tabic 3.1 is the dictionary between the two formulations.

modular invariant
automorphism type

(algebraic)

boundary condition

(geometric)

diagonal

charge conjugation

trivial

mirror

trivial

mirror

B-type

A-type

A-type

B-type

Table 3.1: Automorphism types of A- and B-typc boundary conditions

In a supcrsymmctric language, and in full string theory, BPS boundary
states arc constructed as GSO-invariant combinations of boundary states in

furthermore, the boundary conditions on the ghosts must be such that the ghost
number and the BRST current are preserved, but this will not be discussed any further

here.



Chapter 3 52 SupersYMMETRY

the CFT (3.25). Such boundary states possess, in analogy with worldsheet

spin structure (R or NS sector) in the bulk, a Z2 valued quantum number

77 = ±1. see [103, 104]. Which specific combination of boundary states is

GSO-invariant depends on the projection, i.e., whether one is dealing with a

type IIA or type IIB theory. Furthermore, a GSO-invariant boundary state

reflects the spin field in a specific way. and only a special linear combination

of space-time supercharges is preserved, sec [2].
Turning first to the internal part, a boundary state, \a)), preserving the

J\f = 1 subalgcbra, with '"boundary spin structure" 77, and with a definite

automorphism type with respect to the J\f = 2 algebra satisfies cither

(Ln®l - l(g)L_n)|a)) = 0

(Gf ® 1 + irjl <g> Gtr) I a)) = 0 (3.29)

(Jn® 1 + 1® J-n)\a)) = 0,

or,

(Ln®l - l(g)L_n)|a)) = 0

(G± ® 1 + irjl <g> G^r) I a)) = 0 (3.30)

(j„® 1 -1 <8)J_n)|a)) = 0.

In the first case, the automorphism type is trivial, while in the second case,

it is equal to the mirror automorphism. Which case corresponds to A- and

which to B-typc boundary conditions on the symmetry currents depends
on the choice between the description with diagonal or charge conjugation
modular invariant, sec table 3.1.

Of particular interest is the condition on the U(l) current J. For visual¬

ization, it is helpful to bosonizc this current.

J = i^ßdX. (3.31)

Then, A-typc boundary conditions arc like "Dirichlct", while B-typc bound¬

ary conditions arc like "Neumann" for the boson X. It is well-known that in

terms of X, one can write s = c'v C/12X
_
anc[ hence

The fact that the U(l) charge is integer, or, cquivalcntly, that u = s2 (re¬
spectively, u2 = s4) is in the chiral algebra, implies that the chiral algebra
contains

asasubalgcbrathechiralalgebraofabosonatrationalradius
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squared, R2 = c/3 = c (respectively, R2 = 2c). Of course, the torus partition
function is not a direct product, and a circle on which "X is compactificd"
is merely an analogy.

The conditions on the boundary states can also be translated into a purely
bosonic language. The major difference is that the condition on the world-

sheet supercurrents in (3.29) and (3.30) is no longer a condition on fields in

the chiral algebra, but rather on a simple-current field. It is still possible to

distinguish i] = ±1 by the way in which the simple current corresponding to

worldshcet supcrsymmctry is reflected at the boundary, i.e., v(z) = rjv(z).
On the other hand, since the simple current u is in the chiral algebra,

the preserved space-time supcrsymmctry charge can be measured as an au¬

tomorphism type with respect to u. Now recall that for a compact boson at

rational radius squared, the automorphism type with respect to the extended

symmetry restricts the position of the Dirichlet boundary conditions on the

circle, respectively the value of the Wilson line 9. By analogy, this leads to

an intuitive interpretation of the automorphism type with respect to u.

Explicitly, one has for A-type boundary conditions that u(z) = c2lT u+(z),
i.e..

In the intuitive picture, this fixes the Dirichlet boundary conditions (A"l +
X-r)\z=z = 27/vc mod 2n/yc. By considering also the spin field, the ambi¬

guitycanbereduced.Namely,restrictingtor\=+1.onehasforthespinfield,ciy/ï/v2xL(z)=±chc-iyWüxR(z).(3.34)whichdeterminesX^+Xr=2j/ycmodAit/yc.ForB-typeboundaryconditions,theanalogousequationisjy^xuz)=±ciflciV^ixR(,-)_(3_35)whered/ycmod2n/yccorrespondstothevalueofaWilsonline.TospecifythefullboundarystateforaD-brancintypeIIstringtheory,onehastodecideabouttheextensionofthebrancinflatspace-time.Assumethattherearcp+1NeumannandD—p—1DirichletboundaryconditionsinD-dimcnsionalspace-time.Attheboundary,thespace-timespinorcurrent.9Inthesimplestcase,whereR2/2isinteger,theextensionisbythefieldelRX.Thenthe"automorphismtype''çlRX^iz)—e>ae-iRXR(z)determinesthepositionoftheDirichletboundaryconditiontobeatX\,{z)+X-r(z)\z=z—a/R.
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sext, is then reflected into a spinor of the same or of the opposite chirality if

p + 1 is even or odd, respectively. Given the reflection of the internal spinor

current s;nt. (3.34) and (3.35), and the fact that the total spinor current has

to be reflected into itself for type IIB and into its conjugate for type IIA,

one obtains the well-known conditions on the parity of p and the boundary
condition in the internal sector. This is summarized in table 3.2.

internal boundary condition

A-type B-type

type IIA

type IIB

p odd

p even

p even

p odd

Table 3.2: Allowed combinations of number of external Neumann conditions,

p + 1 and internal boundary conditions, A-type or B-typc. for compactified

type IIA and type IIB string theory.

Given the identification between the total spinor current and space-time

supcrsymmctry. it is now clear that the angles •") and Q appearing in cqs.

(3.34) and (3.35) measure which combination of space-time supcrsymmctry

charges is preserved by the boundary condition. In other words, the angles
are equal to the phase of the central charges. This also shows that the sign
in (3.34) is simply the distinction between branc and antibrane.

An explicit construction

Assume now that the internal part of the string compactification, Cmner;
has been constructed along the lines described in the previous subsection,

where the various projections correspond to simple-current extensions in a

bosonic CFT. Using results of [49, 50], it is straightforward to construct

boundary conditions for Cmner that do not preserve the maximally extended

algebra Ainnei. The data characterizing the symmetries of the boundary
conditions can be read off as monodromy charges with respect to the various

simple currents. However, the constructions described here will always lead

to boundary conditions of A-type with respect to the J\f = 2 algebra.
For details, recall that in [49, 50], boundary conditions for a theory based

on a chiral algebra 21 were constructed that preserve only a subalgcbra 21,
which is obtained from 21 as the fixed algebra under a finite Abclian group of

automorphisms. By the correspondence between simple-current extensions

and orbifolds by finite Abclian groups, this can also be considered as bound¬

ary conditions in an 2J. theory with a specific modular invariant of extension

type. The simple-current group, (3, and the automorphism group Ö5* are
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related by duality. From the perspective of the 21 theory, the results arc as

follows. Boundary conditions preserving 2J. correspond to (3 orbits of 21 pri¬
maries [A, ip] (-0 is a degeneracy label given by a character of the untwisted

stabilizer). The automorphism type of the boundary condition is an cle¬

ment of the dual orbifold group 05*, and can be computed as the monodromy

charge of A with respect to a simple current in G5; in formulas.

aut[X;V;](J) = Qj(Ä). (3.36)

In particular, the symmetries preserved by the boundary condition arc given

by the subgroup of (S on which Q (A) is trivial.

In the situation under study, there is a sequence

Aten. prod. , ^wsusy . firmer /q qy\

of cmbeddings of chiral algebras, where Aten-prod-, ^4wsusy, and Amnei are the

chiral algebras of Cten-prod-, Cwsusy, and Cinner, respectively. Applying the re¬

sults of [49. 50], boundary conditions in Cmner that preserve ^4wsusy arc in

one-to-one correspondence with orbits under Çext, cq. (3.24). of primary field

labels from the tensor product Cten-prod", subject to the restriction of zero

monodromy charge with respect to all alignment currents Wj.10 The mon¬

odromy charge with respect to u is not restricted. It takes values in Z^/N,
where N is the order of u, and is related to the space-time supcrsymmctry

that is preserved by the boundary state. Moreover, the Z2 label rj = ±1,

[103, 104] is measured by the monodromy charge with respect to v.

The supcrsymmctry data of a boundary condition so constructed is sum¬

marized in table 3.3.

3.2.3 RR charges and intersection index

In the previous subsection, it was shown how to obtain A-typc boundary con¬

ditions in the internal part of an algebraically constructed string compactifi-
cation. These boundary conditions were then characterized with respect to

the supcrsymmctry they preserve. Inthissubsection,itisshownwhatandhowinformationaboutasuper-symmetricboundaryconditiona,isencodedintheexpansionofthecorre¬spondingboundarystateintermsofboundaryblocks(Ishibashistates).ia»=£-7^=iiA»-(3-38)10Whentheorbitsarestabilizedbyanon-trivialsubgroupofGext,thecompletelabellingalsoincludesacharacter%>oftheuntwistedstabilizer.



Chapter 3 56 SupersYMMETRY

datum values in computed as

automorphism type

with respect to u N
- = QU(X) mod Z
7T

preserved space-time

supcrsymmctry

(phase of central charge)
[0, 2tt] 7 = 2tvQs(X) mod 2tt

branc/antibranc ±1 /_1x2Qs(A)-QL1(A)

V ±1 rj = (_1)2Q„(A)

Table 3.3: Supcrsymmctry data of an A-type boundary condition, labelled

by [A,^']gext. Here, Gext is the extension group from Cten prod to Cmner, and

A is a primary field of Cten prod with QWi (A) = 0 for all alignment currents

Wj G Gext- N is the order of the simple current, u, in the theory Cwsusy.

The boundary condition labelled by a is required to have a well-defined

automorphism type (A- or B-type) with respect to the J\f = 2 algebra, and its

extension by u. Upon inclusion in a string theory, the associated boundary
states will represent wrapped BPS D-branes. It will, however, not be assumed

that a belongs to the class of boundary conditions constructed in the previous
subsection.11

To begin with, it is rather easy to compute the couplings of the boundary
state to bulk fields. Quite generally, such a coupling is computed, up to a

normalization, by the one-point amplitude of a bulk vertex operator $a at

the center of a disc with boundary condition a. Since the boundary state

|a)) simply encodes the information about all such one-point functions, this

is suggestively written as an inner product, and can be evaluated with the

help of (3.38).

(*x(z = 0))a = (*x\\a)) = ^=. (3.39)

For this coupling to be non-vanishing, it is necessary that the bulk sector A

contributes an Ishibashi.

The most basic couplings of brancs one might be interested in arc the

mass or tension, ma, of the branc, as well as the RR charges. The mass is

easily computed from the coupling to the vacuum sector, here labelled by 0

nTo be on the safe side, one might require that the expansion (3.38) is finite, or that the

preserved subalgebra is rational. It will not be discussed here whether such a condition is

necessary. See also [105] for some arguments in this direction.
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[105].

ma (x B0a . (3.40)

Notice that ma never vanishes (in fact, in should always be positive), since the

boundary condition preserves the Virasoro-algcbra. and hence the vacuum

sector always appears in the expansion (3.38).
On the other hand, the coupling to a masslcss RR field, i, which is pro¬

portional to the i-th RR charge,

Qr*(a)<xBta/yß70. (3-41)

is non-vanishing only if the corresponding Ramond ground state contributes

an Ishibashi state of the right automorphism type (e.g.. A-type (B-type)
boundary states can only couple to Ramond ground states corresponding to

the horizontal (vertical) cohomology of the appropriate Calabi-Yau space).
In particular, the central charge of the D-branc is the coupling of the

boundary state to the spectral flow operator s. This was argued in section

3.1 for A-type boundary conditions, where the spectral flow is by half a unit

on the left, and minus half a unit on the right.
12 Given that the phase of the

central charge is the monodromy charge with respect to s. viewed as a simple
current (sec table 3.3), and the fact that, for a BPS state, the absolute value

of the central charge is equal to the mass, it must be true that

Bsa = c2mQ^a)B0a . (3.42)

This is of course reminiscent of the simple-current relation (2.28) for the

modular S-matrix. Thus, at least in this particular case of the spectral flow,

the simple-current relation must generalize to the boundary coefficients even

when these arc not given by the S-matrix as in the Cardy case.

More interesting than the simplest couplings, one can compute the ''in¬

tersection index" of boundary states, which is the analog of the geometric

quantities discussed in section 3.1.4. In [106, 29], the intersection of two

boundary states, |o)) and \b)) is defined as an overlap amplitude in the RR

sector. By a modular transformation, this is equal to the Witten index in

the open string Hilbcrt space on the annulus, with boundary conditions a

and b on the two sides of the annulus, respectively,

lab = ({a\\b})ER=trnab(-l)F . (3.43)

12This is in CFT conventions, compare table 3.1. For B-type boundary conditions, the

relevant spectral flow is left-right symmetric and also by half a unit.
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The goal now is to derive a more convenient expression for Iab, in view of

the cumbersome expansion (3.38).
In accordance with the general conventions adopted in this thesis, the list

of boundary blocks will contain all bosonic-primary fields separately. The

boundary blocks arc normalized as in

{{i\\qL^-fi\\3)) = 5l]Xl{r). (3.44)

Inserting (3.38) in (3.43), and recalling that the definition of the overlap

amplitude in the RR sector contains a phase factor c~niqL^\ this leads to

^ = £^V^«y,(t), (3.45)
i

where i is summed over all Ishibashi states from the RR sector. çl(z) is the

left-moving U(l) charge of the state i. Usually, çl has integer eigenvalues,
whence c~wiqL = (—\)Fl. For the considerations in section 4.4, however, it is

convenient to have a slightly more general expression.

The expression (3.45) is in fact independent of r, and can be computed
in the limit r —>• ioo. where only Ramond ground states (Rgs) contribute.

Thus,

%* = V %^c-^M . (3.46)
i Rgs

It is natural to view this expression as the intersection number in the closed

string sector, in analogy with the geometric versions. At least formally,
the expression (3.46) is simply the inner product of the RR charge vectors

(QfR)(a)) and (QfR)(b)) with metric given by cr^W«^.
Several properties of I can be read off from (3.46). For instance, it is

obvious that the rank of X (viewed as a matrix with entries labelled by the

boundary states) cannot exceed the dimension of the chiral ring (the number
of Ramond groundstatesisequaltothedimensionofthechiralring).There¬fore,thetopologicalchargesoftheD-brancslieinalatticeofrankboundedbythedimensionofthechiralring.Whatisnotimmediatefrom(3.46),however,isthefactthatthislattice,equippedwithXasmetric,isintegral.Integralityismoreapparentintheopenstringsector.Todemonstratethis,makeamodulartransformationin(3.45)toobtain,Iab=y.^g'"V^(.)Xro(_i/r),(3.47)
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where % runs over Ramond Ishibashis and m over all fields. The restriction

on % is relaxed by using that

J —Sl}m i in Ramond sector

Oj vm = \
'

(3.48)
\Sim i m Ncvcu-Schwarz sector

,

where vm denotes the worldshcct superpartner of m (v is the simple current

corresponding to the worldshcct supcrcurrcnt). Furthermore, the U(l) charge
is given by half the monodromy charge with respect to the simple current, s,

implementing spectral flow by half a unit. Hence. c~'KiqL^Sim = ShS-im, and

1ah = \ J2 ^^(xm(-l/r) - xU-l/r)) • (3.49)
i,m

where now i runs over all fields. This expression is further reduced by us¬

ing the well-known relation between the Cardy coefficients and the annulus

coefficients, Asab m
= J^ B*aBlbShS-im/S1q. The annulus coefficients arc non-

negative integers by the Cardy condition.

To obtain a manifestly integral expression, one can use a slightly different

normalization convention for the construction of the true supersymmctric

boundary states, as was done in [32, 29]. However, the better alternative

seems to be that the factor 1/2 is removed in the last steps (GSO projection)
of the construction of the BPS state, where two states with r/ = ±1 arc

superposed. Their respective contributions to the intersection index arc the

same. Then,

lab = J2 Alhlm{Xm{-l/r) - xU-l/r)). (3.50)
m

Now, Xm — Xvm is a supersymmctric character. It is equal to one (or —1) if m

(or vm) corresponds to a Ramond ground
stateprimaryandzerootherwise.Thisyieldstheintersectionnumber,writtenintheopenstringsectorwiththehelpoftheannuluscoefficients,lab=EA^m~AVaflmI3"51)TORgsTheintersectionindexisnowwritteninamanifestlyintegerform.Itfollowsthatthelatticespannedbytheboundarystateswithmetricgivenby1isanintegrallattice,ofrankboundedbythedimensionofthechiralring.Variousotherinterestingpropertiesoftheintersectionmatrixcanbede¬rivedfrom(3.51)inacompletelymodelindependentway.Forinstance,

if
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the M = 2 theory constitutes the internal sector of a string compactification,
the relation sv = c holds (because of the extension with Çext), where c is the

conjugate of the spectral flow. Using conjugation properties of the annulus

coefficients and of the chiral ring, one can then show that the intersection

index is (anti)"-symmctric, where n is the number of compact complex di¬

mensions.
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Examples

The simplest examples of conformai field theories with J\f = 2 supcrsymmctry

arc built on free fields, and correspond geometrically to tori. In such theories,

it is expected that a comparison between the classical geometric and abstract

algebraic approaches to D-brancs is possible and reveals a perfect match.

This is demonstrated in section 4.1. in which the two-dimensional torus T2

is examined in some detail. The main motivation is to obtain a reasonable

intuition for the less trivial constructions in subsequent sections.

The next class of examples arc the minimal models. These are ratio¬

nal theories whose chiral algebra consists only of the (bosonic part of) the

M = 2 super-Virasoro algebra. This property allows the complete analysis of

the models, including also a simple treatment of boundary conditions. The

physical interest of minimal models is on one hand due to their role as the

conformai fixed points of simple Landau-Ginzburg theories. They can thus

serve as local mirror models for string propagation near certain singularities,
and as a consequence appear in a BCFT description of parts of Scibcrg-
Witten theory. On the other hand, minimal models arc the simplest building
blocks for the algebraic construction of string compactifications along the

lines of section 3.2. Minimal models and their boundary sectors arc reviewed

in section 4.2. following [33, 31].
According to the two roles of H = 2 minimal models, there arc then two

directions to pursue. In section 4.3, which is based in part on [37, 30. 38], the

minimal models arc tensorcd together to form Gcpner models, their boundary
sectors arc analyzed, and it is explained how to extract interesting geometric
information about D-brancs on Calabi-Yau manifolds in the stringy regime.
In particular, the analysis of simple-current fixed points and their untwisted

stabilizers provides insight into a new mechanism for enhancement of gauge

symmetry on D-brancs. The other route, namely generalizations to H = 2

coset models and the connection to local singularities is taken up in section
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4.4. This material has appeared in [31].

4.1 The torus

4.1.1 The bulk theory

For the purposes of string theory, the two-dimensional torus is equipped with

a "background" metric, gl}. and a "'background" £>-ficld BZJ. The cr-modcl is

defined by the action

S= I d2z gl3dXldX3 + \Bl3dXldX3 + igl3 (^_d^3_ + ip\dti'+) . (4.1)

The quantization of this model is standard. The solutions to the classical

equations of motion can be written in the familiar mode expansion, which

are quantized as the well-known infinite collection of harmonic oscillators.

The zero modes have to satisfy a quantization condition and arc labelled by
momentum and winding numbers. On the fermions ipl±, cither periodic (R) or

antipcriodic (NS) boundary conditions can be imposed. After quantization,
it will be useful to bosonizc the fermions and express them as an SO(2) =

U(l) WZW model. This part is rather trivial, but extremely important for

supcrsymmctry considerations. It will be dealt with a little later.

To discuss details for the bosonic part of the theory, denote the two real

coordinates on the torus by X G [0,1] and Y G [0,1], and suppose that the

lengths of the two cycles of the torus arc Ri and R2, forming an angle a.

The metric is

_

( R\ RiR2COSo\ , .

9=
\R1R2 cos a R\ J

' [ ]

with inverse,

„-l
_

x

( Rl -R1R2coba\
(

.

R\R\ sin2 a \-RiR2cosa R\

and the S-field

B = ( "n ; ) • (4-4)

Geometrically, the torus is T2 = R2/T. where r=ZxZcl2. This lattice

T with metric defined by g^1 is the lattice containing the winding modes

n = (nx.ny) G I\ while the momentum modes naturally lie in the dual

lattice r* = ZxZ9m= (mx, my). with metric defined by g.
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It is fairly obvious that the (bosonic part of the) conformai field theory
obtained from the torus a-model is the theory for the product of two U(l)
current algebras. The left- and right-moving U(l) charges, q^ r G Tc arc

constrained to be of the form,

qL = n + Bm + qm

(4.5)
Qr = n + Bm — gm .

The modular invariant torus partition for this lattice CFT is

Z(j. f) =
l

\^ c2TiT(^-1(9i.9L)-l/12)c27nr(i9-1(gR,gÄ)-l/12)
_ ^g)

where \g~1{<lL,R-, Ql,r) arc left- and right-moving conformai weights and 1/12
is the zero-point energy c/24. The factor |r/|2 is from the oscillators.

In components, the charges read

qL x
= nx + Bmy + {R\mx + R,R2 cos a my)

qR,x = nx + Bmy - (Rlmx + RXR2 cos a my)

QL,y = ny
— Bmx + (-R1-R2 cosamx + R\m^)

QR,y = ny
— Bmx — (R1R2 cos ct mx + R\my) .

The natural supcrsymmctric language uses complex coordinates, Z and

Z. They arc defined by1

dZ = dX + rdY (4.8)

where r = T\ + iT2 is the modular parameter of the torus. In terms of the

previous variables, one has r = ciaR2/R\. The metric becomes

d2s = —\dZ\2, (4.9)
T~2

where V = ßi^sina is the volume of the torus. The components of the

S-ficld arc b = Bzz = —Bzz = —B/21T2. In the complex plane, one then

has T2 = C/r with winding lattice r = Z + rZ 3 nz and momentum lattice

r* = —— (rZ — Z) 3 mz. The corresponding conformai field theory is the

theory of one complex boson, with left and right moving charges

(4.10)
QL,z

V -

= nz + b mz -\ mz
2r2

V -

= nz + b mz mz
2r2

QR,z

1The objects implied by the symbols Z and t here have nothing to do with the corre¬

sponding ones in (4.6).
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Yet another equivalent way of writing the charges is obtained by combin¬

ing not only the complex structure parameters T\ and r2, but also the volume

and the S-ficld into one complex Kahler parameter.

T = Tl + iT2
(4.11)

p = pi + ip2 = B + ÏV
.

The charges arc then
Lt3

Ql z
= ~^—b~nx -nv + pmx + pTmv)

2ir2

Qr,z = ~^{fnx -nv + pmx + pfmy)
(4.12)

Mirror symmetry

It is in this last form, (4.12), that the dualities of the torus arc most obvious.

The conformai weight of the left moving representations is computed as

A 14T2I |2

1 „
(4-13)

4VY2

I
_ |2

\rnx — ny + pmx + pTmy\

and the spectrum is invariant under an SL(2.Z) x SL(2, Z) action on (p,r).
Furthermore, the spectrum is invariant in a most obvious way under ''mirror

symmetry", namely the exchange of r and p. Since this operation is also

equivalent to the exchange of nx and mx, it is easily identified as T-duality

along the X-dircction of the torus.

4.1.2 Supersymmetry

As mentioned above, the fcrmionic part of the torus cr-modcl is equivalent to

the SO(2) WZW model at level 1. This in turn is the same as the theory of

a free real boson compactificd on a circle of radius 2. In fact, this boson is

nothing but the U(l) part of the chiral algebra present in any J\f = 2 com-

pactification, as discussed in section 3.2. Consequently, it will be denoted

by X. The vacuum, spinor, vector and conjugate spinor of SO(2)i corre¬

spond, respectively, to the irreducible representations of U(l) with charge

0,1/2,1, —1/2. The corresponding primary fields arc written as vertex op¬

erators 1. clX/2, elX, c~lX/2, and have conformai weight 0. 1/8. 1/2, and 1/8,
respectively. To make more explicitly contact with chapter 3, note that in
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this bosonic language, the holomorphic worldshect supcrcurrents arc nothing
but

G+(z) = dZ(z) elX(z) G~(z) = dZ(z) cT1^

G+(z) = dZ(z) clX(f) G-(z) = dZiz) e-iX(f), '

'

while the U(l) current of the J\f = 2 algebra is

J{z) = \dX{z). (4.15)

Thus, the current denoted by u in section 3.2 ensuring integrality of the U(l)
charge is

u = A, = c2iX. (4.16)

and is in the chiral algebra by construction.

4.1.3 A-type boundary conditions

The identification and construction of boundary conditions and D-brancs

for the torus model, whose bulk theory was reviewed in the last subsection,

will be somewhat sketchy and maybe not as complete as one may wish for.

However, recall that the main idea is to develop some intuition for the various

ingredients that enter in more complicated examples, and not to produce an

overkill for the torus. Various other aspects of the torus model arc discussed

in the literature [35. 107].
D-brancs of A-typc arc special Lagrangian submanifolds. On the two-

dimensional torus, with any Kahler form, any onc-dimcnsional submani-

fold is Lagrangian. The special Lagrangian condition amounts to the onc-

dimcnsional submanifold being a straight line in the Z-planc, as shown in

figure 4.1.

Denote the angle between the special Lagrangian cycle and the real axis in

the Z plane by 7. It is then readily verified that the condition on worldshect

fields corresponding to Dirichlet boundary conditions on the cycle and to

Neumann boundary conditions in the orthogonal direction is

c-11 dZ(z) = c17 B2(z) at z = z . (4.17)

Namely, in terms of the real and imaginary part of Z. the conditions arc2

cos 7 dn Re Z + sin 7 dn Im Z = 0
' '

(4.18)
cos 7 dt Im Z — sin -7 dt Re Z = 0 at z = z .

2 As in chapter 3, dn and dt stand for derivatives in the direction normal and tangent

to the worldsheet boundary respectively.
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T = Ti + 1T2

Tl

z

Figure 4.1: A special Lagrangian submanifold of T2

Elementary geometric considerations show that not any choice of 7 cor¬

responds to a closed submanifold of T2. Rather. 7 has to be such that the

cycle closes after winding a finite number of times around each cycle of the

torus. Thus, there have to be integers n\. n2 such that

tan 7
n2r2

n\ + n2 n
(4.19)

in other words, (r2 — T\ tan 7)/tan7 has to be a rational number. This is

the geometric quantization condition on 7.

To rediscover the same condition from conformai field theory with bound¬

aries, notice that the geometric condition (4.17) is nothing but the expression
for an automorphism type of a boundary condition with respect to the chiral

U(l) x U(l) symmetry of the lattice CFT describing the complex boson Z.

To proceed, one has to identify the left-right combinations of representations
in the partition function (4.6) that can contribute Ishibashi states for a given

automorphism type. In terms of charges, the condition is

-c-nqL,. c yqR,z 0, (4.20)

with qLz and qR_z as in (4.12). It is straightforward to show that the condition

reduces to

my(cos 7 r2 + sin ^) Ti) + mx sin7 = 0

nx (cos 7 r2 + sin 7 T\ ) — ny sin 7 = 0
(4.21)

In other words, one obtains the condition that

cos 7 t2 + sin 7 T\

sin 7

ni
COt 7 T2 + Ti =

n2
(4.22)
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my_
_

n2

mx nx

nx_
_

n2

ny Til

'

has to be rational number, which is the same as the geometric quantization
condition. Also, contributing Ishibashi states arise from

(4.23)

Rather obviously now, the classifying algebra for boundary conditions with

automorphism type given by (4.17) is equal to the group algebra of Z x Z,

admitting irreducible representations labelled by two numbers a, b G R mod

27rZ. It is clear that one may identify a geometrically with the intercept of

the special Lagrangian cycle with the real axis and b with the value of a U(l)
Wilson line along the one-dimensional world-volume of the branc.

In summary. A-typc brancs or boundary states on T2 arc classified topo-

logically by two numbers n\ and n2. and have two continuously adjustable

parameters a and b. The brancs couple to closed string winding and momen¬

tum modes satisfying the first and the second equation of (4.23), respectively.

Supersymmetry

To check that the boundary conditions (4.17) arc indeed consistent with su¬

persymmetry. notice that by equation (4.14) and the usual A-typc boundary
condition on the supcrcurrcnts. G+(z) = G~(z), one obtains the condition

cncix(z) = c-i7c-i*(*) &tz = z. (4.24)

This is indeed consistent with Dirichlct boundary conditions

dX(z) = -dX(z) &tz = z, (4.25)

on the U(l) current, and in fact shows that the Dirichlct boundary condition

has to be chosen at one of the positions, 7, 7 + ir. The ambiguity corresponds
to a choice of orientation of the D-branc, and as in chapter 3, is resolved by

considering the condition on the spinor,

cix(*)/2 = c-nc-^(2)/2
^ (426)

which ultimately decides about conserved and broken supersymmetry charges
in the remaining eight non-compact space-time directions. It is interesting to

note that only rational positions of the Dirichlct condition on X arc allowed

and that the position, 7, completely specifics the topological sector of the

D-branc. In particular, for example, the mass of the D-branc is a completely
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discontinuous function of 7. In contrast, the geometric position, a, and

Wilson line, b. arc continuous parameters or moduli, of the special Lagrangian

cycle.
As a final observation, notice that of course the choice of origin for the

position 7 is ambiguous. This can be traced back to the one-parameter

freedom in A-type boundary conditions on the supercurrcnts (see chapter 3).
Any two conventions for the origin 7 = 0 arc always related by a redefinition

X 1—» X + 5 or. in supcrsymmetric language, to a chiral R-rotation on the

fermions [29].

4.1.4 B-type boundary conditions

Given mirror symmetry as the exchange p <-» r. it is apparent what changes
in the formulae arc necessary to go from A-typc to B-typc boundary condi¬

tions. Geometrically. B-typc branes correspond to holomorphic vector bun¬

dles. The boundary of the worldshcct is coupled to a gauge field, and the

boundary conditions also depend on the background £>-ficld. B-typc bound¬

ary conditions arc mixed Dirichlct-Ncumann boundary conditions, and are

as such slightly less pictorial than A-typc boundary conditions.

It will be argued below that B-type boundary conditions arc given by the

automorphism type

c~lß dZ(z) = clß dZ(z) &tz = z, (4.27)

in place of (4.17) on the complex boson Z.

Similarly to before, the combination of charges contributing Ishibashi

states is

my(-sm3 p2 + cos 3 pi) + nxcosß = 0

(4.28)
mx(— sinß p2 + cosßpi) — ny cos/? = 0

.

Under the assumption that 3 satisfies the quantization condition that

sin/3/02-cos/3pi ^
= tan ß p2

-

pi =
— (4.29)

cos 3 r

be a rational number, there is again a Z x Z variety of Ishibashi states. This

rational number will soon be identified with the slope of the holomorphic

bundle, Ci/r. As a check, notice that all-Dirichlct boundary conditions,dZ=—dZ.correspondtocosß=0,orr=0,c\=1.Ontheotherextreme,assumethatthe£?-ficldvanishes.Thenall-Neumannboundaryconditions,dZ=dZ,correspondtosin3=0,orr=1,ci=0.
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Summarizing B-type boundary conditions, they arc classified topologi-

cally by two integers C\ and r. and also have two continuous parameters

whose geometric interpretation should be that of Wilson lines, respectively
of the position of the DO branc in the case of all-Dirichlct boundary condi¬

tions.

To obtain the geometric interpretation of the boundary condition (4.27),
it is necessary to couple the worldshcct boundary to a gauge field. Namely,
the path integral has to contain a Wilson line factor

~(Pcxp é Ä)tr(PcxpéA). (4.30)

For the two-torus, the geometric boundary conditions derived with the

coupling (4.30) are

B + F
dn ReZ + —— dtImZ = 0

B + F
dnImZ ^dtRcZ = 0,

which upon identifying tan/3 = (B + F)/V is the same as (4.27),

cos 3 dn Re Z + sin ß dt Im Z = 0

cos 3 dn Im Z — sin 3 dt Re Z = 0
.

In other words, the quantization condition (4.29) is

(4.31)

(4.32)

B + F Cl
—— P2-Pi=F = -. (4.33)

4.2 From J\f = 2 minimal models to ADE sin¬

gularities

4.2.1 Introduction

Similarly to the situation for the Virasoro algebra, J\f = 2 minimal models

come in a discrete series, labelled by a positive integer k, with central charge

c = 3k/(k + 2). Viewed as bosonic CFTs, minimal models can be obtained

from the cosct construction as

SU(2)fc x 80(2),

U(l)
' { }
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simple current
minimal model

labels
order

conformai weight
modZ

V

s

V

f

(0,0.2)

(0,1.1)

(0,2.0)
(fc.0,0)

2

$Ah k odd

1 2/i k even

h

2

3/2

k/8h

-l/h
k/A

Table 4.1: The most important simple current of a single M = 2 minimal

model, at level k = h — 2. Note that s2v = p and / = ph/2v.

where the SO(2)i = U(l)4 comes from the fermions and the '"level" of the

U(l) in the denominator (related to the radius for the boson in the usual

way) is determined from the embedding to be 2/i = 2k + 4. Accordingly,
the primary fields of an J\f = 2 minimal model arc labelled by (l,m,s),
with I = 0, 1, ... . k; m G Z2?t, s G Z4, subject to the most usual restriction

l +m+ s even, and field identification {Urn, s) = {k — U m+ h, s + 2). Minimal

models arc the simplest examples of Af = 2 cosct models, to be considered

in more detail in section 4.4.

For later use. it will be convenient to have an overview of the simple
currents in M = 2 minimal models. These simple currents arc summarized

in table 4.1. Notice that when k is odd. the center, i.e., the group of all

simple currents, of the model is generated by s and is isomorphic to Z^,
whereas for even k the center is generated by v and s and is isomorphic to

Z2 x Z2h.

The simple current / is special because it is the only one with fixed points;
it leaves fixed all fields of the form {k/2. m. s). The fixed point S-matrix has

entries

qf ,-27ri3fc/16
1

2TTimm'/2h _j_ -27riss'/4 /^ oc\

°{k/2,m,s),(k/2,m',s')
~ C -

HyT
L '

^
' \^-^->)

as can be verified using cq. (6.1) of ref. [66].

4.2.2 Superconformai boundary conditions in jV = 2

minimal models

Boundary conditions in J\f = 2 minimal models that yield BPS states upon

inclusion in a string model must have a definite automorphism type with

respect to the Af = 2 algebra. A-typc boundary conditions for the charge
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conjugation modular invariant arc completely under control by the Cardy
construction. B-type boundary conditions arc slightly more difficult to ob¬

tain. They can be constructed cither by computing the orbifold of the min¬

imal model by the mirror (i.e., charge conjugation) automorphism of the

M = 2 algebra, e.g.. along the lines of [108]. Or one can use the Grccnc-

Plesscr construction of mirror pairs to obtain B-typc boundary conditions as

A-typc in the mirror, using results from section 2.2. This second possibility
will be taken up in the context of Gepner models, the present section being
restricted to the Cardy case.

To fix notation. A-typc boundary conditions arc labelled by the same set

as the primary fields, (L,M.S) with 0 < L < k, M G Z2/{, S G Z4 with

L + M + S even and identification (L, AI, S) = (k - L, AI + h, S + 2). The

explicit expression for the boundary coefficients is obtained by combining the

modular S-matriecs from the individual factors in (4.34). Thus, the boundary
states arc expressed in terms of the boundary blocks as

1 sin 7r('+l)(^+l) c2wimM/2h c-2TrisS/4
\(L.M,S)))= £ -=

h
\\(l,m,s))}.

(4.36)

The meaning of the label S is clear in view of table 3.3. Namely, S mod 2

gives the monodromy charge of the boundary condition with respect to the

simple current v = (0,0.2). Thus, upon inclusion of the minimal model in

a string compactification and fcrmion alignment (which implies alignment of

S with the corresponding label from the remaining factors of the CFT), S

will be identified with the Z2 label ry in table 3.3. Also note that the label

M mod h measures the reflection of the simple current p = (0, 2, 0) = s2 at

the boundary (compare the first row in table 3.3). The corresponding phase
is given by c2mAI/h. Finally, the contribution to the phase of the central

charge is measured by s = (0,1,1), and equal to c27riM/2'«c-27riS'/4_ rp]lus> jn

particular, S —> S + 2 is equivalent to exchanging branc with anti-branc.

In view of this, it
willgenerallybesufficienttoconsideronlyonehalf(orevenonequarter)ofthe(bosonic)boundarystates,conventionallychosentohaveS=0.2(orsimplyS=0).IntersectionindexTocomputethe''intersectionindex''ofA-typcboundarystatesinJ\f=2minimalmodels,itsufficestosubstituteequation(4.36)ortheexplicitlyknownfusioncoefficientsintocitherofthegeneralformulas(3.46)or(3.51).Toperformthecomputation,recallthatthelabelsoftheRamond

ground
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states arc of the form (1.1 + 1,1) and that the corresponding chiral primaries

are labelled by (1,1.0), where / = 0, 1 k. The result [32, 100, 29] is

as follows. For fixed labels L and V. the intersection of boundary states

(L, M, S) and (L', M', S') can be viewed as a matrix in M and il/'. Since

the supcrsymmctry labels S and S' can be set to 0 or 2, the parities of M

and il/' in Z2/t arc also fixed. Thus the intersection matrix is of size h x h.

However, a slightly more flexible notation is appropriate. Introduce, for any

integer n, the n x n dimensional matrix

/0 1 0

0 0 1

9n

o\
0

(4.37)

ni 0 0
... 0/

The intersection matrix between the L and V sector then is

k

^ = E^(Wa-W2,+2)' (4.38)
1=0

where N^n is an SU(2)fe fusion coefficient, and where it is implicitly under¬

stood that only the entries corresponding to the allowed parity of M and A/'

really have a meaning. The other rows and columns can be deleted upon

desire. For example, for L = V = 0, one may rewrite

Tr
00 l-9h- (4.39)

An interesting observation [32] is that the states with L / 0 can be

viewed, as far as their topological properties arc concerned, as bound states

of the ''elementary states" with L = 0. Namely, one can show [100] that

III' — tL Too tv , (4.40)

where

tL= ^2(92h)\ (4.41)
l=-L

M>
and tL is the transpose of this matrix. The matrix (^l)m\ restricted to the

allowed parity of AI. gives the expansion coefficients of the RR charges of

higher L states in terms of those of states with V = 0. il/' = 0, 2, ... .
2h —

2. Indeed, one may verify that the RR charges computed from the Cardy
coefficients, (4.36) satisfy the property implicit in (4.41).
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4.2.3 Äf = 2 minimal models and simple singularities;

the boundary sector

Supcrconformal boundary states in J\f = 2 minimal models have an interest¬

ing application in the context of non-perturbative solutions of supersymmct-

ric Yang-Mills theory. This connection was pointed out in [33] and further

investigated in [109, 110, 111]. It will be reviewed here as an example of

the geometric connections of J\f = 2 BCFT and also as a motivation for the

investigations in section 4.4.

The connection between M = 2 minimal models in two dimensions and

strongly coupled J\f = 2 super Yang-Mills theory in four dimensions brings

together several circles of ideas. First, there is the well-known reconstruc¬

tion of the Scibcrg-Witten solution of J\f = 2 gauge theories from type II

string compactification on Calabi-Yau thrccfolds [112]. Decoupling of gravity

amounts to restricting to a neighborhood of an appropriate isolated singular¬

ity on the threefold. In the simplest cases, the local (non-compact) geometry

is described by a fibration of a two-dimensional ALE space over a P1 base.

This ALE space, in turn, can be viewed as the resolution by a chain of Px's

of a simple singularity of ADE type. The strong coupling spectrum of the

4d gauge theory is represented by D-brancs wrapping the various compact

cycles in the ALE geometry.

A second ingredient then is the description of the simple singularities of

ADE type in terms of Landau-Ginzburg CFTs with a certain superpotcntial.
At the Gepncr or orbifold point, which corresponds to strong coupling, the

superpotcntial is of the form W = xN + l/zN for the scries of AN_i singu¬
larities. The first term in this superpotcntial can be viewed as describing
the compact part of the ALE geometry, while the second term subsumes the

non-compact dynamics, which is non-universal, but decoupled.

This is the point where M = 2 minimal models enter. Namely, it is well-

known that a minimal model at level k with diagonal modular invariant (also
called minimal models of type Ak+i 3) describes the conformai fixed point of

a Landau-Ginzburg theory with superpotcntial W = xk+2. Boundary states

in J\f = 2 minimal models should therefore correspond to D-brancs in the

corresponding Landau-Ginzburg model. That this is indeed the case, and

that geometric considerations can be used, for example, to compute (some
of) the Cardy coefficients (4.36). was shown in [29]. This identification of

minimal boundary states in a Landau-Ginzburg theory will also play a role

in the context
ofGepncrmodelsinsection4.3.Asaresultofallthis,itispossibletoobtainthestrongcouplingspectrum3FortheminimalmodelsofDandEtype,seethecommentsbelow.
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of A/" = 2 SYM with gauge group SU(iV) in terms of the spectrum of boundary
states in an M = 2 minimal model at level k = N — 2. The proposal is

substantiated by the following results; for more details, sec [33].
The Landau-Ginzburg theory corresponding to the non-compact ALE

space of type Av-i is described by a Gepncr type model starting with a cosct

SU(2)jV_2/U(1), which is the compact minimal model, and a non-compact

coset SL(2)jv+2/U(1). Although not everything is known about the general
definition of the latter model, one can determine the basic properties of the

boundary sector by simple analogy with unitary minimal models. Essen¬

tially, the SL(2)jV+2/U(l) can be viewed as a non-unitary cosct SU(2)/U(1)
at negative level —N — 2. Therefore, if a single minimal model at level k has

basic intersection form 1 — gh, the appropriately projected tensor product

SU(2)jv-2/U(1) x SL(2)Ar+2/U(l) has intersection4

Xoo = (1 - 9n)(1 - gNr) = 2-gN- gN'. (4.42)

This matrix is easily seen to equal the extended Cartan matrix of the SU(AQ
gauge group. The corresponding boundary states should therefore be inter¬

preted in terms of D-brancs wrapped around the compact 2-cyclcs of the

ALE space, which also intersect precisely with this pattern. The basic L = 0

states here correspond to a set of simple roots (plus the highest root) of

SU(iV).
What is more, one can consider also states with L ^ 0 in the minimal

model and their charges and intersection, sec cq. (4.40). Surprisingly, it

turns out [33] that the collection of all these states can be mapped one-to-

one to the set of roots of SU(AQ ! After fibration of the ALE space, these

are exactly the BPS states in the Yang-Mills theory that arc expected to be

stable at the origin of the moduli space. Notice that a prion, the intersection

matrix (4.42). which can be computed cither from CFT or from geometry,

merely determines the lattice of BPS charges that arc consistent with charge

quantization at any point in moduli space. However, the occupation of this

charge lattice with stable BPS states depends on the region of moduli space

one is considering, and there may be lines of marginal stability on which

some of the states decay. In particular, the easily understood truncation

in rational CFT to a finite number of supcrsymmctric boundary states is

translated to the quantum truncation of BPS
statestoafinitenumberatstrongcouplingintheYang-Mills.Toconcludethissection,itshouldbementionedthattheanalysisgoesthroughinverymuchthesamewayalsofortheminimalmodelswithmodular4Theeffectoftheprojectionontheintersectionmatrixisexplainedinsection

4.3
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invariants of D and .E-typc [109]. The boundary states in those models can be

determined using results of [51], and again one finds agreement both between

intersection form of boundary states and the corresponding extended Dynkin

matrix, and between the finite number of boundary states and the finite

number of roots of the simple Lie algebra.

4.3 From Gepner models to Calabi-Yau hy-

persurfaces

4.3.1 Introduction

After the analysis of the simplest non-trivial example of J\f = 2 supercon¬

formai field theories and their open string sectors in the previous section,

namely the minimal models, a natural next class of example arc the Gep¬

ner models. Gepner models [113] are examples of string compactifications
where the CFT describing the compact part of space-time is constructed al¬

gebraically, and the corresponding CFT is rational. The general strategy

was described in section 3.2. The original Gepner construction uses tensor

products of minimal models in the internal sector, other possibilities arc built

on more general Af = 2 cosct models, yielding the Kazama-Suzuki models.

The importance of Gepner models for the development of string theory
in the late 1980's is largely due to the connection to geometric string com¬

pactifications on Calabi-Yau manifolds. More precisely, it is known that a

Gepner model is the exact solution of a cr-model on a Calabi-Yau manifold

at a special, so-called Gepner, point in moduli space. This is particularly

interesting because at the Gepner point, the curvature of the classical target

space is large and cr-model perturbation theory is not reliable. Therefore, the

description by an exactly solvable, algebraically constructed, CFT offers the

possibility of exploring cr-modcls at large worldshcct coupling. Historically,
the exploration of Gepner models and the associated geometrical string mod¬

els led to the discovery of mirror symmetry [10, 12, 114, 13], with exciting

physical and mathematical applications, see [7].
After the third supcrstring revolution and the advent of D-brancs, it could

be expected that the analysis of open string sectors in Gepner models for

type II strings would provide the basis for similarly interesting developments,

concerning not solely the manifold and its Kahler and complex structure

moduli space, but also submanifolds of the Calabi-Yau, vector bundles over

them, etc., and the associated quantum geometry. On the physics side,

D-branes on Calabi-Yau manifolds have important applications for testing

string dualities, as well as for the construction of realistic M = 1 string
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vacua.

A first step towards such goals is the description of boundary conditions

in Gepncr models, and the identification of corresponding geometric objects.
Given the non-geometric nature of the Gcpner. this identification will only

concern a certain subset of topological properties, like RR charges and the

intersection of brancs. These can be transported over bulk moduli space

from the Gcpner point all the way to the large volume limit, where classical

geometry applies again.

In the past few years, there have been several approaches to the study
of open string sectors in Gcpner models and the comparison with geometric

objects at large volume. The first geometric characterization of D-brancs

in Calabi-Yau manifolds was given in [27], building in part on earlier work

in [92]. A first ansatz for boundary conditions in Gcpner models [34] was

inspired by Cardy's construction, generalized so as to account for the special

projections that arise in the Gcpner construction. These boundary states

were analyzed regarding preserved space-time supersymmetry in [35] and

compared to a Landau-Ginzburg description in [36]. A parallel development

gave rise to a geometrical interpretation of the boundary states in terms of

D-brancs wrapped on the Calabi-Yau manifolds corresponding to the Gcpner
models. This was developed, and applied to the quintic. in [32], and to sev¬

eral other models in [100, 37, 115]. The stability of D-brancs upon transport

in moduli space was studied in [88. 116, 94]. Meanwhile, an independent

approach to D-brancs in strongly curved Calabi-Yau manifolds has been un¬

dertaken in [117, 29], using the connection to Landau-Ginzburg models and

linear cr-modcls. This has led to an independent check of the identification

of Gcpner model boundary states and bundles in [118, 119, 120. 121].

It is the goal of this section to describe in detail the construction of

boundary conditions in Gepncr models and the comparison with geometric

objects at large volume along the lines of [32, 29]. Of particular interest

will be the careful implementation of the appropriate projections, and the

resolution of the arising fixed points. For A-typc states (associated with real

submanifolds) the algebraic problems with fixed points were first pointed out

in [36], analyzed in an example in [122], and solved in [30]. For B-typc states,

associated to holomorphic geometry, it was noticed in [100. 37] that owing

to the presence of fixed points, for some of the B-typc states constructed

in [34] the open string vacuum is non-unique. In [38], the resolution of the

fixed points along with a geometric interpretation in terms of enhanced gauge

symmetries and singular bundles was achieved.

The plan of this section is as follows. The internal part of a Gcpner model

is obtained along the lines described in section 3.2. starting from the tensor



77 Section 4.3

product of J\f = 2 minimal models. In particular therefore, the construction

of (a subclass of) A-type boundary conditions is a special case of the general
methods described there. In subsection 4.3.2 the detailed implementation of

this prescription is presented along with the computation of the intersection

matrix.

Subsection 4.3.3 is devoted to B-type boundary conditions. On general

grounds, there is no reason to expect the construction of B-type boundary
conditions to be particularly simple5. However. Gepner models enjoy the

pleasant property that the mirror model can be obtained according to the

Grccnc-Plcsser construction [12] as an orbifold. This allows the construction

of B-type boundary conditions as A-type in the mirror model, given a tech¬

nique to construct boundary conditions in the Grccnc-Plcsser orbifold. In

algebraic language, the self-mirror property of the Gepner model amounts to

the fact that the charge conjugation invariant is a simple-current modifica¬

tion of the diagonal modular invariant (and vice versa). Thus, the general
methods of section 2.2 can be applied.

Subsection 4.3.4 then describes the main steps leading to an identifica¬

tion between the lattices of RR charges in the BCFT and in the geometric

description, and presents the results for an explicit example.

It is worthwhile pointing out that the constructions described in the fol¬

lowing subsections do by no means exhaust the possible supersymmctric

boundary conditions in Gepner models—let alone the non-supersymmctric

ones. The reputation of Gepner models of being exactly solvable examples of

string compactifications has to be significantly tempered in the open string

sector. Indeed, while in the closed string sector spectra and all couplings can

be computed exactly, at least in principle, this crucially depends on ratio¬

nality with respect to a largely extended chiral symmetry. As soon as the

CFT is perturbed by a truly marginal operator most of the chiral symme¬

try is broken, gcncrically only leaving the A/" = 2 supcrconformal symmetry.

Additional tools arc then needed to obtain any quantitative information at

all. Something similar happens in the construction of D-brancs. The exist¬

ing general, and powerful, methods for constructing open string boundary
conditions in rational CFT require that also the preserved subalgcbra be ra¬

tional. But the boundary conditions so obtained will only be a tiny subset

of all possible J\f = 2 supcrconformal ones. One can, for example, imagine

perturbing the open string background by D-branc moduli, keeping the bulk

5Indeed, from an abstract point of view. B-type boundary conditions for Gepner models

are characterized by both an increase and a breaking of the chiral symmetry. In general,
there might be obstructions to combine these two operations for boundary conditions. See

the appendix of [30].
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moduli fixed, and thereby generating more general boundary conditions. In¬

formation about those is incomplete. The set of boundary conditions that

preserve most of the chiral symmetries of the Gepncr model is still rather

non-trivial. One would expect that the corresponding points in the moduli

spaces of D-brancs arc special —maybe singular—points, analogously to the

situation with bulk moduli.

4.3.2 A-type boundary conditions

The bulk theory

Recall from section 3.2 that starting from any tensor product of J\f = 2

supcrconformal field theories, Cten'pmd\ with appropriate total central charge,

one can obtain the internal sector of a string compactification, Cimier, by a

sequence of simple-current extensions. Here, Cten-Prod- [^ explicitly chosen to

be the tensor product of r J\f = 2 minimal models.

Cte„Prod. =Ckl®Ck2®---®Ckr, (4.43)

with total central charge ^ ct = ^ 3kt/ht = 15—3D/2. Borrowing notation

from section 4.2, primary fields and simple currents in the tensor product will

simply be denoted by appending a subscript i to the labels of the fields in a

single minimal model.

The relevant simple-current group that extends Cten-Prod- to Cmner is then

generated by r — 1 order-2 currents wt = V\V% and by another current,6

u = <+' Y[Pl (4.44)

of order,7

H:=\.c.m.(ht)t=1_t. (4.45)

Thus the extension group Gext is of the form

gext := (wt,u) Ç* {Z2y-1 x ZH . (4.46)

6This definition of u is equal to the one of section 3.2 modulo identification by alignment
currents. The present definition is more convenient combinatorially, but the distinction is

of no importance, since alignment currents are always preserved at the boundary.
7Notice that n + r odd implies that at least one kt is even. This follows by a simple

argument from the basic central charge condition Y^t 1 ~ 2//i, = n, which is equivalent to
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Primary fields in Cten-procL, cq. (4.43) arc labelled by collections (A,//) :=

(h,l2, ,1,-mi,... .mr,Si,... ,sr). The extension by Gext imposes well-

known restrictions and identifications on these field labels (A,//). A label

(A. n) appears in the extension only if

gWj(A, p) = — + - = 0 mod Z
,
for alH = 2, ... . r, and (4.47)

>

Qu(A,/i) = (n + r)^-^y = OmodZ. (4.48)

Furthermore, two labels (A. /i) and (A', //) arc considered equivalent in the

extension if there arc e% G {0.1} and a G {0 H — 1} such that

r

(A',M') = ua(n<)(A,M)
1=2

(4.49)
= (A, mi + 2a. m2 + 2a m2 + 2a,

si + 2E^ + 2(n + r)a. s2 + 2e2.... , s, + 2e,) .

The modular invariant partition function of the Gcpncr model is given

by a sum over equivalence classes, weighted with the order of the stabilizer.

Z= E I^IIXK^)]!2, (4.50)
[(A,/u)]

where S\ is the stabilizer in the extension group Gext °f a given (A./i), and

will be computed below. Furthermore,

X[(x,ß)] = J2 Xj(x'K) (4-51)

is the extended character corresponding to an equivalence class of labels. The

action of J G Gext on (A, //) is as given in (4.49).
Notice that for obtaining the modular invariant partition function, the

simple-current language is completely equivalent to Gcpncr's method of '\3-
vector" [113]. However, the subtleties associated with fixed points arc best

captured by simple-current techniques. The fixed point combinatorics is the

same for bulk fields as for A-typc boundary conditions, so it is convenient to

first also label the latter.

Labelling of boundary conditions

According to the results of section 3.2, boundary conditions in Cinner that

preserve the chiral symmetry ^4wsusy arc labelled by Gext orbits of primary
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fields from Cten-Prod- with vanishing monodromy charge with respect to the

w,. Thus, the starting point for the labelling of the boundary conditions are

again the labels of the tensor product of minimal models.

(A,M):=(LX,... ,Lr,Mx M,,Si S,), (4.52)

with Zj + il/j + S'j even. The basic goal now, and in all subsequent discussions

of labelling issues, is to use the relevant selections and identifications to

reduce the set of labels to a '"standard" one.

First, for A-type boundary conditions in Cten'prod', field identification in

individual minimal models allows arranging Lt < kj2 as well as St G {0.1}
for those i with Lt = kt/2.

Next, the condition that „4wsusy be preserved imposes the selection rule

Si = Si mod 2 for all i. Identification by the w(,

(A,M) = (A. Mu ... , Mr, Si + 2,...
, S, + 2 Sr), (4.53)

allows replacing all S^s by a single S, say S = Si G {0, ±1, 2}.
There is no selection rule for the Mt labels. The quantity

A/ S

-J^—^+ (rc + r)- modZ, (4.54)

defined mod Z. is the automorphism type of the boundary condition with

respect to the current u, and unrestricted.

The explicit implementation of the identification of labels implied by the

current u.

(A,M) = (A. Mi + 2,... , Mr + 2,Si + 2(n + r), S2 S,), (4.55)

is a little more difficult. It involves questions of the divisibility of the heights

ht, which in general does not have a simple structure. In special cases, for

instance when l.c.m.(ht) = h3 for some j, the corresponding label M3 can

be set to zero using this identification. However, from an abstract point of

view, it is rather simple to obtain an overview over the labels after imposing
identification by u. This is described in appendix 4.A.

The significance of these labels for the supcrsymmetry of the boundary
conditions follows from table 3.3. The label Sq = S mod 2 measures

theZ2quantumnumber77=(—l)s°.Theautomorphismtypewithrespecttou.equalto-)/%modZ,determinestheangle7,butonlyuptotheZ2branc/antibraneambiguity.Thisambiguitymaybefixedbycomputing

the
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"automorphism type" with respect to the total spectral flow operator. Ex¬

plicitly.

^ = Qa(A,M) = -£|£ + | + (r-l)^ modZ. (4.56)
i

This shows in particular that changing S by 2 (with M^'s fixed) exchanges
branc with antibranc. Nota bene: This is not saying that S alone allows

a distinction between brancs and antibrancs. Among others, the fact that

u changes S for n + r odd, see (4.55). clearly prohibits this. Somewhat

arbitrarily, one may call a state with 0 < 7 < % a branc and a state with

7T < 7 < 2tt an antibranc.

Fixed points

To find out about fixed points, both for bulk fields and for A-typc boundary

conditions, it suffices to determine which combinations of /;'s appear in Çext

(recall from table 4.1 that ft = (kt, 0. 0) is the only simple current with fixed

points in a single minimal model). This is simple, and the result is as follows.

When all levels kt arc odd, there are no fixed points.
h /2

Assume on the contrary that at least one level is even. Then fi = pt
l/

v-t

for all even kt. Thus, for

r

F:=uaY[wf (4.57)
j=2

to have fixed points, i.e., to be equal to ILeiF ^' ^or somc If C {1 r},
it is necessary and sufficient that

hi divides a and e, = 0 for i ^ IF ,

-h,, I a and hi \ a and e« = 1 for i G Ip\ {1} , (4.58)

-h\ I a and h±\ a and X^e« + (n + r) a = 1 mod 2 for i = 1.

where, without loss of generality, 1 G Ip is assumed. As a minimal condition,

a = (l.c.m.(/ij))/2 = H/2. To proceed, denote for any positive integer m, the

power of 2 contained in m by cr(m). [Examples: cr(8) = 3, <r(3) = 0, <r(24) =

3.] Furthermore, introduce E := max{cr(/i;)} = cr(H) = a(a) + 1. Then,

(4.58) is equivalent to Ip = {i, cr(ht) = £}, and to the condition

\Ip\ + (n + r)2^-1 = 0mod2. (4.59)



Chapter 4 82 Examples

It turns out that this last condition is always trivial. Namely, from the

anomaly cancellation condition, n = ^ ]tt2< onc deduces (see footnote 7 on

page 78),

n) 2E~X mod 2
, (4.60)

where the last step relies on a(H/2) = E — I and on H/ht = 0 mod 2 if

i £ IF- Eq. (4.60) implies (4.59).
As a result, there is only a single simple current in Ç7ext with fixed points,

namely F = ILcr^ws fi- ^ nxcs au fields (A,//) respectively all boundary

conditions (A, M) with lt, respectively Lt, equal to kt/2 for all i G Ip =

{i.a(ht) = E}.

Intersection index

It is straightforward, but not very illuminating, to write down the Cardy co¬

efficients for all A-typc states constructed above: see [30] for explicit expres¬

sions. However, the intersection index of boundary states can be computed
without much trouble. It suffices to know the general behavior of fusion

coefficients under simple-current extensions [65].
Neglecting fixed points, the fusion coefficients of the extension by a group

0 of local simple currents arc given as combinations of fusion coefficients of

the uncxtended theory as

Ke©

Here, [A]. [/j] .
and [v\ arc orbits of primaries of the uncxtended theory that

are allowed in the extended theory, i.e.. have vanishing monodromy charge
with respect to all currents in 0. For boundaries, onc is also interested in

orbits that do not label any primary in the extended theory. Still, there is

a similar formula for the annulus coefficients (sec [50], in particular for fixed

point issues). It is convenient to write this formula in terms of matrices of

annulus and fusion coefficients,

E-

E-
teiF
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The factor l|(g| accounts for the fact that the size of the matrices for the

extended theory is smaller by a factor of 0. Using the fusion algebra, this is

also equal to

*AW® 1{0{ = J2NkNx. (4.62)
Ke©

This is easily applied to A-typc boundary conditions in Gcpncr models

after recalling the expression for the intersection matrix in terms of annulus

coefficients, (3.51). As for a single minimal model, one may reduce the set of

boundary labels to S = 0. The fusion matrix of the simple current YltPi in

the tensor product is simply g± <g> g2 • <8> gr, where gt := gih. That u differs

from this by a factor of vn+' simply means that there is an extra minus sign
in the action of the corresponding fusion matrix. Therefore, the intersection

matrix of the A and A' boundary sectors is

H-l r

2"aa' ® Iff = [J2 (i-lT+'9i ® ® g,)'} (g) XLiL/ , (4.63)

where Il,l' is given by equation (4.38). In particular, for A = A' = 0, one

finds,

Z& ® 1h = [1 + (-l)"+r ®, gt + (®^)2 + • • •] ®Ui (1 " 9t) (4-64)

The factor of 1# can be made explicit on the right hand side of these equa¬

tions by substituting the relation

®t<fc = (-l)n+r, (4-65)

which is effectively imposed by the multiplication with the square bracket

[32. 37].
For boundary states with A / 0, the property (4.40) still holds in the

(projected) tensor product. A slight complication arises with non-trivial

stabilizers. From the expression for the intersection matrix in the closed

sector, (3.46), it easily follows that the intersection of boundary conditions

with non-trivial stabilizer is of the general form

X(A,,.),(A'^") = lqm?mfe,A'+Wf),(4-66)where1°istheresultobtainedfromnaiveapplicationof(4.63),and1de¬pendsontheexistenceofRamondgroundstatesthatarisefromtheresolutionoffixedpointsinthebulk.Moreprecisely,I=0iftherearcnosuchfixedpointRamondgroundstates,and±1iftherearc.Thedetailsdependonthemodelunderconsiderations,andnogeneralrulehasbeenobtainedsofar.
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4.3.3 B-type boundary conditions

General strategy

While for A-type boundary conditions, the general theory of section 3.2 ap¬

plies, for B-typc boundary condition the Greene-Plcsser construction, which

is special to Gcpncr models, enters crucially. The general idea is to view B-

type boundary conditions as A-typc in the mirror model, and to describe the

mirror model as a Grccnc-Plcsser orbifold. This is explained in the present

subsection.

Looking back at table 3.1, B-type boundary conditions are of automor¬

phism type '"mirror" when viewed from the charge conjugation modular

invariant, but of trivial automorphism type when viewed from the diag¬
onal modular invariant. By viewing the diagonal modular invariant as a

simple-current modification (Grcenc-Plcsscr orbifold) of the charge conjuga¬
tion modular invariant, the construction of boundary conditions requires the

generalizations of the Cardy construction to simple-current modular invari¬

ants. Since the chiral symmetries before and after charge conjugation arc the

same, the discussion of section 3.2.2 regarding supcrsymmctry properties of

the boundary conditions apply integrally.

The Greene-Plesser construction with simple currents

To apply the results of section 2.2, it is necessary to first reformulate the

Grccnc-Plcsser construction [12] of the mirror model in simple-current lan¬

guage. Incidentally, this will also resolve certain confusion that seems to

persist in the literature about the Grccnc-Plcsser construction, as applied in

CFT.

In the CFT construction of mirror models, charge conjugation is applied
to one chiral half of the model. Obviously, it is not essential from which side

of the mirror one starts, i.e., from the diagonal or from the charge conjuga¬

tion modular invariant. However, the choice must be specified in order to

avoid confusion. In the context of boundary conditions, it is most natural to

start from the charge conjugation invariant, so that "'A-type boundary con¬

ditions arc the Cardy case''. Then the mirror model is the diagonal modular

invariant, up to a slight subtlety to be discussed below. On the other hand,
most of the literature about the Grccnc-Plcsser construction considers only
the bulk theory and thus starts from the diagonal invariant. This convention

will also be adopted here.
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The mirror of a single J\f = 2 minimal model

The main idea of the Greene-Plcsser construction is already apparent at the

level of a single minimal model, so this will be considered as a warm-up

example. Start from the diagonal modular invariant,

Z= Yl X(!,m,s)X(!,m,s) ' (4-67)
(l,m,s)

l+m+se2Z, s=0,l

and consider first its modification by the simple-current group generated by

p ("mod out the phase symmetry"). Since this group is cyclic, the pair¬

ing X is fixed by the conformai weight of p to be X(p,p) = —1/h (see
subsection 2.2.1). Then according to the general rules, the combination

(l, m, s) (l'. m', s') occurs in the new partition function if and only if

(I', m', s') = pa(l,m, s) for some a, and

Qp(l,m7s)+X(p:Pa) = 0.
(4"68)

Since X(p.pa) = aX(p,p) = —a/h and Qp(l,m,s) = —m/h, there is a

unique solution a = —m. Thus inserting pa(l,m,s) = (l, m + 2a, s), it

follows /' = I, m' = —m, s' = s. and so the modified partition function reads

Z{P)= Y, X{l,m,s)X{l,-m,s) (4-69)
(l,m,s)

l+m+s£2Z, s=0,l

The next step is to include the simple current v in the simple-current

group. Again X(v,v) = 1/2 is fixed, and vanishing ''discrete torsion" is

chosen, X(p,v) = 0. Then in addition to the condition (4.68),

(/',m',s') = v*(l,m,s) for e G {0,1}. and

Qv{l.m,s) + X(v,ve) = 0.
v '

Inserting the identities v(l,m,s) = (l,m,s + 2), Qv(l,m,s) = s/2 and

X(v, Ve) = e/2. the unique solution is seen to be e = s, so that

ZM= J2 X(l,m,s)X{l,-m,-s) (4-71)
(l.m,s)

l+m+s£2Z, s=0,l

This is nothing but the charge conjugation modular invariant of the minimal

model, and thus indeed the ''mirror model" of the M = 2 minimal model

with diagonal modular invariant.
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Tensor products and their extensions

Now consider tensor products of r minimal models, of levels k\, k2, , kr. As

before, primary fields arc labelled by collections (A,/i) with A = (Zj.,... ,1,)
and \i = (mi,... , m,. Si,... . s, ), subject to the usual restrictions. Simple
currents in the tensor product receive an additional index i according to

the factor model to which they belong: vl.sl,pl,fl. The currents vz and

p% generate a subgroup GPh of the center of the tensor product. Elements

n G GPh arc denoted by II = («i,... . a,, e\.... , er). standing for ILK^«'
with a, G {0.1,... ,/it-l}, e, G {0.1}.

As an abstract group,

£ph = (Z2)' x J]zhl, (4.72)

and öph acts on the set of primary fields. Notice that the primary fields

and group elements have similar labelling, but that the action and group

composition laws arc different. To avoid the confusion that this causes, the

group law in Gph will be noted multiplicativcly and the action of Gph on

primary fields additivcly. The monodromy charge of a primary field (A, /i)
with respect to II G GPh is

(m, G {—hi + 1,.... ht}, st G { — 1. 0,1, 2}). Note that (3n(A,/i) depends on

mt only mod ht and on st only mod 2.

By repeating the arguments for the single model above, one sees that

the mirror model is obtained from the diagonal modular invariant of the

tensor product by "dividing out'' (i.e., forming the simple-current modular

invariant for) GPh- However, the theory of interest here is the tensor product
extended by the group Gext (4.46),

imposingfcrmionalignmentandintegralU(l)chargeintheNSsector.SinceallcurrentsinC?extarcmutuallylocal,left-rightcombinations(A,ß)(A',/i')occurinthepartitionfunctionifandonlyif(A',//)=J(A.n)forsomeJGÇextandQK(X,ß)=0forallKGÖext-ThegoalisnowtodefineagroupCmiTTofsimplecurrentsandapairingXonÇmiTT.suchthattheassociatedmodularinvariantisthemirrormodeloftheGext-extensionofthetensorproduct.Preciselywhatisthismirrormodel?Itturnsoutthatthemirrorisnotsimplythechargeconjugationinvariantinthe
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(bosonic) CFT sense, but rather the charge conjugation invariant multiplied

by the invariant corresponding to the simple current vn. This invariant is

non-trivial only in the Ramond sector, where it exchanges the two bosonic

primaries belonging to the same supcrficld.
The origin of this subtlety is that the mirror operation involves an ex¬

change of the two supcrcurrcnts G^ <-» GT. In the Ramond sector, this oper¬

ation exchanges spinor and conjugate spinor representation of the zero modes

Gq precisely if the central charge is odd. This follows from the representation

theory of the M = 2 algebra, (3.16). Since in the bosonic formulation, the

two supcrcurrcnts belong to the same primary field, v, this exchange must

be performed "by hand". Thus, the mirror model is obtained by inverting all

U(l) charges, modulo an extra action by v in the R sector if n is odd. The

exchange is related to the flip from type IIA to type IIB string theory, if n

is odd.

The claim is that the desired simple-current group is

r

£nirr:=<wt,z = 2,3,...,r; vlU3P? |-Z^ = 0>< (475)
3= 1 J

with e = 0 for n + r even and e = 0,1 for n + r odd. The bilinear pairing
X must be chosen in such a way that Çext is local with respect to all other

currents and such that there is no extension beyond Gext. This is satisfied if

and only if X is the restriction to é?mirr of the pairing

X(pt,p3) = -^, X(vt,Vj) = ^, X(pl,vJ) = 0 = X(vt,p3) (4.76)

(for all i, j = 1,...
, r) on GPh- To sec this, first notice that Çext is always

a subgroup of Gmirr and that X(E, J) = 0 for every J G Çext and every

E G Ç/mirr- Also. X is symmetric, so that left and right chiral algebras arc

extended by the same simple-current group, which contains at least Çext.
To prove that there is no extension beyond Çext, it suffices to show that

if X(S,n) = 0 for all S G ÇmiTT, then n G Gext- To this end, consider

n = («i ar, ]_,... , er) G QmiTT. As H = l.c.m.(/i,), there is a t = Y\p^
with X(u, t) = — Y^, U/hl = l/H. Then t together with all E G Gmirr generate

all phase symmetries pi, p2, ... , pr (including v\ for n + r odd). It follows

that the simple current

f[:=u-HX(t,U)u (477)

satisfies X(pt. IT) = 0 for all i and must hence be of the form II = (0,..., 0,

]_,... ,ir). Now n is in the kernel of X if and only if Ü is. In particular, ÏI
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must be self-local, i.e., satisfy X (11,11) = 0. Thus ^,. q is even, and hence

14 G Çext, as claimed.

To show that this choice of (ömim X) gives the mirror invariant specified

above, it needs to be checked that every solution to the analog of (4.74) for

(GmiTT,X), i.e., to the conditions,

(A',//) = n(A,/i) for some II G EWr and

QE(X, n) + X(E, n) = 0 for all E G Çn
(4.78)

7iTiirr ;

is of the form

(A', p') = (Vly (A, -//) mod Gext, (4.79)

where a = 0 in the NS sector and a = n in the R sector8.

To proceed, identify the label /i = (mi,... , mr, si,... , sr) in the obvious

manner with an clement of Ç?ph {i.e., take m.« modulo /ij and S; modulo 2),
and set v := //II (in notation appropriate to the group law, not to the action

of öph). Ideally, the second line of (4.78) should be expressed with the help of

X and v, so that the desired result would follow from the fact that the kernel

of X is precisely Çext. However, the monodromy charge Qz(X, ß) docs not

coincide exactly with the pairing X(E, /i), and moreover, v G" ömirr in general.
For example, when n + r is even, then all II = (a1;.... ar, i,... , er) G Gm.m

must obey ^ q even, but /i in the R sector satisfies this condition only if r

is even. However, using that J^ Q is even for E = (ßi,... , ßr, Ci, • • •

, Cr) G

GmiTT, it follows that Qs(X, ß) = X(E, (vi)a ji), with a as above. A similar

analysis for n + r odd reveals that in all cases9 (vi)*7 ^ satisfies both

Q3(\,li) + X{E,n) = X(E,{Viyv) and (Vl)CT v G ömirr. (4.80)

The conclusion is that X(E, (vi)a v) = 0 for all E G Gmirr-, and thus by

repeating the argument above. (vi)a v G Çexi. This implies (4.79).

The arguments can easily be extended to prove that one obtains "com¬

plementary mirrors" [12] by dividing out appropriate subgroups of Gmur-

8The freedom in the choice of v allows to use v\.

9The general argument is as follows. Firstly, the s,''s and Q's contribution to Qh(A, jj) is

^Y1 s- and to X(E, fi) it is ^^ rs. Therefore, to X(E, (vi)a ji) they contribute ^^- s(n +

r) — ^y1 s m0(l ^- Secondly, the condition on ß is QU(A, fi) — — ^2 ^ + (n + r) | =0,

so that {vi}" ii satisfies X(u, A, {v\)a £*) = ~ X) TT + ( + r) f ~ ^ which is the condition

for ömirr-
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Ishibashi states

Having reviewed and clarified the construction of mirror models due to

Greene and Plcsscr in the language of simple currents, the next step in con¬

structing the boundary conditions is to establish a list of boundary blocks

(Ishibashi states) that will contribute to the boundary states. The reader

should be alerted that the following discussion obtains after switching back

to the conventions in which is original model is described by the charge con¬

jugation modular invariant.

For the problem at hand, the boundary blocks arc obtained from all those

primary fields that arc paired with their charge conjugate in the mirror model,

which by the present convention is (almost) the diagonal invariant. These

fields arc precisely those that arc self-conjugate up to the action of Gext and,

for R sector fields when n is odd, of V]_. Thus, the boundary blocks arc

determined by looking for all solutions to the requirement

(Vir (A, -fi) = J] (w,r um n («O* (A- fi), (4.81)
1=2 1=1

where (A, ß) must be an allowed field in the Çext-extension and k% denotes field

identification in the z-th factor; also, all e's are 0 or 1, and m G {0,1 H—

!}•
Obviously, e' can be non-zero only if lt = kt/2. Let I be the set of those

i for which lt = kt/2 and e[ = 1. By fcrmion alignment, st = s mod 2 for all

i with s G {0. ±1. 2}. The ml must satisfy

—m, = ml + 2m mod 2ht for i 4 I,

—ml = ml + 2m + ht mod 2ht for i G /
.

Notice that 1^0 requires m + s G 2Z + 1, because of the selection rule in

the corresponding minimal models: Modulo two, the second line in (4.82)
implies 0 = kt/2 + mt + s = kt/2 + m + ht/2 + s = m + s + lforiG/.

The condition on the s/s reads

—st = st + 2et + 2e' mod 4 for i = 2. 3,... . r ,

-si + 2a = s1 + 2m(n + r) + 2e\ + 2 ^et mod 4 for i = 1. (483)

Since a = sn mod 2. these two equations
yield2^2st+2sn=2^2e[+2m{n+r)mod4,

(4.84)
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and this finally gives

(n + r)(s + m) + \I\ = 0 mod 2
. (4.85)

As a check, notice that zero monodromy charge with respect to u requires

<5u(A,/x) = 2_^—^- + ^(n + r) = -m-{n + r)- — + -(n + r)

= - (n + r)(s + m) + — = 0 mod 1,

(4.86)

and coincides with the condition on the s/s, cq. (4.85).

Counting Ishibashis thus involves finding solutions of (4.85). When n + r

is even, |/| G 2Z is a necessary and sufficient condition for having a solution

to (4.85). For n + r odd and |/| = 0. s = 0,1 and m even and odd are

allowed, but with their sum s + m restricted to be even. For n + r odd and

|/| t^ 0, as already noted, m + s must be odd, and this implies that |/| must

be odd.

Restricting to boundary conditions that preserve „4wsusy, these solutions

have then to be counted modulo (field identification and) identification by

alignment currents10. On the other hand, since the chiral symmetry gener¬

ated by u need not be preserved, this current docs not lead to identifications

among Ishibashis.

Given the choice of m. s and / satisfying (4.85), cq. (4.82) determines ml

modulo ht, for each i. Field identification in a single minimal model is fully
used up by fixing, in the integers, m, = m for i ^ I and ml = m + hj2 for

iel.

Identification by alignment currents is then used to replace all st's with a

single s, say s = si G {0, ±1,2}. Because spectral flow connects one-to-one

s even with s odd, it suffices to consider only s = 0, 2.

The enumeration of Ishibashis now starts with a set / C {1,... , r} with

kt even for i G /, and with the correct parity of |/|, depending on n + r even

or odd. Then one chooses an m with the correct parity.Thisinturnfixesthem/sasdescribedabove,andhencerestrictsalsotheparityofallowedlt'sfori^I.For%G/,ofcourse,lt=kt/2.Thenumberoflt'swithgivenparityis{kt+l)/2forktodd.Forkteven,itiskt/2+1ifmiseven,andkj2ifmisodd.10Inthelanguageof[50],thisamountstogoingtothecorrespondingidealoftheclas¬sifyingalgebra.
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Putting things together yields the expressions

n + rcco: 2 x f x J] (^) x f U (| + 0 + II £
fcj odd Lfci even fcteven

e K«n(^)» n !
I, 1/1 even fcl odd fc, even, i4I

(4.87)

n + rodd: 2xf x ft (*i±I) x ft (| + l)
fcj odd fcj even

^[4n(^)« n !]•
J, |/| odd feî odd fcj even, t^I

for the total number of Ishibashi states with s = 0, 2. Expression (4.87)
makes sense in all cases with fairly obvious conventions about products and

sums. In particular, \I\ = 0 is not included as even, here.

The boundary conditions

The starting point for describing the labelling of the boundary conditions is

again the labels of the tensor product of minimal models.

(LL.... ,Lr.Mu... ,Mr,Sx... ,S,) (4.88)

with Lt + Mt + St even. As usual, the St?s arc aligned, and can be replaced
with a single S, say S = S\ G {0. ±1, 2}, and St G {0,1} for % = 2,...

,
r. The

supcrsymmctry data is determined exactly as in the ease of A-typc boundary
conditions. Taken modulo 2, S determines rj, and the quantity

If c

- ^2 -rL + (n + r) ~ mod z (4-89)

gives the automorphism type with respect to u. Given the role of rj for

space-time supcrsymmctry, inequivalcnt branes arc counted by restricting to

S = 0. 2. One can then compute the phase of the central charge.

— = —-:=->—^ + - mod Z. 4.90

Before counting boundary conditions explicitly a few preparatory re¬

marks arc in order. First notice that

Al = -^2 WlMt +H - mod 2H, (4.91)
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where il\ := H/ht. Hence, because of minimal model selection rules, for fixed

Lt and S. only a definite parity of M occurs.

Next, assume that - £t M/2/ï, + S/A = - £t M[/ht + S'/A. Then, if

n + r is odd. (il/i,... , Mr, S) and (il/{ M^, S") arc related by an allowed

phase symmetry in Çmirr. namely at = (Mt — M')/2. e = (S — S')/2 (sec cq.

(4.75)), and hence label the same boundary condition. As a consequence,

the single M label is sufficient to distinguish inequivalcnt labels, if n + r is

odd. On the other hand, if n + r is even, two such labels arc related by an

allowed phase symmetry only if S = S'.

Furthermore, because of the definition of H as least common multiple,
there exists a combination (ti,... ,t,) such that — $^tit//ii = 1/iï mod
Z (Compare the discussion of the Grccnc-Plesscr construction). Shifting

(M_l,... , Mr) by multiples of (2ix,... ,2tr) therefore produces all possible
Afs with a given parity.

Counting boundary conditions leading to inequivalcnt brancs, i.e., with

S even, now proceeds as follows. First choose a collection A = (Li,... ,L,),
and denote the subset of those i's with Lt = kt/2 by /a. Fcrmion alignment
and field identification in minimal models is completely used up by letting

Lt < K/2, setting St = 0 for i = 2,... , r, and, if /a ^ 0, S = Si = 0.

If n + r is even and /a = 0, one has M running over H values (even or

odd numbers between 0 and 2H — 1),andS=0,2distinguishingbrancsandantibranes.Inallothercases.MandSarenotindependent.AgoodchoiceistoonlyretainM,runningoverHvalues.LoosingSasanindependentlabelentailsinparticularthatabrancanditsantibranclieonthesame'"Z^-orbit"assoonasn+risoddor1^^0.FixedpointsAsforA-typcstates,thepresenceoffixedpointsslightlyspicesupthecom¬binatorics.SuchfixedpointsoccurwhenL,L=kt/2forsomei.Accordingtotheresultsofsection2.2,thenecessarydatafordealingwithfixedpointsarestabilizerSa.simple-currenttwistF^andfromtheretheuntwistedstabilizerUaCSaofaboundarylabela.WhileforA-typcstatesthestabilizercanonlybetrivialorequaltoZ2,implyingthattheuntwistedstabilizercoin¬cideswiththefullstabilizer,forB-typethesituationismorecomplicated,andmoreinteresting.ConsiderthenaboundarylabelA=(Li,...,Lr).ilItremainsun-nThelabelsMandSareirrelevantforthisdiscussion,andwillhencebesuppressed.
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changed when acting with those simple currents

F = J] ft, (4.92)

with IF Ç JA (recall that fi = (ki, 0, 0) = (0, hi, 2) ). Which fis or combina¬

tions thereof arc in Çmi„ depends on n + r being even or odd. For n + r odd,

every ft satisfies

h 1

ft = p^/2Vi and hence X(u,fi) = —j-
+ - = 0 mod Z

, (4.93)

so it is an allowed phase symmetry. Therefore,

I«5a| = 2|IaI
, (4.94)

In contrast, for n+r even, a single f does not satisfy the condition X(u, fi) =

0 mod Z and hence is not allowed. But every pair ffj is allowed. This implies

|«SA| = 2l/Al-1. (4.95)

For the computation of the untwisted stabilizer, consider first the case

n+ r even. To be specific, distinguish some a0 G I\, denote the corresponding-

simple current by /0, and let the stabilizer «Sa be generated by f0a := fofa<
with a G IA. Note «SA = (Za)1^1-1.

Assume now that A is of the form (... , kao/2,... , ka/2,.... fc&/2,... )
(not excluding a = b), and consider a second label of the form A = (... , kao/2,
... , ka/2,... , lb,... ). Then the twisting of the simple-current relation for A

is determined from12

„fn
f(-l)hSh for a ^6, ,

S(0af ,
=

{ y

f

' A'A ^ '

4.96
A,/obA

\sh for a = 6.
V '

Thus,

(—l)^ao/2 for a ^ b

FaVu» foa) = {
{_l)kao/2+ka/2 {ma = b[ (49?)

12The relevant pieces of the fixed point matrices come from the SU(2) part in eqs. (4.35)
and (4.36),

i.e.,fora^b,e-27n3fcQ0/16.e-27ri3fca/16.^7r(fcb/2+l)(/6+1)hb
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Since fa = p'aa/2va and X(pa,ph) = -öab/ha, one has

X(foaJ0b) = ^+fjôab. (4.98)

Putting the pieces together, the full simple-current twist is

F£(foa, fob) = FA(f0a. fob) cr2^**»*») = (-1)1+^ . (4.99)

Computing the untwisted stabilizer is now an easy exercise. Consider

some F = ]l&e/F fob G «SA. with IF Ç /A \ {a0}. Then,

^(/o.,F)
=

((-1)!;'!1 f°r^/F-
(4.100)AJ J

|(-1)I^M for a G/F.
V '

For F to be in U,\, F*(f0a,F) must be equal to 1 for all a. This is only

possible if Ip = 0, or if IF = L\\{o-o} and |/a| is even. Thus.

ZAHZ\ fOT!/A!CVCn- (4.101)
{id} for |Ia| odd.

The combinatorics for the boundary states in the case n + r odd can be

mapped to the other case by appending a trivial factor (with k = 0) to the

tensor product of minimal models. Put differently, the above derivation still

holds by letting <SA be generated by f0a = fa, without distinguishing any

particular a G /a- Simple-current twists and monodromy carry over mutatis

mutandis, alone the final result is a little different: F G U\ if either IF = 0

or IF = I,\, and |Ia| odd. In this case then,

U*=i%. fr|;A!°dd' (4.102,
(id) tor |7a| even .

The number of B-type boundary conditions

Adding together all the above combinatorics leads to the following explicit
formula for the total number of inequivalent B-type branes in a Gepner
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model.

n + r even : 2 x H x TT ( -^—— ) x TT 17

fej odd fc, even

'kt + l\ T-r fe

e ^^n(^)x n f
|J| odd fej odd fej even, i^J

e ^*n(^)« n I
/, |J| even k, odd fc, even, j^I

n + rodd: H x JJ f-5——jx JJ -^
fcj odd fcl even

+ e * * * * n (^f1) * n I
/, |J| odd fej odd fc, even, igl

e ^n(^)x n !

(4.103)

I, \I\ even fej odd kl even, i^I

It is not difficult to sec from the expressions (4.87) and (4.103) that the

number of Ishibashi states with s even (i.e., in the NS sector) is precisely

equal to the number of branes (i.e., boundary conditions with S even). Both

counts can be written in the form

H x

'h + 1

n(^)x n(f+1)+E n
.ki odd fcj even / k, even, iél

~2 (4.104)

where the sum is over I C {1 r} with kt even for i E I, and with |/|
odd for n + r odd. and |/| even for n + r even (now including also |/| = 0 as

even).
That the number of Ishibashis agrees with the number of boundary con¬

ditions is a good cross-check on the results. But the counting and labelling
is really different! Ishibashi labels arc of the form

(X.m,s,î) with {=Y[fleSl
zeit

x

(A,m) ' (4.105)

where If is identified with / in (4.85). Labels for boundary conditions read

(A, M, S. *) with * G U\ (4.106)
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where U\ depends on I\ as in cqs. (4.101) and (4.102). Although formally
this might look similar, the label m is different from the label AI. While

m describes the position on the u-orbit of an allowed field, M gives the

monodromy charge of an entire u-orbit. More drastically, notice that on the

side of the Ishibashis, the parities of the lt's are not independent, while on

the side of the boundary states, the L/s are. Also s is not restricted in the

same way as S.

The last piece of information about the boundary conditions that will be

displayed here are the reflection coefficients. They arc given by the general
formula (2.40) in section 2.2. The fixed point matrices are given in (4.35).
Putting everything together yields the following reflection coefficients:

/ |£mirr| TT
0 [^ • (h + l)^ + 1

5(W,f),(A,M,S,*) = W T^TJ [} Ih^1^ K

( I I \ „—-*!ri(a s+(r—L) o~s-)/-i ZTnivim/zn xvl!2^/2^:/
,-27ri (S s+(r

-1) S2 s2)/4

,,27ri
Mm/2H

L*2y/2hl
'V

1=1 v '

*(f) J]V2m3fc*/16. (4.107)

Intersection index

The intersection index of B-typc boundary conditions can be computed along
the same lines as for A-typc, simply by replacing the cyclic group Z# with

the Greene-Plcsscr group of phase symmetries, ÇmiTT. The analog of (4.64) is

-^oo ® Iff J2 (-1)6 ®« Wi ®Ui(1-ä), (4-108)

e/2-Y. al/hl=0 modZ

where the size of the reduction matrix is H = (J\h^)/H. Thus, Iq0 is an

H x H matrix. It is easy to sec that the square bracket effectively sets

9i = 9W\ where g
=

gH and wt = H/ht. Straightforwardly, if n + r is even,

one obtains,

r

^o = II(1-^)- (4109)
i=l

If n. + r odd, there arc phase symmetries of the form e = 1. at = ht/2. so

that

2S, = (1-5H/2)II(1-^)- (4-110)
i=i
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The extra factor 1 — gHl2 simply is a reflection of the fact that branc and

antibrane lie on the same "Z#-orbit".
u

As before, the states with A = 0 can be viewed as generators of the charge
lattice, and the expansion coefficients (RR charges) of the A^O states arc

r

1=1

where tLi is as in eq. (4.41) with g2fh = (92h)Wi

4.3.4 Connecting CFT with geometry

By now, there exist at least two independent chains of arguments that one

might employ to identify the RR charge lattices in BCFT and in the geo¬

metric description. The first of those, proposed in [32] makes crucial use

of mirror symmetry. Basically the idea is to compare the intersection form

computed in some basis in the BCFT with the geometric intersection form at

large volume. In BCFT, any natural basis will reflect the discrete symmetries
that the Gcpncr model has, but which arc invisible at large volume, where

one uses some convenient basis of ®iHhl{X). The natural geometric basis

with these symmetries is associated with the mirror manifold. Indeed, it is

one of the bases of periods that appears in mirror symmetry computations.

Thus, mirror symmetry provides the link between the symmetric basis in

CFT and the geometric basis at large volume.

In fact, the prescription of [32] for the identification of bases has received

further justification by the results of [29]. It is well-known that minimal

models, and as a consequence Gcpncr models, also have a description as

conformai fixed points of certain Landau-Ginzburg models. One of the main

results of [29] was to identify the Cardy boundary conditions in minimal

models with geometric boundary conditions in the corresponding Landau-

Ginzburg model. This identification is completely explicit and in principle

even goes beyond the topological sector. The happy coincidence is that

13On may use this to further reduce the size of the intersection matrix to the form

11(1 - 7U''), where 7 is the H/2 x H/2-matrix

/ 0 1 0
...

(A

0 0 1
...

0

: : : -. :
" (4-1U)

\ 1 0 0
... Oy
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the special Lagrangian cycles corresponding to the minimal model boundary
states arc identical with the cycles used for the computation of the basis of

periods of the mirror manifold which is the natural basis at the Gcpner point.

An independent approach connecting large and small volume has ap¬

peared recently that avoids mirror symmetry completely [118, 121]. Instead

of dealing with quantum corrections by considering the mirror, one uses the

connection between non-linear cr-models and the gauged linear cr-model of

ref. [123]. Such a linear description is achieved by embedding the Calabi-Yau

hypcrsurfacc (more generally, one can describe toric varieties and also non-

Abelian generalizations thereof) as the vacuum manifold in the much larger
field space of a certain two-dimensional gauge theory. One of the advantages
of the approach is that the description is global and hence allows a simple

tracking of the moduli of the theory. It is a natural idea to extend this pow¬

erful tool to also study open strings and their boundary conditions. Results

in this direction have been obtained in [29, 118, 121, 90]. and more recently,
in [124, 125, 126]. The strategy of [118, 121] is to propose natural objects
in the gauged linear cr-model that arc related to boundary states in CFT at

small volume and can easily be identified with geometric D-branes at large
volume. The computations arc dramatically simpler than, and the results

reassuringly consistent with, the ones using mirror symmetry.

The linear cr-model approach to D-brancs on Calabi-Yaus will not be

expanded here, and only the approaches that use mirror symmetry will be

described in somewhat more detail now, focusing on a specific example.

An explicit example: The K3-fibrations Pii226[12] and Pfi222[8]

The Calabi-Yau hypersurfaces in weighted projective space. Y± = Ff i 2 2 6 [12]
and Y2 = Pi 1222^] have the structure of K3-fibrations. At the respective

Gepncr points in moduli space the defining equations take the
formY1={[z1,...,z5]ePt,li2)2,6;zf+42+z\+z\+z\=0}(4.113)Y2={[Zl,...,z5]ePli,2)2,2;4+4+4+4+4=0}•(4.114)andthemanifoldshaveaspecialvalueoftheKahlerclass.Atthesepoints,theexactsolutionofthecr-modelsarcgivenbyGepncrmodelswithminimalmodelsatlevels(4,4,10.10)and(2,2,2,6.6),respectively.Afterblowingupthesingularitiesintheweightedprojectivespace,eachofthesemanifoldshastwoKahlerparameters,denotedbytiandt2.TheybelongtoanaturalbasisofKahlerclasses,J^J2GH1'1{Y)(forY=Yl.Y2).ThemirrormanifoldsofYiandY2canbeobtainedbythe("geometric")Greene-Plcsscrmethod,andarcdenotedbyYxandY~2,respectively.Mirror
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symmetry relates the complex structure and Kahler moduli spaces of mirror

pairs. For the manifolds at hand, the necessary computations have been

performed in [127, 128]. In particular, these results show how the complex
structure moduli space of Y is parametrized by t\ and t2. But this is not

enough for connecting the complete bases of the RR charge lattices (which
have rank 6) in CFT and large volume.

At large volume, there arc always two natural bases for these lattices.

One is a basis of Hdmg(Y), naturally generated by the two Kahler classes

J\i -h £ Hi,l(Y), the other is a symplcctic basis. £>sympi, of H3(Y). The map

between the two bases is obtained by comparing the central charge of a brane

as a function on moduli space.

Namely, for a RR charge Q^ G H'\Y), one can express the central

charge as

Z(Q(m) = J2 Q ni(*i< *s) (4-115)
i

where QfE> are the coefficients of Q(RR), and Hl(ti,t2) the "period vector"',

with respect to the basis ßsympi.
If the same charge Q^n) is viewed as clement of Hdmg(Y), one may com¬

pute the central charge as

Z(Q(RR)) = fc-KQ(m
, (4.116)

where K = tiJ\ + t2J2 is the Kahler class of Y, and the relation between char¬

acteristic classes and Q(RR) is given by cq. (3.12). Comparison of (4.115) and

(4.116) then yields the following expressions for the characteristic classes ch;

of a vector bundle V in terms of the charge vector (QfR)) = (n6, n4 , n4 , n0,

(1) (2)\

Y]_ : r = n6

chx = ny Ji + ny J2

ch2= (in^-^Vi^ + è^^)2
(4'117)

ch3 = -Kno + f^1)+2ni2))(J1)3,
Y2: r = nb,

chx = ny Ji + ny J2

ch2= (|n«-|42Vi^ + ï42)(^)2
(4'118)

ch3 = -|(n0 + ^i1)+2ni2))Jii-
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Equations (4.117) and (4.118) describe explicitly the isomorphism between

Hdi^(Y) and H:\Y).
Of particular interest (for example for string dualities) arc the brancs

that wrap only the K3-fibers (called fibcr-brancs in [93]). In general, to find

the characteristic classes of the bundles corresponding to brancs wrapped on

submanifolds, one has to take into account that the induced charge vector is

modified by the A genus of the normal bundle of the submanifold inside the

Calabi-Yau. For the K3's inside the Calabi-Yau's at hand, one obtains

chx = ^ (4.119)

ch2 = -n0 - 2nf',
V (2)
r2 : r = n\'

chx = \ni] (4.120)

V. 1 (2)
ch2

= -±rc0
-

n\ ,

where the characteristic classes arc expanded in both cases with respect to

the bases (1, Ji; \(Ji)2)-
As indicated above, there is a third basis for the RR charge lattice, which

is induced by the natural basis of periods at the Gcpncr point. Specifically,
the periods of the holomorphic three-form on (the mirror of) a Calabi-Yau are

computed by solving a set of linear differential equations (the Picard-Fuchs

system) satisfied by the periods.
At the Gcpncr point in moduli space, the natural solutions of the Picard-

Fuchs equations arc a set of H functions, (zui,..., wh) related to each other

by the Z# monodromy around the origin (where H = l.c.m.(hi)). Although

naturally symmetric, the set (zui,... ,wh) is not a basis of solutions of the

Picard-Fuchs system. Rather than being independent, these functions sat¬

isfy a set of "period relations" that can be derived combinatorially fromtheweightsh]_,...,h5.Relatedto(tui,...,zuh)isasetofcycles,B^,satisfy¬ingthesamerelations.Themainworkinmirrorsymmetrycomputationsfollowing[13]istoconnectBwwiththesymplccticbasis-Ssympiatinfinitybyanalyticcontinuationofperiods.Withthisinhand,onecanderivetheintersectionmatrixofthecyclesB^.ExploitingtheZ#symmetry,theproposalof[32]wastoconnectthebasisofcyclesBMusedforthecomputationoftheperiodswiththecollectionofA=0boundaryconditionsintheGcpncrmodel.TheseA=0statescanbethoughtofasasetof(dependent)generators£>cftofthechargelattice.Thisproposalissubstantiatedbythefactthat£>cftsatisfythesamerelations
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as the Bw, namely the period relations (this is purely combinatorial data).
Moreover, there is a simple relation between the intersection matrices.

Explicitly, for the two K3-fibrations discussed above, one finds the ana¬

lytic continuation matrices

n m

Y, m

/-l 10 0 0 0 \
3 3 1 1 1 1

2 2 2 2 2 2

1 0 1 0 0 0

1 0 0 0 0 0
1

2

w
0

1

2

1

2
1

2

0

1

2

1

2
1

2

0

u

/-1 1 0 0 0 °\
3

2

3

2
0 0

1

2

1

2

1 0 1 0 0 0

1 0 0 0 0 0

1

4

u
0

3

4

1

2
1

2

0

1

2

1

4
1

4

0

(4.121)

(4.122)

between the symplcctie basis i?sympi and the projection of Bw to a linearly

independent set, which is found by using the "'intcrtwincr" T that implements
the period relations14.

This allows to compute the intersection form on B^, Xßu-\ and compare

with the CFT intersection matrix XBcFT = Iq0 (see eq. (4.109)). In all cases

that were investigated by these methods, it was suspiciously found that one

has

IB = (l-g)IS»(l-g)t.

14These "'intertwiners" are given explicitly by

(I

Y1 : T

0 0 0 0 0\
0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

-1 0 0 0 0 0

0 -1 0 0 0 0

0 0 -1 0 0 0

0 0 0 -1 0 0

0 0 0 0 -1 0

1° 0 0 0 0

Y,: T.

V

(4.124)

(I 0 0 0 0 o\

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

-1 0 -1 0 -1 0

\0 -1 0 -1 0 V

(4.123)
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In view of the results [29]. this is not surprising any longer. Indeed, it

turns out that the cycles Bw that are conventionally used for the computa¬

tions of the ovcrcomplctc set of solutions of the Picard-Fuchs system [129] are

almost identical to the concatenation of the cycles that appear in the Landau-

Ginzburg description of (the mirrors of) the individual minimal models. The

only discrepancy between [129] and the prescription derived from [29] is a

factor of (1 — g), exactly as it appears in (4.124).
All in all, one obtains the big basis transformation between the RR

charges in CFT and the charges in the basis £>sympi at large volume.

QT = Q(cf\(1 ~ 9)Tm-\ (4.125)

where Qq^l arc the expansion coefficients of a CFT state in terms of the

basic A = 0 states, see eq. (4.112). Inserting this into cqs. (4.117) or (4.118)
yields the characteristic classes of a vector bundle.

Results for fiber-brancs in the two models Y\ and Y2, before fixed point

resolution, arc summarized in table 4.2.

Fixed point resolution and enhanced gauge symmetry

The last question in the comparison between Gcpncr model boundary states

and geometry that will be considered here is the interpretation of the fixed

points and their resolution. The proposal is as follows.

Considering the boundary states before fixed point resolution shows that

in the open string amplitude, one finds that the number v of vacua is equal
to the order of the stabilizer and in general larger than one. This is of course

typical of fixed points, and is actually one of the reasons why they have to

be resolved into elementary boundary states. Physically, these additional

vacua give rise to extra gauge fields on the world-volume. Mathematically,

one should think of a degenerate bundle or sheaf.

Given such a degenerate configuration, one can ask how many U(l) factors

the gauge group contains. If this number v (where 1 < v < v) is larger than

1, the configuration should be considered as reducible because each U(l)
corresponds to an independent centcr-of-mass degree of freedom of a multi-

branc system. The structure of the gauge group can in principle be analyzed

by studying correlation functions of the v gauge bosons. However, this is

unnecessary here, given the origin of the fixed points and the combinatorial

structure of their resolution.

Indeed, it suffices to realize that the algebra of open string states of the

unresolved fixed point is given by the twisted group algebra of the stabilizer,

Cfx(5a), where F* is the simple-current twist (4.99). This group algebra
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u Qm(y) = (r.cluO-VI^V)) V V G

[1,0,0.0] (1,0,0) (1.-1,1) (2.-1,-1) 1 1 U(l)

[3,0,0.0] (1,-1,-1) (1.0.-2) (0,1,-1) 1 1 U(l)

[3,0,1.0] (1,1.-3) (1.-2,0) (2.-1,-3) 1 1 U(l)

[3,0,1.1] (3,-3,-3) (3.0.-6) (0,3,-3) 1 1 U(l)

[5,0,0.0] (2,0.-2) (2.-2,0) (0,0,-2) 2 2 U(l)xU(l)

[5,0,1.0] (2,-2,-2) (2.0.-4) (0,2,-2) 2 2 U(l)xU(l)

[5,0,1.1] (2,2.-6) (2.-4,0) (4.-2,-6) 2 2 U(l)xU(l)

[5,0,2.0] (4,-2,-4) (0.2,0) (0,2,-4) 4 1 U(2)

[5,0,2.1] (4,-4,-4) (4.0.-8) (0,4,-4) 4 1 U(2)

[5,0,2.2] (4,-2,-8) (4.2.-8) (4,-6,0) 8 2 U(2) x U(2)

U Q<^(V) = (r.ch^V)^^^)) V V G

[1,0,0,0,0] (1,0,0) (3,-2,0) (1,-1,1) (3,-1.-1) 1 1 U(l)

[3,0,0,0,0] (2,-1,-1) (0,1,-1) 1 1 U(l)

[3,0,1,0,0] (2,-2,0) (2,0,-2) 2 2 U(l) x U(l)

[3,0,1,1,0] (4,-2,-2) (0,2,-2) 4 1 U(2)

[3,0,1,1,1] (4,-4,0) (4,0,-4) 8 2 U(2) x U(2)

Table 4.2: These tables show the characteristic classes of coherent sheaves

corresponding to the RR charges of B-typc boundary states in Gepner mod¬

els (before fixed point resolution). The levels in the Gepner model arc

(10,10, 4. 4) for the top and (6, 6, 2, 2, 2) for the bottom table, respectively.

Boundary states arc labelled by collections of Lt's and a Zh label Al, which

however is not shown explicitly. The models correspond geometrically to

the K3-fibrations Pii22 6[12] and Pii22 2ß]- respectively, and only states

that have non-trivial charges only on the K3 arc displayed. The rightmost
columns of the tables refer to fixed point data, as described in the text.

splits into the direct sum of full matrix algebras

CFx(SA) = elS Mativ(C). (4.126)
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where |«Sa| = N2\U\\. This split is the origin of the fixed point resolution.

Given all this, it is natural to identify the order of the untwisted stabilizer

with the number of U(l) gauge bosons, 0 = \U\\, and N with the order of the

unbroken gauge group. It should be stressed that the presence of the simple-
current twist makes it impossible to split the boundary states further, i.e.,

it is not possible to ''pull apart" building blocks of the branc, in spite of the

fact that its world-volume docs have an enlarged gauge group. The physical

picture underlying the equation

v = N20 (4.127)

thus is that the collection of v gauge fields splits into 0 families, each con¬

taining JV2 gauge fields carrying the adjoint representation of U(iV).
According to this interpretation, and in view of the formula for the reflec¬

tion coefficients (4.107), it is easy to see that the RR charges of the resolved

states is simply 1/0 times the charges of the unresolved states, which arc the

charges appearing in table 4.2.

The enhancement of gauge symmetry discussed above is reminiscent of

orbifolds with discrete torsion [106, 130]. Specifically, it was found in [106,
130] that discrete torsion in a closed string orbifold should be accompanied,
in the open string sector, by a projective representation on the Chan-Paton

labels. Thus, the regular representation (i.e., the twisted group algebra)
splits according to a rule analogous to (4.127) |T| = ^J^O^rJ2, where T

is the orbifold group and dßi the dimensions of the irreducible projective

representations of T. Consistency conditions such as charge quantization
then seem to require that the minimal D-branc charge is larger than expected

by a factor of d^, leading to an enhanced gauge symmetry. The author of

rcf. [130] further argues that discrete torsion might be attributed to a flat

but non-trivial B-ficld on a torsion 2-cycle, and that consistency requires a

minimal wrapping number larger than one.

4.4 From M = 2 coset models to Grassmanni-

ans

4.4.1 Introduction

As was shown in previous sections, the theory of boundary conditions in

J\f = 2 supcrconformal field theories is a powerful tool to explore the quantum

geometry of D-brancs. But still, the general picture of D-brancs in regimes of

large curvature is quite incomplete. In the recent literature, the analysis of
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exactly solvable CFT models such as orbifolds [131, 132], and Gcpncr models,

has given hints as to what algebraic structures one should try to use for such

a general description of D-brancs in the small volume regimes.

Thus, while at large volume, D-brancs correspond to geometric objects—
submanifolds supporting vector bundles, or, more generally, coherent sheaves,

and therefore have a microscopic description as geometric boundary condi¬

tions in a (7-modcl. the most appropriate description at small volume seems

to be in terms of ''quiver theory"' [131, 132]. This point of view has recently
received further support from the work in [116], where it was shown that

compact D-brancs on the non-compact Calabi-Yau manifold CP2(—3) can be

constructed following Bcilinson [133], and arc hence classified as the repre¬

sentations of a quiver. Most recently it was shown in [118, 119, 120, 121] how

the descriptions at large and small volume arc related in general by a form

of McKay correspondence [134, 135], which gives a precise map between the

large radius bundle data and the quiver group theory data at small radius.

In order to test some of these recent ideas about D-brancs in small vol¬

ume regimes, the purpose of the present section is to extend the analysis of

exactly solvable J\f = 2 CFTs to the class of the Kazama-Suzuki models. In

particular, the objects of study will be M = 2 superconformai field theories

based on coscts SU(n + l)k/\J(ri) [136], which generalize the minimal models

(for which n = 1). From the CFT point of view, these models arc on a similar

footing as the minimal models, so that it is a natural question to ask about

the properties of the boundary states of these models. On the other hand,

from a geometrical point of view the models correspond to isolated singu¬

larities that arc not necessarily of orbifold type, so one may expect to find

novel features with regard to generalizations of the McKay correspondence.
Indeed these models have an abundantly rich mathematical structure (re¬
lated to Grassmannians Gr(n, n + k) = \J(n+k)/\J(n) x U(fc)) that has been

analyzed in great detail in the past, see refs. [10, 137. 138, 139, 140, 141. 142],
as far as the bulk physics is concerned. One of the questions one might ask is

whether such connections persist after inclusion of boundary sectors.
Here,theprimaryfocuswillbeontheintrinsic,algebraicaspectsofcosetCFTwithboundaries15.AfewbriefcommentsabouttherelationtosheavesandhelicesonGrassmannianswillbemadeattheend.SomeofthegeneralideasrelatingcosetCFTstogeometricinformationaboutsingularitieswereexplainedinsection4.2fortheminimalmodels.ForKazama-Suzukimodels,thestrategywillbeverysimilar.Themainingredi¬entistheintersectionindexofboundarystates,Tah=ti-uab{—1)F,secsection3.2.3.Inthepresentcase,theintersectionstructure—encodinginformationSee[143]forsomeotheraspectsofD-branesinKazama-Suzukimodels.
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about the '"quiver algebra" or '"boundary ring"—turns out to be given by the

fusion ring of XJ(n). Thus, the generalized McKay correspondence apparently
docs not involve discrete groups [144, 145]. But still a close link seems to

emerge between the intersection homology of the resolution of the isolated

singularity corresponding to the coset model [146, 147], and the boundary

ring.
Another aspect of the analysis is that the class of '"Cardy" boundary

states covers only a very small subset of all possible quiver representations.
This could be expected from the fact that a general Kazama-Suzuki model

is irrational over the M = 2 algebra, while Cardy's construction always

preserves a rational chiral symmetry algebra. These results can hence be

viewed as a consistency check of the presently available, and limited, ideas

and methods in conformai field theory with boundaries.

4.4.2 J\f = 2 coset models

The starting point for Kazama-Suzuki (KS) models [136] arc rational M = 2

supcrconformal field theories defined by the coset construction, of the form,

9XS0(2d)\
(4l28)

f)xu(l) /k

Here, k is the level for the untwisted affine Lie algebra with horizontal sub-

algebra the simple Lie algebra 0, and h is a subalgcbra of g. The so (2d)
factor arises from bosonization of the fermions and is at level 1. Further¬

more, 2d = dim g — dim f). One often finds the notations g^/l) or gfc/rj x u(l)
as a shorthand for (4.128). It turns out [136] that such a coset model will

have its supcrsymmetry extended to J\f = 2—and hence be a good starting

point for supcrstring models—precisely if the corresponding coset space of

Lie groups. G/H, is Kählcrian. The main interest here is in the simplest class

of models, namely where g is simply laced, at level one. and the underlying
coset space is a hcrmitian symmetric space (the SLOHSS models). Other

models can be treated by similar methods, but require more computational

power and also somewhat more care due to field identification fixed points

[10, 148].
More specifically, the models of interest arc based on Grassmannians

Gr(n,n + k), for which the following equivalences hold:

suin + k),
_

5u(n + l)k
„

su{k + l)n

su(n) x su(k) x u(l) su(n) x u(l) su(k) x u(l)

Quantities pertaining to these models will be labelled by a superscript
[n,k],and,asaconvention,n<kis

assumed.
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The definition of the cosct (4.128) includes the specification of the cm-

bedding of f) into g, and is accompanied by specific selection rules and field

identifications. Field identification fixed points do not occur for the mod¬

els under consideration, so this complication can be neglected. It should be

pointed out, however, that since fixed point resolution affects the modular

data and fusion rules in a non-trivial way, it will have interesting conse¬

quences for the intersection index of boundary states in theories with fixed

points.

Primary (with respect to the bosonic algebra) fields in the coset CFT arc

labelled by quadruples (A, A, m, a), where A stands for an intcgrablc highest

weight of Qk, A for a weight of f) and m for the u(l) charge. Furthermore,

a is a weight of the so (2d) factor, which is the scalar, 0. or the vector, i>,

representation in the NS sector, and the spinor, s. or the conjugate spinor,

c, representation in the R sector. The restrictions and identifications on

the labels depend on the particular cosct one is considering. For present

purposes, they can be formally implemented by considering a simple-current
extension [148] of the tensor product,

[0xrxu(irxSo(2d)]extended. (4.130)

At least for the modular properties of the model, this extended tensor product
is equivalent to the cosct model. Since only modular data and with it the

fusion rules enters the construction of Cardy boundary states [47], this will
besufficient.Asaconcreteexample,considerthecosctssu(n+l)k/su(n).Theexten¬sionisbythesimplecurrentJ=(j(n+1\j(n\h,v)(4.131)inthetensorproduct(4.130).Here,j("+1)(respectively</("))denotesthegeneratorofthesimple-currentgroupofsu(n+l)k(respectivelysu(n)k+1).Itsmonodromycharge.Q,/(n+i)(A)=rn+i(A)/(n+1)measuresthe(n+l)-alityoftherepresentationA(analogously,r„(A)standsforthen-alityoftherepresentationA).Moreoverj(n+1)actsonA,toyieldJ(n+1)A,byrotatingclockwisetheDynkinlabelsofthecorrespondinghighestweightoftheaffineLiealgebrasu(n+l)k(andsimilarlyforsu(n)).Andh:=k+n+1.ExtensionbythesimplecurrentJisequivalenttotheselectionrulen(a\\r»+i(A),rn(A)mQ(./(«+D,./(»),h,v)(A,A,m,a)=^+1+—^-+,+1j+Qv(^)=0,(4.132)
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where Qv(a) is 0 in the NS sector and 1/2 in the R sector, and to the order

n(n + l) identification (A, A, m, a) = J(A,X,m,a) = (J{n+^A1.ßn'>X,m +
h, va). Further details can be found in the cited literature.

It is known [10] that the ring of chiral primary fields of any one of these

models (4.129) is isomorphic to the cohomology ring of the underlying Grass-

mannian.

^[n'k]=mm£iwkm^)^ (4-133)

with dimension

dim(7^]) = (U + kV (4.134)

The relations in this ring can be integrated to a potential W^n,k\xi)< which

can be interpreted as supcrpotential of a Landau-Ginzburg model with fields

xt, i = 1....
,
n (with U(l) charges q(i) = i/{n + k + l)). The supcrpotcntials

were explicitly given in [10, 137], and can be compactly characterized by the

following generating function:

n—1 oo

-log[^(-t)^J = Yl tn+kW[n'k](xi). (4.135)
1=1 fc=—n+l

The quasi-homogeneous supcrpotcntials W^n'k\xi) represent isolated sin¬

gularities that can be viewed as generalizations of the Ak+Ï simple singular¬
ities. Those were mentioned in section 4.2 and correspond to W^'k\xi). In

analogy to the minimal models and their relationship to ALE spaces, one ex¬

pects that the CFT of the coset models should be compared with the D-branc

geometry of the resolved singularities, described by the supcrpotential
W[n'k](xt,ii)=W[n'k](xi)+fji.(4.136)ThisparticularresolutionisdistinguishedinthatitpreservesthediscreteZ^t(h=n+k+1)''Coxctcr"symmetrythatisintrinsictothecosetmodels.Theresolvedpotential(4.136)canbeviewedastheinhomogeneousformofaLandau-Ginzburgpotentialforanon-compactCalabi-Yauspace.Themostnaturalwaytoformsuchaspaceistotensorthecosetmodelwithamatching,generalizedLiouvilletheorywithnfieldszt(withchargesq(i)=—i/h).Thecombinedsystemhascentralchargec(n,h)+c(n,-h)=2n,(4.137)(wherec(n,h)=(h—n—l)n/h),andcorrespondstoanon-compact

2n-fold.
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The intersection indices Ta^ = tr-^ai)(—1)F between boundary states a, b,

computed in the next subsection, will then gain a concrete geometrical mean¬

ing after taking the non-compact piece into account. This produces symmet¬

ric generalized Cartan matrices,

Q[n,k] = j[n,k] + (j[n,fc])t ^ ^gg)

and makes contact with the proposals of [146], proven in [147], that the fusion

coefficients of su(n + l)fe arc naturally related to the intersection form on the

homology of the resolved singularity. Nevertheless, the main concern here will

be the intrinsic properties of the boundary states of the M = 2 coset models.

(The hats in (4.138) indicate that these arc ''extended generalized Cartan

matrices" associated with over-complete, Z/{ symmetric homology bases.)

4.4.3 Boundary conditions and intersection index

The class of boundary conditions under consideration here arc the Cardy
states. Thus these states will preserve the complete chiral algebra (without
twist) of the J\f = 2 coset models (these chiral algebras arc known to be

M = 2 W-algcbras), and do not exhaust all possible J\f = 2 supcrconformal

boundary conditions. To be precise, the Cardy construction yields A-type

(with respect to the J\f = 2 algebra) boundary conditions, using the charge

conjugation modular invariant in the closed string sector (sec table 3.1). In

the coset models, the Cardy boundary states arc labelled in the same way

as the primary fields arc, namely by (orbits of) (A, A, m, a) with the same

selection and identification rules.

Recall from section 3.2.3 that the intersection index can be written in

terms of the annulus coefficients. Ab, as follows:

2-6= £^lm-4£"lm- (4-139)
m Rgs

where v denotes the simple current corresponding to the worldshcet super-

current and s the simple current corresponding to spectral flow by half a

unit. The sum in (4.139) is over all Ramond ground states m. Thus, the

s~1m arc chiral primary fields. In the cases of present interest, the expres¬

sion (4.139) simplifies further since the annulus coefficients arc identical to

the fusion coefficients, i.e., to the structure constantsoftheVerlindcalgebraofthecosetmodel.Modulofieldidentificationfixedpoints,thosearcgivenbytheproductsoffusioncoefficientsofthefactorsin(4.130),restrictedtoallowedfields,andsummedoverfieldidentificationorbits.Thefusioncoef¬ficientsofgandt)willbedenotedbyGNandHN,respectively.Thefusion
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coefficients of the u(l) factor arc conveniently encoded in a shift matrix g,

of size h or n(n + l)h. depending on the context (sec the comments around

(4.37) in section 4.2. The fusion coefficients of the so(2d) factor arc given by

vs = c, v2 = 0, s2 = vd.

As in previous sections, it is natural to view the intersection numbers

of boundary states with representatives (Ax, Ai, mi, a{) and (A2, A2, m2, (J2),
for fixed Ai and A2, as a matrix in Ai,mi and A2,m2- Consider also fixed

cri = cr2 = 0. From (4.139) one obtains.

1'"'1 " *

coset Ar(Ai,Ai,mi,0)
_

coset A7-(Ai,Ai,mi,0)
, t , iV(A,A,m,(r)(A2,A2,m2,0) iVî)(A,A,m,<T)(A2,A2,rTi2,0)

\ / A2,m2

(A,A,m,<r) cli. prim.

(4.140)

where the sum is over all chiral primary field representatives. Inserting the

fusion coefficients of 0, h, u(l). and so (2d) then gives

(2ai,A2J
Ai,mi .

A2,m2
~~

E Xia(^mn,- E X^or
Am, À m

( A.,A,m,0) ch prim (A,A,m v) ch prim

-m\mi

) m2 (4.141)

Thus, it is necessary to know which A, m labels yield, for fixed A. a

representative of a chiral primary field. To this end, use the fact [138] that

any Ramond ground state has a representative (A, A, m, a) with

(A, m) + (Pf), 0) = w(A + pB), (4.142)

where pf, and pg arc the Wcyl vectors, and where w runs over the minimallengthrepresentatives.W(g/fy),oftheWcylgroupcoset\\T(G)/W(H).ThewGW(^/h)canalsobeuniquelycharacterizedbythefactthatAincq.(4.142)isanintegrablehighestweightoff)atthelevelofinterest.In(4.142),misdeterminedbytheembeddingoftheu(l)factoring,andtheso(2d)representationaisthespinor,s.orconjugatespinor,c,ifthesignofwis+1or—1,respectively.UsingspectralflowtotheNSsector,givenby(0,0,mo,s),foraparticularmo,asolutionof(4.142)isseentocontributesin(4.141)withasignequaltosign(u').However,notallRamondgroundstatesrepresentativesarcoftheform(4.142).OnealsohastoimplementtheidentificationrulesthatdonotchangeagivenA.Theseidentificationsintroduceanadditionalsigniftheyactnon-triviallyontheso(2d)label.Summingup.onecanwrite(4.141)inthe
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compact form

Al,TOl

(îmm) T = EG<2 E E'e^m H'N^ (9-m+mT^
A wW(g/t)) (A,m)

(4.143)

where ^ is over all those (A. m) that arc related to (4.142) by a field iden¬

tification in the denominator and in the so (2d) factor (which determines the

additional sign e = ±1).

Examples

As a first example, reconsider the intersection of the A = L = 0 states

of the N = 2 minimal models, su(2)fc x so(2)i/u(l)2h. Here, W(G/H) =

W(SU(2)) consists just of two elements, namely of the identity w0(l) = I

and of wi(l) = —I. Furthermore. m0 = 1, and w0(0 + p5u(2)) _ rrio = 0,

u'i(0 + psu(2)) — mo = —2, so that there arc two terms in the intersection

matrix,

±U] = l-92. (4.144)

This reproduces the result (4.39) (modulo reducing the size of the matrix

g = g2h = 92(k+2) in order to avoid redundancy).
The second example arc the models su(3)fc/u(2). The full coset reads

su(3)fc x so(4)x
(4M5)

su(2)fc+1 x u(i; bh

where h = k + 3. Primary fields in the coset arc labelled by allowed field

identification orbits of

((h,l2),X,m,a) , (4.146)

where l\, /2, A > 0, l\ + l2 < k, X < k + 1. m is defined modulo 6/i and a is

scalar (0) or vector (v) in the NS sector and spinor (s) or conjugate spinor

(c) in the R sector.

Fix (l[, 1'2) and (/'/, l2), and consider boundary states with varying A and

m. a = 0. Then the intersection matrixofthosestatesisî{i'1,i'2),{i'{,i'é)=E^iÄi'.^')^i-'2)'(4.147)(h,h)
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where the A/'s are the su(3)fc fusion coefficients, and ï(ilti2) is the contribution

of all ground states in the open string R sector that can occur for fixed (l\, l2),
modulo field identification. This reads explicitly,

J(ZliIa) = Nhg-h-*' - Nh+l2+1g-w>+3

+ Nl2g2l^+b - Nk+^hg-^2l^ih

+ Nk^l2g-l^+:i+:ih - Nk+i_l2g^+l^ih
= {Nhg-11-^ - Nh+h+1g->+3 + Nhg2l^+b){\ - Nk+1g:ih).

(4.148)

Here and from now on, the N's will be reserved to denote the su(2) fusion

matrices. The matrix g is 6h x 6h dimensional. The terms on the RHS of

(4.148) correspond, respectively, to the occurrence of the fields

(M2).Z1,Z1 + 2/2,0)
(/1./2)./1 + /2 + l./1-/2-3,v)

= ((fc -h- l2, h). k-h-l2,k + h- l2, 0)

(/1./2)./2,-2/1-/2-6,0)
= ({l2,k - h - l2).l2,2k - 2h - l2,0)

(h.l2)-k + l-l1Jl + 2l2 + 3h, v) (4.149)

= ({h,h),h.h + 2l2.0)
(h. l2). k-h-l2,h-l2-3 + 3/i, 0)

= ((fc -h- l2, h). k-h-l2,k + h- l2,0)
{h.l2).k + l-l2, -2/x - l2 - 6 + 3/i, v)

= ({l2,k-h-l2).l2,2k-2h-l2,0)

in the open string sector. According to (3.51), the fields with o = 0 contribute

with a plus sign and the fields with a = v with a minus sign; this explains
the signs in (4.148). The structure of (4.148) is as expected from (4.143).
The first bracket

isthesumovertherelativeWeylgroup,whilethesecondimplementstheidentificationwhicharctrivialinthenumeratorofthecosct.4.4.4SomepropertiesoftheintersectionindexTheintersectionindexofboundarystatesinKazama-Suzukimodelshassomeratherinterestingproperties,whichnicelyillustratethegeneralstructureofM=2BCFT.Fulldetailswillnowbeworkedoutforthesu(3)fe/u(2)models.Thegeneralizationtoothermodelsshouldbestraightforward.
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The Cardy construction yields a list of boundary states labelled by the

primary fields of the coset, and the intersection index I between any pair of

them, as computed above. The intersection index gives the set of boundary
conditions the structure of an integral lattice. In string theory, this lattice

is naturally interpreted as the lattice of RR charges, of rank equal to the

dimension of the relevant chiral ring. cq. (4.134). From unitarity of the

matrix of Cardy coefficients, it follows that the set of Cardy states span this

lattice, but a priori, it is not clear that they contain an integer basis. It

turns out, however, that such an integral basis is provided by the states with

A = 0. Indeed, as far as RR charges arc concerned, all other states can be

considered as integral linear combinations of (a subset of) the A = 0 states.

These are thus the analogs of the basic L = 0 states of the minimal models,

and in fact they can be viewed as the D-branc states with lowest mass if one

resolves the singularity by switching on ji in (4.136).
In order to simplify notation, notice that from the formulae above, it

is obvious that a state with (representative) label (A. A, m. 0) intersects all

other states with a minus sign relative to the state (A. A, m. v) (branc and

anti-brane). Thus, one can immediately restrict attention to, say, a = 0

states. Furthermore, in many instances there arc identification rules that arc

trivial in the numerator of the coset, and this leads to a further reduction of

the labels among A = 0 representatives.
Consider the favorite example, su(3)fe/u(2). From (4.147)and (4.148), one

deduces the basic intersection matrix of the states with A = 0 representatives,

îm = ^:S(o,o) = ! - tftf3 + 9" - Nk+1g"h + Nkg^ -
Nk+1gf=(1-Nk+1g3h)(l-Nl9*+g&).(4.150)SuppressingtheA=(0,0)label,theremaininglabelsarc(A.m,0).NotethatfortheA=0states,misalwaysamultipleofthree,andonemaythereforereducethesizeofthe^-matrixaccordingly:g=<?6(fc+3)~^#2(fc+3)•ThecosetrulesrequireA/2+ra/6tobeinteger,andmoreoveridentify(A,m,0)with(k+1—A.m+3/i,v).Therefore,thefollowing"'standard"rangeisnatural,A=0,...,k+1,m=3m'withm'=A,A+2,...,2k+2-A.(4.151)Nowletl[=A7/m'-X(4-152)Thestandardrangecanthenbemoreconciselyexpressedas.l[,l'2>0,l[+l'2<k+l.

(4.153)
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This looks like the labels of the intcgrablc representations of su(3)fc+1 (where
the level is by one higher than what appears in the coset [137]). This point
of view is sometimes convenient, but as will be clear later, the labelling in

terms of A and m reflects more naturally the underlying algebraic structure,

which is related to the u(2) fusion ring.

It is easy to sec that restricting the labels to l[ + l2 < k, which corresponds
to the intcgrablc representations of su(3)fe, and ordering the states according
to increasing V2 and l[. the reduced intersection form, denoted by J^2^ =

-Z"(oo)(oo): is upper triangular with 1 on the diagonal. Its rank is (k + l)(k +

2)/2, which is equal to the dimension of the chiral ring of the coset model.

The A = 0 boundary states with l[ + l'2<k thus yield a complete basis of

the charge lattice, and what remains to be shown is that all other boundary
states can be obtained from them via integral linear combinations. As far as

the rest of the A = 0 states is concerned, namely the ones with l[ + l'2 = k + 1,
this can be seen in the following way. Simply observe that the formal sums

of states

{QJ'2) + (l,ï2) + ... + (k+lJ2) (4.154)

(assuming they arc mapped back to the standard range with an appropriate
minus sign) do not intersect with any other state, and so correspond to null

eigenvectors of J. This shows in a direct way that (the charges of) the states

with l[ + 1'2 = k + 1 can be written as integral linear combinations of the

states
withl[+1'2<k.ToshowtheanalogousstatementforthestateswithA>0.itisconvenienttouseagainmatrixnotationforthecharges.Thus,oneseeksmatricesofchargevectors,<3(z1,z2)A^mwith{li,h)fixed,satisfying^i^XiiVZ)=Qli'vi'jX(o,o)(o,o)Q{i'{,i'i)(4.155)Thesechargevectorscanbeobtainedasfollows.FirstdefineQ(h,h)=Nhg-h-2h+Nh+1g-h-2l2+3+...+Nh+hg-h+h+Nh+l2_ig-h+1^+...+Nhgh+2h.(4.156)Then,ifh>l2Q{h,h)=Q{h,h)+Q{h-i,h-i)^1"Q(h-h,o).

(4.157)
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and the analogous expression if l2 > lj_. Indeed, a simple computation shows

î(0M0fi) Q(hM = (1 " AW") [Nhg-h-2h - Nll+h+1g-h+l*+3

+ Nl2gh+2h+t> - N,ig-h-2h+3
(4.158)

_l_ at n-h+h+Z Kf J2+2/1+3

= l(o,o)(h,i2) ~ Z(o,o)(h-i,i2-i) >

where the second term is absent if l± = 0 or l2 = 0. Therefore, summing up

Q as in (4.157), one obtains,

2(o,o)(o,o) Q(Zi,z2) = Z(o,o)(h,h) (4.159)

With some more effort, one can check that indeed the Qs satisfy (4.155).
The above considerations can be made more transparent by associating

a graph with the basic intersection index (4.150). whose nodes correspond
to boundary states and oriented signed links between them encode their

intersection. Such a graph (omitting the arrows) is shown for k = 2 in fig.
4.2. In this picture, the fat lines denote the sub-graph X'2,21 of the integral

homology basis, which corresponds to the fusion graph of su(3)2 (by change
of basis it can be put into the form of the D6 Dynkin diagram, which reflects

the equivalence of the KS model su(3)2/u(2) with the minimal model of type

D6). Note that the extended graph looks similar to the fusion graph of the

integrable representations of su(3)3, but in fact, the dashed links really make

it into a fusion graph of u(2). It is also quite instructive to represent the

charge vectors (4.157) of the A > 0 states graphically. Fig. 4.3 shows those

A = 0 states whose charges add up to the charge (5(/i,z2),A,m-
The generalization of (4.150) to all KS models of the form su(n + l)k/u(n)

is straightforward. The A = 0. a = 0 states intersect as

j[n,k] _ j[n,k] = 1 _ N[i]gn+l + N[2]g^+D + .... + (_l)«ff«(n+D

+ (-l)n+1A^-(n+1^ + {-l)n+2NAl]g-{n+^h+{n+^ + ...

+ (_iYn+1NJg~{'n+t)h+n{'n+l)

+ ^_l^n+l)(n-ï)Njn_ig-(n+l)(n-ï)h + _ _ _

+ (_i;\{n+l){n-l)+nNjn_ig-(n+l)(n-l)h+n{n+l)

= (1 - N{i]gn+1 + N[2]g2{n+i) + .... + (-1)^("+1))
x (1 + {-l)n+iNjg-{n+1)h + + (-l)(n+VNjn-ig-(n+Wn-Vh)

(4.160)
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Figure 4.2: The intersection graph j'2'2! of A = 0 boundary states of the

5u(3)2/u(2) KS model. The fat lines represent the sub-graph jl2'2! of the

integral homology basis, which coincides with the fusion graph of su(3)2. The

open dots denote extending nodes, which give the fusion graph of su(3)3; the

dashed links extend this further to the fusion graph of u(2).

Here, N[t] is the fusion matrix of the i-th fundamental representation of SU(rz)
at level k = h — n, and (0, J^n\ (n + l)h. vn+l) = Jn+l is the simple current

implementing the coset rules that act only in the denominator, with Nj

the fusion matrix of J = J^n\ Due to redundancy the u(l) fusion matrix

g
=

gn(n+i)h can be reduced in size by a factor of n + 1.

Similarly to the su(3) example discussed above, the coset identification

rules allow the reduction of the A = 0 states to a set of labels in one-to-one

correspondence with the integrable representations of su(n + l)fe+1, which is

at one level higher than the CFT suggests. The intersection matrix j\n,k^

docs not have full rank and thus should be viewed as an intersection form of

an over-complete basis. Restricting to boundary states corresponding to level

k, the resulting reduced intersection matrix jln'fe] becomes upper triangular
and has full rank (given by (4.134)). The vanishing relations are analogous
to the su(3) case, and the generalizations of the charge vectors (4.157) arc

rather obvious, in particular in view of the graphical presentation in fig. 4.3.

One thus obtains a basis for the charge lattice also in the general case. A

more formal understanding of these relations should be rather interesting to

develop.
Note that the graph of the symmetrized reduced matrix X'n'fcl,

CM =IM + (IM)f) (4.161)
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Figure 4.3: Charges of A > 0 states in a Kazama-Suzuki model of type

5u(3)fe/u(2). The parallelogram is twice the standard range for A = 0 states

and the fat part of the grid inside is a summation region. For a given

{{h, h)- A. m) state (here l\ = 3. l2 = 2), it shows the expansion of the

vector Q^^xm' cq. (4.156). To obtain the charge Q(ilti2)Xm >
onc has to

sum over all regions with the same shape and center, and smaller size as the

one shown here.

which represents the intersection index for a complete homology basis, coin¬

cides with the fusion graph of su(n + l)fc; this generalizes the coincidence of

the Ai+i Dynkin diagram with the su(2)k fusion diagram discussed in section

4.2. It also reproduces and clarifies, from a BCFT point of view, the con¬

nection between the resolution of the singularities (4.136) and the Vcrlinde

fusion algebra for su(n + l)fc. Such a relation had been conjectured by Zuber

[146] and others and was proven in [147].

4.4.5 Quiver representations

A quiver (or quiver diagram) is a graph consisting of a set of points and a

set of labeled directed arrows between them. The graphs associated to the

intersection forms (4.150) or (4.160) arc examples of quivers. To any quiver,
there is an associated path algebra, and onc may study the representation
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theory of this algebra. The idea underlying the recent proposal of Douglas
and coworkers (sec [94] and references therein; see also [149. 88] for short

introductions and further references to quivers) is that, quite generally, the

collection of all D-brancs in a string compactification can be built up from

the representation theory of an underlying quiver.
Consider as an example again the su(3)5/u(2) Kazama-Suzuki model.

Fig. 4.4 shows the corresponding quiver in the most natural, manifestly Z5

symmetric form.

Figure 4.4: The intersection graph of fig. 4.2 in a manifestly Z5 symmetric
form.

Representations of a quiver arc partially characterized by a '"charge vec¬

tor'', which to each node gives the dimensionality of an associated vector

space. The total representation space is the sum of all these vector spaces.

In this language, the elementary A = 0 states correspond to the simplest rep¬

resentations of the quiver, in which only a single node has non-zero charge.
The states with A/0 then correspond to higher dimensional representations,
and their charge vectors are precisely given by eq. (4.157).

It turns out that the quiver in fig. 4.4 has a rather simple representation

theory, due to the fact that its generalized Cartan matrix C, eq. (4.161), is

positive definite. There arc only finitely many indecomposable Schur roots,

each yielding a representation without moduli space. This is related to the

fact that C can be transformed by change of basis to the Cartan matrix of De,
and the quiver representations correspond precisely to the roots of the Lie

algebra D&. In CFT language, this simplification is due to the fact that the

su(3)2/u(2) model is in fact isomorphic to the su(2)10/u(l) minimal model

with D6-typc modular invariant: in other words, the M = 2 W-algcbra is
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a simple-current extension of the M = 2 Virasoro algebra. The interesting

point is that the list of Cardy (and hence symmetry preserving) boundary
states in the KS model contains only 40 out of the 60 representations of the

quiver. The missing states are symmetry breaking and can be constructed

using methods of [49. 50].16
The situtation becomes much more involved for models at higher level,

which arc irrational over the M = 2 algebra. The states obtained from

Cardy's construction cover only a very small subset of all possible J\f = 2

supcrsymmctric ones. The parallel statement about the quiver is that the

uncxtendcd Cartan matrix of the quiver becomes indefinite, and hence there

arc infinitely many irreducible representations.

As a second example, consider the model su(3)3/u(2). The ten dimen¬

sional uncxtendcd Cartan matrix of the corresponding quiver has two zero

eigenvalues, and the charge lattice is of type Eg x U x U, where U corre¬

sponds to a null direction. This is exactly as expected from the geometry of

the triangle singularity [150] of type T2ts^, described by the Landau-Ginzburg

potential for this Kazama-Suzuki model. The states obtained from CFT turn

out to correspond to the roots of E$ plus a few imaginary roots, compared
to the infinite number of positive roots of the hyperbolic algebra associated

with the Cartan matrix.

These results arc certainly consistent with the idea that the representation

theory of quivers organizes boudary conditions in J\f = 2 supcrconformal field

theories, but more work is clearly needed. A rather important problem in

this context would be the reconstruction of boundary states from given quiver

representations, which arc—at least in some cases—easier to obtain.

4.4.6 Relation to Grassmannians

It was mentionncd above that Kazama-Suzuki models also have a well-known

relationship to Grassmannians. In the bulk, this is the coincidence [10] of

the chiral ring of the KS model su(n + l)k/u(n) with the classical cohomol-

ogy ring of the Grassmannian space Gr(n,n + k) = \J(n + k)/U(n) x U(fc).
Note that a Grassmanninan has positive Chcrn class and that therefore theassociatedcr-modclisnotconformai.However,atopologicalA-modelanditsringofobservablescanstillbedefined,sinceKählcrityissufficientforthis.TherearctwocrucialdifferencesbetweentheKSmodelandtheGrass¬mannian.Firstly,thecorrectstructuretoconsiderontheGrassmannianisthequantumcohomologyring,whichisadeformationoftheclassicalcoho-mologyring,andtheformerreducestothelatteronlyinthelargevolume16Itisshownin[109]howallofthesestatescanbeconstructedusingmethodsof[51].
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limit. Secondly, even in the large volume limit, the U(l) charges of the ring

on the Grassmannian arc integer, while they arc certain fractional numbers

in the KS model. The isomorphism between the two rings apparently has its

origin in the group theory that determines them, rather than in an identity
of the field theories.

In the classification program for J\f = 2 topological field theories [140],
there is besides the chiral ring a second type of invariants, monodromy in¬

variants, that play an important role. For Landau-Ginzburg models, these

invariants can be defined as the number of solitons between the vacua of

the theory. In geometry, soliton numbers arc then also computable from the

intersection of vanishing cycles. In the context of a-models on Kahler man¬

ifolds, which arc mirror to the Landau-Ginzburg theories [117], the soliton

numbers become intersection numbers of certain exceptional collections of

bundles (helices) over the Kahler manifold [29]. Quivers arc also natural in

this context [149]. (Sec also [124] for investigations of the Grassmannian

cr-modcl and a connection with a generalized McKay correspondence).
The relation between Grassmannians and Kazama-Suzuki models now

reappears in the open string sector in the following disguise. If Xcrass is the

upper triangular intersection form of the helix on the Grassmannian, and

Xks = J["'fcl the corresponding object in the Kazama-Suzuki model, then the

relation

XGrass = (%Ks)n (4.162)

turns out to hold. The interesting point is that while a Grassmannian o-

model is certainly not in the same class of J\f = 2 field theories as a Kazama-

Suzuki model, the Grassmannian can be viewed as a sort of elder cousin of

the Kazama-Suzuki in the sense that the intersection indices arc related as

in eq. (4.162).

Appendix 4.A Phase symmetries and the labelling of

boundary conditions in Gepner models

It is clear from section 4.3.2 and 4.3.3 that the A- and B-type boundary
conditions in Gepner models are organized by the group of phase symmetries
of the Gepner model, as follows. Denote by

gcr, = XuZfh (4163)

the group of phase symmetries of the minimal models with levels k,n i =

1,. ..

, r, after fermion alignment. For simplicity, n + r will be assumed to be
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17
even.

Assume that fermions are aligned and A and S = 0 are fixed. Then, in

Cwsusy, the range of allowed (M,) labels for boundary conditions, denoted by

Mc
y

= {(Mi), U + M, = even} , (4.164)

is one-to-one to Ç^SUSJ. But _/Vfcwsus> is not a group!
The group QphSUSi has a natural pairing X given by monodromy, and

A4cwsusy has a natural Qp^ausi action. "Dividing out" a subgroup Q C G^^
yields a new theory Cg with phase symmetries

ög = {Je ögT", X(J, K) = 0 for all K e Q^} . (4.165)

One the other hand, A-type boundary conditions in Cg are labelled by

orbits,

MCe = {[(Mu...,Mr)]g}. (4.166)

It is easy to see that the two sets Ç ? and AiCg are still in one-to-one cor¬

respondence. In particular, dividing out the maximal phase symmetry group

ömirr yields the mirror model, and A-type boundary conditions in this model

(equivalently, B-type boundary conditions in the original model, obtained by

only the U(l) projection) are in one-to-one correspondence to the surviving

group £phmi" = ZH.

This generalizes easily to the statement:

In a given theory Cg obtained from Cwsusy by "dividing out" Q,

A-type boundary conditions with fixed A and S = 0 are in one-

to-one correspondence with the group of surviving phase symme¬

tries, while B-type boundary conditions are in one-to-one corre¬

spondence with the complementary group of phase symmetries.

As always, it is important to notice that this one-to-one correspondence is

not canonical.

Also, it should be stressed that this rule does not take care of fixed points.
So far it is not known whether there is a universal statement for the appear¬

ance of fixed points. However, the procedure in a given case is quite clear,

as demonstrated above. It suffices to determine which combinations of /,-'s
occur inQ.ThenallstabilizershavetheformofaproductofZ2-s,thesimple-currenttwistonthestabilizersismaximal,andtheuntwistedstabilizeriseithertrivialorZ2.7Ifn+risodd,onecan,forexample,appendatrivialfactorwithko=0.
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Chapter 5

Conclusions

Since their discovery. D-branes have been playing an ubiquitous role in string

theory. It is very likely that this will remain so in the near future, and it

is generally expected that D-branes will also enter at some level in a future,

more fundamental or "axiomatic'*, formulation of the theory. Along the

way towards this goal, it is therefore an important task to gather as much

information about the properties of D-branes as possible.

Adopting the worldsheet perspective, the work presented in this thesis

has traced out the way between superconformai boundary conditions in (ra¬
tional) CFT (chapter 2) and D-branes in string theory. It has thereby led

to a good understanding of the various consistency conditions imposed on

D-branes from conformai- and super-symmetry, their intuitive geometric in¬

terpretation, and their implementation in an abstract algebraic approach,

(chapter 3). These results liberate the mathematical power of conformai

field theory for many further investigations of D-branes. The general theory
has been illustrated in examples in chapter 4. In these examples, it was also

shown in several places how the algebraic methods can be linked back to

geometry.

One of the outcomes of these investigations is the confirmation that D-

branes in the stringy regime can certainly not be described by classical geom¬

etry alone. Conformai field theory sheds light on some of the limitations. One

example is the truncation of the spectrum of symmetry preserving D-branes

to a finite number in theories which are rational over some chiral algebra. In

the context of J\f — 2 minimal models, this reproduces the finiteness of the

spectrum of BPS states in SYM theories at strong coupling, see section 4.2.

Such a truncation would not be expected purely from classical geometry or

classical field theory.

Another interesting and new example stems from the properties of fixed
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point resolved B-type D-branes in Gepner models in section 4.3. It was

argued there that there do exist D-branes configurations which intrinsically

carry an enlarged unbroken gauge group but are nevertheless elementary. The

main point in the argument is the existence of a "simple-current twist" on

the stabilizer of B-type boundary conditions of fixed point type, which forces

the minimal wrapping number to be larger than one. From a combinatorial

point of view, one might then suspect a relation to torsion in homology or K-

theory. But the match does not seem perfect. Also note that the construction

involves two different alternating bihomomorphisms on two different groups,

the antisymmetric part of X on Çm[rr and the modified simple-current twist

F* on <SA. Usually, X — Xf is identified with discrete torsion in orbifolds,
which in turn can be related to the existence of a non-trivial £>-field back¬

ground. If one accepts that the combinatorial role of discrete torsion is here

played by F* rather than X — X*, one is led to suspect an interpretation
in terms of twisted K-theory groups, whose relation to D-brane charges in

-B-field backgrounds have attracted some attention lately (see [96, 151] and

references therein).
Of course, it can not be excluded at the present stage that the fixed

points and their resolution can be understood using more geometric methods,
such as the Beilinson inspired quiver proposal of Douglas et al.1. However, a

pragmatic attitude is maybe more adequate. Indeed, it must not be expected
that all kinematical, let alone the dynamical, properties of D-branes have an

interpretation in classical geometry.

But the result about fixed points and their resolution does have a physical

relevance, since it provides a new mechanism for obtaining non-Abelian gauge

symmetries in type II string compactifications, purely within the conformai

field theory of (tensor products oî) J\f — 2 minimal models.

On the other hand, and this has also become clear in the course of this

work, conformai field theory does not open every door. In particular, the

fact that many constructions so far rely on rationality over some chiral al¬

gebra is a rather severe limitation, at least at the practical level. The most

pressing problem is that the rational methods always lead to a finite number

of boundary conditions, in situations where on general grounds one expects,

or for specific reasons knows, that there is an infinite number of branes.

Thus, algebraic and geometric methods give complementary and indepen¬
dent information about D-branes, and allow mutual testing. It is therefore

gratifying that certain links between conformai field theory and geometry

remain and can be given explicitly. The final version of string theory, of

1In fact, this is a very non-trivial test of the proposal.



125

course, should contain a unified framework also for D-branes. Depending

on taste, one expects "quantum geometry", "quantum algebraic geometry",
"non-commutative geometry", or simply "M-theory".
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