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Kurzfassung

Gegenstand der vorlicgenden Abhandlung ist die Bezichung zwischen Rand-
bedingungen in zwei-dimensionalen, AW = 2 supersymmetrischen und konfor-
men Quantenfeldtheorien auf der cinen Scite, und D-brancs, dic als ausge-
dchnte geometrische Objckte in nicht-perturbativer Stringthceorice auftreten,
auf der anderen. Das Hauptforschungsinteresse gilt den Eigenschaften von
D-brancs in nicht-klassischen oder stark gekriitmmten Hintergriinden. Es wer-
den in dicser Arbeit Methoden der konformen Feldtheorie auf Weltfachen mit
Randern entwickelt und zum Studium der Quantengeometric von D-brancs
angewendct.

Das crste Resultat, das in dicser Arbeit vorgestellt wird, ist cin Beitrag
zu dem Problem, Randbedingungen in rationalen konformen Feldtheorien zu
definicren.  Solche Theorien sind auf geschlossenen Riemannschen Fléachen
durch cine chirale Symmetricalgebra und cine modular invariante Toruszu-
standssumme gekennzeichnet. Das Problem, Randbedingungen zu definieren,
hangt von beidem ab—Randbedingungen miissen cinerseits nicht dic gesamte
Symmetric der geschlossenen Theorie erhalten, und durfen andererseits nur
Felder cinschlicssen, dic in der Zustandssumme vorkommen. Nun sind dic
meisten modularen Invarianten in rationalen konformen Feldtheorien vom
simple-current Typ, und kénnen unter Umstanden cine erweiterte chirale
Symmetric aufweisen. Das Problem, das hier behandelt wird, ist, alle Rand-
bedingungen zu bestimmen, die die nicht erweiterte chirale Algebra erhalten,
fiir cine belicbige modulare Invariante vom simple-current Typ.

Der Hauptteil der Arbeit handclt von Feldtheorien, dic zusatzlich zu kon-
former Invarianz N = 2 Supersymmetric besitzen. Solche Theorien treten
in der storungstheorctischen Definition auf der Weltfliche des Superstrings
auf. Zusatzliche Einschrankungen sind notwendig, um Stabilitdt und cin
Raumzcit-supersymmetrisches Spektrum zu crhalten. Fur o-Modelle ist das
Kriterium, dass dic Ziclmannigfaltigkeit cine Calabi-Yau Mannigfaltigkeit ist.
In ciner abstrakten algebraischen Konstruktion konnen die notwendingen
Projcktionen ausgchend von ciner belicbigen AW = 2 rationalen konformen
Feldtheoric ausgefithrt werden.

Einc mikroskopische Beschreibung von D-brancs erfordert das Einfithren
von Weltfachen mit Réandern, und dic Bedingungen fiir Supersymmetric
miissen neu analysiert werden. Im Besonderen erklart die vorliegende Arbeit,
wic dic Projcktionen, dic im abstrakten Rahmen der algebraischen konformen
Feldtheoric auftreten, in systematischer Weise behandelt werden kénnen, und
wic dic wichtigsten Eigenschaften von D-brancs in diecsem Zugang kodiert
sind.

Dic allgemeine Theorie wird anschlicssend in ciner Anzahl von Beispic-
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len illustricrt, namlich dem zwei-dimensionalen Torus, AN/ = 2 minimalen
Modellen, Gepner-Modellen und A = 2 Cosct-Modecllen (Kazama-Suzuki-
Modecllen).

Gepner-Modclle sind ausgezeichnete Beispicle, in denen rationale kon-
forme Feldtheorien im inneren Teil ciner Stringkompaktifizierung verwendet
werden.  Sic werden aus Tensorprodukten von AV = 2 minimalen Modellen
aufgebaut. Das wichtigste ncuce technische Resultat zu Gepner-Modecllen ist
dic Auflésung von simple-current-Fixpunkten, dic in der Konstruktion von B-
Typ Randbedingungen auftreten. In der physikalischen Interpretation fihrt
dics zu cinem interessanten nceuen Mechanismus fiir die Erhohung der Eich-
symmetric auf D-brancs. Weiterhin wird in zwei Beispiclen gezeigt, wice sich
dic Bezichung zwischen Gepner-Modcllen und Calabi-Yau-Hyperflachen in
gewichteten projektiven Réumen auf Randbedingungen und D-brancs aus-
dchnen lésst.

N = 2 Cosct-Modelle, dic dic minimalen Modelle als Spezialfall enthalten,
sind cine weitere Klasse von Beispiclen von rationalen konformen Feldtheo-
ricn mit A" = 2 Supersymmetric.  Einc Untermenge von superkonformen
Randbedingunen in dicsen Modcllen kénnen iiber die Cardy-Konstruktion
definiert werden. Uber ihre Schnitteigenschaften erhalten die Randzustinde
cine geometrische Interpretation in der Homologic der Auflésung ciner zu-
gcordneten Singularitidt.  Ausserdem zeigt sich, dass dic strukturclle Ver-
wandschaft zu Grassmannschen Mannigfaltigkeiten im offenen String beste-
hen bleibt.
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Abstract

The subject matter of the present dissertation is the relation between, on
onc side, boundary conditions in two-dimensional, N = 2 supcersymmetric,
and conformal, quantum ficld thcorics, and D-brancs, which are extended
gcometric objects appcearing in non-perturbative string theory, on the other
side. The primary rescarch interest arc the propertics of D-brancs in non-
classical or strongly curved backgrounds. In this work, techniques of confor-
mal ficld theory on worldsheets with boundarics arc developed and applied
to study the quantum geometry of D-brancs.

The first result presented in this thesis is a contribution to the problem
of defining boundary conditions in rational conformal ficld theorics. These
theorics arc specified, on closed Riemann surfaces, by a chiral symmetry
algebra and a modular invariant torus partition function. The problem of
defining boundary conditions depends on both—boundary conditions may,
on the one hand, be allowed to break part of the bulk symmetry, and must, on
the other hand, only involve bulk ficlds that arc present in the bulk partition
function. Now most modular invariants in rational conformal ficld theorics
arc of simple-current type, and they may or may not cxhibit an enlarged
chiral symmetry. The problem which is trcated here is to determine all
boundary conditions that preserve the unextended chiral symmetry algebra,
for an arbitrary modular invariant of simple-current type.

The main part of the thesis deals with ficld theorics that in addition to
conformal invariance exhibit N = 2 supersymmetry. Such theorics appear in
the perturbative definition on the worldsheet of the superstring. Additional
restrictions arc needed to achicve stability and a space-time supersymmetric
spectrum.  For o-modecls, the criterion is that the target be a Calabi-Yau
manifold. In an abstract algcbraic construction, the necessary projections
can be performed starting from any N = 2 rational conformal ficld theory.

A microscopic description of D-brancs requires the introduction of world-
sheet boundarices, and the conditions for supersymmetry have to be reexam-
ined. In particular, the present thesis explaing how to deal in a systematic
way with the projections that arise in the abstract sctting of algebraic con-
formal ficld theory, and how the most important characteristics of D-brancs
arc cncoded in this approach.

The general theory is then illustrated in a number of examples, namely
the two-dimensional torus, N = 2 minimal modecls, Gepner models, and
N = 2 coset models (Kazama-Suzuki modcls).

Gepner models are examples in which rational conformal ficld theories
arc uscd for the internal part of a string compactification. They arc built
on tensor products of AV = 2 minimal models. The main new technical
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result on Gepner modecls is the resolution of simple-current fixed points that
appear in the construction of B-type boundary conditions. In the physical
interpretation, this leads to an interesting new mechanism for enhancement
of gauge symmetry on D-brancs. Furthermore, it is shown in two examples
how the connection between Gepner models and Calabi-Yau hypersurfaces in
weighted projective spaces can be extended to include boundary conditions
and D-brancs.

N = 2 cosct modcls, which contain minimal modecls as a special case, arc
another class of examples of rational conformal ficld theorics with N = 2
supcrsymmetry. A subsct of superconformal boundary conditions in these
modcls can be obtained by Cardy’s construction. Through their interscection
propertics, the boundary states receive a geometric interpretation in terms
of the homology of the resolution of an associated singularity.  Also, the
structural resemblance to Grassmannian spaces is found to extend to the
opcn string.



Chapter 1

Introduction

String theory intends to be a scrious candidate for a next unification step in
theorcetical physics. At the present state of development, quantized, super-
symmetric strings have convinced a significant part of the theoretical physics
community of their aptitude to describe, in a unified manncr, all clementary
particles and their known fundamental interactions, including gravity.

In twenticth century high-cnergy physics, fundamental interactions were
described by quantum ficld theories with gauge symmetries. At the currently
most fundamental testable level, physicists rely on the Standard Modcl of
particle physics, with gauge group SU(3) x SU(2) x U(1). It accounts for
the strong interaction and the clectro-weak interaction. The matter content
of the Standard Modcl arc the well-known three lepton gencrations, three
quark gencrations, and the as yet unsignificantly cstablished Higgs ficld. It
is gencerally expected that many ad-hoc features of the Standard Model can
be explained from unification at very high encrgics. The cnergy scale of this
Grand Unification typically is of the order 10'°GeV. This is much higher
than cnergics accessible with today’s accelerators, and just below the Planck
scale of 101%GeV, at which cffects of quantum gravity arc expected to become
rclevant.

Part of the appeal of string theory ariscs from its ability to account for
gauge theories in a unified framework in which symmetrics and gauge and
matter ficlds have a common, gecometric origin.

Besides unification, string theory offers the advantage of a better behaved
perturbation theory for the computation of scattering amplitudes for phys-
ical processes. For String Theory, the low-cnergy limit of these scattering
amplitudes—at today’s accessible high cenergics—takes the role played by
the classical limit for Quantum Mecchanics, the low curvature limit for Gen-
cral Relativity, or the low velocity limit for Special Relativity. As in these
historical examples, the existence of the limit, and the recovery of previously




CHAPTER 1 2 INTRODUCTION

known results, is the major touchstone for the theory and together with very
few (or even without?) non-trivial verifiable new predictions will suffice for
a general acceptance of string theory as an embracing physical theory.

In addition to its role for high-cnergy physics, “string thcory predicts
gravity” (E. Witten), in the sense that the spectrum of the quantized string
containg a spin two cxcitation, identifiable with the graviton. The classical
cquations of motion of General Relativity are recovered as the on-shell con-
dition of string perturbation theory. At the same time, string theory makes
a quantum theory of gravitation well-defined, at lcast at the perturbative
level.

String theory also has interesting conscequences for mathematics, more
particularly for gecometry. If string thcory contains a quantum version of
gravity, then, since gravity is fundamentally linked with the geometry of
space-time, it must be that strings probe a quantum structure of space-time
itsclf. In the mathematical part of the theory, the usual notions of classical
gecometry have to be abandoned, and must be replaced with new onces. In
other words, in string theory, spacc-time and its gecometry must become
derived concepts, and cannot remain fundamental or a priori. This aspect
of string thcory, which, honecstly, is largely undiscovered, is referred to as
quantum gcometry.

While many non-perturbative propertics of quantized strings—the very
definition of “non-perturbative string theory” included—are still out of sight
at present, string theory provides a fascinating guessing ground for theorctical
physicists scarching for a satisfactory, unified theory of space, time, and
matter.

1.1 String perturbation theory

The basic idea of string theory is that clementary particles—the “fundamen-
tal” constituents of matter—should not be pictured as pointlike objccets, but
rather as little strings—once-dimensional extended objects moving in space-
time. The following bricfly sketches the main steps from classical point-
particles to quantized superstrings. For textbook treatments of string theory,
see [1, 2].

m The classical action for a relativistic point-particle moving in space-time,
M, is cssentially equal to the length of the worldline v swept out by the
moving particle,

S(g.1) =m [ rlar. (1.1)
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where 7 is a coordinate along the worldline v C M of the particle, and m is
its mass'. The action depends on the choice of a metric g on M, which is
thought of as defining the “background” that acts on the particle.

m The classical description is good as long as S(g, ) is large compared to
the fundamental quantum of action, Planck’s constant A. This constant then
appears in the quantum mechanical description of the particle’s propagation
in M, for example in the study of path-integrals of the form

/ Dy 2Slo/h (1.2)

m [t is possible to let also other background ficlds, for example clectromag-
netic, act on the particle, simply by adding further terms to the action (1.1).
Howcver, the re-actio of the particle on the background is not described by
(1.1). In fact, alrcady the correct quantum mechanical description of interac-
tions of relativistic particles requires the framework of quantum field theory.
Quantum ficld theory and the Standard Modecl are extremely successful in
describing interactions of fundamental particles, but also have important
mathematical problems and well-known conceptual shortcomings. Most no-
tably, the gravitational interaction—mediated by the space-time metric g—
cannot be described in this way. “By a historical accident” in the late 1960’s,
high-cnergy physicists were led to try to overcome these shortcomings with
strings.

® Strings moving in space-time sweep out a two-dimensional surface, the
worldsheet . The classical action is proportional to the arca of X in space-
time, again computed with the help of a background metric g. Choosing for
Y a paramctrization (o, 7) and a metric h, and denoting by X : ¥ — M the
cmbedding into space-time, the classical action is?

S(g, X) = 47% /Z VR E g (X) 9uX* 95X dodr | (1.3)

where o is a fundamental constant with the dimension of a length squared.
Notice that the action(1.3) defines a classical ficld theory, in which the co-
ordinates X (o, 1) arc ficlds living on ¥. As bcefore, the action may be sup-
plemented with other terms to include more background (space-time) ficlds.
In particular, onc may add the coupling to a dilaton ficld, ¢, which is of the
form [, ¢(X)R, where R is the curvature of h.

» Armed with 100 years of experience with quantum theory, it is a simple

!Here and below, it is taken for granted that the understanding of the role of the speed
of light in theoretical physics is complete and allows setting ¢ = 1.
2To be precise, (1.3) is the generalization of the analog of (1.1) for a massless particle.
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matter to quantize (1.3), for example using path integrals. However, onc
would like to quantize respecting all classical symmetrics of (1.3). In par-
ticular, the classical action is conformally invariant, and the preservation of
this symmetry at the quantum level puts severe constraints on the classical
background. While the appcearance of the cquations of General Relativity
(for g) might be rather surprising, it is an cven more astonishing feature that
the classical equations of motion in string theory constrain cven the number
of spacc-time dimensions, to 26 for the bosonic string and 10 for the super-
string. Thus, the worldsheet theorics of strings arc conformally invariant,
two-dimensional quantum ficld theorics. It is mainly from this perspective
that strings will be studied in this thesis.

= That being so simple, it is natural to ask how to describe the interac-
tions of strings and the backrcaction on the background. Tt turns out that
intcractions can be accommodated in a simple fashion by allowing strings
to split and to join. More precisely, quantization of the action (1.3) on a
cylinder, ¥ = ST x R 3 (0, 7) corresponds to a single non-interacting string.
Considering the corresponding conformal ficld theory on worldsheets of more
complicated topology than the cylinder amounts to including interactions
of strings. In the perturbative prescription, the fundamental excitations of
the string arc interpreted as clementary particles and scattering amplitudes
for physical processes desceribing their interactions arce obtained from a sum
over all worldsheet topologics. Higher topologics are suppressed by powers of
gs = cxp(¢), which therefore plays the role of the string coupling constant.
® Supcersymmetry is a symmetry that relates bosonic and fermionic degrees of
frecdom of a quantum theory. The discovery of supersymmetry in the carly
1970’s was motivated in part by the tendency of supersymmetric theories
to have milder divergences as compared to ordinary quantum ficld theorices.
The main phenomenological interest for supersymmetry lics in the fact that
the supersymmetric version of the Standard Model predicts a convergence
of the coupling constants of the clectro-magnetic, the weak, and the strong
force at a single unification scale around 10Gev. The late 1970°s also wit-
nessed a major interest in theorics with local versions of supersymmetry,
yiclding supcrgravity theorics. Indeed, the improved convergence propertics
of supersymmetric theories led to the hope that gravity could be consistently
quantized after introduction of supersymmetry. Until today, local supersym-
metry still is an important ingredient for models of quantum gravity, mainly
as the low cnergy limit of superstring theory.

® Supcersymmetry was incorporated into string theory from the beginning.
The basic idea is to add fermionic degrees of freedom that propagate along
the string, in such a way that after quantization, the worldsheet theory has
supcrconformal invariance. In the development of string theory until around
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1985 it was realized that supersymmetry allows the construction of truly
consistent and phenomenologically interesting string models. It turned out
that the presence of extended worldsheet supersymmetry, i.e., from N = 1
to N = 2, allows performing the GSO projection that climinates the tachyon
from the string spectrum and guarantees space-time supersymmetry of the
resulting spectrum.  Also, it was shown that the uncompactified version of
the superstring, which naturally lives in 10 space-time dimensions is a sat-
isfactory quantum thcory, in which anomalics cancel by the Green-Schwarz
mechanism. Until 1985, then, the basic five types of perturbatively defined
uncompactified string theories had been discovered: Type I with gauge group
SO(32), type ITA and type IIB, and two heterotic theories with gauge group
SO(32) and E8 x E8, respectively.

1.2 String compactification

As explained in the last scction, strings require space-time to have a critical
dimension, which is 26 = 25 4+ 1 for the bosonic and 10 = 9 + 1 for the
supcrsymmetric string. Thus, if string theory describes the world of expe-
ricnce, which has dimension 4 = 3 + 1, it is natural to ask how this may
come about. A possible answer is that only 4 of the 10 (or 26) dimensions
arc actually extended to sizes larger than the Planck scale, and the remain-
ing 6 dimensions arc “curled up” and too small to be resolved. This means
that the background of space-time ficlds, or vacuum of the quantized string,
describes a manifold with 6 dimensions of typical size much smaller than the
remaining 4. To cnsure conformal invariance of the perturbative string the-
ory, and spacc-time supersymmetry for a stable vacuum, the vacuum must
be, to lowest order, a supersymmetric solution of the supergravity cquations
of motion. A carcful analysis of these equations of motions and supersymme-
try conditions reveals that the 6 compact dimensions must form a Calabi-Yau
manifold.

A closely related, if secemingly different, approach to compactification is to
dircctly specify a suitable conformal ficld theory for the internal part without
any rcference to a classical geometric space-time.

In cither case, the choice of the internal part of the compactification
has important conscquences for the physics in the external part, which is
the usual flat extended Minkowski space. As is familiar from Kaluza-Klein
theory, the spectrum of ficlds of the internal conformal ficld theory determines
the ficld content of the low-cenergy cffective theory in the external dimensions.
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1.3 Non-perturbative aspects, string
dualities, and D-branes

Interacting string theory contains two parameters along which the theory is
modified from the free case. On the one hand, there is the string coupling, gs,
that governs interactions among strings in space-time. The role played by g,
in the string loop cxpansion is similar to the role played by A in ficld theory.
On the other hand, also the worldsheet theory, which is a two-dimensional
conformal ficld theory, is not “frce”. “Intcractions” on the worldsheet arc
controlled by the string tension, o, or more preciscely by the scale of space-
time curvature in units of 1/¢/. The couplings in the low-cnergy cffective
theory depend on both g and o', In a first attack, o’ and g, arc treated as
perturbative parameters, leading to o-modcl- and string perturbation theory,
respectively. But then there are also quantum corrections to the classical
description that arc non-perturbative in the two couplings. The last ten
years of string theory have witnessed significant progress in understanding
these non-perturbative cffects.

Choosing a specific Calabi-Yau manifold as compactification space for the
superstring solves the zeroth-order requirement for a string vacuum. Possi-
ble quantum corrections to this classical solution arc tightly constrained by
symmetrics. For instance, the relevant symmetry algebra on the worldsheet
is the N = 2 super-Virasoro algebra [3], which combines two very powerful
algebraic structures: conformal symmetry in two dimensions [4] and N = 2
supersymmetry. It plays an important role in the problems treated in the
present thesis.

On the worldsheet, non-perturbative cffects are due to worldsheet in-
stantons, [5, 6] which arc topologically non-trivial embeddings of the world-
sheet into the target Calabi-Yau space. Worldsheet instantons correct string
scattering amplitudes—or cffective couplings of space-time ficlds—beyond o-
modecl perturbation theory. In string theory, the low-cnergy space-time ficlds
can be viewed as moving on the parameter space of the target manifold, and
the couplings as data from additional gecometric structurce on this parameter
space. Thus, onc may interpret worldsheet instantons as cffectively deform-
ing the classical paramcter space of the manifold into a “quantum moduli
space”. This quantum paramcter space is the relevant object for low-cnergy
physics. It can be regarded as a first glimpse into “quantum gecometry”, the
modification of classical gcometry described by string theory.

Exact results on the structure of the quantum moduli space of Calabi-Yau
manifolds for type IT and heterotic strings have been obtained by mirror sym-
metry [7]. A basic conscquence of supersymmetry is that the moduli space
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is locally a dircet product of two separate structures [8, 9]. From the point
of view of the Calabi-Yau manifold, these are the complex structure mod-
uli spacc and the Kéahler moduli space. The corresponding structures from
the space-time point of view arce, for instance, the vector- and hypermulti-
plet moduli spaces of the low-cnergy cffective theory of the type T string.
Non-perturbative corrections by worldsheet instantons only affect the Kéhler
moduli spacce and lcave the complex structure moduli space untouched. The
proposal of mirror symmetry [10, 11] is that to cvery Calabi-Yau manifold Y,
there is a mirror manifold Y* such that the quantum Kahler moduli space of
Y is isomorphic to the complex structure moduli space of Y* and vice-versa.
Thus, worldsheet instanton corrections of the Kéhler moduli space of Y can
be computed purely classically in the complex structure moduli space of Y™
[12, 13].

While non-perturbative quantum corrections on the string worldshecet are
under control at Icast conceptually, and partly also computationally, this is
not truc for non-perturbative corrections in space-time. The main result
of the “third supcerstring revolution” in 1995 was the access to certain non-
perturbative cffects through string dualities [14, 15]. Here, the word “duality”
refers to a non-perturbative cquivalence of physical theorics that look rather
different at the perturbative level. In other words, one and the same physical
theory admits sceveral distinet—dual—perturbative definitions, cach valid in
a different regime of paramcters. Mirror symmetry is actually an example
of a duality, albcit onc that docs not involve the string coupling, g;. The
current picture is that there is an extended “web of dualitics” that involves
and connccts all five perturbative string theories. This picture has also led to
the expectation that there is an underlying, even more fundamental theory
called M [16], that reduces to the various string theories in certain regions of
paramcter space.

An important role in the context of string dualitics is played by D-brancs.
The branes in question arose as certain solitonic solutions of the classical
supcrgravity cquations [17]. These solutions are extended in a certain num-
ber of space-time directions and include a non-trivial configuration of the
Ramond-Ramond (RR) ficlds. It was then noticed that string solitons are
the degrees of freedom that appear in non-perturbative scctors of and pro-
vide the link between, the various perturbatively defined string theories. The
non-perturbative character of these objects is casily scen. On the one hand,
the curvature of space-time diverges at the position of the brance, and per-
turbative string theory in the traditional sense breaks down. On the other
hand, they contain RIR field configurations, to which the clementary string
docs not couple.
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It was realized by Polchingki [18] that in fact there is an object in string
theory that docs carry RR charge, namely the boundary condition for open
strings [19]. Hence, brancs should be deseribed by letting open strings end
on them. The fact that the open string boundary conditions arc of Dirichlet
type in the directions orthogonal to the branc led to the name D(irichlet)-
branc. Upon quantization, the open strings represent the clementary degrees
of frecedom of the brane [20]. The open string picture also avoids the singular-
ity at the position of the branc [21], and hence gives an interesting alternative
approach to the exploration of space-time at small distances.

The role of D-brancs for string theory is twofold. On the one hand, they
arc fundamental for string dualitics as microscopic degrees of freedom. On
the other hand, when appropriately combined with orientifolds [22, 23] they
can be included in the background geometry, and thus multiply the freedom
of choice of a perturbative vacuum. In both cases, open string sectors with
appropriatc boundary conditions appear in the description. This necessitates
the study of conformal ficld theorics on the string worldsheet also in the
presence of boundarices.

1.4 Summary and outline

The subject of this rescarch arises from a combination of various topics that
were discussed above. The genceral goal is to develop techniques for finding
boundary conditions for open strings in type II string theory, to carcfully
analyzc the implications of supersymmetry, both on the worldsheet and in
space-time, for the construction, and to determine the conscequences for the
modification of gecometry described by strings and brancs. In the following
outline of the thesis, the references point partly to the places where this work
is published, and partly to additional litcrature which is relied upon in the
presentation of background material.

Chapter 2 contains a review of two-dimensional conformal ficld theory
with boundarics [24, 25]. The ideas arc developed along the guiding prin-
ciple that there are two conceptual stages of conformal ficld theory (CFT),
chiral CFT and full CET. Chiral CFT is the stage at which the chiral symme-
trics of the theory arc implemented. In fact, chiral CFTs can be completely
reconstructed from the representation theory of algebraic objects known as
vertex operator algebras. The step from chiral CFT to full CFT then is a
projection problem, subject to the physical requirements of locality, modular
invariance, and factorization. Without boundarics, the ficld content of a full
CFT is encoded in the modular invariant torus partition function. Boundary
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conditions can be understood as paramectrizing solutions to the projection
problem if the worldsheet of the full CET has boundarics. The sccond part
of this chapter presents results on the problem of defining boundary condi-
tions for rational conformal ficld theorics with arbitrary modular invariant
of simple-current type [26]. Simple currents are the invertible clements of
the fusion ring of a rational CFT, and constitute a powerful combinatorial
tool to analyzc modular constraints on a CFT. In particular, most known
modular invariants of rational CFT can be constructed with simple-current
techniques. These modular invariants may also exhibit an cnlarged chiral
algebra, but the boundarics will not be required to preserve this larger alge-
bra. Thus, the results presented in section 2.2 cover a rather general class of
situations in rational CFT with boundarics.

Chapter 3 turns to a sccond important ingredient of worldsheet theorices
for perturbative string theory: A = 2 supersymmetry. The first part of the
chapter is a review of o-models on Kéhler and Calabi-Yau manifolds, which
arc used as the internal part of compactifications of the type 11 string, and of
the definition of supersymmetric boundary conditions (D-brancs) for these
modcls [27, 28, 29]. The boundary conditions fall into two main classcs.
Those of A-type correspond to special Lagrangian submanifolds cquipped
with a flat U(1) connection, while those of B-type correspond to holomor-
phic objects such as stable holomorphic vector bundles. The second part of
the chapter explains the algebraic approach to string compactification and
boundary conditions therein. It is laid out in detail how the various projec-
tions can be taken into account in a systematic way in defining boundary
conditions [30]. Furthermore, the space-time supersymmetrics that arc bro-
ken or preserved by the boundary conditions arc identified, and many other
characteristics of D-brancs, such as their mass and Ramond-Ramond charge,
arc identified in the abstract setting. Furthermore, a genceral formula for the
interseetion index of two boundary states is derived [31].

Chapter 4 illustrates the genceral theory of chapters 2 and 3 in a large
class of examples. The examples show that the combination of algebraic
and gcomcetric methods leads to interesting results about D-brancs in the
strong-curvaturc regime.

Section 4.1 contains material about boundary conditions for the two-
dimensional torus. The main goal is to show that here the algebraic and
gcometric approaches lead to the same results. This also gives a good check
on the formalism and the developing intuition.

Section 4.2 reviews boundary conditions in A = 2 minimal models [32,
33, 29], and their relation to strings and brancs near simple singularitics of

ADE typc. The results about minimal models are also uscful input for the
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next scection.

Scction 4.3 then deals with Gepner modcls, which are built on tensor
products of N/ = 2 minimal modcls. A-typc boundary conditions in Gep-
ner modcls can be defined following the prescriptions of section 3.2. The
discussion is aimed in part at clarifying results that have appeared in the lit-
craturc [34, 35, 36]. B-type boundarics arc then constructed by making usce
of the sclf-mirror property of Gepner models. Namely, the Greene-Plesser
construction allows to reduce the problem to the question of boundary con-
ditions for simple-current modular invariants, for which the results of section
2.2 provide the clue. Fixed points under the projections arc identified and
resolved both for A- and B-type boundary conditions. In two examples [37],
the B-type boundary conditions of the Gepner are then related to geometric
objects on the associated Calabi-Yau hypersurfaces, following the work of
[32] for the quintic. The two models under considerations have the structure
of K3-fibrations over P'. The fixed points in B-type boundary conditions
can be interpreted in physical terms. The stabilizers arce realized only pro-
jeetively, and this implics that the worldvolume theory exhibits an unusual
cnhancement of gauge symmetry [38], somewhat similarly to orbifolds with
discrete torsion.

Finally, scction 4.4 analyzcs the propertics of boundary states in N = 2
cosct modcls based on Grassmannians Gr(n,n + k) [31]. The underlying in-
tersection geometry is given by the fusion ring U(n). This is isomorphic to the
quantum cohomology ring of Gr(n,n + k + 1), and thus can be encoded in a
“boundary” supcrpotential whosce critical points correspond to the boundary
states. In this way, the intersection propertics can be represented in terms of
a soliton graph that forms a gencralized, Z,, .1 symmetric McKay quiver.
Investigating the spectrum of bound states, it turns out that the states ob-
tained from rational conformal ficld thecory produce only a small subsct of
the possible quiver representations.

Chapter 5 contains conclusions.



Chapter 2

Boundary conditions in rational
conformal field theory

Worldsheet theories of perturbative string theory are conformally invariant
quantum ficld theorics (CFTs). This chapter is devoted to such CFTs, al-
lowing in particular the presence of boundarics, as necessary for a worldsheet
description of D-brancs. The first part of the chapter reviews certain aspects,
mainly of algebraic nature, of conformal ficld theory in two dimensions. Tt
is basced on [24, 25]. The sccond part is more specifically concerned with
boundary conditions for arbitrary simple-current modular invariants in ra-
tional conformal ficld theorics. This part contains results of [26].

2.1 Conformal field theory with boundaries

2.1.1 From chiral CFT to full CFT

For the constructions described below, it is necessary to distinguish two con-
ceptual levels of CFT, chiral conformal ficld theory (xCEFT) and full con-
formal ficld theory (full CET), and to understand the construction of a full
CFT as a two-step process. The underlying physical idea is to “split a CFT
into two chiral halves”, and to rccombine them afterwards by a projection.
Thus, xCET considers only chiral (left- or right-moving) degrees of free-
dom at a time. The large amount of symmetry implied by conformal in-
variance in two dimensions [4] imposes strong constraints on and greatly
simplifics the study of YCFT. To define a yCFT, it suffices to specify a chi-
ral algebra, which includes at least the (super-)Virasoro algebra, and a sct
of irreducible representations of the chiral algebra, closed under fusion. The
natural arcna for the Euclidean version of yCFT arc complex one-dimensional
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(supcr-)manifolds (complex curves). In a mathematical language, YCFT can
be reduced to the representation theory of the chiral algebra, formalized in
what arc known as vertex opcerator algebras.

Full CFT, on the other hand, contains both left- and right-moving degrees
of freedom. Typically, a full CFT is obtained from a xyCFT by a projection
opcration, in a way that will be deseribed further below.  All remaining
constraints on the theory, such as locality, modular invariance, factorization
constraints, cte., arc implemented in going from yCFT to full CFT. Ac-
cordingly, the definition of a full CF'T based on the data of a given yCFT,
amounts to finding a solution of these constraints. It is important to real-
izc that a string background can be defined only after a full CFT has been
constructed. For instance, modular invariance, required for integrating corre-
lation functions over the moduli space of curves, is satisfied only by full CFT.
But string theory also imposes constraints on the CFT that can be traced
back to the chiral level, such as worldsheet supersymmetry. In addition, the
choice of a particular D-branc background is cquivalent to the assignment
of Chan-Paton multiplicitics to the various possible boundary conditions on
worldsheet boundarics. Again, this is subject to certain conditions, such as
supersymmetry and absence of anomalies in the space-time theory.

While full CFT is the starting point of (perturbative) string theory, yCFT
also has numcrous and beautiful applications in physics and has found sound-
ing resonance in mathematics itsclf. An particularly nice example is the use
of xCFT for the description of incompressible quantum Hall fluids (sce [39],
and [40] for rcecent work on this problem).

The starting point of the discussion in this section is the description of
the “arcnas” on which the CFTs arc defined. Then a summary of yCFT will
follow, and, finally, the projection to full CFT is treated.

The worldsheet

A full CFT lives on a conformal manifold ¥ which might be unoriented
and can have boundarics. Topologically, such manifolds arc classified by
three quantitics: the number g € {0,1,2,...} of handles, the number b €
{0,1,2,...} of boundarics, and the number ¢ € {0, 1,2} of crosscaps. The
Euler characteristic (that determines the order in the string loop expansion)
of such a manifold is

X=2—-29—-b—c. (2.1)

To cvery such manifold, there corresponds a double cover X, which is an
oriented manifold without boundarics. The defining property is that X can



13 SECTION 2.1

be obtained from 3 by dividing out an orientation reversing involution o,
Y =%/c. (2.2)

The manifold ¥ is characterized topologically by its Euler characteristic or
its genus,

v =2-2§=2y. (2.3)

The choice of a conformal structurc on Y induces a complex structure on
f], which hence naturally is a complex curve. The space of conformal (or
complex) structures form the moduli space of ¥ (or 32).

In the study of correlation functions in CFT, the conformal manifolds, or
complex curves, appear with punctures, ¢.e., inscrtion points of ficld oper-
ators. The moduli spaces of an n-punctured complex curve will generically
be denoted by M(3,,), the corresponding universal covering space (the Te-
ichmiiller space) by T(fﬁn). For a corresponding conformal manifold, there
is a distinction between bulk and boundary insertions. The moduli space
with n bulk and m boundary inscrtions will be denoted by M(2,,), the
Teichmiiller space by T (X,m,).

The central idea is the following:

Full CFT on a conformal manifold X is constructed from
chiral CF'T on the double X of 3.

Chiral CFT

A YCFT is a quantum ficld theory ! on il, respecting the given complex struc-
turc. Explicitly, this mcans that the ficlds of such a theory arc holomorphic.
Among all ficlds of a xCFT, the local oncs arc distinguished. These local
chiral ficlds form an algebra of operator-valued distributions on the Hilbert
space of physical states. This algebra is called the chiral algebra of the theory
and is denoted by A. Among the ficlds gencrating A, there is the energy-
momentum tensor 77 of the theory. The cocfficients of the Laurent expansion
of T'in a chosen local complex coordinate z, L, then satisfy the commutation
rclations of the Virasoro algebra.

A unitary? YCFT with chiral algcbra A can be reconstructed from the
unitary representations of A [41]. Let A label a unitary representation of A,
and let H ), denote the corresponding representation space, which is a Hilbert

Lof a rather special kind. It is not a local quantum field theory in the usual sense.

2Unitarity is assumed here for simplicity. It is a reasonable requirement when one is
considering the internal part of a string compactification. However, in full string theory,
non-unitary theories do appear.
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space. To cach such representation is assigned a nonncgative number, Ay,
called the conformal weight of the representation. It is defined as the minimal
cigenvalue of the zero-mode operator, Ly, of the energy-momentum tensor,

A)\ = inf{(m,Lov,\> ‘ Uy € H)\, H’U)\” = 1} . (24)

In a consistent theory there is always a unique irreducible vacuum represen-
tation, w, characterized by the vanishing of the conformal weight, A, = 0.

Given two representations, A and g, onc can define their fusion, namely
a tensor product representation, A x g, which is again a unitary representa-
tion of A. A chiral algcbra is called rational if the number of incquivalent,
irrcducible unitary representations is finite. Let I denote the sct of such
representations.  For a rational chiral algebra, the tensor product of two
representations can be decomposed into a direct sum of irreducible unitary
representations. Thus, the set of unitary irreducible representations of a ra-
tional chiral algcbra, furnished with the tensor product, has the structure of
a commutative, associative ring. For Ay, Ay and A3 in I, let NV AAf », denote the
multiplicity of A3 as a subrepresentation in the tensor product Ap * Ap. The
multiplicitics NV /{\f », arc the structure constants of the ring and arc called fu-
sion rules; for a rational chiral algcbra, they are finite non-negative integers.
The vacuum representation, w, plays the role of the unit for the tensor prod-
uct, i.e., Axw = w*x A = A. For cvery irreducible representation A there is a
contragredient (or conjugate) representation AT with the property that AxA*
contains the vacuum representation w cexactly once as a subrepresentation.

Given a number 7 of irreducible unitary representations, Aq, ..., A,, the
lincar spacce of conformal blocks is defined as the space of invariant tensors,
i.e., of invariant lincar functionals, on the representation space of the tensor-
product representation Apx- - % A,. It actually turns out (sce [42]) that in the
definition of the tensor product representation Aq - - -x A, one can introduce
a dependence on n complex parameters 21, ..., Z,, which can be considered
as local coordinates of pairwise different points of the worldshecet 3. This is
how the representation theory of A yields back the yCFET. For this reason,
the space of conformal blocks,

Va(z, A1, -0 520, An) s (2.5)
depends on the complex parameters 21, ..., z,. Its dimension is given by
L - pmoONH2 L N
Ny =Ny..nn = Nio Vit N s (2.6)
M1y 5fin—3
and docs not depend on the paramcters zq, ..., z,. The more intuitive

physical content of a conformal block is as a correlation function of the yCFT:
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By state-field correspondence, to every vector vy € H,y is associated a field
®, (v, 2), such that the conformal blocks (2.5), evaluated on (vy,...,v,) €
Hy, ® - ® Hy,, give preciscly the vacuum expectation value of the product
of the corresponding ficlds,

Val(z, Mo oo 20, An) (01, oo, 0p) = (Do, (01, 21) -+ - D (U, 20) ) (2.7)

where z1, ..., z, arc local coordinates of pairwise distinet insertion points
on 2.

An important insight into the structure of yCFT is that the spaces of
conformal blocks fit together into a vector bundle of rank given by Ny, over
the moduli space of the n-punctured curve 3,. This bundle is denoted by
V(i)n, A). Tt is naturally equipped with a projectively flat connection, called
Knizhnik-Zamolodchikov connection. In this language, the corrclators of
XCFT arc just horizontal scctions of V(ﬁ]nX) Since this bundle is non-
trivial, however, the horizontal scctions arc not global scctions. The holon-
omy of the Knizhnik-Zamolodchikov connection defines a representation of
the fundamental group of the moduli space of n-punctured curves (the braid
group on n strands, if the curve is connected) on the spaces of conformal
blocks.

To repeat, the data of a yCFT consists of a chiral algebra and a sct of
irreducible representations closed under fusion. The solution of a YCFT con-
sists of the conformal blocks and the associated representation of the braid
group (fusing and braiding matrices). The present discussion suffices for
understanding the construction of a full CFT at the level of corrclation func-
tions. More precise representation-theoretic definitions of conformal blocks
and references to mathematically rigorous studics of their propertics can be
found, e.g., in [43, 24].

Full CFT

Assume given a conformal manifold ¥ with boundary 0¥, and imagine a
situation with a vector of inscrtion points in the bulk, p'= (py,...p,), with
p;i € £\ 0% and a number of insertions on the boundary, ¢ = (@15 Gm)
with ¢; € 0X. By definition of the Schottky cover Z cvery insertion pomt
p; has two prcimages, z; € 3 and 3 = 0(z;) under the projection I 3}
while every boundary point ¢; has only a single preimage w; = o(w;). From
the xCFT that is assumed given on f), onc may attach to cach p; two chiral
labels: A;, associated with z;, and A;, associated with Z;. On the other hand,
every ¢; carries but once chiral label, p;. This determines the labelling of
ficlds of the full CE'T, but only partially; what combinations (A, 5\1) of chiral
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labcls arc allowed for the bulk insertions, and what further labels are needed
to distinguish boundary inscrtions, is part of the data to be determined.

At the level of the yCFT, the situation is then specified by data 2 =
(Z, z, w) and A= (X, A fi). The xCFT then determines a bundle of conformal
blocks over the moduli space of an f-punctured curve with 7 = 2n + m,

). (2.8)

As explained above, the correlators of the YCFT are the local horizontal
scetions of this bundle of conformal blocks. To construct corrclation functions
for the full CFT on X, proceed as follows. Lift the bundle V(i]ﬁ, 5\) from
M(E:) to T(24), restrict this bundle to T(Xnm) C T(35;), and denote it

by W(Xnm. (X, A, f£)). This bundle inherits a connection from the Knizhnik-
Zamolodchikov connection on V. The important point is that the bundle
W might (and indeed should) admit horizontal scctions that arc globally
defined over M(X,),,). This expresses the main requirement of locality of
the correlation functions of the full CKFT.

The intuitive reason that YW admits global horizontal scetions cven if YV
docs not is, for bulk inscrtions, that the monodromics in onc chiral label A
arc canccled by those in the other, A. This clarifics that a judicious choice
of allowed combinations (A, 5\) has to be made. For boundary inscrtions, the
monodromics arc lost basically because in 3, boundary inscrtions cannot be
moved around cach other or around bulk insertions. The monodromics of
the corresponding insertions in the cover ¥ thus disappear.

The requirements of locality with respect to bulk insertions and moduli
of the curves (modular invariance) are still not ecnough to single out a unique
solution of the projection problem yCFT — full CFT. There are in gencral
several possible choices of allowed pairings (A, 5\) that yicld a consistent solu-
tion. There is even more freedom in the presence of boundarices, for roughly
the same reasons as above. In string theory, it is not necessary to paramectrize
the set of solutions for cvery topology of ¥ independently. This is because
amplitudes arc required to factorize. Factorization means that at the bound-
ary of the moduli space of the two-dimensional manifold, where the manifold
is singular, the amplitude can also be written in terms of amplitudes on a
manifold with blown-up singularity. This allows reducing the problem to low
topologics, namcly to worldsheets with Euler characteristic y > 0.

>

V(S

The torus partition function

In the bulk (i.e., without boundarics, and on orientable surfaces), the spec-
trum of the full CFT is determined from the modular invariant torus partition
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function. This is by definition the vacuum correlation function Z(7) on the
torus, where 7 is the modular paramcter of the torus. Written as

Z(1) = ZZMZA@ Xi(7) (2.9)

the partition function cncodes the spectrum of allowed bulk ficlds for any
topology. Here, x,(7) arc the characters of the xCFT, and Z,5 is a matrix
with non-ncgative entrics that commutes with the action of the modular
group SL(2,Z) on the characters, i.e.,

2,8]=0=[2.T), (2.10)

where S and T arc the modular S- and T-matrices, respectively. The condi-
tion (2.10) is the requirement of modular invariance on the torus.

Clearly, the expansion (2.9) depends on the choice of chiral algebra, which
determines the range of A and A. When classifying modular invariants, it is
expected that there is always a unique maximally extended chiral algebra, A,
with respect to whose characters the entries of the matrix 7,5 are cither 0 or
1. In other words, working with the maximally extended chiral algebra, all
bulk ficlds arc uniqucly labelled by the allowed combinations of chiral labels
(A, 5\) However, it might be more convenient to neglect the extension of the
chiral algebra to A expressed in (2.9) and to work with a smaller algebra
A C A. Tt is then necessary to enlarge the range of chiral labels A, because
irreducible representations of A can become reducible when restricted to A,
and also to allow for Z,5 > 1 to account for the fact that onc and the same
irreducible representations of A can be embedded in incequivalent ways into
representations of A.

2.1.2 Boundary conditions

The presence of worldsheet boundaries requires new prescriptions for the
projcction from YCFT to full CFT. A natural proposal is based on the ex-
pectation that it should be possible to paramcterize the sct of solutions by
attaching the label of a “boundary condition” to cvery boundary compo-
nent. When referring to boundary components, also any boundary inscrtion
is regarded as scparating the boundary into different components. Any such
boundary inscrtion is then interpreted as a boundary ficld W, and reccives,
in addition to the chiral label p, the two labels a,b of the adjacent bound-
ary conditions. In particular, for @ # b a boundary ficld can be viewed as
changing the boundary condition. As in the bulk, the spectrum of boundary
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ficlds is encoded in a partition function. In this case, it is the annulus with
boundary conditions ¢ and b on the two boundarics,

Za(t) = 3 Apalt). (2.11)

Here ¢ is the modular parameter of the annulus, and A%, € Z> arc the annu-
lus cocfficients. An annulus cocfficient greater than 1 indicates a degencracy
of boundary ficlds, i.e., there is more than one way to transform boundary
condition a into boundary condition b, using the same chiral representation
. The boundary ficld ¥ then has an additional degencracy label A, and the
full labelling is thercfore of the form \IfauAb.

On the other hand, boundary ficlds arc not taking part in the character-
ization of the boundary conditions themselves. A boundary condition can
therefore be regarded as a solution to the factorization constraints for sur-
faces ¥ with a single boundary component and only bulk insertions. More-
over, factorization (e.g., of the Mébius strip to a crosscap plus a disc) allows
to restrict attention to the case where X is the disc and where there is a
single bulk inscrtion.

Individual boundary conditions arc thus determined by the propertics of
bulk corrclators on a disc. At the chiral level, these correlators correspond
to conformal blocks on the sphere, 3 = CP!, with an cven number of in-
sertions. The moduli space of three or less points on a sphere is trivial,
so non-trivial constraints arisc for the first time from the four-point blocks.
These blocks appear also in the familiar casce of corrclators of four bulk in-
sertions on X = 52, as well as for four boundary insertions on the disc. In
both cascs, factorization of the four point blocks is used to derive constraints
for the operator product cocfficients, and ultimately to solve for them. Here,
two-point functions on the disc provide constraints for the boundary condi-
tions.

The classifying algebra
To procceed, introduce the bulk-boundary opcrator product

Q,5(2,2) ~ Z Z (1— ]z\z)*QA”A”R‘/’\;\V\I"IVB&(arg z) for |z]—1.

vel B
(2.12)

This OPE cxpresses what happens when a bulk field @, 5 approaches the
boundary of the disc |z| < 1 with boundary condition a: It creates excitations
on the boundary, described by the boundary operators WeFe.
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Consider now the situation with two bulk insertions, (A1, A1) and (A, A2)
and onc boundary insertion of the vacuum, w. Two factorizations of this am-
plitude are possible. First using the bulk OPE to produce a single bulk ficld
and then considering its bulk-boundary operator product, viclds an expres-
sion which contains the reflection cocfficient R* once. The other factorization
is to apply (2.12) to both bulk ficlds; then two reflection cocfficients R* ap-
pecar. Comparison of the two factorizations yiclds an identity of the form

Riine Routeo = 2 Mot Ry (2.13)
Asel

where A, N A’\j is some complicated combination of opcrator product cocffi-
cients and representation matrices for m (M) acting on four-point blocks.
The structure encoded in (2.13) is that, for a fixed boundary condition,
a, the quantitics R* form a onc-dimensional representation of an associative
algcbra with structure constants A \ /{\23. This algebra is called the classifying
algebra [44]; it encodes a picee of structure that a consistent set of boundary

conditions is expected to possess.

Ishibashi states and boundary states

The reflection coefficients R also determine the correlation functions of a
single bulk ficld, (ID(/\J\), at the center of a disc with boundary condition a.
Other positions of the bulk ficld can be related to this case by using the action
of the Mobius group SL(2,R) on the dise. In this situation, the reflection
cocfficients appcar simply as the expansion cocfficients of these one-point
functions in terms of the relevant conformal blocks of the YCFT on the cover
of the disc. Both these one-point functions and conformal blocks can be
conveniently written in terms of “boundary states”, which arc introduced as
follows.

On the chiral level, the correlator in question is given by two-point blocks
on the sphere, CP!, with inscrtions at 2y, = 0 and 25 = co. By definition, the
two-point blocks arc invariant functionals 3 € (H, ® H;)" with the property

Bo(JP®1+18J%)=0, (2.14)

for cvery current J%(z) = Y. J22" ! in the chiral algebra (assuming that
the chiral algebra is a current algebra). By a version of Schur’s lemma,
non-trivial functionals 3 obeying (2.14) exist only if A and A arc conjugate
representations of the chiral algebra. Even if these lincar functionals are not
in the Hilbert space dual of Hy @ Hy+, they are usually written as kets [|A))
and called Ishibashi states. In terms of those, formula (2.14) reads

(Je®1+1®J%)[A) =0. (2.15)
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It is sometimes possible to write down the Ishibashi state [|A) explicitly;
e.g., for theorics based on a free boson, it can be written as a generalized
cohcrent state,

1A) = exp (— Zb,n@@b DI (2.16)

where vy, is the highest weight state in the tensor product of Fock spaces,
gencrated by the oscillator creation operators, b_,. Such a rcalization is
helpful for calculating one-point functions on a disc explicitly. It is, however,
not necessary to know such an explicit realization to determine the spectrum
of boundary ficlds. For this, it is sufficient to know how ||A)) bchaves under
factorization. The crucial information that allows to calculate concretely
with boundary states is the following identity that relates two-point blocks
and characters:

Xa(27) = (]| i hoetHIeto-ei2) ) (217)

Returning to the level of full CET, the information about one-point func-
tions on the disc with boundary condition «a is again encoded in a “boundary
state” |a)). Just like the Ishibashi states (2.15), this is a lincar form on the
spacc of bulk states. The correlator for the bulk ficld ®(v®v; 2z = 0) inscrted
in the center of the dise |z| < 1 is given by the value of |a) on v ® D,

(Pv®0;2=0)), = (alv@7). (2.18)

The boundary state can then be written as a lincar combination of Ishi-
bashi statcs. With a suitable normalization of bulk ficlds, this expansion
reads [45, 46, 25]

B)\a
1A (2.19)
)\ZGI vV S/\w

The Cardy cocfficients By , arc, up to normalization, cqual to the reflection
cocfficients RS,. . Eq. (2.17) is an example of the general idea that corre-
lation functions in full CFT arc spccial scctions of the space of conformal
blocks, i.e., lincar combinations of the basis clements, which arc here given
by the Ishibashi states.

2.1.3 Classification of boundary conditions in RCFT

The problem of classifying boundary conditions in conformal ficld theory
depends on two data. The first is a choice of a bulk theory. As explained
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above, this is determined by the choice of a (maximally extended) chiral
algebra A to be used on the covers of all closed worldsheets and the choice
of a modular invariant torus partition function.

The second ingredient in the classification problem is the amount of sym-
metry preserved by the boundary conditions, or in other words the choice of
a chiral algcbra A to be used on the covers of open worldsheets. If A € A,
the boundary conditions arc usually referred to as “symmetry breaking”.

Concerning “symmetry breaking boundarics”, two remarks arc in order.
First, the distinction between symmetry breaking and symmetry preserving
is not an invariant onc. Indced, by viewing a bulk theory with chiral algebra
A and diagonal partition function as a thcory with chiral algebra A C A,
but with a non-trivial partition function, “A symmetry breaking boundary
conditions” arc mapped to “A symmetry preserving boundary conditions
with non-trivial modular invariant”.

The second comment is related to the way in which a bulk symmetry is
broken. For cvery current J(z) in the preserved algebra A, the boundary
states satisfy an cquation of the type (2.15),

(Je®1+1®J%)]a) =0. (2.20)

It sometimes happens that, for some currents in A, the boundary state sat-
isfics a “twisted” version of this identity, namecly,

(JE®1+1@Q(J2)|a) =0, (2.21)

where € is an automorphism of the chiral algebra A. In this case, the bound-
ary condition a is said to have “automorphism type €27 [25] (or that there
is a non-trivial “gluing condition”, defined by the automorphism Q [34]).
However, not all A symmetry breaking boundary conditions actually have a
definite automorphism type, and boundary conditions which do, have rather
special properties (for example in N/ = 2 theories, sce section 3). Also, it
should be mentioned that boundary conditions with definite, but non-trivial
automorphism typc should not be considered as symmetry preserving. For
the free boson, for instance, this point of view would lcad to the conclusion
that Dirichlet boundary conditions preserve the U(1) current that generates
translations, which is obviously not the casc.?

Since the work of Cardy [47], boundary conditions have been classified in
the following situations of rational CF'T.

1. The bulk partition function is given by charge conjugation, and the
boundary conditions preserve the full bulk symmetry. This case is

30f course, and this is one of the reasons why D-branes are so rich, Dirichlet boundary
conditions preserve translational invariance of the T-dual circle.
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known as the Cardy case, and is bricfly described below. In the Cardy
case, corrclation functions for all worldsheet topologics can be described
using techniques from topological ficld theory. Remarkable, in that
framework, factorization propertics and modular invariance under the
relative modular group can be rigorously proven [48].

2. The bulk partition function is a simple-current modification of the
charge conjugation invariant, and the boundary conditions preserve the
full symmetry corresponding to the original partition function. The so-
lution of this problem is the content of section 2.2 of the present thesis.

3. The bulk partition function is given by charge conjugation and the
boundary conditions preserve an orbifold subalgebra of the original
chiral algebra by an Abclian automorphism [49, 50]. This problem is
rclated to the previous one by shifting the point of view from “symme-
try breaking” to “non-trivial modular invariant”, as cxplained above.
The correspondence uses that simple-current extensions are inverse to
orbifolding by an Abclian automorphism of finite order.

4. The bulk partition function is given by a modular invariant which is
not of simple-current type, and the boundary conditions preserve the
original chiral algcbra. This problem was considered for Virasoro mini-
mal models and SU(2) WZW modecls in [51]. These authors emphasize
the role played by graphs in the classification of modular invariants
and boundary conditions in rational CFT. Sce [52] for a rceent review
of these ideas. A different approach to going beyond simple currents,
which emphasizes the symmetry breaking, was presented in [53].

In addition, solutions for a few other isolated cases arc also known. Recent
work includes [54, 55, 56].

Cardy’s construction [47]

If the bulk partition function is given by the charge conjugation modular
invariant, there is a primary bulk ficld @, 5+ for every irreducible represen-
tation A € I of the chiral algebra, and hence the Ishibashi states (giving a
basis of the classifying algebra) arce in one-to-one correspondence with the
clement A of 1. The structure constants of the classifying algebra, N, A i‘j can
be computed explicitly. It is found that they arc just the fusion rules. By
the Verlinde formula,

. Sii.adn.aS)
A A ,Q a9 \g.q
N = N3, = Z#, (2.22)

acl
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the onc-dimensional representations of the fusion algebra are then labelled
by the clements a of I and given by the (generalized) quantum dimensions,
S)\,a,

Ru(®y) = 2.

(2.23)

It follows in particular that also the boundary conditions arc in onc-to-one
correspondence to the primary ficlds. In gencral, it is expected that the
number of boundary conditions is cqual to the number of Ishibashi states,
and the matrix of Cardy cocfficients is unitary. Howcver, the scemingly
natural correcspondence between Ishibashi states and Cardy states doces not
generalize. Indeed, the difference in meaning of the labels for the boundary
blocks (solution of the Ward identities) and of the labels for the boundary
conditions (solution to the projection problem YCFT — full CFT on the
disc) shows that asking for symmetry of the matrix B, is not a natural
requirement.
The explicit expression for the boundary states in the Cardy case is

S)\a
1A, (2.24)
)\26; AV S)\ w

and for the annulus cocfficients,

S aSA b5 (2.25)

So, also the annulus cocfficients arc given by the fusion rules, and arc mani-
festly non-negative integers.

2.2 Boundary conditions for simple-current
modular invariants

Following the rather genceral theory presented in the last section, the present
scction deals with the concrete problem of defining possible boundary condi-
tions for conformal ficld theorics with rational chiral algebra, A, and a torus
modular invariant of simple-current type. The boundary conditions will be
required to preserve the given chiral algebra, cven if the partition function
exhibits an extended chiral algebra.
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The contents of this section have appeared in the paper [26]. The prob-
lem of constructing boundary conditions for the most general simple-current
invariant appcarcd in the work on Gepner models. As will be expanded in
scction 4.3, B-type brancs in Gepner models can be constructed preciscly as
boundary conditons in a certain modular invariant of simple-current type,
which is not a purc cxtension, and the required methods did not exist in
the literaturc. On the other hand, the problem also appcars natural in the
context of “open descendants” of CETs defined on closed, oriented surfaces.
This is how the problem was presented in [26], and how it will be introduced
here.

Recall that for the construction of type I string vacua, once needs to include
not only boundarics (i.e., D-brancs), but also crosscaps (i.e., orientifolds) in
the background. In the conformal ficld theory, such data is equivalent to the
choice of a Klein bottle projection, and a collection of boundary conditions
with certain Chan-Paton multiplicitics. Such a system of CFTs is referred
to as an “open descendant” [57).

The more basic data onc wishes to determine is the set {m} of Ishibashi
labels, the set {a} of boundary labels, and a matrix B, , of boundary cocf-
ficients and a vector Ty, of crosscap cocfficients, which relate the Ishibashi
states to boundary states and to the crosscap state, respectively. Quite gener-
ally, there is an Ishibashi label for cach primary ficld A that is paired with its
conjugate, AT, in the torus partition function (defined by a modular invari-
ant Z,5). A difficulty ariscs when some of these terms in the torus partition
function have a multiplicity larger than 1. The resulting degenceracy, which
is preciscly Zy+, leads to Ishibashi labels being of the general form (A, a),
where A labels an irreducible representation of A, and o takes Zy\+ valucs.

These data must satisfy a large collection of “sewing constraints” [45,
58, 46]. Most of them arc difficult to check explicitly because this would
require detailed knowledge of fusing matrices, braiding matrices and OPE
cocfficients. There exists a sct of simpler constraints, which arc presumably
a conscquence of the sewing constraints, but arc certainly necessary, namely
the requirement of positivity and integrality of the partition functions. These
partition functions correspond to the torus, annulus, Mébius strip and Klein
bottle surface. Each partition function can be written as a lincar combination
of characters x, with arguments that depend on the surface under considera-
tion, and with cocfficients that depend on the choice of boundary condition.
Actually, characters of preciscly which algebra should be used to expand the
partition functions in, is part of the problem. A possible solution is to simply
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usc characters of the given chiral algebra A. Then, the cocfficients arc given
by

BE, o Bup S
APV v
m=(A0)
T* Bpo P
M“—Z s —m e - Mg (2.26)
Aw
T T Sap
Kr=>Y" SO

for annulus, Mobius strip, and Klein bottle, respectively.  Here S is the
usual modular transformation matrix of the RCFT, and P = vTST?SVT,
as introduced in [59]. All quantitics on the left of (2.26) must be integers.
Furthermore, torus modular invariant 7, 5, annulus cocfficients, and the com-
binations 3(Zyy+ K*) and 2(A#, + M) (the closed and open string partition
function cocfficients) must be non-negative integers. And A%, the boundary
conjugation matrix (the label “w” refers to the vacuum), must be a permu-
tation of order 2.

In practice, these integrality conditions have turned out to be very re-
strictive. In principle, however, it must be checked that, indeed, the the-
ory is well-defined, and onc may nced additional requirements for this. It
should also be mentioned here that other, alternative and complementary
approaches to the characterization of conformally invariant boundary con-
ditions havc been proposed in the literature. Each approach abstracts and
gencralizes a different aspect of the Cardy case, which is presumably the only
casc that is completely under control. For instance, given the relation be-
tween the classification of modular invariant partitions functions to graphs
of various types, onc can imagine generalizing this to the boundary prob-
lem, sce [51] and references therein.  Another, looscly related, idea is that
there should be an analog of the fusion algebra for the boundary conditions
(a “boundary fusion ring”), with structurc constants given by the annulus
coctficients, sce [53].

2.2.1 Simple currents and modular invariants

The CFT under study in this scction is given, in the bulk, by the modification
of the charge conjugation modular invariant by a simple-current invariant.
The modular invariant is thus of the form (ZC),, = Zy,+, where 2y, is
a modular invariant of simple-current type, and Cy, = 0, ,+ is the charge
conjugation matrix.
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Simple currents [60] arc the units (invertible clements) of the fusion ring
of a rational conformal ficld theory. Recall that the fusion ring of a rational
CFT is a commutative associative semi-simple ring with identity and basis
(over Z), and with a distinguished basis with respect to which all structure
constants arc positive integers (the fusion rules). Simple currents have a
numbcr of cquivalent characterizations.

(i) The fusion product of the simple current J with any other ficld A, yiclds
just a single ficld, &5+ &, = &y,

(ii) J and its conjugate satisfy @y x @5+ = D,
(ili) The quantum dimension of J is equal to 1.

Simple currents contain information about “accidental” additional sym-
metries of a conformal ficld theory, i.e., symmetrics not encoded in the chiral
algebra [61]. Here is a summary of important propertics of simple currents.

With respect to multiplication in the fusion ring, simple currents form a
finitc Abclian group, also called the “center” of the conformal ficld theory.
Simple currents associate a conserved charge to every primary field of the
conformal ficld theory, called the monodromy charge,

Q]()\) = AJ + A)\ — Al])\ & Q/Z (227)

A conscquence of the Verlinde formula is the following property of the
modular S-matrix,

S‘])\,ﬂ = CXp(Qﬂ'lQ](ILL)) S/\,,u . (228)

This cquation is central to all applications of simple currents. As an example,
(2.28) implics that the monodromy charge can be written as [62]

_ r(ord(J) - 1)

Qs(A) = — ord(J) (2.29)

where ord(J) is the order of J, i.e., the smallest integer with ((Pl])ord(']) =,

and where the monodromy parameter 7 is in Z/ (2 ord(J)) or Z/ord(J) if
ord(J) is even or odd, respectively. In particular, 2 ord(J) Ay € Z. Currents
satisfying in addition ord(J) Ay € Z arc “bosonic” and form the “cffective
center” of the CFT. They can be used for the construction of modular in-
variants.

Given a distinguished subgroup G of the group of all simple currents, it is
uscful to think of G as a group of symmectrics acting on the primary ficlds of
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the conformal ficld theory. As a consequence, primary ficlds arc organized in
orbits of the G-action given by the fusion product. Furthermore, it is possible
to understand a modding out of the theory by G. As always, this opcration
requires particular care if the action of G on the primary ficlds is not free.

Simple currents were first applied to the construction of modular invariant
partition functions in [62]. A modular invariant,

Z(r)= Y Zuxa(m)xa(n), (2.30)

MAET

is called a simple-current invariant if any two paired chiral labels are con-
nected by the action of some simple current, i.e.,

Zyy #0 = A=J\ for some simple current J . (2.31)

The majority of all known modular invariants arc of simple-current type,
and in contrast to the other, exceptional modular invariants, simple-current
invariants have been completely classified [63].

The prescription for constructing simple-current invariants is as follows:
First choosc a subgroup G of the cffective center of the conformal field theory.
The relative monodromics in G determine the symmetric part, X + X, of
a pairing (bihomomorphism) X : G x G — R mod Z, by the preseription
(X+X"(J,K) = Q;(K) mod Z. One can then choose the antisymmetric part
of X, fixing the ambiguity on the diagonal by the condition X (J,J) = Aj.
The requirement that X defined in this way be a homomorphism precludes
the use of simple currents that do not satisfy ord(J)A; € Z. With this data,
define a matrix Z = Z(G, X)), where the matrix entry 7y, is cqual to the

number of solutions, J € G, to the cquations

w=JA

Qx(A) + X(K,J)=0modZ VKeg. (2.32)

The results of [63] show that (2.32) indeed defines a modular invariant
partition function and, furthermore, that any modular invariant of simple-
current type is of this form Z(G, X). Using results from group theory, it is
possible to show that, given G, the modular invariants arc classified by the
cohomology group H?*(G,C*).

A somewhat finer characterization of simple-current invariants can be
obtained by identifying the maximally extended chiral algebra encoded in
the partition function. It is casy to sce from (2.32) that the left (resp. right)
moving chiral algebra is extended preciscly by all simple currents in the left
(resp. right) kernel of X.
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2.2.2 Ishibashi and boundary labels

The simple-current modular invariant Z(G, X) specified by G and the alter-
nating part of X is to be multiplied with the charge conjugation matrix. In
gencral, Ishibashi states correspond to labels paired with their charge con-
jugate in the partition function, and, hence, they are here determined by
the diagonal clements of Z(G, X), counting multiplicitics. The only simple
currents that can contribute by a solution to (2.32) arc thosc that satisfy
JA = A. They form a group, the stabilizer Sy of A. If this group is non-
trivial, multiplicitics larger than 1 may occur, possibly leading to Ishibashi
label degeneracics. For pure extensions (i.e., X = 0), this was analyzed in
[49, 50], and the conclusion is that the Ishibashi label degenceracy is actually
cqual to the fixed point degencracy?. Tt is natural to extend this result to the
genceral case, and to label the degencracy by the simple currents that causc
it. Henee the ansatz for the Ishibashi labels is

m=(\J); Je S\ with Qx(A) + X(K,J) =0mod Z for all K € G.
(2.33)

This ansatz produces also the correct count for purc extension invariants,
although the labelling chosen here is not the same as in [49, 50]. In thosc
papers the dual basis—the characters 1, of Sx—was used for the degenceracy
labels. This is not possible if the modular invariant involves also a non-trivial
fusion rule automorphism, because the currents satisfying (2.33) do not form
a group in that casc. For purc cxtensions, the basis used here differs by a
(discrete) Fourier transformation from the one in [49, 50].

A hint for the set of boundary labels can also be obtained from the results
for purc extension invariants [49, 50], and the results for Z, automorphism
invariants [57, 64]. In thosc cascs, the boundaries arc in one-to-one correspon-
dence with the complete set of G orbits (of arbitrary monodromy charge). As
usual, fixed points lcad to degencracics. For pure Z, automorphism invari-
ants duc to a half-integer spin simple current, the degencracy was found to be
given by the order of the stabilizer of the orbit, whercas for purce extensions
it is the order of the untwisted stabilizer. The ansatz for the boundary labels
in the present case will be a natural generalization of these two special cases.

The untwisted stabilizer in the case X = 0 is defined as follows. For
every simple current J with fixed points there exists a “fixed point resolu-
tion matrix” S7; these matrices can be used to express the unitary modular

4This result is non-trivial, because the degeneracy in the extended theory is in general
not equal to the fixed point degeneracy, i.e., the order of the stabilizer, but rather to the
size of a subgroup, the untwisted stabilizer.
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S-transformation matrix of the extended theory through quantities of the un-
extended theory. The matrices SY are conjectured to be equal to the modular
S-transformation matrices for the J-one-point conformal blocks on the torus,
and arc cexplicitly known for all WZW modecls [65, 66], their simple-current
extensions [67] and also for coset conformal ficld theories. In these cases, the
matrix S? is obtained from the modular S-matrix of certain twisted affine Lic
algebras, related to the current algebra of interest by folding of the Dynkin
diagram. Therefore, S? matrices have many propertics in common with the
uncxtended S-matrix. In particular, clements of the matrix S7 whose labels
arc rclated by the action of a simple current K obey an equation similar to
(2.28), albeit with a twist,

Sl

kp)u = Fp(K’ J) CQWiQK(N) S})],u . (234)

The quantity F), is called the simple-current twist, and the untwisted stabi-
lizer U, is the subgroup of S, of currents that have twist 1 with respect to
all currents in S,

U, ={leS,;F,(K,J)=1 foral Ke S,}. (2.35)

It turns out that F, is an altcrnating bihomomorphism on S, (alternating
simply means F,(J,J) = 1, which for a bihomomorphism implics F,(J,K) =
F,(K,J)™1), and therefore the definition of ¢, admits a cohomological inter-
pretation [68].

In the present case, it is casy to sce that, duce to the presence of non-local
currents in G, F), is not altcrnating any longer (i.e., F,(J,J) # 1, in general).
However, one can show that a modified twist, £ [f( , defined by

FX(K,J) =X EDE (K, ), (2.36)

indeed is alternating, i.c., obeys FX(J,J) = 1 for all J € G. The untwisted
stabilizer in the presence of X is then defined as before, replacing F, with
FX, iec.

P 3 ?

U ={JeS,|FX(K,J)=1foralK € S,}. (2.37)

As mentioned, the twist F pX has a nice cohomological interpretation.
More preciscly, alternating bihomomorphisms of an Abclian group G arc in
onc-to-one correspondence to cohomology classes FX in H*(G, U(1)). In par-
ticular, the untwisted stabilizer provides a basis of the center of the twisted
group algebra Cfgc S,. It is this characterization of the untwisted stabilizer
morc appropriately called the central stabilizer because of its cohomological
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interpretation—that will be of particular interest in the application to Gep-
ner modecls.

Given all these facts, there is only one natural ansatz for the labels of
the boundarics in the gencral case: orbits of labels of the unextended theory
with degencracy given by the untwisted stabilizer,

a=[p, P, (2.38)

where p is the label of a representative of a G-orbit, and 1 a character of Z/lj( .
In (2.38), the bracket [, -] is defined as cquivalence classes under the action
of G on pairs (p,,) given by K(p,v,) = (Kp, K(¢,)) with

K(8,)(9) = F(K,J) e X8y, (3) (2:39)

for J € UX. Notice that the action of S, is trivial.

2.2.3 The boundary coefficients

By decfinition, Ishibashi states arc the conformal blocks for onc-point cor-
rclation functions on the disc, i.e., specific two-point blocks on the sphere.
However, in the present case, it is more appropriate to view the Ishibashi
state labelled by (A, J) as a three-point block on the sphere, with inscrtions
A, At and J °. Morcover, alrcady from [47] it is known that the rclation
between Ishibashi and boundary states cssentially expresses the cffect of a
modular S-transformation. Together with the previous observation, it is then
natural to cxpect that the fixed point resolution matrices S7 appear in the
boundary cocfficients.
The ansatz for the boundary cocfficients is therefore

~ / g / .
B(}\,J),[p,d)p] = a(‘]) S()VJ),[P,W';J] = % a(J> S}T\,p /LfUp(J) ) (2'40)

where a(J) is a phase that will not be discussed here, but which must satisfy
afw) = 1. Also, s, == [S,[, u, := [ULX|. All previously studied cases arc
correctly reproduced by the remarkably simple formula (2.40).

The matrix B is well-defined on orbits [p, ¥,], as is apparent from

K(2p)(J)" Sk, = [Fp(K, J) e X EDy ()] - 2MOWFL(K, J)*S5,
_ wP(J)*sz(QK(AHX(K,J))Sip (2.41)
= ,(J)*S1,,

5This is actually the natural interpretation in the three-dimensional topological picture
established in [69].
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by using the simple-current property of S”, the action of K on v, defined
in (2.39) and the fact that J € SX. Here, 8 is defined by the property in
(2.33).

A non-trivial check of the formula (2.40) is completeness, i.e., that the
matrix of boundary cocfficients is square and invertible. Indeed, S is unitary
with inverse

(gfl)[p,pr(A,J) _ S(*/\,J) :

’ Pv'U'f'P] :

(2.42)

Before proving unitarity, note the following uscful implication concerning the
S7 matrices.

JeSi\U = S5,=0. (2.43)

This follows from the fact that if J € SF \ UF, there is a K € S, with
FX(K,J) # 1. But then,

S}]\,p = Si,Kp
= MUV EL(K, NS, (2.44)
—_ X *
- Fp (K*‘]) Sk,pa
where the last step uses Qx(A) = —X (K, J) mod Z. Hence S, = 0.

Now turning first to the right-inverse property of (2.42), assume that
(A, Jy) and (p, J,) satisfy (2.33). Then

> Soanpn g = 161> —wm YT ST S

(o] o) P
UuX 3,3,
I Ju
= > _wp I 6o (Iu) 530550 (2.45)
p d)pEZ/{X*

_ § I @y =
- 5JAJ/AS)\/)S/1/)
P

= 000530 = 00T (1)

To prove that (2.42) is a left inverse, usc a projector onto Qg(A) +
X(G,J)=0. It is given by
51(@ ( )+X(g ]) Z(/727r1 Qu(MN+X(K,T) (246)
Keg

[4
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Now computc

Z S(A:J)v[/)v‘d’p}S(*)\,J),[o,qj)a]

(CSP))

X
JE.S)\

‘g’ / J J
T suso () U (J)S5,,9 .- (2.47
ew L WSS, @

X X Ay X
Jesruf mug

After inserting the projector (2.46), the constraint J € 8¢ can be dropped,
since otherwise, S7 is 0. Using unitarity of S7, this yiclds

Z S(Af]) ’ [pva} Szﬁ)\,xl),[a,wa]

(CSP))

X
JGSA

QNN R D)y (1) (1)) ST
L X % o

KeG Jeuxnux A

1 .
- - § : § : 0727T1X(K,J)FO_(K’ J)* ¥ § :S )\ KU*
VEpUpSollo jocg Jeux nux

= _Zéf)Ka Z Up(1)* F, (K, J) e 2 X EDy, ()

Spll
P Keg Jeux

= Y ke 3 G K (W)()

s,
PUP Keg JeuX

1
=7 Op, Ko Oy, K (o)
P Keg

= Opap,), o]

(2.48)

The fact that the matrix of boundary cocfficients is squarce implics rather
non-trivial rclations involving the number of orbits of various kinds and the
orders of stabilizers. The finest such sumrule is

ol J €Uyt =#{N.J € S} (2.49)

In the language of boundary conditions, this identity mcans that the number
of boundary conditions arising with J in the untwisted stabilizer is equal to
the number of diagonal terms (and hence, boundary blocks) in the partition
function arising by the action of J. In particular, summing over J, the number
of boundary blocks (or Ishibashi states) is equal to the number of boundary
conditions.
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2.2.4 Concluding remarks and open problems

The main results of this scetion are the ansétze for Ishibashi and boundary
labels, and for the boundary cocfficients. These are crucial ingredients in
the application to Gepner models in scction 4.3. The strongest indication
that the ansétze arc correct comes, besides naturalness, from the various
integrality checks.

m First of all, it should be mentioned that there is also a natural ansatz for
the vector of crosscap cocfficients.  They are given in [26], where also the
phases a appearing in (2.40) arce defined.

» The integrality of the annulus cocfficients, as defined in eq. (2.26) has been
verified by Huiszoon and Schellekens in a large class of examples (WZW
modecls), and this is accepted to be a highly non-trivial check in this context.
® [t has also been checked in a large class of examples that all other partition
functions, Mobius strip and Klcin bottle, and open and closed string partition
functions satisfy the necessary integrality and positivity constraints.

For further support of the prescription, it would be helpful to justify more
rigorously the ansatz for the Ishibashi states (2.33) from a representation the-
oretic point of view, similar to [49]. Furthermore, it would be nice to make
contact with the pictures in topological ficld theory, along the lines of [48],
and to interpret Ishibashi and boundary states in this language. This would
not only provide a clean justification of the ansatz for the boundary cocffi-
cients. It could also help to prove that there is no inconsistency in situations
of more complicated topology. Furthermore, it should help in developing
further the connection between CET in two dimensions and topological ficld
theory in three dimensions, which exists in the bulk [70, 41], and is expected
to hold in the same generality also in the presence of boundarics [53]. As an
example, it should be possible to reexpress the annulus amplitudes in terms
of “solitonic” characters of a certain extended chiral algebra, for which in-
tegrality is more apparent. Further work is in progress on these questions,
and, hopcfully, will be reported about clsewhere soon.



CHAPTER 2 34 BOUNDARY CONDITIONS IN RCFT



Chapter 3

Supersymmetry, worldsheet
boundaries, and D-branes

Conformal quantum ficld theorics in two dimensions, as described in the
previous chapter, arc important in various arcas in physics. The application
of interest in this thesis are worldsheet theories for strings. As indicated in
the introductory chapter, a sccond important ingredient for the construction
of consistent modecls in string theory is supersymmetry.

The aim in this chapter is to review the role played by supersymmetry
in the construction of worldsheet theories for strings and to describe some of
the new features that appear upon inclusion of worldsheet boundarics.

Section 3.1 follows the geometric approach and characterizes symmetry
preserving boundary conditions in a supcersymmetric o-model with target a
Kéhler manifold. This scction closely follows the recent paper [29]. The
geometric description will be appropriate to describe D-brancs in the “large
volume” region of moduli space, where worldsheet quantum corrections arce
suppressed. At a generie point in moduli space, the picture is that D-brancs
correspond to boundary conditions in the conformal ficld theory on the string
worldsheet. Over most of moduli space, however, this conformal ficld theory
is defined only implicitly as the fixed point of the renormalization group
flow starting at the classical o-model. Explicit calculations arc restricted
to the topological scetor of the theory, in other words to the propertics of
the (quantum) moduli space itsclf. A simplification occurs again at special
points in moduli space with enhanced symmetry, where the conformal ficld
theory becomes rational. These rational points in moduli space allow to make
contact with the algebraic construction of CFTs described in the previous
chapter.

Section 3.2 takes up the algebraic approach to string compactification,
reviews certain aspects of space-time supersymmetry and describes the con-
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struction of (a class of) supersymmetric boundary conditions in rational
N = 2 CFTs. This will prepare the ground for the analysis of explicit
examples in chapter 4. This section is based on [30, 31].

3.1 Boundary conditions in Kahler and
Calabi-Yau o-models

It has been appreciated for a long time that there is an intimate connection
between supersymmetry of a ficld theory and the special geometry of the
clagsical target or ficld space. One well-known cxample in string theory is
that A/ = 2 supersymmetry of a two-dimensional o-model requires the target
space to be a Kahler manifold, i.e., a manifold endowed with both a complex
and a symplectic structure, which must be compatible in the sense that the
symplectic form is a positive closed (1,1) form with respect to the given
complex structure. !

Upon quantization of the theory, it becomes more difficult to talk about
the classical geometry of the target space. Supersymmetry, if it survives
quantization, is then the only remnant of the special geometry of the target
space. Thus, the amount of (worldsheet) supersymmetry of a quantum theory
is the quantum cquivalent of different structures of classical geometry, sce,
e.g., ref. [73].

While the geometric conditions mentioned so far are common to all su-
persymmetric quantum theories, a further restriction on the target is special
to string theory. Namecly, strings require the worldsheet theory to be confor-
mally invariant [74, 75, 76], and to allow for the GSO projection that climi-
nates the tachyon from the string spectrum and guarantees supersymmetry of
the space-time theory. In the simplest casces, conformal invariance translates
into the condition that the metric of the target be Ricci flat, while space-time
supcersymmetry requires the existence of a covariantly constant spinor, and
leads to a restriction on the holonomy group of the compactification man-
ifold. In mathcematics, these two conditions are known to be equivalent on
a Kéhler manifold, and arc called the Calabi-Yau property [77, 78]. Also,
from the worldsheet point of view, N = 2 supersymmetry intimately links
conformal invariance and space-time supersymmetry [79, 80, 81].

Obviously, the various symmetry conditions and their mutual relation-
ships have to be analyzed again after inclusion of worldsheet boundarics.
Similarly to before, the first step is to characterize supersymmetric bound-
ary conditions in terms of classical gecometry. In a sccond step, one would like

1See the texts [71, 72] for references on complex and Calabi-Yau geometry.
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to understand what further conditions arc imposed by conformal invariance,
space-time supersymmetry, and stability.

3.1.1 The o-model?

In the compactification of the type IT string, space-time is split into an exter-
nal part, which is extended, for instance four-dimensional Minkowski space,
and an internal part, which is typically given the form of a compact Calabi-
Yau manifold. Restricting only to the internal part leads to the study of a
supcrsymmetric non-lincar o-model. In the present subscction, the target,
Y, is only assumed to be a Kahler manifold, the restriction to Calabi-Yau
will be explained below. The field content of such a o-model is as follows. *
m The worldsheet bosons arc maps X : ¥ — Y from the worldsheet to the
target. Picking local coordinates, once can think of X as n complex bosons
Xt i=1,...,n, where n is the number of complex dimensions of Y.
= The worldsheet fermions 9. are seetions of the bundle S*(X) @ X*THOY
where S*(X) are spinor bundles on 3, and X*TMYY is the pullback of the
holomorphic tangent bundle of Y.

In terms of these component fields, and in conformal gauge, the o-modcl
has the following action.

, 1l TR S S
S = d Z[59(8+X1 an) + 59(14977 D#’%) + 59(1’4, waﬁ-)
%

(N (ARTIT] ICRD

where ¢ is the Kahler metric and R the Riemann-tensor of Y. Furthermore,
O+ arc ordinary derivatives on X, while Dy = 04 + X*w arc covariant deriva-
tives obtained from the pullback of the Levi-Civita connection, w, in the
tangent bundle of Y.

Kéhlerity of Y implics that the following global worldsheet supersymme-
try transformations arc symmetrics of the theory,

0X = eqth —e y —epo ey

SYp = i€ 0. X"+ epwy, (V)

Sy = —ie 9, X" — e wy, (¥) (3.2)
S = —ie, 0 X" — ¢ wy (V)

S = e 0 X" te wy_ (Vg4).

2The following two subsections closely follow [29].
3A thorough mathematical presentation of supersymmetric o-models can be found in

[82]).
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where 9. X" and 8. X" denote holomorphic and antiholomorphic compo-
nents of the tangent vectors 9..X, respectively. More precisely, under the
transformations (3.2), the action varics by a boundary term,

1 .
55=5 [ [ress0 X0+ g0 X.0)
ox

2
— e g(0-X,¢y) + € g(0: X, QZ+)] - (33)

Without boundarics, there arc then four conserved supercurrents, Gy =
g(a-i—Xa 1/)+)7 G+ = g(8+X, 1/’+)a G = g(ng* IL‘—); and G = g(an wf)
In the presence of boundaries, however, at most onc half of these symmetrices
will be preserved.

3.1.2 Boundary conditions

Quite generally, the definition of a classical ficld theory in the presence of
boundarics requires the specification of boundary conditions. In the La-
grangian framework, it is uscful to distinguish boundary conditions imposed
on the variation of ficlds in the variational principle from boundary conditions
satisfied by the ficlds in the cquations of motion. The first kind of boundary
conditions can be viewed as external constraints imposed on the system, and
the second kind depend on the first through consistency of the equations of
motion. More preciscly, the variation of the action functional under arbitrary
variations of the ficlds contains boundary terms that depend on the varia-
tions and valucs of the ficlds at the boundary. Requiring vanishing of the
boundary terms (independently of bulk terms in the variation) then deter-
mines boundary conditions in the equations of motion, which depend on the
boundary conditions imposed in the variational principle. Furthermore, con-
sistency of the constraints (boundary conditions on the allowed variations)
with the cquations of motion typically imply “sccondary constraints” on the
ficlds.

As an cxample, consider a free bosonic ficld in two dimensions with action
S = [,d?20"X0,X. The variation of S under arbitrary variation of X is
38 = fz(—a“ﬁuX)cD( + [o5: 0. X0X, where 9,X is the normal derivative at
the boundary, 0%. If X is unconstrained, the boundary conditions for the
cquations of motion —9*0,X = 0 arc of Neumann type, 9, X sy = 0. If
on the other hand one imposes the constraint X|gs = const. (this implics
the restriction dX|gs = 0), the variational cquation docs not imply any
boundary condition, but consistency with the equations of motion requires
0 X |ox = 0, where 0, is the tangential derivative at the boundary. These
boundary conditions arc of Dirichlet type.
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A typical feature of boundarics is that symmetrics of the theory arc bro-
ken by the boundary conditions. In the Lagrangian framework, continuous
symmetrics imply conscerved currents by Nocther’s theorem, and boundary
conditions arc symmetry preserving under the following requirements.
® On the one hand, the transformation corresponding to an unbroken sym-
metry has to be consistent with the boundary conditions. In other words, the
allowed variations have to contain the infinitesimal symmetry transformation
at the boundary.
= On the other hand, the boundary conditions have to be such that the ac-
tion is still invariant under the symmetry transformation, after imposing the
boundary conditions. In other words, the normal component of the Nocther
current has to vanish at the boundary.

In the free boson example, it is casy to sce that the U(1) symmetry of S,
which is infinitesimally generated by 0.X = € is preserved by Neumann and
broken by Dirichlet boundary conditions. On the other hand, introducing a
boundary breaks translational invariance on the worldsheet in both cases. As
a conscquence, only conformal transformations that preserve the boundary
arc symmetrics of the theory.

Consider now the Kéhler o-model with action (3.1) on a two-dimensional
worldsheet Y with boundary 9. As before, denote the normal derivative
at the boundary by 0,, and the tangent derivative by 0;. Assume that the
boundary conditions arc gcometric, i.e., there is a submanifold I' C Y such
that the boundary is mapped to I', X(0X) C T'. The boundary conditions
on the bosonic ficlds arc then

SX|T;  0,XLT. (3.4)

For the purpose of string theory, one is interested in boundary conditions
that break half of the supersymmetrics of eq. (3.2), and preserve the other
half. There are essentially two ways to achicve this [27, 29], called A- and
B-type supersymmetry, respectively.

» A-typce supersymmetry is the diagonal combination of supersymmetrics
generated by e = €. = €4 and €, = €. = €4. Equation (3.3) then shows
that the preserved supercurrents are G4 = G4 + G_, and G4 = G4 + G_.
® B-typc supersymmetry, on the other hand, is generated by e, = —¢ = ¢p
and €, = —€_ = €ég. The preserved supercurrents are GP = G, + G_ and
GB=G, +G ..
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To understand the geometry of A-type boundary conditions, notice that
in this casc,

0X = ea(y +9y) —ea(v- +¢y)
0py = ea(i04 X" + wy, (¥))
0 = ex(—0- X" + wy_(¥)).

In view of (3.4), the fermions then have to satisfy the boundary conditions
Y- +4 || T and ¢_ +4 || T. The condition that G4 be preserved becomes
(recall 04 = 0y + O, O— = Oy — 0y,

gOX 0y =)+ g(8 X,y +10-) = 0. (3.8)

Since 0,X L T, 9,X || T, the sccond term vanishes, while the first implics
Yy — - L T. If J denotes the complex structure of Y, onc has that
Ty +) =ity — ). Tt follows that J maps vectors tangent to T to
vectors orthogonal to T' and vice-versa. In other words, I is a Lagrangian
submanifold of Y [28, 27, 29].

Very similarly, one can show that in the case of B-type supersymmetry,
the fermions have to satisfy v + ¢y | T, ¢ + ¢, || T, ¥y — 4y LT, and
b —1p, L T. This mecans that " has to be a holomorphic submanifold of X.

This characterization of boundary conditions—A-typc as Lagrangian and
B-type as holomorphic submanifolds—was in the simplest situation. More
general cases include, for example, the addition of a B-field term, [, X*B,
to the action (3.1), where B is a closed two-form on Y. Furthermore, if
the Kahler manifold Y is non-compact, it admits non-trivial holomorphic
functions, and onc can add a supcrpotential term. Last not least, one can
couple the boundary to a target space gauge ficld A, by introducing a term of
the form |, o XA, It turns out [28] that A-type supersymmetry is preserved
if the gauge ficld is flat, while B-type supersymmetry requires the gauge field
to be holomorphic. For a more precise description of the possible boundary
conditions in the various cases, sce ref. [29].

3.1.3 Quantum corrections

The foregoing analysis was purcly at the level of classical ficld theory, and
quantum cffects will modify this deseription. As is familiar from the situation
in the bulk, one may distinguish perturbative and non-perturbative quantum
corrections on the worldshect.

To start with, notice that the classical o-model action (3.1) also has
the symmetrics of conformal invariance, and invariance under global RR-
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rotations. R-rotations correspond to automorphisms of the N' = 2 super-
symmetry algebra and act on the fermions as 1y — ¢®9va), for vector, and
Py — oy, for axial R-rotations, respectively.

Upon quantization of the o-modecl, however, conformal invariance is bro-
ken, unless the beta-function vanishes. It turns out that to lowest order in
o-modcl perturbation theory, the beta-function for the target metric is pro-
portional to the Ricci tensor corresponding to this metric. Thus, conformal
invariance requires that the target admit a Ricei flat metric. The target must
be a Calabi-Yau manifold.* The R-symmetrics involve rotations of fermions
and arc also subject to quantum cffects. Namely, the anomaly of the axial
R-symmetry is proportional to the index of the Dirac operator for the world-
sheet fermions. This index is equal to 2¢1(Y), where ¢;(Y) is the first Chern
class of the tangent bundle of Y. Thus, according to Yau's thcorem [78§],
the two conditions of conformal invariance and anomaly cancellation on the
worldsheet arc equivalent.

Besides these perturbative corrections to classical considerations, there is
another kind of quantum cffect on the worldsheet, namely non-perturbative
instanton corrections [5, 6]. For a o-modecl with Calabi-Yau target, instantons
correspond, after Wick rotation to a Fuclidean worldsheet, to holomorphic
maps of the worldshecet ¥ into Y. Worldshecet instantons modify the gecometry
of the moduli space of the Calabi-Yau manifold, and thercby also the masses
and couplings in the low-cnergy cffective ficld theory.

Recall that the moduli space of Ricei flat Kéhler metrics on a Calabi-Yau
manifold is locally the product of complex structure moduli space and Kéhler
structurc moduli space. In physics terms, this factorization corresponds to a
decoupling of vector- and hypermultiplet moduli of the AV = 2 supergravity
theory, which is the cffective description of compactified type I string theory
at low cnergics [8, 9, 83].

Since, by definition, contributions of an instanton ® : ¥ — Y must be
weighted with exp™ /5 2"/ where w is (the pullback of) the complexified
Kéhler form, they can only correct the Kéhler moduli space. On the other
hand, the complex structure moduli space is unaffected by worldsheet in-
stantons, and can be computed classically. These two facts—decoupling and
abscnce of non-perturbative corrections on the complex structure side—make
mirror symmetry such a powerful tool. By exchanging Kahler moduli of YV
with complex structurc moduli of a mirror manifold, Y™, mirror symmetry
allows to map an a priori complicated calculation of worldsheet instanton

4Although there are higher order contributions to the beta-function even when the
target is Ricci flat, the general criterion that requires Y to be Calabi-Yau is valid to all
orders in perturbation theory.
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corrections of the Kahler moduli space of Y to a classical computation in the
complex structure moduli space of the mirror manifold, Y* [13]. The math-
cmatical interest of mirror symmetry computations arises from the relation
to counting of holomorphic curves and Gromov-Witten invariants, sce [84]
for further references.

To summarize this bricf review, it can be scen that the requirements of
string thcory impose certain constraints on the classical gecometric target that
defines the g-model. Furthermore, some of the non-perturbative quantum
corrcections of string theory on Calabi-Yau manifolds arc accessible using
mirror symmetry.

3.1.4 D-branes

Similarly as in the bulk, it should be asked how the classical analysis of scction
3.1.2is modified by quantum cffects. As before, one expects to first determine
stronger geometric conditions that will ensure existence of a consistent, i.e.,
conformally invariant and stable, quantum thcory on the worldsheet. Note
that these geometric conditions for the boundary scctor can, or rather, must,
depend on the moduli of the bulk theory. In a sccond step, one might then
try to explicitly evaluate the non-perturbative quantum corrections.

These problems have attracted a lot of attention in recent years, sce,
e.g., [85, 32, 86, 87, 88, 89, 90, 91] and it is not intended to review here
the significant progress that has been made. The goal of this subscction
is merely to summarize those aspects of the geometric characterization of
D-brancs on Calabi-Yau manifolds that will be needed in the examples, in
particular, in scction 4.3. This includes the topological classification of D-
brancs, basic stability (supersymmetry) criteria, the effective coupling to RR
gauge ficlds, and the BPS central charge. For the rest of this scction, the
complex dimension of Y will be assumed to be n = 3.

Special Lagrangian submanifolds

As reviewed above, boundary conditions of A-type with respect to the N = 2
worldsheet supersymmetry correspond geometrically to Lagrangian subman-
ifolds, with a flat U(1) connection. Such submanifolds arc topologically char-
acterized by a homology class in Hy(Y, Z).

It is shown in [92, 27] that the extra geometric condition ensuring space-
time supersymmetry is

Im ¢ Q|p =0, (3.9)
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where T is the cycle wrapped by the brane, and €2 is the unique holomor-
phic top-form of the Calabi-Yau. The angle «y is arbitrary. The alternative
characterization is that the cycle wrapped by the branc has minimal vol-
umc in its homology class, or that ¢*¥§2|r is proportional to the volume form
induced by the Kéhler metric. The condition (3.9) is called the “special
Lagrangian condition”, the corresponding brancs in string theory arc called
A-typc brancs.

Physically, onc can mecasurc the homology class of an A-type branc as a
charge under RR gauge ficlds. Recall that in the low-cnergy cffective theory
in the flat part of space-time, the RIR gauge ficlds in hypermultiplets arisce
from dimensional reduction of RR form ficlds in 10 dimensions along the
various cycles in the compactification manifold. In particular, for A-type
brancs that arc point-like in the flat part of spacc-time, the relevant ficlds
arc the RR p + 1-forms (with p odd) of the type IIB string. The natural
space of R} gauge ficlds thercfore is H3(Y). The coupling of an A-type
branc (topologically also an clement of H3(Y')) to these RR gauge fields can
then be shown to simply equal the natural symplectic pairing in H3(Y) (sce,
e.g., [93]). Equivalently, the RR charge Q®®(T') of an A-typce brancs can be
thought of as lying in the dual space, i.e.,

Q™ (T) e H*(Y.Z). (3.10)

More explicitly, given a basis of 3-cycles {v',i = 1,... ,h3(Y)} in H3(Y'), onc
may cxpand T'= Q¥™+%, and call Q" the RR charges of the A-type branc.

Of central importance for later applications is the N' = 2 central charge
of the branc. By definition, the central charge is the coupling of the branc to
the central clement of the A= 2 supersymmetry algebra in flat space-time.
This central clement arises from the operator gencrating left-right symmetric
spectral flow, which, for the type IIB string compactified to 4 dimensions,
corresponds to the holomorphic three form Q € H*(Y) on the Calabi-Yau
three-fold. Thinking of the charge as an clement of H3(Y'), one should then
really evaluate @Q®® on the three cycle Poincaré dual to €. Equivalently, the
central charge Z(I') of an A-type brance wrapped on T is given by

ﬂﬂ:lﬁ:cjéma. (3.11)

Since T is special Lagrangian, (3.9), this expression shows in particular that
the absolute value of Z(T') is the volume of the eycle, which in physics terms
is the mass of the brane, as viewed from flat space-time [2]. Thus, the mass
of the branc is completely fixed by its RIR charge, as befits a BPS state. Also,
v is equal to the phase of the central charge.
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Stable coherent sheaves

For “B-type” brancs, N' = 2 worldsheet supersymmetry requires boundary
conditions on holomorphic submanifolds, and a coupling to a conncction in a
holomorphic vector bundle. More gencrally, one considers coherent, sheaves
[93] or complexes thereof [94] as the natural geometric objects corresponding
to B-type brancs. The natural receptacle for the topological classification of
D-branes is currently belicved [95, 96] to be K-theory. But for the present
purposcs, it will be ecnough to approximate K-theory classes by cohomology
classes. The topological class of a B-type branes V, is then given by the Chern
character, ch(V), and lics in the diagonal cohomology, @H™(Y) 3 ch(V).

Spacce-time supersymmetry for B-type boundary conditions is governed by
Kahler moduli, and in distinction to the situation for A-type brancs, depends
on quantum corrections for the bulk. The precise gcometric characterization
of B-type brancs throughout moduli space is subject of intensive current re-
scarch, and will not be discussed in detail here. Sce [88, 94] for recent work.
At large volume, the situation is somewhat better understood. The basic
criterion [93] in the simplest case of a vector bundle (a branc wrapping the
whole Calabi-Yau) is the existence of a hermitian Yang-Mills connection. By
the Donaldson-Uhlenbeck-Yau theorem [97, 98], this is equivalent to math-
cmatical definitions of stability of holomorphic vector bundles on Y. The
gencral situation is more involved, and it is not casy to state the analog of
cq. (3.9) in general.

Consider now the relation between the topological class of a B-type brane,
V), and its physical RIR charges. Here, the relevant gauge fields arise from
dimensional reduction of RR p + 1-form ficlds, with p cven, of the type ITA
string. It is shown in [99, 93] that the charge describing the correct coupling
to these RR gauge ficlds is given by the generalized Mukai vector

Q™ (V) = ch(V)\/A(Y) € @, H"(Y), (3.12)

where ¢h(V) = tr(cF) is the Chern character, and A(Y) a topological invari-
ant of Y.

As for A-type brancs, the central charge of a B-type branc can be com-
puted from its RIR charge. Again, it is nothing but the coupling to the central
clement of the N = 2 space-time supersymmetry algebra, this time for the
type ITA string. At large volume, one can write the central charge as [100],

~

Z(V) = /CK QWA(V) = /CK ch(V) 4/ A(X), (3.13)

where K is the complexified Kahler class of the Calabi-Yau manifold. But
this formula is subject to quantum corrections on the worldsheet. The best
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way to determine the central charge at a generic point in moduli space is to
usc mirror symmetry to map the charges of B-type brances on Y, cq. (3.12),
to the charges of A-type brancs on Y™, ¢q. (3.10), and then compute Z using
cq. (3.11).

Intersection indices

Onc more picee of information that will be uscful in comparing results from
algcebraic conformal ficld theory with gecometry in chapter 4 is the intersection
index of brancs. This intersection index is a topological invariant associated
with two D-brancs and can be thought of as a pairing between the respective
topological charges. From the worldsheet point of view, the intersection index
is the Witten index in the space of open strings stretching between the two
brancs.

For A-typc brancs, the natural pairing is the symplectic intersection form
on Hy(Y,Z). In particular, picking a symplectic basis of cycles, in which
the intersection matrix is of the canonical form (% ), onc may cxpand
QUO(T) = (@™, Q%) j=1,... poj2 and write for T, TV € Hy(Y),

h3/2
<Q(RR)( ) QRR)(FI) —TnN F/ Z QRR) Q(RR)( ) QERR) (F)QERR) (F/) )
(3.14)

For B-type brancs V, V', with charges Q®¥(V), Q®® (V') € HY&(Y), the
analogous cxpression is

QU8 (V), QW™ (V /QRR) VIQUW (V') = [/ch(V*®V’)A(Y). (3.15)

Using the index theorem, one can relate this expression to the index of the
Dirac operator coupled to V* @ V', which dircetly shows its relation to the
Witten index in the open string sector between the corresponding brancs.

3.2 N = 2 superconformal field theory with
boundaries

The goal of this scction is to analyze the interplay between the projections
that arisc in algebraic string compactifications and the construction of bound-
ary conditions for such theorics. The discussion centers around the internal
part of the compactification, and is the algebraic counterpart of the classical
gcometric characterization of D-brancs given in the previous scction.
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3.2.1 Algebraic construction of type II string compact-
ifications

In the compactification of the type IT string from 10 to D dimensions (D
cven), the role of the internal manifold Y is to provide an implicit definition of
a conformal ficld theory. Since Y is a Calabi-Yau manifold, onc expects that
the renormalization group flow starting at the classical o-model on Y defines
a unique conformal ficld theory with ' = 2 worldsheet supersymmetry. In
other words, at the conformal fixed point the modes of the energy momentum
tensor, supersymmetry currents, and U(1) currents generate two copies of the
N = 2 super-Virasoro algebra, which is explicitly,”

Ly L] = (0 = m) L + ~—= (0 — 1)6 1

12
= T _ (2 _ l
(GE,GFY = 2L,y £ (5 — 8)Jois + 3(7~ 4)5,,7_5
(GG =0
Y n Y .
[Jna Jm] = %n(sn,fm

[Lna Jm] = _mJn+m
[T, G] = £G;

n+r *

Abstracting from geometry, one may also ask for other, more cxplicit
definitions of conformal ficld theorics with the right propertics required for
string compactification. The class of conformal ficld theorics that arc used
in such “algebraic” compactifications typically include “free” theorics (e.g.,
lattice CFTs and orbifolds thercof), or they are rational CEFTs, which gives
a good handle at cxplicit calculations. To be usable as a building block for
string theory, the CFT must satisfy a number of conditions, the most basic
one being the correet Virasoro central charge, ¢ = 3¢ = 15 —3D/2. Here, éis
numcrically cqual to the number of compactificd complex spatial dimensions.
Furthermore, the CFT must in particular have AV = 2 supersymmetry on the
worldsheet and the associated U(1) charges must be integer [79, 80, 81]. It
turns out that in many cascs, these conditions can be imposed step by step,
and a carcful implementation of cach step guarantees the ultimate success of
the procedure.

5The reader should be warned about the following change of conventions. The
worldsheet has been Wick-rotated to Euclidean signature. Hence, “right-moving” (anti-
holomorphic) quantities on the worldsheet are distinguished from “left-moving” (holomor-
phic) by a bar. This is as in chapter 2 and different from section 3.1,where a + subscript
is used. Here, the + subscript distinguishes the two worldsheet supercurrents.
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The first step in the construction is the adjustment of the central charge.
To this end, choosc a certain number r of rational N = 2 superconformal
ficld theories, C9, with central charge ¢;, i = 1, ..., r, such that doci=15—
3D /2. In fact, r might also be equal to 1, but ordinary constructions (e.g.,
free bosons, cosct models, orbifolds, cte., without using tensor products),
very rarcly produce such modcls.

To be able to make contact with chapter 2, the individual AV = 2 building
blocks will be described as bosonic theorics with Virasoro central charge ¢;
and N = 2 structurc appcaring as simple-current symmetrics.® In particu-
lar, cach factor of the tensor product contributes two distinguished simple
currents, denoted by v; and s; for ¢ = 1, ..., r. The primary ficld v; has
conformal weight A,, = 3/2, is a simple current of order 2 and contains at
the lowest Virasoro degree two ficlds representing the worldsheet supercur-
rents, G*(z) of the superconformal theory. Tt is referred to as the vector
current. The sccond simple current, s;, has conformal weight Ay, = ¢;/24,
and a modcl dependent order. In supersymmetric language, the module cor-
responding to s; contains at the lowest degree the unique Ramond ground
state of maximal U(1) charge ¢;(s;) = ¢;/6. The action of s; by the fusion
product is equivalent in supersymmetric language to spectral flow by half a
unit, and the monodromy charge with respect to s; satisfics

Q&Qw:%g) mod Z, (3.17)

where ¢;(A) is the i-th U(1) charge of the ficld A in the tensor product.
Naively, one would now like to take the tensor product,

Cten. prod. _ ngl C(l) : (318)

as the internal CFT of the compactification. However, the ordinary tensor
product of the CKFT factors is adapted to the bosonic language, and is not
cquivalent to their tensor product as superconformal theorics. Indeed, the
tensor product (3.18) is not N = 2 supersymmetric, essentially because the
contributions of the individual factors to the putative worldsheet supersym-
metry current,

120G (2)®---®1, (3.19)

6A summary of simple currents was given in section 2.2. For background material on
the A/ = 2 superconformal algebra, see [10]; for more information about simple currents
in such theories, see, for example, [101].
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with G* in the i-th factor, do not lic in the same irreducible module of the
bosonic tensor product, and it would not make scense to add them. In the
other scctors of the theory, the problem reappears in the existence of ficlds
that arc NS in some factors of the tensor product, and R in others, i.¢., that
the fermions arc not “aligned”. Fermion alignment can be achicved by a
projection operation and is most casily implemented at the level of yCFT as
a simple-current extension. Explicitly, the extension with the simple-current
group generated by

W; = V105, (3.20)

for i = 2, ..., r, guarantees that the summands (3.19) all lic in the same
irrcducible representation of the extended algebra, namely in the equivalence
class labelled by v = [(vq,wa, . ..w,)]. © Furthermore, since the monodromy
charge with respect to vector currents distinguishes NS sector (@, = 0)
from R scctor (Q,, = 1/2), the projection, @y, = 0 mod Z cnsurcs fermion
alignment.

The general properties of simple-current extensions automatically guaran-
tee that the resulting theory is a consistent CF'T, in particular if the concern
is modular invariance. The tensor product (3.18), extended by the alignment
currents (3.20), will be referred to as C¥¥"Y, with chiral algcbra A",

Having obtained an A/ = 2 superconformal theory with central charge ¢ =
15—3D/2, the next condition on the CFT is that the total U(1) charge of all
NS ficlds be integer. This condition is equivalent to the physical requirement
that the string vacuum obtained after tensoring with external space-time, and
performing the GSO projection, is stable (absence of tachyons) and exhibits
spacce-time supersymmetry.

Since the total U(1) charge, ¢, is measured by the spectral flow operator,
i.¢., the simple current

s = (81,82, ,8:), (3.21)
it is natural to understand also this sccond projection as a simple-current
extension. More precisely, the extension is by the cyclic group gencrated by

u=s2pP2/2, (3.22)

Indced, the monodromy charge of a primary ficld A of the theory C¥s"Y with
respect to u is equal to

Qu(A) =

{q()\) if A is in the NS sector (3.23)

g(A) + £2 if Ais in the R sector,

"Recall that w; denotes the vacuum in the i-th factor of the tensor product.
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and henee extension by u guarantees integrality of the U(1) charge in the NS
scctor. The factor v((P=2/2 in (3.22) and the shift by (D — 2)/2 in the R
sector in (3.23) is the usual dependence on odd or even complex dimensional
compactification space (recall that é =¢/3=n=5— D/2).

The tensor product Cte-Prod- (3.18), extended by the simple-current group

gext = <Vvi7 u> ) (324)

generated by the w; and the current u is an N = 2 superconformal theory
with integer U(1) charge in the NS scctor, and can constitute the internal
scctor of a string compactification. Tt will be denoted by €', with cor-
responding maximally extended chiral algebra A™8¢T. In principle now, the
construction of boundary conditions in this cxtended tensor product is a
well-posed problem. However, for the physical interpretation of various in-
gredients of the construction, in particular to determine the correct amount
of symmetry to be preserved by the boundary conditions, it is necessary to
take a bricef look at the remaining steps, involving the external space-time,
towards a consistent string vacuum.

At the level of CFT the flat dimensions are described by the tensor prod-
uct of D free bosons and D free fermions. This tensor product Civ* x C;’/fzerm
has A = 2 supersymmetry (subscripts here stand for the Virasoro central
charge). Gauging of the NV = 1 superconformal symmetry on the worldsheet
can be performed by introducing a system of ghosts, 0%6, for the stress-
cnergy tensor and a system of superghosts, Cﬁ;h for the N' = 1 supcreurrent.
Consider then the tensor product

Cly™% X Chys™ x ™ x C¥hg x CYE" . (3.25)
Again, to retain N = 2 worldshect supersymmetry, the space-time and in-
ternal worldsheet fermions have to be aligned by a simple-current extension.
The GSO projection that avoids space-time tachyons and cnsurcs a space-
time supersymmetric spectrum amounts to projecting onto odd-integer total
U(1) charge in (3.25). Full string theory procceds from this by introducing
the BRST opcerator (nilpotency follows from the vanishing of the total central
charge) and restricting to physical observables in the BRST cohomology.

It turns out that there is a convenient prescription that allows to express
also the GSO projection in the language of bosonic CFT as a simple-current
extension, namely the so-called bosonic string map. In essence, it amounts to
replacing superghosts and space-time fermions in (3.25) by a bosonic CFT
corresponding to the SO(D 4 6) WZW model at level 1. For a review of
the bosonic string map, sce [102]. For the purposes of the next subscection,
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suffice it to note that in this completely bosonic language, the space-time
supcercharges are the zero modes of the chiral ficlds (“spinor fields”),

S(2) = Sext(2)sims(2), (3.26)

where Sexs 18 a spinor primary field of SO(D + 6)1, and siy is the primary
ficld obtained from (3.21) after extension by u.

3.2.2 Automorphism types of boundary conditions and
space-time supersymmetry

As scen in the geometric description of D-brancs on Calabi-Yau manifolds,
there are essentially two types of possible boundary conditions for the sym-
metry currents of an N = 2 ficld theory, commonly called A- and B-typce
boundary conditions. In the algebraic framework, the two possibilitics reap-
pear as different automorphism types of boundary conditions with respect to
the N' = 2 algebra. By construction, however, the chiral algebra of C™"eF s
much larger than the AV = 2 algebra and boundary conditions can be further
classified according to the way in which this extended symmetry is realized.
In particular, the algebra A™F contains the simple current u. Since u o< s2,
and s is related to the space-time supercharge, it is rcasonable to expect a
connection between the realization of u on the boundary and the space-time
supersymmetry preserved by the corresponding brance. It is the goal of this
subscction to explain this connection.

It is casy to sce that the automorphism group of the N' = 2 algebra (3.16)
is isomorphic to U(1) x Zy, where the U(1) stems from inner, and Z, from
outer automorphisms. A priori, there are therefore two families of boundary
conditions. Considering the theory on the upper half plane, with boundary
at z = z, onc distinguishes
= A-typc boundary conditions:

T(z) =T(z)
G*(2) = H GF () at z =12 (3.27)
J(z) = —J(Z)

= B-typc boundary conditions:
T(z)=T(2)
G*H(z) = ™8 G=(2) at z =
J(z) = J(2)

(3.28)

Y
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Now recall that superstring theory is based on local invariance under
N = 1 worldshcet supersymmetry. This supersymmetry can be realized in
different ways. Tt is casy to sce that for cach choice of ¢, the combination
GW = ¢9GT + ¢¥9G~ gencrates an N = 1 super-Virasoro algebra.  If
this symmetry is to be gauged, it must not be broken by the boundarics.®
Not cvery choice of inner automorphism is compatible with every embedding
of the N' = 1 into the N' = 2. More preciscly, cach choice of ay for A-
type boundary conditions is compatible with onc and only onc choice of ¢,
namcly ay = —2¢. Onc the other hand, B-type boundary conditions arc
only compatible with ¢ = 0, but this independently of the choice of ag.
This rather subtle distinction and its implications do not scem to have been
analyzed in the literature. In any case, the angles oy and ap in (3.27) and
(3.28) may be shifted by a redefinition of G, and most convenient is to
simply sct them to zero. Sce also [29] for arguments that this is no loss of
generality in the o-model context.

Another choice of convention is whether one describes a given theory
using the diagonal or the charge conjugation modular invariant partition
function. This freedom, which is in fact the origin of mirror symmetry, can
be confusing. This is particularly true when applying results from conformal
ficld theory with boundarics, because the natural choice there is the charge
conjugation modular invariant, whilec gcometrically, the diagonal modular
invariant appcars to be more suggestive. In this thesis, A- respectively B-
type boundary condition will refer to a geometric interpretation, while trivial
respectively mirror automorphism type will mean the algebraic characteriza-
tion. Table 3.1 is the dictionary between the two formulations.

. . automorphism type | boundary condition
modular invariant : .
(algcbraic) (gecometric)
. trivial B-type
diagonal . type
mirror A-type
. . trivial A-type
\h: Yol > )
charge conjugation mirTor B-typo

Table 3.1: Automorphism types of A- and B-type boundary conditions

In a supersymmetric language, and in full string theory, BPS boundary
states arc constructed as GSO-invariant combinations of boundary states in

8Furthermore, the boundary conditions on the ghosts must be such that the ghost
number and the BRST current are preserved, but this will not be discussed any further
here.
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the CFT (3.25). Such boundary states possess, in analogy with worldsheet
spin structure (R or NS scctor) in the bulk, a Zs valued quantum number
n = %1, sce [103, 104]. Which specific combination of boundary states is
GSO-invariant depends on the projection, i.e., whether one is dealing with a
type ITA or type TIB theory. Furthermore, a GSO-invariant boundary state
reflects the spin ficld in a specific way, and only a special lincar combination
of space-time supercharges is preserved, see [2].

Turning first to the internal part, a boundary state, |a)), preserving the
N = 1 subalgcbra, with “boundary spin structurc” n, and with a definite
automorphism type with respect to the N = 2 algebra satisfics cither

(Ln®1—-1® L_,)|a)
(GEel1+inl®Gh)
(Jo@l+1®J.,)

| 0
la) =0 (3.29)
ja) =0,

)
a))

or,

(L,®1—-1® L_,)|a)
(GEf®1+inl ®GTF,)|a)
(J,®1-1® J.,)|a)

0
0 (3.30)
0.

In the first case, the automorphism type is trivial, while in the second case,
it is cqual to the mirror automorphism. Which casc corresponds to A- and
which to B-typc boundary conditions on the symmetry currents depends
on the choice between the deseription with diagonal or charge conjugation
modular invariant, scc table 3.1.

Of particular interest is the condition on the U(1) current J. For visual-
ization, it is helpful to bosonize this current,

J= i\/gax. (3.31)

Then, A-type boundary conditions arc like “Dirichlet”, while B-type bound-
ary conditions arc like “Ncumann” for the boson X. It is well-known that in
terms of X, one can write s = ¢'V¢2X_and hence

u= U(D72)/2 011/0/3X ) (332)
The fact that the U(1) charge is integer, or, cquivalently, that u = s? (re-

spectively, u? = s%) is in the chiral algebra, implics that the chiral algebra
contains as a subalgcbra the chiral algebra of a boson at rational radius
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squarcd, R? = ¢/3 = ¢ (respectively, R? = 2¢). Of course, the torus partition
function is not a dircct product, and a circle on which “X is compactificd”
is merely an analogy.

The conditions on the boundary states can also be translated into a purcly
bosonic language. The major difference is that the condition on the world-
sheet supercurrents in (3.29) and (3.30) is no longer a condition on ficlds in
the chiral algebra, but rather on a simple-current ficld. Tt is still possible to
distinguish 17 = +1 by the way in which the simple current corresponding to
worldsheet supersymmetry is reflected at the boundary, i.e., v(z) = nuv(Z).

On the other hand, since the simple current u is in the chiral algebra,
the preserved space-time supersymmetry charge can be measured as an au-
tomorphism type with respect to u. Now recall that for a compact boson at
rational radius squarcd, the automorphism type with respect to the extended
symmetry restricts the position of the Dirichlet boundary conditions on the
circle, respectively the value of the Wilson line . By analogy, this leads to
an intuitive interpretation of the automorphism type with respect to u.

Explicitly, onc has for A-type boundary conditions that u(z) = ¢*7 ut(z),
i.e.,

oiVe/BXL(2) 77(D72)/202ivofi\/ ¢/3Xr(2) (3.33)

In the intuitive picture, this fixes the Dirichlet boundary conditions (X +
Xg)|:z: = 2v/Vé mod 27/V/¢. By considering also the spin ficld, the ambi-
guity can be reduced. Namely, restricting to n = +1, onc has for the spin
ficld,

Ve 12X1(2) — 4 (v —i/e/12 Xr(2) (3.34)

which determines Xp + Xg = 27/ Ve mod 47 / Ve.
For B-typc boundary conditions, the analogous cquation is

Ci\/c/IQXL(Z) — :ECi’BCiV ¢/12Xg(2) , (335)

where 3/+v/é mod 2r /v/é corresponds to the value of a Wilson line.

To spcecify the full boundary state for a D-branc in type II string theory,
onc has to decide about the extension of the branc in flat space-time. Assume
that there are p41 Neumann and D —p— 1 Dirichlet boundary conditions in
D-dimensional space-time. At the boundary, the space-time spinor current,

In the simplest case, where 1?2/2 is integer, the extension is by the field e/*X. Then
the “automorphism type” eBXL(2) = eloe=iRXr(Z) determines the position of the Dirichlet
boundary condition to be at X1,(z) + Xp(2)|.=z = a/RR.
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Sext, 18 then reflected into a spinor of the same or of the opposite chirality if
p+ 11is cven or odd, respectively. Given the reflection of the internal spinor
current Sing, (3.34) and (3.35), and the fact that the total spinor current has
to be reflected into itsclf for type 1IB and into its conjugate for type ITA,
onc obtains the well-known conditions on the parity of p and the boundary
condition in the internal sector. This is summarized in table 3.2.

internal boundary condition
A-type B-type
type ITA p odd p cven
type I1B p cven p odd

Table 3.2: Allowed combinations of number of external Neumann conditions,
p+ 1 and internal boundary conditions, A-type or B-type, for compactified
type ITA and type IIB string theory.

Given the identification between the total spinor current and space-time
supersymmetry, it is now clear that the angles v and 8 appearing in cgs.
(3.34) and (3.35) measurce which combination of space-time supersymmetry
charges is preserved by the boundary condition. In other words, the angles
arc cqual to the phasc of the central charges. This also shows that the sign
in (3.34) is simply the distinction between brane and antibranc.

An explicit construction

Assume now that the internal part of the string compactification, C™er,
has been constructed along the lines described in the previous subscction,
where the various projections correspond to simple-current extensions in a
bosonic CFT. Using results of [49, 50], it is straightforward to construct
boundary conditions for C™* that do not preserve the maximally extended
algcbra A" The data characterizing the symmetrics of the boundary
conditions can be read off as monodromy charges with respect to the various
simple currents. However, the constructions described here will always lead
to boundary conditions of A-typc with respect to the N = 2 algebra.

For details, recall that in [49, 50], boundary conditions for a theory based
on a chiral algecbra A were constructed that preserve only a subalgebra 2L,
which is obtained from 21 as the fixed algebra under a finite Abelian group of
automorphisms. By the correspondence between simple-current extensions
and orbifolds by finite Abclian groups, this can also be considered as bound-
ary conditions in an 2 theory with a spccific modular invariant of extension
type. The simple-current group, &, and the automorphism group &* arc
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rclated by duality. From the perspective of the 21 theory, the results are as
follows. Boundary conditions preserving 21 correspond to & orbits of 2 pri-
marics [\, 9] (¥ is a degencracy label given by a character of the untwisted
stabilizer). The automorphism type of the boundary condition is an cle-
ment of the dual orbifold group &*, and can be computed as the monodromy
charge of A with respect to a simple current in &; in formulas,

autgs 4 (J) = Qs(A). (3.36)

In particular, the symmetries preserved by the boundary condition arc given
by the subgroup of & on which @ (A) is trivial.
In the situation under study, there is a sequence

AteIL prod. < AWSuY AiHHET (337)

of embeddings of chiral algebras, where Aten-prod- - Awsusy - and Amner gre the
chiral algcebras of Cten-prod- Cwsusy —and Ciner yegpectively. Applying the re-
sults of [49, 50], boundary conditions in C™ that preserve AY™ arc in
one-to-one correspondence with orbits under G, cq. (3.24), of primary ficld
labels from the tensor product C'™ P4 subject to the restriction of zero
monodromy charge with respect to all alignment currents w;.'Y The mon-
odromy charge with respeet to u is not restricted. It takes values in Zy /N,
where N is the order of u, and is related to the space-time supersymmetry
that is preserved by the boundary state. Morcover, the Zy label n = £1,
[103, 104] is mecasured by the monodromy charge with respect to v.

The supersymmetry data of a boundary condition so constructed is sum-
marized in table 3.3.

3.2.3 RR charges and intersection index

In the previous subscction, it was shown how to obtain A-type boundary con-
ditions in the internal part of an algebraically constructed string compactifi-
cation. These boundary conditions were then characterized with respect to
the supersymmetry they prescrve.

In this subscction, it is shown what and how information about a supcr-
symmetric boundary condition a, is encoded in the expansion of the corre-
sponding boundary state in terms of boundary blocks (Ishibashi states)

o B)\a,
2

1When the orbits are stabilized by a non-trivial subgroup of Geyy, the complete labelling
also includes a character 1 of the untwisted stabilizer.

;

|a) [AD) - (3.38)
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datum valucs in computed as
automorphism typc Ly Y

. — - =Qu d Z
with respect to u N T Qu(A) mo
preserved space-time
supcersymmetry [0,27] | v=27Q(\) mod 27
(phase of central charge)
branc/antibranc +1 (—1)2@N-QulY)
Ui +1 n = (=1)%™

Table 3.3: Supersymmetry data of an A-type boundary condition, labelled
by (A, %]ge,. Here, Gex is the extension group from Cen-Prod- to Cinner - and
A is a primary ficld of Ct™ P4 with @, (A\) = 0 for all alignment currents
W; € Gexe. NV 18 the order of the simple current, u, in the theory CVssY,

The boundary condition labelled by a is required to have a well-defined
automorphism type (A- or B-type) with respect to the N = 2 algebra, and its
extension by u. Upon inclusion in a string theory, the associated boundary
states will represent wrapped BPS D-brancs. It will, however, not be assumed
that a belongs to the class of boundary conditions constructed in the previous
subscetion. ™t

To begin with, it is rather casy to compute the couplings of the boundary
state to bulk ficlds. Quite gencrally, such a coupling is computed, up to a
normalization, by the onc-point amplitude of a bulk vertex operator @) at
the center of a dise with boundary condition a. Since the boundary state
la)) simply cncodes the information about all such one-point functions, this
is suggestively written as an inner product, and can be cevaluated with the
help of (3.38)

’

B/\a
V S)\() ‘

For this coupling to be non-vanishing, it is nccessary that the bulk sector A
contributes an Ishibashi.

The most basic couplings of brancs onc might be interested in are the
mass or tension, mg,, of the brane, as well as the RRR charges. The mass is
casily computed from the coupling to the vacuum scctor, here labelled by 0

(Pa(z =0))a = (Pal|a)) = (3.39)

"To be on the safe side, one might require that the expansion (3.38) is finite, or that the
preserved subalgebra is rational. It will not be discussed here whether such a condition is
necessary. See also [105] for some arguments in this direction.
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[105]

ma X B()a . (340)

Notice that m, never vanishes (in fact, in should always be positive), since the
boundary condition preserves the Virasoro-algebra, and hence the vacuum
scctor always appears in the expansion (3.38).

On the other hand, the coupling to a massless RIR field, ¢, which is pro-
portional to the i-th RIRR charge,

Q" (a)  Bia/v/ S (3.41)

is non-vanishing only if the corresponding Ramond ground state contributes
an Ishibashi statc of the right automorphism type (e.g., A-type (B-type)
boundary states can only couple to Ramond ground states corresponding to
the horizontal (vertical) cohomology of the appropriate Calabi-Yau space).

In particular, the central charge of the D-branc is the coupling of the
boundary statc to the spectral flow operator s. This was argued in scction
3.1 for A-type boundary conditions, where the spectral flow is by half a unit
on the left, and minus half a unit on the right. 2 Given that the phase of the
central charge is the monodromy charge with respect to s, viewed as a simple
current (sce table 3.3), and the fact that, for a BPS state, the absolute value
of the central charge is equal to the mass, it must be truce that

By, = Fm@@p, (3.42)

This is of course reminiscent of the simple-current relation (2.28) for the
modular S-matrix. Thus, at lecast in this particular casc of the spectral flow,
the simple-current relation must genceralize to the boundary cocfficients cven
when these are not given by the S-matrix as in the Cardy casc.

Morc interesting than the simplest couplings, one can compute the “in-
tersection index” of boundary states, which is the analog of the geometric
quantitics discussed in scction 3.1.4. In [106, 29], the intersection of two
boundary states, |a)) and |b) is defined as an overlap amplitude in the RR
scctor. By a modular transformation, this is cqual to the Witten index in
the open string Hilbert space on the annulus, with boundary conditions a
and b on the two sides of the annulus, respectively,

Top = {al b pg = trr,, (—1)" . (3.43)

2This is in CFT conventions, compare table 3.1. For B-type boundary conditions, the
relevant spectral flow is left-right symmetric and also by half a unit.
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The goal now is to derive a more convenient expression for Z,, in view of
the cumbersome expansion (3.38).

In accordance with the general conventions adopted in this thesis, the list
of boundary blocks will contain all bosonic-primary ficlds scparately. The
boundary blocks arc normalized as in

(illg" o= 5) = dyxilr) - (3.44)

Inserting (3.38) in (3.43), and rccalling that the definition of the overlap
amplitude in the RR scctor contains a phase factor ¢ ™) this leads to
Ty = 3 el ominty 7 (3.45)
- Sio
where ¢ is summed over all Ishibashi states from the RR sector. gr(d) is the
left-moving U(1) charge of the state i. Usually, ¢ has integer cigenvalues,
whencee ¢™4 = (—1)fZ. For the considerations in scction 4.4, however, it is
convenient to have a slightly more general expression.

The expression (3.45) is in fact independent of 7, and can be computed
in the limit 7 — ioco, where only Ramond ground states (Rgs) contribute.
Thus,

To = BB —riauy. (3.46)
i Res Sio
It is natural to view this expression as the intersection number in the closed
string scctor, in analogy with the geometric versions. At lcast formally,
the expression (3.46) is simply the inner product of the RR charge vectors
(@™ (a)) and (Q§™ (b)) with metric given by ¢ ()4,

Scveral propertics of Z can be read off from (3.46). For instance, it is
obvious that the rank of Z (viewed as a matrix with entrics labelled by the
boundary states) cannot exceed the dimension of the chiral ring (the number
of Ramond ground states is equal to the dimension of the chiral ring). There-
fore, the topological charges of the D-brancs lic in a lattice of rank bounded
by the dimension of the chiral ring. What is not immediate from (3.46),
however, is the fact that this lattice, cquipped with Z as metric, is integral.
Integrality is more apparent in the open string scctor. To demonstrate this,
make a modular transformation in (3.45) to obtain,

B;aBibSim —igr, (¢
Iabzzs—wc wy,, (=1/7) , (3.47)

i,m
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where 7 runs over Ramond Ishibashis and m over all ficlds. The restriction
on 7 is relaxed by using that

o (3.48)
Sim 1 in Neveu-Schwarz scctor

{—Si m ¢ 1n Ramond scctor
Si,vm = ’

where vm denotes the worldsheet superpartner of m (v is the simple current
corresponding to the worldshect supercurrent). Furthermore, the U(1) charge
is given by half the monodromy charge with respect to the simple current, s,
implementing spectral flow by half a unit. Hence, ¢™2(0) 8, = Si s—1m, and

Ty =3 3D (1) xan(<1/7)), (349
Py i0

where now ¢ runs over all ficlds. This expression is further reduced by us-
ing the well-known relation between the Cardy cocfficients and the annulus
cocfficients, Ag;lm = >, Bl BipS;i s-1m/Sio. The annulus cocfficients arc non-
negative integers by the Cardy condition.

To obtain a manifestly integral expression, one can usc a slightly different
normalization convention for the construction of the true supersymmetric
boundary states, as was donce in [32, 29]. However, the better alternative
scems to be that the factor 1/2 is removed in the last steps (GSO projection)
of the construction of the BPS state, where two states with n = +1 arce
supcrposced. Their respective contributions to the intersection index are the
same. Then,

T = 3 AL ™ (X~ 1/7) = Xom(—1/7)). (3.50)

Now, Xm — Xum 18 & supersymmetric character. It is equal to one (or —1) if m
(or vm) corresponds to a Ramond ground state primary and zcro otherwise.
This yiclds the intersection number, written in the open string scctor with
the help of the annulus cocfficients,

Tp= Y, Ay " =A™ (3.51)

m Rgs

The intersection index is now written in a manifestly integer form. It follows
that the lattice spanned by the boundary states with metric given by Z is an
integral lattice, of rank bounded by the dimension of the chiral ring.
Various other interesting propertics of the intersection matrix can be de-
rived from (3.51) in a completely model independent way. For instance, if
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the A/ = 2 theory constitutes the internal sector of a string compactification,
the relation sv = ¢ holds (because of the extension with Gey ), where ¢ is the
conjugate of the spectral flow. Using conjugation propertics of the annulus
cocflicients and of the chiral ring, onc can then show that the intersection
index is (anti)”-symmetric, where n is the number of compact complex di-
mensions.



Chapter 4

Examples

The simplest examples of conformal field theories with A = 2 supersymmetry
arc built on free ficlds, and correspond geometrically to tori. In such theories,
it is expected that a comparison between the classical gecometric and abstract
algebraic approaches to D-brancs is possible and reveals a perfect match.
This is demonstrated in section 4.1, in which the two-dimensional torus 772
is examined in some detail. The main motivation is to obtain a rcasonable
intuition for the less trivial constructions in subscquent scctions.

The next class of examples arc the minimal models. These are ratio-
nal theorics whose chiral algebra consists only of the (bosonic part of) the
N = 2 super-Virasoro algebra. This property allows the complete analysis of
the models, including also a simple trcatment of boundary conditions. The
physical interest of minimal modecls is on onc hand due to their role as the
conformal fixed points of simple Landau-Ginzburg theorics. They can thus
scrve as local mirror models for string propagation ncar certain singularitics,
and as a conscquence appear in a BCFT description of parts of Sciberg-
Witten theory. On the other hand, minimal modcls arc the simplest building
blocks for the algebraic construction of string compactifications along the
lincs of seetion 3.2. Minimal models and their boundary scctors arce reviewed
in scction 4.2, following [33, 31].

According to the two roles of N/ = 2 minimal modecls, there are then two
dircctions to pursue. In section 4.3, which is based in part on [37, 30, 38], the
minimal modecls arc tensored together to form Gepner models, their boundary
scctors arc analyzed, and it is explained how to extract interesting geometric
information about D-brancs on Calabi-Yau manifolds in the stringy regime.
In particular, the analysis of simple-current fixed points and their untwisted
stabilizers provides insight into a new mechanism for enhancement of gauge
symmetry on D-brancs. The other route, namely gencralizations to N = 2
cosct models and the connection to local singularitics is taken up in scetion
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4.4. This material has appcared in [31].

4.1 The torus

4.1.1 The bulk theory

For the purposces of string theory, the two-dimensional torus is equipped with
a “background” metric, g;;, and a “background” B-ficld B;;. The o-model is
defined by the action

S = / 4z (90X OX7 +iB0X 0X7 +igy (v 00! +vidvl)|. (@)

The quantization of this modecl is standard. The solutions to the classical
cquations of motion can be written in the familiar mode expansion, which
arc quantized as the well-known infinite collection of harmonic oscillators.
The zero modes have to satisfy a quantization condition and arc labelled by
momentum and winding numbers. On the fermions ¢, cither periodic (R) or
antiperiodic (NS) boundary conditions can be imposed. After quantization,
it will be uscful to bosonize the fermions and express them as an SO(2) =
U(1) WZW modcl. This part is rather trivial, but extremely important for
supersymmetry considerations. It will be dealt with a little later.

To discuss details for the bosonic part of the theory, denote the two real
coordinates on the torus by X € [0,1] and Y € [0, 1], and supposc that the
lengths of the two cycles of the torus are Ry and R,, forming an angle a.

The metric is
_ R? R Ry cosa
9= (Rle COS Qv R? ’ (4.2)

with inverse,

(4.3)

- 1 ( R2 —R1R5 cos a)

T 22 an? o e 2
R3R3sin? a \— 1 Ry cosa R

and the B-ficld
0 B
B = (—B 0) ) (4.4)

Geometrically, the torus is 72 = R? /T, where T = Z x Z C R?. This lattice
I' with metric defined by gt is the lattice containing the winding modes
n = (ngn,) € I, while the momentum modes naturally lic in the dual
lattice I'* = Z x Z 5 m = (my, my), with metric defined by g.
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It is fairly obvious that the (bosonic part of the) conformal field theory
obtained from the torus o-model is the theory for the product of two U(1)
current algebras. The left- and right-moving U(1) charges, qrr € T'c arc
constrained to be of the form,

qr, =n+ Bm+ gm

4.5
qgr =n+ Bm —gm. (45)

The modular invariant torus partition for this lattice CFT is

Z(r7) = 1 Z CQTrif(%gil(QLJJL)*l/lQ) 02”17(5971(‘137(13)’1/12) . (4.6)
/ ’77(7—)‘2 nel’mel™ |

where 1971 (qr,r, qz,r) arc left- and right-moving conformal weights and 1/12
is the zero-point energy ¢/24. The factor |n|? is from the oscillators.
In components, the charges read

qr.z = Ny + Bmy, + (R%mx + 1Ry cosaemy,

qrae = Ng + Bmy, — (Rfmx + R1 Ry cos amy) ()
qry = Ny — Bmy + (Rle cosam, + Rgmy) ’

Ry = Ty — Bm, — (R1Rz cosamy + R%my) .

The natural supersymmetric language usces complex coordinates, Z and
Z. They arc defined by?

dZ =dX +7dY (4.8)

where 7 = 71 + imp is the modular paramcter of the torus. In terms of the
previous variables, one has 7 = ¢'*Ry/Ry. The metric becomes

1%
d*s = —[dZ|?, (4.9)
T2

where V= Ry Rpsina is the volume of the torus. The components of the
B-ficld arc b = B,; = —B;, = —B/2im. In the complex plane, one then
has T? = C/T with winding latticc T' = Z + 7Z 2 n, and momentum lattice
= —%(TZ — Z) > m*. The corresponding conformal ficld theory is the
theory of one complex boson, with left and right moving charges

z 14 z
qr.. =n, +bm*+—m
’ 2’7’2

(4.10)

Gr. =N, +bm® — —m?®.
’ 27’2

!The objects implied by the symbols Z and 7 here have nothing to do with the corre-
sponding ones in (4.6).
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Yot another equivalent way of writing the charges is obtained by combin-
ing not only the complex structure parameters 7, and 7o, but also the volume
and the B-ficld into onc complex Kahler paramcter,

T =T 172

. . (4.11)
p=p1+ipp=DB+iV.
The charges arc then
r _ __
dr.» = _2_ (Tnx — Ny + Py + ,OTmy)
k (4.12)
4R,z = —%(7’7% — Ny + pmy + p?‘my) .

Mirror symmetry

It is in this last form, (4.12), that the dualitics of the torus arc most obvious.
The conformal weight of the left moving representations is computed as
1 47’2
Ap = ——|q.|?
L= 37 gL
1
4V

) (4.13)
|7"nm — Ny + pMy + ,5’7'my| ,

and the spectrum is invariant under an SL(2, Z) x SL(2, Z) action on (p, 7).
Furthermore, the spectrum is invariant in a most obvious way under “mirror
symmetry”, namcly the exchange of 7 and p. Since this opceration is also
cquivalent to the exchange of n, and m,, it is casily identified as T-duality
along the X-dircction of the torus.

4.1.2 Supersymmetry

As mentioned above, the fermionic part of the torus o-modcl is equivalent to
the SO(2) WZW modecl at level 1. This in turn is the same as the theory of
a free real boson compactified on a circle of radius 2. In fact, this boson is
nothing but the U(1) part of the chiral algebra present in any A= 2 com-
pactification, as discussed in scction 3.2. Conscquently, it will be denoted
by X. The vacuum, spinor, vector and conjugate spinor of SO(2); corre-
spond, respectively, to the irreducible representations of U(1) with charge
0,1/2,1,—1/2. The corresponding primary fields arc written as vertex op-
crators 1, ¢X/2 ¢ ¢7%/2 and have conformal weight 0, 1/8, 1/2, and 1/8,
respectively. To make more explicitly contact with chapter 3, note that in
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this bosonic language, the holomorphic worldsheet supcercurrents arc nothing
but

GF(2) = 0Z(2) ) G (2) = 8Z(z) c )

_ _ . _ _ s 4.14
GT(2) =02(2) @ G (2) = 0Z(%) e X (414

while the U(1) current of the N = 2 algebra is
J(z) =10X(z). (4.15)

Thus, the current denoted by u in section 3.2 ensuring integrality of the U(1)
charge is

u = s%v = cA¥, (4.16)

and is in the chiral algebra by construction.

4.1.3 A-type boundary conditions

The identification and construction of boundary conditions and D-brancs
for the torus model, whose bulk theory was reviewed in the last subscction,
will be somewhat sketchy and maybe not as complete as one may wish for.
However, recall that the main idea is to develop some intuition for the various
ingredients that enter in more complicated examples, and not to produce an
overkill for the torus. Various other aspects of the torus model arc discussed
in the litcrature [35, 107].

D-brancs of A-typc arc special Lagrangian submanifolds. On the two-
dimensional torus, with any Kéhler form, any onc-dimensional submani-
fold is Lagrangian. The special Lagrangian condition amounts to the onc-
dimensional submanifold being a straight line in the Z-plane, as shown in
figurc 4.1.

Denote the angle between the special Lagrangian cycle and the real axis in
the Z planc by ~y. It is then readily verified that the condition on worldshecet
ficlds corresponding to Dirichlet boundary conditions on the cycle and to
Ncumann boundary conditions in the orthogonal dircction is

¢ 0Z(z) = 0Z(7) at z = Zz. (4.17)
Namecly, in terms of the real and imaginary part of Z, the conditions arc?

cosyO, ReZ +sinyd, ImZ =0

_ _ (4.18)
cosyOy ImZ —sinyO, Re Z =0 at z = 2.

2As in chapter 3, 9, and 0 stand for derivatives in the direction normal and tangent
to the worldsheet boundary respectively.
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T=T7 +1im LZ

1

Figurc 4.1: A special Lagrangian submanifold of 72

Elementary geometric considerations show that not any choice of v cor-
responds to a closed submanifold of T2, Rather, v has to be such that the
cycle closes after winding a finite number of times around cach cycle of the
torus. Thus, there have to be integers ny, ny such that

Mo T2

tany = ———: 4.19
7 ny +nom ( )

in other words, (72 — 7 tan+y)/tan~y has to be a rational number. This is
the gecometric quantization condition on .

To rediscover the same condition from conformal ficld theory with bound-
arics, notice that the geometric condition (4.17) is nothing but the expression
for an automorphism typc of a boundary condition with respect to the chiral
U(1) x U(1) symmetry of the lattice CE'T describing the complex boson Z.
To proceed, one has to identify the left-right combinations of representations
in the partition function (4.6) that can contribute Ishibashi states for a given
automorphism type. In terms of charges, the condition is

—C_i’y‘qL,z + CWQR,E = 05 (420)

with ¢r, . and gp , asin (4.12). It is straightforward to show that the condition
reduces to

my(cosy o +siny 1) + mysiny =0

. . (4.21)
N (Cosy T +sinyr) —n,siny =0.
In other words, onc obtains the condition that
CcoSY Ty +siny T n
S 1 :COtV7'2+T1=—1 (4.22)

sin y N9
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has to be rational number, which is the same as the gecometric quantization
condition. Also, contributing Ishibashi statcs arise from

my o
— = ——
My ny
Ny ol ’

Rather obviously now, the classifying algebra for boundary conditions with
automorphism typc given by (4.17) is equal to the group algebra of Z x Z,
admitting irrcducible representations labelled by two numbers a,b € R mod
2nZ. 1t is clear that onc may identify a geomcetrically with the intercept of
the special Lagrangian cycle with the real axis and b with the value of a U(1)
Wilson line along the onc-dimensional world-volume of the branc.

In summary, A-type brancs or boundary states on T2 arc classified topo-
logically by two numbers ny and ny, and have two continuously adjustable
paramcters @ and b. The brancs couple to closed string winding and momen-
tum modes satisfying the first and the sccond equation of (4.23), respectively.

Supersymmetry

To check that the boundary conditions (4.17) arc indeed consistent with su-
persymmetry, notice that by cquation (4.14) and the usual A-type boundary
condition on the supercurrents, G*(z) = G (Z), onc obtains the condition

This is indced consistent with Dirichlet boundary conditions

0X(z) = —0X(2) at z =z, (4.25)

on the U(1) current, and in fact shows that the Dirichlet boundary condition
has to be chosen at onc of the positions, v, v+ 7. The ambiguity corresponds
to a choice of orientation of the D-branc, and as in chapter 3, is resolved by
considering the condition on the spinor,

GX@/2 = v iX @2 (4.26)

which ultimatcly decides about conserved and broken supersymmetry charges
in the remaining cight non-compact space-time dircections. It is interesting to
note that only rational positions of the Dirichlet condition on X are allowed
and that the position, v, completely specifies the topological sector of the
D-branc. In particular, for cxample, the mass of the D-branc is a completely
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discontinuous function of . In contrast, the geometric position, a, and
Wilson line, b, arc continuous paramceters or moduli, of the special Lagrangian
cycle.

As a final obscrvation, notice that of course the choice of origin for the
position 7 is ambiguous. This can be traced back to the onc-paramcter
freedom in A-type boundary conditions on the supercurrents (sce chapter 3).
Any two conventions for the origin v = 0 arc always related by a redefinition
X — X 4 ¢ or, in supcersymmetric language, to a chiral R-rotation on the
fermions [29].

4.1.4 B-type boundary conditions

Given mirror symmetry as the exchange p < 7, it is apparent what changes
in the formulac arc necessary to go from A-type to B-type boundary condi-
tions. Geometrically, B-type brancs correspond to holomorphic vector bun-
dles. The boundary of the worldsheet is coupled to a gauge ficld, and the
boundary conditions also depend on the background B-field. B-type bound-
ary conditions arc mixed Dirichlet-Necumann boundary conditions, and arc
as such slightly less pictorial than A-type boundary conditions.

It will be argued below that B-type boundary conditions arc given by the
automorphism typc

¢ 07(2) =P 0Z(z) at z =2z, (4.27)

in place of (4.17) on the complex boson Z.
Similarly to before, the combination of charges contributing Ishibashi
states 1s

my(—sin 3 pg + cos B p1) +ngycos f =0

4.28
My (—sin G ps + cos B p1) —nycos f=0. ( )
Under the assumption that 3 satisfics the quantization condition that
sin 3 py — cos 3 py c1
=tanfFps —pp = — (4.29)
cos 3 r

be a rational number, there is again a Z x Z varicty of Ishibashi states. This
rational number will soon be identified with the slope of the holomorphic
bundle, ¢; /7. As a check, notice that all-Dirichlet boundary conditions, 07 =
—0Z, correspond to cos3 =0, or r = 0, ¢; = 1. On the other extreme,
assume that the B-ficld vanishes. Then all-Neumann boundary conditions,
0Z = 07, correspond to sin3=0,orr =1, ¢; = 0.
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Summarizing B-typc boundary conditions, they are classified topologi-
cally by two intcgers ¢; and r, and also have two continuous paramcters
whose geometric interpretation should be that of Wilson lines, respectively
of the position of the DO branc in the case of all-Dirichlet boundary condi-
tions.

To obtain the geometric interpretation of the boundary condition (4.27),
it is necessary to couple the worldsheet boundary to a gauge ficld. Namecly,
the path integral has to contain a Wilson line factor

tr(P CprA) . (4.30)

For the two-torus, the geometric boundary conditions derived with the
coupling (4.30) arc

B+ F

BE (4.31)

0, Tm 7 — &hReZ =0,

which upon identifying tan 8 = (B 4 F)/V is the same as (4.27),

cos 30, ReZ +sinfd; ImZ =0

4.32
cos 50, ImZ —sin30;ReZ =0. ( )

In other words, the quantization condition (4.29) is

B+ F
V

C
pQ—ple:%. (4.33)

4.2 From N = 2 minimal models to ADE sin-
gularities

4.2.1 Introduction

Similarly to the situation for the Virasoro algebra, N/ = 2 minimal modcls
come in a discrete serics, labelled by a positive integer &, with central charge
¢ =3k/(k+ 2). Viewed as bosonic CFTs, minimal models can be obtained
from the cosct construction as

SU(2), x SO(2),
()

(4.34)
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simple current minimal modecl ordor conformal weight
labels modZ
v (0,0,2) D) 372
s 0.1.1) {4h k odd ™
2h Kk cven
p (0,2,0) h _1/h
/ (k,0,0) 9 k/4

Table 4.1: The most important simple current of a single A = 2 minimal
model, at level & = h — 2. Note that s?v = p and f = p//?v.

where the SO(2); = U(1), comes from the fermions and the “level” of the
U(1) in the denominator (rclated to the radius for the boson in the usual
way) is determined from the embedding to be 2h = 2k + 4. Accordingly,
the primary ficlds of an N = 2 minimal modcl arc labelled by (I, m, s),
with [ =0, 1, ..., ks m € Zoy,, s € Zy, subjcct to the most usual restriction
[+m-+s cven, and ficld identification (I, m, s) = (k—1,m+h, s+2). Minimal
models arc the simplest examples of N = 2 coset modecls, to be considered
in morc dctail in scction 4.4.

For later usc, it will be convenient to have an overview of the simple
currents in A/ = 2 minimal modcls. These simple currents arc summarized
in table 4.1. Notice that when k is odd, the center, i.e., the group of all
simple currents, of the model is generated by s and is isomorphic to Zyy,,
whercas for cven k the center is generated by v and s and is isomorphic to
ZQ X Zgh.

The simple current f is special because it is the only one with fixed points;
it leaves fixed all ficlds of the form (k/2,m, s). The fixed point S-matrix has
cntries

\—2mi3k/16 1 C271'imm’/2h . l

J — \—2miss’ /4
Sk 2,50,k j2mt,51) = € N 5¢ : (4.35)

as can be verified using eq. (6.1) of ref. [66].

4.2.2 Superconformal boundary conditions in N/ = 2
minimal models

Boundary conditions in A/ = 2 minimal modecls that yicld BPS states upon

inclusion in a string modcl must have a definite automorphism type with

respect to the N = 2 algebra. A-type boundary conditions for the charge
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conjugation modular invariant arc completely under control by the Cardy
construction. B-type boundary conditions arc slightly more difficult to ob-
tain. They can be constructed cither by computing the orbifold of the min-
imal model by the mirror (i.e., charge conjugation) automorphism of the
N = 2 algebra, e.g., along the lines of [108]. Or onc can usc the Greene-
Plesser construction of mirror pairs to obtain B-type boundary conditions as
A-typc in the mirror, using results from section 2.2. This sccond possibility
will be taken up in the context of Gepner modcls, the present scction being
restricted to the Cardy casc.

To fix notation, A-typc boundary conditions arc labelled by the same sct
as the primary fields, (L, M,S) with 0 < L < k, M € Zg,, S € Z4 with
L+ M + S cven and identification (L, M,S) = (k— L, M + h, S + 2). The
explicit expression for the boundary cocfficients is obtained by combining the
modular S-matrices from the individual factors in (4.34). Thus, the boundary
states arc expressed in terms of the boundary blocks as

sin W(ZH?L(LH) o2mimM/2h —2misS/4

LSy =3 % (2, m, 5))) -

(1,m,s) 1 M

S1n 7

(4.36)

The meaning of the label S is clear in view of table 3.3. Namely, S mod 2
gives the monodromy charge of the boundary condition with respect to the
simple current v = (0,0, 2). Thus, upon inclusion of the minimal model in
a string compactification and fermion alignment (which implics alignment of
S with the corresponding label from the remaining factors of the CEFT), S
will be identified with the Zs label 7 in table 3.3. Also note that the label
M mod h measures the reflection of the simple current p = (0,2,0) = s* at
the boundary (compare the first row in table 3.3). The corresponding phase
is given by ¢?™M/h Finally, the contribution to the phase of the central
charge is measured by s = (0,1, 1), and cqual to ¢?™M/2h ¢=2m5/4 Thys, in
particular, S — S + 2 is cquivalent to exchanging brane with anti-branc.

In view of this, it will generally be sufficient to consider only one half (or
even one quarter) of the (bosonic) boundary states, conventionally chosen to
have S = 0,2 (or simply S = 0).

Intersection index

To compute the “intersection index” of A-type boundary states in N = 2
minimal models, it suffices to substitute cquation (4.36) or the explicitly
known fusion cocfficients into cither of the general formulas (3.46) or (3.51).
To perform the computation, recall that the labels of the Ramond ground
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states are of the form (I,7+ 1,1) and that the corresponding chiral primarics
arc labelled by (1,1,0), where [ = 0, 1, ..., k. The result [32, 100, 29] is
as follows. For fixed labels L and L', the intersection of boundary states
(L,M,S) and (L', M',S") can be viewed as a matrix in M and M’. Since
the supersymmetry labels S and S’ can be sct to 0 or 2, the paritics of M
and M’ in Zs, arc also fixed. Thus the interseetion matrix is of size A X h.
Howcever, a slightly more flexible notation is appropriate. Introduce, for any
integer n, the n X n dimensional matrix

010 ... 0
001 ... 0
1 00 ... 0

The intersection matrix between the L and L' sector then is
k
2 242
Iry = Z NLL/Z((Q%) - (th) ) ) (4.38)
1=0

where NE, is an SU(2),, fusion cocfficient, and where it is implicitly under-
stood that only the entries corresponding to the allowed parity of M and M’
rcally have a mcaning. The other rows and columns can be deleted upon
desire. For example, for L = L' = 0, onc may rewrite

Zoo=1—gn. (4.39)

An interesting obscrvation [32] is that the states with L # 0 can be
viewed, as far as their topological propertics arc concerned, as bound states
of the “clementary states” with L = 0. Namecly, one can show [100] that

Trp =t Tooty (4.40)
where
L !
tr, = Z (921)" (4.41)
I=1L

and ¢4, is the transposc of this matrix. The matrix (¢7) ', restricted to the
allowed parity of M, gives the expansion cocfficients of the RR charges of
higher L states in terms of those of states with L' =0, M’ =0,2, ..., 2h —
2. Indced, onc may verify that the RIR charges computed from the Cardy
cocfficients, (4.36) satisfy the property implicit in (4.41).
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4.2.3 N = 2 minimal models and simple singularities;
the boundary sector

Supcrconformal boundary states in AV = 2 minimal modecls have an interest-
ing application in the context of non-perturbative solutions of supersymmect-
ric Yang-Mills theory. This connection was pointed out in [33] and further
investigated in [109, 110, 111]. It will be reviewed here as an example of
the geometric connections of N = 2 BCFT and also as a motivation for the
investigations in scction 4.4.

The connection between AW = 2 minimal modecls in two dimensions and
strongly coupled N = 2 super Yang-Mills theory in four dimensions brings
together several circles of ideas. First, there is the well-known reconstruc-
tion of the Seiberg-Witten solution of N = 2 gauge theorics from type 11
string compactification on Calabi-Yau threefolds [112]. Decoupling of gravity
amounts to restricting to a neighborhood of an appropriate isolated singular-
ity on the threefold. In the simplest cases, the local (non-compact) gecometry
is described by a fibration of a two-dimensional ALE space over a P! basc.
This ALE space, in turn, can be viewed as the resolution by a chain of PL's
of a simple singularity of ADE type. The strong coupling spectrum of the
4d gauge theory is represented by D-brancs wrapping the various compact
cycles in the ALE gecometry.

A sccond ingredient then is the description of the simple singularitics of
ADE typce in terms of Landau-Ginzburg CFTs with a certain superpotential.
At the Gepner or orbifold point, which corresponds to strong coupling, the
supcerpotential is of the form W = 2V + 1/2" for the serics of Ay singu-
laritics. The first term in this superpotential can be viewed as describing
the compact part of the ALE geometry, while the sccond term subsumes the
non-compact dynamics, which is non-universal, but decoupled.

This is the point where A= 2 minimal models enter. Namecly, it is well-
known that a minimal model at level & with diagonal modular invariant (also
called minimal models of type Ag; *) describes the conformal fixed point of
a Landau-Ginzburg thcory with superpotential W = 22, Boundary states
in A/ = 2 minimal modecls should thercfore correspond to D-brancs in the
corresponding Landau-Ginzburg model. That this is indced the case, and
that gecometric considerations can be used, for example, to compute (some
of) the Cardy cocfficients (4.36), was shown in [29]. This identification of
minimal boundary states in a Landau-Ginzburg theory will also play a role
in the context of Gepner models in section 4.3.

As a result of all this, it is possible to obtain the strong coupling spectrum

3For the minimal models of D and E type, see the comments below.
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of N'=2SYM with gauge group SU(N) in terms of the spectrum of boundary
states in an N = 2 minimal modcl at level & = N — 2. The proposal is
substantiated by the following results; for more details, sce [33].

The Landau-Ginzburg theory corresponding to the non-compact ALE
space of type An_ is described by a Gepner type model starting with a cosct
SU(2)ny—2/U(1), which is the compact minimal modecl, and a non-compact
cosct SL(2)n2/U(1). Although not cverything is known about the general
definition of the latter modcl, one can determine the basic propertics of the
boundary scctor by simple analogy with unitary minimal modecls. Fssen-
tially, the SL(2) v 12/U(1) can be viewed as a non-unitary coset SU(2)/U(1)
at negative level —N — 2. Thercfore, if a single minimal model at level & has
basic intersection form 1 — gy, the appropriately projected tensor product
SU(2)n_2/U(1) x SL(2)n42/U(1) has interscction®

Zoo=(1—gn)(1—g5') =2 —gn — 95" (4.42)

This matrix is casily scen to equal the extended Cartan matrix of the SU(N)
gauge group. The corresponding boundary states should thercefore be inter-
preted in terms of D-brancs wrapped around the compact 2-cycles of the
ALE space, which also intersect preciscly with this pattern. The basic L = 0
states here correspond to a sct of simple roots (plus the highest root) of
SU(N).

What is more, onc can consider also states with L # 0 in the minimal
model and their charges and intersection, sce cq. (4.40). Surprisingly, it
turns out [33] that the collection of all these states can be mapped one-to-
onc to the set of roots of SU(N)! After fibration of the ALE space, these
arc cxactly the BPS states in the Yang-Mills theory that arc expected to be
stable at the origin of the moduli space. Notice that a priori, the intersection
matrix (4.42), which can be computed cither from CFT or from geometry,
merely determines the lattice of BPS charges that arc consistent with charge
quantization at any point in moduli spacc. However, the occupation of this
charge lattice with stable BPS states depends on the region of moduli space
one is considering, and there may be lines of marginal stability on which
some of the states decay. In particular, the casily understood truncation
in rational CFT to a finitc number of supersymmetric boundary states is
translated to the quantum truncation of BPS states to a finite number at
strong coupling in the Yang-Mills.

To conclude this scction, it should be mentioned that the analysis gocs
through in very much the same way also for the minimal models with modular

4The effect of the projection on the intersection matrix is explained in section 4.3
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invariants of D and E-type [109]. The boundary states in those models can be
determined using results of [51], and again one finds agreement both between
intersection form of boundary states and the corresponding extended Dynkin
matrix, and between the finite number of boundary states and the finite
numbecr of roots of the simple Lic algebra.

4.3 From Gepner models to Calabi-Yau hy-
persurfaces

4.3.1 Introduction

After the analysis of the simplest non-trivial example of NV = 2 supcrcon-
formal ficld theorics and their open string scctors in the previous scction,
namcly the minimal modecls, a natural next class of example arc the Gep-
ner models. Gepner models [113] are examples of string compactifications
where the CFT describing the compact part of space-time is constructed al-
gcbraically, and the corresponding CET is rational. The gencral strategy
was described in scection 3.2. The original Gepner construction uses tensor
products of minimal models in the internal scctor, other possibilitics arc built
on morce general A= 2 coset models, viclding the Kazama-Suzuki modcls.

The importance of Gepner models for the development of string theory
in the late 1980°s is largely duc to the conncection to geometric string com-
pactifications on Calabi-Yau manifolds. More precisely, it is known that a
Gepner model is the exact solution of a g-model on a Calabi-Yau manifold
at a special, so-called Gepner, point in moduli space. This is particularly
interesting because at the Gepner point, the curvature of the classical target
space is large and o-model perturbation theory is not reliable. Thercfore, the
description by an exactly solvable, algebraically constructed, CFT offers the
possibility of cxploring o-modcls at large worldsheet coupling. Historically,
the exploration of Gepner models and the associated geometrical string mod-
cls led to the discovery of mirror symmetry [10, 12, 114, 13], with exciting
physical and mathematical applications, sce [7].

After the third superstring revolution and the advent of D-brancs, it could
be expected that the analysis of open string scctors in Gepner models for
type II strings would provide the basis for similarly interesting developments,
concerning not solely the manifold and its Kéahler and complex structure
moduli space, but also submanifolds of the Calabi-Yau, vector bundles over
them, cte., and the associated quantum geometry. On the physics side,
D-brancs on Calabi-Yau manifolds have important applications for testing
string dualitics, as well as for the construction of rcalistic NV = 1 string
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vacua.

A first step towards such goals is the description of boundary conditions
in Gepner models, and the identification of corresponding gecometric objects.
Given the non-geometric nature of the Gepner, this identification will only
concern a certain subsct of topological propertics, like RR charges and the
intersection of brancs. These can be transported over bulk moduli space
from the Gepner point all the way to the large volume limit, where classical
gecometry applics again.

In the past few years, there have been several approaches to the study
of open string sectors in Gepner models and the comparison with gecometric
objects at large volume. The first gcometric characterization of D-brancs
in Calabi-Yau manifolds was given in [27], building in part on carlier work
in [92]. A first ansatz for boundary conditions in Gepner models [34] was
inspired by Cardy’s construction, gencralized so as to account for the special
projections that arisc in the Gepner construction. These boundary states
were analyzed regarding preserved space-time supersymmetry in [35] and
comparcd to a Landau-Ginzburg description in [36]. A parallel development
gave risc to a geometrical interpretation of the boundary states in terms of
D-brancs wrapped on the Calabi-Yau manifolds corresponding to the Gepner
models. This was developed, and applied to the quintic, in [32], and to sev-
cral other modcls in [100, 37, 115]. The stability of D-brancs upon transport
in moduli space was studied in [88, 116, 94]. Mecanwhile, an independent
approach to D-brancs in strongly curved Calabi-Yau manifolds has been un-
dertaken in [117, 29], using the connection to Landau-Ginzburg models and
lincar o-modecls. This has led to an independent check of the identification
of Gepner model boundary states and bundles in [118, 119, 120, 121].

It is the goal of this scction to describe in detail the construction of
boundary conditions in Gepner models and the comparison with geometric
objects at large volume along the lines of [32, 29]. Of particular interest
will be the careful implementation of the appropriate projections, and the
resolution of the arising fixed points. For A-type states (associated with real
submanifolds) the algebraic problems with fixed points were first pointed out
in [36], analyzed in an example in [122], and solved in [30]. For B-type states,
associated to holomorphic geometry, it was noticed in [100, 37] that owing
to the presence of fixed points, for some of the B-type states constructed
in [34] the open string vacuum is non-unique. In [38], the resolution of the
fixed points along with a gcometric interpretation in terms of enhanced gauge
symmectrics and singular bundles was achicved.

The plan of this scction is as follows. The internal part of a Gepner model
is obtained along the lines described in section 3.2, starting from the tensor



77 SECTION 4.3

product of A" = 2 minimal modecls. In particular therefore, the construction
of (a subclass of) A-type boundary conditions is a special case of the general
methods described there. In subscction 4.3.2 the detailed implementation of
this prescription is presented along with the computation of the intersection
matrix.

Subscction 4.3.3 is devoted to B-type boundary conditions. On gencral
grounds, there is no reason to expect the construction of B-type boundary
conditions to be particularly simple®. However, Gepner models enjoy the
pleasant property that the mirror model can be obtained according to the
Greene-Plesser construction [12] as an orbifold. This allows the construction
of B-typc boundary conditions as A-typc in the mirror model, given a tech-
nique to construct boundary conditions in the Greene-Plesser orbifold. In
algcbraic language, the sclf-mirror property of the Gepner model amounts to
the fact that the charge conjugation invariant is a simple-current modifica-
tion of the diagonal modular invariant (and vice versa). Thus, the genceral
methods of seetion 2.2 can be applied.

Subscction 4.3.4 then describes the main steps leading to an identifica-
tion between the lattices of RIR charges in the BCFT and in the gecometric
description, and presents the results for an explicit example.

It is worthwhile pointing out that the constructions described in the fol-
lowing subscctions do by no mcans cxhaust the possible supcersymmetric
boundary conditions in Gepner models—Iet alone the non-supersymmetric
oncs. The reputation of Gepner models of being exactly solvable examples of
string compactifications has to be significantly tempered in the open string
scctor. Indeed, while in the closed string sector spectra and all couplings can
be computed exactly, at lcast in principle, this crucially depends on ratio-
nality with respect to a largely extended chiral symmetry. As soon as the
CFT is perturbed by a truly marginal operator most of the chiral symme-
try is broken, generically only leaving the AV = 2 superconformal symmetry.
Additional tools arc then needed to obtain any quantitative information at
all. Somecthing similar happens in the construction of D-brancs. The exist-
ing general, and powerful, methods for constructing open string boundary
conditions in rational CFT require that also the preserved subalgebra be ra-
tional. But thc boundary conditions so obtained will only be a tiny subsct
of all possible N' = 2 supcrconformal oncs. Onc can, for example, imagine
perturbing the open string background by D-branc moduli, keeping the bulk

5Indeed, from an abstract point of view, B-type boundary conditions for Gepner models
are characterized by both an increase and a breaking of the chiral symmetry. In general,
there might be obstructions to combine these two operations for boundary conditions. See
the appendix of [30].
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moduli fixed, and thereby gencrating more general boundary conditions. In-
formation about thosc is incomplcte. The set of boundary conditions that
preserve most of the chiral symmetrics of the Gepner model is still rather
non-trivial. One would expect that the corresponding points in the moduli
spaces of D-brancs arc special —maybe singular—points, analogously to the
situation with bulk moduli.

4.3.2 A-type boundary conditions
The bulk theory

Recall from scction 3.2 that starting from any tensor product of NV = 2
supcrconformal ficld theories, €% Prod- | with appropriate total central charge,
onc can obtain the internal scctor of a string compactification, C'"™T, by a
sequence of simple-current extensions. Here, Cte™Prod js explicitly chosen to
be the tensor product of ¥ A/ = 2 minimal modcls,

Cteu prod. _ Ckl ® Ckzz KRR Ckr , (443)

with total central charge ZZ C; = Zi 3k;/h; = 15—3D/2. Borrowing notation
from scetion 4.2, primary ficlds and simple currents in the tensor product will
simply be denoted by appending a subscript ¢ to the labels of the ficlds in a
single minimal modecl.

The relevant simple-current group that extends Cte™Pod to Cer is then
gencrated by 7 — 1 order-2 currents w; = vyv; and by another current,®

u=opt" Hpi (4.44)
of order,”
H:=lem.(h),_, . (4.45)
Thus the extension group Gey: is of the form
Gext := (Wi, u) = (Zg)"fl X L . (4.46)

6This definition of u is equal to the one of section 3.2 modulo identification by alignment
currents. The present definition is more convenient combinatorially, but the distinction is
of no importance, since alignment currents are always preserved at the boundary.

"Notice that n + r odd implies that at least one k; is even. This follows by a simple
argument from the basic central charge condition ), 1 — 2/h; = n, which is equivalent to

H(rfn):?ZhEi.
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Primary ficlds in C'™Prodeq. (4.43) arc labelled by collections (A, p) =
(lh,loy oo Jleymy, oo oy, S1, .., 8:). The extension by G imposes well-
known restrictions and identifications on these field labels (A, u). A label
(A, p) appcears in the extension only if

Quw, (A, 1) = 8—21 +%:O modZ, foralli=2, ... r and (4.47)

Qu()\,u)z(nJr?“)%—Z%:O mod Z . (4.48)

=1

Furthermore, two labels (A, 1) and (N, @) are considered equivalent in the
extension if there are ¢; € {0,1} and o € {0,..., H — 1} such that

(X, ) = (H W) (A )

= ()\,m1+2a,mg+2af7... , Mo + 20,
$1+2) 6 +2n+ 7)o, so+ 26, ..., 8, F 26,,) )

(4.49)

The modular invariant partition function of the Gepner model is given
by a sum over cquivalence classes, weighted with the order of the stabilizer,

Z =" 1S Ixiounl* (4.50)
[(Ap)]

where Sy, is the stabilizer in the extension group Gy of a given (A, p), and
will be computed below. Furthermore,

Xl = D Xaww (4.51)
Jegext/s)\

is the extended character corresponding to an equivalence class of labels. The
action of J € Gexy on (A, ) is as given in (4.49).

Notice that for obtaining the modular invariant partition function, the
simple-current language is completely equivalent to Gepner’s method of “3-
vector” [113]. However, the subtletics associated with fixed points are best
capturcd by simple-current techniques. The fixed point combinatorics is the
same for bulk ficlds as for A-typce boundary conditions, so it is convenient to
first also label the latter.

Labelling of boundary conditions

According to the results of scetion 3.2, boundary conditions in C™¢* that
preserve the chiral symmetry AV arc labelled by Gey orbits of primary
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ficlds from C'™ P4 with vanishing monodromy charge with respect to the
w;. Thus, the starting point for the labelling of the boundary conditions arc
again the labels of the tensor product of minimal models,

(AM) = (Ly,... . Lo, My, ... M, Si,...,5,), (4.52)

with L;+ M;+.S; cven. The basic goal now, and in all subscquent discussions
of labclling issucs, is to usc the relevant sclections and identifications to
reduce the set of labels to a “standard” onc.

First, for A-type boundary conditions in Ct"Pd ficld identification in
individual minimal modecls allows arranging L; < k;/2 as well as S; € {0, 1}
for those ¢ with L; = k;/2.

Next, the condition that AY™Y be preserved imposces the sclection rule
S1 = 5; mod 2 for all 7. Identification by the w;,

(A,M)E(A]V[l} ﬂ]\/{’l’781+2ﬂ ,S,L+2 ,ST), (453)

allows replacing all S;’s by a single S, say S = S) € {0,+1,2}.
There is no sclection rule for the M; labels. The quantity
]\//

—Zh—/{i+(n+r)§ mod Z, (4.54)

defined mod Z, is the automorphism type of the boundary condition with
respect to the current u, and unrestricted.

The explicit implementation of the identification of labels implied by the
current u,

AM)=AM+2,... M, +2,5+2(n+7),5,....5), (4.55)

is a little more difficult. It involves questions of the divisibility of the heights
h;, which in genceral docs not have a simple structure. In special cases, for
instance when lLem.(h;) = h; for some j, the corresponding label M can
be set to zero using this identification. However, from an abstract point of
view, it is rather simple to obtain an overview over the labels after imposing
identification by u. This is described in appendix 4.A.

The significance of these labels for the supersymmetry of the boundary
conditions follows from table 3.3. The label S;p = S mod 2 mcasures the
Z> quantum number n = (—1)%. The automorphism type with respect
to u, cqual to /7 mod Z, determines the angle v, but only up to the Zs
branc/antibranc ambiguity. This ambiguity may be fixed by computing the
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“automorphism type” with respect to the total spectral flow operator. Ex-
plicitly,

;—W:QS(A,M):—;;[;Jr%Jr(T—I)% mod Z. (4.56)
This shows in particular that changing S by 2 (with M;’s fixed) exchanges
branc with antibranc. Nota bene: This is not saying that S alonc allows
a distinction between brancs and antibrancs. Among others, the fact that
u changes S for n + r odd, scc (4.55), clearly prohibits this. Somcewhat
arbitrarily, onc may call a statc with 0 < v < 7 a branc and a statc with
7 <7y < 271 an antibranc.

Fixed points

To find out about fixed points, both for bulk ficlds and for A-typce boundary
conditions, it suffices to determine which combinations of f;’s appear in Gey
(recall from table 4.1 that f; = (k;,0,0) is the only simple current with fixed
points in a single minimal model). This is simple, and the result is as follows.
® When all levels k; arc odd, there are no fixed points.

® Agsumec on the contrary that at lcast onc level is even. Then f; = p;”/ “v;
for all even k;. Thus, for
,
F=u" H Wi (4.57)
=2

to have fixed points, i.e., to be equal to HieIF fiy for some Ip C {1,...,7},
it is necessary and sufficient that

h; divides o and ¢, =0 fori ¢ Ip,
1
Ehi | and h;fa and ¢ =1 forie Ip\ {1}, (4.58)

1
§h1]a and hifa and Y .+ (n+r)a=1mod2 fori=1,

where, without loss of gencrality, 1 € I is assumed. As a minimal condition,
a= (l‘c.m.(hi))/Q = H/2. To proceed, denote for any positive integer m, the
power of 2 contained in m by o(m). [Examples: o(8) = 3,0(3) =0,0(24) =
3.] Furthermore, introduce ¥ := max{o(h;)} = oc(H) = o(a) + 1. Then,
(4.58) is cquivalent to Ir = {i,0(h;) = 2}, and to the condition

[Ip| + (n+7)25 ! =0mod 2. (4.59)
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It turns out that this last condition is always trivial. Namecly, from the
anomaly canccllation condition, n =) ki one deduces (see footnote 7 on

i kit2°
page 78),
H H
25 Ty
=1
H
—=(r—n) 2! mod?2, (4.60)
i€lp ¢

where the last step relies on o(H/2) = ¥ — 1 and on H/h; = 0 mod 2 if
i ¢ Ip. Eq. (4.60) implics (4.59).

As a result, there is only a single simple current in Gey with fixed points,
namely F' = Hi,a(m)=2 fi- Tt fixes all fields (A, p) respectively all boundary
conditions (A,M) with [;, respectively L, equal to k;/2 for all ¢ € Ip =
{i,o(h;) = X}.

Intersection index

It is straightforward, but not very illuminating, to write down the Cardy co-
cfficients for all A-type states constructed above; sce [30] for explicit expres-
sions. However, the intersection index of boundary states can be computed
without much trouble. It suffices to know the general behavior of fusion
cocflicients under simple-current extensions [65].

Neglecting fixed points, the fusion cocefficients of the extension by a group
& of local simple currents arc given as combinations of fusion cocfficients of
the unextended theory as

&arlv] _ v
Nix i = Z Nica - (4.61)
Ke®

Here, [A], [¢], and [v] arc orbits of primarics of the unextended theory that
arc allowed in the extended theory, 4.e., have vanishing monodromy charge
with respect to all currents in . For boundarics, onc is also interested in
orbits that do not label any primary in the extended theory. Still, there is
a similar formula for the annulus cocfficients (see [50], in particular for fixed
point issucs). It is convenicent to write this formula in terms of matrices of
annulus and fusion cocfficients,

Ke®
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The factor 1jg; accounts for the fact that the size of the matrices for the
extended theory is smaller by a factor of &. Using the fusion algebra, this is
also cqual to

A &® ]_|q5| Z Nk Ny . (462)
Ke®
This is casily applied to A-type boundary conditions in Gepner models
after recalling the expression for the intersection matrix in terms of annulus
cocfficients, (3.51). As for a single minimal modecl, one may reduce the set of
boundary labels to S = 0. The fusion matrix of the simple current ], p; in
the tensor product is simply g1 ® g2+ -+ ® g,, where g; := gy, That u differs
from this by a factor of ™" simply mecans that there is an extra minus sign
in the action of the corresponding fusion matrix. Thercfore, the intersection
matrix of the A and A’ boundary scctors is

S
—

Taw ® 1y = [ (D"g@---©g, ] ® Ir,r; s (4.63)

J

I
=)

where Ty, v is given by equation (4.38). In particular, for A = A" = 0, onc
finds,

Too ® 1 = (14 (=)™ ®; g; + (®i9i)2 too] @ (l—g).  (4.64)

The factor of 15 can be made explicit on the right hand side of these equa-
tions by substituting the rclation

®igs = (=)™, (4.65)

which is cffectively imposed by the multiplication with the square bracket
[32, 37].

For boundary states with A # 0, the property (4.40) still holds in the
(projected) tensor product. A slight complication arises with non-trivial
stabilizers.  From the expression for the intersection matrix in the closed
scctor, (3.46), it casily follows that the intersection of boundary conditions
with non-trivial stabilizer is of the genceral form

1 ~
Ty ) = AT ’( R z), (4.66)

where ZY is the result obtained from naive application of (4.63), and 7 de-
pends on the existence of Ramond ground states that arise from the resolution
of fixed points in the bulk. More precisely, Z = 0 if there are no such fixed
point Ramond ground states, and +1 if there are. The details depend on the
modecl under considerations, and no genceral rule has been obtained so far.
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4.3.3 B-type boundary conditions

General strategy

While for A-type boundary conditions, the gencral theory of section 3.2 ap-
plics, for B-typc boundary condition the Greene-Plesser construction, which
is special to Gepner models, enters crucially. The genceral idea is to view B-
typce boundary conditions as A-type in the mirror model, and to describe the
mirror modecl as a Greene-Plesser orbifold. This is explained in the present
subscction.

Looking back at table 3.1, B-typc boundary conditions arc of automor-
phism type “mirror” when viewed from the charge conjugation modular
invariant, but of trivial automorphism typce when viewed from the diag-
onal modular invariant. By viewing the diagonal modular invariant as a
simple-current modification (Greene-Plesser orbifold) of the charge conjuga-
tion modular invariant, the construction of boundary conditions requires the
gencralizations of the Cardy construction to simple-current modular invari-
ants. Since the chiral symmetrics before and after charge conjugation are the
same, the discussion of scction 3.2.2 regarding supersymmetry propertics of
the boundary conditions apply integrally.

The Greene-Plesser construction with simple currents

To apply the results of section 2.2, it is necessary to first reformulate the
Greene-Plesser construction [12] of the mirror model in simple-current lan-
guage. Incidentally, this will also resolve certain confusion that scems to
persist in the literature about the Greene-Plesser construction, as applied in
CFT.

In the CET construction of mirror modecls, charge conjugation is applied
to onc chiral half of the model. Obviously, it is not cssential from which side
of the mirror onc starts, i.e., from the diagonal or from the charge conjuga-
tion modular invariant. Howcver, the choice must be specified in order to
avoid confusion. In the context of boundary conditions, it is most natural to
start from the charge conjugation invariant, so that “A-typc boundary con-
ditions arc the Cardy casc”. Then the mirror model is the diagonal modular
invariant, up to a slight subtlety to be discussed below. On the other hand,
most of the litcrature about the Greene-Plesser construction considers only
the bulk theory and thus starts from the diagonal invariant. This convention
will also be adopted here.
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The mirror of a single N' = 2 minimal model

The main idea of the Greene-Plesser construction is alrcady apparent at the
level of a single minimal modecl, so this will be considered as a warm-up
example. Start from the diagonal modular invariant,

4= Z X(1m,s) X(1,m,s) » (4.67)

(t,m,s)
I+m+s€2Z, s=0,1

and consider first its modification by the simple-current group gencrated by
p (“mod out the phasc symmetry”). Since this group is cyclic, the pair-
ing X is fixed by the conformal weight of p to be X(p,p) = —1/h (sce
subscction 2.2.1). Then according to the genceral rules, the combination
(I,m,s) (I',m!,s") occurs in the new partition function if and only if

ll, /,/:al,, for s » o, and
(', m 3)_5( m,s) for some a, an (1.68)

Qp(l,m,s) + X(p,p%)

Since X(p,p*) = aX(p,p) = —a/h and Q,(l,m,s) = —m/h, there is a

unique solution @ = —m. Thus inserting p*(l,m,s) = (I,m + 2a, s), it
follows I' =1, m' = —m, s’ = s, and so the modified partition function rcads
Z(p) = Z X(l,m,s) Y(l,fm,s) . (469)

t,m,s)

I+m+4s€2Z, s=0,1

The next step is to include the simple current v in the simple-current
group. Again X(v,v) = 1/2 is fixed, and vanishing “discrete torsion” is
chosen, X (p,v) = 0. Then in addition to the condition (4.68),

(l,,m/,sl) —
Q.(l,m,s) + X(v,v%)

(I,m,s) foree {0,1}, and (4.70)

I

vé
0.
Inserting the identitics v(l,m,s) = (I,m,s + 2), Q,(l,m,s) = s/2 and
X (v,v) = €/2, the unique solution is scen to be € = s, so that

200 = X Xt - (4.71)

(I.m,s)
I+m+4s€2Z, s=0,1

This is nothing but the charge conjugation modular invariant of the minimal
modecl, and thus indced the “mirror model” of the A/ = 2 minimal modecl
with diagonal modular invariant.
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Tensor products and their extensions

Now consider tensor products of  minimal models, of levels ky, ko, ..., k.. As
before, primary ficlds arce labelled by collections (A, ) with A = (I4,... ,1,)
and p = (my,..., My, S1,...,8), subject to the usual restrictions. Simple

currents in the tensor product reccive an additional index ¢ according to
the factor modcl to which they belong: wv;, s, pi, fi. The currents v; and
p; generate a subgroup Gy of the center of the tensor product. Elements
II € Gy arc denoted by II = (v, ..., a €1, ... ,¢), standing for [, pfivf
with o; € {0,1,... ,h; — 1}, & € {0, 1}.

As an abstract group,

gph = (ZZ)’, X HZM P (472)

and Gy, acts on the sct of primary ficlds. Notice that the primary ficlds
and group clements have similar labelling, but that the action and group
composition laws arc different. To avoid the confusion that this causes, the
group law in G, will be noted multiplicatively and the action of Gy, on
primary ficlds additively. The monodromy charge of a primary field (A, p)
with respect to 11 € Gy, is

Quirpw = (—ahm + 21, (4.73)

i

(m; € {—=h;+1,....h}, s, € {—1,0,1,2}). Note that Qu(A, 1) depends on
m; only mod h; and on s; only mod 2.

By repeating the arguments for the single model above, one sces that
the mirror modcl is obtained from the diagonal modular invariant of the
tensor product by “dividing out” (i.e., forming the simple-current modular
invariant for) G,,. However, the theory of interest here is the tensor product
extended by the group Gey (4.46), imposing fermion alignment and integral
U(1) charge in the NS sector. Since all currents in Geg arc mutually local,
left-right combinations (A, u) (N, i) occur in the partition function if and
only if

(N 1) =J(\, u) for some J € Gy and

(4.74)
Qx(A\,pn) =0 for all K € Gey -

The goal is now to define a group Gy of simple currents and a pairing X
on Guirr, such that the associated modular invariant is the mirror model of the
Gext-cxtension of the tensor product. Precisely what is this mirror modecl? It
turns out that the mirror is not simply the charge conjugation invariant in the
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(bosonic) CFT sense, but rather the charge conjugation invariant multiplied
by the invariant corresponding to the simple current »™. This invariant is
non-trivial only in the Ramond scctor, where it exchanges the two bosonic
primarics belonging to the same superficld.

The origin of this subtlety is that the mirror operation involves an ex-
change of the two supercurrents G« GF. In the Ramond sector, this oper-
ation cxchanges spinor and conjugate spinor representation of the zero modes
G(jf precisely if the central charge is odd. This follows from the representation
theory of the NV = 2 algebra, (3.16). Since in the bosonic formulation, the
two supcrcurrents belong to the same primary field, v, this exchange must
be performed “by hand”. Thus, the mirror model is obtained by inverting all
U(1) charges, modulo an extra action by v in the R sector if n is odd. The
exchange is related to the flip from type IIA to type IIB string theory, if n
is odd.

The claim is that the desired simple-current group is

T

. : C e aj € Q
Guire 1= (Wi, 1 =2,3,...,r; i [, 07 . 5™ F:()}, (4.75)

j=1"
with € = 0 for n + r ¢ven and € = 0,1 for n + r odd. The bilincar pairing
X must be chosen in such a way that G, is local with respect to all other
currents and such that there is no extension beyond G- This is satisfied if

and only if X is the restriction to Gy of the pairing

dij 1
Xpip) = =75, Xlwwv) =5, X(psv) =0=X(v,p;) (4.76)
(for all 4,5 = 1,...,7r) on Gp,. To sce this, first notice that G is always

a subgroup of Gy and that X(Z,J) = 0 for cvery J € Gey and cvery
Z € Guin- Also, X is symmetric, so that left and right chiral algebras arce
extended by the same simple-current group, which contains at lcast Gey.
To prove that there is no extension beyond G, it suffices to show that
if X(E,II) = 0 for all £ € Gy, then II € Gy To this end, consider
II=(ay, ..., €,...,6) € Guir. As H = lcm.(h;), there is a t = [[p
with X (u,t) = — > t;/h; = 1/H. Then ¢ together with all E € Gy generate
all phase symmetrics py, po, ..., p, (including v; for n + r odd). It follows
that the simple current

I1:= u HXEm ] (4.77)

satistics X (p;, IT) = 0 for all 7 and must hence be of the form II= 0,...,0,
€1,...,¢). Now Il is in the kernel of X if and only if II is. In particular, 11
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must be sclf-local, i.c., satisfy X(IT,IT) = 0. Thus ¥, is cven, and hence
IT € Gext, as claimed.

To show that this choice of (G, X) gives the mirror invariant specified
above, it needs to be checked that every solution to the analog of (4.74) for
(Gmirrs X ), @.€., to the conditions,

(N, 1y = (A, p) for some II € Gpppr and (4.78)
Q=(\. p) + X(Z, 1) =0 for all = € Guirr '

is of the form

(/\,7 ,LL/) = ('Ul)a ()‘ _/J“) mod gext ) (479)

where o = 0 in the NS sector and o = n in the R scetor®.

To proceed, identify the label g = (my, ... ,my, s1,. .., 8.) in the obvious
manner with an clement of G, (i.c., take m; modulo h; and s; modulo 2),
and sct v := pll (in notation appropriate to the group law, not to the action
of Gp). Ideally, the sccond line of (4.78) should be expressed with the help of
X and v, so that the desired result would follow from the fact that the kernel
of X is precisely Gext. However, the monodromy charge Q=(A, 1) docs not
coincide exactly with the pairing X (=, 1), and morcover, v € G, in general.

For cxample, when 417 is even, then all I = (g, ... .o, €1, ..., €) € Guinr
must obey Y ¢ even, but p in the R sector satisfics this condition only if r
is even. However, using that ) ¢ is even for 2 = (Gy,...,58.C,...,¢) €

Gumirr, 1t follows that Q=z(A, p) = X(Z, (v1)7 1), with o as above. A similar
analysis for n + 7 odd reveals that in all cases® (v))7 v satisfics both

Q=(\, 1)+ X(E,1I) = X(Z, (vy)?v) and (v1)7 v € Guirr - (4.80)

The conclusion is that X(Z, (v1)7v) = 0 for all E € Gy, and thus by
repeating the argument above, (v1)7 v € Gexy. This implics (4.79).

The arguments can casily be extended to prove that onc obtains “com-
plementary mirrors” [12] by dividing out appropriate subgroups of Gy

8The freedom in the choice of v allows to use vi.

9The general argument is as follows. Firstly, the s;’s and (;’s contribution to Q= (A, p1) is
Z S s, and to X(Z, ) it is Z S ps. Therefore, to X (Z, (v1)° p) they contribute Z—C s(n+
r) = Z S s mod Z. Secondly, the condition on u is Qu()\ p)=—2 3+ (n+ r) =0,
S0 that (v1)7 p satisfies X (w, A\, (v1)7p) = =+ (n+r)5 =0 Wthh is the Condltlon
for Gmirr.
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Ishibashi states

Having reviewed and clarified the construction of mirror models due to
Greene and Plesser in the language of simple currents, the next step in con-
structing the boundary conditions is to cstablish a list of boundary blocks
(Ishibashi states) that will contribute to the boundary states. The reader
should be alerted that the following discussion obtains after switching back
to the conventions in which is original model is described by the charge con-
jugation modular invariant.

For the problem at hand, the boundary blocks arc obtained from all those
primary ficlds that arc paired with their charge conjugate in the mirror model,
which by the present convention is (almost) the diagonal invariant. These
ficlds arc preciscly those that arce sclf-conjugate up to the action of Gey and,
for R scctor ficlds when n is odd, of vy. Thus, the boundary blocks arce
determined by looking for all solutions to the requirement,

(01)7 (A, =) = H (wi)® ’”H )% (A ), (4.81)

where (A, ) must be an allowed ficld in the Geg-cxtension and x; denotes ficld
identification in the i-th factor; also, all €s arcOor 1, and m € {0,1,... , H—
1}.

Obviously, €; can be non-zero only if [; = k; /2. Let I be the sct of those
i for which I; = k;/2 and €, = 1. By fermion alignment, s; = s mod 2 for all
i with s € {0, £1,2}. The m; must satisfy

—m; =m; + 2m mod 2h; fori & I,

, (4.82)
—m; =m; +2m + h; mod 2k, forie .

Notice that I # ) requires m + s € 2Z + 1, because of the sclection rule in

the corresponding minimal models: Modulo two, the sccond line in (4.82)

implics 0 = k;/2+m; + s=k;/24+m+h;/2+s=m+ s+ 1foriel.
The condition on the s;’s reads

—5; = 8; + 2¢; + 2¢; mod 4 fori=2.3,....,r
—sl+20:51+2m(n+r)+26'1+2261~ mod 4 fori=1.

%

(4.83)

Since 0 = sn mod 2, these two cquations yield

2) "si+2m=2) ¢ +2m(n+r) modd, (4.84)
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and this finally gives

(n+r)(s+m)+|I| =0 mod 2. (4.85)
As a check, notice that zero monodromy charge with respect to u requires

QA =3 " St )= —m(ntr) - 2Lt S )

2 2 2 2
(4.86)

1 I
:§(n+7~)(5+m)+%:0 mod 1,

and coincides with the condition on the s;’s, eq. (4.85).

Counting Ishibashis thus involves finding solutions of (4.85). When n+r
is even, || € 2Z is a nccessary and sufficient condition for having a solution
to (4.85). For n + r odd and |I| = 0, s = 0,1 and m cven and odd arce
allowed, but with their sum s + m restricted to be even. For n + r odd and
|| # 0, as alrcady noted, m + s must be odd, and this implics that |7| must
be odd.

Restricting to boundary conditions that preserve AY"™Y, these solutions
have then to be counted modulo (field identification and) identification by
alignment currents'®. On the other hand, since the chiral symmetry gener-
ated by u need not be preserved, this current does not lead to identifications
among Ishibashis.

Given the choice of m, s and I satisfying (4.85), cq. (4.82) determines my;
modulo h;, for cach ¢. Ficld identification in a single minimal modecl is fully
used up by fixing, in the integers, m; = m for i ¢ I and m; = m + h;/2 for
1€l

Identification by alignment currents is then used to replace all s;’s with a
single s, say s = s; € {0,%1,2}. Because spectral flow connects one-to-one
s even with s odd, it suffices to consider only s = 0, 2.

The enumeration of Ishibashis now starts with a set I C {1,...,r} with
k; even for @ € I, and with the correct parity of ||, depending on n + r cven
or odd. Then one chooses an m with the correct parity. This in turn fixes
the m;’s as described above, and hence restricts also the parity of allowed I;'s
for i ¢ I. For i € I, of course, ; = k;/2.

The number of I;’s with given parity is (k; +1)/2 for k; odd. For k; cven,
it is k;/2 + 1 if m is cven, and k;/2 if m is odd.

19Tn the language of [50], this amounts to going to the corresponding ideal of the clas-
sifying algebra.
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Putting things together yiclds the expressions

n+7reven : 2ng H(klgl)x[n (%+1)+ H %]

i O k; even k; even

- ¥ e M) = 1T 3]

I, |I| even k; odd k; even, i¢I

)= I (5 +1)

k; even

CX P IG5 I 5]

I, |I| odd ki odd k; even, i¢I

(4.87)

H k;
n+rodd: 2><3>< H( ;L

for the total number of Ishibashi states with s = 0,2. Expression (4.87)
makes scnse in all cases with fairly obvious conventions about products and
sums. In particular, [/| = 0 is not included as cven, here.

The boundary conditions
The starting point for describing the labelling of the boundary conditions is
again the labels of the tensor product of minimal models,

(Ly,..., Ly, My,.ooo M., S1...,S,) (4.88)
with L; + M; + 5; cven. As usual, the S;’s arc aligned, and can be replaced
with asingle S, say S = 95) € {0,£1,2},and S; € {0,1} fori =2,... ,r. The
supcersymmetry data is determined exactly as in the case of A-type boundary
conditions. Taken modulo 2, S determines 7, and the quantity

—Z—+ n+r) ; mod Z (4.89)

gives the automorphism type with respect to u. Given the role of n for
space-time supersymmetry, incquivalent brancs arc counted by restricting to
S =0,2. Onc can then compute the phase of the central charge,

v M M, S
oM 4.90
or 20 Z 2h;, 4 (4.90)

Before counting boundary conditions cxplicitly, a few preparatory re-
marks arc in order. First notice that

=) wiM; +H§ mod 2H , (4.91)
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where w; := H/h;. Hencee, because of minimal model selection rules, for fixed
L; and S, only a dcfinite parity of M occurs.

Next, assume that — >, M, /2h; + S/4 = = >, M]/h; + S'/4. Then, if
n+risodd, (My,... , M., S) and (Mj,...,M],S") arc rclated by an allowed
phasc symmetry in G, namely o; = (M; — M])/2, e = (S — 5')/2 (sce cq.
(4.75)), and hence label the same boundary condition. As a conscquence,
the single M label is sufficient to distinguish inequivalent labels, if n + r is
odd. On the other hand, if n -+ r is cven, two such labcels are related by an
allowed phasc symmetry only if S = 5.

Furthermore, because of the definition of H as least common multiple,
there exists a combination (¢y,...,t,.) such that —) . ¢;/h; = 1/H mod
Z (Comparc the discussion of the Greene-Plesser construction).  Shifting
(My,...,M,) by multiples of (2¢,...,2t,) therefore produces all possible
M’s with a given parity.

Counting boundary conditions lecading to incquivalent brancs, i.e., with
S cven, now proceeds as follows. First choose a collection A = (L, ..., L,),
and denote the subset of those i's with L; = k;/2 by I5. Fermion alignment
and ficld identification in minimal models is completely used up by letting
L; <k;/2,sctting S; =0 fori=2,... ,r,and, if [y #0, S =5, =0.

If n+ 7 is cven and Iy = 0, one has M running over H values (cven or
odd numbers between 0 and 2H — 1), and S = 0, 2 distinguishing brancs and
antibrancs. In all other cases, M and S arc not independent. A good choice
is to only retain M, running over H values. Loosing S as an independent
label entails in particular that a branc and its antibranc lic on the same
“Zig-orbit” as soon as n+ r is odd or I, # 0.

Fixed points

As for A-type states, the presence of fixed points slightly spices up the com-
binatorics. Such fixed points occur when L; = k;/2 for some i. According to
the results of section 2.2, the necessary data for dealing with fixed points arc
stabilizer S,, simple-current twist FX and from there the untwisted stabilizer
U, ¢ S, of a boundary label a. While for A-type states the stabilizer can
only be trivial or cqual to Zs, implying that the untwisted stabilizer coin-
cides with the full stabilizer, for B-type the situation is morc complicated,
and morc intcresting.

Consider then a boundary label A = (Ly,..., L)t It remains un-

1 The labels A and S are irrelevant for this discussion, and will hence be suppressed.
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changed when acting with those simple currents

ielp
with Ip C I, (recall that f; = (k;,0,0) = (0, hy, 2) ). Which f;’s or combina-
tions thereof arc in G, depends on n -+ r being even or odd. For n+ r odd,
every f; satisfies

, h; 1
fi = p?l/Qvi and hence  X(u, f;) = —3p + 3= 0 mod Z, (4.93)
so it is an allowed phase symmetry. Thercfore,
Sy | = 21l (4.94)

In contrast, for n+r cven, a single f; does not satisfy the condition X (u, f;) =
0 mod Z and hence is not allowed. But every pair f; f; is allowed. This implics

|Sy| = 2lal-L, (4.95)

For the computation of the untwisted stabilizer, consider first the casc
n+r cven. To be specifie, distinguish some ag € I, denote the corresponding
simple current by fy, and let the stabilizer Sy be gencrated by foo == fofa,
with a € Iy. Note Sy & (Zy)lal-L,

Assume now that A is of the form (... ke /2,...  ka/2, ...  kp/2,...)
(not excluding @ = b), and consider a sccond label of the form A = (... |, kq, /2,
e ka/2,.. 0 1y, ... ). Then the twisting of the simple-current relation for A
is determined from?2

foa
o _ J(EDRSR fora#b,
Shur = {Sf\cof fora=»5. (4.96)

Thus,

(—1)kao/2 fora #b,

Fx(fovs foa) = { (1 )beu/2 a2 (4.97)

fora=5.

12The relevant pieces of the fixed point matrices come from the SU(2) part in egs. (4.35)
and (4.36), i.e., for a £ b,

~2miBkag /16 | o ~2mi3ka /16 | i m(ke/2+ 1)l +1)

e 11
R
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Since f, = pZ“/Qva and X (pq, pp) = —0ap/ha, onc has
heo  ha -
X (foas fon) = 40 + T Oab - (4.98)

Putting the picces together, the full simple-current twist is
FZ (foas fon) = Fa(foa: fop) ¢ 2T omdin) — (_1)t0e - (4.99)

Computing the untwisted stabilizer is now an casy cxercise. Consider
some F = HbeIF fob € Sp, with Ip C 15 \ {ap}. Then,

(—=1)Hrl for a ¢ I,

| 4.100
(—D)Hr=L fora € Iy, ( )

EX(ans F) = {

For F to be in Uy, Fi¥(foa, F) must be cqual to 1 for all a. This is only
possible if I = 0, or if Ip = Ix\\{ag} and || is even. Thus,

U, - {Z2 for |15] even,

4.101
{id} for |1,] odd. ( )

The combinatorics for the boundary states in the case n + r odd can be
mapped to the other case by appending a trivial factor (with k£ = 0) to the
tensor product of minimal models. Put differently, the above derivation still
holds by letting Sy be gencrated by fo, = f., without distinguishing any
particular a € I,. Simple-current twists and monodromy carry over mutatis
mutandis, alonc the final result is a little different: F € Uy if cither I =
or Ip = I, and |I5] odd. In this casc then,

Z,  for|l «
Uy = { 2 for|Ia] odd, (4.102)

Cl{dy  for |1

cven .

The number of B-type boundary conditions

Adding together all the above combinatorics leads to the following explicit
formula for the total number of incquivalent B-type brancs in a Gepner
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modecl.
n+reven: 2xH x H(k+ ) %
k; odd kzeve
1 ki
+ Z H x H( ) H B
I, || odd k; odd ki even, i¢l
+ Z 2x H x H(kzgrl)x H %
I,|I| even ki odd k; even, i¢1
(4.103)
n+rodd: HX H(kigl)x H%
k; odd ki even =
+ Z 2x H x H(kZ;1>>< H %
I, |I| odd ki odd ki even, i¢l
ki +1 k;
o JI(F)x I 5
I, |I| even k; odd ki even, i¢I

It is not difficult to sce from the expressions (4.87) and (4.103) that the
number of Ishibashi states with s even (i.e., in the NS scctor) is precisely
cqual to the number of brances (i.e., boundary conditions with S even). Both
counts can be written in the form

Hxln(f;l)x{n( ) Z I1 %H (4.104)

ki odd ki even ki even, i¢I

where the sum is over I C {1,...,r} with k; cven for ¢ € I, and with |/
even for n 4 r even (now including also || = 0 as

even).

That the number of Ishibashis agrees with the number of boundary con-
ditions is a good cross-check on the results. But the counting and labelling
is really different! Tshibashi labels are of the form

(A, m,s,f) with f= H fi €83 m (4.105)

iely
where I; is identified with 7 in (4.85). Labcls for boundary conditions rcad

(A, M,S,0) with ¥ e, (4.106)
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where Uy depends on I as in egs. (4.101) and (4.102). Although formally
this might look similar, the label m is different from the label M. While
m describes the position on the u-orbit of an allowed ficld, M gives the
monodromy charge of an entire u-orbit. More drastically, notice that on the
side of the Ishibashis, the paritics of the [;’s are not independent, while on
the side of the boundary states, the L;’s arc. Also s is not restricted in the
same way as S.

The last picce of information about the boundary conditions that will be
displayed here arc the reflection cocfficients. They are given by the general
formula (2.40) in scction 2.2. The fixed point matrices are given in (4.35).
Putting cverything together yiclds the following reflection cocfficients:

B m.s ] V = —_— 2 —SS
(Am,8,8),(A,M,S,T) |SA‘ ‘Z/{A‘ 1}[ '\, ]’Li S T hi X
il

,
(H 1 ) o 2mi (S s+(r—1)S%s%)/4 o2miMm/2H |
24/2h;

=1

o(f) H o 2mSk/16 - (4107)

i€ly

Intersection index

The intersection index of B-type boundary conditions can be computed along
the same lines as for A-type, simply by replacing the cyclic group Zy with
the Greene-Plesser group of phase symmetries, Gy The analog of (4.64) is

helg= 3 e ()] e -, (4108)

(e,a)
€/2—37 a; /h;=0 modZ

where the size of the reduction matrix is 4 = ([Jh;)/H. Thus, I is an
H x H matrix. It is casy to sce that the square bracket cffectively scts
g; = g, where g = gy and w; = H/h;. Straightforwardly, if n + 7 is even,
onc obtains,
T =[] —g"). (4.109)
i=1
If n + 7 odd, there arc phase symmetrics of the form € = 1, o; = h;/2, so
that
T =(1—g") ] —g"). (4.110)

i=1
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The extra factor 1 — ¢f/2 simply is a reflection of the fact that branc and
antibranc lic on the same “Zg-orbit”. ?

As before, the states with A = 0 can be viewed as gencerators of the charge
lattice, and the expansion coefficients (RIR charges) of the A # 0 states arce

%{lﬁ“{)'l‘ = HtLi ; (4'112)
i=1

where t7, is as in cq. (4.41) with gos, = (gon) "

4.3.4 Connecting CFT with geometry

By now, there exist at least two independent chains of arguments that one
might cmploy to identify the RR charge lattices in BCFT and in the geo-
metric description.  The first of those, proposed in [32] makes crucial usce
of mirror symmetry. Basically, the idea is to comparce the intersection form
computed in some basis in the BCFT with the geometric intersection form at
large volume. In BCFT, any natural basis will reflect the discerete symmetrics
that the Gepner modcel has, but which arc invisible at large volume, where
one uses some convenient basis of @; H(X). The natural geometric basis
with these symmetrics is associated with the mirror manifold. Indeed, it is
onc of the bases of periods that appcears in mirror symmetry computations.
Thus, mirror symmetry provides the link between the symmetrie basis in
CFT and the gecometric basis at large volume.

In fact, the prescription of [32] for the identification of bases has received
further justification by the results of [29]. It is well-known that minimal
models, and as a conscquence Gepner models, also have a description as
conformal fixed points of certain Landau-Ginzburg models. One of the main
results of [29] was to identify the Cardy boundary conditions in minimal
modecls with gcometric boundary conditions in the corresponding Landau-
Ginzburg modecl. This identification is completely explicit and in principle
cven goes beyond the topological scctor.  The happy coincidence is that

B0On may use this to further reduce the size of the intersection matrix to the form
II(1 —~"*), where ~ is the H/2 x H/2-matrix

0

1 0 ... 0
0 01

(4.111)

-1 0 0 ... O
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the special Lagrangian cycles corresponding to the minimal model boundary
states arc identical with the cycles used for the computation of the basis of
periods of the mirror manifold which is the natural basis at the Gepner point.

An independent approach connecting large and small volume has ap-
peared recently that avoids mirror symmetry completely [118, 121]. Instead
of dealing with quantum corrections by considering the mirror, onc uses the
connection between non-lincar o-models and the gauged lincar g-model of
ref. [123]. Such a lincar description is achieved by embedding the Calabi-Yau
hypersurface (more gencerally, one can desceribe torie varieties and also non-
Abclian gencralizations thercof) as the vacuum manifold in the much larger
ficld space of a certain two-dimensional gauge theory. One of the advantages
of the approach is that the description is global and hence allows a simple
tracking of the moduli of the theory. It is a natural idea to extend this pow-
crful tool to also study open strings and their boundary conditions. Results
in this dircetion have been obtained in [29, 118, 121, 90|, and more recently,
in [124, 125, 126]. The strategy of [118, 121] is to proposc natural objects
in the gauged lincar o-model that arc related to boundary states in CFT at
small volume and can casily be identified with gecometric D-brancs at large
volume. The computations arc dramatically simpler than, and the results
rcassuringly consistent with, the ones using mirror symmetry.

The lincar o-modcl approach to D-brancs on Calabi-Yaus will not be
cxpanded here, and only the approaches that use mirror symmetry will be
described in somewhat more detail now, focusing on a specific example.

An explicit example: The K3-fibrations P}, ,,[12] and P}, ,,,[8]

The Calabi-Yau hypersurfaces in weighted projective space, Y1 = P 55 6[12]
and Yy = P} 5,,[8] have the structure of K3-fibrations. At the respective
Gepner points in moduli space the defining cquations take the form

Yi=Alz,...,25) € ]P’i"m,g,ﬁ; A+ S8+ 2 =0} (4.113)
Yo ={[z1,...,25) € ]Pi"l,zg’?; 2B+ 28+ 24; + 25 + z§ =0}, (4.114)

and the manifolds have a special value of the Kahler class. At these points,
the exact solution of the o-models arc given by Gepner models with minimal
models at levels (4,4, 10, 10) and (2,2, 2,6, 6), respectively. After blowing up
the singularitics in the weighted projective space, cach of these manifolds has
two Kahler paramcters, denoted by ¢, and ¢5. They belong to a natural basis
of Kéhler classes, Ji, Jo € HYHY) (for Y = Y7, Ya).

The mirror manifolds of Y) and Y2 can be obtained by the (“geometric”)
Greene-Plesser method, and are denoted by Y; and Ya, respectively. Mirror
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symmetry rclates the complex structure and Kahler moduli spaces of mirror
pairs. For the manifolds at hand, the nccessary computations have been
performed in [127, 128]. In particular, these results show how the complex
structure moduli space of Y is paramectrized by t; and t,. But this is not
cnough for connecting the complete bases of the RR charge lattices (which
have rank 6) in CFT and large volume.

At large volume, there are always two natural bascs for these lattices.
Onc is a basis of HY8(Y), naturally gencrated by the two Kihler classes
Ji, Jo € HYH(Y'), the other is a symplectic basis, Buympl, of H3(Y). The map
between the two bases is obtained by comparing the central charge of a branc
as a function on moduli space.

Namcly, for a RR charge Q% € H 3(17), onc can cxpress the central
charge as

Z(Q™) = QM II(ty, 1), (4.115)

(2

where QY arc the cocfficients of Q®®, and II'(¢,,t) the “period vector”,
with respect to the basis Bgympl.

If the same charge QP is viewed as clement of H42(Y), onc may com-
pute the central charge as

Z(Q"?) = /CKQM : (4.116)

where K = t1J; +t2.Js is the Kahler class of Y, and the relation between char-

acteristic classes and Q" is given by cq. (3.12). Comparison of (4.115) and

(4.116) then yiclds the following expressions for the characteristic classes ch;

of a chctor bundle V in terms of the charge vector (QF™) = (ng, ng), nf) , 10,
1 (2

ng My ).

Y = Ng

Chl = nil) Jl + nf) <]2

(4.117)
cho = (4ny) —n$?) Jide + i (J1)?
chy = —i(no + 1—;718) + an)) (J1)?,
Yy r=ng,
1) 2)
chy = n;' Ji+ns J
TN (4.118)

Ch2 = (inél) — %7152)) Jng -+ ingz) (Jl)Q

chy = —4(no + %nil) + an)) J}.
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Equations (4.117) and (4.118) describe explicitly the isomorphism between
HY¥22(Y) and H3(Y).

Of particular interest (for example for string dualitics) arc the brancs
that wrap only the K3-fibers (called fiber-brancs in [93]). In general, to find
the characteristic classes of the bundles corresponding to brancs wrapped on
submanifolds, onc has to take into account that the induced charge vector is
modified by the A genus of the normal bundle of the submanifold inside the
Calabi-Yau. For the K3’s inside the Calabi-Yau’s at hand, onc obtains

Y, r= nf)
chy = Ln" (4.119)
chy = —ng — 2nf) \

Yo r= nf)
ch; = inél) (4.120)
chy = —%no — nf) ,

where the characteristic classes arc expanded in both cases with respect to
the bases (1,.J1, £(J1)?).

As indicated above, there is a third basis for the RRR charge lattice, which
is induced by the natural basis of periods at the Gepner point. Specifically,
the periods of the holomorphic three-form on (the mirror of ) a Calabi-Yau arce
computed by solving a sct of lincar differential equations (the Picard-Fuchs
system) satisfied by the periods.

At the Gepner point in moduli space, the natural solutions of the Picard-
Fuchs equations arc a sct of H functions, (wy, ..., wy) related to cach other
by the Zy monodromy around the origin (where H = Leam.(h;)). Although
naturally symmetric, the sct (g, ..., wy) is not a basis of solutions of the
Picard-Fuchs system. Rather than being independent, these functions sat-
isfy a sct of “period relations” that can be derived combinatorially from the
weights hy, ..., hs. Related to (wy,...,@wg) is a sct of cycles, B,,, satisfy-
ing the same relations. The main work in mirror symmetry computations
following [13] is to conncct éw with the symplectic basis Bgymp at infinity
by analytic continuation of periods. With this in hand, onc can derive the
intersection matrix of the cycles B,

Exploiting the Zg symmetry, the proposal of [32] was to connecet the basis
of cycles B,, uscd for the computation of the periods with the collection of
A = 0 boundary conditions in the Gepner model. These A = 0 states can
be thought of as a sct of (dependent) generators Begy: of the charge lattice.
This proposal is substantiated by the fact that Bopy satisfy the same relations
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as the B, namcly the period relations (this is purcly combinatorial data).
Morcover, there is a simple relation between the intersection matrices.

Explicitly, for the two K3-fibrations discussed above, once finds the ana-
lytic continuation matrices

(—11 0O 0 0 0\
3 03 1 1L _1 _1
1 01 00 0
Yi: m= 1 00 0 0 o0 (4.121)
1
-2 0 2 0 2 0
\; 111 a1 ;/
2 2 2 2 2 2
(—11 0O 0 0 0\
Pl o0y
Yo: m= 100 0 0 0 (4.122)
Lo L oot oo
1 3 1 1 1 1
\z 1 "3 3 1 z}

between the symplectic basis Bgympr and the projection of B, to a lincarly
independent set, which is found by using the “intertwiner” 7' that implements
the period relations*?. ]

This allows to compute the intersection form on B, I5+ and comparc
with the CFT interseetion matrix ZP¢FT = 7B (sce cq. (4.109)). In all cases
that were investigated by these methods, it was suspiciously found that onc
has

TBerr = (1 — g) TP (1 —g)". (4.124)

MThese “intertwiners” are given explicitly by

(1 0 0 0 0 0
0O 1 0 0 0 0
0O 0 1 0 0 0 1 0 0 0 0 0
0O 0 0o 1 0 0 0O 1 0 0 0 0
O 0 0 0 1 0 O 0 1 0 0 0
O 0 0 0 0 1 O 0 0 1 0 0
iT=1 0 o o 0o 0o o0 2:T=1g o 0o 0o 1 0
0 -1 0 0 0 0 O 0 0 0 0 1
0 0 -1 0 0 0 10 —1 0 -1 0
0O 0 0 -1 0 0 0o -1 0 -1 0 -1
0 0 0 0 -1 0
O 0 0 0 0 -1
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In view of the results [29], this is not surprising any longer. Indeed, it

turns out that the cycles B,, that arc conventionally used for the computa-
tions of the overcomplete set of solutions of the Picard-Fuchs system [129] arce
almost identical to the concatenation of the cycles that appear in the Landau-
Ginzburg description of (the mirrors of) the individual minimal models. The
only discrepancy between [129] and the preseription derived from [29] is a
factor of (1 — g), exactly as it appcars in (4.124).

All in all, onc obtains thc big basis transformation between the RR
charges in CFT and the charges in the basis Bgymp at large volume,

QI — QL (1 - g)Tm ", (1.125)

where Qpy arc the expansion cocfficients of a CFT state in terms of the
basic A = 0 states, sce eq. (4.112). Inserting this into cgs. (4.117) or (4.118)
yiclds the characteristic classes of a vector bundle.

Results for fiber-brancs in the two models Y) and Ys, before fixed point
resolution, are summarized in table 4.2.

Fixed point resolution and enhanced gauge symmetry

The last question in the comparison between Gepner model boundary states
and gecometry that will be considered here is the interpretation of the fixed
points and their resolution. The proposal is as follows.

Considering the boundary states before fixed point resolution shows that
in the open string amplitude, onc finds that the number v of vacua is cqual
to the order of the stabilizer and in gencral larger than one. This is of course
typical of fixed points, and is actually onc of the recasons why they have to
be resolved into clementary boundary states. Physically, these additional
vacua give rise to extra gauge ficlds on the world-volume. Mathematically,
onc should think of a degencrate bundle or sheaf.

Given such a degenerate configuration, one can ask how many U(1) factors
the gauge group contains. If this number 7 (where 1 < 7 < v) is larger than
1, the configuration should be considered as reducible because cach U(1)
corresponds to an independent center-of-mass degree of freedom of a multi-
branc system. The structure of the gauge group can in principle be analyzed
by studying corrclation functions of the v gauge bosons. Howcever, this is
unnccessary here, given the origin of the fixed points and the combinatorial
structurc of their resolution.

Indeed, it suffices to realize that the algebra of open string states of the
unresolved fixed point is given by the twisted group algebra of the stabilizer,
Cpx(Sa), where F, X is the simple-current twist (4.99). This group algebra
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L; Q¥ (V) = (r,chi(V), cha(V)) v U G
1,000 | (1.00) (1-L1) (2-1-1) [1 1| U@
3,000 | (1-1-1)  (1,0-2) (01-1) [1 1| U
3,010 | (L1-3) (1-20) (2-1.3) |1 1| U
B.0L1 | (3-3-3) (3.0-6) (0.3-3) |1 1| UQ)
5000 | (20-2) (2200  (00-2) |2 2| U1)xU(1)
50,100 | (2-2-2)  (20-4)  (02-2) [2 2] U(1)x U(1)
50,11 | (22-6)  (2-40)  (4-2-6) |2 2| U(1) x U(1)
5020 | (4-2-4)  (020)  (02-4) [4 1| U©)
5021 | (4-4-4)  (4.0-8)  (04-4) [4 1| U
5022 | (4-2-8) (42-8)  (4-60) |8 2|U(2)x U(2)

L; Q¥ (V) = (r,chy(V),cha(V)) |v D G
[1,0,0.0,0] | (1,0,0) (3-20) (1-L1) (3-1-1) |1 1| U1
[3,0,0,0,0] 2-1-1)  (0,1-1) 11 U
[3,0,1,0,0] (2-2,0) (2,0,-2) 2 2| U(1) x U(1)
[3,0,1,1,0] (4-2-2)  (02-2) 41 U(2)
3,0,1,1,1] (4.-4,0) (4,0,-4) 8 2| U©2) xUQ)

Table 4.2: These tables show the characteristic classes of coherent sheaves
corresponding to the RR charges of B-type boundary states in Gepner mod-
cls (before fixed point resolution). The levels in the Gepner model are
(10,10,4,4) for the top and (6,6,2,2,2) for the bottom table, respectively.
Boundary states arce labelled by collections of L;’s and a Zy label M, which
however is not shown explicitly. The modcls correspond geometrically to
the K3-fibrations Pt 5, 6[12] and P} ,,,[8], respectively, and only states
that have non-trivial charges only on the K3 arc displayed. The rightmost
columns of the tables refer to fixed point data, as described in the text.

splits into the direet sum of full matrix algebras

Crx(Sy) = & Maty(C) (4.126)

’
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where |Sy| = N?|U,|. This split is the origin of the fixed point resolution.

Given all this, it is natural to identify the order of the untwisted stabilizer
with the number of U(1) gauge bosons, 7 = |Uy|, and N with the order of the
unbroken gauge group. It should be stressed that the presence of the simple-
current twist makes it impossible to split the boundary states further, i.e.,
it is not possible to “pull apart” building blocks of the branc, in spite of the
fact that its world-volume docs have an enlarged gauge group. The physical
picturc underlying the equation

v =N (4.127)

thus is that the collection of v gauge ficlds splits into 7 familics, cach con-
taining N* gauge ficlds carrying the adjoint representation of U(N).

According to this interpretation, and in view of the formula for the reflee-
tion cocfficients (4.107), it is casy to sce that the RR charges of the resolved
states is simply 1/7 times the charges of the unresolved states, which are the
charges appearing in table 4.2.

The enhancement of gauge symmetry discussed above is reminiscent of
orbifolds with discrete torsion [106, 130]. Specifically, it was found in [106,
130] that discrete torsion in a closed string orbifold should be accompanied,
in the open string scctor, by a projective representation on the Chan-Paton
labels.  Thus, the regular representation (é.e., the twisted group algebra)
splits according to a rule analogous to (4.127) |T| = Y.~%(dg,)?, where T
is the orbifold group and dg, the dimensions of the irreducible projective
representations of T'. Consistency conditions such as charge quantization
then seem to require that the minimal D-brance charge is larger than expected
by a factor of dg,, lcading to an cnhanced gauge symmetry. The author of
ref. [130] further argues that discrete torsion might be attributed to a flat
but non-trivial B-ficld on a torsion 2-cycle, and that consistency requires a
minimal wrapping number larger than onc.

4.4 From N = 2 coset models to Grassmanni-
ans

4.4.1 Introduction

As was shown in previous scctions, the theory of boundary conditions in
N = 2 superconformal ficld theories is a powerful tool to explore the quantum
gcometry of D-brancs. But still, the general picture of D-brancs in regimes of
large curvature is quite incomplete. In the recent literature, the analysis of
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exactly solvable CET models such as orbifolds [131, 132], and Gepner modcls,
has given hints as to what algebraic structures onc should try to usc for such
a general description of D-brancs in the small volume regimes.

Thus, while at large volume, D-brancs correspond to gecometric objects—
submanifolds supporting vector bundles, or, more generally, coherent sheaves,
and thercfore have a microscopic description as gecometric boundary condi-
tions in a o-modecl, the most appropriate desceription at small volume scems
to be in terms of “quiver theory” [131, 132]. This point of view has recently
received further support from the work in [116], where it was shown that
compact D-brancs on the non-compact Calabi-Yau manifold Opz(—3) can be
constructed following Beilinson [133], and arc hence classified as the repre-
sentations of a quiver. Most recently it was shown in [118, 119, 120, 121] how
the desceriptions at large and small volume are related in general by a form
of McKay correspondence [134, 135], which gives a precise map between the
large radius bundle data and the quiver group theory data at small radius.

In order to test some of these recent ideas about D-brancs in small vol-
ume regimes, the purpose of the present scetion is to extend the analysis of
exactly solvable N = 2 CFTs to the class of the Kazama-Suzuki modcls. In
particular, the objects of study will be ' = 2 supcerconformal ficld theorics
based on coscts SU(n+ 1) /U(n) [136], which genceralize the minimal models
(for which n = 1). From the CET point of view, these models are on a similar
footing as the minimal modcls, so that it is a natural question to ask about
the propertics of the boundary states of these models. On the other hand,
from a geometrical point of view the modcls correspond to isolated singu-
laritics that arc not nccessarily of orbifold type, so onc may cxpect to find
novel features with regard to gencralizations of the McKay correspondence.
Indeed these models have an abundantly rich mathematical structure (re-
lated to Grassmannians Gr(n,n + k) = U(n+k)/U(n) x U(k)) that has been
analyzed in great detail in the past, see refs. [10, 137, 138, 139, 140, 141, 142],
as far as the bulk physics is concerned. Onc of the questions one might ask is
whether such connections persist after inclusion of boundary scctors. Here,
the primary focus will be on the intrinsic, algebraic aspects of coset CFT
with boundarics*®. A few bricf comments about the relation to sheaves and
helices on Grassmannians will be made at the end.

Some of the general ideas relating cosct CEFTs to gecometric information
about singularitics were explained in scction 4.2 for the minimal modecls. For
Kazama-Suzuki modecls, the strategy will be very similar. The main ingredi-
ent is the intersection index of boundary states, Zy, = try,, (—1)%, sce section
3.2.3. In the present case, the intersection structure—cencoding information

15See [143] for some other aspects of D-branes in Kazama-Suzuki models.
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about the “quiver algebra” or “boundary ring” —turns out to be given by the
fusion ring of U(n). Thus, the genceralized McKay correspondence apparently
docs not involve discrete groups [144, 145]. But still a close link scems to
cmerge between the intersection homology of the resolution of the isolated
singularity corresponding to the coset model [146, 147], and the boundary
ring.

Another aspect of the analysis is that the class of “Cardy” boundary
states covers only a very small subsct of all possible quiver representations.
This could be expected from the fact that a general Kazama-Suzuki model
is irrational over the N = 2 algcbra, while Cardy’s construction always
preserves a rational chiral symmetry algebra. These results can hence be
viewed as a consistency check of the presently available, and limited, idcas
and mcthods in conformal ficld theory with boundarics.

4.4.2 N = 2 coset models

The starting point for Kazama-Suzuki (KS) modcls [136] are rational N = 2
supcrconformal ficld theories defined by the coset construction, of the form,

(),

Here, & is the level for the untwisted affine Lic algebra with horizontal sub-
algebra the simple Lic algebra g, and b is a subalgebra of g. The so(2d)
factor arises from bosonization of the fermions and is at level 1. Further-
more, 2d = dim g — dim h. Onc often finds the notations gg/h or gi /b x u(1)
as a shorthand for (4.128). It turns out [136] that such a cosct model will
have its supersymmetry extended to N = 2—and hence be a good starting
point for supcrstring modcls—preciscly if the corresponding cosct space of
Lic groups, GG/ H, is Kéhlerian. The main interest here is in the simplest class
of modcls, namcly where g is simply laced, at level one, and the underlying
cosct space is a hermitian symmetric space (the SLOHSS models). Other
modecls can be treated by similar methods, but require more computational
power and also somewhat more care duc to ficld identification fixed points
[10, 148].

More specifically, the models of interest are based on Grassmannians
Gr(n,n + k), for which the following cquivalences hold:

su(n + k), o su(n+1),  su(k+1),
su(n) x su(k) x u(1) - su(n) x u(1) - su(k) x u(l) (4.129)

Quantitics pertaining to these models will be labelled by a superscript [n, k],
and, as a convention, n < k is assumed.
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The definition of the coset (4.128) includes the specification of the em-
bedding of b into g, and is accompanicd by specific sclection rules and ficld
identifications.  Ficld identification fixed points do not occur for the mod-
cls under consideration, so this complication can be neglected. It should be
pointed out, however, that since fixed point resolution affects the modular
data and fusion rules in a non-trivial way, it will have interesting conse-
quences for the intersection index of boundary states in theories with fixed
points.

Primary (with respect to the bosonic algebra) ficlds in the coset CEFT arce
labelled by quadruples (A, A, m, o), where A stands for an integrable highest
weight of gg, A for a weight of h and m for the u(1) charge. Furthermore,
o is a weight of the so(2d) factor, which is the scalar, 0, or the vector, v,
representation in the NS scetor, and the spinor, s, or the conjugate spinor,
¢, representation in the R osector. The restrictions and identifications on
the labels depend on the particular coscet one is considering.  For present
purposcs, they can be formally implemented by considering a simple-current
extension [148] of the tensor product,

(g x b" x u(1)* x so(2d)] (4.130)

extended *

At least for the modular propertics of the model, this extended tensor product
is cquivalent to the coset model. Since only modular data and with it the
fusion rules enters the construction of Cardy boundary states [47], this will
be sufficient.

As a concrete example, consider the coscts su(n + 1), /su(n). The exten-
sion is by the simple current

J = (JOV M ) (4.131)

in the tensor product (4.130). Here, J®*Y (respectively J™) denotes the
generator of the simple-current group of su(n + 1), (respectively su(n), ).
Its monodromy charge, @ ;i1 (A) = 7,11(A)/(n + 1) measures the (n +
1)-ality of the representation A (analogously, 7,,(A) stands for the n-ality
of the representation A). Morcover J™D acts on A, to yicld J®HDA, by
rotating clockwisc the Dynkin labels of the corresponding highest weight of
the affine Lic algebra su(n + 1), (and similarly for su(n)). And h := k+n+1.
Extension by the simple current 7 is equivalent to the sclection rule
Tat1(A) | () m

nt1) sn A, A\ m, o) =
Q(./( +1) (€ >,h,v)( ) ,ma) n+1 ™ n Jrn(n+ 1)

+Qu(0) =0,
(4.132)
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where @, (0) is 0 in the NS sector and 1/2 in the R sector, and to the order
n(n + 1) identification (A, A\,m,0) = J(A, A\, m,0) = (JOTDA JWX m +
h,vo). Further details can be found in the cited literature.

It is known [10] that the ring of chiral primary ficlds of any onc of these
models (4.129) is isomorphic to the cohomology ring of the underlying Grass-
mannian,

n,k: ~J * SU(n+k3)
RIMH Hé( SUM)=xSUK)xU(1) =R) ; (4.133)
with dimension
k
dim(RI"H) = (7H ) . (4.134)
n

The relations in this ring can be integrated to a potential Wl (x;), which
can be interpreted as superpotential of a Landau-Ginzburg model with ficlds
xi, 0 =1,...,n (with U(1) charges q(i) = i/(n+k+1)). The superpotentials
were explicitly given in [10, 137], and can be compactly characterized by the
following gencerating function:

n—1 o0
“log [ Yo(-tim | = 3T e (4.135)
=1 k=—n+1

The quasi-homogencous superpotentials W () represent isolated sin-
gularitics that can be viewed as genceralizations of the Agy; simple singular-
itics. Those were mentioned in section 4.2 and correspond to WE(z;). In
analogy to the minimal models and their relationship to ALE spaces, one ex-
pects that the CE'T of the coset models should be compared with the D-branc
gcometry of the resolved singularitics, desceribed by the superpotential

This particular resolution is distinguished in that it preserves the discrete Zy,
(h=n+k+1) “Coxcter” symmetry that is intrinsic to the coset models.

The resolved potential (4.136) can be viewed as the inhomogencous form
of a Landau-Ginzburg potential for a non-compact Calabi-Yau space. The
most natural way to form such a spacce is to tensor the coset model with a
matching, generalized Liouville theory with n ficlds z; (with charges ¢(i) =
—i/h). The combined system has central charge

¢(n, h) + ¢é(n,—h) =2n, (4.137)

(where é(n, h) = (h—n—1)n/h), and corresponds to a non-compact 2n-fold.
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The intersection indices Z,p = trHayb(—l)F between boundary states a, b,
computed in the next subscction, will then gain a concrete gecometrical mean-
ing after taking the non-compact picee into account. This produces symmet-
ric generalized Cartan matrices,

and makes contact with the proposals of [146], proven in [147], that the fusion
cocfficients of su(n + 1), arc naturally rclated to the intersection form on the
homology of the resolved singularity. Nevertheless, the main concern here will
be the intrinsic propertics of the boundary states of the AV = 2 cosct modcls.
(The hats in (4.138) indicate that these are “extended gencralized Cartan
matrices” associated with over-complete, Z;, symmetric homology basces.)

4.4.3 Boundary conditions and intersection index

The class of boundary conditions under consideration here are the Cardy
states. Thus these states will preserve the complete chiral algebra (without
twist) of the A/ = 2 cosct models (these chiral algebras are known to be
N = 2 W-algebras), and do not exhaust all possible AV = 2 superconformal
boundary conditions. To be precise, the Cardy construction yiclds A-type
(with respecet to the A= 2 algebra) boundary conditions, using the charge
conjugation modular invariant in the closed string scctor (sce table 3.1). In
the coset modcls, the Cardy boundary states arc labelled in the same way
as the primary ficlds arc, namely by (orbits of) (A, A, m, o) with the same
sclection and identification rules.

Recall from scction 3.2.3 that the intersecetion index can be written in

terms of the annulus cocfficients, A7}, as follows:
T= Y Ay m—Au™, (4.139)
m Rgs

where v denotes the simple current corresponding to the worldsheet super-
current and s the simple current corresponding to spectral flow by half a
unit. The sum in (4.139) is over all Ramond ground states m. Thus, the
s tm arc chiral primary ficlds. In the cascs of present interest, the expres-
sion (4.139) simplifics further since the annulus cocflicients arce identical to
the fusion cocfficients, i.e., to the structure constants of the Verlinde algebra
of the coset model. Modulo field identification fixed points, those are given
by the products of fusion coefficients of the factors in (4.130), restricted to
allowed ficlds, and summed over ficld identification orbits. The fusion coct-
ficients of g and h will be denoted by N and N, respectively. The fusion
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cocfficients of the u(1) factor arc conveniently encoded in a shift matrix g,
of size h or n(n + 1)h, depending on the context (sce the comments around
(4.37) in scction 4.2. The fusion cocflicients of the so(2d) factor arc given by
vs=c, v2 =0, s> ="

As in previous scctions, it is natural to view the interscction numbers
of boundary states with representatives (Ap, Ap,my, 01) and (Ag, Ag, ma, 09),
for fixed A; and As, as a matrix in Ay, m; and Az, ms. Consider also fixed
o1 = 09 = 0. From (4.139) onc obtains,

N A1,ma
’ _ coset n7(A1,A1,m1,0) coset A7(A1,A1,m1,0)
(IALAQ) = ) ey _ coset py

Ao, mo (Z\,)\,’W,U)(AZ,AQ,mg,O) U(AzAsmvd)("/XQ 7>‘27m250) ’
’ (A,\,m,o) ch. prim.

(4.140)

where the sum is over all chiral primary ficld representatives. Inserting the
fusion cocfficients of g, h, u(1), and so(2d) then gives

~ A1,m1 GrrAy
(IA1,A2) = E : NAAQ X
A

Az,ma

Harh —mymq Har\ —mymy
: : N)\)\g(g ) ma E N,\)\2<g ) mo | (4141)
A,m Am
(A, A,m,0) ch. prim. (A, A,m,v) ch. prim.

Thus, it is necessary to know which A, m labcls yield, for fixed A, a
representative of a chiral primary ficld. To this end, usce the fact [138] that
any Ramond ground state has a representative (A, A, m, o) with

(A, m) + (pb7 0) = w(A + pg) ) (4.142)

where py and pg arc the Weyl vectors, and where w runs over the minimal
length representatives, W(g/h), of the Weyl group coset W(G)/W(H). The
w € W(g/h) can also be uniquely characterized by the fact that A in cq.
(4.142) is an intcgrable highest weight of b at the level of interest. In (4.142),
m is determined by the embedding of the u(1) factor in g, and the so(2d)
representation o is the spinor, s, or conjugate spinor, ¢, if the sign of w
is +1 or —1, respectively.  Using spectral flow to the NS scector, given by
(0,0,mq, s), for a particular mg, a solution of (4.142) is scen to contributes
in (4.141) with a sign cqual to sign(w).

Howcver, not all Ramond ground states representatives are of the form
(4.142). Onc also has to implement the identification rules that do not change
a given A. Thesce identifications introduce an additional sign if they act non-
trivially on the so(2d) label. Summing up, onc can write (4.141) in the
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compact form

A~ Al,ml ’ . _
(IA1,A2) T ZGNIA_,{Q Z Z € sign(w) HNi‘/{Z (g-mHmoymL
2z A weW(g/h) (\,m)

(4.143)

where 37 is over all those (A, m) that arc related to (4.142) by a ficld iden-
tification in the denominator and in the so(2d) factor (which determines the
additional sign € = £1).

Examples

As a first example, reconsider the intersection of the A = L = 0 states
of the N/ = 2 minimal modecls, su(2), x 50(2);/u(1)s,. Here, W(G/H) =
W(SU(2)) consists just of two clements, namely of the identity wo(l) = 1

and of wy(l) = —I. Furthermore, mg = 1, and wo(0 + peyz)) — mo = 0,
wy (0 + pgu(g)) — mgy = —2, so that there are two terms in the intersection
matrix,

IR =1 ¢ (4.144)

This reproduces the result (4.39) (modulo reducing the size of the matrix
g = Gon = Go(k+2) in order to avoid redundancy).
The sccond example are the models su(3), /u(2). The full cosct reads

su(3), x so(4),
SU(2)k 41 X u(1)en

(4.145)

where h = k + 3. Primary ficlds in the cosct arce labelled by allowed field
identification orbits of

(L1, l2), A, m, 0) (4.146)

where 11, b, A >0, 11 + 1o < k, A <k+ 1, mis defined modulo 6~ and ¢ is
scalar (0) or vector (v) in the NS scetor and spinor (s) or conjugate spinor
(c) in the R sector.

Fix (11,15) and (I7,15), and consider boundary states with varying A and
m, 0 = 0. Then the intersection matrix of thosce states is

~ (l/ ,l{) ~
I(l’l,lé),(f’l’»l’g’) = Z ‘/\/’(ll,l;)z(l’l’,lg’) L o) (4.147)
(l1>l2)
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where the Ms are the su(3), fusion cocfficients, and f(ll’lg) is the contribution
of all ground states in the open string R sector that can occur for fixed (13, o),
modulo ficld identification. This reads explicitly,

- _ —11 21> —I1+e+3
I(lhlz) - Nllg - *Nl1+lz+lg

21 1346 12yt 3h
+ Npg T — Ngyr,9 072
—l1+la+3+3h 201 +la+6-+3h
+ Ne—t,-1,9 — Niy1-1,9

= (Nllg—zl—zlz - A]vll+12+lgfl1+lz+3 4 legzllﬂzm) (1— -Z\fk;+]_g:;h) ‘
(4.148)

Here and from now on, the N's will be reserved to denote the su(2) fusion
matrices. The matrix g is 6h x 6h dimensional. The terms on the RHS of
(4.148) correspond, respectively, to the occeurrence of the fields

(1, 1), 1, 1y + 215,0)
(I, l), i+ b+ 10—l —3,v)
=((k—lL —l,h). k=l — b,k + 1 —5,0)
((11.12), 12, =21, — I, — 6,0)
= ((l,k — L — ly). 15, 2k — 21, — 15,0)
(L, 1),k +1— 11,0+ 2l + 3k, v) (4.149)
= ((I, ), 1, L + 215,0)
(L, 1),k — 1 — Ip,ly — I, — 3+ 3h,0)
=((k—li—l,h). k=l —lk+1 —15,0)
(L lo), k+1—1p, =20, — o — 6+ 3h,v)
= ((lo,k — L — 19). 15,2k — 21, — 15,0)

in the open string sector. According to (3.51), the ficlds with ¢ = 0 contribute
with a plus sign and the ficlds with ¢ = v with a minus sign; this explaing
the signs in (4.148). The structure of (4.148) is as cxpected from (4.143).
The first bracket is the sum over the relative Weyl group, while the sccond
implements the identification which arc trivial in the numerator of the cosct.

4.4.4 Some properties of the intersection index

The intersection index of boundary states in Kazama-Suzuki models has some
rather interesting propertics, which nicely illustrate the gencral structure of
N = 2 BCFT. Full details will now be worked out for the su(3), /u(2) models.
The genceralization to other models should be straightforward.
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The Cardy construction yiclds a list of boundary states labelled by the
primary ficlds of the cosct, and the intersection index Z between any pair of
them, as computed above. The intersection index gives the set of boundary
conditions the structure of an integral lattice. In string theory, this lattice
is naturally interpreted as the lattice of RR charges, of rank cqual to the
dimension of the relevant chiral ring, cq. (4.134). From unitarity of the
matrix of Cardy cocfficients, it follows that the sct of Cardy states span this
lattice, but a priori, it is not clecar that they contain an integer basis. It
turns out, however, that such an intcgral basis is provided by the states with
A = 0. Indced, as far as RIR charges arc concerned, all other states can be
considered as integral lincar combinations of (a subsct of) the A = 0 states.
These are thus the analogs of the basic L = 0 states of the minimal models,
and in fact they can be viewed as the D-branc states with lowest mass if one
resolves the singularity by switching on p in (4.136).

In order to simplify notation, notice that from the formulac above, it
is obvious that a state with (representative) label (A, A, m, 0) intersects all
other states with a minus sign relative to the state (A, A, m,v) (branc and
anti-branc). Thus, one can immediately restrict attention to, say, ¢ = 0
states. Furthermore, in many instances there arce identification rules that arc
trivial in the numerator of the cosct, and this leads to a further reduction of
the labels among A = 0 representatives.

Consider the favorite example, su(3), /u(2). From (4.147)and (4.148), onc
deduces the basic intersection matrix of the states with A = 0 representatives,

T2k = j([gzg(o,o) =1 Ng®+ ¢® — Nupag™ + Npg¥™ — Ny ¥
— (1= Nesag™)(1 = Nig’ + ¢°). (4.150)
Suppressing the A = (0, 0) label, the remaining labels are (A, m, 0). Note that
for the A = 0 states, m is always a multiple of three, and one may thercfore
reduce the size of the g-matrix accordingly: g = go13) — Ga(r3)- The cosct
rules require A/2 4+ m/6 to be integer, and morcover identify (A, m,0) with
(k+1— X m+ 3h,v). Thercfore, the following “standard” range is natural,

A=0,...,k+1,m=3m"withm' =X\ A+2,...,2k+2—-\. (4.151)
Now let

IL=A
m — A\ (4.152)

2

The standard range can then be more concisely expressed as,

I,0>0, L4+1<k+1. (4.153)

Iy =
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This looks like the labels of the integrable representations of su(3),, , (where
the level is by one higher than what appears in the coset [137]). This point
of view is somctimes convenient, but as will be clear later, the labelling in
terms of A and m reflects more naturally the underlying algebraic structure,
which is related to the u(2) fusion ring.

It is casy to sce that restricting the labels to I +1 < k, which corresponds
to the integrable representations of su(3),, and ordering the states according
to increasing 14, and [;, the reduced interseetion form, denoted by ZR# =
I([(r‘;:g%(oyo), is upper triangular with 1 on the diagonal. Its rank is (k + 1)(k +
2)/2, which is cqual to the dimension of the chiral ring of the cosct model.

The A = 0 boundary states with I} + 15 < k thus yicld a complete basis of
the charge lattice, and what remains to be shown is that all other boundary
states can be obtained from them via integral lincar combinations. As far as
the rest of the A = 0 states is concerned, namely the ones with I+, = k+1,
this can be scen in the following way. Simply observe that the formal sums
of states

(0,05) + (L,15) + ... + (k+1,15) (4.154)

(assuming they are mapped back to the standard range with an appropriate
minus sign) do not intersect with any other state, and so correspond to null
cigenvectors of Z. This shows in a dircct way that (the charges of) the states
with I} + 15 = k + 1 can be written as integral lincar combinations of the
states with I 4+ 15 < k. To show the analogous statement for the states with
A > 0, it is convenient to use again matrix notation for the charges. Thus,

. ! o . . .
onc sccks matrices of charge vectors, Q(ll,l2))\)i7;ll with ([, 05) fixed, satisfying

Luyayaray = Quuay Zoowo Qupy) - (4.155)

These charge vectors can be obtained as follows. First define

@(ll,ZZ) = Nllg*llf2lz + ]\fll+197117212+3 + .
oo b N9 02 Ny g, g TR
cee b Nl29l2+2h . (4-156)

Thon, if ll Z lg

Q(llyl2) = @(h,lz) + Q(ll*l,lgfl) + -+ Q(Zlflg,o) , (4.157)
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and the analogous expression if Is > [;. Indeed, a simple computation shows

:2—(0’0)(0,0) Q(h,lg) _ (1 o ]VkJrng%h) I:]vllgfh*QlQ o Nll+l2+lgfl1+lz+3
+ N129l2+2l1+6 . Nl171971172£2+3

Iyl lo4+20143 (4.158)
+ N11+127197 1+la+3 ngflg 2+ 1+<:|

= j—(0,0)(ll,lz) - -,ZA'-(O,O)(llfl,lgfl) 5

where the sccond term is absent if [; = 0 or [, = 0. Thercefore, summing up
@ as in (4.157), onc obtains,

j(0,0)(0,0) Qui i) = j(0,0)(11,12) . (4.159)

With some more cffort, onc can check that indeed the @'s satisfy (4.155).

The above considerations can be made more transparent by associating
a graph with the basic intersection index (4.150), whose nodes correspond
to boundary states and oriented signed links between them encode their
intersection. Such a graph (omitting the arrows) is shown for £ = 2 in fig.
4.2. In this picture, the fat lines denote the sub-graph Z122 of the integral
homology basis, which corresponds to the fusion graph of su(3), (by change
of basis it can be put into the form of the Dg Dynkin diagram, which reflects
the cquivalence of the KS model su(3),/u(2) with the minimal model of type
Dg). Note that the extended graph looks similar to the fusion graph of the
integrable representations of su(3),, but in fact, the dashed links really make
it into a fusion graph of u(2). It is also quite instructive to represent the
charge vectors (4.157) of the A > 0 states graphically. Fig. 4.3 shows those
A = 0 states whose charges add up to the charge Q’(glylz))/\,m.

The generalization of (4.150) to all KS modecls of the form su(n + 1), /u(n)
is straightforward. The A = 0, ¢ = 0 states intersect as

Tkl — j-([)r,ldk] - 1_ N[llgn-i—l 4 N[Z]QZ(TH—D bt (_l)ngn(n-l-l)

+ (_1)n+1i7ng—(n+1)h + (_1)n+2‘7\7'j[1]g—(n—f—l)h+(n+l) 4o
+ (_1)2n+1NJgf(n+l)ib+n(n+l)

+ (_1)(n+1)(nfl)]vjn71gf(nJrl)(nfl)h 4o
+ (_1)(n+l)(n71)+nNJn71gf(nJrl)(nfl)thn(nJrl)
— (1 . N[l]gnJrl + ]V[Q}QQ(”JFU 4ot (_1)ngn(n+l))

x (1 + (_1)n+lNJgf(n+l)h NN (_1)(nJrl)N'jn,lgf(nJrl)(n*l)h)
(4.160)
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Figure 4.2: The intersection graph Z122 of A = 0 boundary states of the
su(3),/u(2) KS model. The fat lines represent the sub-graph Z122 of the
integral homology basis, which coincides with the fusion graph of su(3),. The
open dots denote extending nodes, which give the fusion graph of su(3).,; the
dashed links extend this further to the fusion graph of u(2).

Here, Ny is the fusion matrix of the é-th fundamental representation of SU(n)
at level k = h —n, and (0, J™, (n + 1)k, v") = 77 is the simple current
implementing the coscet rules that act only in the denominator, with N
the fusion matrix of J = J™. Duc to redundancy, the u(1) fusion matrix
9 = Gn(nt1)n can be reduced in size by a factor of n + 1.

Similarly to the su(3) example discussed above, the coset identification
rules allow the reduction of the A = 0 states to a sct of labels in one-to-one
correspondence with the integrable representations of su(n + 1), ,, which is
at onc level higher than the CFT suggests. The intersection matrix Z k]
docs not have full rank and thus should be viewed as an intersection form of
an over-complete basis. Restricting to boundary states corresponding to level
k, the resulting reduced intersection matrix Z# becomes upper triangular
and has full rank (given by (4.134)). The vanishing relations arc analogous
to the su(3) case, and the gencralizations of the charge vectors (4.157) arce
rather obvious, in particular in view of the graphical presentation in fig. 4.3.
Onc thus obtains a basis for the charge lattice also in the genceral case. A
morc formal understanding of these relations should be rather interesting to
develop.

Note that the graph of the symmetrized reduced matrix Z*,
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m+ 1+ 2l

Figurc 4.3: Charges of A > 0 states in a Kazama-Suzuki model of type
su(3), /u(2). The parallclogram is twice the standard range for A = 0 states
and the fat part of the grid inside is a summation region. For a given
((I1,12), A,m) state (here I; = 3, Iy = 2), it shows the expansion of the
veetor @(lm),,\’m, cq. (4.156). To obtain the charge Qq, 1,)5m » onc has to
sum over all regions with the same shape and center, and smaller size as the
onc shown here.

which represents the intersection index for a complete homology basis, coin-
cides with the fusion graph of su(n + 1),; this gencralizes the coincidence of
the A, 11 Dynkin diagram with the su(2), fusion diagram discussed in seetion
4.2. It also reproduces and clarifies, from a BCFT point of view, the con-
nection between the resolution of the singularitics (4.136) and the Verlinde
fusion algcbra for su(n + 1),. Such a relation had been conjectured by Zuber
[146] and others and was proven in [147].

4.4.5 Quiver representations

A quiver (or quiver diagram) is a graph consisting of a sct of points and a
sct of labeled directed arrows between them. The graphs associated to the
intersection forms (4.150) or (4.160) arc examples of quivers. To any quiver,
there is an associated path algebra, and one may study the representation
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theory of this algebra. The idea underlying the recent proposal of Douglas
and coworkers (sce [94] and references therein; sce also [149, 88] for short
introductions and further references to quivers) is that, quite generally, the
collection of all D-brancs in a string compactification can be built up from
the representation theory of an underlying quiver.

Consider as an cxample again the su(3);/u(2) Kazama-Suzuki modcl.
Fig. 4.4 shows the corresponding quiver in the most natural, manifestly Zs
symmetric form.

Figurc 4.4: The intersection graph of fig. 4.2 in a manifestly Zs symmetric
form.

Representations of a quiver arc partially characterized by a “charge vee-
tor”, which to cach node gives the dimensionality of an associated vector
space. The total representation space is the sum of all these vector spaces.
In this language, the clementary A = 0 states correspond to the simplest rep-
resentations of the quiver, in which only a single node has non-zero charge.
The states with A # 0 then correspond to higher dimensional representations,
and their charge vectors are preciscly given by eq. (4.157).

It turns out that the quiver in fig. 4.4 has a rather simple representation
theory, duc to the fact that its generalized Cartan matrix C, cq. (4.161), is
positive definite. There are only finitely many indecomposable Schur roots,
cach yiclding a representation without moduli space. This is related to the
fact that C' can be transformed by change of basis to the Cartan matrix of Dy,
and the quiver representations correspond preciscly to the roots of the Lic
algebra Dg. In CFT language, this simplification is due to the fact that the
su(3),/u(2) modecl is in fact isomorphic to the su(2),,/u(1) minimal modecl
with D6-typc modular invariant; in other words, the NV = 2 W-algcbra is
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a simple-current extension of the A' = 2 Virasoro algebra. The interesting
point is that the list of Cardy (and hence symmetry preserving) boundary
states in the KS model contains only 40 out of the 60 representations of the
quiver. The missing states arc symmetry breaking and can be constructed
using methods of [49, 50].1°

The situtation becomes much more involved for models at higher level,
which arc irrational over the A/ = 2 algebra. The states obtained from
Cardy’s construction cover only a very small subsct of all possible NV = 2
supersymmetric oncs. The parallel statement about the quiver is that the
uncextended Cartan matrix of the quiver becomes indcfinite, and hence there
arc infinitcly many irreducible representations.

As a sccond cxample, consider the model su(3),/u(2). The ten dimen-
sional unextended Cartan matrix of the corresponding quiver has two zero
cigenvalues, and the charge lattice is of type Eg x U x U, where U corre-
sponds to a null dircction. This is exactly as expected from the geometry of
the triangle singularity [150] of type T5 5.6, described by the Landau-Ginzburg
potential for this Kazama-Suzuki model. The states obtained from CEFT turn
out to correspond to the roots of Fg plus a few imaginary roots, compared
to the infinite number of positive roots of the hyperbolic algebra associated
with the Cartan matrix.

These results are certainly consistent with the idea that the representation
theory of quivers organizes boudary conditions in NV = 2 superconformal ficld
theorics, but more work is clearly nceded. A rather important problem in
this context would be the reconstruction of boundary states from given quiver
representations, which arc—at Iecast in some cascs—casier to obtain.

4.4.6 Relation to Grassmannians

It was mentionned above that Kazama-Suzuki models also have a well-known
relationship to Grassmannians. In the bulk, this is the coincidence [10] of
the chiral ring of the KS model su(n + 1), /u(n) with the classical cohomol-
ogy ring of the Grassmannian space Gr(n,n + k) = U(n+k)/U(n) x U(k).
Note that a Grassmanninan has positive Chern class and that therefore the
associated g-modecl is not conformal. However, a topological A-model and its
ring of obscrvables can still be defined, since Kéahlerity is sufficient for this.
There are two crucial differences between the KS model and the Grass-
mannian. Firstly, the correct structure to consider on the Grassmannian is
the quantum cohomology ring, which is a deformation of the classical coho-
mology ring, and the former reduces to the latter only in the large volume

161t is shown in [109] how all of these states can be constructed using methods of [51].
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limit. Sccondly, cven in the large volume limit, the U(1) charges of the ring
on the Grassmannian arc integer, while they are certain fractional numbers
in the KS model. The isomorphism between the two rings apparently has its
origin in the group theory that determines them, rather than in an identity
of the ficld theorics.

In the classification program for N = 2 topological ficld theories [140],
there is besides the chiral ring a sccond type of invariants, monodromy in-
variants, that play an important role. For Landau-Ginzburg modecls, these
invariants can be defined as the number of solitons between the vacua of
the theory. In geometry, soliton numbers arc then also computable from the
intersection of vanishing cycles. In the context of o-models on Kahler man-
ifolds, which arc mirror to the Landau-Ginzburg theories [117], the soliton
numbers become intersection numbers of certain exceptional collections of
bundles (helices) over the Kéhler manifold [29]. Quivers arc also natural in
this context [149]. (Sce also [124] for investigations of the Grassmannian
o-modcl and a connection with a genceralized McKay correspondence).

The relation between Grassmannians and Kazama-Suzuki models now
rcappears in the open string sector in the following disguise. If Xqrags 18 the
upper triangular intersection form of the helix on the Grassmannian, and
Xks = Z™* the corresponding object in the Kazama-Suzuki model, then the
rclation

XGrass = (XKS)n (4162)

turns out to hold. The interesting point is that while a Grassmannian o-
modecl is certainly not in the same class of A = 2 ficld theorics as a Kazama-
Suzuki model, the Grassmannian can be viewed as a sort of clder cousin of
the Kazama-Suzuki in the sense that the intersection indices are related as
in cq. (4.162).

Appendix 4.A Phase symmetries and the labelling of
boundary conditions in Gepner models

It is clear from scction 4.3.2 and 4.3.3 that the A- and B-type boundary
conditions in Gepner models are organized by the group of phase symmetrics
of the Gepner model, as follows. Denote by

Gem = X;lehi (4.163)

ph

the group of phase symmetries of the minimal models with levels k;, ¢ =
1,...,r, after fermion alignment. For simplicity, n +r will be assumed to be
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even.?

Assume that fermions are aligned and A and S = 0 are fixed. Then, in
C™"Y the range of allowed (M;) labels for boundary conditions, denoted by

METT = {(M;), L; + M; = even}, (4.164)

. WSUSY WSusy .
is one-to-one to G . But M€ is not a group!
The group G5 has a natural pairing X given by monodromy, and
CWSUS}'

ME™™ has a natural GG™ action. “Dividing out” a subgroup G C G5y
yields a new theory Cg with phase symmetries

6o = {1 e g&™ X(J,K) =0 for all K € G5} . (4.165)

One the other hand, A-type boundary conditions in Cg are labelled by
orbits,

M = {[(My, ..., M)]g}. (4.166)
It is easy to see that the two sets ggg and M4 are still in one-to-one cor-
respondence. In particular, dividing out the maximal phase symmetry group
Gmirr vields the mirror model, and A-type boundary conditions in this model
(equivalently, B-type boundary conditions in the original model, obtained by
only the U(1) projection) are in one-to-one correspondence to the surviving
group Qsﬁm‘” =Zy.
This generalizes easily to the statement:
In a given theory Cg obtained from CYY by “dividing out” G,
A-type boundary conditions with fixed A and S = 0 are in one-
to-one correspondence with the group of surviving phase symme-
tries, while B-type boundary conditions are in one-to-one corre-
spondence with the complementary group of phase symmetries.

® As always, it is important to notice that this one-to-one correspondence is
not canonical.

m Also, it should be stressed that this rule does not take care of fixed points.
So far it is not known whether there is a universal statement for the appear-
ance of fixed points. However, the procedure in a given case is quite clear,
as demonstrated above. It suffices to determine which combinations of f;’s
occur in G. Then all stabilizers have the form of a product of Zy’s, the simple-
current twist on the stabilizers is maximal, and the untwisted stabilizer is
either trivial or Zs.

'7If n + r is odd, one can, for example, append a trivial factor with kg = 0.
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Chapter 5

Conclusions

Since their discovery, D-branes have been playing an ubiquitous role in string
theory. It is very likely that this will remain so in the near future, and it
is generally expected that D-branes will also enter at some level in a future,
more fundamental or “axiomatic”, formulation of the theory. Along the
way towards this goal, it is therefore an important task to gather as much
information about the properties of D-branes as possible.

Adopting the worldsheet perspective, the work presented in this thesis
has traced out the way between superconformal boundary conditions in (ra-
tional) CFT (chapter 2) and D-branes in string theory. It has thereby led
to a good understanding of the various consistency conditions imposed on
D-branes from conformal- and super-symmetry, their intuitive geometric in-
terpretation, and their implementation in an abstract algebraic approach,
(chapter 3). These results liberate the mathematical power of conformal
field theory for many further investigations of D-branes. The general theory
has been illustrated in examples in chapter 4. In these examples, it was also
shown in several places how the algebraic methods can be linked back to
geometry.

One of the outcomes of these investigations is the confirmation that D-
branes in the stringy regime can certainly not be described by classical geom-
etry alone. Conformal field theory sheds light on some of the limitations. One
example is the truncation of the spectrum of symmetry preserving D-branes
to a finite number in theories which are rational over some chiral algebra. In
the context of A/ = 2 minimal models, this reproduces the finiteness of the
spectrum of BPS states in SYM theories at strong coupling, see section 4.2.
Such a truncation would not be expected purely from classical geometry or
classical field theory.

Another interesting and new example stems from the properties of fixed
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point resolved B-type D-branes in Gepner models in section 4.3. It was
argued there that there do exist D-branes configurations which intrinsically
carry an enlarged unbroken gauge group but are nevertheless elementary. The
main point in the argument is the existence of a “simple-current twist” on
the stabilizer of B-type boundary conditions of fixed point type, which forces
the minimal wrapping number to be larger than one. From a combinatorial
point of view, one might then suspect a relation to torsion in homology or K-
theory. But the match does not seem perfect. Also note that the construction
involves two different alternating bihomomorphisms on two different groups,
the antisymmetric part of X on G;,» and the modified simple-current twist
F{¥ on 8. Usually, X — X* is identified with discrete torsion in orbifolds,
which in turn can be related to the existence of a non-trivial B-field back-
ground. If one accepts that the combinatorial role of discrete torsion is here
played by F{* rather than X — X?, one is led to suspect an interpretation
in terms of twisted K-theory groups, whose relation to D-brane charges in
B-field backgrounds have attracted some attention lately (see [96, 151] and
references therein).

Of course, it can not be excluded at the present stage that the fixed
points and their resolution can be understood using more geometric methods,
such as the Beilinson inspired quiver proposal of Douglas et al.!. However, a
pragmatic attitude is maybe more adequate. Indeed, it must not be expected
that all kinematical, let alone the dynamical, properties of D-branes have an
interpretation in classical geometry.

But the result about fixed points and their resolution does have a physical
relevance, since it provides a new mechanism for obtaining non-Abelian gauge
symmetries in type Il string compactifications, purely within the conformal
field theory of (tensor products of) A/ = 2 minimal models.

On the other hand, and this has also become clear in the course of this
work, conformal field theory does not open every door. In particular, the
fact that many constructions so far rely on rationality over some chiral al-
gebra is a rather severe limitation, at least at the practical level. The most
pressing problem is that the rational methods always lead to a finite number
of boundary conditions, in situations where on general grounds one expects,
or for specific reasons knows, that there is an infinite number of branes.

Thus, algebraic and geometric methods give complementary and indepen-
dent information about D-branes, and allow mutual testing. It is therefore
gratifying that certain links between conformal field theory and geometry
remain and can be given explicitly. The final version of string theory, of

'In fact, this is a very non-trivial test of the proposal.
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course, should contain a unified framework also for D-branes. Depending
on taste, one expects “quantum geometry”, “quantum algebraic geometry”,
“non-commutative geometry”, or simply “M-theory”.
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