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1Dip. di Fisica, Università di Roma Tre, Via della Vasca Navale 84,
I-00146 Rome, Italy

2INFN, Sez. di Roma III, Via della Vasca Navale 84, I-00146, Rome, Italy
3LPT, Univ. Paris Sud, Centre d’Orsay, F-91405 Orsay-Cedex, France
4INFN, Lab. Naz. di Frascati, Via E. Fermi 40, I-00044 Frascati, Italy

5Dip. di Fisica, Università di Roma “La Sapienza”
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Abstract

We present a quenched lattice calculation of the vector form factor at zero-
momentum transfer, f+(0), relevant for the determination of |Vus| from semilep-

tonic K → πℓν decays. Our final result is fK0π−

+ (0) = 0.960 ± 0.005stat ±
0.007syst, in good agreement with the old quark model estimate made by
Leutwyler and Roos. The impact of our result on the extraction of |Vus| is
discussed by taking into account the new experimental determinations.

1 Introduction

The most precise determination of the CKM matrix element |Vus| is presently

obtained from the semileptonic weak decays of kaons. The analysis of the

experimental data on K → πℓν (Kℓ3) decays gives access to the quantity

|Vus| ·f+(0), where f+(0) is the vector form factor at zero-momentum transfer.
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Abstract

We present a quenched lattice calculation of the vector form factor at zero—
momentum transfer, f+ (0)7 relevant for the determination of qSl from semilep—
tonic K —> 7r€y decays. Our final result is ffofii (0) = 0.960 :l: 0.005stat :I:
0.007syst7 in good agreement With the old quark model estimate made by
Leutwyler and Roos. The impact of our result on the extraction of |Vusl is
discussed by taking into account the new experimental determinations.

1 Introduction

The most precise determination of the CKM matrix element |Vusl is presently
obtained from the semileptonic weak decays of kaons. The analysis of the
experimental data on K —> 7r€11 (Kgg) decays gives access to the quantity
qSl -f+(0), Where f+ (0) is the vector form factor at zero—momentum transfer.



Vector current conservation guarantees that, in the SU(3)-symmetric limit,

f+(0) = 1. A good theoretical control on these transitions is obtained via

the Ademollo-Gatto (AG) theorem, which states that f+(0) is renormalized

only by terms of at least second order in the breaking of the SU(3)-flavor

symmetry. The estimate of the difference of f+(0) from its SU(3)-symmetric

value represents the main source of theoretical uncertainty and it presently

dominates the error in the determination of |Vus|.
The amount of SU(3) breaking due to light quark masses can be investi-

gated within Chiral Perturbation Theory (CHPT) by performing a systematic

expansion of the type f+(0) = 1 + f2 + f4 + . . ., where fn = O[Mn
K,π/(4πfπ)n].

Thanks to the AG theorem, the first non-trivial term in the chiral expansion,

f2, does not receive contributions of local operators appearing in the effec-

tive theory and can be computed unambiguously in terms of MK , Mπ and fπ

(f2 = −0.023 in the K0 → π− case 1)). The higher-order terms of the chiral

expansion, instead, involve the coefficients of local chiral operators, that are

difficult to estimate. The next-to-leading correction, f4, has been evaluated

many years ago by Leutwyler and Roos (LR) in the quark model framework
1), by using a general parameterization of the SU(3) breaking structure of the

pseudoscalar meson wave functions. Their result is f4 = −(0.016± 0.008) and

this value still represents the estimate of reference 2).

The two-loop CHPT calculation of f4 has been recently completed 3, 4).

The whole result is the sum of a loop contribution, expressed in terms of chiral

logs and the O(p4) low-energy constants, plus an analytic term that involves

a single combination of the (unknown) O(p6) chiral coefficients. Furthermore,

the separation between non-local and local contribution quantitatively depends

on the choice of the renormalization scale, only the whole result for f4 being

scale independent. An important observation by Bijnens and Talavera 3) is

that, in principle, the combination of low-energy constants entering in f4 could

be constrained by experimental data on the slope and curvature of the scalar

form factor; the required level of experimental precision, however, is far from

the presently available one. Thus, one is left with the LR result, and the large

scale dependence of the O(p6) loop calculations seems to indicate that its 0.008

error might well be underestimated 5).

Very recently 6) the SU(3)-breaking effects on f+(0) have been computed

with lattice QCD simulations. Within this non-perturbative approach, which
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Very recently 6) the SU(3)—breaking effects on f+ (0) have been computed
with lattice QCD simulations. Within this non—perturbative approach, which



is only based on the fundamental theory, a new strategy has been proposed

and successfully applied, in the quenched approximation, in order to reach the

challenging goal of a ≈ 1% error on f+(0). In this paper we present this result,

we discuss its impact on the determination of |Vus| and briefly explain the

strategy of the lattice calculation.

2 Lattice result and phenomenological implications

The procedure developed in Ref. 6) to compute f+(0) on the lattice is described

in the next section. Here we anticipate our final result for the form factor at

zero momentum transfer and briefly discuss its phenomenological implications

in the light, in particular, of the new experimental results on Kℓ3 decays.

Our result is 6)

fK0π−

+ (0) = 0.960± 0.005stat ± 0.007syst (1)

where the systematic error does not include an estimate of quenched effects

beyond O(p4). The value (1) compares well with fK0π−

+ (0) = 0.961 ± 0.008,

quoted by the PDG 2) and based on the LR estimate of f4
1).

By averaging the old experimental results for Kℓ3 decays with the recent

measurement of the E865 experiment 7), and by using the LR determination

of the vector form factor, the PDG quotes |Vus| = 0.2200 ± 0.0026 2). This

estimate, once combined with the accurate determination of |Vud| from nuclear

0+ → 0+ and nucleon beta decays, |Vud| = 0.9740 ± 0.0005 8), implies a

∼ 2 σ deviation from the CKM unitarity condition, |Vus|Unit. ≃
√

1 − |Vud|2 =

0.2265 ± 0.0022. In this respect, our lattice determination of the vector form

factor, being in agreement with the LR estimate, does not modify the picture.

A significant novelty, however, is introduced by the new experimental

results for both charged and neutral Kℓ3 decays recently obtained by the E865
7), KTeV 9), NA48 10) and KLOE 11) collaborations. The corresponding

determinations of |Vus|·f+(0) are shown in Fig.1 12), together with the averages

of the old results quoted by the PDG.

Remarkably, the average of the new results, represented in the plot by the

gray band, turns out to be in good agreement with the unitarity prediction,

once either the LR or the lattice determination of the vector form factor is taken

into account. The unitarity prediction is illustrated by the yellow band in Fig.1.

is only based on the fundamental theory, a new strategy has been proposed
and successfully applied, in the quenched approximation, in order to reach the
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strategy of the lattice calculation.

2 Lattice result and phenomenological implications

The procedure developed in Ref. 6) to compute f+ (0) on the lattice is described
in the next section. Here we anticipate our final result for the form factor at
zero momentum transfer and briefly discuss its phenomenological implications
in the light, in particular, of the new experimental results on K33 decays.

Our result is 6)
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where the systematic error does not include an estimate of quenched effects
beyond (9(p4). The value (1) compares well with ffofiiw) : 0.961 :I: 0.008,
quoted by the PDG 2) and based on the LR estimate of f4 1).

By averaging the old experimental results for K33 decays with the recent
measurement of the E865 experiment 7), and by using the LR determination
of the vector form factor, the PDG quotes |Vusl = 0.2200 :1: 0.0026 2). This
estimate, once combined with the accurate determination of qd| from nuclear
0+ —> 0+ and nucleon beta decays, qd| : 0.9740 :1: 0.0005 8), implies a
N 2 a deviation from the CKM unitarity condition, |Vus|Unit‘ r: W=
0.2265 :1: 0.0022. In this respect, our lattice determination of the vector form
factor, being in agreement with the LR estimate, does not modify the picture.

A significant novelty, however, is introduced by the new experimental
results for both charged and neutral K33 decays recently obtained by the E865
7), KTeV 9), NA48 10) and KLOE 11) collaborations. The corresponding
determinations of qS l -f+ (0) are shown in Fig.1 12), together with the averages
of the old results quoted by the PDG.

Remarkably, the average of the new results, represented in the plot by the
gray band, turns out to be in good agreement with the unitarity prediction,
once either the LR or the lattice determination of the vector form factor is taken
into account. The unitarity prediction is illustrated by the yellow band in Fig.1.



Figure 1: Experimental results for |Vus| · f+(0). The gray band indicates the
average of the new experimental results, whereas the yellow band represents the
unitarity prediction combined with our determination of the vector form factor.

In terms of |Vus|, our determination of the vector form factor combined with

the new experimental results implies |Vus| = 0.2256± 0.0022.

We also note that the recent theoretical estimate 3) f+(0) = 0.976 ±
0.010, based on two loops CHPT and the LR quark model calculation, implies

|Vus| = 0.2219± 0.0022, which represent a ∼ 1.5σ deviation from the unitarity

prediction.

3 Strategy of the lattice calculation

In this section we briefly illustrate the strategy to compute f+(0) with ≈ 1%

of accuracy, by referring to Ref. 6) for all details. This strategy is based on

three main steps.

1) Precise evaluation of the scalar form factor f0(q
2) at q2 = q2

max.

By following a procedure originally proposed in Ref. 13) to study heavy-light

form factors, the scalar form factor f0(q
2) can be calculated very efficiently at

ms V,f“ -Summer2004:—
B\li

0 ’19 7 THEORY 7
._ ,7 11‘“)l Rum”:

' 1 EXP'0.216 7 1 7
* 1 KTeV *

klcV

0.213 7 ,

0.207

Figure 1: Experimental results for qS| - f+(0). The gray band indicates the
average of the new experimental results, whereas the yellow band represents the
unitarity prediction combined with our determination of the vector form factor.

In terms of |Vus|, our determination of the vector form factor combined with
the new experimental results implies |Vus| : 0.2256 :I: 0.0022.

We also note that the recent theoretical estimate 3) f+(0) : 0.976 :I:
0.010, based on two loops CHPT and the LR quark model calculation, implies
qSl : 0.2219 :I: 0.0022, which represent a N 1.50 deviation from the unitarity
prediction.

3 Strategy of the lattice calculation

In this section we briefly illustrate the strategy to compute f+(0) with m 1%
of accuracy, by referring to Ref. 6) for all details. This strategy is based on
three main steps.
1) Precise evaluation of the scalar form factor f0 Sq?) at q2 = qfnax.

f 13By following a procedure originally proposed in Re to study heavy—light
form factors, the scalar form factor f0(q2) can be calculated very efficiently at
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Figure 2: Left: values of f0(q
2
max) versus the SU(3)-breaking parameter

a2∆M2 ≡ a2(M2
K − M2

π). Right: the form factor f0(q
2) as a function of

q2 for one of the quark mass combinations. The dot-dashed, dashed and solid
lines correspond to the polar, linear and quadratic fits given in Eq. (3). The
inset is an enlargement of the region around q2 = 0.

q2 = q2
max = (MK − Mπ)2 from the following double ratio of matrix elements:

〈π|s̄γ0u|K〉 〈K|ūγ0s|π〉
〈K|s̄γ0s|K〉 〈π|ūγ0u|π〉

= [f0(q
2
max)]

2 (MK + Mπ)2

4MKMπ

, (2)

where all the external particles are taken at rest. There are several crucial

advantages in the use of the double ratio (2) which are described in Ref. 6).

From this ratio the values of f0(q
2
max) can be determined on the lattice with

an uncertainty smaller than 0.1%, as it is illustrated in Fig.2-left.

2) Extrapolation of f0(q
2
max) to f0(0) = f+(0).

For each set of quark masses, hadronic matrix elements can be calculated on

the lattice for external mesons with various momenta, in order to extract the

q2 dependence of both f0(q
2) and f+(q2). New suitable double ratios are in-

troduced also in this step, which allows to improve the statistical uncertainties

on f0(q
2). The quality of the results is shown in Fig.2-right for one of the

combinations of quark masses used in Ref. 6).

In order to extrapolate the scalar form factor to q2 = 0 three different

functional forms have been considered, namely a polar, a linear and a quadratic
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(12 : (112mm : (01K — ALT)? from the following double ratio of matrix elements:

2 (MK + in)?<w1§10uIK> <K1mos17r> (2)
401K111.r ’W= Wm”

where all the external particles are taken at rest. There are several crucial
advantages in the use of the double ratio (2) which are described in Ref. 6).
From this ratio the values of f0(q3nax) can be determined on the lattice with
an uncertainty smaller than 0.1%, as it is illustrated in Fig.2—left.
2) Extrapolation of f0(qI2nax) to f0(0) = f+(0).
For each set of quark masses7 hadronic matrix elements can be calculated on
the lattice for external mesons with various momenta. in order to extract the
(12 dependence of both f0(q2) and f+ (Q2). New suitable double ratios are in—
troduced also in this step, which allows to improve the statistical uncertainties
on f0(q2).
combinations of quark masses used in Ref. 6).

The quality of the results is shown in Fig.2—right for one of the

In order to extrapolate the scalar form factor to q2 = 0 three different
functional forms have been considered. namely a polar7 a linear and a quadratic



fit:

f0(q
2) = f

(pol.)
0 (0)/(1 − λ

(pol.)
0 q2) , f0(q

2) = f
(lin.)
0 (0) · (1 + λ

(lin.)
0 q2) ,

f0(q
2) = f

(quad.)
0 (0) · (1 + λ

(quad.)
0 q2 + c0 q4) . (3)

These fits are shown in Fig.2-right and provide values of both f0(0) and the

slope λ0, which are consistent with each other within the statistical uncer-

tainties. The differences of the results obtained from the various fit are taken

into account in the estimate of the systematic error. Our results for the slope

λ0, given in units of M2
π+ , are: λ

(pol.)
0 = 0.0122(22), λ

(lin.)
0 = 0.0089(11) and

λ
(quad.)
0 = 0.0115(26). The “polar” value is consistent with the recent accurate

determination from KTeV λ
(pol.)
0 = 0.01414 ± 0.00095 14) and represents a

true theoretical prediction, having been obtained before the KTeV result were

published. We also mention that the result for the polar slope of the vector

form factor, λ+ = 0.026 ± 0.002 in units of M2
π+ , is in good agreement with

the recent accurate measurement from KTeV, λ+ = 0.02502 ± 0.00037 14),

obtained using a pole parameterization.

3) Extrapolation of f+(0) to the physical meson masses.

The physical value of f+(0) is finally determined by extrapolating the lattice

results to the physical kaon and pion masses. The problem of the chiral ex-

trapolation is substantially simplified if the AG theorem (holding also in the

quenched approximation) is taken into account and if the leading (quenched)

chiral logs are subtracted. Thus in 6) the following quantity is introduced

R(MK , Mπ) =
1 + f q

2 (MK , Mπ) − f+(0; MK , Mπ)

(M2
K − M2

π)2
(4)

where f q
2 represents the leading chiral contribution calculated in quenched

CHPT 6) and the quadratic dependence on (M2
K −M2

π), driven by the AG the-

orem, is factorized out. After the subtraction of f q
2 we expect that R(MK , Mπ)

is well suited for a smooth polynomial extrapolation in the meson masses. In-

deed, we find that R(MK , Mπ) is well described by a simple linear fit:

R(lin.)(MK , Mπ) = c11 + c12[(aMK)2 + (aMπ)2] , (5)

whereas the dependence on (M2
K − M2

π) is found to be negligible. In order to

check the stability of the results, quadratic and logarithmic fits have been also

fit:

fem?)=féP01-><0>/<1—Aép"l->q2> , fo(q2)= é”“~>(0>-(1+Aé”">q2>,
fo(q2) = féqWNO) - (1 + Aéqm‘d') q? + Co q4). (3)

These fits are shown in Fig.2—right and provide values of both f0(0) and the
slope A0, which are consistent with each other within the statistical uncer—
tainties. The differences of the results obtained from the various fit are taken
into account in the estimate of the systematic error. Our results for the slope
A0, given in units of Mg, are: A5100” 2 0.0122(22), A511“ 2 0.0089(11) and
Aéquad') = 0.0115(26). The “polar” value is consistent with the recent accurate
determination from KTeV Agpoz') : 0.01414 :l: 0.00095 14) and represents a
true theoretical prediction, having been obtained before the KTeV result were
published. We also mention that the result for the polar slope of the vector
form factor, A+ = 0.026 :l: 0.002 in units of A173“ is in good agreement with
the recent accurate measurement from KTeV, A+ : 0.02502 :l: 0.00037 14),
obtained using a pole parameterization.
3) Extrapolation of f+(0) to the physical meson masses.
The physical value of f+ (0) is finally determined by extrapolating the lattice
results to the physical kaon and pion masses. The problem of the chiral ex—
trapolation is substantially simplified if the AG theorem (holding also in the
quenched approximation) is taken int)o account and if the leading (quenched)

6chiral logs are subtracted. Thus in the following quantity is introduced

1 + f2q(MKv Mw) — f+(0; MKv)R M M,r : 4
l K’ ) (Ag—Mg)? ( )

where fgq represents the leading chiral contribution calculated in quenched
CHPT 6) and the quadratic dependence on (ll/1% — A13), driven by the AG the—
orem, is factorized out. After the subtraction of fgq we expect that RUWK, AL)
is well suited for a smooth polynomial extrapolation in the meson masses. In—
deed, we find that RUWK, AL) is well described by a simple linear fit:

R<lm~>(MK, A1,.) = 611 + 012[(a]\/IK)2 + (aMfifl , (5)

whereas the dependence on (Affi — A173) is found to be negligible. In order to
check the stability of the results, quadratic and logarithmic fits have been also
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considered. In Fig.3 it is shown that all these functional forms provide equally

good fits to the lattice data with consistent results also at the physical point.

Combining our estimate of R(MK , Mπ) at the physical meson masses with

the unquenched value of f2 = −0.023 1), we finally obtain the result quoted

in Eq. (1). Note that the systematic error does not include an estimate of

quenched effects beyond O(p4).

4 Conclusions

We have presented a quenched lattice calculation of the Kℓ3 vector form factor

at zero-momentum transfer, f+(0). Our calculation is the first one obtained

using a non-perturbative method based only on QCD, except for the quenched
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considered. In Fig.3 it is shown that all these functional forms provide equally
good fits to the lattice data with consistent results also at the physical point.

Combining our estimate of RUWK, ALT) at the physical meson masses with
the unquenched value of f2 = —0.023 1), we finally obtain the result quoted
in Eq. (1). Note that the systematic error does not include an estimate of
quenched effects beyond (9(p4).

4 Conclusions

We have presented a quenched lattice calculation of the K53 vector form factor
at zero—momentum transfer7 f+ (0). Our calculation is the first one obtained
using a non—perturbative method based only on QCD, except for the quenched



approximation. The impact of our result on the determination of |Vus| has

been also addressed. We find that, once combined with the new experimental

determinations, a very good agreement with CKM unitarity is obtained.

References

1. H. Leutwyler and M. Roos, Z. Phys. C25, 91 (1984).

2. PDG: S. Eidelmann et al., Phys. Lett. B592, 1 (2004).

3. J. Bijnens and P. Talavera, Nucl. Phys. B669, 341 (2003).

4. P. Post and K. Schilcher, Eur. Phys. J. C25, 427 (2002).

5. V. Cirigliano, H. Neufeld and H. Pichl, Eur. Phys. J. C35, 53 (2004).

6. D. Becirevic et al., hep-ph/0403217.

7. A. Sher et al. [E865 Coll.], Phys. Rev. Lett. 91, 261802 (2003) and hep-

ex/0307053.

8. A. Czarnecki, W. J. Marciano and A. Sirlin, hep-ph/0406324.

9. T. Alexopoulos et al. [KTeV Coll.], hep-ex/0406001.

10. L. Litov [NA48 Coll.], talk given at ICHEP’04, http://www.ihep.ac.cn/.

11. P. Franzini [Kloe Coll.], invited talk at PIC 2004, hep-ex/0408150. M.

Antonelli [Kloe Coll.], talk given at ICHEP’04, http://www.ihep.ac.cn/.

12. F. Mescia, talk given at ICHEP’04, http://www.ihep.ac.cn/.

13. S. Hashimoto et al., Phys. Rev. D61, 014502 (2000).

14. T. Alexopoulos et al. [KTeV Coll.], hep-ex/0406003.

approximation. The impact of our result on the determination of qSl has
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de

en also addressed. We find that, once combined with the new experimental
terminations, a very good agreement With CKM unitarity is obtained.
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