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1. Introduction

The subject of this talk is thermal strongly interacting matter in the temperature range 100MeV.
T . 1000GeV. QCD matter in this temperature range is studied experimentally in high-energy
heavy-ion collisions. At RHIC and the LHC, the temperature reached is sufficiently high for the
produced QCD matter to be in the quark-gluon plasma (QGP) phase. The QGP was the dominant
component of Standard Model matter in the early universe for the first few microseconds. While
the cooling from the QGP to the low-temperature hadronic phase was a continuous crossover [1]
and likely did not leave any detectable imprint, the production of weakly interacting particles in the
early universe is sensitive to the detailed properties of the QGP. Two examples are axions, whose ef-
fective mass depends on the topological susceptibility of the QGP [2], and sterile neutrinos, whose
production [3] depends on the vector and axial-vector spectral functions discussed below.

Studying QCD matter at finite temperature is part of the wider investigation of the QCD phase
diagram as a function of temperature and baryon chemical potential µB. Whether the thermal phase
transition becomes stronger and reaches a critical point as µB increases is the object of continuing
research. Here I describe the calculation of properties of QCD matter at µB = 0 using lattice QCD.

Lattice QCD provides a mathematically rigorous non-perturbative definition of QCD. It has
also become a primary numerical computational tool. One of its applications is to provide the
needed hadronic input for low-energy tests of the Standard Model. Another area where lattice
QCD has had a tremendous impact is finite-temperature QCD, where various lattice collaborations
have provided crucial input on static properties, such as the equation of state and quark number sus-
ceptibilities [4]. How to determine non-equilibrium quantities using lattice QCD is far less clear.
The reason is that lattice QCD employs the Matsubara path-integral formalism, which is based on
imaginary time x0 with 0 ≤ x0 < β , where β is the inverse temperature. Real-time aspects are
therefore only indirectly accessible. Some of the questions we want to address are [5],
•What quasiparticles are there in the thermal system?
• How fast does an external perturbation dissipate in the system? For long wavelength perturba-
tions, the rate is parametrized by transport coefficients (shear/bulk viscosity, diffusion coefficients,
etc.). In linear-response approximation, the dissipation in real time of an externally induced, mod-
ulated electric charge density with wavevector~k follows the generic diffusive behavior e−Dk2t .
•What is the production rate of weakly coupled particles such as photons or dileptons? This type
of question has applications both in heavy-ion collisions and in early-universe cosmology.

All three types of questions can be answered if certain spectral functions are known. To be
concrete, consider the electromagnetic current jµ = 2

3 ūγµu− 1
3 d̄γµd− 1

3 s̄γµs with γ0† = γ0 and
γ i = −γ i†. The lattice QCD approach to the spectral functions consists in computing Matsubara
correlation functions

Gµν(x0,~k)≡
∫

d3x e−i~k·x
〈

jµ(x) jν(0)
〉

(1.1)

and using the following dispersive relation1,

Gµν(x0,~k)
µ=ν
=

∫
∞

0

dω

2π
ρ

µν(ω,~k)
cosh[ω(β/2− x0)]

sinh[ωβ/2]
. (1.2)

1It is also possible to formulate the dispersion relation in momentum space, G(ωn,~k) =
∫

∞

0
dω

π
ω

ρ(ω,~k)
ω2+ω2

n
, however

subtractions are needed to make the integral converge; it is e.g. sufficient to subtract the vacuum spectral function.
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For µ = ν , the spectral funtion ρµν(ω,~k), whose temperature dependence is not indicated ex-
plicitly, is an odd function of ω , and ρµν(ω,~k)/ω is non-negative. In the vacuum (T = 0), the
electromagnetic current can excite the ρ,ω,φ mesons. Here the spectral function can be deter-
mined in a clean way in e+e− colliders. More generally, these vector excitations are expected to
persist as quasiparticles in the hadronic phase, with somewhat modified masses, widths, etc. In
addition, the low-frequency part of the spectral function encodes the transport properties of the
thermal medium,

ρ
ii(ω,~0) ω→0∼ 6 χs Dω, (1.3)

where χs =
∫

d4x 〈 j0(x) j0(0)〉 is the static susceptibility of the electric charge and D is the diffusion
coefficient. This type of statement is called a Kubo formula. Finally, the differential production
rate of photons per unit volume of the thermal medium is given by2

dΓγ(~k) = e2 d3k
(2π)3 2k

[ρ ii−ρ00](k,~k)
eβk−1

, k ≡ |~k|. (1.4)

In the lattice QCD framework, Eq. (1.2) represents an inverse problem for the spectral function,
given the correlator on the left-hand side. The state of the art is that the correlator is known to
permille precision.

1.1 Aspects of the inverse problem

In the zero-temperature limit, β → ∞ at fixed x0, the inverse problem amounts to an inverse
Laplace transform, a well-studied numerically ill-posed inverse problem. The study of low-lying
hadrons in the vacuum is nonetheless highly successful, because their contribution dominates the
correlator at late Euclidean times. At non-zero temperature, the restriction to x0 < β makes matters
worse. One diagnostic of the difficulty is provided by the following consideration. Due to the
linearity of the inverse problem, one may take linear combinations of the Euclidean data points,

ρ̄(ω̄)≡
n

∑
i=1

ci(ω̄)G(x(i)0 ) =
∫

∞

0
dω ρ(ω)

n

∑
i=1

ci(ω̄)
cosh[ω(β/2− x(i)0 )]

2π sinh[ωβ/2]︸ ︷︷ ︸
≡δ̂ (ω̄,ω)

, (1.5)

where the coefficients ci(ω̄) are chosen so that the ‘resolution function’ δ̂ (ω̄,ω) is as narrowly
peaked around a given frequency ω̄ as possible and normalized,

∫
∞

0 dω δ̂ (ω̄,ω)= 1. This is the idea
behind the Backus-Gilbert method, used recently in [6, 7]. The profile of the resolution function
is illustrated in Fig. 1. The difficulty is that the resolution function only becomes narrower slowly
with increasing number of data points n, and that this happens at the cost of large, sign-alternating
coefficients ci, whence the need for ultra-accurate lattice QCD data. This accuracy requirement
means that sources of systematic errors, mainly discretization and finite-volume errors, must be
brought down to a level comparable to the Monte-Carlo statistical errors. It is also worth noting
that the positivity property of the spectral function is a valuable piece of information which is not
exploited in the considerations above. The maximum entropy method and other Bayesian methods
(see e.g. [8, 9]) do incorporate this aspect from the outset.

2For ~k along the z-direction, due to the Ward identity ω2ρ00 = k2ρ33, only ρ11 + ρ22 contributes in Eq. (1.4);
however the combination ρ ii−ρ00 is the one needed for the dilepton production rate as well.
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Figure 1: Resolution functions δ̂ (ω̄,ω) at ω̄ = 4T and 5T for the inverse problem (1.2) on a lattice with
β/a= 24 using data points x0/a= 5,6, . . . ,12; from [6]. Without prior knowledge, only the ‘fudged’ version
ρ̄(ω̄) =

∫
∞

0 dω ρ(ω) δ̂ (ω̄,ω) of the spectral function can be determined. The optimal, narrowest resolution
function (λ = 1) requires large, sign-alternating coefficients ci, leading to large stastistical errors on ρ̄(ω̄).
In practice, as a compromise, the resolution function is chosen less narrow (λ < 1) to stabilize the result.

2. Recent progress in vector and axial-vector channels

Beyond the vector channel, which gives access to the diffusion constant, the shear and bulk
viscosity are of great interest, given the prominent role of these transport coefficients in the des-
cription of heavy-ion collisions. The viscosities are extracted via Kubo formulae from the spectral
functions associated with the energy momentum tensor. Furthermore, the properties of quarkonia
and heavy-light mesons serve as hard probes of the created medium in heavy-ion phenomenology.
In the hadronic phase, the properties of the pion quasiparticle are of particular interest, it being the
single most abundant hadron in the medium. In the following, we review several channels where
progress has recently been made.

2.1 The vector correlator and the diffusion coefficient

Figure 2 shows a recent calculation [7] of the isovector vector current correlator on lattices
of size Nt × 643 at vanishing spatial momentum, the temperature being varied between 0.8 and
1.7Tc at fixed lattice spacing by choosing Nt = 12,16,20,24 and 128 (the latter corresponding to
the vacuum). Here various explicit fit ansätze for the spectral function were applied. The leading
large-frequency behavior ρ ii(ω) ∝ ω2(1+αs/π + . . .) is temperature-independent, and therefore
all temperatures were fitted simultaneously. In addition, an exact sum rule,

∫
∞

0
dω

ω
[ρ ii(ω,T )−

ρ ii(ω,T ′)] = 0 was exploited to further constrain the spectral functions.
While the calculation is performed at relatively small lattice spacings, an extrapolation to the

continuum is still missing. In the ‘quenched’ approximation, where the effects of the quarks on
the QGP are neglected, one collaboration has been able to take the continuum limit [10]. Recent
results for the diffusion coefficient D of light-quarks are displayed in Fig. 3. In the QGP, lattice
calculations yield very low values, D ≈ 1/(πT ), to be compared with the leading perturbative
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Figure 2: Left: lattice vector isovector correlators as a function of imaginary time at four different temper-
atures between 0.8 and 1.7Tc, where Tc ' 203MeV at the simulation parameters; the statistical precision
on the correlators is about two permille or better. Right: the result of fits to the lattice data for the spectral
functions. By the Kubo formula (1.3), the ordinate at ω = 0 corresponds to 3χsD/T . Fig. from [7].

prediction [14] D ≈ 1.7/T for a reasonable value of the strong coupling constant αs; in strongly
coupled N = 4 super-Yang-Mills theory [15], the result is D = 1/(2πT ). However, one should
bear in mind that all lattice results in the left panel of Fig. 3 implicitly assume that no narrow
transport peak is present around ω = 0. In other words, if a long relaxation time-scale (compared
to the thermal time scale 1/T ) were present, as is certainly the case at very high temperatures, it
would be missed.

In addition to the diffusion of light quarks, one may consider the diffusion in the opposite
limit of a very massive (static) quark (see the data point [11] labelled ‘heavy-quark’ in Fig. 3). The
large mass scale present allows one to simplify the problem somewhat: the heavy-quark diffusion
coefficient can be related by an Einstein relation to a momentum diffusion coefficient, which is
determined by a gluonic force-force correlator [12]. The spectral function describing the latter is
smooth even at weak coupling, therefore the calculation is expected to be better controlled.

2.2 The photon production rate

As described in the introduction, the vector spectral function on the light-cone (ω = |~k|) gives
access to the differential photon rate. The authors of [16] define an effective diffusion coefficient,

Deff(k) = [ρ ii(k,~k)−ρ
00(k,~k)]/(4χsk) (2.1)

which coincides with D in the limit k→ 0. As illustrated by the right panel of Fig. 3, while the
lattice calculation of Deff(k) is reasonably well controlled for k ≈ 2πT , the uncertainty increases
rapidly as k is decreased. The reason is that one expects a more slowly varying spectral function
at non-zero spatial momentum. In the study [16], a polynomial fit ansatz was used up to ω =√

k2 +π2T 2, and advanced perturbation theory predictions were exploited at larger frequencies.

4
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Figure 3: Left: Selected recent results for the diffusion coefficient D of light-quarks [13, 7, 10], compared
to the weak-coupling prediction [14] and AdS/CFT prediction [15]. In addition, the data point explicitly
labelled “heavy-quark” is obtained in the static limit [11]. Right: The effective, momentum-dependent
diffusion coefficient that determines the photon production rate; see Eq. (2.1). Fig. from [16].

2.3 The pion quasiparticle in the hadronic phase

Chiral symmetry is spontaneously broken for T < Tc, and the chiral condensate 〈ψ̄ψ〉 is non-
vanishing. Goldstone’s theorem then implies a divergent spatial correlation length m−1

π in the limit
mu,d → 0. But also, a massless real-time excitation exists: the pion quasiparticle. Its dispersion
relation generically takes the form

ω~p = u(T )(m2
π(T )+~p2)1/2 + . . . (2.2)

at low momenta [17]. For T . 100MeV, the two-loop chiral perturbation theory prediction for
the pion quasiparticle mass ω~0 indicates that the quasiparticle mass is reduced [18]. However, the
effect of the other hadrons rapidly become important above T ' 100MeV; therefore a lattice QCD
calculation is needed to quantify the temperature dependence of the pion quasiparticle mass.

A key point is that the pion parametrically dominates the Euclidean two-point function of the
axial charge density and of the pseudoscalar density at x0 = β/2≈ 0.6fm and |~p|. 300MeV [19, 6].
Treating the pion in the narrow-width approximation and using the ansatz

ρ
A(ω,~p)/(2π) = a1(~p)δ (ω2−ω

2
~p)+a2(~p)(1− e−ωβ )θ(ω− c) (2.3)

for the spectral function of the axial charge density, a good description of the Euclidean correlator
is obtained. The pion thermal width is parametrically suppressed [17]; a quantitative estimate
based on the virial expansion [20] yields a value γT

π ≈ 20MeV at T ≈ 100MeV. The pion residue
has the form [17, 6] a1(~p) = f 2

π (T ) (m
2
π(T )+~p2). The screening pion mass mπ(T ) and decay

constant fπ(T ) can be determined reliably from static screening correlation functions. For a zero-
temperature pion mass mπ = (267± 2)MeV and T = 170MeV, we obtain u = 0.75(2) and ω~0 =

(223±4)MeV for the quasiparticle mass. The change in the quasiparticle mass is thus sizeable.

3. Conclusion

There has been significant progress in the lattice study of real-time properties of thermal QCD
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Figure 4: The Euclidean correlator of the axial charge density at various spatial momenta (left; from [6]),
and (right) its description via a spectral function containing the pion pole and a continuum (see Eq. (2.3)).

matter via spectral functions, in spite of the tremendous challenge posed by the inverse problem
inherent in the methodology. Lattice data on rather fine lattices have become available, the con-
tinuum limit has been taken in the quenched approximation and the statistical precision in several
channels is now at the permille level. The determination of the shear viscosity proceeds simi-
larly to the calculation of the quark diffusion constant, but since it involves the (flavor-singlet)
energy-momentum tensor, it is numerically much more demanding. Nonetheless, since the ex-
ploratory calculations [21, 22], new calculations have appeared recently in the pure SU(3) gauge
theory [23, 24].

One open issue to my mind is the fact that the hadron resonance gas model, which assumes
that the hadrons undergo no thermal modification, describes static observables such as the equation
of state and quark number fluctuations rather well (see e.g. [25]), while the dedicated study of the
pion quasiparticle described above does indicate a sizeable reduction in its mass.

I wish to thank the organizers for the invitation and for running this major conference very
smoothly. I also warmly thank my collaborators (Ref. [6]). My own research is supported by the
DFG grant ME 3622/2-2 QCD at non-zero temperature with Wilson fermions on fine lattices.
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